
https://doi.org/10.1007/s12289-022-01660-0

ORIGINAL RESEARCH

A dynamic data driven application system for real-time simulation
of resin transfer moulding processes

Gorka Garate1 · Isabel Harismendy2 ·Oihane Echeverria-Altuna2 · Julián Estévez1
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Abstract
This paper presents a numerical solution to optimize RTM processes based on a DDDAS methodology, taking permeability
as stochastic. The model proposed in this investigation allows real-time accurate prediction of the filling rate by adjusting
the parameters with the on-line captured process data. The suitability of the proposed model was tested and validated under
different process parameters variations like pressure and preform permeability.
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Introduction

Due to the intrinsic complexity of Resin Transfer Moulding
(RTM) processes, simulation is a very useful tool for the
design of the part and for the optimization of the process
conditions of the composites manufactured. Usually virtual
physics-based models solved by FEM are used, but their
main drawback is the long calculation time, which makes
them useless for online predictive systems. In addition,
these models use a static combination of parameters that
represents the behavior of the real system. In this case, the
disadvantage lies at the variability of the parameters of the
design phase in the real-time process. As the values of those
parameters are not static but stochastic, the outputs of these
simulated models often present significant deviations from
those of the corresponding real processes [1, 2].

In the RTM process preform porosity and permeability
and resin viscosity are required as input parameters for
the physical models used to simulate mould filling [3].
However, parameters such as permeability and porosity
cannot be estimated accurately beforehand as a consequence
of preform architecture variability due to different handling
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and storage conditions or shear deformations during the
forming/draping stage, nesting effects during lay-up, low
resistance channels along the preform, as well as accidental
misplacement of the preform in the mould [3]. Several
experimental and simulation studies have outlined the
stochastic nature of permeability. Standard deviations up to
20% were observed during permeability measurements [4–
8], while according to other results permeability standard
deviation can reach values up to 30%, as in [9].

To circumvent this stochastic nature of permeability
(and other parameters) DDDAS (Dynamic Data Driven
Application Systems) methods can be applied. It was Dr.
Darema who coined the DDDAS paradigm [10]: “DDDAS
entail the ability to incorporate additional data into an exe-
cuting application. These data can be archival or collected
on-line; and in reverse, the ability of applications to dynam-
ically steer the measurement process”. In all cases, the com-
mon feature is that the simulation can process online field
data from measures and adapt to those measurements.

DDDAS systems have been mostly applied in Computa-
tional Science and Engineering and Mathematics, and also
been some research in the field of Environmental Sciences
[11] or Materials Science [12]. However, only a few exam-
ples can be found for composite materials [13, 14]). These
examples address only mechanical properties and not man-
ufacturing processes, excepting the work of Chinesta et al
[15], where Hybrid Twins Features of which DDDAS sys-
tems are a constitutive part were illustrated for RTM. In
this case the RTM process was performed in a radial injec-
tion with a isotropic reinforcement and the flow front was
measured visually.
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Following this line of work, this paper presents a
Dynamic Data Driven Application System for a lateral
injection of a anisotropic reinforcement for the real time
adjustment of parameters based on pressure sensors data.
The method presented in this work allows to operate in real
time during a 2D RTM process, detecting the discrepancies
between the virtual simulation and the data from the running
RTM experiment and correcting them on the fly. More
specially, the model proposed allows to optimize filling
rate in a RTM process by adjusting the parameters to the
experimental measures of the actual filling rate taken in real
time, taking into account the noises in both the predictions
and the measured data.

The suitability of the proposed model was tested using
four different preform configurations and process condi-
tions.

This paper is divided in six sections.
Section “Proposed virtual offline model” details the

proposed mathematical model used for the theoretical
simulations of the virtual model and “Proposed model for
the DDDAS RTM simulation” details the proposed DDDAS
model.

Section “Experimental” describes the materials, setup
and execution of the four test RTM experiments used in this
paper.

Section “Results and discussion” presents the results
obtained by the DDDAS model for the four RTM experi-
ments of the previous section, showing its adaptability to the
different configurations.

Finally, “Conclusions” presents the conclusions and
future lines of work.

Proposed virtual offlinemodel

The method of simulation consists in solving by finite
differences the following 2D Initial Value Problem (IVP):

This IVP consists of Darcy’s law for the filtration
velocity of the flow in the i direction, plus a condition for
the initial position of the front of the flow. In Eq. 1a v is the
Filling rate, k is the permeability tensor of order 2, μ is the
viscosity (scalar), p is the pressure, x is the vector pointing
to the front of the flow and g is the initial gap between the
edge of the preform and the contour line. The IVP is defined
in domain Ω (see Fig. 1). The boundary of the domain
consists of the pressure contour, the impermeable boundary
and the goal line.

Fig. 1 Domain

In two- or three-dimensional RTM settings permeability
is sometimes modelled as a second- or third-order tensor
in order to take into account the anisotropy of the config-
uration, but here the permeability k (x) is taken a scalar
function. Nevertheless, the methodology here developed can
easily be generalized to the 2D tensor case.

The two-dimensional forward model for RTM is purely
rheologic and does not include thermal and chemical
phenomena. Thermal phenomena are neglected because the
temperature during the experiments simulated has been
proven to remain practically constant; the evolution of
viscosity during the curing stage is left for future work.
In the case of the experiments here presented the viscosity
of the resin remained constant at the selected temperature
through the injection stage (Fig. 2).

Approximating the differentials by finite increments and
assuming through each step a constant pressure gradient and
a constant permeability tensor, we can iterate on the position
of the front of the flow and generate simulations of the RTM
processes for different variations of the parameters. The
pseudo-code of the generation of the theoretical simulations
is presented here as Algorithm 1.

Proposedmodel for the DDDAS RTM
simulation

Figure 3 describes the way the DDDAS works. The model
starts with an initial state of the RTM process. An initial
discrete front of one hundred points located along the width
of the mould at an initial separation from the injection line
(x = x0 mm). Another two hundred points are fixed at the
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impermeable boundary (in the case of our mould, y = 0 mm
and y = 125 mm) and one hundred more are fixed at the
goal line (x = 530 mm). The nominal value of permeability
is set to an initial value.

The simulation proceeds using Algorithm 1, assigning
at each of the points in the actual front (at each iteration
step) a stochastic value of the permeability obtained from a
normal Gaussian distribution that uses as mean the nominal
value of the actual permeability of the simulation and a fixed
standard deviation of 2.5% of the nominal permeability.

Fig. 2 Impermeable boundary

The predicted state given by the model provides the
following outputs (these magnitudes are user-defined):

1. Predicted average position of all the points in the front
(along x coordinate in mm)

2. Predicted average filling rate of all the points in the
front (along x coordinate in mm/s)

Fig. 3 DDDAS flow chart
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3. Predicted pressure of a sensor at point (0.15,0.0575)
(in Pa)

The model uses both the estimate and the measured value
to apply a Kalman filter that gives a new filtered current
filling rate estimate.

If the mould is not filled, the model checks whether
there is a precalculated variation (permeability value) for the
actual front position that gives a filling rate that is closer
to the estimate than that of the actual variation. If there is
one, the model updates the permeability value taking the
corresponding value of the offline model that performs best.

The process goes on taking new steps using the new
parameter until it finds new data (in that case the Filter +
Current State + Update is repeated) or the mould has been
filled (the points in the front have reached the goal line). The
pseudo-code is detailed in Algorithm 2.

As regards the Kalman filter, the values of the errors used
have been:

• Data error in position of the front and in filing rate:
15%

• Initial estimate error: 25%
• Process error: 25%

The outputs of the DDDAS RTM simulation for each step
are (these magnitudes are user-defined):

1. Corrected permeability (in m2)
2. Average position of all the points in the front (along x

coordinate in mm)
3. Average filling rate of all the points in the front (along

x coordinate in mm/s)
4. Virtual pressure at point (0.15,0.0575) (in Pa)

Experimental

An unidirectional glass fiber supplied by Saertex (Ultra
Fatigue UD) was selected for the RTM experiments. Fibre
properties are summarized in Table 1:

Preforming was performed under in a vacuum table at
150oC for 90 seconds.

In order to check the suitability of the proposed model for
detection and correction of the parameters, different kind of
preforms were prepared with the following configurations
(Fig. 4):

• Configuration 1: preforms with constant permeability
(4 layers of glass fabric).

• Configuration 2: preforms with different permeability
zones. For this purpose, the number of plies was
reduced from 4 to 3 and 0 in a specific area of the
preform as shown in Fig. 4.

To take into account the possible interaction of the resins
and the binder, a commercial low viscosity epoxy supplied
by Resoltech (1800/1805) was used as the infiltration fluid.
This resin has a constant viscosity of 25 cps at all the
temperature/times of the experiments.

Unidirectional laminar flow RTM tests were carried out
at a constant pressure in a rectangular mould with transpar-
ent glass cover. Both a camera and a pressure sensor were
used to monitor the progress of flow front in the mould.

The main features of the equipment are shown in Fig. 5.
The RTM injection test were performed at 60oC and

pressures gradient ranging from 0.5 bar to 2 bar. The geom-
etry considered is a rectangular mould cavity of 530 mm in
length, 115 mm in width and of thickness 3.9 mm. A pressure
sensor form Kistler (Type 4001A, with temperature compen-
sation) is located 155 mm from the inlet (Figs. 6 and 7).

A computerized data acquisition system is used to assem-
ble the experiments data (temperature, pressure, camera
recordings) and calculate online the flow front position from
the camera and pressure sensors readings.

Flow front position front the pressure sensors was
calculated from measured pressure gradient, assuming that
pressure decreases linearly from P0(t) at point x0 to 0 on
the flow front at a distance xs(t) from x0.

dP

dx
= −P0 (t)

xs (t)
(1)

Table 1 Fibre properties

Weaving pattern E-glass unidirectional non-crimp fabric (NCF)

Areal weight 1176 ± 64 g/m2

Powder Huntsman XB 6078 10 ± 2 g/m2

Sewing thread Polyester 76 dtex 12 ± 3 g/m2
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Fig. 4 Preforms configuration

Fig. 5 Schematic diagram of the
test equipment

Fig. 6 RTM mould

Fig. 7 Pressure evolution with
time at sensor location xs
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Fig. 8 Comparison between the flow front position calculated by
camera and based on pressure sensor

Figure 8 shows, as an example, the comparison between
the flow front position calculations from the camera and
pressure sensor readings. As it can be seen, there is a good
correlation between both methods.

The monitoring strategy presented, with a single pressure
sensor is only valid for a unidirectional flow experiment.
However, pressure sensing can be used to reproduce the
flow front shape in more complex geometries.

For instance, Fratta et al [16]. coupled pressure signals
and flow modeling in an algorithm to estimate flow front
patterns in 2D geometries using few sensors placed in
strategic positions. The developed method is based on
the partition of the cavity shape into a combination of
flow channels Each flow channel contains a flow path
and follows its development through the cavity from
the inlet to the outlet, as. The algorithm for flow front

Fig. 9 Test 1 configuration

Fig. 10 Flow front progression during Test 1

estimation is thus applied to each channel separately,
approximating the whole 2D injection by a combination of
concurrent injections along the defined flow paths into the

Fig. 11 Experimental results for Test 1. Flow front position and filling
rate
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Fig. 12 Model results for Test 1. Flow front position and filling rate

corresponding channels. The complete flow front profile
at a given impregnation time is finally reconstructed by
interpolating the determined flow front positions along the
flow paths.

Fig. 13 Flow front progression during Test 2

Fig. 14 Model results for Test 2. Flow front position and filling rate

For complex 3D geometries the number of sensors and
locations will depend of the race tracking regions and
strength, the inlet and vent locations and the mold geom-
etry, which is translated by the superimposed pressured

Fig. 15 Test 3 configuration

Page 7 of 11    28Int J Mater Form (2022) 15: 28



gradients maps. For this purpose, a simplified cost-effective
simulation-based methodology has been proposed by Siddig
et al. [17]. This methodology extrapolates sensors locations
for a rectangular geometry to more complex shapes.

Results and discussion

The suitability of the proposed model was tested using four
different preform configurations and process conditions,
called hereafter Tests 1 to 4.

Test 1

Figure 9 shows Test 1 configuration. It was performed with
a constant permeability preform consisting of 4 plies of the
glass fabric, with a resultant fibre volume content Vf of
47.5% and a nominal permeability of 1.35e−10 m2. The test
was carried out under controlled vacuum. at −0.73 bar.

As can be seen in Fig. 10, the flow front was stable, with
no racetraking and little difference between the saturated
(full preform impregnated, dark grey) and unsaturated
(preform partially impregnated, lighter grey) areas. The
saw-tooth aspect of the flow front is due to the presence of
high permeability channels between fibre tows.

Figure 11 shows the actual flow front position and filling
rate evolution during Test 1.

Figure 12 shows the results of the on-line model calcula-
tions for Test 1. An onset permeability of 1.0e−10 m2 was
used in order to check the online adaptation ability of the
DDDAS model. As can be seen in the figure, permeability
value was quickly recalculated to the nominal permeability

Fig. 16 Flow front progression during Test 3

Fig. 17 Experimental results for Test 3. Flow front position and filling rate

as soon as the model received the real data from the experi-
ment, showing a good fitting between the filling rate values
calculated by the model and the experimental values.

Fig. 18 Filling rate vs flow front position for Test 2 and Test 3
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Fig. 19 Model results for Test 3. Flow front position and filling rate

Test 2

Test 2 was performed with the same preform configuration
as Test 1: a constant permeability preform, with a nominal

Fig. 20 Test 4 configuration

Fig. 21 Experimental results for Test 4. Flow front position and filling rate

permeability value of 1.35e−10 m2 (Fig. 9). The difference
between both tests was the pressure gradient applied. In
this case the test was performed under vacuum (−0.98. bar)
and a constant injection pressure of 1.04 bar, resulting in a
pressure gradient of 2.02 bar.

The increase of the filling rate intensifies the effect of the
high permeability channels and significantly increases the
difference between the saturated and the unsaturated flow.

Figure 13 shows the saturated flow front evolution.
Figure 14 shows the results of the on-line model calcula-

tions for Test 2. Again, an onset permeability of 1.0e−10 m2

was used. As can be seen in the figure, permeability value
was quickly adapted to real data even at high filling rates.

Test 3

Test 3 was performed with a variable permeability preform.
For this purpose, the number of plies was reduced from
4 to 0 in a specific area of the preform. The test was
carried out under vacuum (−0.98 bar) and at a constant
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Fig. 22 Flow front progression during Test 4

injection pressure of 1.32 bar (pressure gradient of 2.30
bars) (Figs. 15 and 16).

As for Test 2, there was a significant difference between
the saturated and the unsaturated flow rates. The filling
rate dramatically increased in the high permeability window
producing a turbulent flow with bubbles (Fig. 16).

In this case, the different permeability zones were clearly
appreciated in Fig. 17 by the change of the flow front vs
time and filing rate vs flow front position curves shapes.

Figure 18 compares the results obtained for Tests 2 and
3. As can be seen, the filling rates were similar in the 4
plies zones and then sharply increased for test 3 in the high
permeability window. Filling rate is slightly higher for test
number 3 due to a higher pressure gradient (2.3 vs 2.02 bar).

As shown in Fig. 19, the model was able to detect an
adapt to abrupt permeability changes giving a good predic-
tion of filling rate.

Fig. 23 Filling rate vs flow front position for Test 1 and Test 4

Test 4

Figure 20 shows Test 4 configuration. As in Test 3, it was
performed with a variable permeability preform. In this
case, the number of plies was reduced from 4 to 3 in a
specific area of the preform, in a fiber volume variation from
47.5% to 35.6% in order to test the model at less extreme
conditions. Also, the test was carried out at lower filling
rate, under a constant vacuum of 0.53 bar and no injection
pressure applied.

As expected, in this case the change of the filling rate
was significantly less pronounced. (Figures 21) However,
as seen in the figure bellow (Fig. 19), it could be clearly
appreciated visually by a more unsaturated flow condition
(light gray)(Figure 22).

Figure 23 compares the results obtained for Tests 1 and
4. As can be seen, the filling rates were similar in the 4 plies
zones and then increased for Test 4 in the high permeability
window. Again, there is a slight difference of filling rates
due to the different pressure gradient applied (0.73 bar for
Test 1 vs 0.53 bar for Test 4).

Fig. 24 Model results for Test 4. Flow front position and filling rate
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Figure 24 shows the model results for Test 4. Again,
the model was able to detect and recalculate permeability
changes. Even if the differences are less pronounced, the
model gives an accurate prediction of the filling rate.

Conclusions

The proposed DDDAS model was able to calculate in real
time the filling rate under different process conditions. The
model was able to detect and adapt to both abrupt and
smooth permeability changes in the experiments, giving
accurate predictions. The developed solution allows the
online estimation of the evolution of the filling process
and its uncertainty. This estimation can be utilized to carry
out control and corrective actions during manufacturing,
potentially increasing process efficiency, improving part
quality and reducing process failures and defects.

In this work temperature and viscosity remained constant
at the experiment’s conditions and its variability was
not taken into account for the model. Future work will
include viscosity variations through thermal and chemical
phenomena.
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