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a b s t r a c t

Recently, multi-view clustering has received much attention in the fields of machine learning and
pattern recognition. Spectral clustering for single and multiple views has been the common solution.
Despite its good clustering performance, it has a major limitation: it requires an extra step of clustering.
This extra step, which could be the famous k-means clustering, depends heavily on initialization, which
may affect the quality of the clustering result. To overcome this problem, a new method called Multi-
view Clustering via Consensus Graph Learning and Nonnegative Embedding (MVCGE) is presented
in this paper. In the proposed approach, the consensus affinity matrix (graph matrix), consensus
representation and cluster index matrix (nonnegative embedding) are learned simultaneously in a
unified framework. Our proposed method takes as input the different kernel matrices corresponding
to the different views. The proposed learning model integrates two interesting constraints: (i) the
cluster indices should be as smooth as possible over the consensus graph and (ii) the cluster indices
are set to be as close as possible to the graph convolution of the consensus representation. In this
approach, no post-processing such as k-means or spectral rotation is required. Our approach is tested
with real and synthetic datasets. The experiments performed show that the proposed method performs
well compared to many state-of-the-art approaches.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Clustering is one of the most important research topics in
achine learning, which aims to group samples into different
roups, called clusters, without knowing their labels [1,2]. In the
ast decades, many clustering approaches have been developed.
n particular, multi-view clustering algorithms have been used
nd developed to obtain additional information to improve the
inal clustering [3–9]. Among these methods, Spectral Clustering
SC) [10–13] methods are the most popular approaches due to
heir well-defined mathematical framework and ease of imple-
entation. After constructing the similarity matrix between the
ata points, these methods generate a nonlinear projection of
he data by mapping the dataset into a space where clusters
an be easily identified (spectral embedding). A major drawback
f these methods is the use of a post-processing step such as
-means to obtain the final clustering result, which can be af-
ected by the initialization or the presence of outliers. Matrix
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c-nd/4.0/).
factorization methods [14,15] can be used for dimensionality
reduction. For example, the method in [15] called Integration
by Matrix Factorization (IMF). This method generates different
representative clustering matrices computed independently for
each view, generates an intermediate matrix for all views, and
then performs a factorization process on this matrix to reconcile
the different clustering matrices generated from the different
views. Matrix factorization methods have a low computational
cost compared to other methods. This is because factorization
of a particular matrix decomposes it into its constituent parts,
which can also simplify the matrix operations as they are applied
to the obtained matrices and not to the original complex ma-
trix. However, these methods cannot deal with the nonlinearity
of the data. To deal with the problem of nonlinearity of data,
several approaches have proposed a solution based on multiple
kernels [7,16,17]. With these methods, the data is mapped into
a space where it is linearly separable. However, it is noted that
multi-view clustering still needs improvement. To address this
issue, in this paper we present a novel approach that provides a
consistent non-negative embedding matrix to determine the final
cluster assignment. Our proposed method estimates the cluster-
ing of the data directly without any additional post-processing.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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t enforces that the cluster index matrix is a kind of convolution
f a unified spectral representation over a consistent graph. The
ethod we propose is called multi-view clustering via consensus
raph learning and nonnegative embedding (MVCGE). It can over-
ome some drawbacks of other approaches. The proposed method
an simultaneously provide the consistent similarity graph, the
on-negative cluster index matrix and the unified spectral pro-
ection matrix across all views. Moreover, this method auto-
atically calculates the weight of each view without using any
dditional parameters. The proposed method combines the ad-
antages of graph-based methods and multiple kernel methods.
n other words, our method retains two interesting properties
hat the current methods NESE in [18] and MVCSK in [19] do
ot have simultaneously. The first property, inspired by NESE, is
he non-dependence on a particular clustering algorithm such as
-means clustering. The other property (inspired by MVCSK) is
he simultaneous estimation of a consistent unified graph and a
nified spectral representation. Since our method combines the
dvantages of NESE and MVCSK, the main goal of our study is
o outperform the previous two methods. Therefore, these two
ethods are used as the main competing methods in our study.
he contributions of the paper are summarized below.

1. Unlike other approaches based on multilevel learning, our
method can simultaneously provide the consensus sim-
ilarity matrix, the nonnegative index cluster matrix, the
spectral projection matrix, and the weight of each view
automatically.

2. It generates the final clustering assignment directly with-
out any post-processing step. Our method inherits the ad-
vantages of matrix factorization methods and graph based
methods.

3. The proposed model successfully finds nonlinear inter-
actions between different views. This method is able to
compute the exact graph considering the underlying corre-
lations from numerous views by using a kernel represen-
tation of each view.

4. The cluster index matrix, which is the consequence of the
convolution of the coherent spectral projection matrix over
the coherent graph, is learned as part of the proposed
learning technique.

5. It has been validated on real and synthetic datasets. This
validation shows that this approach can give better results
compared to state-of-the-art clustering methods.

he rest of the paper is organized as follows. Section 2 introduces
he main concepts and some related work. Section 3 describes our
roposed method in detail. Section 4 reports experimental results
btained on real and synthetic datasets. Section 5 concludes the
aper.

. Preliminaries and related work

.1. Notations

We consider a data matrix Xv with n data points as (xv
1, x

v
2, . . . ,

xv
n) ∈ Rdv

×n, where dv is the number of features in the corre-
ponding view v. We represent the matrices in bold uppercase
etters, the vectors in bold lowercase letters, and the constants in
on-bold letters. The trace of a matrix M is denoted by Tr(M) and
ts transpose by MT . The Frobenius norm of M is given by ∥M∥F =

M∥2 =

√∑n
i=1
∑d

j=1 |Mij|
2. I, 1n, D and L are the identity matrix,

the column vector with n elements equal to one, the diagonal
matrix, and the Laplacian matrix of the graph, respectively. The
number of clusters is denoted by K . The similarity matrix, the
nonnegative embedding matrix, the spectral projection matrix,
and the kernel matrix are denoted by S, H, P and K, respectively.
2

2.2. Related work

Recently, several multiview clustering approaches have been
proposed. The current approaches can be divided into several
groups: Spectral clustering algorithms [12,13,20,21], Graph based
clustering algorithms [22], Weighted multiview clustering ap-
proaches [10,21,23–25], Automatically weighted multiview
clustering algorithms [19,26–28], Multiview subspace based clus-
tering approaches [29,30], Kernel based Approaches [19], Matrix
factorization approaches [15,18,31], Nonnegative matrix factor-
ization methods [18,32], etc. In this section, we present several
methods that belong to these categories. A popular category
of approaches is Spectral clustering [12,13,20,21]. This method
constructs a similarity graph between data points and then con-
structs a data representation matrix using the eigenvectors of
the corresponding Laplacian of the graph. Therefore, a post-
processing step is used to obtain the final clustering assignment.
An example of a spectral clustering algorithm is the famous co-
training clustering algorithm [12], which adjusts the similarity
matrix of a given view based on the clustering result of another
view so that the same instance is placed in the same cluster in
different views.

Moreover, co-regulated spectral clustering [13] combines the
similarity matrices obtained from different views with an adap-
tive scheme to obtain the result. weighted multiview clustering
approaches [10,23–25] assign weights to each view to account
for the contribution of each view to the final clustering result.
Moreover, these approaches use a consistent scheme to merge
the different views. A drawback of these approaches is the use
of additional weighting parameters. To overcome this drawback,
Automatically weighted multi-view clustering algorithms have
been proposed [19,26–28]. Moreover, another approach related
to the above categories is presented, which extends the spec-
tral clustering algorithm with the idea of weighted views. This
method is called Adaptive Weighted Procrustes (AWP) [21]. The
final clustering assignment of this method is achieved by spectral
rotation. Moreover, this method provides accurate clustering with
low computational cost. Another famous category named Multi-
view Subspace based Clustering approach (MVSC) was introduced
in [29,30] to learn the best and consistent representation of
the data. Moreover, a Multi-view Learning method with Adap-
tive Neighbors (MLAN) is proposed in [33] to jointly learn the
similarity graph and perform the final clustering assignment.

The kernel-based approaches (e.g., [19]) are used to overcome
the problem of nonlinearity of the data by mapping them to a
space in which they are linearly separable, and then they solve
the problem caused by the multiple shapes of the data. The matrix
factorization approaches (e.g., [15,18,31]) are used because of
their low computational cost, which makes them efficient for
dimensionality reduction. They can provide high clustering per-
formance compared to other methods. However, this category of
clustering methods cannot handle nonlinear data.

In [32], the authors propose a Non-negative Matrix Factoriza-
tion (NMF) approach that uses dual constraints. This approach
exploits the labeling of some images and the sparsity of repre-
sentations. In [34], the authors introduced a unified framework
for Joint clustering and distance metric learning. These are solved
via rank reduced regression. The approach provided some new
insights for learning a clustering that adopts distance metric
learning. In [35], the authors presented an Ensemble clustering
method based on efficient propagation of clusterwise similarities
via random walks. The work of [36] proposed a Locality Adaptive
Latent MultiView Clustering (LALMVC) method. It simultaneously
learns the latent consensus representation via linear transforma-
tions, the joint spectral representation and the consensus graph.
The learned consensus graph matrix is then used in spectral

clustering to obtain a cluster index matrix.
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Fig. 1. Illustration of the proposed method.
a
e
i
g
i

In [37], the authors propose a model in which the individual
raphs, a fused graph, and a spectral projection are estimated
imultaneously. Self-representativeness of the data was used in
stimating the individual graphs. In [38], a non-negative ma-
rix factorization with multiple views is proposed. The model
stimating the view-based two non-negative matrices integrates
anifold regularization in the low-dimensional subspace and

he pairwise consistencies of interview similarity in these low-
imensional subspaces. In [17], the authors jointly estimate an
ptimal graph and an adequate consensus kernel for clustering
y forcing the global kernel matrix to be a convex combina-
ion of a set of basis kernels. Their proposed model enforces a
egularization of the unified graph and the final kernel matrix.
n [39], the authors use the correntropy-induced metric (CIM)
o deal with the noise that exists in each view. They use view-
pecific embedding from an information theoretic perspective.
n [40], the authors propose the algorithm Cross-view Matching
lustering (COMIC), which can cluster data with multiple views.
he algorithm can also estimate the number of clusters. COMIC
rovides cross-view consensus on view-specific similarity graphs
nstead of view-specific data representations.

In [41], the authors provide an overview of multi-view clus-
ering. This survey describes a wide range of multi-view clus-
ering methods, including both generative and discriminative
pproaches. Furthermore, the authors of this survey divide these
lgorithms into many groups and give numerous examples of
ow they are used for multi-view clustering. In [42], the au-
hors introduce a method called Multi-view cluster analysis with
ncomplete data to understand treatment effects. Indeed, some-
imes data entries are missing in several of the views. Current
ultiview co-clustering approaches are not able to successfully
eal with incomplete data, especially when there are many pat-
erns of incomplete data. By using an indicator matrix whose
ntries indicate which data items are present, and measuring
lustering performance based solely on the observed values,
his method provides an improved approach for multi-view co-
lustering algorithms to deal with the missing data problem.
oreover, this method is less prone to imputation uncertainty

han standard methods that substitute missing data to perform
egular multi-view data clustering.
3

3. Proposed approach

We introduce a new approach called Multi-View Cluster-
ing via Consensus Graph Learning and Nonnegative Embedding
(MVCGE), which combines the advantages of graph learning
methods and matrix factorization methods. MVCGE achieves the
clustering results without any additional step. Fig. 1 shows an
illustration of our proposed multi-view clustering method.

The proposed method can simultaneously estimate (1) the
consensus similarity matrix, (2) the consensus data represen-
tation matrix, and (3) the nonnegative cluster index matrix.
Moreover, the weight of each view is automatically updated
without any additional parameters. Given n samples and V views
(feature vectors), the data matrix of each view can be repre-
sented as Xv

= [xv
1, x

v
2, . . . , x

v
n] ∈ Rdv

×n, where dv represents
the number of features in the corresponding view, where v =

1, . . . , V . The corresponding kernel matrices are denoted by Kv .
The dataset is to be grouped into K clusters based on the V
views. The unknown matrices are S ∈ Rn×n, P ∈ Rn×K , and
H ∈ Rn×K . Our proposed method estimates these matrices
simultaneously by integrating several properties such as graph
construction using self-representation of data, smoothness of
cluster labels, and spectral data convolution. Thus, our proposed
criterion has three main terms. To obtain the first term of our
proposed criterion, we used the idea of MVCSK method in [19].
To estimate a consistent graph matrix, this method exploits
the property of the data to express itself, where the data is
mapped nonlinearly. Therefore, the consistent graph matrix S
should satisfy the condition min

∑V
v=1 ∥Φ(Xv) − Φ(Xv) S∥ =∑V

v=1

√
Tr (Kv − 2Kv S + ST KvS ), where Kv

= Φ(Xv)TΦ(Xv)
nd Φ() is a given nonlinear mapping, which should not be
xplicitly stated, since only the knowledge of the kernel matrix Kv

s needed. Moreover, to avoid the trivial solution of the consistent
raph matrix, a regularization term is used to control the values
n this matrix. The first term is as follows:

min
S

V∑√
Tr (Kv − 2Kv S + ST KvS ) + α ∥S∥2

2 s.t. S ≥ 0. (1)

v=1
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Fig. 2. Visualization of the original synthetic datasets: (a) Tetra, (b) Hepta, and (c) Chainlink.
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t is also important to assign a weight parameter to each view to
epresent the contribution of each view to the clustering process.
he square root in Eq. (1) is used to automatically update the
eight of each view [19] automatically. The weight of the view
v is given by:

v =
1

2
√
Tr (Kv − 2Kv S + ST KvS )

. (2)

By using the weight expression in Eq. (2), it can be shown that
problem (1) is equivalent to the following problem:

min
S

V∑
v=1

wv Tr (Kv
− 2Kv S + ST KvS ) + α ∥S∥2

2 s.t. S ≥ 0. (3)

The clustering result is obtained from the nonnegative em-
bedding matrix H, which provides the cluster indices by taking
the index of the highest element in the row vector Hi∗ ∈ RK .
ince the matrix H is used for the final cluster assignment, it
s important to use a smoothing term for this matrix so that it
s more coherent with the graph entries. The smoothing term
nsures that two data points xv

i and xv
j that are similar (i.e., the

alue of the corresponding value in the similarity matrix Sij is
large) are necessarily in the same cluster (i.e., the corresponding
cluster index Hi∗ and Hi∗ are close). Therefore, the second term
of our criterion is given by:

min
H

1
2

∑
i

∑
j

∥Hi∗ − Hj∗ ∥
2 Sij = min

H
Tr
(
HT LH

)
, (4)

where L = D− S ∈ Rn×n is the Laplacian matrix of the consistent
graph matrix, and D is a diagonal matrix whose elements are
given by: Dii =

∑n
j=1

Sij+Sji
2 . The third term of our proposed

method states that the cluster index of the ith instance (the row
vector Hi,∗) is set to the convolution of the spectral representation
P with the ith row of the graph matrix Si,∗. This approach has
two main advantages. First, the clustering is performed in a
single step. Second, the clustering uses the consolidated spectral
representation of the neighbors obtained in the consensus graph.

Moreover, inspired by the principle of data convolution, the
nonnegative embedding matrix used to obtain the final clustering
assignment will be equal to ‘‘H = max(S P, 0)". This means that
the nonnegative matrix is the result of the convolution of the
spectral data representation with the graph. The third term of our
criterion binds the cluster index label to the consensus spectral
representation. Therefore, the cluster index matrix should satisfy
the following condition:

min ∥H − S P∥
2
F (5)
H≥0

4

where the matrix P ∈ Rn×K is a consensus data representation.
In our work, it is initialized to a unified spectral representa-
tion of the data. The proposed method tunes this representation
according to a global objective.

Since the matrix P is orthogonal, Eq. (5) can take another
form to illustrate the factorization of the graph matrix S using
the nonnegative embedding matrix H and the spectral projection
matrix P. It can be written as:

min
H, P

∥S − HPT
∥
2
F s.t. H ≥ 0 , PT P = I. (6)

Our final objective function is obtained by adding the three
terms from Eqs. (1), (4), and (6).

min
S, P, H

V∑
v=1

wv Tr (Kv
− 2Kv S + ST KvS ) + α ∥S∥2

2

+ λ1 Tr (HT LH) + λ2 ∥S − HPT
∥
2
2

.t. S ≥ 0 , PT P = I , HT H = I , H ≥ 0, (7)

here α, λ1 and λ2 are three regularization parameters.
Optimization. We use an iterative update procedure to solve

ur objective function. In MVCGE, three matrices are unknown:
, H, and P. An alternating optimization scheme is used for the
ptimization procedure. We proceed as follows:
Step 1: Fix all, estimate H: The problem (7) is:

in
H

Tr (HT LH) +
λ2

λ1
∥S P − H∥

2
2 s.t. HT H = I , H ≥ 0. (8)

Vanishing the derivative of (8) w.r.t. H yields:

H =

(
L +

λ2

λ1
I
)−1

λ2

λ1
S P. (9)

To satisfy the orthogonality and non-negativity constraints, an
orthogonalization step is first applied to the obtained H, then the
negative values of H are set to zero.

Step 2: Fix all, estimate P: The problem (7) becomes:

min
P

∥S − HPT
∥
22 . (10)

Since P is orthogonal, i.e., PT P = I, P is obtained by performing
the singular value decomposition of ST H . Let UΣVT

= SVD (ST H),
then the solution of (10) is given by:

P = UVT with UΣVT
= SVD (ST H). (11)

Step 3: Fix all, estimate S:
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Fig. 3. t-SNE of the spectral projection and nonnegative embedding matrices obtained by the proposed clustering method MVCGE for different datasets.

t

If we fix H and P, we need to solve the following problem:

min
S

V∑
v=1

wv Tr (Kv
− 2Kv S + ST Kv S) + α ∥S∥2

2

+ λ1 Tr (HT LH) + λ2 ∥S − HPT
∥
2
2 s.t. S ≥ 0. (12)

After the spectral clustering analysis, we have the known iden-
tity:

Tr (HT LH) =
1
2

∑∑ Hi∗ − Hj∗
2 Sij = Tr (QS), (13)
i j

5

where Hi∗ is the ith row of H. The symmetric matrix Q denotes the

pairwise distance associated with the rows of the matrix H. It is
given by Qij =

1
2

Hi∗ − Hj∗
2. Substituting Eq. (13) into Eq. (12),

he latter becomes:

min
S

V∑
v=1

wv Tr (Kv
− 2Kv S + ST Kv S) + α ∥S∥2

2

+ λ1 Tr (QS) + λ2 ∥S − HPT
∥
2
2 s.t. S ≥ 0. (14)
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Fig. 4. Visualization of the two clusters obtained by three different methods for the Chainlink dataset.
By making the derivative of Eq. (14) w.r.t. S vanish, we obtain S
s (ReLU() is the Rectified Linear Unit function):

= ReLU

⎧⎨⎩
(

V∑
v=1

wvKv
+ (α + λ2) I

)−1

×

(
V∑

v=1

wv Kv
+ λ2 HPT

−
1
2
λ1 Q

)}
. (15)

tep 4: Fix H, P, and S, and update wv (v = 1, . . . , V ) using
q. (2).
The main steps of the proposed approach ‘‘Multi-view Cluster-

ng via Consensus Graph Learning and Nonnegative Embedding"
MVCGE) are summarized in Algorithm 1.

Algorithm 1 MVCGE
Input: Data samples in V views Xv

∈ Rn×dv
, v = 1, . . . , V .

The graph matrices Sv, v = 1, . . . , V .
The spectral embedding matrices Pv, v = 1, . . . , V .
6

Parameters α, λ1, λ2.
Output: The consensus graph matrix S.

The consensus spectral representation matrix P.
The cluster index matrix (nonnegative embedding
matrix) H.

Initialization:
The weight of each view wv =

1
V .

Compute the kernel matrix Kv for each view.
Initialize S and P by taking the average of the
matrices Sv and Pv .

Repeat
Update H using Eq. (9).
Update P using Eq. (11).
Update S using Eq. (15).
Update wv using Eq. (2).
Until convergence

To initialize the two matrices S and P, the efficient method
used in [43] is used. This method finds the similarity matrix and
the corresponding spectral projection matrix for each view. To
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Table 1
Description of the real datasets used in the paper.
View COIL20 ORL Out-Scene BBCSport MSRCv1

1 Intensity-1024 GIST-512 GIST-512 Intensity-3183 GIST-512
2 LBP-3304 LBP-59 LBP-48 LBP-3203 LBP-256
3 Gabor-6750 HOG-864 HOG-256 – Color moment-24
4 – Centrist-254 Color mom.-432 – Centrist-254
5 – – – – Sift-512
# Samples 1440 400 2688 544 210
# Classes 20 40 8 5 7

View Extended-Yale MNIST MNIST-1000

1 Covariance ch9 gray-45 Resnet50-2048 Resnet50 Pooling-2048
2 LBP-900 VGG16-4096 VGG16 FC1-4096
3 – – –
4 – – –
5 – – –
# Samples 1774 10000 1000
# Classes 28 10 10
w
r
p
t
u
m
ℓ

t
c
p
a
S

v
e
1
{
r
T
w
a
s
a
i
i
t
(
t
p
p
w
N
I

4
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obtain the initial unified matrix, the average of all the individual
matrices is used.

4. Performance evaluation

4.1. Datasets

The effectiveness of the proposed approach is evaluated using
ight real image datasets and three synthetic datasets. The MNIST
ataset is relatively large. Table 1 describes the real datasets.
We also used three synthetic datasets: Tetra, Hepta, and Chain-

ink. They were selected from the Fundamental Clustering Prob-
em Suite (FCPS). For these datasets, only one view is considered.

Tetra contains 400 3D points divided into four groups. Hepta
ontains 212 3D points grouped into seven well-defined clusters
ith different variances. Chainlink is formed by two clusters that
re not linearly separable. It consists of 1000 3D points. These
atasets are visualized in Fig. 2 [44]. All these synthetic datasets
se 3D data points pi ∈ R3. The 3-dimensional datasets are
ransformed into high-dimensional datasets xi ∈ R100 using the
ollowing linear and nonlinear mappings xi = σ (U σ (Wpi))
here the sigmoid function σ is used to introduce nonlinearity,
∈ R10×3 and U ∈ R100×10 are two matrices whose entries

ollow the Gaussian distribution with zero-mean unit variance
.i.d.

.2. Experimental setup

Several competing methods are used for comparison: (1) Co-
raining approach for multi-view Spectral Clustering (CotSC) [12],
2) Co-regularized approach for multi-view Spectral Clustering
CorSC) [13], (3) Multi-view Learning Clustering with Adaptive
eighbors (MLAN) [33], (4) Self-weighted Multi-view Clustering
ith multiple graphs (SwMC) [45], (5) Affinity Aggregation for
pectral Clustering (AASC) [46], (6) Graph Learning for Multi-
iew clustering (MVGL) [22], (7) Parameter-free Auto-weighted
ultiple Graph Learning (AMGL) [28], (8) Multi-view cluster-

ng via Adaptively Weighted Procrustes (AWP) [21], (9) Auto-
eighted Multi-View Clustering via Kernelized graph learning
MVCSK) [19], (10) Multi-view spectral clustering via integrating
on-negative Embedding and Spectral Embedding (NESE) [18],
11) Sparse Multi-view Spectral Clustering (S-MVSC) [47], (12)
onsistency-aware and Inconsistency-aware Graph-based Multi-
iew Clustering (CI-GMVC) [48], (13) Multi-View Clustering in La-
ent Embedding Space (MCLES) [49] and (14) multi-view spectral
lustering via Constrained Nonnegative Embedding (CNESE) [9].
e also report the Spectral Clustering best view result (SC) [20].
The clustering performance of the proposed approach is com-

ared with other methods by using the authors’ source codes
 M

7

ith the default or proposal parameter settings,1 or by directly
eporting the best experimental results from the corresponding
ublished papers.2 A Gaussian kernel function is used to construct
he kernel matrix of each view. To initialize our algorithm, we
se the same method as in [18], which constructs the similarity
atrix of each view according to a smoothing constraint, an

2 regularization term, and a non-negativity constraint. Then,
he corresponding spectral projection matrix of each view is
omputed, and the final unified similarity matrix and spectral
rojection matrix is the average of the corresponding matrix of
ll views. In this way, we obtain the initial values of the matrices
and P.
In our method, three parameters are used: α, λ1 and λ2. The

alues of α are in the range [0.005 0.9], the values of the param-
ter λ1 vary over the set {10−10, 10−9, 10−8, 10−7, 10−6, 10−5,
0−4, 10−3} and the values of the parameter λ2 vary over the set
10−7, 10−6, 10−5, 10−4 10−3, 10−2, 10−1}. In our experiments, the
ange for each parameter is chosen to encompass a wide range.
his ensures that the optimal values for these parameters are
ithin this range. In selecting the values in these ranges, we used
grid search method. Grid search is a method for exhaustively
earching a manually defined subset of the parameter space of
given algorithm. The number of parameters of the algorithm

s the spatial dimension of the grid. So in our case, the grid is
n a 3D space. This method starts by creating the grid, sampling
he predefined regions. Then, for each parameter combination
represented by the nodes of the grid), a model is created to find
he best parameter combination that provides the best clustering
erformance. The best clustering result is indicated by a cluster
erformance metric. To compare our method with other methods,
e use four clustering performance metrics: Accuracy (ACC),
ormalized Mutual Information (NMI), Purity, and Adjusted Rand
ndex (ARI). Their definition can be found in [50].

.3. Experimental results

Our algorithm is tested on real and synthetic datasets. Table 2
hows the results obtained by MVCGE and some other methods
n the datasets: ORL, Out-Scene, and Coil20. In this table, the
ighest scores are marked in bold. The proposed method MVCGE
as superior on these datasets. For some competing methods

isted in Table 2, the corresponding method is repeated in mul-
iple trials, and then a standard deviation for each indicator is
iven in parentheses. From this table, we can see that our method

1 This concerns SC, MVCSK, NESE, S-MVSC, CI-GMVC, MCLES and CNESE.
2 This concerns the following methods: CotSC, CorSC, MLAN, SwMC, AASC,
VGL, AMGL and AWP.
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Table 2
Clustering performance on the ORL, Outdoor-Scene and Coil20 datasets.
Dataset Method ACC NMI Purity ARI

ORL SC-Best [20] 0.66 (±0.02) 0.76 (±0.02) 0.71 (±0.02) 0.67 (±0.01)
AWP [21] 0.80 (±0.00) 0.91 (±0.00) 0.83 (±0.00) 0.76 (±0.00)
MLAN [33] 0.78 (±0.00) 0.88 (±0.00) 0.82 (±0.00) 0.67 (±0.00)
SwMC [45] 0.77 (±0.00) 0.90 (±0.00) 0.83 (±0.00) 0.62 (±0.00)
AMGL [28] 0.75 (±0.02) 0.90 (±0.02) 0.82 (±0.02) 0.63 (±0.09)
AASC [46] 0.82 (±0.02) 0.91 (±0.01) 0.85 (±0.01) 0.76 (±0.02)
MVGL [22] 0.75 (±0.00) 0.88 (±0.00) 0.80 (±0.00) 0.55 (±0.00)
CorSC [13] 0.77 (±0.03) 0.90 (±0.01) 0.82 (±0.03) 0.72 (±0.04)
CotSC [12] 0.75 (±0.04) 0.87 (±0.01) 0.78 (±0.03) 0.67 (±0.03)
NESE [18] 0.82 (±0.00) 0.91 (±0.00) 0.85 (±0.00) 0.75 (±0.00)
MVCSK [19] 0.85 (±0.02) 0.94 (±0.01) 0.88 (±0.02) 0.81 (±0.02)
S-MVSC [47] 0.80 (±0.02) 0.93 (±0.01) 0.82 (±0.02) 0.89 (±0.01)
CI-GMVC [48] 0.81 (±0.00) 0.92 (±0.00) 0.85 (±0.00) 0.74 (±0.00)
MCLES [49] 0.84 (±0.00) 0.94 (±0.00) 0.88 (±0.00) 0.79 (±0.00)
CNESE [9] 0.87 (± 0.00) 0.95 (± 0.00) 0.89 (± 0.00) 0.84 (± 0.00)
MVCGE 0.93 (±0.00) 0.97 (±0.00) 0.95 (±0.00) 0.92 (±0.00)

Out-Scene SC-Best [20] 0.47 (±0.01) 0.39 (±0.01) 0.57 (±0.01) 0.34 (±0.01)
AWP [21] 0.65 (±0.00) 0.51 (±0.00) 0.65 (±0.00) 0.42 (±0.00)
MLAN [33] 0.55 (±0.02) 0.47 (±0.01) 0.55 (±0.02) 0.33 (±0.03)
SwMC [45] 0.50 (±0.00) 0.47 (±0.00) 0.50 (±0.00) 0.38 (±0.00)
AMGL [28] 0.51 (±0.05) 0.45 (±0.03) 0.52 (±0.04) 0.34 (±0.05)
AASC [46] 0.60 (±0.00) 0.48 (±0.00) 0.60 (±0.00) 0.35 (±0.00)
MVGL [22] 0.42 (±0.00) 0.31 (±0.00) 0.43 (±0.00) 0.16 (±0.00)
CorSC [13] 0.51 (±0.04) 0.39 (±0.03) 0.52 (±0.03) 0.31 (±0.02)
CotSC [12] 0.38 (±0.02) 0.22 (±0.01) 0.39 (±0.02) 0.16 (±0.01)
NESE [18] 0.63 (±0.00) 0.53 (±0.00) 0.66 (±0.00) 0.46 (±0.00)
MVCSK [19] 0.65 (±0.01) 0.52 (±0.00) 0.65 (±0.01) 0.42 (±0.00)
S-MVSC [47] 0.48 (±0.01) 0.54 (±0.02) 0.65 (±0.01) 0.46 (±0.04)
CI-GMVC [48] 0.35 (±0.01) 0.31 (±0.00) 0.35 (±0.01) 0.19 (±0.00)
MCLES [49] 0.65 (±0.00) 0.53 (±0.00) 0.67 (±0.00) 0.46 (±0.00)
CNESE [9] 0.66 (± 0.00) 0.55 (± 0.00) 0.67 (± 0.00) 0.47 (± 0.00)
MVCGE 0.70 (±0.00) 0.55 (±0.00) 0.70 (±0.00) 0.47 (±0.00)

COIL20 SC-Best [20] 0.73 (±0.01) 0.82 (±0.01) 0.75 (±0.01) 0.68 (±0.02)
AWP [21] 0.68 (±0.00) 0.87 (±0.00) 0.75 (±0.00) 0.71 (±0.00)
MLAN [33] 0.84 (±0.00) 0.92 (±0.00) 0.88 (±0.00) 0.81 (±0.00)
SwMC [45] 0.86 (±0.00) 0.94 (±0.00) 0.90 (±0.00) 0.84 (±0.00)
AMGL [28] 0.80 (±0.04) 0.91 (±0.02) 0.85 (±0.03) 0.74 (±0.07)
AASC [46] 0.79 (±0.00) 0.89 (±0.00) 0.83 (±0.00) 0.76 (±0.00)
MVGL [22] 0.78 (±0.00) 0.88 (±0.00) 0.81 (±0.00) 0.75 (±0.00)
CorSC [13] 0.68 (±0.04) 0.78 (±0.02) 0.70 (±0.03) 0.62 (±0.03)
CotSC [12] 0.70 (±0.03) 0.80 (±0.02) 0.72 (±0.03) 0.65 (±0.03)
NESE [18] 0.77 (±0.00) 0.88 (±0.00) 0.82 (±0.00) 0.69 (±0.00)
MVCSK [19] 0.65 (±0.04) 0.80 (±0.02) 0.70 (±0.03) 0.61 (±0.05)
S-MVSC [47] 0.62 (±0.01) 0.86 (±0.02) 0.77 (±0.02) 0.97 (±0.02)
CI-GMVC [48] 0.86 (±0.00) 0.94 (±0.00) 0.90 (±0.00) 0.83 (±0.00)
MCLES [49] 0.79 (±0.00) 0.88 (±0.00) 0.83 (±0.00) 0.75 (±0.00)
CNESE [9] 0.82 (± 0.00) 0.88 (± 0.00) 0.82 (± 0.00) 0.78 (± 0.00)
MVCGE 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
C
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and methods MVCSK, NESE S-MVSC, CI-GMVC, MCLES and CNESE
perform best, so we can adopt them to test the other datasets.

Table 3 shows a comparison between our method and the
forementioned methods for the BBCSport, MSRCv1, Extended-
ale, MNIST and MNIST-1000 datasets. For the MNIST dataset,
hich is a large image dataset (i.e., the number of samples is
qual to 10000), each image has two deep descriptors, which
eans that the data already has some nonlinearity. Then, the
se of the large kernel matrices can be skipped. Therefore, the
riterion of our method reduces to the last two terms, where we
nly update the spectral projection matrix and the non-negative
mbedding matrix.
Our method is applied to the synthetic datasets: Tetra, Chain-

ink, and Hepta. The results are presented in Table 4.

.4. Ablation study

Our proposed criterion (7) contains three main terms: the
raph construction and its regularization, the smoothness term
 O

8

and the convolution term. To illustrate the relevance of the pro-
posed criterion and its terms, we generate four different mod-
els with different combinations. These four different variants of
MVCGE are: MVCGE-G, MVCGE-S, MVCGE-C and MVCGE-SC. (1)
No graph regularization term in the global objective function (7)
(i.e., α is set to zero), and we call the obtained method MVCGE-G,
which means that only the smoothness and convolution terms in
MVCGE are used, (2) No smoothness constraint (λ1 is set to zero),
and we call the obtained method MVCGE-S, (3) No convolution
term (λ2 is set to zero), and we call the obtained method MVCGE-
, and (4) No smoothness and no convolution terms (λ1 and λ2
re set to zero). This method is called MVCGE-SC because it is
educed to a consistent graph construction followed by a spectral
lustering step. The results obtained with MVCGE-G, MVCGE-S,
VCGE-C, MVCGE-SC and MVCGE are summarized in Table 5. We
sed three datasets: ORL, MSRCv1 and Tetra. From the results in
able 5, we can see that the regularization of the graph is indeed
rucial, since the last two terms depend on this graph. For the
RL and Tetra datasets, it can be seen from the table that the
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Table 3
Clustering performance on the BBCSport, MSRCv1, Extended-Yale, MNIST and MNIST-1000 datasets.
Dataset Method ACC NMI Purity ARI

MVCSK [19] 0.90 (±0.07) 0.82 (±0.02) 0.90 (±0.02) 0.85 (±0.07)
BBCSport NESE [18] 0.72 (±0.00) 0.69 (±0.00) 0.75 (±0.00) 0.60 (±0.00)

S-MVSC [47] 0.58 (±0.07) 0.67 (±0.01) 0.73 (±0.02) 0.83 (±0.04)
CI-GMVC [48] 0.61 (±0.00) 0.46 (±0.00) 0.63 (±0.00) 0.36 (±0.00)
MCLES [49] 0.88 (±0.00) 0.80 (±0.00) 0.88 (±0.00) 0.83 (±0.00)
CNESE [9] 0.72 (± 0.00) 0.68 (± 0.00) 0.76 (± 0.00) 0.60 (± 0.00)
MVCGE 0.98 (±0.00) 0.94 (±0.00) 0.98 (±0.00) 0.95 (±0.00)
MVCSK [19] 0.70 (±0.02) 0.59 (±0.03) 0.70 (±0.02) 0.50 (±0.04)

MSRCv1 NESE [18] 0.77 (±0.00) 0.72 (±0.00) 0.80 (±0.00) 0.64 (±0.00)
S-MVSC [47] 0.60 (±0.00) 0.69 (±0.02) 0.74 (±0.02) 0.79 (±0.01)
CI-GMVC [48] 0.74 (±0.00) 0.72 (±0.00) 0.77 (±0.00) 0.59 (±0.00)
MCLES [49] 0.90 (±0.01) 0.83 (±0.02) 0.90 (±0.01) 0.77 (±0.00)
CNESE [9] 0.86 (±0.00) 0.76 (±0.00) 0.86 (±0.00) 0.72 (±0.00)
MVCGE 0.93 (±0.00) 0.87 (±0.00) 0.93 (±0.00) 0.85 (±0.00)
MVCSK [19] 0.33 (±0.00) 0.42 (±0.00) 0.34 (±0.00) 0.18 (±0.00)

Extended- NESE [18] 0.43 (±0.00) 0.58 (±0.00) 0.47 (±0.00) 0.25 (±0.00)
Yale S-MVSC [47] 0.48 (± 0.03) 0.61 (± 0.01) 0.60 (± 0.01) 0.36 (± 0.05)

CI-GMVC [48] 0.32 (± 0.00) 0.34 (± 0.00) 0.35 (± 0.00) 0.02 (± 0.00)
MCLES [49] 0.48 (± 0.03) 0.48 (± 0.00) 0.48 (± 0.01) 0.10 (± 0.05)
CNESE [9] 0.60 (± 0.00) 0.75 (± 0.00) 0.60 (± 0.00) 0.51 (± 0.00)
MVCGE 0.88 (±0.00) 0.86 (±0.00) 0.88 (±0.00) 0.77 (±0.00)
MVCSK [19] 0.49 (± 0.00) 0.41 ( ± 0.00) 0.50 (± 0.00) 0.29 (± 0.00)

MNIST NESE [18] 0.81 (±0.00) 0.83 (±0.00) 0.85 (±0.00) 0.76 (± 0.00)
S-MVSC [47] 0.77 (± 0.01) 0.81 ( ± 0.01) 0.81 (± 0.02) 0.76 (± 0.07)
CI-GMVC [48] 0.66 (± 0.00) 0.71 ( ± 0.00) 0.71 (± 0.00) 0.51 (± 0.00)
MCLES [49] 0.80 (±0.00) 0.83 (±0.00) 0.85 (±0.00) 0.77 (±0.00)
CNESE [9] 0.81 (±0.00) 0.83 (± 0.00) 0.86 (±0.00) 0.78 (±0.00)
MVCGE 0.81 (±0.00) 0.83 (±0.00) 0.85 (±0.00) 0.77 (±0.00)

MVCSK [19] 0.70 (± 0.00) 0.61 ( ± 0.00) 0.70 (± 0.00) 0.52 (± 0.00)
MNIST-1000 NESE [18] 0.78 (± 0.00) 0.79 (± 0.00) 0.83 (±0.00) 0.71 (±0.00)

S-MVSC [47] 0.66 (± 0.02) 0.76 ( ± 0.01) 0.76 (± 0.00) 0.77 (± 0.05)
CI-GMVC [48] 0.65 (± 0.00) 0.71 (± 0.00) 0.73 (±0.00) 0.50 (±0.00)
MCLES [49] 0.73 (± 0.02) 0.72 (± 0.01) 0.77 (±0.02) 0.58 (±0.04)
CNESE [9] 0.77 (± 0.00) 0.77 (± 0.00) 0.81 (±0.00) 0.68 (±0.00)
MVCGE 0.86 (±0.00) 0.83 (±0.00) 0.86 (±0.00) 0.78 (±0.00)
Table 4
Clustering performance on the three synthetic datasets.
Dataset Method ACC NMI Purity ARI

NESE [18] 0.64 0.75 0.75 0.63
Tetra MVCSK [19] 0.97 0.93 0.97 0.92

S-MVSC [47] 0.70 0.50 0.44 0.70
CI-GMVC [48] 0.63 0.52 0.67 0.43
MCLES [49] 0.85 0.88 0.89 0.80
CNESE [9] 0.66 0.62 0.75 0.54
MVCGE 1.00 1.00 1.00 1.00
NESE [18] 0.81 0.79 0.85 0.73

Hepta MVCSK [19] 0.89 0.85 0.89 0.80
S-MVSC [47] 0.66 0.63 0.47 0.70
CI-GMVC [48] 0.77 0.76 0.81 0.68
MCLES [49] 0.87 0.82 0.84 0.80
CNESE [9] 0.78 0.70 0.79 0.63
MVCGE 0.92 0.85 0.92 0.83
NESE [18] 0.93 0.69 0.93 0.73

Chainlink MVCSK [19] 0.63 0.05 0.63 0.07
S-MVSC [47] 0.67 0.14 0.78 0.12
CI-GMVC [48] 0.55 0.01 0.55 0.01
MCLES [49] 0.90 0.72 0.86 0.76
CNESE [9] 0.95 0.70 0.95 0.78
MVCGE 0.96 0.78 0.96 0.85

smoothness term has a larger impact on the clustering results.
However, for the MSRCv1 dataset, the convolution term is more
important than the smoothness term. This is normal and is due
to the different types of datasets used in this work. The results
obtained with MVCGE-SC show the importance of the last two
terms in the objective function for all datasets. All these results
indicate that the inclusion of all terms in the objective function
9

Table 5
Ablation study with different models. The best performance for each indicator
is in bold.
Dataset Variant ACC NMI Purity ARI

MVCGE-G 0.46 0.66 0.48 0.27
ORL MVCGE-S 0.75 0.88 0.76 0.72

MVCGE-C 0.86 0.94 0.88 0.81
MVCGE-SC 0.69 0.86 0.75 0.57
MVCGE 0.93 0.97 0.95 0.92
MVCGE-G 0.68 0.57 0.68 0.45

MSRCv1 MVCGE-S 0.72 0.63 0.74 0.54
MVCGE-C 0.70 0.60 0.70 0.50
MVCGE-SC 0.59 0.54 0.61 0.37
MVCGE 0.93 0.87 0.93 0.85
MVCGE-G 0.70 0.59 0.72 0.55

Tetra MVCGE-S 0.91 0.79 0.91 0.77
MVCGE-C 0.97 0.93 0.97 0.92
MVCGE-SC 0.56 0.35 0.57 0.33
MVCGE 1.00 1.00 1.00 1.00

contributed to the good clustering performance of our proposed
method.

4.5. Analysis of results and method comparison

According to Table 2, the performance of all multi-view clus-
tering methods is better than that of SC-Best, which corresponds
to the spectral clustering method applied to the best single view.
In fact, the presence of multiple views brings additional informa-
tion to the clustering method so that it can process the datasets
better. The proposed method gives the best performance fol-
lowed by NESE, MVCSK, S-MVSC, CI-GMVC, MCLES and CNESE
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ethods. With respect to the large MNIST dataset shown in
able 3, MVCGE shows similar results to CNESE for most cluster
ndicators. Moreover, the performance of our method is better
han most competing methods for the same dataset, which shows
hat we are able to handle large datasets with this new approach
nd achieve good results. The results we obtained on the MNIST-
000 dataset (see Table 3) demonstrate the superiority of the
roposed method. From Table 4, MVCGE achieves the best results
or the synthetic datasets even when applied to the single view
atasets.

.6. Clustering visualization

In this section, we visualize the clustering obtained by the
roposed MVCGE method on four datasets using the t-SNE tech-
ique [51]. In all subfigures of Fig. 3, the spectral projection
atrix P and the nonnegative embedding matrix H are shown for

ORL, Tetra, Hepta and Chainlink. In these subfigures, each point
corresponds to an image (ORL) or a 3D point (synthetic datasets).
We emphasize that the color corresponds to the ground-truth
classes.

For ORL we present five clusters. From Figs. 3(a) and 3(b), it
can be seen that Cluster 1 and Cluster 5 are not pure, as they
each contain images associated with two different individuals,
which explains the result obtained in Table 2. The clustering
of the synthetic datasets of Tetra and Chainlink is shown in
Figs. 3(c), 3(d), 3(g) and 3(h). Some clustering errors are observed,
which explain the results obtained in Table 4. Moreover, the
visualization of the spectral representation and cluster index ma-
trices (nonnegative embedding) associated with the Tetra dataset
shows well-separated clusters in Figs. 3(e) and 3(f). This confirms
the perfect performance of 100% in Table 4. Fig. 4 shows the
estimated two clusters obtained by MVCSK, NESE and MVCGE
methods for the Chainlink dataset. According to this figure, the
worst result is that of MVCSK and the best is that of our method.
It is clear that the two clusters are well separated by using MVCGE
and Fig. 4(c) has few clustering errors.

5. Conclusion

A novel approach for multi-view clustering is proposed. Unlike
existing methods, it simultaneously learns the unified similarity
matrix, the uniform spectral projection matrix, the non-negative
embedding matrix (cluster index matrix) and the weight of each
view. Thus, the final clustering result can be obtained directly
from the nonnegative embedding matrix, which is a convolu-
tion of the consensus data representation over the graph. The
proposed method combines the advantages of graph-based ap-
proaches and matrix factorization-based methods. Experimental
results on real and synthetic datasets have shown that MVCGE
outperforms many state-of-the-art methods. As an outlook, we
envision the development of a scalable variant of the proposed
approach capable of handling large datasets with reasonable com-
putational cost. Moreover, following the CNESE method in [9],
our approach could be tested by adding multiple constraints to
the non-negative embedding matrix to make it more precise.
By applying multiple constraints to the non-negative embedding
matrix generated by our approach, we can improve the results.
We also propose to apply the presented method to other types of
machine learning, such as semi-supervised learning and classifi-
cation tasks. Finally, our method can be extended to cases where
some views have missing data, i.e., the corresponding value in the
similarity matrix is missing.
10
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