
Citation: Jiménez, J.; Muguira L.;

Bidarte U.; Largacha A.; Lázaro, J.

Specific Electronic Platform to Test the

Influence of Hypervisors on the

Performance of Embedded Systems.

Technologies 2022, 10, 65. https://

doi.org/10.3390/technologies10030065

Academic Editor: Spyridon

Nikolaidis

Received: 25 April 2022

Accepted: 23 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Specific Electronic Platform to Test the Influence of Hypervisors
on the Performance of Embedded Systems
Jaime Jiménez 1 , Leire Muguira 1 , Unai Bidarte 1 , Alejandro Largacha 2 and Jesús Lázaro 1,*

1 Electronics Technology Department, Faculty of Engineering of Bilbao, University of the Basque Country,
48013 Bilbao, Spain; jaime.jimenez@ehu.eus (J.J.); leire.muguira@ehu.eus (L.M.); unai.bidarte@ehu.eus (U.B.)

2 GE Renewable Energy, 48170 Zamudio, Spain; alejandro.largachaferreras@ge.com
* Correspondence: jesus.lazaro@ehu.eus

Abstract: Some complex digital circuits must host various operating systems in a single electronic
platform to make real-time and not-real-time tasks compatible or assign different priorities to current
applications. For this purpose, some hardware–software techniques—called virtualization—must be
integrated to run the operating systems independently, as isolated in different processors: virtual
machines. These are monitored and managed by a software tool named hypervisor, which is in
charge of allowing each operating system to take control of the hardware resources. Therefore, the
hypervisor determines the effectiveness of the system when reacting to events. To measure, estimate
or compare the performance of different ways to configure the virtualization, our research team has
designed and implemented a specific testbench: an electronic system, based on a complex System
on Chip with a processing system and programmable logic, to configure the hardware–software
partition and show merit figures, to evaluate the performance of the different options, a field that has
received insufficient attention so far. In this way, the fabric of the Field Programmable Gate Array
(FPGA) can be exploited for measurements and instrumentation. The platform has been validated
with two hypervisors, Xen and Jailhouse, in a multiprocessor System-on-Chip, by executing real-time
operating systems and application programs in different contexts.

Keywords: virtualization; hypervisor; virtual machines; multi processor; multi-operating-system

1. Introduction

Many complex digital circuits must host different operating systems in a single elec-
tronic platform to synchronize real-time and deferrable tasks or give different priorities to
running applications. Applications around Industry 4.0 or the Industrial Internet of Things
require incorporating more non-real-time functionality and common software architectures
such as RTOperating System (OS) and bare-metal-based periodic control loops. Hence,
some hardware–software codesign techniques—named virtualization—must be exploited
to run all the operating systems autonomously of each other, as confined in different
processors or virtual machines.

There are different levels of virtualization or virtualization schemes, full virtualiza-
tion, para-virtualization, and static partitioning or core virtualization [1]. Due to the strict
constraints on resources and the computing power of embedded environments, not all are
suitable for industrial embedded systems. Considering the prioritization of real-time opera-
tions and the restriction of computing resources in embedded systems, static partitioning is
more suitable for them. In this case, because of the straightway coupling between the phys-
ical resources and the virtualized environments, the real-time operation determinism is less
affected. So, partitioning is better suited to embedded resources than full virtualization [2].

These virtualization schemes require an underlying software—named the Virtual
Machine Monitor (VMM) or the so-called hypervisor—to handle the guest machines or
guest OS. The hypervisor runs at a privileged execution level, and with the help of virtual

Technologies 2022, 10, 65. https://doi.org/10.3390/technologies10030065 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies10030065
https://doi.org/10.3390/technologies10030065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-3804-678X
https://orcid.org/0000-0002-9493-5872
https://orcid.org/0000-0001-8509-8657
https://orcid.org/0000-0002-7483-3609
https://doi.org/10.3390/technologies10030065
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies10030065?type=check_update&version=2

Technologies 2022, 10, 65 2 of 10

systems, it manages the sharing of underlying physical resources. However, at the same
time, the hypervisor introduces an additional layer between the outside world and the
processing unit, i.e., a potentially longer latency. The common use cases for hypervisors in
embedded systems are the consolidation, legacy operating systems and multiple security
levels [3].

A type 1 hypervisor runs directly on the hardware. It hosts OS and manages resources
and memory allocation for the virtual machines. In a type 2 hypervisor or guest OS
virtualization, the hypervisor runs over a host OS, the lowest layer of software, which
provides drivers and services for the hypervisor hosting virtualized guest OS. Comparing
both types of hypervisors, type 1 introduces less overhead, providing a better performance
and greater capacity to optimize the allocation of hardware resources to the various virtual
machines. Access to the devices does not depend on the driver being virtualized compared
to the type 2 hypervisors.

Consequently, as an interface, the hypervisor may determine the effectiveness of
the system when reacting to events, depending not only on how quickly it switches the
working context but also on which hardware resources it occupies or releases. Nevertheless,
measuring, estimating, or comparing the performance when configuring the virtualization
in different ways is not trivial. Specific electronic testbenches to host various processors,
install distinct operating systems, configure the hardware–software partition and show
significant merit figures are demanded.

To characterize and compare multiple virtualization interferences, the authors have
designed a specific hardware-testbench. The programmed application measures the addi-
tional latency introduced in an interrupt service during normal execution, and it is regarded
as fairly general and of capital importance in industrial applications. In many such systems,
for example, smart grid applications, the time to react in front of a stimulus is the key factor
of the equipment [4]. In such a system, a baremetal application provides the greatest speed
with the smallest flexibility. Nevertheless, a compromise point may be the division of work
by the use of a hypervisor. It provides, at the same time:

• Flexibility of a higher level operating system;
• Careful control of latencies of a baremetal application;
• Security by separation of hardware and software between both elements.

Following the structure of this article, Section 2 presents a brief survey of related work
about other testbench setups. Section 3 specifies the considered electronic platform for
testing different hypervisors. The proposed approach for an automated test procedure is
discussed in Section 4, and the paper ends with some conclusions.

2. Hardware-Testbenches for Hypervisors

So far, the performance of hypervisors has been mostly tested in computer platforms;
sometimes of the personal type [5–15], others in servers [16–26]; multi-purpose embedded
systems have also been used in the same way [1,27,28]. Although we could have exploited
these complex testbenches, and all the advantages of high-level software interfaces, sensors,
and electronic instrumentation in general, would have had to be attached outside. Besides,
reconfiguring the setup implied manual changes, and external connections and instruments
introduced errors in the latencies’ measurements. Reference [29] used an FPGA platform
in a similar context; not to test how the hypervisor slowed down the performance of the
processor system, like us, but to analyze the interference between virtual machines in their
working-isolation. Table 1 shows in which electronic cards the referenced teams performed
the tests.

Technologies 2022, 10, 65 3 of 10

Table 1. Other research works on measuring the performance of hypervisors in electronic boards.

Platform References

Computer [5–15]
Servers [16–26]

Embedded [1,27,28]
FPGA [29]

Although the authors of [29] conducted some research on CPU performance in an
FPGA card with a chip similar to ours—Xilinx ZCU102—they were not interested in the
interference of the hypervisor on latencies but in using Jailhouse as the tool to isolate
different virtual machines—so that they do not disturb each other’s resources.

Bansal et al. [30] also refer to performance in a Xilinx ZCU102, but, in this case,
the authors propose Jailhouse at the end as the solution to the problems found about
memory contentions: isolating every subsystem using the hypervisor. Hence, to the
best of our knowledge, this present work is the first to propose a hardware configurable
testbench for analyzing the latency introduced by a hypervisor, exploiting, at the same
time, the reconfigurable part of the FPGA to create the instrumentation.

3. The Electronic Platform

The main contribution of this work is designing and implementing a hardware plat-
form valid for testing flexibly and automatically characterizing different hypervisors in
various working configurations. Our objective is to offer a versatile electronic tool oriented
to evaluate the influence on the system’s response due to the use of hypervisors. These are
the main criteria in order to select the hardware platform:

• Two of the most used hypervisors, Xen and Jailhouse, have been selected as the refer-
ence for the design requirements; they maintain a list of hardware systems on which
they have ever been tested. The Xen list is longer because it is an older alternative.
For the sake of generality, the selected hardware should appear in both lists. If it does
not, the adequacy of it should be considered feasible;

• To test the virtualized systems, tools to generate the Linux cell are demanded, with its
kernel, device-tree and file-system, and the baremetal cell. The selected solution must
provide this software, and the availability of the source code is also valuable, in case
modifications were needed.

An Advanced RISC Machines (ARM)-based architecture has been chosen because it is
the most used one for embedded systems, and it is present in the Processing System (PS) of
Zynq and Zynq UltraScale+ families in Xilinx devices. It is also suitable for the task since
ARMv8 architecture provides virtualization extensions in hardware.

The Xilinx Zynq UltraScale+ family has been chosen because it includes ARMv8
architecture in PS and a Programmable Logic (PL) part where application-specific circuits
can be implemented in order to create a test setup. The Xilinx ZCU102 [31] board, which
includes a Zynq UltraScale+ Multiprocessor Programmable System-on-a-Chip (MPSoC)
chip, appears in Xen and Jailhouse lists. It would have been a good option, but the research
team has been using the UltraZed [32] board for the last works, and it was concluded
that, as it includes a chip of the same family, slight modifications would be needed in
order to execute both hypervisors so that this electronic platform has been chosen. When
preparing this work, the UltraZed card was not among Jailhouse’s list of supported and
tested platforms; there was no cell file for it, so the files corresponding to the root cell and
the cell with the baremetal application were created. There is a configuration file for every
cell (in our case, one for the root cell and one for the baremetal one). These files created for
the UltraZed contain the configuration structure that Jailhouse needs to locate the different
resources of the platform on the memory map. Making possible the use of the Ultrazed
board for Jailhouse is another valuable contribution of this work.

Technologies 2022, 10, 65 4 of 10

The complete hardware system comprises two boards: the processing UltraZed-EG
System-On-Module (SOM) and the UltraZed Input Output (IO) carrier card. These are the
main circuits:

• UltraScale+ MPSoC XZU3EG-1SFVA625E, which includes:

– 4 ARM Cortex-A53 (ARMv8) cores (up to 1.2 GHz)
– 2 ARM Cortex-R5 cores (up to 500 MHz)
– Mali-400 MP2 graphic processor (up to 600 MHz)
– 154K Logic Cells
– 141K flip-flops
– 7.6 Mb RAM
– 360 DSP blocks

• 2 GB DDR4 SDRAM
• 64 MB QSPI flash
• 8 GB eMMC flash
• 1 Gigabit Ethernet
• 1 SD card
• 12 Peripheral Module interface (PMOD) in PL
• 2 USB-UARTs
• 1 JTAG
• 8 switches and 8 LED in PL

Hardware System Description for the UltraScale+ MPSoC

The four ARM Cortex-A53 (ARMv8) cores support the processing of both guests,
the Linux system, and the baremetal. The PL part is used as general IO and to measure the
timing of the system. Figure 1 shows the block diagram, as it is designed in Vivado.

Figure 1. Block diagram designed in Vivado. The AXI interconnect is shared among all processors,
which means that it can be accessed both by the hypervisor and the standalone application. A timer
is in charge of generating periodic interrupts while another interrupt measures the latency.

It is a straightforward system in which all the blocks are connected by the Advanced
eXtensible Interface (AXI) bus and appear mapped in microprocessor memory. The ob-
jective is to measure the latency that hypervisors introduce in treating interrupts in guest
baremetal systems. For this purpose, an instrumentation subsystem has been created; to do
that, the following blocks and connections between them have been arranged:

Technologies 2022, 10, 65 5 of 10

• axi_gpio_0 [33]: generates an interrupt whenever a change occurs in its input. The out-
put is connected as an interrupt generated in PL and used as input in PS;

• axi_timer_1 [34]: it is configured as Pulse-width modulation (PWM), and its output is
the input signal in axi_gpio_0;

• axi_gpio_3: its output signal is activated from the interrupt service routine;
• axi_timer_0: it captures two events: the interrupt event generated by axi_gpio_0 and

the activation of axi_gpio_3, which occurs when the interrupt is attended. So the
difference between both times is the time needed to attend the interrupt;

• axi_gpio_1: its output is connected to a LED in order to visually follow the execution.

The interrupt events are also monitored in an external logic analyzer using a PMOD
connector as the backup instrumentation.

4. Test Procedure

The main purpose of the hardware described in the previous section is to provide a
flexible and configurable means to accurately and transparently measure the latency in
executing an interrupt service function. In order to be explored by different test cases,
the following steps have been automated:

• Create a base application-level operating system. In our case, Linux. For that purpose,
we require:

– Create a kernel with hypervisor supports;
– Add the hypervisor executable and configuration;

• Create a base low latency application. In our case, a baremetal application has been
created for the interrupt service function. In a more general way, a real-time application
could be used, both baremetal or RTOS;

• Create a periodic interrupt by the use of the hardware timer;
• Capture the time to serve the interrupt by the use of the hardware capture module;
• Repeat the operation for a statistically significant number of times to obtain the data

under different CPU loads. The hypervisor’s operating system is stressed to test the
impact of the hypervisor in the high-priority baremetal application.

It must be stated that the test must be repeated to filter out outlying values. Simulta-
neously, these outliers are of great importance since, in real-time systems, the worst-case
scenario is the defining scenario. An overall structure can be seen in Figure 2.

SoC
PLPS

CPU

IntC

Linux+Hypervisor

ISR+Baremetal

idle

idle

IRQ generator

Figure 2. An overall structure of the proposed scenario. There is a hardware periodic interrupt
generator, which is paired with a timer. The interrupt sets the timer while the ISR stops it.

Technologies 2022, 10, 65 6 of 10

4.1. General Flow

To test different hypervisors, a procedure has been devised (Figure 3). The hardware
can generate continuous interrupts. What is left is to measure the time to service those
interrupts under different scenarios. To do that, an Interrupt Service Routine (ISR) has
been created as a baremetal application. This ISR toggles the stop signal of the capture
counter through a GPIO. A program inside the Linux cell/Dom reads the start and stop
times, saving them into a file. This ISR resides in a baremetal application so that it does not
depend on any operating system. To generate different scenarios, the stress_ng tool is used
inside the Linux cell/Dom. The output values are transmitted to a computer and analyzed.

GPIO Capture Core ISR CVS file Bash script CPU sftp Octave

PL PS PC

Standal-
one Linux

Continous hardware operation

Interrupt

Start

Stop

Elapsed time

Stress generation

stress

Data gathering

File transfer

Statistics generation

Figure 3. General flow. In the PL, the timer is started while the interrupts are generated. The ISR
receives the interrupt and stops the timer. The processor also reads the timer value and generates all
the files for the statistical evaluation. At the same time, the processor also stresses the memory and
CPU. In an external PC, all the data are gathered and processed.

The test procedure has been automated to a great degree. A script generates the
different stress levels (in our case, CPU stress, memory stress, and CPU and memory
stress), reads the ISR latency, and generates a result file for every stress test. Each file
contains several hundred instances of the interrupt (the number can be configured to get a
statistically significant number of instances); this file is transmitted using sftp to a host PC
where the data are analyzed and graphs generated using an Octave/Gnuplot script.

All these scripts are highly configurable, and stress_ng has many different options.
Depending on the final application, different stress patterns can be generated. We have se-
lected two common baseline scenarios, although personalized ones could be as
easily created.

This automation is useful since it can be exploited as an in-system self-test. Instead of
using artificial stress software, the actual final application can be used while in the field to
measure possible problems.

4.2. Validation Test

In order to validate our setup, we have tested two popular hypervisors: Xen and
Jailhouse. At the same time, as mentioned, we have stressed the operating system managing
the hypervisor. The stress has been focused on CPU and memory usage.

For example, the platform automatically generated 700 rounds of the interrupt in three
different scenarios and two different hypervisors—a sample can be seen in Figures 4 and 5.

The first experiment (see Figure 4) has been performed, stressing the CPU; the second
(see Figure 5), the virtual memory.

Technologies 2022, 10, 65 7 of 10

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500 600 700

T
im

e
to

 s
er

v
ic

e
in

te
rr

u
p
t

(n
s)

Number of the interrupt round

jailhouse cpu stress
Xen cpu stress

Figure 4. Results for Xen and Jailhouse when CPU is stressed. Overall, Jailhouse has a better baseline,
although many more spikes than Xen. These spikes correspond to transients in the hypervisor.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700

T
im

e
to

 s
er

v
ic

e
in

te
rr

u
p
t

(n
s)

Number of the interrupt round

jailhouse virtmem stress
xen virmem stress

Figure 5. Results for Xen and Jailhouse when the memory module is stressed.

The tool also sources a summary of statistical data—for example, see Table 2. In the
optimal case, a latency of approximately 1 µs for Jailhouse and 2 µs for Xen were found.

Technologies 2022, 10, 65 8 of 10

Table 2. Statistical results in the time to service interrupt (ns) for all 700 interrupt rounds.

CPU Stress Virtmem Stress All Stress
Statistics Jailhouse Xen Jailhouse Xen Jailhouse Xen

min 1190.0000 2140.0000 1190.0000 2140.0000 1190.0000 2140.0000
Q1 1220.0000 2190.0000 1420.0000 2180.0000 1200.0000 2190.0000

median 1320.0000 2210.0000 1790.0000 2190.0000 1310.0000 2220.0000
Q3 1580.0000 2310.0000 2230.0000 2200.0000 1460.0000 2310.0000

max 7020.0000 8750.0000 6860.0000 2490.0000 7050.0000 8750.0000
mean 1705.7489 2481.8545 1934.0942 2188.4593 1611.0699 2337.4608

StdDev 1033.8568 1022.1210 721.2251 21.4788 943.2967 556.9779
skewness 3.0235 4.5639 2.2143 3.7068 3.5246 7.8376
kurtosis 11.8676 23.2601 11.0569 57.1830 15.4045 71.8205

5. Conclusions

In this work, a flexible, configurable, and automated platform composed of an elec-
tronic system based on a complex FPGA has been proposed and validated for measuring
and evaluating the performance of different hypervisors.

First, we investigated the impact of the hypervisor’s performance. The integration of
virtualization techniques allows the coexistence of real-time and non-real-time applications
running in different operating systems inside a single digital circuit. In this virtualized
context, the hypervisor is responsible for monitoring and managing the independent
operating systems, deciding which takes control of hardware resources in each moment.
Therefore, the effectiveness of the system in the presence of interrupts or events is connected
to the hypervisor behavior straightaway. We have noticed that the selected platforms for
previous studies in most cases are computer ones, but they did not take advantage of
reconfigurable computing solutions technologies. Besides, they do not analyze the I/O
contention, such as general-purpose I/O interrupts.

A hardware testbench composed of an SoC that hosts some processors, installs various
operating systems, configures the hardware–software partition, and shows significant
merit figures has been designed and implemented. A test procedure has been defined and
automated to a great degree to measure the latency in the execution of an interrupt service
function, and the setup has been validated using two type 1 hypervisors: Xen and Jailhouse.

Author Contributions: Conceptualization, A.L.; methodology, J.J., J.L. and A.L.; validation, U.B.;
investigation, L.M. and A.L.; data curation, J.L. and A.L.; writing—original draft preparation, A.L.;
writing—review and editing, J.J., U.B. and J.L.; supervision, J.L.; project administration, J.J. and J.L.;
funding acquisition, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the Basque Government within the project HAZITEK
ZE-2020/00022 as well as the Ministerio de Ciencia e Innovación of Spain through the Centro para el
Desarrollo Tecnológico Industrial (CDTI) within the project IDI-20201264 and FEDER funds.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Toumassian, S.; Werner, R.; Sikora, A. Performance measurements for hypervisors on embedded ARM processors. In Proceedings

of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India,
21–24 September 2016; IEEE: Piscataway, NJ, USA, 2016. [CrossRef]

2. Kou, E. Virtualization for Embedded Industrial Systems, 2018. SPRY317A. Available online: https://www.ti.com/lit/wp/spry3
17b/spry317b.pdf (accessed on 25 April 2022).

3. Greenbaum, J.; Garlati, C. Hypervisors in Embedded Systems. Applications and Architechtures. In Proceedings of the Embedded
World Conference, Nuremberg, Germany, 27 February–1 March 2018.

4. IEC 61850-1 ed2.0; Communication Networks and Systems for Power Utility Automation—Part 1: Introduction and Overview.
IEC: Geneva, Switzerland, 2013.

5. Polenov, M.; Guzik, V.; Lukyanov, V. Hypervisors Comparison and Their Performance Testing. In Advances in Intelligent Systems
and Computing; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 148–157._16. [CrossRef]

http://doi.org/10.1109/icacci.2016.7732152
https://www.ti.com/lit/wp/spry317b/spry317b.pdf
https://www.ti.com/lit/wp/spry317b/spry317b.pdf
http://dx.doi.org/10.1007/978-3-319-91186-1_16

Technologies 2022, 10, 65 9 of 10

6. Poojara, S.R.; Ghule, V.B.; Birje, M.N.; Dharwadkar, N.V. Performance Analysis of Linux Container and Hypervisor for Application
Deployment on Clouds. In Proceedings of the 2018 International Conference on Computational Techniques, Electronics and
Mechanical Systems (CTEMS), Belgaum, India, 21–22 December 2018; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]

7. Ferreira, R.D.F.; de Oliveira, R.S. Cloud IEC 61850: DDS Performance in Virtualized Environment with OpenDDS. In Proceedings
of the 2017 IEEE International Conference on Computer and Information Technology (CIT), Helsinki, Finland, 21–23 August 2017;
IEEE: Piscataway, NJ, USA, 2017. [CrossRef]

8. Graniszewski, W.; Arciszewski, A. Performance analysis of selected hypervisors (Virtual Machine Monitors—VMMs). Int. J.
Electron. Telecommun. 2016, 62, 231–236. [CrossRef]

9. Pesic, D.; Djordjevic, B.; Timcenko, V. Competition of virtualized ext4, xfs and btrfs filesystems under type-2 hypervisor. In
Proceedings of the 2016 24th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–23 November 2016; IEEE: Piscataway,
NJ, USA, 2016. [CrossRef]

10. Vojtesek, J.; Pipis, M. Virtualization of Operating System Using Type-2 Hypervisor. In Advances in Intelligent Systems and
Computing; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 239–247._22. [CrossRef]

11. Bujor, A.C.; Dobre, R. KVM IO profiling. In Proceedings of the 2013 RoEduNet International Conference 12th Edition: Networking
in Education and Research, Iasi, Romania, 26–28 September 2013; IEEE: Piscataway, NJ, USA, 2013. [CrossRef]

12. Yang, Z.; Fang, H.; Wu, Y.; Li, C.; Zhao, B.; Huang, H.H. Understanding the effects of hypervisor I/O scheduling for virtual
machine performance interference. In Proceedings of the 4th IEEE International Conference on Cloud Computing Technology
and Science Proceedings, Taipei, Taiwan, 3–6 December 2012; IEEE: Piscataway, NJ, USA, 2012. [CrossRef]

13. Binu, A.; Kumar, G.S. Virtualization Techniques: A Methodical Review of XEN and KVM. In Advances in Computing and
Communications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 399–410._40. [CrossRef]

14. Zhang, L.; Bai, Y.; Luo, C. idsocket: API for Inter-domain Communications Base on Xen. In Algorithms and Architectures for Parallel
Processing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 324–336._29. [CrossRef]

15. Xu, X.; Zhou, F.; Wan, J.; Jiang, Y. Quantifying Performance Properties of Virtual Machine. In Proceedings of the 2008 International
Symposium on Information Science and Engineering, Shanghai, China, 20–22 December 2008; IEEE: Piscataway, NJ, USA, 2008.
[CrossRef]

16. Dordevic, B.; Timcenko, V.; Kraljevic, N.; Davidovic, N. File system performance comparison in full hardware virtualization with
ESXi and Xen hypervisors. In Proceedings of the 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East
Sarajevo, Bosnia and Herzegovina, 20–22 March 2019; IEEE: Piscataway, NJ, USA, 2019. [CrossRef]

17. Yang, Z.; Liu, C.; Zhou, Y.; Liu, X.; Cao, G. SPDK Vhost-NVMe: Accelerating I/Os in Virtual Machines on NVMe SSDs via User
Space Vhost Target. In Proceedings of the 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2), Paris,
France, 18–21 November 2018; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]

18. Sok, S.W.; Jung, Y.W.; Lee, C.H. Optimizing System Call Latency of ARM Virtual Machines. J. Phys. Conf. Ser. 2017, 787, 012032.
[CrossRef]

19. Zhang, D.; Wu, H.; Xue, F.; Chen, L.; Huang, H. High Performance and Scalable Virtual Machine Storage I/O Stack for Multicore
Systems. In Proceedings of the 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen,
China, 15–17 December 2017; IEEE: Piscataway, NJ, USA, 2017. [CrossRef]

20. Ul Ain, Q.; Anwar, U.; Mehmood, M.A.; Waheed, A. HTTM—Design and Implementation of a Type-2 Hypervisor for MIPS64
Based Systems. J. Phys. Conf. Ser. 2017, 787, 012006. [CrossRef]

21. Twardowski, M.; Pastucha, E.; Kolecki, J. Performance of the Automatic Bundle Adjustment in the Virtualized Environment. In
Proceedings of the 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2–4 June 2016; IEEE: Piscataway, NJ, USA,
2016. [CrossRef]

22. Borislav, Ð.; Nemanja Maček, V.T. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation. Acta
Polytech. Hung. 2015, 12, 147–165. [CrossRef]

23. Ye, K.; Wu, Z.; Zhou, B.B.; Jiang, X.; Wang, C.; Zomaya, A.Y. Virt-B: Towards Performance Benchmarking of Virtual Machine
Systems. IEEE Internet Comput. 2014, 18, 64–72. [CrossRef]

24. Tang, X.; Zhang, Z.; Wang, M.; Wang, Y.; Feng, Q.; Han, J. Performance Evaluation of Light-Weighted Virtualization for PaaS in
Clouds. In Algorithms and Architectures for Parallel Processing; Springer International Publishing: Berlin/Heidelberg, Germany,
2014; pp. 415–428._32. [CrossRef]

25. Cacheiro, J.L.; Fernández, C.; Freire, E.; Díaz, S.; Simón, A. Providing Grid Services Based on Virtualization and Cloud
Technologies. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 444–453._50. [CrossRef]

26. André Bögelsack, H.K.; Wittges, H. Performance Overhead of Paravirtualization on an Exemplary Erp System. In Proceedings of
the 12th International Conference on Enterprise Information Systems, Funchal, Portugal, 8–12 June 2010; SciTePress—Science and
and Technology Publications: Setubal, Portugal, 2010. [CrossRef]

27. Kloda, T.; Solieri, M.; Mancuso, R.; Capodieci, N.; Valente, P.; Bertogna, M. Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems. In Proceedings of the 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), Montreal, QC, Canada, 16–18 April 2019; IEEE: Piscataway, NJ, USA, 2019. [CrossRef]

28. Heiser, G.; Leslie, B. The OKL4 microvisor. In Proceedings of the First ACM Asia-Pacific Workshop on Workshop on Systems—
APSys’10, New Delhi, India, 30 August 2010; ACM Press: New York, NY, USA, 2010. [CrossRef]

http://dx.doi.org/10.1109/ctems.2018.8769146
http://dx.doi.org/10.1109/cit.2017.17
http://dx.doi.org/10.1515/eletel-2016-0031
http://dx.doi.org/10.1109/telfor.2016.7818895
http://dx.doi.org/10.1007/978-3-319-33622-0_22
http://dx.doi.org/10.1109/roedunet.2013.6714187
http://dx.doi.org/10.1109/cloudcom.2012.6427495
http://dx.doi.org/10.1007/978-3-642-22709-7_40
http://dx.doi.org/10.1007/978-3-642-13119-6_29
http://dx.doi.org/10.1109/isise.2008.221
http://dx.doi.org/10.1109/infoteh.2019.8717664
http://dx.doi.org/10.1109/sc2.2018.00016
http://dx.doi.org/10.1088/1742-6596/787/1/012032
http://dx.doi.org/10.1109/icpads.2017.00047
http://dx.doi.org/10.1088/1742-6596/787/1/012006
http://dx.doi.org/10.1109/bgc.geomatics.2016.40
http://dx.doi.org/10.12700/aph.12.4.2015.4.9
http://dx.doi.org/10.1109/MIC.2013.104
http://dx.doi.org/10.1007/978-3-319-11197-1_32
http://dx.doi.org/10.1007/978-3-642-14122-5_50
http://dx.doi.org/10.5220/0002867803470354
http://dx.doi.org/10.1109/rtas.2019.00009
http://dx.doi.org/10.1145/1851276.1851282

Technologies 2022, 10, 65 10 of 10

29. Danielsson, J.; Seceleanu, T.; Jagemar, M.; Behnam, M.; Sjodin, M. Testing Performance-Isolation in Multi-core Systems. In
Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA,
15–19 July 2019; IEEE: Piscataway, NJ, USA, 2019. b7 [CrossRef]

30. Bansal, A.; Tabish, R.; Gracioli, G.; Mancuso, R.; Pellizzoni, R.; Caccamo, M. Evaluating memory subsystem of configurable
heterogeneous MPSoC. In Proceedings of the 14th Annual Workshop onOperating Systems Platforms for Embedded Real-Time
Applications, Barcelona, Spain, 3 July 2018.

31. Xilinx. Zynq UltraScale+ MPSoC ZCU102; Technical Report; Xilinx: San Jose, CA, USA, 2020.
32. Xilinx. Zynq UltraScale+ MPSoC Data Sheet: Overview; Technical Report; Xilinx: San Jose, CA, USA, 2019.
33. Xilinx. AXI GPIO v2.0 LogiCORE IP Product Guide; Technical Report; Xilinx: San Jose, CA, USA, 2016.
34. Xilinx. AXI Timer v2.0 LogiCORE IP Product Guide; Technical Report; Xilinx: San Jose, CA, USA, 2016.

http://dx.doi.org/10.1109/compsac.2019.00092. b7

	Introduction
	Hardware-Testbenches for Hypervisors
	The Electronic Platform
	Test Procedure
	General Flow
	Validation Test

	Conclusions
	References

