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Abstract
A theoretical study is presented of the effect of an in-plane magnetic exchange field on the band
structure of centrosymmetric films of noble metals and topological insulators. Based on an ab
initio relativistic k · p theory, a minimal effective model is developed that describes two coupled
copies of a Rashba or Dirac electronic system residing at the opposite surfaces of the film. The
coupling leads to a structural gap at Γ̄ and causes an exotic redistribution of the spin density in the
film when the exchange field is introduced. We apply the model to a nineteen-layer Au(111) film
and to a five-quintuple-layer Sb2Te3 film. We demonstrate that at each film surface the exchange
field induces spectrum distortions similar to those known for Rashba or Dirac surface states with
an important difference due to the coupling: at some energies, one branch of the state loses its
counterpart with the oppositely directed group velocity. This suggests that a large-angle electron
scattering between the film surfaces through the interior of the film is dominant or even the only
possible for such energies. The spin-density redistribution accompanying the loss of the
counterpart favors this scattering channel.

1. Introduction

Two-dimensional (2D) ferromagnets with strong spin–orbit interaction (SOI) possess a variety of spin
magnetic properties relevant for spintronics, including anomalous Hall effect [1], spin Hall effect in
ferromagnets [2], quantum anomalous Hall effect [3–5], anisotropic magnetoresistance, and planar Hall
effects of various origins [6–9]. The time-reversal symmetry breaking accompanied by the spin-momentum
locking of the 2D states leads to the antisymmetric spin filtering [10] and causes spin–orbit torques [11]
and spin swapping [12]. Although these problems are, in principle, theoretically accessible with ab initio
methods [13–15], effective models [3–6, 8–10, 16] are indispensable, as they provide a greater freedom of
modeling.

The majority of studies have addressed crystal surfaces of sufficiently thick films, in which the
interaction between the two 2D systems on the opposite surfaces can be neglected. However, at metallic
surfaces the spin–orbit-split surface states often energetically overlap with the bulk bands, which reduces
the lifetime of the 2D carriers. This draws the attention to ultra-thin films, in which the interaction between
the two surfaces cannot be neglected, and calls for the development of effective k · p models capable of
describing such systems. So far in the k · p modeling of the Rashba-split or topological surface states the
interaction between the states at the opposite surfaces has been described by a tunneling parameter having
the same structure as the Zeeman interaction [3–5, 9, 16], which is sufficient to mimic the structural gap
and, consequently, a finite effective mass. However, in real materials the interplay between the structural

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac46e1
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5598-222X
https://orcid.org/0000-0003-4246-2986
mailto:swxnenei@ehu.eus


New J. Phys. 24 (2022) 013021 I A Nechaev and E E Krasovskii

Figure 1. Band structure of the nineteen-layer Au(111) film (a) and the five-QL Sb2Te3 film (b) by the four-band k · p
Hamiltonian shown by black lines for the exchange parameter J = 0 and by fat bands for J = J (x̂ + ŷ)/

√
2 with

J = 30 meV for k = k⊥(x̂ − ŷ)/
√

2 perpendicular to the magnetization. The sign of the in-plane spin projection perpendicular
to k is shown by color: bright colors (red and blue) are used for the upper surface and pale colors for the lower surface. In graphs
(a) and (b), the gray numbers mark the basis states |Ψ1〉 and |Ψ2〉, while the red ones label the energies E1, E2, E3, and E4 at
which the CECs shown in figures 2 and 3 are calculated. Graphs (c) and (d) show, respectively, the ab initio band structure of the
Au(111) and Sb2Te3 film (see text). The bands for the in-plane exchange field are represented by fat bands for k⊥J (k⊥-axis) and
by dashed black lines for k‖J (k‖-axis). Here, apart from the sign of the in-plane spin projection the fat bands reflect the
localization of the states in three uppermost (bright colors) and lowermost (pale colors) atomic layers of the films. Orange
rectangles outline the energy–momentum regions of graphs (a) and (b).

splitting and spin polarization due to SOI may be rather complicated, with a nonuniform spin density
distribution at each of the surfaces (see, e.g., the studies of the overlayers, references [17, 18]), which is
neglected in the simplified models. Here, we develop a relativistic effective k · p model that includes SOI,
magnetic exchange interaction, and the spatial overlap between the 2D states—the precursors of the surface
states—at the ab initio level. We apply the model to the study of the effect of the in-plane magnetization on
the band structure of centrosymmetric films of noble metals and three-dimensional (3D) topological
insulators.

Our proof-of-principle calculation shows that the structural gap presents new advantages for spin
manipulation and scattering-channel engineering at the nanoscale. We start with an ab initio relativistic
k · p theory [19–22] that generates effective Hamiltonians of a desired size and provides a reliable treatment
of spin. This enables a predictive analysis of the effect of exchange magnetic interaction in accord with
experimental observations [23, 24]. We will consider one representative of each class of materials: a
nineteen-layer Au(111) film and a five-quintuple-layer (QL) Sb2Te3 film. A four-band Hamiltonian
generated for these films is presented in a surface-resolved basis so that the resulting k · p model can be
easily decomposed into two copies of a Rashba or Dirac electronic system and their interaction accurately
described up to third order in k. A distinctive and novel feature of the present ab initio k · p theory is that it
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makes no assumptions on the spatial structure of the wave functions, which allows us to consistently
introduce the depth dimension into the spin-structure analysis.

We consider the simultaneous action of the SOI and an in-plane exchange field on the 2D states
localized at the opposite surfaces and reveal that the interaction between the states plays a crucial role in the
behavior of spin and restricts the scattering phase space for these states. In the absence of the exchange field,
the SOI splits the dispersion of the surface-state precursor into two branches, with each branch giving rise
to a closed constant energy contour (CEC) at each of the surfaces. However, in the presence of the exchange
field, for certain energies, one contour may be torn between the two surfaces, i.e., an open arc occurs at one
surface, and its counterpart with the opposite group velocity is at the other one. The resulting very specific
shape and spatial spin structure of the CECs constrain the large-angle scattering so that it is necessarily
accompanied by a jump to the opposite surface.

2. Computational details

The ab initio band structure of the films is obtained in the repeated-slab model with the extended linear
augmented plane waves method [25] using the full potential scheme of reference [26] within the local
density approximation (LDA). The SOI was treated by a second variation method [27]. The noble metal
and topological insulator films are represented, respectively, by the bulk-truncated centrosymmetric
nineteen-layer slab of Au(111) and five-QL slab of Sb2Te3 (both films have space group P3̄m1, no. 164). For
Sb2Te3, the experimental crystal lattice parameters were taken from reference [28] with the LDA relaxed
atomic positions of reference [29]. The experimental lattice parameter of gold was taken from reference
[30]. The films are thick enough to simulate the classical Rashba or Dirac surface state, but, at the same
time, there is a tangible splitting of the surface state at Γ̄: being an eigenfunction of a centrosymmetric slab
Hamiltonian, the surface state is represented by two doubly degenerate slab levels E1 and E2 separated by a
structural gap of a few meV, Δ = E2 − E1. This means that at Γ̄ the Rashba or Dirac surface states form two
Kramers-degenerate pairs with the spinor wave functions |Ψ1μ〉 and |Ψ2μ〉, figures 1(a) and (b).

3. Minimal effective model

We start with a four-band k · p model, choosing the ab initio spinors |Ψ1μ〉 and |Ψ2μ〉 as the basis functions,
where the subscript μ =↑ or ↓ indicates the sign of the on-site expectation value of the z component Ĵz of
the total angular momentum Ĵ = L̂ + Ŝ [19, 22]. With this basis set, we derive a four-band k · p
Hamiltonian Hkp from the ab initio relativistic k · p perturbation expansion carried out around the Γ point
up to the third order in k [22]. Next, we transfer to the new basis |Φ±

μ 〉 = 1√
2

[
|Ψ1μ〉 ± |Ψ2μ〉

]
[20], in which

the four-band Hamiltonian reads

Hkp −→ HFilm
kp =

(
H+

Surf Hint

H†
int H−

Surf

)
. (1)

Here, H±
Surf = [ε+ Mk2]I2×2 ± HR and the interaction term Hint = [Δε +ΔMk2 + iΔW(k3

+ + k3
−)]I2×2

with k =
√

k2
x + k2

y , k± = kx ± iky, and x̂ being the direction Γ̄–M̄. The well-known 2 × 2 Rashba term

HR =

(
iW(k3

+ − k3
−) iαk−

−iαk+ −iW(k3
+ − k3

−)

)
, (2)

is responsible for the out-of-plane and in-plane spin structure typical of hexagonal surfaces, see, e.g.,
reference [21] and references therein. In equation (2), the second-order-corrected Rashba parameter is
α = α(1) + α(3)k2.

In our theory, a reliable treatment of spin [20, 23, 24] is realized by means of the spin matrix

Skp −→ SFilm
kp =

(
S S̃
S̃ S

)
, (3)

where S = (s‖σ‖, szσz) and S̃ = (Δs‖σ‖,Δszσz). The elements of the spin matrix [SFilm
kp ]μτνχ = 〈Φτ

μ|σ|Φχ
ν 〉,

where τ and χ are + or −, enter the expression for the spin expectation value

〈Skλ〉 =
1

2
〈Φ̃λ

k |σ|Φ̃λ
k〉 =

1

2

∑
μτνχ

Cλ∗
kμτCλ

kνχ

[
SFilm

kp

]μτ
νχ

(4)
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Table 1. Parameters of the Hamiltonian (1) for Au(111)
nineteen-layer slab with the lattice parameter a = 5.4495 a.u.
and Sb2Te3 five-QL slabs with a = 8.0312 a.u. in Rydberg
atomic units (except ε and Δε given in eV).

Au(111) 19L Sb2Te3 5QL

ε −0.490 −0.093
α(1) −0.134 −0.271
α(3) 10.14 −33.33
W 0.10 −52.71
M 5.06 7.37
s‖ 0.98 0.62
sz 0.96 0.25

Δε −0.006 −0.007
ΔM −0.07 −0.80
ΔW −0.03 −1.71
Δs‖ 0.00 0.00
Δsz 0.00 −0.01

in the model state |Φ̃λ
k〉 =

∑
μτ

Cλ
kμτ |Φτ

μ〉 of the reduced Hilbert space of the Hamiltonian (1). The

four-dimensional vectors Cλ
k diagonalize this Hamiltonian HFilm

kp Cλ
k = Eλ

k Cλ
k . Below, for simplicity, the

in-plane component of the spin 〈Skλ〉 will be referred to as S‖.
The microscopically obtained parameters in equations (1) and (3) are listed in table 1. The eigenvalues

of the Hamiltonian (1) obtained with these parameters is shown in figures 1(a) and (b) by black solid lines.
The spectra are represented by doubly degenerate bands with the characteristic Rashba- or Dirac-like
behavior and exhibit the structural gap at Γ̄ due to the coupling between two copies of the Rashba or Dirac
electronic systems residing at the opposite surfaces of a film. Note that our ab initio relativistic k · p theory
provides an accurate description of this coupling by the term Hint up to the third order in k. For further
purposes, we define the depth parameter for a given model state |Φ̃λ

k〉 as

Dλ
k =

∑
μ

(
|Cλ

kμ+|2 − |Cλ
kμ−|2

)
. (5)

This parameter varies from −1 (the upper film surface) to 1 (the lower film surface) and adds a new
dimension to our analysis to characterize the spatial localization of the model states in the films.

Now, we include the exchange field into the magnetic Hamiltonian HM
kp = HFilm

kp + HEX as an exchange

term HEX = −J · SFilm
kp , where J = JexM is a tunable parameter allowing for the magnetic exchange

interaction of strength Jex with a magnetization M, when, e.g., the film is brought into contact with a
magnetic material or contains ferromagnetically ordered magnetic (spin) moments of doped
transition-metal atoms. In the present study, we consider an in-plane magnetization with
J = J (x̂ + ŷ)/

√
2 and J = 30 meV.

For the films we study, the in-plane components of the non-diagonal block S̃ of the spin matrix (3) are
zero, and, therefore, the effect of the in-plane exchange field is described by the block diagonal matrix HEX

whose elements are added to the elements of H±
Surf. This implies that in both the non-magnetic and

magnetic phase the interaction between the surfaces is exclusively due to the term Hint, whose parameters
are rather small for the chosen thicknesses of the films, table 1. With increasing the film thickness, these
parameters become negligible, and we arrive at two uncoupled surfaces. Each of the surfaces is described by
the spin matrix S and the Hamiltonian H+

Surf or H−
Surf, which is in accord with the form of the two-band

Hamiltonian constructed in reference [31] by considering the C3v crystal symmetry and time-reversal
symmetry only. Because it comes directly from our fully ab initio k · p perturbation approach, this
Hamiltonian is the same both for the Dirac surface state of topologically nontrivial insulators and for the
so-called Rashba-split surface state of noble metals. This can be viewed as an ab initio confirmation of the
applicability of the two-band Hamiltonian of reference [31] to topological surface states and the Rashba
Hamiltonian of the semiconductor quantum well physics [32, 33] to the trivial surface states first suggested
by LaShell et al [34]. Additionally, we note that for the Au(111) film the spin parameters s‖ and sz are almost
unity, see table 1, and in this case one may associate the Pauli matrices generally used to represent the
Hamiltonian with the observable spin.

Furthermore, Hamiltonian (1) is an instructive k · p model for studying a phenomenon known as a
hidden Rashba effect [35], which here is associated with two inversion-symmetry related copies of the
Rashba or Dirac system. One copy is described by H+

Surf, and its inversion partner is represented by H−
Surf.
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However, although the k · p model for the isolated copies is well known, their interaction has not been
hitherto accurately treated within a relativistic k · p theory. Our ab initio k · p perturbation expansion yields
the interaction term Hint up to third order in k in accord with the order of the spin–orbit term HR

accounting for the splitting and spin structure of the Rashba or Dirac state. In this regard, it is also worth
noting that besides a more accurate description of the dispersion of the surface-state precursors than in the
classical (linear) Rashba and Dirac models, the third-order k · p model allows for a nonzero out-of-plane
spin polarization Sz permitted by symmetry, for the hexagonal warping of CECs, and for the anisotropic
k-dependent interaction between the states at the opposite film surfaces. As seen in table 1, the ab initio
values of the parameters α(3), W, and ΔW for the Sb2Te3 film are substantially larger than those for the
Au(111) film, and, therefore, the improvement over the classical models is more significant for the
topological insulator film.

4. In-plane exchange field effect

The band structures of the Au(111) and Sb2Te3 films in the in-plane exchange field by the magnetic k · p
Hamiltonian HM

kp with J = 30 meV are shown in figures 1(a) and (b) by fat bands highlighting the sign of
the in-plane spin projection onto the field direction for k⊥ M. As seen in the figures, due to the exchange
interaction the states with the in-plane spin S‖ co-directional with the field (blue-shade bands) tend to
decrease their energy, while the states with S‖ opposite to the field (red-shade bands) acquire higher energy.
The resulting red- and blue-shade bands resemble an ordinary Zeeman splitting of scalar-relativistic doubly
degenerate bands, i.e., the zero-field band structures (black lines) shifted, respectively, up and down in
energy.

To understand the effect of the SOI-induced spin structure, one should take into account the
depth-localization of the states according to the Dλ

k parameter (5) given by the color shade. In this case, one
can clearly distinguish two pairs of the branches localized at opposite surfaces—the bright red and blue
branches of the upper surface and the pale ones of the lower surface. Each pair demonstrates the
well-known modifications of the classical Rashba or Dirac states by an in-plane magnetic exchange field
with the crossing points shifted away from Γ̄. As seen in figures 1(a) and (b), these crossing points
(black points in the figures) are on opposite sides of Γ̄ for the opposite surfaces due to the different sign of
the SOI term HR in H±

Surf. Note that the magnetic k · p calculations highly accurately reproduce the
dispersion, spin polarization, and localization of the true bands near the Γ̄ point, see figures 1(c) and (d).
These figures show the ab initio band structures of the films with the in-plane magnetization realized by
adding a uniform Zeeman field to the original LDA Hamiltonian as implemented in the FLEUR code [36].

In the presence of the field, the structural gap due to the coupling does not disappear either in the
model or in ab initio spectra, and at Γ̄ it breaks each of the spin-split branches of the surface-state
precursors, figure 1. Owing to the gap at Γ̄, for k⊥ M there is an energy interval where a branch of the split
state at the upper or lower surface loses its counterpart with the opposite group velocity. In the Rashba
system, this is the branch of the same color, implying the same in-plane spin projection, while in the Dirac
system the lost counterpart is the branch of the other color, i.e., with the flipped S‖.

A similar picture of the unpaired branches was observed in reference [37] for Ag2Bi/Ag/Fe, but there it
was caused by a spin-selective hybridization between the exchange-split quantum well states of a
fifteen-layer Ag(111) film grown on the ferromagnetic substrate Fe(110) and the Rashba-split states of the
surface alloy Ag2Bi on the top of the silver film. In our case, the exchange field does not act through an
intermediary, but acts directly on the structurally split Rashba or Dirac states, figure 1. A way to realize this
in a real system is to sandwich the films between the magnetic layers of a van der Waals transition-metal or
rare-earth trihalide (for example, for the topological insulator film it might be the ferromagnetic layer of
GdI3 [38]).

In order to examine the structural-gap effect over the whole (kx, ky) plane, we employ our k · p theory to
calculate spin-resolved CECs of the surface-state precursors around Γ̄ at the energies indicated in
figures 1(a) and (b). The depth-resolved contours are presented in figure 2 as 3D curves, the vertical
dimension being the depth defined by equation (5). As seen in the figure, these 3D CECs are strongly bent
towards the vertical for k close to the field direction (the momentum polar angle ϕk ∼ π/4 and ∼ 5π/4),
so one half of the contour lies on the upper and the other on the lower surface. Over the 3D CEC fragments
that pass through the film the surface states are largely hybridized.

In the 2D projections of the 3D CECs onto the surface (dashed gray lines in figure 2), the large
hybridization manifests itself as the avoided crossing between the contours of the uncoupled surfaces, see
red arrows for the case 1 in figures 2(a) and (b). Indeed, a pair of the 2D projections (hereafter, 2D
contours) can be easily recognized to be the exchange split contour, which is doubly degenerate in a
nonmagnetic film. (For Au(111), there are two pairs: two inner and two outer 2D CECs.) In such a pair, one
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Figure 2. Depth- and spin-resolved CECs for the nineteen-layer Au(111) film (a) and the five-QL Sb2Te3 film (b) under the
in-plane exchange field at the energies marked by red numbers in figures 1(a) and (b), respectively. The in-plane spin is
represented by arrows of the color changing from orange to teal according to the increase of the depth from the upper to the
lower surface. The depth resolution manifests itself in the stretching of the contours (solid and dotted black lines) in the depth
dimension determined by the contributions of the surface-related basis states |Φ±〉 to the model state of the four-band k · p
Hamiltonian, equation (5). Gray dashed lines are the projection of the contours onto the surface planes. In graphs showing the
contours at E = E1, yellow circles are the contours for a semi-infinite film under the field.

3D CEC (solid black line) has two flat arcs that lie on the opposite surfaces and project onto one closed 2D
CEC, and the arcs of the other one (dotted black line) project onto the other 2D CEC of the pair. In the
plane, the arcs are disconnected around the avoided-crossing points, contrary to the case of the uncoupled
surfaces, see yellow circles in figure 2. (The avoided crossing comes from the structural splitting of the
surface-state bands clearly seen for k‖M, see dashed black lines in figures 1(c) and (d); for the uncoupled
surfaces these bands are doubly degenerate along the k‖M.)

In some cases, in the flat arcs of the 3D CECs the familiar surface spin structure can be easily recognized
(orange or teal arrows in figure 2). For example, in the case 1 (E = E1), each surface exhibits a pattern
typical of a Rashba or Dirac system in an external in-plane exchange field: the exchange interaction shifts
the contours perpendicular to the field and distorts the SOI-induced spin-momentum locking, causing
anisotropy in the transport properties of the films. [Note a much greater impact of the exchange field on the
in-plane spin structure of the Rashba than of the Dirac system, for which the linear Dirac model
(not shown) gives an even smaller impact leaving the S‖ pattern practically unaltered except for the vicinity
of the avoided-crossing points.] Concerning the spin behavior along the whole 3D CECs, note that each
pair of the 2D contours contains a dotted-line 3D CEC with the spin S‖ rotating twice by 2π along the
contour in the (kx, ky) plane (double spin winding) and a solid-line 3D CEC along which S‖ merely deviates
from the field direction without a complete 2π rotation (zero spin winding). Further, we will refer to these
3D CECs as a non-trivial and trivial CEC, respectively.

We focus now on the CECs at lower energies (numbered by 2, 3, and 4) and start with the Au(111) film,
figure 2(a). As seen in figure 1(a), for E = E2 the red branch loses its counterpart with the opposite group
velocity, so the trivial (solid line) 3D contour of the inner pair disappears. As a consequence, at each surface
a certain k-sector becomes unavailable for the elastic scattering. For E = E3, only the blue branches are left,
figure 1(a), with one pair of the 3D CECs. Note that the dotted-line contour becomes trivial, with S‖ mostly
perpendicular to the field direction. At the same time, the trivial solid-line CEC is characterized by S‖
gravitated towards J , figure 2(a). This substantially reduces the phase space for scattering transitions that
may occur at one film surface. Finally, for E = E4 there remains only one trivial 3D CEC with a sizable spin
projection onto the field direction, which practically forbids any large-angle scattering at a given film
surface, thereby causing the electrons to ‘leak’ through the interior of the film to the opposite surface.

In the five-QL Sb2Te3 film, at E = E2 there is only one CEC, which is characterized by the double
winding of the in-plane vector S‖. For the flat CEC arcs, the spin structure is very similar to a Dirac surface
state with the spin-momentum locking only slightly affected by the field. The influence of the field increases
in the interior of the film, where S‖ is mainly opposite to the magnetization. The presence of only one 3D
CEC reduces by half the phase space at each surface, thereby making a large-angle scattering only possible
by means of a ‘leakage’ to the opposite surface. For E = E3, we have two 3D CECs, but now they lie almost
entirely on the opposite surfaces of the film as if the surfaces were uncoupled. Moreover, both CECs have
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Figure 3. Spin-resolved depth-integrated (‘top view’) contours of the five-QL Sb2Te3 film at the energies marked in figure 1(b).
The expectation value of Sz is shown by red (Sz > 0) and blue (Sz < 0) fat segments. Orange and teal circles in graph (1) and
shadings in graphs (2)–(4) highlight the CECs segments related to the upper and lower surface, respectively.

the helical in-plane spin structure typical of the Dirac surface state with the single winding of the in-plane
spin. This means that around the energy of the Dirac points located away from Γ̄, see black points in
figure 1(b), there is an energy interval for which the band structure of the thin film in the in-plane exchange
field is independent of whether or not the structural gap exists. In our case, this interval covers the gap of
the zero-field spectrum of the film, thereby causing a drastic change of the film properties by turning on the
field. Finally, for E = E4, again, there is only one CEC with the spin structure of inverted helicity with
respect to that of the case 2 with S‖ mostly directed along the field in the interior of the film. Note also a
more pronounced impact of the field on the in-plane spin structure here.

We now turn to the spin z polarization of the CECs of the five-QL Sb2Te3 film under the in-plane
external exchange field. (In the Au(111) film the Sz expectation value along the CECs is negligibly small at
the energies we consider.) Figure 3 shows a ‘top view’ of the spin-z resolved CECs; the largest spin-z
projection along the CECs (|Sz| ∼ 0.02) is seen to occur at E = E1. In this case, the Sz pattern with the
specific motif inherent in the hexagonal structures resembles the pattern of an ordinary Dirac surface state.
In figure 3, the orange and teal circles are a guide for the eye to highlight the CECs segments related to the
upper and lower surface, respectively. These circles are the CECs of a film with the uncoupled surfaces, and,
therefore, they differ from the actual 2D projections of the 3D CECs in that they cross along the field
direction. For lower energies (E = E2, E3, and E4), this motif completely disappears in the Sz pattern.
Instead, there appear two rather large blue and red parts with a sizable Sz on each surface-related sector of
the 3D CECs (the pale orange and pale teal shading in figure 3), while in the interior of the film (between
the shaded areas) Sz is negligible. For these energies, the CECs are characterized by a substantially smaller Sz

than in the E = E1 case and by a slight field-induced imbalance between spin-up and spin-down (especially
for E = E3 and E4). The E = E3 case demonstrates that, although the S‖ pattern is similar to that of a Dirac
surface state, the Sz distribution is quite different. In all the cases, the Sz distribution along the CECs gives
rise to scattering transition constraints additional to those imposed by the in-plane spin.

5. Conclusions

To summarize, we have developed an effective k · p model in the Hilbert space of four basis states
comprising both interacting surfaces of a thin film with strong spin–orbit coupling. We have applied the
model to the description of the influence of the in-plane exchange field on the energy–momentum
dispersion and spin-momentum locking of the surface-state precursors in a nineteen-layer Au(111) film and
in a five-QL Sb2Te3 film. The interaction between the states at the opposite surfaces makes the
exchange-induced modifications strongly energy dependent: in the simplest case of energies well above the
Rashba or Dirac point, a tangible difference from non-interacting surfaces is found only for k parallel to the
field, where an avoided crossing appears between the CECs of the surface states localized at the opposite
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surfaces. In the surface-resolved representation, this manifests itself in the partition of a contour at a given
surface into two disconnected flat arcs. At lower energies, where the interaction between the surfaces leads
to the structural gaps in the surface-state dispersion, one of the arcs disappears, so the large-angle scattering
needs to be accompanied by a jump to the opposite surface across the interior of the film. Furthermore, we
have located the energy intervals (one in the gold film and two in the topological-insulator film) where each
surface hosts one arc only, so the large-angle electron scattering between the film surfaces is the only
possible channel. This suggests a way to control the spin-selective transport properties of the films by
manipulating the in-plane exchange field.
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