
Electronic correlation and magnetic

properties of one-dimensional systems

Joseba Goikoetxea Perez

Supervised by

Andrés Arnau Pino Maŕıa Blanco Rey
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Laburpena

Tesi honen helburu nagusia, nanokate magnetiko desberdinetan, magnetismoaren eta

elektroien arteko korrelazioaren analisi teorikoa egitea da. Egitura sinpleak izan arren,

dimentsio baxuko sistemek ezaugarri magnetiko interesgarriak erakutsi ahal dituzte.

Esperimentalki horrelako sistemak gauzatzeak erronka handia suposatzen du, eta on-

dorioz neurketak egitea ia ezinezkoa bihutzen da. Beraz, analisi teorikoa ezinbestekoa

da material horien ezaugarriak aurreikusteko. Gure lanaren lehendabiziko helburuan,

kateen eta katea hazten den sustratuaren arteko elkarrekintzak aztertzen dituugu. Bi

kasu ezberdin ditugu, lehena sustratua eta katearen artean elkarrekintza handiak dau-

denean eta bigarrena, elkarrekintza baxuak direnean, hau da, katea sustratuarekiko

isolatuta egongo balitz bezala aintzat hartuz. Kate-sustratu elkarrekintzak elektroien

korrelazioa erabat aldatu dezake, eta ondorioz, kateen magnetismoa guztiz aldarazi.

Gure bigarren eta azken helburua, atomo magnetikoek erakutsi ahal duten egoera des-

berdinek (spin dezberdin edo berdinarekin) propietate magnetikoetan duten eragina

aztertzea da.

XX. mendean material magnetikoen ezagutzak izan zuen iraultzaz geroztik, ma-

terial hauek gure egunerokotasunean parte izatera pasa dira. Material magnetikoen

erabilera ezagunena datuak gordetzeko ahalmena da: ordenagailuetako disko gogor-

rak material magnetikoz osatuta daude. Tresneria hauetan domeinu magnetikoen

(atomoen momentu magnetikoek norabide orokorra duten eskualdeak) magnetizazioa

neurtzen da, momentu magnetikoaren noranzkoak 0 edo 1 bit kodea ezartzen due-

larik. Azken urte hauetan, mundu mailako datu kopuruak esponentziali gora egin du,

beraz memoria handiagoak duten disko gogorren beharra dugu. Kontutan izanda in-

formazioa domeinu magnetikoetan gordetzen dela, memoria handitzeko modu bakarra

domeinuak txikitzea da. Gaur egun, disko gogorretan 1016bit/m2-ko oroimenen dentsi-
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tatea lor dezakete, hau da, domeinuak gutxi-gorabehera 10mm2-koak dira. Domeinu

magnetikoen tamaina txikitzeak, domeinuen arteko hormak txikitzean lortzen da.

Hormen tamaina bi elkarrekintzen araberakoa da: truke elkarrekintzak eta anisotropia

magnetikoak. Truke elkarrekintzak atomoen arteko spinak lerrokatzearen alde egiten

du, eta anisotropia magnetikoak spinak kristalaren norantza zehatz batean egoteak

lehenesten du. Beraz, trukeak domeinuen arteko hormak luzeatzea hobesten du,

anisotropiak, ordea, horma motzagoak. Domeinu magnetikoen tamaina txikitzeak

muga bat du, txikitzean efektu termikoak gero eta nabariagoak baitira, magneti-

zazioaren ausazko alderantziketak sortuz. Muga honi muga superparagmetikoa derit-

zogu. Domeinu magnetikoen txikitzearen limitea dimentsio baxuko sistemekin gain-

ditu dezakegu.

Dimentsio baxuko materia sorta bidimentsionalak (2D) diren sistemetatik ima-

nen limitea den atomora (0D) arteko sistemek osatzen dute. Gure ikerkuntza di-

mentsio bakarreko (1D) sistemetan zentratuta dago. Zehazki, Tesi honetan, bi kate

magnetiko mota aztertuko ditugu, bat trantsizio-metal atomoak O atomoekin lo-

tura dutenean, hots, trantsizio metal-oxido kateak, eta bestean, transtsizio-metalak

molekula organikoen bidez lotzen direnean. Zergatik dimentsio baxuak erabili? Sis-

temen dimentsioa txikitzen denean, gorputz anitzen arteko elkarrekintzak gora egiten

du. Loturak dituzten atomo kopurua gutxitzen direnez, elektroien arteko Coulomb

elkarrekintzak handiagoak dira, apantailatze efektuak txikiagotzen baitira. Ondo-

rioz, spin-spin arteko truke elkarrekintza areagotzen da. Mermin-Wagner teoriaren

arabera dimentsio baxuko materialetan ezin da ausazko irismen luzeko magnetismorik

eman, baldin eta anisotropia magnetikorik ez badago. Beraz, anisotropia magnetikoa

ezinbestekoa da dimentsio baxuetan magnetismoa gauzatzeko. Gainera, dimentsio

baxuetan eremu kristalinoa (beste atomoek sortutako potentzial elektrikoen konbi-

nazioa) txikiagotzen da, elektroien momentu orbitalaren deuseztapena ezabatuz eta

anisotropiari balio handiak izatea ahalbidetuz. Are gehiago, sistemen simetria ere

txikiagotzen da, adibidez, inbertsio simetriarik ez dago, eta spinen arteko truke elka-

rrekintza handitzen denez, kolinealak ez diren spin egiturak egotea ahalbidetzen ditu,

baita beste motatako elkarrekintzak agertu ere, adibidez, truke antisimetrikoa, spin

egitura kiralak ahalbidetuz. Propietate horiek dimentsio baxuko sistemak gailu elek-

tronikoetan erabiltzeko oso erakargarriak egiten dituzte. Baina batez ere, kateeen

ezaguarri magnetikoek interes handiena spintronikaren alorrean sustatzen dute, hau

da, elektroien kargaz gain spina ere manipulatzea ahalbidetzen duten tresnerien ik-



Contents xiii

erkuntzan.

Lehenago aipatu dugun bezala, kalkulu teorikoak ezin bestekoak dira kateen propi-

etateak aurreikusteko. Gure analisi teorikoa gauzatzeko dentsitate funtzionalaren teo-

ria (DFT) erabili dugu. Metodo honek parametro enpirikoen erabilera saihesten du,

konputazio denboraren eta zehaztazunaren arteko balantzea orekatuta mantenduz.

Spina kontutan hartzen duten DFT kalkuluekin materialen propietate magnetikoak

lortu ditzakegu, hala nola, spin egoera eta truke elkarrekintza konstatea J . DFT

kalkuluetan spin orbita elkarrekintza (SOE) sartuta anisotropia magnetikoaren ener-

gia lortu ahal dugu. DFT partikula bakarreko probleman oinarritzen denez gorputz

askoko elkarrekintzak ez ditu ondo deskribatzen. Arazo hau argi ikusten da trantsizio-

metal atomoetan, non, d orbitalean duaden elektroiek elkarrekintza handiak izan ahal

duten. Coulomb ekarrekintzaren deskribapen mugatuaren ondorioz, materialen ezau-

garrien emaitza okerrak izan ahal ditugu, adibidez, sistema metalikoa berez isolatza-

ilea denean. Hau konpontzeko DFT+U zuzenketa erabiltzen da, non, U parametroak

orbital jakin bateko elektroien elkarrekintza deskribatzen duen. Honez gain, DFT

metodo bariazionala izanik, energiaren minimizazio prozesu baten bitartez lortzen du

oinarrizko egoera. Prozedura hau zehatza izango balitz beti energia gutxineko egoeran

amaituko genuke, hau da, oinarrizko egoeran. Energiaren minimizazioaren prozedura

ez denez perfektua, energetikoki baxuak diren egoera kitzikatuetan bukatu dezakegu,

oinarrizko egoera saiheztuz.

Tesiak hurrengo egitura du:

2. atalean, lehendabizi, Estatu Solidoko Fisikan erabiltzen diren ekuazioen eta

hurbilketen sarrera labur bat emango dugu. Bigarrenez, DFT teoriaren oinarrizko

teoremak eta ekuazionak azalduko ditugu, DFT+U zuzenketarekin eta orbitalen oku-

pazio kontrolaren metodoarekin batera. Jarraian, anisotropia magnetikoaren energia

kalkulatzeko erabili ditugun bi metodoak azalduko ditugu: indar teorema eta autokon-

sistentzia zikloak. Amaitzeko, mugatutako ausazko fase hurbilketa azalduko dugu,

metodo honekin eletrokien elkarrekintza intraobital, U , eta elkarrekintza interorbitala,

J , parametroak kalkulatu ahal ditugu. Honekin batera maximoki lokalizatuta dauden

Wannierren funtzioen azalpen labur emango dugu.

3. eta 4. ataletan, trantsizio metal-oxido kateetan oinarrituko gara, XO2 non

X =Ni, Co, Fe eta Mn izanik, Ir(100) sustratuan hazita. 3. atalean, isolatutako

kateen propietate magnetikoak kalkulatuko ditugu. Atomoen arteko distantzia eta
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Hubbard-U parameteroa aldatzen ditugunean hainbat spin egoera lortu ditzakegu

atomo magnetikoetan. Zenbat eta U parametro handiagoa izan, orduan eta spin

balio handiagoa lortzen ditugu. Katearen gela unitatea bikoiztuz, eta egoera antifer-

romagnetiko (AFM)-pin antiparaleloak- edo ferromagnetikoa (FM)-spin paraleloak-

ezarriz, truke elkarrekintza kalkulatzen dugu. Kate guztiak AFM egoera lehenesten

dute, MnO2-k izan ezik, FM egoera nahiago izanda. Spin egitura baikotzerako ego-

era dentsitateak kalkuluek MnO2 kasuan FM egoera erdi-eroalea da erakusten dute.

AFM egoera eroalea izanik. Beste kateetan aldiz AFM egoera isolatzailea da. Be-

raz, spin egituraren lehenespena materialen metaltasunarekin zerikusia du. Azkenik,

anisotropia magnetikoa kalkulatu dugu indar teorema eta kalkulu autokonsistenteak

erabiliz. Bi metodoek ardatz lehun (energia gutxieneko norabidea) berbera ematen

dute, NiO2 eta CoO2 kateentzat katearen planoan baina bere norabidearekiko per-

pendikularra, eta beste bi kasuetan, FeO2 eta MnO2, katearen planoarekiko per-

pendikularra. Baina NiO2 kasuan balioak oso desberdinak dira, balio autokonsisten-

tea indar teoremarena baino hiru bidar handiagoa izanik. Bi metodoak aplikatu eta

geroko egitura elektronikoa kalkulatu dugu aldaketa horren arrazoia lortzeko. Egi-

tura elektronikoak argi uzten du indar teoremak ez duela ondo deskribatzen SOE

efektua Fermi maila inguruan. Honen arrazoia, gure materialaren dimentsio baxua

izan ahal da. Simetriak gutxitzen direnez, elektroien uhin funtzioak ez daude mu-

gatuta, beraz SOE ezartzean bilakaera handiagoa eman ahal da, eta indar teoerema

ez da gai deskribatzeko. Azkenik, anisotropia magnetikoaren energiaren dentsitatea

kalkulatu dugu, hau da, autoenergia bakoitzak anisotropia magnetikoaren energian

duen ekarpena. Honekin, kateen artean ardatz lehunaren aldaketaren arrazoia bilatu

ahal dugu, SOIaren ondorioz emandako banda banaketa garrantzitsuenak bilatuz eta

banden orbitalen proiekzioa erabiliz.

4. atalean, X atomoetako 3d orbitalean ematen diren Coulomb elkarrekintzak

azterkuko ditugu. Mugatutako ausazko fase hurbilketa erabiliz, U -ren zein J-ren

balioak lortu ditzakegu. Lehendabizi, isolatutako katearen interakzioa kalkulatu dugu.

Kate guztientzat J ∼ 1 eV lortzen dugu. FeO2 kate isolatzailean lortzen dugu balio

handiena U ∼ 7.7 eV, gainerakoak erdi-eroaleak izanik U ∼ 6 eV balioa lortzen dugu.

NiO2 katen bi egoera desberdin lortzen ditugu, C1 eta C2 egoerak, DFT kalkule-

tan ezartzen dugun U balioaren arabera. Bi egoera hauek, bi U balio desberdin

ematen dituzte mugatutako ausazko fase hurbilketa kalkuluetan, batek UC1 ∼ 6 eV

eta besteak UC2 ∼ 2.4 eV. Korrelazio espazioa aldatuz O(p) orbitala interakzioaren

apantaimenduan ekarpen handiena duen orbitala dela ezartzen dugu. Gainera, kalkulu
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hauekin Ni(d)-O(p) loturaren arteko interakzioa C1 eta C2 egoeretako aldatu egiten

dela ezartzen dugu, ondorioz, apantailamendu efektuak aldatuz. Sustratua gehi kate

sisteman Uren balioa are gehiago txikitzen da balioak U . 2 eV izan arte kate guzti-

etan, MnO2a izan ezik non U ∼ 3.8 eV den. Jren balioak ez du aldaketa nabaririk sus-

tratuta ezartzean. Sustratua ezartzean, FeO2 kateak du aldaketa handiena U ∼ 1.4 eV

izatera bihurtzen da, aldaketa bortitz hau isolatzailetik metaliko izatera pasatzearen

ondorioa deritzogu. Horretaz aparte, sustratuak karga katera transferitzeko gai da or-

bitalen egoerak aldatuz eta ondorioz spin egoera spin egoera aldatzen da, adib., FeO2

katean S = 2-tik S = 3/2-ra. Honek X(d) orbitalaren eta O(p) arteko interakzioa al-

datzen du, kalkuluek baieztatzen dute apantailamenturako beste efektu bat izan ahal

dela. Gainera, bi efektu hauek ezin dira bi termino desberdinetan banatu, beraz ezin

dezakegu bakoitzaren ekarpena kalkulatu.

5. atalean, trantsizio metal-molekula organiko kate polimerikoetan zentratuko

gara. Kate hauetan Co eta Cr atomoak 2,5-diamino-1,4-benzoquinonediimina (QDI)

molekularen bidez lotzen dira. Hasieran, U -ren balio desberdinetarako geometria er-

laxatzen dugu. 4 ≤ U ≤ 5 arteko kalkulek, kate hauetan Co atomoak bi spin egoera

desberdin izan ahal duela frogatzen dute, S = 1/2 eta S = 3/2, bi egoeretan atomoen

distantzia desberdina izanik. Gainera, U = 4 eV kasuan, oinarrizko egoera S = 1/2

den bitartean U = 5 ezartzean S = 3/2 egoera pasatzen da oinarrizko egoera izatera.

Aldiz, CrQDI katean soilik S = 2 egoera lortzen dugu Cr atomorako. Metaegoeren

azterketa bat burutzen dugu orbitalen okupazio kontrolaren metodoa erabiliz. Co ato-

moarentzat metaegoera bat lortzen du S = 3/2-rekin, oinarrizko egoeratik 72 meV-ra.

Co S = 1/2 eta Cr atomoan lortutako metaegoerak oinarrizko egoeratik energikoki

oso urrun daude, beraz ez ditugu kontutan hartzen. Anisotropia magnetikoaren ener-

gia kalkuluek, CoQDI ardatz lehuna katearen planoan baina berekiko perpendikularra

ezartzen dute S = 3/2 egoeretan, eta kateraren norabiden S = 1/2 egoerarentzat.

CrQDI katean ardatz erraza katearen planoaren normalaren norabidean dago. Truke

elkarrekintzaren kalkuluek, CoQDI kateko S = 3/2 egoerek AFM egitura lehenesten

dutela frogatzen dute, aldiz S = 1/2-ko egoerak FM egitura, CrQDI kateak AFM

egitura erakusten du. Emaitza hauek Pavel Jelineken taldeak XMCD eta XLD esperi-

mentuetan neurtutako emaitzekin bat egiten dute. Soilik CrQDI truke elkarrekintzan

neurtutako seinaleak AFM egitura ahula neurtzen du eta gure kasuan AFM egit-

ura egonkorra lortzen dugu. Truke elkarrekintzaren desberdintasuna azaltzeko asmoz

katean zentzu fisikoa duten aldaketak egiten saiatu gara, adib.: Uren balioa aldatu,

spinen egitura kolinealak ez diren egiturak ezarri, katearen geometrian distortzioak
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eragin etab. Hala ere, aldaketa hauek ez dute truke elkarrekintzan ia eraginik, soi-

lik Uren aldaketek txikitzen du truke elkarrekintza, baina ez esperimentua azaltzeko

bezain beste.

Azkenik, 6. atalean, Tesi honetan burutu dugun ikerkuntzaren ondorio nagusiak

aurkezten ditugu.



Chapter 1

Introduction

Pretentious quotations are the

surest road to tedium

H.G. and F.G. Fowler

The main purpose of this Thesis is to perform a theoretical analysis of the mag-

netism and electron correlation on different spin chain system1 systems. Though

simple in their structure, they show intriguing magnetic properties due to their low

dimensionality. Synthesizing one-dimensional systems present a great challenge to re-

alize experimentally, and to do any measurement is a great task. Therefore, theoretical

calculations are essential to predict the magnetism in these systems. Our work’s first

aim is to give insights into the interplay between chains and the substrate where the

chain is grown. Studying two different systems, one considering the whole chain and

substrate system and the other with isolated chains. Depending on the interaction

between substrate and chain, the magnetic atom electron occupancy can be entirely

modified and interaction between the electrons affected, thus, modifying the magnetic

properties of the system. Our second goal is to analyze the consequences when the

theoretical analysis is capable to converge to excited states apart from the minimum

energetic ground state. We will study the change in the magnetic properties when the

1We refer as spin chains to chains where spin-spin interactions between magnetic atoms take
place [1]
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different states are set in the magnetic atoms.

The discovery of magnetic materials and their utility has been a key element in

the development of humanity. For instance, without the magnetic compass pointing

to the North pole2 navigation would have been inconceivable. From the late 20th cen-

tury, magnetic materials have become a part of our daily life, from the most common

use as magnets sticking to the fridge to data storage devices in computers. These

advances have been only possible after deeply understanding the origin of magnetism.

Historically speaking, the first clear reference to magnetism was given by Thales of

Miletus around the 6th century BC with lodestones, a magnetic mineral of Fe3O4. The

understanding of magnetism took a huge step forward in the 19th century with the

experiments of Oersted and Faradaym which linked electric currents and the magnetic

field. Later generalized by Maxwell’s equations, giving rise to the joint theory of elec-

tromagnetism. These equations could describe the magnetic and electric fields, but

the description of the source of magnetism in materials was still lacking. In the 20th

century, the advent of Quantum Mechanics and a better understanding of the struc-

ture of atom brought a great revolution in the research of magnetic materials. The

Stern-Gerlach experiment showed that a neutral Ag atoms beam under a nonuniform

magnetic field separated into two spots, becoming the first experimental signature of

the electron’s spin [3]. Uhlenbeck and Goudsmit were the first to publish the hypoth-

esis of the ”spinning” electron 3 [4]. In their hypothesis, they proposed a magnetic

moment proportional to the angular momenta S Pauli already proposed that another

quantum number should be needed to understand the electronic strcture, hence, he

further developed the idea of the electrons spin, setting that S, the spin operator is

an orbital moment associated with the quantum number mS. As the orbital momenta

L, S can be associated with a vector S = (Sx, Sy, Sz), its component values given by

the three Pauli matrices. In 1925, Pauli proposed it’s well known exclusion principle

for the electrons, stating that particles with S = 1/2, can not be in the same state,

i.e. have equal quantum numbers4. The formal derivation of the half-integer spin into

theory was obtained by P. Dirac with the inclusion of relativity in Schrödinger’s equa-

2In fact, for the last 780.000 years, it is the magnetic South pole [2] due to the inversion of the
magnetic field of the Earth.

3Note, that even if we mentioned ”spinning” electron this is no true as in our theory we treat
the electron as a point like.

4The generalized exclusion principle for the fermions, i.e., particles with half-integer spin was
stated in 1940.
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tion resulting in the so-called Dirac’s equation [5, 6]. The spins appears automatically

in Dirac’s equation, setting the spin as a quantum property of particles, without any

equivalent characteristic in classical physics. Considering all these theory, the total

magnetic moment has two contributions of the different angular momenta: orbital

(µL) and spin (µS), the latter being twice the first one. The spin magnetic moment

of the atoms originates from the unpaired electron spins that results in a total net

spin different from zero. These implies that all atoms that have are unpaired orbitals

should show a hint of magnetism.

In contrast to the atomic model, where almost all atoms show a magnetic moment,

band theory predicts that only a few materials are magnetic in bulk. In general, mag-

netism appears in aterials that contain transition metal atoms and rare-earth elements

[7, 8, 9]. Magnetism in solids originates from the competition between the motion, i.e.,

the kinetic energy, and the exchange interaction between electrons resulting from the

Coulomb interaction. Coulomb interaction favors the electron localization and thus

the magnetic moment, while kinetic energy favors the itinerancy of electrons. 3d tran-

sition metals are a good example of the interplay of these two effects, as the d electrons

are strongly localized within the magnetic atoms but still can form dispersive bands

[10]. In magnetic materials, the atomic spin magnetic moment can be aligned different

ways (see Fig. 1.1), such as, parallel (ferromagnetic)[11] and antiparallel (antiferro-

magnetic) [12], ferrimagnetic or forming complex non-collinear structures [6]. These

spin orderings are possible by the exchange interaction proposed by Heisenberg: Si ·Sj,

where Si is the spin vector at atom i. The exchange interaction counteracts thermal

disorder effects. There is a critical temperature where all spin order vanishes, e.g.,

Curie temperature for ferromagnets and Neel temperature for antiferromagnetic ma-

terials. Above these temperatures the magnetic material are randomly orientated,

resulting in a zero net magnetic moment,these materials are paragmagnetic. The sta-

bility of the magnetic moment is also related to the magnetocristalline anisotropy,

i.e. the preference of the spin to be aligned to a specific crystallographic5 direction,

due the spin-orbit coupling (SOC). The higher the magnetocristalline anisotropy the

harder will be to change the spin oriantation, e.g. using external magnetic fields.

A well-known use of magnets is as data storage where data is stored in magnetic

domains, i.e., regions in magnetic materials where the atoms have a common mag-

5The preferred direction is known as easy-axis
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a) Ferromagnetic

c) Ferrimagnetic d) Spin wave

b) Antiferromagnetic

Figure 1.1: Examples of spin orders in a chain. (a) Ferromagnetic, (b) antiferro-
magnetic, and (c) ferrimagnetic orders are collinear, while the (d) spin wave is a
non-collinear order.

netization direction, using as support, for example, magnetic tapes and hard disk

drives [13]. These devices are made of thin films of ferromagnetic materials, such

as Co-based alloys, deposited on a non-magnetic substrate, e.g., aluminum, glass or

ceramic. The different magnetization alignments in the domains set the 0 or 1 bit

encoding in the read-write processes. The amount of information that can be stored

depends on the magnetic domain density. Nowadays, hard disk drives can reach a

memory density of 1016 bit/m2, where each bit spatial extent is roughly 100 nm2

[14]. With the rapid progress of information technology, the data that needs to be

stored in these devices has grown exponentially in the last years [15]. Magnetic do-

mains need to be reduced to allow larger data storage. The size of the domains can

be controlled by manipulating the walls that separate each other. The wall length

is given by the competition between the exchange coupling and magnetic anisotropy

[16], where the exchange favors larger walls and anisotropy shorter ones. As the size of

the magnetic domains is reduced, thermal effects can drive to random magnetization

flips, the so-called superparamagnetic limit, that maty lead to the loss of the stored

information [17]. Low-dimensional systems can be considered, from two-dimenional

systems (2D) up to the 0D limit of the magnet: the atom. Our work is focused in one-

dimensional (1D) systems. 1D chains comprise a diverse family of different structures,

such as, atomic chains (a linear array of atoms) or complexes where different atomic

species bond forming a chain. In this family, we also include ”quasi-one-dimensional”

nanowires (or nanoribbons), wires with some lateral extension, but still 1D quantum

effects determine their properties [18, 19] to 3D structures that effectively can be

treated as arrays of stacked 1D chains e.g. perovskites [20]. Specifically, in this Thesis

we will work with chains where the transition metal atoms are linked with O atoms(
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transition metal-oxide, TMO ) chains [21, 22, 23] and with organic molecule ligands,

forming metal-organic chains [24, 25, 26, 27, 28].

Along with the reduction of dimensionality, the many-body interactions become

more relevant. Due to the lower coordination, Coulomb interaction screening is re-

duced compared to that of a bulk system, thus, enhancing the spin-spin exchange in-

teractions. Therefore, there exists a possibility of appearing spontaneous magnetism

in otherwise non-magnetic materials, for example, sp elements such as Al nanowires

[29]. In low dimensional systems (d 6 2), the Mermin-Wagner theorem forbids long-

range spin ordering at any non-zero temperature [30], unless magnetic anisotropy is

present. The lower dimension favors larger spin and orbital moments in consequences

enhancing the magnetic anisotropy [9]. The 1D chains can be used for electronical

purposes [31], such as logic gates [32], diodes [33] or transistors [34, 35]. But the main

attention of one-dimensional chains is their intriguing magnetic properties. Symmetry

reduction in chains (e.g. lack of inversion symmetry) and the Heisenberg exchange in-

teraction makes different magnetic collinear or non-collinear order possible. The loss

of centrosymmety combined with SOC allows the appearance of other interactions

such as the antisymmetric (Dzyaloshinskii-Moriya) exchange, forming non-collinear

chiral spin orderings. This type of interactions allows the existence of exotic magnetic

textures, such as, skyrmions in nanowires [36] and spin-orbit torque [37] that make

them applicable for state-of-the-art technological devices based on spintronics [38],

i.e. devices that consider the spin degree-of-freedom [39, 40, 41]. Low dimensional

systems can help reducing the size of devices, however, they have a drawback, the

critical temperature is lower than the 3D materials [9].

Synthesizing one-dimensional systems is challenging for experimentalists. Among

the used techniques are the controlled self-assembly, e.g., in stepped surfaces[42]

[43, 44, 45] and atomic manipulation [46] by STM [47]. The first experimental ev-

idence of magnetic order in atomic chains was reported in 2002 by Gambardella et

al. [48], who found ferromagnetism in monoatomic Co chains grown along the step-

edges of Pt(997) substrate. Experimentally, the geometry can be charactherized at

the atomic scale by means of low-energy electron diffraction [49] and scanning elec-

tron microscopy (STM) [50]. The electronic structure can be studied using scanning

electron spectroscopy (STS) [51], inelastic electron tunneling spectroscopy (IETS) [52]

and angle-resolved photoemission spectroscopy (ARPES) [53]. Magnetic characteri-

zation can be performed by X-ray magnetic circular dichroism (XMCD) and linear
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dichroism (XLD) [54, 55] and also using IETS [56] and spin-polarized STS techniques

[57, 58, 59]. The advanced of the experimental techniques, such as, the STM allows

the characterization of spin of individual atoms, and in some cases the displacement

and transfer of specific atoms [46, 1], this allows to a spin-by-spin control of the mag-

netic chains [60].

Early theoretical studies of spin chains include Heisenberg’s work on ferromagnetic

chains [11], Bethe’s research on antiferromagnetism [61], the study of spin-wave exci-

tations by des Cloizeaux [62, 63] and many others [64, 9]. Later on, the development

of ab initio calculation methods, such as, density functional theory (DFT) allowed

to perform calculations without empirical parameters, but still with an adequate bal-

ance between accuracy and computation cost. The spin-polarized DFT allows us to

calculate the systems total energy for different spin alignments. This allows to obtain

the magnetic ground state configuration and thus, the exchange coupling constant J
between these spin orderings. The magnetic anisotropic energy (MAE) of each system

can be obtained by the difference in the total energy for different magnetization orien-

tations in DFT+SOC calculations. MAE is around ∼ 1− 10 meV in low dimensional

systems [9]. Thus, the total energy convergence needs to be obtained with a large

precision. Different approaches have been considered to ease the evaluation of SOC

effects in the systems. In our work, we use two different methods: one where the

SOC is considered self-consistently and the other is the force theorem [65, 66]. In the

latter one, SOC effects are evaluated in a converged spin-polarized electron density

without any further relaxation; hence, a computationally less demanding calculation

is obtained compared to the former one. In the self-consistent calculation, a more

accurate effec of SOC is obtained as the electron density is allowed to relax, though,

increasing the computational cost.

DFT is based on a one-electron picture, hence, it can not always describe the prop-

erties of strongly correlated materials. In these materials, the electron-electron needs

to be considered in the calculation. This problem becomes evident in 3d transition

metal atoms, where the d shell is strongly localized in low-dimensional systems. This

limitation may result in the erroneous prediction of a metallic system instead of insu-

lating [67]. To improve the description of the localized electrons, different corrections

have been implemented into DFT, e.g. self-interaction correction and the DFT+U

correction. In our work, we use the latter method where a Hubbard-like term[68] is
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included in the Hamiltonian to describe the interaction between the localized elec-

trons. Another limitation when DFT is used to compute the ground-state properties

is that we rely on that the converged state is the ground state. If the energy mini-

mization procedure was exact, the resulting state would always be the ground state.

However, the numerical procedure is not perfect, it can find configurations with suf-

ficient energetic barrier that the energy minimization can not surpass hindering the

true ground state [69, 70].

The structure of the Thesis is as follows:

In Chapter 2, we describe the theoretical framework used in our work. We begin

with a basic introduction to the basic equations in Solid State Physics. Next, the DFT

background is described along with the DFT+U correction scheme and the occupancy

matrix control method used to find metastable configurations. Next, we present the

two methods used to evaluate the MAE: the self-consistent method and the force the-

orem approach. Finally, we describe the constrained random phase approximation

(cRPA), a method to calculate the U (intraorbital) and J (interorbital) interaction

parameters needed in the DFT+U calculations, together a brief introduction to max-

imally localized Wannier functions (MLWF) is given.

In Chapter 3 and 4, we present the results for our research on TMO chains, XO2

where X =Ni, Co, Fe and Mn [23, 71]. In Chapter 3, we show the obtained results

for the magnetic properties of free-standing TMO chains. We calculate the ground

state dependence on the U , along with the Heisenberg coupling and MAE.

Chapter 4 explores the screened Coulomb interaction in the d shell of the X

atom in the TMO chains. Using cRPA, we compute the U and J for the isolated and

supported chains on an Ir(100) substrate. We study the variation of U and J with

the X atom d-orbital configuration for both cases.

Chapter 5 is devoted to the analysis of the metal-organic chains formed by Co

and Cr atoms coordinated with 2,5-diamino-1,4-benzoquinonediimine (QDI) ligands

[72]. In particulat, we analyze the existence of metastable states in the TM atoms,

and their effects in the magnetic features. Our theoretical results on the electronic

structure and the magnetic properties help to interpret the obtained experimental

measurements of XMCD and XLD made by the group of Prof. Pavel Jelinek from the

Institute of Physics in Prague.

Finally, in Chapter 6, we present the main conclusions of the investigation per-

formed during the Thesis.





Chapter 2

Theoretical methods

That is brand-new information!

Phoebe Buffay, Friends

In Condensed Matter Physics, the framework to study materials at the atomic

scale is quantum mechanics. In this chapter, we introduce the theoretical background

of the Thesis.

2.1 The Many-Body problem in Condensed

Matter Physics

An atomistic model of matter starts by Ni nuclei and Ne electrons that interact via

Coulomb’s law and obey the time-dependent many-body Schrödinger equation:

ĤΦ({r}, {R}, t) = i
∂Φ({r}, {R}, t)

∂t
, (2.1)

where Ĥ is the Hamiltonian of the system, Φ({r}, {R}, t) is the many-body wave-

function, {R} = (R1,R1, ..,RN) are the spatial coordinates of nuclei and {r} =

(r1, r1, .., rN) are the electronic spatial coordinates. t is the time. In the case of the

stationary problem, we can separate the spatial degrees of freedom from the time:
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ĤΨ({r}, {R}) = EΨ({r}, {R}) , (2.2)

being E the total energy of the stationary system and Ψ the time-independent wave

function. The Hamiltonian can be split into the kinetic energy of the ions and electrons

and the interaction terms between them. For a system under no external fields, the

non-relativistic Hamiltonian in atomic units1 can be written:

Ĥ = T̂i + T̂e + V̂ii + V̂ie + V̂ee =

Ni∑
i

P2
i

2Mi

+
Ne∑
n

p2
n

2
+

1

2

Ni∑
i 6=j

ZiZj
|Ri −Rj|

−
Ni∑
i

Ne∑
n

Zi
|Ri − rn|

+
1

2

Ne∑
n6=n′

1

|rn′ − rn|
,

(2.3)

where T̂i and T̂e are the kinetic energy operators of the ions and electrons, respectively,

and V̂ii, V̂ie and V̂ee the Coulomb interaction terms between the ions, ion-electron and

electrons, respectively. The subindices i and j run over the ion nuclei and n and n′

over the electrons. Pi and pn are ionic and electronic momentum operators, respec-

tively. Mi is the nuclear mass and Zi the nucleus charge.

Solving Eq. (2.2) allows us to obtain the exact wavefunction Ψ and, therefore,

all information regarding the system. However, we face an equation system with

3 (Ni+Ne) spatial degrees of freedom and Coulomb interactions make it impossible to

separate the many-body problem into a single-particle one. Furthermore, if the goal

is to obtain solutions for macroscopic behavior, we deal with an enormous number,

∼ 6 × 1023, of atoms. Therefore, an exact solution is unfeasible and approximations

are required from the beginning.

The Born-Oppenheimer approximation

In the Born and Oppenheimer approximation, the full many-body wavefunction is

split into two different functions [73] as follows:

Ψ({r}, {R}) =
∑
n

χn({R})ψn({r}; {R}) , (2.4)

1me = e = h̄ = 1.
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where χn and ψn stand for the set of nuclei and electron wavefunctions, and n runs

through the nuclei states. The Born-Oppenheimer approximation is based on the huge

difference of masses between the electrons and nuclei (for instance, in the Hydrogen

atom the mass ratio between is 1/1836). Hence, in the electron framework, nuclei

move slow enough2 for the electron wavefunction to adapt instantaneously to their

movement. Inserting Eq. (2.4) into Eq. (2.2) we build a Hamiltonian Ĥe that depends

only on the electronic degrees of freedom and where the ion spatial coordinates {R}
enter as parameters:

Ĥeψn({r}; {R}) = En({R})ψn({r}; {R}) , (2.5)

Ĥe = T̂e + V̂ie + V̂ee + EII , (2.6)

where the interaction between nuclei EII is a constant. The ψn({r}; {R}) andEn({R})
in Eq. (2.5) are obtained for a given nuclear configuration. Within the Born-Oppenheimer

approximation, the system with 3 (Ni+Ne) degrees of freedom is reduced to 3Ne elec-

tronic variables.

Hartree-Fock approximation

Despite the Born-Oppenheimer approximation, we still face the complexity of the

many-body character of the electronic wavefunction and the electron-electron interac-

tion. One of the proposed approaches to deal with this problem is the Hartree-Fock

(HF) method [75]. The HF method is a mean-field theory where the many-body wave-

function is approximated to an independent electron problem. In order to construct

the approximated wavefunction3 we use the Slater determinant[76]:

ψ(r1, r2, . . . , rNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) · · · φ1(rNe)

φ2(r1) φ2(r2) · · · φ2(rNe)
...

...
. . .

...

φNe(r1) φNe(r2) · · · φNe(rNe)

∣∣∣∣∣∣∣∣∣ , (2.7)

where φν(r¯) are the single-particle wavefunctions. The Slater determinant builds

an antisymmetric wavefunction suitable for fermionic systems that fulfills the Pauli

2Sommerfeld’s theory of conduction predicts ∼ 10 Å/fs for electrons and classical harmonic theory
predicts ∼ 10−2 Å/fs for ions [74].

3For simplicity sake, we remove the implicit dependence on the nuclei positions {R}.
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exclusion principle. The expectation value of the Hamiltonian Eq. (2.6) using the

wavefunction of Eq. (2.7) is

〈Ĥe〉 =
∑
n

∫
drφ∗n(r)

[
−1

2
∇2 + Vext

]
φn(r)

+
1

2

∑
nn′

∫
drdr′

|φn(r)|2|φn′(r′)|2

|r− r′|

− 1

2

∑
nn′

∫
drdr′φ∗n(r)φ∗n′(r

′)
1

|r− r′|
φn′(r)φn(r′) .

(2.8)

The first term contains the kinetic energy of each particle and the external po-

tential acting on the electrons. The second and third terms are two-body Coulomb

interactions, direct and exchange terms between two electrons, the latter one arising

because of the Pauli exclusion principle.

In the HF method, we use the variational principle to find the approximated ground

state energy of the system. Using Lagrange multipliers, the energy is minimized while

maintaining the constraint of orthogonality between one-electron wavefunctions:

F [φn] = 〈Ĥe〉 −
∑
n

εn

[∫
dr|φn(r)|2−1

]
(2.9)

where F is the functional to be minimized, the first term is given by Eq. (2.8) and

the second term is the set of orthogonality constraints, where εn are the Lagrange

multipliers. But, even if the electrons were uncorrelated, we still face a set of non-

linear equations with 3Ne variables, which makes the problem too computationally

demanding.

2.2 Density Functional Theory

In Density Functional Theory (DFT), the center of interest is the electron density

instead of the wavefunction. Hohenberg and Kohn stated the two principal theorems

that established DFT foundations [77]:

Theorem 2.1 The external potential Vext(r) is determined by a unique functional,

aside from a constant, of the ground state electron density n0(r).
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Theorem 2.2 There exists a functional of the total energy dependent on the electron

density, E [n], for any external potential. The exact ground state density gives the

global minimum of the energy functional which is the ground state energy.

These two theorems set the relationship between the energy and the density. How-

ever, the kinetic energy can not be directly rewritten in terms of the density and the

wavefunctions within a many-body problem are still intractable.

Kohn and Sham proposed an approach that, instead of studying an interacting

many-body problem, replaced it with a non-interacting one. Still, the non-interacting

picture upholds the same exact ground state density of the many-body system [78]. All

the information related to the many-body character of the particles is incorporated in

an exchange-correlation functional term. Within the Kohn-Sham (KS) ansatz the elec-

tron density is obtained from non-interacting single-particle wavefunctions, ψKSi (r):

ρ(r) =
Ne∑
i

|ψKSi (r)|2 . (2.10)

The electronic energy functional can be decomposed as:

EKS[ρ] = TKS[ρ] + Eext[ρ] + EH [ρ] + Exc[ρ] , (2.11)

where the kinetic energy expressed in terms of the KS orbitals is:

TKS[ρ] = −1

2

Ne∑
i

∫ [
ψKSi (r)

]∗∇2ψKSi (r); . (2.12)

In the kinetic functional, the dependence on the density is implicit, it comes from the

KS wavefunctions. Note that the TKS[n] does not account for the correlation compo-

nent of the kinetic energy as we use non-interacting KS orbitals to build the functional.

The energy due to the external potential can be expressed as:

Eext[ρ] =

∫
dr ρ(r)Vext , (2.13)

and the Hartree energy, which corresponds to the electron-electron interaction is:

EH [ρ] =
1

2

∫
drdr′

ρ(r′)ρ(r)

|r− r′|
. (2.14)
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The information regarding the many-body features is in the exchange-correlation en-

ergy. In the KS approach, the exchange-correlation energy can be approximated by a

local functional of the density as:

Exc[ρ] =

∫
drρ(r)εxc([ρ], r) , (2.15)

where εxc([ρ], r) is the exchange-correlation energy per electron. The solutions of

the total energy functional are obtained by minimizing the functional 2.11 with the

Lagrange multipliers method:

δ

[
EKS − µ

(∫
drρ(r)−N

)]
= 0 (2.16)

where the constraint is set to be a fixed number N , of electrons with the chemical

potential µ acting as the multiplier.

In the KS picture the Hamiltonian is separable into single-particle KS orbitals as

follows:

[
−1

2
∇2 + V KS(r)

]
ψKSi (r) = εiψ

KS
i (r) , (2.17)

where V KS is the effective potential of the system:

V KS = Vext +

∫
dr′

ρ(r′)

|r− r′|
+
δExc

δρ(r)
. (2.18)

Eq. (2.10) and Eq. (2.17) constitute the KS equations. The KS equations are

solved iteratively following the procedure shown in Fig. 2.1. From an initial guess of

the density, ρ(r), we get the potential of Eq. (2.18). Introducing the obtained V KS

potential into the Kohn-Sham eigenvalue problem, Eq. (2.17), we obtain a set of KS

orbitals. We build a new density from the latter and repeat the process until we reach

a certain convergence threshold.

If the exact form of the exchange-correlation functional εxc were known, we would

be able to attain an exact description of the electronical properties of the systems.

Instead, εxc is obtained by means of approximations. In the following section, we

present the ones used in our calculations.
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ρ(r)

V KSψKS

E
q.

(2.18)

Eq. (2.17)

E
q.

(2
.1

0)

Figure 2.1: Simplified scheme of the self-consistent cycle to solve the Kohn-Sham
equations.

Exchange and correlation functional

Kohn and Sham proposed one of the most successful approaches: the local density

approximation (LDA) [78]. In LDA, the exchange-correlation energy is considered a

local function of the density in the limit of the uniform electron gas (UEG).

ELDA
xc =

∫
drρ(r)εUEGxc (ρ(r)). (2.19)

In LDA the functional εUEG can be separated into the exchange and correlation

terms [79]:

εUEGxc = εUEGx + εUEGc (2.20)

where the exchange term εUEGx is known for a UEG system, whereas no analytic form

is known for the correlation energy εUEGc . Numerical methods, such as the Monte

Carlo method, are used to obtain approximated values of the correlation energy. LDA

is a fine approximation unless the system presents high inhomogeneities. Well-known

systematic inaccuracies are present in the LDA approximation, the most remarkable

one is the overestimation of the binding energies and, in consequence, the underesti-

mation of the bond-lengths [80].

The next step to improve the LDA is the construction of a semi-local approxima-

tion. In the generalized gradient approximation (GGA) a gradient of the density is

included to take into account the spatial variations of the density.

EGGA
xc =

∫
drρ(r)ε[ρ(r), |∇ρ(r)|] . (2.21)
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In the GGA functional, Exc has the general form:

EGGA
xc =

∫
drρ(r)εUEG[n(r)]Fxc(ρ(r), |∇ρ(r)|) , (2.22)

where Fxc(ρ(r), |∇ρ(r)|) is the so-called enhancement function, which holds the infor-

mation about the non-locality of the density. In our calculations, we have used the

parametrization given by Perdew, Burke and Ernzerhof (PBE) [81].

Another way to improve the exchange-correlation functional is to combine the

Hartree-Fock (HF) exchange and the LDA or GGA exchange-correlation functionals.

The hybrid functionals consider a mixing of both [82]:

EHybrid
xc = (1− a)EHF

xc + aELDA/GGA
xc , (2.23)

where the parameter a is a mixing factor 0 < a < 1. In our calculations, we use the

HSE06[83] formulation. Both functionals set a = 3/4. The HSE06 functional divides

the exchange term into short and long range part, where only the short-range term is

mixed with the HF.

Spin in DFT

Hohenberg and Kohn developed DFT theory for spinless systems and von Barth and

Hedin extended it to include spin-polarized systems [84]. Spin-polarized DFT uses

spinor wavefunctions to build a density matrix. The density matrix, ˆrho, can be

separated into a scalar density ρ and vectorial m density:

ρ̂(r) = ψα∗1ψβ + ψα∗σαβψβ =
1

2

(
ρ(r) +mz(r) mx(r)− imy(r)

mx(r) + imy(r) ρ(r)−mz(r)

)
(2.24)

where ψα is the wavefunction with spin α, β =↑, ↓, 1 is the 2 × 2 unitary matrix

and σ = (σx, σy, σz) are the Pauli matrices. The density matrix elements are given

by: ραβ = ψα∗ψβ. In the case of no external magnetic field coupling to the spin the

resulting Schrödinger-like equation is:

[(
−1

2
∇2 +

∑
α

∫
dr′

ραα(r′)

|r− r′|

)
1 + V αβ

ext (r) +
δExc[ρ

αβ(r)]

δραβ(r)

](
ψ↑

ψ↓

)
= εi

(
ψ↑

ψ↓

)
(2.25)
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Analogously to the density, the exchange-correlation functional is spin dependent.

Eq. (2.25) is the general case that describes noncollinear spin textures. Considering

that all atoms align their spins in the z-axis direction, such as in the collinear case,

e.g. antiferromagnetic, ferromagnetic or ferrimagnetic, the potential matrix becomes

diagonal, resulting in two decoupled equations [85]:

[
−1

2
∇2 +

∫
dr′

ρ↑↑(r′)

|r− r′|
+ V ↑↑ext + v↑↑xc

]
ψ↑ =ε↑iψ

↑ (2.26)[
−1

2
∇2 +

∫
dr′

ρ↓↓(r′)

|r− r′|
+ V ↓↓ext + v↓↓xc

]
ψ↓ =ε↓iψ

↓ (2.27)

where v↑↑,↓↓xc =
δE[ρ↑↑,↓↓]

δρ↑↑,↓↓
.

DFT in strongly correlated systems: DFT+U method

LDA and GGA functionals consider an orbital-independent potential. Both functional

have been successful to obtain materials properties, but they can fail when strong elec-

tron interactions are present at the systems. The latter systems are usually compounds

with transition metal or rare-earth atoms with partially filled d or f orbitals [86]. If

the strong correlations are not taken into account, LDA- and GGA-based calculations

can miss their localized character, resulting sometimes in an itinerant electron be-

havior and a metallic state instead of an insulating one [67]. This latter problem is

evident in Mott insulators[87], where non-interacting band theory predicts a metallic

state, but experiments show an insulating behavior, e.g. V2O3, CoO...[88]. Several

features depend strongly on the value of the interaction between the electrons,such

as, magnetic moment, magnetic exchange coupling etc. [89, 90, 10].

In order to obtain the correct ground-state properties in strongly correlated sys-

tems, we need to take into account the Coulomb intratomic interactions between the

localized states. A way to do so is to combine DFT and the Hubbard Hamiltonian,

which constitutes the so-called DFT+U scheme. The Hamiltonian of the system is

separated into two subsets: one where the orbital-independent one-electron potential

is maintained and another one where we include a Hubbard-like term [68]. With the
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latter term we aim to describe the screened Coulomb interaction4 [91, 92] between

electrons in the correlated orbitals (d orbital in this work). The DFT+U energy

functional[93] is defined as follows:

EDFT+U [ρσ, nσl ] = EDFT[ρσ] + Eee[nσl ]− Edc[nσl ] , (2.28)

where EDFT[ρσ] is the functional with the LDA or GGA exchange-correlation. Con-

sidering collinear spins, ρσ is the spin density with spin σ =↑, ↓. The second term is

the multiorbital Hubbard-like functional dependent on the orbital occupation matrix

nσl , where l is the orbital shell number, and the last term is the double counting (DC)

term. In Eq. (2.28) the DC term is introduced to eliminate the electron-electron in-

teraction of the localized states that is already taken into account in EDFT . We will

give details about the two different forms of the Hubbard term that have been used

in the manuscript. The first one is proposed in Ref. [94] 5:

Eee[n] =
1

2

∑
σσ′

m1,m2
m3,m4

n̂σm1m2
( 〈m1m3|Vee|m2m4〉 − 〈m1m3|Vee|m4m2〉 δσσ′) n̂σ

′

m3m4
(2.29)

where n̂σm1m2
are the matrix elements of the occupation matrix, mi are the orbitals of

the shell l, running for mi = −l, . . . , l, and V ee is the screened Coulomb interaction.

Different flavours to account for DC term exist, such as the around mean-field approx-

imation [91] (AMF) and the fully localized limit [93] (FLL). Results may be subject

to the chosen DC term. In the FLL, the states that are more than half-occupied are

lowered in energy while in the AMF case the states with an occupation higher than

the average are lowered in in energy[95, 96]. In our calculations, we use the DFT+U

within the fully localized limit DC term [97]:

Edc[n] =
U

2
N(N − 1)− J

2

∑
σ

Nσ (Nσ − 1) , (2.30)

where Nσ = Tr(n̂σ) is the trace of the n̂σ matrix, and N = N↑ + N↓. The U

and J parameters are the screened electron interaction and the exchange parameters,

obtained from the screened Coulomb interaction as follows:

4From now on, when we write screening, we refer to the screening of the localized states, e.g. d
and f orbitals. In case we refer to the screening of the full system, W , we will write fully screened.

5We adopt Dirac’s notation to account for the Coulomb matrix elements.
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U =
1

2l + 1

∑
m1m3

〈m1,m3|V ee|m1,m3〉 (2.31)

J =U − 1

2l(2l + 1)

∑
m1m3

(〈m1,m3|V ee|m1,m3〉 − 〈m1,m3|V ee|m3,m1〉) . (2.32)

The second one is a simplified version of Eq. (2.29), derived by Dudarev et al. [98]

considering the Hamiltonian given in [92]:

Eee[n] =
U

2

∑
mm′σ

nσmn
−σ
m′ +

U − J
2

∑
m 6=m′σ

nσmn
σ
m′ . (2.33)

where nm is the occupation number of the m orbital, i.e. nm = n̂mm.

In order to take into account the double counting term, we evaluate the previous

equation in the limit of integer values of the occupation matrix and subtract it from

the DFT energy. The resulting DFT+U functional in Dudarev’s approach is expressed

as:

EDFT+U
Dudarev[ρσ, n] = EDFT[ρσ] +

U − J
2

∑
σ

(∑
m1

n̂σm1m1
−
∑
m1m2

n̂σm1m2
n̂σm2m1

)
. (2.34)

where, the second term, proportional to U −J , acts as a penalty function on the DFT

energy, driving the system towards an integer on-site occupancy matrix, nσmm.

In the DFT+U , the U correction scheme is only applied to states with the orbital

character of the localized orbital and the total energy will depend on U and J . This

means that total energies resulting from two calculations that use different U and J

values cannot be compared.

Bloch’s theorem

Perfect crystals are formed by repeated units with lattice vectors R1, R2 and R3.

Therefore, the effective potential Veff acting on the electrons has to be R-periodic.

Veff (r + R) = Veff (r) , (2.35)
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Bloch’s theorem [99] states that the eigenfunctions, ψ, of a Hamiltonian with a

periodic potential like, Eq. (2.35), can be written as a product of a plane-wave and a

function u(r) with the periodicity of the lattice:

ψnk(r) = eik·runk(r) (2.36)

unk(r) = unk(r + R) (2.37)

where k is a wave vector in the 1st Brillouin zone of the reciprocal lattice and n is a

band index resulting from different solutions for a given k. Because of Eq. (2.36), we

can expand the wavefunctions using a plane-wave basis:

ψnk(r) =
1√
V

∑
G

cnk(G)ei(k+G)·r (2.38)

where V is the volume of the cell, cnk(G) the coefficients and G are reciprocal lattice

vectors.

Projector Augmented Wave

In order to solve the KS equations numerically, different methods have been imple-

mented in software codes. In our calculations, we use two different codes: VASP

(Vienna Ab-Initio Software Package) [100] and FLEUR[101]. Both codes calculate

the electronic structure and ground-state properties of the systems. In this section,

we will describe briefly the Projector Augmented Wave (PAW) method [102] used in

VASP. For a detailed description the reader is referred to ref. [103].

The PAW method generalizes the pseudopotentials and linearized augmented plane-

wave techniques. The valence electrons are responsible for most physical and chemical

properties and therefore enter into the KS equations and construction of the density.

The valence electrons wavefunctions show a rapid oscillatory behavior near the nuclei,

making it necessary to use a large number of plane-waves to describe them correctly.

To overcome this problem, the potential acting on the core electrons is replaced by

a pseudopotential inside a spherical region, where valence electrons are described by

smoothed pseudowavefunctions. In the PAW method, the transformation from the

pseudowavefunction to the true one-electron wavefunction ψ̃nk is done by:

ψnk = (1 + L) ψ̃nk (2.39)
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where L is the linear transformation function acting inside the PAW sphere, which

maps the pseudowavefunction ψ̃nk to the true wavefunction. Inside this region the

constructed pseudowavefunction is a mathematical tool that does not resemble the

true all-electron wavefunction. Outside, the wavefunction ψ̃nk matches the true all-

electron wavefunctions. In VASP, the ψ̃nk is expanded in a plane-wave basis.

Full Potential Linearized Augmented Plane Wave

The FLEUR code is an implementation of the full-potential linearized augmented

plane wave (FLAPW) method [104]. We give here the basic details of FLAPW. For

a complete description we refer to the review of S. Blügel and G. Bihlmayer Ref. [105].

In the LAPW method, the space is divided into non-overlapping muffin-tin (MT)

spheres centered at each atom and the interstitial region (IR) between them. The core

electrons are localized inside the MT region, while the valence electrons spread over

the MT and IR. In the MT region, the wavefunctions are described by the spherical

harmonics times a radial function, while in the IR a plane-wave basis is used. The

radial function is the solution of the radial Schrödinger equation. To avoid the depen-

dence on the energy E parameter, in LAPW, a linear approximation in E of the radial

function is made that depends on an orbital (l) dependent parameter El. Therefore,

the valence electrons wavefunctions are:

ψkG(r) =


1√
V
ei(k+G)·r , if r ∈ IR∑

lm

(
almkGu(r;EL) + blmkGu̇(r;EL)

)
Ylm(r̂) , if r ∈ MT

(2.40)

where u(r, El) is the radial function and u̇(r, El) the first derivative with respect to

the energy evaluated at the energy parameter El. Ylm(r̂) is the spherical harmonic

for angular momentum quantum number l and magnetic quantum number m. The

coefficients almkG and blmkG are obtained from the matching conditions of u and u̇ at the

boundary of each MT sphere.

The FLAPW approach is the combination of the potential without any shape

approximations i.e. keeping the full potential and the linearized functions of the

LAPW basis.
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Occupancy Matrix Control

The DFT+U functionals introduce an explicit orbital occupancy dependence, since

partial occupations are penalized in favor of integer ones (see Eq. (2.29) and Eq. (2.34)).

The Hubbard correction also introduces the dependence at the DC term, which is also

occupation dependent and, moreover, is not uniquely defined, so that results may

depend on the chosen formulation. In practice, this makes the KS equations self-

consistency biased by the initial orbital occupancy matrix. Different initial matrix n̂σ

guesses may lead to metastable states instead of the true ground state configuration,

as schematically shown in Fig. 2.2.

Figure 2.2: Representation of an energy curve vs the density. The local minimum is
a metastable state of the system while the global minimum is the true ground state.

To search for energetically accessible metastable configurations, in this work we

have used the occupancy matrix control (OMC) method developed by Allen et al. [70]

and implemented in VASP via Dudarev’s DFT+U correction. In an initialization run,

the occupancy matrix provided by the user is kept fixed while the wavefunctions and

charge density are allowed to relax. The resulting total energy of this calculation is

meaningless as we have obtained it imposing a constraint. With the resulting charge

density and wavefunctions, we run again the calculation without applying OMC. To

allow further relaxation of the occupations. States within a low energetic barrier

landscape can relax to a more stable configuration, but those configurations located

in a sufficient energetic barrier will remain as metastable configurations. From the

resulting energies, the lowest one might correspond to the actual ground state.
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2.3 Spin-Orbit Coupling

In this section, we will discuss the spin-orbit coupling (SOC) effect in the electrons of

solids. Considering a non-relativistic limit of Dirac’s equation, the Schrödinger Hamil-

tonian along with other terms can be obtained. The latter terms are the relativistic

corrections to the Schrödinger equation. One of those terms is the SOC. The SOC

term is can be expressed as:

σ · (−∇V (r)× p) = −1

r

dV (r)

dr
σ · (r× p) = ξ(r)σ · L , (2.41)

where σ are the Pauli spin matrices, V (r) the potential, L the orbital moment and

ξ(r) = −1
r
dV (r)
dr

. In Eq. (2.41), a spherically symmetric potential SOC has been

assumed, as SOC is an atomic property. The function ξ(r) increases for heavy atoms

as the Coulomb potential is proportional to Z, nuclear number. Integrating ξ(r)

over the radial function for each orbital and rewriting Eq. (2.41) in terms of the spin

S = σ/2, we obtain the well-known SOC Hamiltonian:

HSOC = λS · L , (2.42)

where λ = 〈ξ〉 /2 is the radially integrated spin-orbit constant. Note that the constant

differs for different orbital shells of the atom. As a consequence of this relativistic

term, the are shifts in the atomic energetic states. In solids, the inclusion of SOC can

split energy bands with degeneracies if their orbital symmetry allows for it [106, 107].

In DFT, to account for relativistic effects instead of solving Dirac’s equation, which

would require a 4-component spinor, we consider the Schrödiger equation that includes

the relativistic terms. This Hamiltonian is known as the Pauli equation (without

an external magnetic field). In this method, the needed spinor is reduced to a 2-

component one [85]:

HPauli = HNR +HSR +HSOC (2.43)

where the HNR is the non-relativistic term, as in the Schodinger equation, and HSR

are the scalar-relativistic terms which are the relativistic corrections without the spin

term6.

6The mass-velocity and Darwin terms.
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In magnetic systems, the SOC is the origin of several effects, such as the anti-

symmetric magnetic exchange (the so-called Dzyaloshinskii-Moriya interaction), the

anomalous Hall effect and the magnetocrystalline anisotropy. This Thesis focuses on

the latter effect. The SOC introduces a spin-orientation dependence in the total en-

ergy of the system and, hence, the existence of a preferred magnetization direction

with respect to the lattice. This energy difference between directions is the magne-

tocrystalline anisotropy energy (MAE).

EMAE

or

Spin direction

E
n

er
g

y
 

Figure 2.3: Scheme of the total energy dependence on the spin orientation and the
MAE.

The MAE is usually small for fcc and hcp bulk systems, around 10 µeV or less [9],

because the high symmetry reduces it to a λ4 effect. For other bulk structures [108]

and lower-dimensional systems symmetries are reduced and higher values of the MAE

are possible (of the order of λ2). In order to evaluate such low values of the MAE a

fine k-point mesh is needed, as well as a precise Fermi level determination.

To calculate the MAE, first, a scalar-relativistic self-consistent ground state is

obtained [109]. In the following step, a fully-relativistic self-consistent DFT calculation

is carried out, SOC effects. The MAE is obtained by substrating the two different

total energies for two different spin orientations, a, b as seen in Fig. 2.3,

MAESCF = Ea
TOT − Eb

TOT . (2.44)

As commented before, calculating the MAE needs a fine treatment of the SOC

and a demanding convergence. Different approximations have been used to overcome

this, such as those based on second-order perturbation theory [110, 111, 112, 54] and
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the force theorem (FT) method [65, 113]. In the following section, we describe the

FT technique used in our work.

The non-self-consistent approach of the MAE: the force

theorem

In this method, the SOC effect is added non-self-consistently to the already converged

scalar-relativistic density. The FT approach can be considered because the SOC term

is small compared to the other terms of the KS equation, hence, its effect on the density

of the system can be treated as a perturbation. The FT approximation is correct up

to the ∆ρ′ density term, where ρ′ is the change on the density when SOC term in

included. Terms of (∆ρ′)2 order have a minor effect due to cancellations between

different orientations [113]. The cancellation of different terms allow to obtain the

MAE as the difference of the band energies for two magnetization orientations.

MAEFT = Ea
band − Eb

band =
∑
nk

[
fa(εank)εank − fb(εbnk)εbnk

]
(2.45)

where εnk is the KS eigenenergy of band n at point k and a,b the directions of the

spins. fa,b accounts for the Fermi-Dirac distribution for each spin direction, included

separately because the Fermi level varies with the magnetization directions. With the

FT approach the computational cost of calculating the MAE is considerably reduced.

SOC term can split band degeneracies depending on the spin orientation. In

Fig. 2.4, we show schematically how band splittings due to SOC affect the MAE. In

Fig. 2.4 (a) and (b) the bands are fully occupied. The splitting (a) is symmetric, thus,

there is no net effect in the MAE. The splitting (b) is asymmetric, favoring the easy-

axis to be the z-axis. In Fig. 2.4 (c) and (d) the Fermi energy lies at the degeneracy

point. In (c) one part becomes fully occupied while the other is unoccupied giving

the largest contribution to MAE, in this case to the z-axis. The (d) splitting is not

affected as the occupation is not modified.

Making use of the FT method, we can define a MAE density in the reciprocal

space to understand the origin of the MAE in terms of the electronic structure details

as described in Fig. 2.4:

MAE density (ε,k) =
∑
n

εakng(εakn − ε)−
∑
n′

εbkn′g(εbkn − ε) (2.46)
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Spin direction
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Figure 2.4: Scheme of band splittings induced by SOC and their effect on the MAE.

where f(εakn − ε) is a Gaussian or a Lorentzian centred at εa,bkn of width σ, this allows

us to stimate the MAE contribution of states near energy ε at point k. With this

equation, we can identify the band splittings that mainly contribute to the MAE

[114].

2.4 Constrained Random Phase Approximation

In Equation 2.2, we introduced the theoretical method to add the screened Coulomb

interaction as a Hubbard-like term into the ab initio calculation, where U and J are

parameters. These parameters are often unknown. When previous experimental work

exists, the values can be chosen to match the experimental results. Several methods

have been developed to determine the value of U and J for different systems from

first principles. In the constrained local density approximation (cLDA) [115, 116], the

Hubbard-U is calculated from the second derivative of the total energy with respect to

the occupation number of the localized states. The cLDA does not provide the matrix

elements of the screened Coulomb matrix elements, neither the frequency dependence

of the screened Coulomb interaction (note that the response function of materials

under time-dependent external fields is frequency-dependent). It is known that the

cLDA overestimates the Hubbard-U , compared to other methods [117]. Other tech-

niques based on Slater integrals [67] and linear methods that compute the Hubbard-U

parameter using response functions calculated by means of constrained DFT [118]
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have been derived.

The method used in this Thesis is the constrained random phase approximation

(cRPA) [117, 119, 120, 121]. the starting point is the fundamental equation of the

screened Coulomb interaction:

W (r, r′) =

∫
dr′′V (r, r′′)ε−1(r′, r′′) , (2.47)

where V is the bare interaction and ε the dielectric function. Within the RPA ap-

proximation [122] the dielectric function can be expressed as7

ε(r, r′;ω) = δ(r− r′)−
∫
dr′′V (r, r′′)P (r′′, r′;ω) , (2.48)

where P is the polarization. Note that the polarization induces a frequency depen-

dence into the dielectric function. In the RPA linear response theory, the interacting

polarization is approximated by the non-interacting one, which can be written as :

P (r, r′;ω) =
∑
σ

occ∑
nk

unocc∑
n′q

ψσ
∗

nk(r)ψσn′k+q(r′)ψσ
∗

n′k+q(r)ψσnk(r′) (2.49)(
1

ω + εσnk − εσn′k+q + i0+
− 1

ω − εσnk + εσn′k+q − i0+

)
,

where ψσnk and εσnk are the KS eigenfunctions and eigenvalues of the system, respec-

tively, the sum for nk states runs over the occupied states and that for n′k + q over

the unoccupied states, and σ is the spin.

In the cRPA, we split the Hilbert space into two separate sets, one composed of

the localized states (l) and the other of the rest of the states (r). This results in the

separation of the full polarization into transitions inside the localized subspace, Pl and

the other transitions, Pr:

P = Pl + Pr (2.50)

The Pr includes also transitions that end or start in the l subspace 8.In Figure 2.5, the

division of the space is illustrated for the SrVO3 case. In SrVO3, we want to determine

7For the sake of simplicity we use a matrix notation. Consider a KS orbital basis of any DFT
solver. Not sure of this, [123] mentions only matrix (between eq.31-32)

8These constributions are suppressed in the cLDA [119].



28 Chapter 2. Theoretical methods

the Hubbard-U for the t2g subspace -the l subset- formed by the orbitals dxz, dyz and

dxy.
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Figure 2.5: Left: SrVO3 bandstructure with the cRPA space division. The red bands
comprise the t2g localized states (l-subspace). The black bands are the r-subspace.
The transitions between the states are also shown. Right: Band structure interpolation
of the localized subspace spanned by maximally localized Wannier functions.

Inserting Eq. (2.50) into Eq. (2.48) and combining them with Eq. (2.47), the

Coulomb interaction can be rearranged in the following manner [120]:

W = [1− V (Pl + Pr)]
−1 V =

[
1− (1− V Pr)−1 V Pl

]−1
(1− V Pr)−1 (2.51)

=(1−WrPl)
−1Wr ,

where we have defined an interaction, Wr, that excludes the l − l screening channels:

Wr = (1− V Pr)−1 V . (2.52)

So, Wr is an effective interaction that is screened further when adding the transitions

between the localized orbitals, resulting in the fully screened interaction.
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Therefore, the Wr can be interpreted as an effective interaction that acts on the

localized subset, i.e., it is equivalent to the Hubbard-U parameter:

U(r, r′;ω) = Wr(r, r
′;ω) =

∫
dr′′ [δ (r− r′)− V (r, r′′)Pr(r

′, r′′;ω)]
−1
V (r, r′′) .

(2.53)

The latter equation can be solved by any KS system solver. As the Coulomb

screened is localized in the atom, to obtain the matrix elements centered in the atom

R, Un1n2n3n4;R(ω), is natural to choose a localized basis set (the matrix elements are

basis dependent), where ni are the orbitals running through nl = −l, . . . , l. The calcu-

lation of Un1n2n3n4;R(ω) is straightforward when the strongly correlated states and the

other bands are separated. As an example, in Figure 2.5 the bands with t2g orbital

character are isolated from the other bands. However, when localized orbitals are hy-

bridized with other orbitals separating the polarization into two terms is a challenging

problem.

Different methods have been proposed to tackle the problem of entangled bands.

These methods use maximally localized Wannier functions (MLWFs). The MLWFs

built real-space localized basis from unitary transformations on the Bloch states. The

use of the MLWFs was introduced by Miyake et al. in Ref. [124]. Still this technique

is not capable of providing a well-defined polarization for each set, as hybridization

between the l subspace and r subspace is switched off, hence, electronic structure can

be modified in the case of strong hybridization.

In this work, we have used the method derived by Şaşıoğlu et al.[125], so-called pro-

jection method, which is a parameter-free procedure. The MLWFs span the localized

orbitals as:

wσmR(r) =
1

Nk

∫
dke−ik·R

∑
kn

T σmnkψ
σ
nk(r) , (2.54)

where wσmR are the MLWF centered at the atomic position R, Nk the number of k-

points and T σmnk is a unitary matrix. The MLWFs construction will be addressed in

the next section.

It can happen that in order to built adequate MLWFs of the localized space states

from the r space need to be considered. In order to obtain adequate Pr and Pl,

transitions that take place between the l− l states need to be single out from the total



30 Chapter 2. Theoretical methods

polarization. The total probability for an electron to be in the localized set before

and after the transition ψσnk → ψσnk+q is pσknp
σ
k+qn′ where:

pσkn =
∑
m

|T σmnk|2 . (2.55)

Therefore, for entangled bands we have pσknp
σ
k+qn′ < 1 and for disentangled bands

pσknp
σ
k+qn′ = 1. Then, Pl constructed as:

Pl(r, r
′;ω) =

∑
σ

occ∑
nk

unocc∑
n′q

(
pσknp

σ
k+qn′

)2
ψσ
∗

nk(r)ψσn′k+q(r′)ψσnk(r′)ψσ
∗

n′k+q(r) (2.56)(
1

ω + εσnk − εσn′k+q + i0+
− 1

ω − εσnk + εσn′k+q − i0+

)
.

Combining this equation with Eq. (2.50), the polarization for the rest of space Pr is

obtained and, from this, U(r, r′;ω). The screened Coulomb matrix elements in the

MLWFs basis are given by:

Um1m2m3m4;R(ω) = 〈m1m2|U |m3m4〉 (2.57)

=

∫ ∫
drdr′wσ∗m1R(r)wσm3R(r)U(r, r′;ω)wσ

′∗
m2R(r′)wσ

′

m4R(r′) .

The effective Hubbard-U and J parameters are calculated by averaging the matrix

elements in the static limit, 〈U(ω → 0)〉. Different parametrizations exist to do this.

The Kanamori parametrization calculates parameters adapted for t2g and eg (dx2−y2

and dz2 orbitals) [126]. The Slater parametrization was already defined in Eq. (2.31)

and Eq. (2.32):

Ul =
1

(2l + 1)2

l∑
m=−l

l∑
m′=−l

Umm′mm′;0 (ω = 0) (2.58)

Jl = Ul −
1

2l(2l + 1)

l∑
m

l∑
m′

[Umm′mm′;0 (ω = 0)− Umm′m′m;0 (ω = 0)] , (2.59)

where l = 2 for the d shell. Ul accounts for the on-site intraorbital interactions and Jl
is the on-site inter-orbital exchange parameter. The Coulomb matrix elements spin
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dependence is small according to calculations [125].

In this work, cRPA calculations have been performed with the SPEX code [127]

where the projection method is implemented. SPEX uses previously converged ground-

state ab initio wavefunctions from the FLEUR code and makes use of the Wannier90

[128] library to construct MLWFs. SPEX code has implemented the cRPA method

by means of the mixed-product basis (MPB)[129]. The polarization function and

Coulomb matrix elements involve the calculation of products of wavefunctions, as they

both describe the initial and final states between two electrons. Each product arising

from initial-final state pairs is transformed to the mixed-product basis, which allows

an efficient numerical evaluation of the total polarization and the Coulomb matrix

elements using the FLAPW basis, provided by FLEUR. The MPB allows a mathe-

matically exact treatment of the divergence of the Coulomb interaction at k→ 0.

In Figure 2.6 a simplified workflow to compute the Hubbard-U parameters is

shown. We show two key factors to obtain well converged Hubbard-U parameters.

First, proper convergence in the DFT+U calculation is needed. Second, the MLWFs

need to be properly localized and centered. Only then, we can calculate the polariza-

tions (P , Pl and Pr) and screened matrix elements (U and J). All these values are

computed in the same run of SPEX.

2.5 Maximally Localized Wannier Functions

Bloch-like wavefunctions can be expanded into real-space localized basis proposed by

Wannier [130]. We will give below a summary of the construction of the Wannier

functions (WF). For a detailed description, we refer to the review Ref. [131]. The WF

can be written as:

|Rn〉 =
1√
N

∑
k

e−ik·R |ψkn〉 , (2.60)

where N is the number of k-points in the 1BZ and R a lattice vector. The coordinate

representation is obtained as 〈r|Rn〉 = wRn(r). The inverse transformation from WF

to Bloch states is:

|ψkm〉 =
1√
N

∑
R

eik·R |Rm〉 . (2.61)
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Eq. (2.60) and Eq. (2.61) constitute a unitary linear transformation between the WFs

and Bloch functions. Thus, both are valid to describe electronic bands. Bloch func-

tions show a ”gauge freedom” that makes them invariant to unitary transformations.

The generalized gauge freedom for M multiband case is expressed as:

|ψ′km〉 =
M∑
m=1

Tmnk |ψkn〉 , (2.62)

where Tmnk is a unitary matrix of dimension M ×M . When a a multiband manifold

is considered states can be degenerate at band crossings. At this points, the Bloch

states are not analytic. Hence, constructing WFs from degenerate bands would result

in poor localization and it is necessary to include the unitary matrix transformation.

To solve the latter problem, the non-uniqueness of the WFs is used. The T matrix

induces unitary rotations to obtain smooth ψk in the degenerate points, resulting in

well localized WFs. Although ,the trace is preserved, |ψ′km〉 may not be an eigenstate,

and the index m is no longer a valid band index. Inserting Eq. (2.62) into Eq. (2.60)

gives the general WF construction:

|Rm〉 =
1√
N

∑
k

e−ik·R
M∑
n=1

Tmnk |ψkn〉 . (2.63)

The unitary matrix rotation has to be optimized to obtain ”maximally localized” WFs.

In this work we use the technique derived by Marzari et al.[132], whose localization

functional is:

Ω =
∑
m

[
〈0m|r2|0m〉 − 〈0m|r|0m〉

]
=
∑
m

[〈
r2
〉
m
− 〈rm〉2

]
, (2.64)

which measures the sum of the quadratic spreads of the WFs centers located in the

initial unit cell. Bount et al.[133] proved that the matrix elements for the position

operator could be obtained by means of derivatives with respect to the wave vector k,

which can be calculated using finite differences. All the needed information is given

by the overlap between neighboring Bloch states,

Mk,b
mn ≡ 〈ψm′k|ψmk+b〉 . (2.65)

At each iteration, the overlap and the transformation matrix are updated in order

to minimize Ω. This method can be extended to include non-isolated bands, i.e.

entangled bands [134].
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DFT ground-state cal-
culation by FLEUR

Converged ground-state?

Calculate the wavefunctions
and energies for SPEX

Span localized subspace into
MLWFs with Wannier90

Appropiate MLWFs?

Compute screened U and
J parameters with SPEX

Change number
of bands and

MLWF projections

Converged U and J values?

Set new values of U and J
for DFT+U computation

Converged U and J values

No

yes
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Figure 2.6: Scheme of the work flowchart to calculate the values of the U and J
combining FLEUR, SPEX and Wannier90.
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3.1 Introduction

Reduction of coordination in low-dimensional systems results in less atoms forming

bonds, enabling the emergence of magnetism in materials that have non-magnetic

bulks [29, 9, 135].

Theoretical methods, e.g. DFT, have made it possible to study different low-

dimensional systems, from 2D [136] to 1D systems [48, 137] and adatoms [138, 139].

Typically, lowering the dimension results in larger spin and orbital moments, and

the magnetic anisotropy is enhanced. The magnetic anisotropic energy (MAE) is a
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necessary property for low dimensional systems to allow a long-range magnetic order

at finite temperature [30]. Furthermore, enhancement of spin-orbit effects and the

sizeable energetic difference between the easy- and hard-axes make low dimensional

systems suitable1 for spintronic devices [141, 142].

The Hubbard Hamiltonian is used to describe the interaction between the localized

electrons within certain orbitals, for instance, electrons in the 3d orbital of transition

metals. The larger the Hubbard-U parameter the larger the screened Coulomb in-

teraction, and hence, localization of electrons. Localization of electrons favors larger

magnetic moments, therefore, the U parameter value can induce the stabilization of

magnetic states and even alter the spin state.

In this chapter, we study the ground-states magnetic properties of transition metal-

oxide (TMO) chains XO2, where X =Ni, Co, Fe, and Mn [23]. These are one-

dimensional chains that can be grown on Ir and Pt substrates [71]. Spin-polarized

STM (SP-STM) experiments have determined some of the chains’ magnetic properties

[71]. Combining SP-STM data with DFT calculations, the presence of non-collinear

spins between adjacent MnO2 chains has been obseved. The non-collinear spin tex-

ture results from an antisymmetric exchange interaction mediated by the substrate,

indicating the presence of a RKKY interaction[143]. The experimental data do not

always agree with the theoretical calculations. For instance, CoO2/Ir(100) is pre-

dicted to show a FM coupling [23] while in no magnetic contrast is observed with the

SP-STM[71]. Measuring the magnetic properties is a difficult task, hence, theoretical

calculations are needed to obtain the magnetic properties of the chains. In particular,

DFT calculation allows us to understand the magnetic properties in terms of the elec-

tronic structure of the chains, which can give the insights of the magnetic coupling,

MAE etc. Following the latter reason, we calculate the magnetic coupling between

the X atoms and we obtain the MAE of each chain, which has not been previously

studied, experimentally or theoretically. The anisotropy is calculated using two meth-

ods: treating SOC in a self-consistent manner and the FT approach (see Section 2.3

for the background of these two techniques).

The chapter is structured as follows: in Section 3.2 the geometry of the planar

unsupported chain. In Section 3.3, we show the obtained spin states for each metal

atom. Next, in Section 3.4, we describe the exchange coupling between the metal

1Particularly, when the out-of-plane direction is the easy-axis of the chain [140].
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atoms. In Section 3.5, we compute the MAE and analyze the obtained easy-axes in

terms of the resulting band-structures. Finally, in Section 3.6, we give the conclusions

on the obtained results.

3.2 Structural model

The one-dimensional XO2 chains, where X=Ni, Co, Fe, Mn, form in a reconstructed

Ir(100) surface. Structural analyses carried out with LEED-IV and STM show defect-

free chains with of 500 atom lengths arranged in periodically ordered (3×1) domains

orientated along the [110] and [110] crystallographic directions. The procedure to

grow the chains is given by Ferstl et al.[23]: the chains are formed on Ir(100)-(2×1)-O

or on metastable Ir(100)-(1× 1) by depositing 0.33 of a monolayer of each transition

metal atom followed by an annealing in ultra high-vacuum conditions . In Fig. 3.1 the

structure of the system is shown.

Figure 3.1: Left: side view of the structure of the XO2 chains. Chains are separated
by 3dIr, where dIr = 2.71Å is the Ir(100) lattice constant. Right: top view.

In our first calculations, instead of the whole system, we consider the ideal case of

a planar free-standing chain (see 3.2). The chains are isolated from the Ir substrate

and the oxygens atoms are placed between the transition metal atoms coplanarly.

Figure 3.2: Planar free-standing chain geometry.
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3.3 Planar free-standing chain: Spin phase

diagrams

DFT calculations were performed using the VASP code, with the PBE exchange-

correlation functional [81] and Dudarev’s formulation of the DFT+U functional [98]

where the interaction parameter is given by U − J , applied to the d-orbital. We used

a plane-wave energy cut-off of 450 eV with a Γ-centered 10×1×1 k-point grid. To

avoid interaction between different chains, we set 10 Å of vacuum between the chain’s

replicas. The total energy convergence threshold is set at 10−6 eV. The geometry

relaxation is performed until the forces are less than < 0.01 eV/Å. We modify the

distance between the X −X and O-O atoms to obtain the relaxed ground state.

In Fig. 3.3, the resulting spin values for different X-X and O-O distances are shown

as spin state phase diagrams for U−J = 0, 1.5 and 5 eV. The spin values at the ground

state for each U parameter are tabulated in Table 3.1. Note that the spin states differ

from an integer or half-integer value because in DFT the occupation matrix elements

are fractional2. The fractional occupations indicate that the ml orbitals of the d shell

are forming bonds, instead of being empty or fully occupied as in the isolated atom

case (see Section 2.2).

A non-magnetic state appears in all chains when the Hubbard U parameter is set

to 0 eV. Generally, increasing the value of the U increases the spin value.

In the case of Ni, two states are accessible. The equilibrium geometry at U = 0

eV lies at the boundary between the non-magnetic and the magnetic state, implying

that a small distortion could drive it either to magnetic polarization or quenching.

For finite U values, the Ni atom stabilizes in a magnetic state with S = 1/2. The Co

atom lies in a magnetic state for all U values. For U = 0 eV and U = 1.5 eV, the Co

atom is in a S = 1 state and for U = 5 eV the spin state is at the transition between

S = 1 and S = 3/2. Fe and Mn atoms are both in magnetic states with S = 3/2 for

U = 0 eV and U = 1.5 eV. For U = 5 eV both atoms show a spin state S = 2.

Multiple spin states are accessible by modifying only the value of U .

Table 3.2 shows the equilibrium X-O bond lengths. They are weakly affected by

2In the analysis, we will mention the closest spin value.
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Figure 3.3: Spin values for different planar chain geometries. The distance between
metal atoms, d(X-X), and oxygen atoms, d(O-O) is varied for three U values. Colors
show different spin values and white spaces indicate a spin state transition. The black
cross indicates the ground state configuration in each case.

the increase of the Hubbard-U parameter. The maximum change is 5% for the MnO2

between the U=0 and 5 eV, while in the other chains it is less than 2%.
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U (eV)
NiO2 CoO2 FeO2 MnO2

SNi SCo SFe SMn

0 0.29 0.98 1.52 1.47
1.5 0.47 1.05 1.63 1.61
5 0.55 1.26 1.83 1.88

Table 3.1: Spin states of the metal atoms in the equilibrium geometry for different
Hubbard-U parameters.

U (eV)
NiO2 CoO2 FeO2 MnO2

dNi-O (Å) dCo-O (Å) dFe-O (Å) dMn-O (Å)

0 1.77 1.78 1.82 1.82
1.5 1.79 1.79 1.82 1.83
5 1.80 1.79 1.83 1.87

Table 3.2: Equilibrium X-O bond lengths at each ground state given by the U values.

3.4 Magnetic coupling in planar free standing

chains

The magnetic order of the ground state of each chain has been calculated for the

Hubbard-U parameter given in the literature U = 1.5 eV [23, 71, 143]. A low value

of U is used to consider the screening effects of the Ir substrate in the chains. The

supercell is doubled and the transition metals magnetic moment is set parallel, i.e. a

ferromagnetic (FM) state or anti-parallel, i.e. antiferromagnetic (AFM). To consider

possible effects in the total energy due to strain, the AFM doubled cell has been

relaxed for each magnetic configuration. In Table 3.3, we give the bond-length at

each magnetic coupling. The largest difference between the AFM and FM states

bond-length is 0.02 Å for the CoO2. Therefore, setting either magnetic coupling

affects slightly the bond-length.

We describe the magnetic exchange of the chains with a Heisenberg model:

H = −
∑
<ij>

JijSi · Sj , (3.1)

where < ij > indicates that the sum is over pairs of nearest neighbors. Si is the

spin for the transition-metal atom in site i and Jij the magnetic exchange coupling
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parameter between spins at sites i and j. The sign of the exchange coupling determines

if the coupling is FM, J > 0, or AFM, J < 0. In DFT calculations, the exchange

coupling is obtained by the difference of total energies of the AFM and FM magnetic

configuration, calculated in a doubled cell:

J =
EAFM − EFM

2S2
(3.2)

The interaction between the TM atoms is mediated by the Oxygen atoms. This type of

indirect interaction is known as the superexchange interaction [144, 145]. In Table 3.3,

we summarize the results obtained by doubling the cell. The X-O bond lengths at the

AFM and FM states differ less than 2%. The energy difference, ∆E = EAFM−EAFM,

establishes that for the NiO2, CoO2 and FeO2 the preferred magnetic coupling is AFM,

while MnO2 is FM. In the FM state, the oxygen atoms are polarized parallel to the X

atoms spin except in the MnO2, where they are set antiparallel. In a naive reasoning,

the O atom’s spin inversion in the latter chain sets the Mn atom coupling, setting the

order of Mn up-O down-Mn up. In the AFM state, the O atoms do not show any

polarization as the oxygen atoms lie in the center plane between the two metal atoms

with opposite polarizations.

XO2 dX-O (Å) µXS (µB) µO
S (µB) ∆E (meV) J (meV/µ2

B)

NiO2 (AFM) 1.78 0.89 0.00
-42 -95

NiO2 (FM) 1.79 0.95 0.43

CoO2 (AFM) 1.77 2.01 0.00
-350 -159

CoO2 (FM) 1.79 2.12 0.36

FeO2 (AFM) 1.81 3.11 0.00
-476 -90

FeO2 (FM) 1.82 3.26 0.24

MnO2 (AFM) 1.82 2.86 0.00
562 108

MnO2 (FM) 1.83 3.23 -0.18

Table 3.3: Obtained data for the AFM and FM magnetic orders. The relaxed bond-
lengths between TM and O atoms, spin magnetic moments of the TM atom µXS and
oxygen atom µO

S is given for boths magnetic states. The calculations were performed
for the 2×1 supercell with U = 1.5 eV.
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In Fig. 3.4, we show the projected density of states (DOS) of the XO2 onto the

X(d) and O(p) orbital for each magnetic state. We make the important observation

that the AFM chains NiO2, CoO2, and FeO2) are insulators, while MnO2, which favors

a FM state, is half -metallic 3. In CoO2 and FeO2, the AFM state shows a larger gap

than the FM state, the larger gap the lower the total energy. For MnO2, the insulating

behavior of the minority spin in the FM state implies a lowering of the total energy

compared to the metallic AFM. Now, looking to the total energy difference between

the magnetic states in Fig. 3.4, we see the difference increases from NiO2 to MnO2,

this trend is consistent as the band gap increases going from NiO2 to FeO2, being the

largest difference between the metallic AFM vs half-metallic FM states of the MnO2

chain.

3.5 Magnetic Anisotropic Energy in planar free

standing chains

We have calculated the MAE for the planar free-standing chains with U = 1.5 eV

with two methods: SCF and with the FT approach. In the latter one, the SOC term

is added non-self-consistently to a converged spin-poralized electron density, while

in the former SOC is considered in a self-consistent manner (see Section 2.3). We

have calculated the MAE for several plane-wave energy cut-offs and k-point grids to

obtain properly converged values. The total energy convergence threshold for both

calculation set-up is 10−8 eV. We give in Appendix A the convergence tests of the

MAE.

MAEFT (meV) MAESCF (meV) Easy-axis

NiO2 -2.04 -6.43 y
CoO2 -0.51 -0.84 y
FeO2 0.81 1.13 z
MnO2 0.54 0.96 z

Table 3.4: We show the MAE values between the hardest- and easy-axis of each chain,
which is the y−z difference. The MAE is obtained using the SCF and FT techniques.

3In a half-metallic compound, one spin channel is metallic while the other presents a gap.
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Figure 3.4: Projected density of states. The solid gray indicates the total DOS, red
and blue are the projections on the X(d) and O(p) orbitals, respectively. Only the
projections on atoms in one half of the (2× 1) cell are plotted.
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In Table 3.4, we summarize the obtained MAE and the easy axes of magnetization.

For the NiO2 and CoO2, we obtain that the easy-axis is the y-axis, i.e., across the

chain axis (see Fig. 3.2 for the orientations). The FeO2 and MnO2 have the easy-axis

along the z-axis direction. The FT approach and calculations including SOC self-

consistently agree in the prediction of the easy-axis. The MAE values differ between

both techniques, but overall the agreement is acceptable, except in the case of the NiO2

where the self-consistent MAE is three times larger than the FT one. To understand

this, we calculate the band structure of NiO2 in both approaches (see Fig. 3.5). The

main difference between the band structures is seen around the Fermi level, at ~k ≈
(0.25, 0, 0), where for SCF a band becomes fully occupied, but it is still partially

unoccupied for the FT. This significant change in the contributing eigenenergies at

the Fermi level can result in a substantial difference in the MAE (see Fig. 2.4), as

seen in Table 3.4. In the NiO2 case, the FT method fails to describe the SOC effect

correctly in the system. Hence, the converged wavefunctions may differ between the

two methods. The FT has been successfully applied to bulk systems [114], but it is

less accurate for lower dimensional systems [146, 147], because the wavefunction is

less constrained by symmetries than in bulk materials and can have larger variations

when allowed to relax in the presence of a SOC term in the Hamiltonian.

The NiO2 chain also shows magnetic anisotropy for S = 1/2. It has been stated

that systems with S = 1/2 should not show any magnetic anisotropy [148, 149]. The

supposed absence of anisotropy in S = 1/2 is a consequence of the atomic-like single-

ion treatment of the anisotropy. In DFT, there is the possibility of hybridization

between atoms. This would modify the orbital shapes and can cause partial fillings,

such as the X-O bonds do in our system. Consequently, DFT calculations do not

necessarily follow the single-ion behavior.

In Table 3.5, we give the orbital moments. The orbital moment, µil, for each axis

is defined by projecting L on the S vector, at each calculation where S is aligned to

different magnetization axes. The orbital moments calculated in the FT approach are

lower than in the SCF ones. In the SCF the charge density is allowed to modified on

the contrary of the FT. Therefore, larger orbital moment are obtained for the SCF

than for the FT method. In all calculations, the L and S vector remain colinear after

the energy minimization procedure.

The NiO2 and CoO2 orbital moments along the easy axis are ten times larger than
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Figure 3.5: Band structure of the NiO2 chain where SOC is introduced in a self-
consistently (green, SCF) and non-SCF (red,FT). The circle highlights the feature
that explains the MAE difference.

SCF FT
Easy-axis

µxl (µB) µyl (µB) µzl (µB) µxl (µB) µyl (µB) µzl (µB)

Ni 0.088 0.215 0.032 0.066 0.106 0.024 y
Co 0.097 0.121 0.018 0.065 0.072 0.014 y
Fe 0.031 0.020 0.008 0.030 0.017 0.006 z
Mn -0.020 -0.012 -0.022 -0.016 -0.011 -0.017 z

Table 3.5: Orbital moments of each metal atom whenSOC is included.

the ones obtained for FeO2 and MnO2. The difference in the orbital moments comes

from the minority d orbital configuration. Empty and full orbitals do not contribute

to the orbital moment. Comparing the minority spin orbital occupancy we see that
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the NiO2 and CoO2 chains have partially filled orbital occupancies, except the full

dz2 , that contribute to the orbital moment, while in the FeO2 and MnO2, all orbitals

except the partially filled dxy are almost empty.

P. Bruno using a second-order perturbative analysis, established that the MAE

and orbital magnetic moment anisotropy, µ⊥l − µ
‖
l ), were proportional to each other

by a constant C > 0 [112, 54]. This relation is valid if spin-flip are neglected and the

majority spin is completely filled. Bruno’s relations allows us to understand the MAE

in terms of the orbital moment direction of the magnetic atom. The orbital moments

of each chain is larger at the easy-axis of each chain, fulfilling Bruno’s relation, except

in the FeO2 chain. Considering that the majority spin shows a partially filled dxy
the requirements to fulfill Bruno’s relation are not completely meet. This can be the

reason why the FeO2 does not obey Bruno’s relation.

The orbital moment direction depends on the occupancy of the d orbitals. Accord-

ing to Störh [55], the electron residing in a certain orbital is able to ”hop” between

the lobes of the orbital, as shown in Fig. 3.6(a) for the dxy case, the hopping in the

xy plane of the electrons sets the orbital moment direction. Therefore, the dxy,x2−y2

orbitals contribute to the µ⊥l , and the dxz,yz orbitals to µ
‖
l .

In the MnO2 chain, the only contribution to the orbital moment is the partially field

dxy orbital, which sets the orbital moment in the z-axis. In the NiO2 and CoO2 chains,

except the full dz2 the rest of orbitals contribute to the orbital moment, thus, the

preferred orbital moment orientation can not be easily guessed. However, considering

that the TM atoms bond with the coplanar oxygen atoms, because of the crystal field

and hybridization with the atom, the dxy,x2−y2 orbitals are perturbed, resulting in a

quenched out-of-plane orbital moment (see Fig. 3.6(b)). The dxz,yz orbitals are not

that affected by the oxygen atoms, hence, the orbital moment has a larger contribution

in the xy-plane, setting the in-plane orbital moment. The O and TM atoms do not

form a perfect square resulting on a larger orbital moment projection on the y-axis, as

in the NiO2 and CoO2 chains. In the FeO2, we cannot associate the orbital moment

direction to the easy-axis preference as Bruno’s relation is not fulfilled.

MAE density for XO2 chains

We have analyzed the band-resolved MAE and used the orbital-projected band struc-

ture to identify the orbital character of the band splittings by SOC that mainly con-
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Figure 3.6: (a) The cycling electron is the origin of the out-of-plane orbital moment.
(b) The out-of-plane orbital moment (L⊥) is quenched because of the O atoms, while
the in-plane moment (L‖) is almost non-affected.

tribute to the MAE. The band degeneracy breakings can be accounted for by the

matrix elements
〈
ψσl
∣∣l · s∣∣ψσ′l 〉 using the one-electron wavefunctions (ψσ

′

l ) for d or-

bitals (l = 2) of spin σ [106, 107].

〈n|l · s|m〉 |x2 − y2〉 |xz〉 |z2〉 |yz〉 |xy〉
〈x2 − y2| 0 iŝy 0 iŝx −2iŝz
〈xz| −iŝy 0 i

√
3ŝy −iŝz iŝx

〈z2| 0 −i
√

3ŝy 0 i
√

3ŝx 0

〈yz| −iŝx iŝz −i
√

3ŝx 0 -iŝy
〈xy| 2iŝz −iŝx 0 iŝy 0

Table 3.6: Matrix elements of the l · s operator for the d orbitals, given in Ref.[150].

We show in Fig. 3.7 the electronic structure for each chain including SOC in the

FT approach for all chains. We compare the band splittings that occur with the

magnetization along the y- (blue) or z-axis (red). We mark with circles the band

splittings that have the largest contribution to the easy-axis determination according

to the MAE density Fig. 3.7 panels (d).

In NiO2, four main splittings can be identified that contribute to the y-axis (blue),

as shown in Fig. 3.7. These splittings occur between the spin majority dyz and mi-

nority dz2 orbitals crossing. In the bottom left, the splitting is given by minority dxy
and dx2−y2 , and in the bottom right, the splitting is between majority dxy and dx2−y2 .

In CoO2 (Fig. 3.7) two splittings are the main contribution to the y-axis. The top



48 Chapter 3. Magnetism in TMO chains

splitting is between the majority dxz and minority dz2 . Other split bands are the mi-

nority dx2−y2 and the majority dxz. For the FeO2, the easy-axis is the z-axis. Only the

crossing of majority dxz and dz2 orbital has an appreciable contribution to anisotropy

along the z-axis at E − EF = −3 eV. In the MnO2, the MAE density shows two red

spots that lie deep in the energy, i.e. E − EF = −3 and −4 eV, where the splitting

is between the dz2,↑ and the dxz,↑ setting the easy-axis along the z-axis. Second-order

perturbation analysis of the SOC set that the main contribution to the MAE is due

to splittings near Fermi level, but in all of our chains there are splittings lying deeper

than the Fermi level in energy which show an appreciable contribution to the MAE.

Apart from the key factor that the split bands have different orbital characters,

another essential element is the occupation of the d orbital. The FeO2 chain has one

less electron compared to the CoO2 chain so that an occupied minority dz2 band in

CoO2 crossing becomes unoccupied in FeO2. These bands show a split that contributes

to the y-axis in the CoO2, but not in FeO2. These two splittings involve bands with

the same orbital character: majority dxz and dz2 . The latter atoms, FeO2 and MnO2,

have a similar d orbital filling that makes them follow the same trend having the same

easy-axis with the same orbital character band splittings, even if the magnetic ground

state coupling differs.

3.6 Conclusions

To summarize, we have studied the magnetic properties of ideal isolated and planar

XO2 (X=Ni, Co, Fe, Mn). We have obtained the spin phase diagram in the con-

figuration space for a range of variations of the bond-lengths and different selected

Hubbard-U values. The chains show up to four different spin states.

For U=1.5 eV, NiO2, CoO2 and FeO2, the preferred magnetic ordering is AFM

while the MnO2 is in a FM state. Band structure calculations indicate that chains

preferring the AFM coupling are insulators, and the MnO2 chain, FM shows a half-

metallic state and metallic in the AFM i.e., the band gap reduces the total energy.

Finally, the magnetic anisotropic energy has been obtained. No calculation of the

MAE had been performed in these chains before. We have found that NiO2 and CoO2
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Figure 3.7: In all panels: (a) Electronic structure with SOC when the magnetization
is aligned to the y-axis (red) or z-axis (green) MAE density, the contribution of each
colored points is as follows: red for z-axis and blue for y-axis, the density varies from
-0.8 (bluest) to 0.8 (redest)

show an in-plane easy-axis perpendicular to the chain axis. The FeO2 and MnO2 show

an out-of-plane easy-axis. The self-consistent and force theorem calculation methods

agree on the sign prediction, but the magnitudes differ significantly for NiO2, where

the FT approach fails to describe SOC effects adequately for band splittings at the



50 Chapter 3. Magnetism in TMO chains

Fermi level. The other chains show good agreement. This study has shown that the

easy-axis variation of the chains can be related to the occupancy of specific d orbitals.

In particular, CoO2 shows an occupied dz2 band that contributes to the in-plane easy-

axis. This latter band is unoccupied for FeO2 and MnO2, resulting in an out-of-plane

easy-axis.



Chapter 4

Electron correlation and multiplet

effect on TMO chains

I wish I could,

but I don’t want to.

Phoebe Buffay, Friends

4.1 Introduction

Strong Coulomb interaction can give rise to high-TC superconductivity [151], colossal

magnetoresistance [152], ferroelectricity etc. [153, 154, 155]. Magnetic materials with

d and f orbitals localized in the atom show the need to include interactions withing

these orbitals.

The study of correlated materials is a challenging research area, as it implicates

a many-body problem. Experimental data showed that some transition metal com-

pounds have an insulating character, while the orbital shell is incomplete, a hint of a

metallic behavior [88]. N.F. Mott [87] described the insulator state in the correlated

materials using the Hubbard Hamiltonian [68]. Not all strongly correlated materi-

als display an insulator behavior; compounds that show a metallic behavior do exist,
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e.g. V2O3 at high-temperature [156]. The latter systems are out of the scope of the

description given by the Mott-Hubbard theory. Zaanen, Sawatzky and Allen devel-

oped a model (ZSA model) where the insulator gap and metallic behavior could be

described in terms of the charge transfer energy (∆CT), the bandwidth (W) resulting

from hybridization and intraorbital Coulomb interactions modeled by a Hubbard-U

parameter. Within this theory, both metallic and insulating states can be obtained

in compounds with correlated elements (see Fig.3 in [157]). The ZSA model allows to

distinguish two types of insulating states: the Mott insulator where the band gap is

determined by U (e.g. MnO [158]) and the charge-transfer (CT) insulator where the

gap is defined by ∆CT (e.g. NiO [158, 159]).

The Hubbard-U describes the effective screening due to the surrounding environ-

ment inside the localized orbitals. Thus, its effective value will be dependent on

hybridization. As the number of atoms surrounding the correlated atom increases,

the effective screening is enhanced. Therefore, dimensionality can drastically change

the value of U [126]. The Coulomb interaction can be strongly damped in bulk and

interfaces where the U value can drop from tens of eV to a few eV [160, 161]. Coulomb

interaction in low dimensions can even show non-conventional phenomena, such as an-

tiscreening in FexOy clusters due to the behavior of the polarization in one-dimensional

systems. [162, 163, 164].

DFT is a one-electron framework where individual interactions within orbitals can-

not be adequately described. For instance, it predicts an incorrect metallic behavior

in FeO and CoO compounds [165, 158]. The DFT+U technique can provide better

results to systems with localized states (see Section 2.2 for a more detailed discus-

sion). Other theoretical methods that go beyond DFT have been developed that

can treat many body-interactions, such as, GW[166, 167], LDA++[168], MP2[169],

RPA[170] and DMFT [171, 172, 173], but these methods can be computationally de-

manding. Another technique to solve the problem of correlated materials is combining

many-body methods and DFT+U [174]. The U value can be obtained by combining

Auger spectroscopy and X-ray photoemission spectroscopy [175, 176] using Herrings

definition. According to Herring [177, 178] the U parameter is the sum between the

ionization energy and electron affinity: U = [E(dn+1)− E(dn)] + [E(dn−1)− E(dn)].

Another possibility is to calculate suitable U and J by ab initio methods. Different

first principles methods have been developed for this, such as the constrained LDA
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(cLDA) [115, 179], others based on linear response theory [118] and the constrained

random-phase approximation (cRPA) [120, 117, 121]. In this Thesis, we use the cRPA

to calculate the U and J parameters (see Section 2.4 for a detailed explanation of the

method).

In the previous chapter, we studied the magnetic properties of the planar free-

standing XO2 chains. Fig. 3.3 shows that the modification of the U − J parameter

does not alter the bond length, but it can trigger a spin state transition. A change

in the Hubbard-U can drive the NiO2 chain from a non-magnetic to a magnetically

polarized state. The magnetic exchange coupling is also dependent on the chosen

Hubbard-U (J ) is inversely proportional to the U parameter, for the exchange in-

teraction [144, 10]. The dependency of the magnetic properties on the Hubbard-U

show that adequate U and J parameters are needed. In this chapter, we calculate

the U and J for the ideal case of the planar isolated chain and the chain with sub-

strate. In the XO2/Ir(100) system, the inclusion of the Ir atoms induces effects, such

as charge transfer to the TM atom and hybridization between the orbitals, that can

modify the electron-electron interaction. Apart from the electronic structure screen-

ing, the cRPA allows to modify the source of the screening, by varying the correlated

space. Therefore, we can discern the contribution of the orbital shells to the screening.

This chapter is organized as follows: in Section 4.2, we describe the relaxation of

the chain plus substrate system, and the cRPA calculation setup. In Section 4.3, the

ideal planar free-standing screened Coulomb interaction is calculated. The non-planar

case is studied for the MnO2 chain. Section 4.4 is devoted to the supported chains,

where the effects of the Ir layers in the U and J are analyzed. Finally, in Section 4.5,

we draw the conclusions of our research.

4.2 Computational details

XO2/Ir(100) geometry

The relaxed geometry of the planar free-standing chains has been obtained in the pre-

vious chapter (see Table 3.2). In this chapter, we will compare the ideal and supported

cases. Therefore, we relax the geometry including the Ir substrate. The equilibrium

geometry for the XO2/Ir(100)-3×1 system is obtained considering five Ir layers, where
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the last layer is kept frozen during relaxation. We set the same convergence parame-

ters as in the previous chapter (see Section 3.2), only the k-grid is different, where we

set 10× 3× 1. The relaxed geometry is given in Table 4.1 for U = 1.5 eV.

NiO2 CoO2 FeO2 MnO2

zO 1.32 1.34 1.31 1.39

zX 1.19 1.17 0.89 1.12

dX-O 1.85 1.90 1.96 1.90

dO-O 2.56 2.64 2.63 2.62

∆12 1.87 1.84 1.84 1.84

∆23 1.98 1.99 1.99 1.99

∆34 1.84 1.84 1.84 1.84

Table 4.1: All lengths are given in Angstroms. The distance between the metal
atoms is fixed by the Ir(100) lattice parameter dIr-Ir = 2.71 Å. The dX−O and dX−X
are the interatomic lengths. The height (z) of the X and O atoms is measured from
the topmost Ir layer. ∆ is the averaged interplanar distance between the Ir layers.
Bucklings and lateral displacements of individual Ir atoms, not shown, are of the order
of 0.1 Å for the topmost layer and below 0.05 Å elsewhere.

cRPA calculations

The cRPA calculations where done using the SPEX code[127]. SPEX needs previously

converged wavefunctions, obtained from DFT calculations done by the FLEUR code,

based on the FLAPW method (see Section 2.2). In FLEUR, we use the GGA+U

with the PBE exchange-correlation functional. The +U correction is implemented as

described by Shick et al. [94] within the fully-localized limit [96] to account for the

double-counting correction. The specific setting of the convergence parameters of each

chain is specified in Appendix B. In the unsupported case, we maintain the geometry

obtained in the previous chapter, with the same k-grid sampling. The supported sys-

tem is sampled with a 10× 3× 1 k-grid centered in Γ. Partial occupations and Fermi

level have been determined by a Fermi-Dirac smearing with a 0.015 Htr width.

In SPEX, the polarization involves a summation over empty states. We use a total

of 150 bands to calculate a converged sum. The convergence parameters of the cRPA
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are specified in Appendix B. Maximally localized wannier functions (MLWFs) are used

to build real-space localized states (see Section 2.5 for a theoretical background of the

MLWFs) [131]. For the MLWFs construction and cRPA calculations, a 10 × 3 × 3

k-grid has been used 1.

The screened Coulomb interaction is calculated for the X(d) orbital. Therefore,

the space spanned by the MLWFs should only contain the d orbitals. In the supported

case, the X and O atoms are hybridized (in Fig. 4.1 a small weight of Mn(d) orbitals

can be appreciated in the bands near Fermi level, which have a main O(sp) orbitals

character). To avoid losing any contribution of the d orbital and obtain well-localized

MLWFs, the localized space includes both X an O atomic orbitals. We consider 11

bands for the NiO2, CoO2, FeO2 chains. The MLWFs are constructed with projections

on the X(d) orbital, as well as O(s, px, pz) orbitals. In the MnO2 chain there are

degenerate states, around 6 eV, (see Fig. 4.1) that need to be included to obtain well-

localized MLWFs. Therefore, in the case of MnO2, 13 bands that include the O(py)

orbitals are considered.

Because of the short screening length in metals, we consider that two layers will

be sufficient to account for the screening due to the Ir substrate (to validate the lat-

ter assumption we have made also a calculation using 3 layers, see Appendix B.2).

Therefore, unless specified, only two layers are used in cRPA and FLAPW calcula-

tions.Fig. 4.1 shows a strong hybridization between chain and substrate. Hence, the

Ir atomic orbitals are also included to construct the MLWFs. 41 bands are used with

projections onto the p, d on the X atom, s, p on O atom and sp3d on Ir atom. When

Bloch states are projected on the MWLFs basis, we ensure that eigenstates character

is not modified, i.e. that their character is approximately preserved. We calculate the

projected electronic structure with FLEUR for the Bloch states and with SPEX for

the MLWFs. In Fig. 4.1, we show for the unsupported and supported MnO2 chains

band structure, obtained with FLEUR and the band interpolation made by MLWFs.

The MLWFs orbital characters of the bands nicely match with the ones obtained by

FLEUR.

1The k-points along the z axis are considered for the construction of the MLWFs. Setting 10×1×1
or 10× 3× 1 resulted on a impossibility to obtain adequate MLWFs, because of the lack of points in
the y and z-axes needed to evaluate the derivatives using finite differences.
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Figure 4.1: Panels (a), (b) and (c) correspond to planar free-standing chain and
pannels (d), (e) and (f) to the supported case. Pannels (a) and (d) show the bands
obtained by FLAPW (black) and MLWFs (red) interpolation. The (b) and (e) are the
orbital weighted bands for the MLWFs, and the (c) and (f) for the FLEUR calculation..
The size of the curves is proportional to the magnitude of the projection. Arrows
indicate spin up/majority (red) and spin down/minority (blue).

The U values are obtained by calculating how the polarization of the rest of the

space2 affects the bare Coulomb potential of the localized set. The localized space

2States not included in the correlated space.
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correlation is eliminated from the total polarization. In our system, the localized set

is composed of a larger space than only the X(d) orbitals. This requires that the

projection of the d orbitals onto the MLWF have to be singled-out from the other

contributions. The projection method allows to isolate the subset formed by the

X(d)-like MLWFs from the whole localized set, and obtain the localized subset po-

larization using Eq. (2.57). In Fig. 4.2, we show the MnO2 band structure along with

the probability (pkm) of the electron to be in a certain m state at a given k-points

using Eq. (2.55), for the whole localized space and only for the d orbitals subset. In

Fig. 4.2 we use squares to visualize the probability, when the whole localized set is

considered the squares have all the same size (pkm = 1), while when calculating pkm

for the d subset the size is smaller (pkm < 1) for bands with Mn and O orbitals mixed

character and one for states with pure d orbital character.
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Figure 4.2: Probability pkm of the localized space in MnO2 chain. Pannels (a) and (b),
show the probability when the whole localized set of 13 bands is considered, pannels
(c) and(d) when d orbitals formed subset is chosen. The size of the square indicates the
value of the probability (pkm). Bands are obtained by MLWFs interpolation. Arrows
indicate spin up/majority (red) and spin down/minority (blue).
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The U and J values are obtained by spherical averaging of the interaction matrix

elements in the static limit Uαβ
mm′nn′(ω → 0), previously defined in Eq. (2.59). We follow

the workflow of Fig. 2.6 with the convergence criteria of ∆U = |Unew − Uold|< 0.05

eV.

4.3 Planar free-standing XO2 chains

The isolated chain model allows to study the screened Coulomb interaction arising

only due to the bonding to O atoms. We set U0 = 5.5 eV and J0 = 0.0 eV as initial

guess values to calculate the one-electron wavefunctions in FLEUR. With them obtain

the new U and J values with SPEX.

The U and J values are calculated for the spin channels ↑↑, ↑↓ and ↓↓. Note that ↑↓
will yield the same result as ↓↑3. About 4-5 cycles are needed to obtain convergence.

In Table 4.2, we give the results for the ↑↑ channel. We find that the U and J values

are rather insensitive to the selected spin channels (we tabulate the value of U and

J for different spin channels in Appendix B). To check if the obtained values depend

on our initial guess we have also considered other starting values, namely, U0 = 3.5

and 7.5 eV, which tend to converge to the same U and J , except the NiO2, which

will be discussed separately. The interorbital interaction, J , does not show a signifi-

cant variation. Differences are 6 0.2 eV for the different compounds. The Hubbard

parameters can be interpreted with the Slater integrals, where the intraorbital para-

mater is U = F 0 and, for the d orbital, the interorbital exchange is J =
1

14
(F 2 + F 4)

[177, 180, 92]. The F 2 and F 4 are slightly affected by screening effects, maintaining

an almost constant J value [177, 181, 161].

The U values of CoO2, FeO2 and MnO2 range from 5.73 eV to 7.67 eV (see Ta-

ble 4.2). The FeO2 shows the highest value compared to the other chains. Electronic

structure calculations show that this system is an insulator while the others are half-

metallic (see Fig. 4.3). Metals have a shorter screening length than insulators, agreeing

with FeO2 showing a larger U value.

3The average U value is the same, since matrices are conjugated transposes: U↑↓mn;mn =(
U↓↑mn;mn

)†
.
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XO2 U J Ũ

Ni (C1) 6.59 1.17 8.45
Ni (C2) 2.41 1.01 7.03

Mn 6.21 1.04 6.57
Co 5.73 1.11 8.62
Fe 7.67 1.13 9.06

Table 4.2: Converged U and J values (↑↑ spin channel) for the planar free-standing
XO2 chains. The Ũ is the result when the shell-folding method is used. All units in
eV.
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Figure 4.3: In each panel, central subpannels show the electronic structure of the
planar unsupported chain, and on the sides the PDOS. (a) MnO2, (b) CoO2 and (c)
FeO2. Arrows indicate spin majority (red) and spin minority (blue). The d orbital
character of the bands is plotted with a color code, where the thickness is proportional
to the magnitude of the projection of each d orbital. Full bands and the total DOS
are plotted in gray.
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The NiO2 shows a distinct behavior from the rest. Two different Ni(d) orbital

configurations are converged depending on the starting U0. We label them C1 and

C2. These configurations are maintained throughout consecutive FLAPW and cRPA

cycles. If U0 ≥ 4 eV the resulting orbital configuration will be the C1, and for U0 < 4

eV the C2 configuration is favored, with converged U values of U = 6.59 eV and

U = 2.41 eV, respectively. The difference between C1 and C2 is the occupation

of the Ni(d) orbital (see Fig. 4.5 for the band structure and PDOS for the C1 and

C2 configurations). DFT+U calculations show that the spin magnetic moment of

each configuration is µC1
Ni = 1.23µB and µC2

Ni = 0.55µB, respectively. C1 and C2

configurations can be considered as two multiplets of S = 1/2, i.e. two states with

the same spin state but different orbital occupancy configuration. Nevertheless, the

difference between the bare Coulomb parameters4 is just V C1−V C2 = 25.02−24.81 =

0.21 eV, a 0.8% relative variation on the averaged matrix elements. A large variation

on the bare Coulomb potential would indicate that the shape of the orbitals is altered

depending on the configuration. A real space representation of the Wannier orbitals,

shown in Fig. 4.4, assures that both C1 and C2 present almost no difference. The slight

variations between the MLWFs can result in a small difference on the bare Coulomb

parameters, but they can not explain the large variation of U . C1 and C2 screening

difference is the result of the different Ni(d) orbital occupancy and consequently the

different electronic structures.

NiO2

C1

C2

dz2 dxz dyz dx -y2 2 dxy pz px py

Figure 4.4: Real space representation of the unsupported chains MLWFs of the spin
minority Ni(d) and O(p) orbitals.

4Average of the electron interaction without screening: Vm1m2m3m4 = 〈m1m2|
1

r− r′
|m3m4〉.
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Figure 4.5: Same information as in Fig. 4.3. The free standing NiO2 is shown in
panels (a) C1 and (b) C2.

To obtain insight into the effective screening, we modify the subset where the

screened interaction is calculated. In Fig. 4.6, we show the matrix elements Umn
5 for

the ↑↑ spin channel. We recall that the subset correlation is excluded. In consequence,

if we include O(s) [O(p)], the origin of the effective screening will be due solely to O(p)

[O(s)]. Only bands that lie deeply in energy have X(s) and X(p) orbital weight in

the muffin-tin. Therefore, we assume that the screening effects from these orbitals are

negligible.

The matrix elements shown in panels (a) and (d) in Fig. 4.6 consider only d orbitals

subset, hence, screening is due to O(sp). In the following panels the combined effect of

O(s) and O(p) is separated. For (b) and (e) is due to O(p), for panels (c) and (f) only

to O(s). As a reference, we also show the bare Coulomb matrix elements of Ni(d), O(s)

and O(p) of C1. When the O(p) orbital is considered as the origin of the screening, and

5We use contracted indices notation: Umn;mn → Umn.
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similarly with the O(sp) combined effect, the averaged U(d, d)6 parameter is 6.70 eV in

C1 and 2.61 eV in C2. Nevertheless, O(s) is not to be overlooked, as the O(s) reduces

the U from 25 eV to 15 eV in the C1 state and to 10 eV in the C2. From these results,

we can conclude that the combined effect of O(sp) on Ni(d) can not be separated into

a summation of individual terms regarding the effective screening of the O(s) and

O(p) orbitals. The O(p) orbital is the main source of the screening on the d orbital

for the C1 and C2. Still, in the C2, the O(p) shows a larger efficiency in the screening.

This indicates that the Ni(d)-O(p) interaction differs for the C1 and C2 configurations.
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Figure 4.6: U↑↑mn matrix elements for the screened orbitals. The indices indicate the
orbitals, ordered as 1-dz2 , 2-dxz, 3-dyz, 4-dx2−y2 , 5-dxy for the Ni and 6-pz, 7-px and
8-py for the O atom. In panels (a) and (d) the subset is formed with Ni(d), in (d) and
(e) with the Ni(d) and O(s) and in (e) and (f) with the Ni(d) and O(p). As a reference
the bare Coulomb matrix (C1 configuration) is included (panel g). Color code units
in eV

The PDOS and band structure (see Fig. 4.5) of the chain shows the features arising

from the different d−p bonding of each multiplet state. According to Eq. (2.57), at the

static limit (ω → 0) the main contribution to the polarization are the states around

6With U(d, d) we refer to the matrix block formed by the d orbital.
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the Fermi level [126]. Therefore, the larger the density of states at Fermi level, ρ(EF ),

the more effective the screening. The multiplets show different electronic structures:

C1 presents a half-metallic state, where the band-gap is at majority spin, and dxz
and dyz states are fully occupied, while C2 is metallic. These findings agree with the

obtained results, where C1 has a larger U than the metallic C2. In addition, the C2

configuration presents sharp peaks around the Fermi level. The band narrowing in C2

enhances the electronic polarization, which in turn can reduce the U value even more

[126].

Bands with dxy character show a similar splitting and localization in energy in both

multiplets. The main difference between the C1 and C2 is at bands with dz2,x2−y2 char-

acter 7. According to Table 4.3 in C1 the dz2,↓ is empty. In C2 the dz2,x2−y2 orbitals

are fully occupied. In the C2 configuration, the Ni and O atom orbitals are more

hybridized around the Fermi level than in the C1, where there are almost no mixing

between Ni(d) and oxygen orbitals in majority spin (see PDOS in the Fig. 4.5). The

change in the hybridization suggests that the Ni(d) and O(p) interact in a different

manner in the C1 and C2 configurations. The ligand field difference of C1 and C2 is

reflected in the charge transfer between O and Ni atom: in C2 PDOS peaks at EF −1

eV indicate a d− d character band gap (meaning that U < ∆CT), while in the C1 the

band gap is formed between Ni(d)−O(p) orbitals (i.e. U > ∆CT) [157].

Next, we estimate the correlation energy with:

EU = U
∑
i

n↑in
↓
i (4.1)

where n
↑(↓)
i are the individual orbital occupations in Table 4.3. The latter estimation

shows the trend of the U values depending on the orbital occupation. The results for

Σin
↑
in
↓
i and EU are given in Table 4.48. C2 shows a larger Σin

↑
in
↓
i than C1, suggesting

that U should be lowered in order to minimize the energy, in agreement with our

results. Note, however, that Eq. (4.1) results can not be used as a criterion to define

which configuration is more stable, as DFT+U total energies for different U values

can not be compared. Only for U ' 6 eV and J ' 1 eV both configurations have been

7The chain symmetry favors the formation of the sp3d2 hybrid orbital, where dz2 and dx2−y2

orbitals are hybridized.
8Since dz2 and dx2−y2 form a hybrid atomic orbital7, we consider them a single orbital with

double maximum occupancy.
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converged, resulting in a C1 ground state while C2 is a metastable state separated by

0.33 eV.

Spin dz2 dxz dyz dx2−y2 dxy µX (µB)

NiO2: C1
↑ 0.99 0.99 0.99 0.99 0.54

1.23
↓ 0.03 0.94 0.85 0.97 0.42

NiO2: C2
↑ 0.99 0.91 0.86 0.99 0.48

0.55
↓ 0.99 0.64 0.61 0.99 0.46

MnO2

↑ 0.94 0.91 0.86 0.99 0.41
3.49

↓ 0.01 0.10 0.08 0.09 0.28

FeO2

↑ 0.98 0.98 1.00 1.00 0.59
3.67

↓ 0.01 0.21 0.14 0.11 0.49

CoO2

↑ 0.97 1.00 1.00 0.96 0.52
2.21

↓ 0.00 0.84 0.75 0.14 0.46

Table 4.3: Individual occupations of the X(d) orbital of the unsupported chains. The
spin magnetic moment is included to indicate the spin state.

n↑n↓ EU

NiO2 C1 3.98 26.2

NiO2 C2 5.09 12.3

MnO2 0.40 1.3

CoO2 2.11 12.1

FeO2 0.80 6.1

Table 4.4: n↑n↓ factors and correlation energy estimates EU of free-standing chains.

Seth et al. [182] proposed another method to cope with the correlation when strong

hybridization between the d and p In Ref. [182], the ”shell-folding” (SF) method is

proposed, where a renormalization of U value is made to account for the screening

due to the d-p ligand field. Within the shell-folding approach, the localized subset

includes d and also p orbitals, resulting on off-diagonals elements in the Coulomb

matrix that will account for the d-p interaction (see Fig. 4.6). Assuming that the
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total occupation of d and p orbitals is invariant over changes in the U , the resulting

effective screening is calculated as Ũ(d, d) = U(d, d) − U(d, p), where Ũ(d, d) is the

renormalized screening, U(d, d) is the average value of the matrix elements of the d-d

diagonal block (intraorbital interaction), and U(d, p) is the average of the off-diagonal

block. The resulting Ũ(d, d) are given in Table 4.5.

U(d, d) U(d, p) U(p, p) Ũ = U(d, d)− U(d, p) Ũ − U
MnO2 12.24 5.67 9.96 6.57 0.36

FeO2 15.19 6.13 10.64 9.06 1.39

CoO2 14.84 6.22 11.08 8.62 2.89

NiO2 (C1) 14.61 6.15 11.26 8.45 1.86

NiO2 (C2) 10.31 3.28 8.77 7.03 4.62

Table 4.5: Screened Coulomb parameter using the shell-folding method for the planar
unsupported chain. The U values indicate the averaged of block matrices dd, dp or
pp. The fourth column is the result of the shell-folding renormalization (Ũ). The
last column indicates the difference between the shelf-folded Ũ and the cRPA with
projection method with only a d orbital subset. All values in eV.

For all unsupported planar chains Ũ > U is obtained, as shown in Table 4.2. In the

MnO2 chain, the difference between the Ũ−U is 0.36 eV. The small difference between

the two methods implies that the d− p ligand contribution is correctly described, i.e.

the correlated space is well separated from the rest of space. In NiO2, we already

mentioned that the d-p ligands do not interact in the same manner at C1 and C2

configurations. The difference in Ũ − U is 1.86 eV and 4.62 eV for the C1 and C2,

respectively. In the C2 configuration, the d − p ligand field has a significant effect

compared to the C1 one. The block average U(d, p) for the NiO2-C2 is 3.28 eV, which

shows in a large difference from the other chains where a U(d, p) ∼ 6 eV is obtained.

The FeO2 and CoO2 are in between the limit behaviors of the MnO2 and NiO2-C2.

Non-planarity in free standing chains

In the ideal case, metal and O atoms are coplanar, but as the X and O atom form the

chain in a reconstructed Ir(100), the O atoms are lifted. The non-planarity induces

larger bonds between the X and O atoms, that alters the electron hopping and may
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affect the Coulomb interaction. To consider separately the effects of the absorbed

geometry in the substrate, we have made a cRPA calculation with the free-standing

MnO2 chains in the adsorbed buckled geometry. In Fig. 4.7, we compare the band

structures of the both unsupported MnO2 chain.
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Figure 4.7: Band structure of the unsupported (a) planar, (b) absorbed geometry and
(c) supported MnO2 chain for majority and minority spins. The d orbital projections
color code is the same as in Fig. 4.5.

In the buckled geometry, band dispersion is modified with respect to the planar

chain, but the general aspects of the hybridization between the Mn and O atoms is

maintained. For the buckled MnO2, the converge interaction parameters are U = 6.18

eV and J = 1.04 eV (in the ↑↑ spin channel). There is a change of 0.03 eV on

the intraorbital interaction while there is no variation on the interorbital exchange

interaction. In the next section, we will study the screened correlation when the Ir

substrate is included.
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4.4 Supported XO2 chains on Ir(100)

Charge transfer and orbital hybridization between substrate and chain can alter the

electronic structure of the chains, which may, in turn, affect the screened Coulomb

interaction. We have already seen that different orbital configurations with the same

spin state yield different effective screenings, e.g. NiO2 C1 vs C2, since the binding

with O(p) is different in these cases. Hence, a contribution due to multiplet change

can not be disregarded in our calculations. Non-planarity between O and X atoms

does not induce major changes in the screening as seen in the previous subsection,

Section 4.3. Therefore, in our discussion, we neglect its contribution.

The U value can been defined as the sum between the affinity and ioniziation

energies, but upon deposition of the oxides on metals, the interaction between the d

orbitals is further screened by another term, U = E(dn+1)+E(dn−1)−2E(dn)−2Eim,

where Eim is the image potential originated from the ions creating a mirror charge in

the substrate [160, 161]. However, this approximation is not applicable because the X

atom is absorbed into a missing row of, i.e. they are not on top of the substrate but

in the substrate (see Fig. 3.1). Therefore, an approximation of the atom as a point

charge with a Coulomb interaction tail of 1/|z − zx|, where z is the distance and zx
height of the X atom can not be considered.

In the supported case, the initial guess is set at U0 = 3.5 eV and J0 = 0.0 eV. The

converged values of U and J for the supported chains are given in Table 4.6. All U

values are reduced in comparison to the planar free-standing chain. At the FeO2 chain,

the effective screening is reduced by as much as ∼ 6 eV compared to the free-standing

case. The interorbital exchange coupling, J , is also smaller than in the unsupported

case. The largest change is ∼ 0.30 eV for the Fe atom.

Interaction between the Ir atoms and the chain is visible in the electronic structure

of the chains (see Fig. 4.8). We begin by discussing the MnO2 and CoO2 chains, as they

show a similar trend. Charge transfer from the substrate fills the partially occupied

dxz,↑ and dyz,↑ bands in both chains, and in CoO2, a partial filling of the dx2−y2,↓ can be

observed near the Fermi level. In Table 4.7, we give the individual partial occupations

of the supported chains.
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XO2/Ir U J Ũ

Ni 1.71 0.87 1.16

Mn 3.78 0.98 3.29

Co 2.39 0.90

Fe 1.38 0.80

Table 4.6: Converged U and J values (↑↑ spin channel) for the XO2/Ir(100) chains.
All units in eV.
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Spin dz2 dxz dyz dx2−y2 dxy µX (µB)

NiO2/Ir
↑ 0.97 0.95 0.95 0.97 0.62

0.52
↓ 0.59 0.94 0.95 0.96 0.41

MnO2/Ir
↑ 0.96 0.98 0.98 0.99 0.41

3.66
↓ 0.08 0.08 0.08 0.09 0.23

FeO2/Ir
↑ 0.95 0.97 0.97 0.98 0.68

2.87
↓ 0.25 0.41 0.17 0.36 0.28

CoO2/Ir
↑ 0.97 0.96 0.96 0.98 0.70

2.02
↓ 0.08 0.93 0.94 0.29 0.31

Table 4.7: Individual occupations of the X(d) orbital in the supported chain. The
spin magnetic moment is shown too.

n↑n↓ EU (eV)

NiO2/Ir 5.08 8.7

MnO2/Ir 0.61 2.3

CoO2/Ir 2.74 6.5

FeO2/Ir 1.93 2.7

Table 4.8: n↑n↓ factors and correlation energy estimates EU for the supported chains.

Using Eq. (4.1) to estimate the correlation energy, the
∑

i n
↑
in
↓
i factor shows a

subtle increase (see Table 4.8), consistent with the U values decrease as indicated in

Table 4.6. The study of individual occupancies shows that the multiplet configuration

of the MnO2 and CoO2 is maintained upon deposition. Even the magnetic moments

are similar to those of the unsupported chain.

We apply the shell-folding method, where all screening processes due to the O(sp)

are eliminated, leaving only the Ir substrate, i.e. the localized subset is formed by the

X(d) and O(sp). The obtained matrix elements for MnO2 are plotted in Fig. 4.9. The

renormalized Ũ value yields 3.29 eV, similar to the value obtained including O(sp)

orbitals in the screening, U = 3.78 eV. The small difference (∼ 0.5 eV) between

shell-folding and our method implies that bonds d-p are disentangled as in the free-

standing case. In Fig. 4.9, we compare the matrix elements obtained for the MnO2
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and MnO2/Ir(100). In panels (a) and (b) we show planar unsupported case where the

O(p) is the main source of the screening. In the supported case (panels (c) and (d)),

there is only a slight change when the O(sp) is taken out, implying that Ir is the main

source of screening.

0

2

4

6

8

10

12

14

2 4 6 8

1 2 3 4 5

1 2 3 4 5

1
2

3
4

5
1

2
3

4
5

2 
4

6 
8

2 4 6 8
2 

4
6 

8

0

2

4

6

8

10

12

14

a) b)

c) d)

m

m

n n

Figure 4.9: Screened Coulomb matrix elements for MnO2 and MnO2/Ir. Panel (a)
is only for Mn(d), (b) considers a Mn(d) and O(p) formed subset. Panel (c) is the
same as (a) for the MnO2/Ir and (d) the correlated space is the Mn(d) and O(sp).
The O(s) matrix elements are not shown. The numbering follows the same code as in
Fig. 4.6. All units in eV.

The NiO2/Ir chain shows a similar trend as CoO2 and MnO2 chain on the orbital

filling: dxz and dyz become occupied by charge transfer, but, in this case the dz2,x2−y2,↓
becomes partially occupied (see Table 4.7). All states of Ni(d) form narrow bands

around the Fermi level and EF −2 eV, resembling the narrow peaks present in the C2

configuration. In addition, as given in Table 4.8 the
∑

i n
↑
in
↓
i factor differs only by 0.01

and the spin magnetic moment by 0.03 µB from the free-standing C2 configuration.

Hence, we consider that upon deposition a similar state as the C2 is settled for the

Ni atom. The converged low value of U = 1.71 eV can be considered an effect of

the further screening of the Ir to the NiO2-C2, which already shows a substantial

screening. Thus, the multiplet state plays an important role on the obtained U value.
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A comparison with the C1 value would be interesting, but it is not obtained in

the adsorbed NiO2 chains, neither as a ground state nor as a metastable state for

the studied U parameter range (U0 = 1.5, 3.5 and 5.5 eV). All calculations initializing

with the orbital configuration of C1 are driven to the similar C2 ground state, yielding

the same converged U and J values. We calculate the shell-folded interaction for the

NiO2, being Ũ = 1.16 eV. The difference between the d formed correlation space U

value and Ũ is ∼ 0.6. The Ni(d)−O(p) ligand field is effectively well described when

the chain is on the substrate, owing to a change in the d− p interaction due to the Ir.

Note that in the unsupported chains, the shell-folded method yields Ũ > U , while

in the supported case, Ũ < U . This implies that Ir layers also modifies the p orbitals of

the O atoms (see Fig. 4.10). In the supported case, the Ir substrate effectively screens

both X and O atoms. The real space representation of the MLWFs shows that in-

cluding the substrate can affect the shape of the orbitals, e.g. O(pz) and O(py) orbitals.

FeO2

FeO2/Ir

dz2 dxz dyz dx -y 2 2 dxy pz px py

Figure 4.10: Real space representation of the minority spin MLWFs in the FeO2 and
FeO2/Ir chain. Second and bottom rows show the unsupported and supported FeO2

chains, respectively.

U(d, d) U(d, p) U(p, p) Ũ = U(d, d)− U(d, p) Ũ − U

MnO2/Ir(100) 4.66 1.37 4.34 3.29 -0.49

NiO2/Ir(100) 1.99 0.83 1.26 1.16 -0.55

Table 4.9: Screened Coulomb parameters using the shell folding method for the
supported MnO2 and NiO2 chains. The distribution of the table follows Table 4.5.
All values in eV.
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Finally, the FeO2/Ir system is discussed. The converged intraorbital value shows

a drastic enhancement of the effective screening compared to the isolated chain case,

U = 1.38 eV, which is a reduction of more than 6 eV. The real-space representation

of the MLWFs do not show major changes due to the substrate (see Fig. 4.10), hence,

the change in the U needs to be due to other features. In Table 4.8, the sum over n↓in
↑
i

increases by one unit compared to the ideal chain case. This increase is also reflected

in the change of spin state, where the Fe atom changes from a S = 2 (unsupported

case) to a S=3/2 state. The planar free-standing FeO2 electronic structure shows the

features of a CT insulator, i.e. a band gap between X(d) − O(p) orbitals. However,

in the supported case the chain becomes metallic as spin minority d bands are lo-

cated around Fermi. The drastic change in the U value can be associated with the

insulator-to-metallic transition. We have checked that, despite varying the U value in

the GGA+U calculations, the minority d band is pinned at the Fermi level, and this

could be driving the cRPA cycles to the low U values.

Considering the change of state and the large U variation, one could pose the

question: can the free-standing chain properties could be recovered by lifting the

chain from the surface?. We artificially set it to two different heights: zFe = 2.5 Å and

zFe = 4 Å, measured from X atom in the absorbed geometry. At the same time, we

consider two different initial U values: the converged free-standing value U f
0 = 7.67 eV

and the converged absorbed one U s
0 = 1.35 eV. In Table 4.10, we show the obtained

U values for each calculation.

zFe = 2.5 Å zFe = 4 Å

U s
0 = 1.35 eV U s

2 = 3.38 eV U s
1 = 3.18 eV

U f
0 = 7.67 eV U f

2 = 3.73 eV U f
1 = 6.13 eV

Table 4.10: Resulting U values when the FeO2 chain is lifted at zFe = 2.5 and 4 Å
starting from U s

0 or U f
0 . The subscript indicates the iteration number, and the f(s)

superscript indicates that the starting U value is the free-standing or supported.

The resulting PDOS are shown in Fig. 4.11. At the intermediate height of zFe = 2.5

Å, both cRPA calculations yield a U ' 3.5 eV after two iterations. Looking to the

PDOS at zFe = 2.5 Å, the dz2,↓ is pinned at the Fermi level for both starting values

(panels (a) and (b)), and also a dxy,↑ for the U f
2 (panel (b))that can contribute to

reduce the Hubbard-U .
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At height zFe = 4 Å, the first iteration the cRPA results in U f
1 = 6.13 eV and

U s
1 = 3.81 eV values. Both U s

0 and U f
0 values are not capable of attaining the free-

standing chain’s U value. Fig. 4.11 panel (c) shows a small peak of dz2,↑ and other d

character peaks persist near EF . For U f (panel (d)) his pinning of the dz2 vanishes

becoming an empty orbital for both U values, but still a empty dxy,↑ is near Fermi.

If we compare the free-standing FeO2 chain’s PDOS (Fig. 4.3) with the lifted ones

(Fig. 4.11), we see that at z = 4, pannel (d), the PDOS is similar to the free-standing

FeO2 chain, as the d orbitals peaks are at a similar energy range ( EF − 8 eV-EF − 10

eV), except for the dxy,↑ which is situated near the Fermi level instead of EF+1 eV.

The artificial lifting of the chain cannot reproduce the free-standing U value, even

though hybridization between substrate and chain is almost completely lost in the

z = 4 Å and U f
0 . The still present long-range screening effect might be due to the

exchange-correlation functional. The GGA works with error cancellation, hence, low-

density situation result in poorer description, not being able to describe the Coulomb

tail 1/(z) correctly.

4.5 Conclusions

In conclusion, DFT+U and cRPA calculations are used to study the electronic cor-

relation of TMO XO2 chains on Ir(100), where X =Ni, Co, Fe and Mn. We have

calculated the U and J values of the free-standing planar and supported chains, with

an analysis of the interplay between the ligand field and the substrate.

In the ideal case of the planar free-standing chains, we obtain U values ranging

from 2.4 to 7.7 eV, being the largest value that of the insulator FeO2 chain. DFT+U

calculations show the existence of two different multiplets for the same spin state for

NiO2: C1 and C2 configurations, which C1 can be associated to a d-d gap, (U < ∆CT),

and C2 a d−p one (U > ∆CT), where ∆CT is the charge-transfer energy. Each config-

uration shows a different U value. Calculations with the shell folded method result on

higher values of the U for all chains. These calculations show that each Ni(d) multi-

plet interacts differently with the O(p) orbital depending on the orbital configuration.

Calculations varying the correlated space show that the O(p) is the main source of

screening. The non-planar geometry of the chain modifies the band structure but the

U value is slightly affected.
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Figure 4.11: The colored curves show Fe(d) orbital contributions to the PDOS of FeO2

detached from the Ir(100) substrate at heights 2.5 Å (a,b) and 4 Å (c,d), for U s
0 = 1.40

and U f
0 =7.67 eV, which correspond to the limit U values in the adsorbed (a,c) and

free standing (b,d) configurations, respectively. The gray curve corresponds to the
total DOS.

All supported chains show an increased effective screening. The FeO2/Ir shows
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an insulator-to-metallic transition, which enhances the screening reducing the U from

7.7 eV to 1.38 eV. The Ir substrate also can modify the d orbital configuration, the

NiO2/Ir shows a similar configuration as the unsupported C2, and Fe atom’s spin

state is altered from S = 2 to a S = 3/2, which can contribute to the screening, only

MnO2 and CoO2 states are maintained almost unchanged. The shell folded method

allows to estimate the ligand field contribution to the U value, setting that the X(d)-

O(p) bonding is different between the unsupported and supported case. An artificial

lifting of the chains from the substrate cannot reproduce the free-standing U value.

Screening due to Ir is present in the detached chain limit, suggesting the presence of

a non-negligible long-range interaction.





Chapter 5

Magnetic properties of transition

metal-organic chains: the CoQDI

and CrQDI cases

They don’t know that we know

they know we know.

Phoebe Buffay, Friends

5.1 Introduction

In this chapter, we will focus on metal-organic chains, i.e. a type of chain where

transition metal (TM) atoms combine with organic ligands. This type of system can

be formed on surfaces through self-assembly [42].

The large amount of accesible molecular complexes allows the synthesis of dif-

ferent metal-organic networks, considering that hese type of networks are formed by

many bonded atoms leading to a have a high number of spatial degrees of freedom,

combined with the spin makes the metal-organic system capable of displaying differ-

ent possible geometries that can show different magnetic and electronical properties
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[25, 183, 184, 185]. Occasionally, they are capable of having a spin crossover (SC)

transition [26], where the TM atom can switch between a low-spin (LS) state to high-

spin (HS) state due to a external perturbation, such as, thermal effects, light, pressure

or high-magnetic fields. The SC can be used to build pressure-sensors, as data storage

devices or may be applicable to holography because of the different refractive indices

of the LS and HS states [186]. The interesting magnetic properties of TM-organic net-

works open the possibility of employing metal-organic networks as electronic devices

[187, 188, 189, 190].

In low-dimensional systems, where the electron correlation is enhanced, DFT+U

needs to be applied to improve the description of specific orbital potentials. The inclu-

sion of the U Hamiltonian adds an implicit bias in the DFT calculation depending on

the orbital occupation matrix and the chosen double-counting term (see Section 2.2).

In addition, the TM-organic species can show different states (with the same spin

or different), i.e. different orbital occupations. Recall that in the previous chapter

the NiO2 could show two different orbital occupations with the same spin state for

different values of U , and both could be converged for a given U value. If the energy

minimization procedure was exact, the obtained state would be the ground state (GS).

However, this numerical minimization procedure can converge to states that do not

need to be the actual GS [69, 191, 192]. The different orbital occupation matrices for

different or even the same spin states can affect the magnetic properties, e.g., mod-

ifying the magnetic anisotropy and exchange coupling. In order to sort out the true

GS from the metastable states we use the occupancy matrix control (OMC) method

[70] (see Section 2.2).

This chapter focuses on the CrQDI and CoQDI 1D polymeric chains, transition

metal-organic chains that result from the combination of 2,5-diamino-1,4-benzoquino-

nediimines (2HQDI) with Cr and Co atoms (see Fig. 5.1 for the structure). the

research group of Prof. P. Jelinek from the Czech Acadmy of Science in Prague syn-

thesized these chains on a Au(111) surface in ultra-high vacuum conditions, forming

well-ordered long chains (> 100 nm). The structural properties of the chains have

been previously analyzed by V. M. Santhini et al. [72] using atomic force microscopy

and scanning tunneling microscopy. The experimental data on the magnetic proper-

ties of these chains have been obtained by C. Wäckerlin et al. from the Swiss Federal

Laboratories for Materials Science and Technology in collaboration with the group of
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Prof. P. Jelinek by employing X-ray absorption spectroscopy combined with X-ray

magnetic dichroism (XAS/XMCD) and linear dichroism (XAS/XLD) [6]. In addition,

inelastic electron tunneling spectroscopy (IETS) with a tip decorated with a nick-

olecene (NiCp2) molecule [193] have also been performed to study the vibrational and

spin excitations, albeit this is out-of-scope of our work.

Figure 5.1: Structure of the TMQDI chains where TM=Co, Cr.

In our work, we study the possible states in the CoQDI and CrQDI chains, ground

state and metastable, and the consequences that these may have on the magnetic

properties. We also study the stability of the magnetic coupling over distortions and

different modifications: variation of U , consider a spin spiral order etc. The theoretical

results are used to interpret the experiments. Previous work, Ref.[72], show that in

the chain could be manipulated easily with the STM, implying a weak substrate-chain

interaction. Therefore, our analysis is made considering a planar free-standing chain,

i.e. no Au(111) substrate.

The chapter is organized as follows: in Section 5.2, combining DFT+U and OMC,

we calculate the possible spin states and establish the ground state of each system.

In Section 5.3, the magnetic properties of the CoQDI and CrQDI chains are analyzed

using DFT+U , with a study of the robustness of the magnetic coupling for the CrQDI

chain. We compare our results with the experimental data. Finally, in Section 5.4,

we give the main conclusions of the chapter.

5.2 Computational details

The theoretical analysis of the unsupported planar chains is done using DFT+U cal-

culations with the Vienna Ab Initio Simulation Package (VASP) (see Section 2.2),
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with the PBE exchange-correlation functional[81]. The Hubbard-U correction scheme

is applied via Dudarev’s functional[98]. The plane-wave cut-off energy is set at 450

eV with a 10× 1× 1 k-grid centered at Γ. The relaxed geometry is calculated impos-

ing a periodic supercell and setting 12 Å of vacuum between the periodic repetitions.

The forces minimization threshold is < 0.01 eV/Å and the total energy minimization

convergence criterion is set to 10−6 eV.

In the geometrical optimization, we modify the lattice parameters of the chain,

and let the molecule atoms to relax while the TM atom is frozen. The aromatic ring

bond-lengths is almost unaffected by the geometrical relaxation, the distance between

the N-C atoms changes less than 0.02Å compared to the gas-phase molecule. The

main change in is at the bond-length between the TM atom and N atoms. In Fig. 5.2,

we show the resulting total energy with respect to the bond-length between the Co

and N atoms for U = 0, 1.5, 4 and 5 eV. For U = 0 and 1.5 eV only one curve is

obtained. For high U values (4 and 5 eV), two different curves are obtained showing

different minima. At each curve, the Co atom shows a different spin state: low-spin

state (LS) with S = 1/2 (blue) and the red curve is a high-spin state (HS) with

S = 3/ (red), i.e., there is a spin crossover. Each spin state shows a distinct Co-N

bond-length as indicated in Fig. 5.2. In Table 5.1, we give the Co-N bond-length and

the spin magnetic moment of the Co atom for the LS and HS states. The LS states

shows a shorter bond-length compared to the HS one. The bond-lengths do not show

a large variation when U increases. For U = 5 eV the HS and LS states energies differ

88 meV, while for U = 4 eV, the energy difference is 200 meV.

In Fig. 5.3, we show the energy at each bond-length for U = 0, 3, 4 and 5 eV for

the CrQDI chain. As in the CoQDI, we have considered different lattice vectors and

then let the geometry to relax, maintaining only the TM atom frozen. For all the U

values, only one spin state is obtained, S = 2. The equilibrium bond-lengths shows an

appreciable change between U = 0 and U = 3 eV, where there is almost no variation

in the Cr-N distance between U = 3, 4 and 5 eV. In Table 5.1, we show the dCr-N and

spin magnetic atom of the Cr atom for U = 5 eV.

In Figs. 5.4 and 5.5, we show the band structure and the projected density of

states (PDOS) of both chains. The CoQDI shows a metallic-to-insulator transition

when the spin state goes from the LS to the HS state. In the former, the majority dxy
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Figure 5.2: Total energy with respect to the Co-N bond-length measured from the
ground state of each U value. The curve color shows the spin state of the Co atom:
blue for S = 1/2 (LS) and red for S = 3/2 (HS).

dTM-N µSTM (µB)

CoQDI (LS) (U = 4 eV) 1.86 1.20
CoQDI (HS) (U = 5 eV) 2.02 2.73

CrQDI (U = 5 eV) 2.08 3.71

Table 5.1: Equilibrium TM-O bond lengths and spin magnetic moment of each TM
atom.

band is half-filled, while in the HS state becomes fully occupied. The minority spin

bands show the largest change: in the HS state only the dz2 and dx2−y2 bands are fully

occupied, while in the LS the dxy and dxz bands are partially filled. The change in

the orbital occupancy is related with a different hybridization between the Co(d) and

O(p) orbitals. The CrQDI chain shows an insulator state with an empty dxy,↑ orbital

and all minority orbitals unoccupied.
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Metastable configurations

As previously commented, the U functional introduces a dependence on the initial

orbital configuration. For instance, the CoQDI spin state depends on the given initial

magnetic moment, and whether it is a ground state or a metastable state depends on

the U value. A study of the energy minimization for several orbital matrix occupa-

tions can show if the converged states are the GS or metastables states of the energy

functional. For this analysis, we use the OMC method.

We consider first the HS state with U = 5 eV. The orbital matrices have to be

built maintaining the S = 3/2 state. The majority spin matrix is fully occupied,

while the minority spin one has two occupied orbitals. We have to build combinations

with two electrons filling different orbitals. Due to the planar chains symmetry, the

out-of-plane dxz and dyz can share an electron, while one of the remaining orbitals can

be fully occupied by the remaining electron. We also consider the sp3d2 hybrid atomic

orbital where the out-of-plane dz2 and in-plane orbitals dx2−y2 become hybridized and
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hence, share an electron. We use the following notation to simplify the matrices:

[1 1 1 1 1] =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , [0h 0h 1] =


0 0 0 0 0

0 0.5 0 0.5 0

0 0 0 0 0

0 0.5 0 0.5 0

0 0 0 0 1

 . (5.1)

The last matrix is an example of the dxz and dyz orbitals sharing an electron, indicated

with h. The order of the orbitals is [dxy dyz dz2 dxz dx2−y2 ]. There are 11 different

combinations to be considered. In Table 5.2, we give the initial orbital occupation

matrices and the final ones after the OMC is applied and a self-consistent energy min-

imization procedure (without constraint orbital occupations) has been done. We also

give the energy difference with respect to the true ground state. We fix the atomic

positions to the relaxed structure obtained in the previous section. From 11 initial

matrices, only seven different configurations are converged. The ground state orbital

configuration is [0 0 1 0 1], the same as obtained without OMC. The [0 0h 1h] orbital

occupation configuration shows only 72 meV of difference with respect to the ground

state. The interatomic forces in the metastable state are < 0.05 eV/Å, thus, letting

the geometry to relax still maintains the HS-2 configurations. Hence, this metastable

state may become relevant in the calculations, if any distortion is applied to the chain,

the energy minimization can go the excited state instead of the GS.

To differentiate the GS and this metastable state, we label them as HS-1 and HS-2,

respectively. All the other excited states show differences larger than 300 meV with

respect to the ground state. Therefore, in principle, these states can be disregarded

as the energy difference is too large. The PDOS of the HS-1 and HS-2 configurations

is shown in Fig. 5.6. HS-1 and HS-2 differ in the minority occupation. In HS-1,

the dz2,↓ and dx2−y2,↓ bands are filled and dxz,↓ is empty, while in the HS-2, dz2,↓ and

dx2−y2,↓ are half-filled and dxz is fully occupied. In HS-1 the dxz,↑ orbital is localized

in energy between EF − 7 and EF − 5 eV, while in the HS-2 it is set between EF − 6

and EF − 4 eV. The dz2,↑ and dx2−y2,↑ show sharper peaks at EF − 4 eV in the HS-1

state than in the HS-2. Nevertheless, the different occupation does not affect the

Co(d)-N(p) bond. As shown in Fig. 5.6, the N(p) PDOS is only slightly affected. We

compare both states with a calculation done using the hybrid HS06 functional. The

hybrid calculation shows a similar configuration as the HS-1 state as ground state,
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Initial conf. Final conf. µSCo (µB) ∆E = E − E0 (eV)

[1 0 1 0 0] [0 1 0 1 0] 2.88 1.682
[1 0 0 0 1] [0 0 1 0 1] 2.73 0.000
[0 0 1 0 1] [0 0 1 0 1] 2.73 0.000
[0 1 0 1 0] [0 1 0 1 0] 2.75 0.333
[1h 0h 0] [0h 1h 0] 2.75 0.563
[0h 1h 0] [0h 1h 0] 2.75 0.563
[0h 0h 1] [0h 0h 1] 2.73 0.471
[1 0h 0h] [1 0h 1h] 1.06 0.385
[hhhh 0] [0 0h 1h] 2.74 0.072
[0hhhh] [0 0h 1h] 2.74 0.072
[h 0h 0 1] [0 0 1 0 1] 2.73 0.000

Table 5.2: Initial and converged minority spin orbital occupation matrices at the HS
state. The energy with respect to the ground state is given for each calculation. We
also give the spin magnetic moment of the Co atom of each converged state. The
calculations were done at U = 5 eV.

albeit with sharper peaks and a larger gap than the GGA calculations. This is due to

the Hartree-Fock approximation employed in the hybrid functional that uses the bare

electron interaction overriding the screened value of the GGA, resulting in a stronger

localization and a larger gap.

We make the same study for the LS state. In this case, the occupation matrices are

built considering the S = 1/2 state. In the converged LS state, the majority orbital

is occupied by four electrons and the minority part with three electrons. We also

take into account the hybridization, e.g. dxz and dyz symmetry and the sp3d2 hybrid

orbital. This results in six different orbital occupations for the majority channel and

five for the minority one, 66 combinations in total. To reduce the total number of

combinations to be studied, we make use of an estimation of the correlation energy:

EU = U
∑
m

Nm(Nm − 1) (5.2)

where Nm =
∑

σ nmσ, being nmσ the individual occupation at each m orbital and spin

σ =↑, ↓. In the HS state, all the different combinations have EHS
U = 6U and in the

case of the already converged LS is ELS
U = 3.5U . For a given U , the only possibility

to reduce EU is modifying the orbital occupancy. In a simple approximation, the LS
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Figure 5.6: PDOS for Co(d) at the HS-1 ground state, HS-2 metastable states with
DFT+U and the hybrid functional result. Calculations for the HS-1 and HS-2 were
done with U = 5 eV

GS should have a lower or equal ELS
U value as the converged LS state. Therefore, we

consider only those orbital occupations that satisfy EU ≤ 3.5U eV. This reduces the

total number of orbital matrices to be tried out to 23 (see Table 5.3).

After the OMC procedure, only five different states remain. From these states,

only one configuration shows a small energy difference (92 meV) with respect to the

ground state. However, in this low-energy metastable state, the value of the inter-
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atomic forces are of the order of ∼ 0.3 eV/Å. After geometry relaxation, the orbital

occupation converges to the ground state. Therefore, we can disregard this metastable

state. Other metastable states show a difference in energy larger than 800 meV. Thus,

we consider that only the [0.5 1 1 1 1], [0.5 0 1 0.75 1] orbital occupation will be achieved

in DFT calculations.

Initial conf. ↑, ↓ Final conf. ↑, ↓ µSCo (µB) ∆E = E − E0 (eV)

[1 1 1 1 0], [0h 1h 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1 1 1 0], [1h 0h 1] [0.5 1 1 1 1], [0.5 1 0 0.75 1] 1.05 0.092
[1 1 1 1 0], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1h 1h 1], [1 1 0 1 0] [1 1 1 1 1], [0, 1, 0, 1, 0] 2.61 1.23
[1h 1h 1], [0 1 1 1 0] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1h 1h 1], [0 1 0 1 1] [0.5 1 1 1 1], [0.5 1 0 0.75 1] 1.05 0.092
[1h 1h 1], [0h 1h 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] -1.14 0.000
[1h 1h 1], [h 1h 1 0] [0.5 1 1 1 1], [0.5 1 0 0.75 1] 1.05 0.092
[1h 1h 1], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.00
[1h 1h 1], [0 1h 1h] [0.5 1 1 1 1], [0.5 1 0 0.75 1] 1.05 0.092
[1h 1h 1] ,[1hhhh] [0.5 1 1 1 1], [0.5 1 0 0.75 1] 1.05 0.092
[1 1 0 1 1], [1h 1h 0] [0.5 1 1 1 1], [0.5 1 0 0.75 1] -1.05 0.092
[1 1 0 1 1], [0h 1h 1] [0.5 1 1 1 1], [0.5 1 0 0.75 1] 1.05 0.092
[0 1 1 1 1], [1h 1h 0] [0.5 1 1 1 1], [0.5 1 0 0.75 1] 1.05 0.092
[0 1 1 1 1], [1h 0h 1] [0.5 1 1 1 1], [0.5 1 0 0.75 1] -1.00 0.092
[0 1 1 1 1], [1hhhh] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1h 1h], [0h 1h 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1h 1h], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[1 1h 1h], [1hhhh] [1 1 1 1 1], [0 0h 1h] 2.47 0.811
[h 1h 1 1], [1 0 1 0 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[h 1h 1 1], [1h 1h 0] [0.5 1 1 1 1], [0.5 1 1 1 0] 1.17 1.323
[h 1h 1 1], [hhhh 1] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000
[h 1h 1 1], [1hhhh] [0.5 1 1 1 1], [0.5 0 1 0.75 1] 1.14 0.000

Table 5.3: Same information as in Table 5.2 for the LS state. We show the majority
and minority matrices of each calculation. The calculations were done at U = 4 eV.

To obtain a complete analysis of all the chains, we also use the OMC method in

the CrQDI chain. In the converged ground state the majority spin orbital matrix has

four electrons while the minority one is completely empty. From seven different initial
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matrices, only two different states are kept after the energy minimization procedure

(see Table 5.4). One is the ground state given by [0 1 1 1 1], and the other one is the

metastable state [1 1 1 1 0], with a large energy difference of 2.15 eV.

Initial configuration Final conf. µSCr (µB) ∆E = E − E0 (eV)

[0 1 1 1 1] [0 1 1 1 1] 3.71 0.000
[1 0 1 1 1] [0 1 1 1 1] 3.71 0.000
[1 1 0 1 1] [0 1 1 1 1] 3.71 0.000
[1 1 1 0 1] [0 1 1 1 1] 3.71 0.000
[1 1 1 1 0] [1 1 1 1 0] 3.54 2.151
[1 1h 1h] [0 1 1 1 1] 3.71 0.000
[1h 1h 1] [0 1 1 1 1] 3.71 0.000

Table 5.4: Same information as in Table 5.2 for the CrQDI chain. The calculations
were done at U = 5 eV.

5.3 Magnetic anisotropy and exchange coupling

Knowledge of the true ground state is mandatory to obtain the actual magnetic prop-

erties of the chains. In this section, we will calculate the magnetic anisotropic energy

(MAE) and the magnetic exchange coupling constant of the CoQDI and CrQDI chains.

XAS, XMCD and XML experiments

In this section, we will present the experimental data of the CoQDI and CrQDI ob-

tained by XAS/XMCD and XAS/XLD experiments provided by C. Wäckerlin et al..

The XAS experiment is based on electrons getting excited by the absorption of an

X-ray photon. In the XAS/XMCD and XAS/XLD experiments, the photons are

polarized circularly (σL and σR) or linearly (σh or σv) while an external magnetic

field is applied to the sample. Combining the XAS/XMCD and XAS/XLD data with

atomic multiplet calculations the spin state, magnetic coupling and the MAE of each

chain can be determined. The obtained results are given in Table 5.5. The CoQDI

is determined to be in the S = 3/2 ground state, which agrees with our calculations

for the HS state, which points to an electron correlation of U ≥ 5 eV. The CrQDI

is in a 3d4 state, i.e. S = 2, also in agreement with the DFT+U calculations. By
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fitting the XLD data, the CoQDI chain is shown to have the easy-axis aligned along

the y-axis, while in the CrQDI the easy-axis is along the z-axis. The fitted data of

the XLD experiment is used to obtain the crystal field parameters of the systems.

The latter parameters are used in the multiplet calculations to simulate the XMCD

spectra. Because atomic multiplet calculations consider the metal atoms individually

(as if they were paramagnetic), the simulated XMCD spectra (b-f) show a large mag-

netic dichroism in the absence of magnetic interactions. However, the experimental

XMCD of Co is quenched (b,c) and the one of Cr is very weak (e,f), thus suggesting

an antiferromagnetic interaction in both cases.

Figure 5.7: XAS/XMLD and XAS/XMCD experimental and simulated data. The
XAS/XMLD fitted data results is used to simulate the XAS/XMCD spectra. The
solid line indicates the experimental data (green: XAS and red: XLD and XMCD).
The simulations are indicated by the dotted lines (light green: XAS and orange: XLD
and XMCD).

TM atom Spin state µSTM (µB) µLTM (µB) Easy-axis ZFS (meV)

Co 1.47 ∼= 3/2 (HS) 2.94 1.79 y 37
Cr 4/2 4 0.05 z 0.7

Table 5.5: Resulting magnetic properties from the XAS/XMCD and XAS/XMLD
data for the CoQDI and CrQDI chains. The MAE is given by the Zero-Field Splitting
(ZFS)[148, 149] value.
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DFT calculations

The DFT calculations are used to interpret the obtained experimental results in terms

of the electronic structure of the systems. In addition, we will analyze the conse-

quences on the MAE and exchange coupling of the previously found low-energy states

in the CoQDI chain. First, we calculate the MAE for each metal-organic chain. The

spin-orbit coupling (SOC) is evaluated self-consistently, and the MAE is calculated

by the difference in the total energy between the different magnetization alignments

(see Section 2.3). The total energy convergence threshold is set at 10−8 eV.

Magnetic anisotropic energy

For the CoQDI, we have calculated the MAE for the LS, HS-1 and HS-2 states. The

results are given in Table 5.6. For the LS state, the easy-axis is along the chain axis. In

both cases HS-1 and HS-2 states have an in-plane easy-axis across the chain, with the

HS-2 MAE value being twice that of the HS-1 one. Looking to the PDOS in Fig. 5.6 of

the HS-1 state, we see that the dxz,↓ is the closest empty state. According to Ke et al.

[111], transitions between the dz2 and dx2−y2 orbitals to the dxz (m′ = m+1 and σ = σ′

type) favor the in-plane easy-axis. In the HS-2 state, the dxz,↓ is filled, contribution to

set the orbital moment along the y-axis, which is missing in the HS-1 state [55]. The

obtained result for the HS states agrees with the experimentally observed easy-axis,

still the values differ by one order of magnitude from the experimental ones. The order

difference is maintained between the theoretical and measured orbital moments (see

Table 5.7). Note that DFT+U calculations tend to underestimate the orbital moment

(L) [91, 194]. Bruno’s relation [112, 54] states that MAE is proportional to the orbital

moment. In all the cases, the orbital anisotropy shows the largest projection of L

along the easy-axis directions. The change of the MAE between the HS-1 and HS-2

states is not reflected in the orbital moment anisotropy, as it is almost unaffected. The

easy-axis change between the HS and LS states can result from the orbital occupancy

matrix variation.

In the CrQDI chain, the easy-axis is out-of-plane of the chain, i.e. in the z-axis.

The DFT calculation agrees with the XAS/XMLD results in sign and magnitude order.

In Table 5.6, the orbital moment also shows a similar value in both experimental and

DFT results. The calculated orbital anisotropy also follows Bruno’s relation. The
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antiparallel alignment between the orbital moment (L) and spin (S) is due to Hund’s

third rule.

TM atom µLTM (µB) MAE (meV) Easy-axis

Co 0.200 -0.76 (x− z) x
Co (HS-1) 0.207 -1.22 (y − z) y
Co (HS-2) 0.236 -2.76 (y − z) y

Cr -0.039 0.54 (x− z) z

Table 5.6: MAE results for the CoQDI and CrQDI chains. The total energy difference
is calculated between the easy and hardest axis of each chain. The calculation for the
LS state is done with U = 4 eV and the rest with U = 5 eV. We indicate the easy-axis
of each chain and give the orbital moment (µL) along the easy-axis of each TM atom.

TM atom µLTM,x (µB) µLTM,y (µB) µLTM,z (µB)

Co (LS) 0.200 0.039 0.066
Co (HS-1) 0.200 0.207 0.086
Co (HS-2) 0.191 0.236 0.100

Cr -0.013 -0.017 -0.039

Table 5.7: Orbital moment anisotropy of the TM atoms. The projection is calculated
by setting L along the direction of S at the beginning of each calculation (throughout
the self-consistent calculations the collinearity is maintained, i.e., transverse directions
values are negligible).

Magnetic coupling

To obtain the magnetic coupling constant we double the periodic cell, and calculate

the total energy for ferromagnetic (FM) and antiferromagnetic (AFM) spin align-

ments. We let the doubled cell geometry to relax. OMC method is applied to the

HS-CoQDI to ensure the convergence to the HS-1 configuration. From these calcula-

tions, the magnetic exchange coupling constant (J) can be obtained (see Eq. (3.2)).

In Table 5.8, we give the resulting total energy differences between the AFM and FM

states, the coupling constant J and the TM atoms spin magnetic moment.

In the CoQDI, the LS spin state favors a very weak FM coupling, being the total

energy difference less than 1.50 meV. In both HS states, the TM atoms spins prefer
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the antiparallel alignment. The obtained result in the HS-1 state agrees with the

absence of signal in the XMCD experiments. The Cr spins show an AFM coupling.

Remarkably, the band structure of each chain (see ???? and Fig. 5.5), show that the

LS state which prefers a FM coupling is the only metallic one, while the HS states

and CrQDI are both insulators with an AFM coupling. The metallicity and magnetic

coupling follow the same trend observed in the TMO chains.

TM atom ∆E(meV) J (meV) µSTM (µB)

Co (LS) 1.48 2.05 (FM) 1.20
Co (HS-1) -11.07 -2.97 (AFM) 2.73
Co (HS-2) -7.60 -2.02 (AFM) 2.74

Cr -30.43 -4.42 (AFM) 3.71

Table 5.8: Total energy difference calculated as ∆E = EAFM−EFM, coupling constant
and spin magnetic moment. The electron interaction is set to U = 5 eV, except for
the LS state where U = 4 eV.

We will address the AFM coupling of the CrQDI. Considering that the magnetic

interactions between the distant TM atoms occur via the organic molecule, and the

magnetic moment is largely localized in the TM atom, one could expect a low differ-

ence between the magnetic coupling, as in the CoQDI chains. Indeed, the XMCD data

shows an almost negligible signal which can be interpreted as a small antiferromag-

netic coupling. The obtained total energy difference and J value for the CrQDI do not

agree with that interpretation. The difference can be a result of different assumptions

made in the theoretical calculations, such as the U value,the planar geometry, or even

a consequence of effects not considered previously, for instance, the presence of spin

spirals or an anisotropic exchange coupling due to SOC. Therefore, we have performed

an analysis of the change of the CrQDI chain’s exchange coupling constant when the

previous modifications are considered.

Experimental control of the chains with STM showed a weak interaction with the

Au(111) substrate. This effect is also confirmed with the good agreement between the

experimental and DFT calculations in the unsupported chain. The value of U can

be quite large in one-dimensional systems in the absence of interaction with the sub-

strate, for instance, in the previous calculations, the free-standing oxide chains could

reach U ≈ 8 eV (see Chapter 4). Therefore, we analyze the change of J in the range

of U between 0 and 8 eV. The results are given in Table 5.9. As expected, the trend
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of J is to decrease its value upon the increase of U , because the coupling constant is

known to be ∝ U−n, e.g. direct exchange, superexchange interaction etc. [10]. The

coupling for a value of U as large as 8 eV is halved compared to the U = 5 eV, as the

energy difference, in this case, is ∼ 15 eV. The energy difference is reduced, but the

system is weakly AFM.

U J (meV)

0 -19.03
3 -14.56
4 -6.45
5 -4.42
8 -2.09

Table 5.9: Exchange coupling constant variation with respect the value of U for the
CrQDI chain.

To investigate the possibility that J has an anisotropic behavior, i.e. its value

depends on the magnetization orientation. We have performed DFT+SOC calcula-

tions at different magnetization alignments in the doubled cell. The variation of the

resulting magnetic coupling constants, shown in Table 5.10, is weak.

We have also examined the possibility of a non-collinear spin ordering, originated

Axis J (meV/)

x -4.336
y -4.339
z -4.335

Table 5.10: Exchange coupling constant at each crystallographic axis when SOC is
considered for the CrQDI chain.

from the non-negligible interaction between neighbors further than the nearest ones.

The exchange coupling constant between a spin and its n-th neighbors can be obtained

by Fourier transforming the coupling constant for different values of the spin spiral

wave q, Jq:

Jn =
1

Nq

q∑
−q

Jqeiqna, where Jq =
Eq − E0

S2
, (5.3)
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where n is the atom number, a the lattice parameter and Nq the total number of used

q values. In Fig. 5.8(a), we show the obtained total energies for the CrQDI referred

to the energy of q = 0, E0. q = 0 corresponds to the FM alignment and q = 2π
a

1
2

to AFM. Since, the latter q value shows the lowest energy, the AFM alignment is

favored against the formation of spin spirals. Fig. 5.8(b) shows that the next-nearest

exchange constant |J 2| is half the |J 1| value. The exchange constant J for n > 2 is

drastically reduced by one order of magnitude. Thus, the AFM coupling is preferred

over a non-collinear order.

We continue to investigate other possible effects that may change the nearest-

neighbor interaction. We have said earlier that the Au substrate is inert, i.e. negligible

charge transfer, but the substrate can affect the geometry of the chains. Therefore, we

have investigated the stability of the exchange coupling under distortions of the CrQDI

chain that modify the Cr-N bond. We have done these studies at the Γ point in the

doubled cells. Neglecting distortions that do not affect the Cr-N bonds and the three

translational modes, only three possible low-energy (E . 6 meV) and low-frequency

(ν . |1.5| THz) distortions are possible candidates. These three modes appear in the

AFM and FM states. These modes are a soft mode that bends the TM-N bond-length

and two real modes that twist the molecule: one out-of-plane and the other in-plane.

These three distortions are shown in Fig. 5.9. Neither of these low-energy vibrations

can change the preferred coupling. Remarkably, both magnetic orders show the same

trend, showing that J remains constant when low amplitude distortions are applied.

The analysis shows that the exchange coupling is robust under different modi-

fications of the CrQDI chain. The mismatch can be due to other effects, such as,

neglecting the effect of the substrate through weak van der Waals interactions or

screenings effects, recall that the Ir substrate showed a non-negligible screening even

if there was no charge-transfer to the TMO chains. In addition, as we are in the low-

dimensional case, the description of the enhanced exchange-correlation interactions is

on the limit of DFT theory [195].
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Figure 5.8: Total energies and coupling constant resulting from a spin spiral calcu-
lation for the CrQDI chain. (a) The red points are the total energy for each q vector
with respect to the total energy of q = 0, E0. The lue curve shows a fitting to Acos(q),
where A is constant. (b) Resulting Jn for n-th neighbors.
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Figure 5.9: Total energy with respect to the lowest energy (AFM without distortion)
for the AFM and FM orderings in the distorted CrQDI chain.

5.4 Conclusions

We have studied two metal-organic chains, the CoQDI and CrQDI, where organic

ligands connect the transition metal atoms. Our DFT+U calculations show that

the CoQDI has a spin crossover from a low-spin state (S=1/2) to a high-spin state
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(S=3/2), triggered by the U between 4 and 5 eV. Occupancy matrix control calcu-

lations show that the CoQDI chain has a metastable state with S = 3/2 at 72 meV

from the HS ground state. The S = 1/2 state does not show any metastable state.

The CrQDI chain shows only the S = 2 state without metastable states.

In the LS, the exchange coupling between Co atoms is predicted to be FM and

the easy axis is orientated along the chain axis, while in both (ground state and

metastable) HS states an AFM coupling is preferred and the easy-axis is across the

chain axis. The HS state is the one that agrees with the XAS/XMCD and XAS/XMLD

spin and MAE.

In the CrQDI chain, the easy-axis is aligned out-of-plane of the chain in agreement

with the experiments. The XAS/XMCD suggests the presence of a significant AFM

coupling. However, our theoretical calculations show an evident AFM coupling. To

sort out these differences, we have analyzed the coupling constant, J , under several

variations, such as, for U values between 0 and 8 eV, including SOC if there is an

anisotropic exchange effect, a non-collinear spin ordering and lastly, distortions that

modify the Cr-N bond. Except for high values of U , none of these changes significantly

modify the magnetic coupling.



Conclusions

It’ll pass.

The Priest, Fleabag

The main goal of this Thesis is to provide a theoretical description, at the Density

Functional Theory (DFT) level, of the magnetic properties and electronic correlation

of one-dimensional systems. In particular, we have focused on two types of magnetic

chains: oxide chains XO2, where X=Ni, Co, Fe and Mn on Ir(100) substrate, and

XQDI chains, where the X=Co and Cr atoms are connected with the organic molecule

(QDI), grown in a Au(111) substrate.

In the first part of the Thesis, we have analyzed the XO2 chains using the DFT+U

method. By varying the distance between the atoms for different values of U , we show

that the X atoms can have different spin states. The bond-lengths variation allows to

achieve different magnetic states, while the larger U values the larger the S value that

can be obtained. For large U values all equilibrium geometries are in a magnetic state.

Considering that the Ir(100) substrate screens the value of U , we set U = 1.5 eV for

the calculations. The NiO2, CoO2, FeO2 chains prefer the antiferromagnetic (AFM)

coupling, while the MnO2 favors a ferromagnetic (FM) coupling. The metallicity of

each chain seems to be related to the preferred magnetic coupling, as the MnO2 is

half-metallic while the other chains are insulators. We have studied the magnetic

anisotropy energy (MAE) using two different methods: the self-consistent, where the

spin orbit coupling (SOC) is evaluated self-consistently and the force theorem (FT),

where SOC is added to a converged scalar-relativistic electron density without self-

consistent iterations. In the latter method, the MAE is obtained by the difference over
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the band energies of the system for two different magnetization alignments and in the

former one by the difference of the total energies, also, for two different spin orienta-

tions. Because of the needed fine convergence of the MAE, we use both methods as

the latter is computationally less demanding than the first method. The calculations

show that NiO2 and CoO2 have the easy-axis of magnetization across the chain di-

rection, while the FeO2 and MnO2 easy-axis is out-of-plane of the chain. In the NiO2

the FT and the self-consistent MAE agree in the predicted easy-axis, but the values

differs largely. An analysis of the bands when SOC is included shows that the FT

methods fails to accurately describe SOC effects near Fermi level. Because of the low-

dimensionality of the system the wave functions is not as constrained with symmetries

as in the bulk, hence, allowing a larger change when SOC is included that the FT

is not capable of describe. We have calculated the contribution of each eigenstate to

the MAE and the main difference between the preference of in-plane or out-of-plane

due to occupation of the dz2 . When this orbital empties (FeO2 and MnO2 chains) the

easy-axis is set out-of-plane.

We have seen that the U parameter is a key component to obtain magnetic states,

in the previous calculation this value has been estimated considering screenings effects

due to the Ir(100) substrate. By combining DFT and constrained Random Phase

approximation (cRPA) calculations, we have obtained the value of U and J for each

chain. The cRPA calculations based on the projection method allows to separate the

correlated space and the rest-of-space, while transitions between these two spaces are

not neglected. The latter calculation has been done for the unsupported and supported

chains. In the planar unsupported case, the insulator FeO2 reaches the largest value

of U ∼ 7.67 eV, while the CoO2 and MnO2 are of the order of U ∼ 6 eV. The

NiO2 shows a different behavior, having two different orbital occupancy configurations

depending on the value of the U , while maintaining the same spin state, labeled as

C1 and C2. Each configuration converges to a different U value: UC1 = 6.6 eV and

the C2 to UC2 = 2.41 eV. To account for the d − p ligand effects we use the shell-

folded method, where O(p) orbitals are included in the correlated space, the resulting

d − p interaction is used to renormalize the value of U . These calculations confirms

that the ligand-field effect on the correlation between the Ni(d)-O(p) varies for each

configuration. Varying the correlated space to include the O(s) or O(p) orbitals allows

to set main contribution to the screening, whi is the O(p) orbital in the free-standing

case. Non-planar unsupported calculations do not show any significant variation of U
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with respect to the planar one.

In the supported case, the value of U is reduced compared to the unsupported

case. The largest difference is for FeO2/Ir, where upon deposition, the chain goes

from an insulating to a metallic state. Because of the charge transfer from the Ir(100)

substrate to the chain, the orbital configuration can be modified, e.g., the NiO2/Ir

shows a similar configuration to the C2, and the Fe atoms spin state changes from a

S = 2 to a S = 3/2 state. This in turn modifies the ligand-field between the X − O
atoms being another contribution to the screening. The shell folded method confirms

that the substrate changes the ligand-field between the X(d)-O(p) atoms. Inclusion

of the O(sp) into the correlated space shows that in this case the Ir substrate screens

both X and O atoms. So, in the supported case, the Ir affects both the X and O

atom, therefore, there are two contributions to the screening hybridization with the

Ir substrate and the X−O ligand-field modification due to the charge transfer. These

two contributions can not be decoupled from each other. We analyze if an artificial

lifting of the chain from the substrate could reproduce the free-standing U value. The

Ir substrate gives a non-negligible contribution to the screening in all the tried heights.

In the last part of the Thesis, we have studied the CoQDI and CrQDI polymeric

chains. Previous experiments showed that the chains could be easily manipulated

with the STM, suggesting a weak coupling with the Au(111) substrate. Therefore,

the calculations have been made considering a free-standing chains. For values of

4 ≥ U ≤ 5 eV the CoQDI chain shows a spin crossover, i.e., a spin transition from a

low spin (LS) state S = 1/2 to a high spin (HS) state (S = 3/2). For U = 4 eV, the

ground state is at the LS state, while at U = 5 eV the HS becomes the ground state

configuration. In the CrQDI, only the S = 2 state is found for the studied range of U

values. We analyzed the different possible orbital occupations with the same spin us-

ing the occupancy matrix control (OMC) method. OMC calculations show that there

is an excited state for the CoQDI with S = 3/2 at 72 meV with respect to the ground

state for U = 5 eV. The converged metastable states of LS-CoQDI and CrQDI show a

large difference in the energy with respect the ground state energy, thus, these states

can be disregarded. We have calculated the MAE for all CoQDI states and the CrQDI

chain. In the CoQDI, the HS ground and metastable states prefer an AFM coupling

and in-plane easy-axis across the chain axis. In the LS state the preferred coupling is

FM, and the easy-axis is aligned to the chain axis. In the case of the CrQDI, the pre-

ferred magnetic coupling is the AFM one and the easy-axis is the out-of-plane of the
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chain. These theoretical results are used to interpret the experimental data obtained

by XMCD and XLD experiments performed by C. Wäckerlin et al.. In the CoQDI

chain, the measurements agree with the predicted magnetic properties of the HS state.

For the CrQDI, the experimental data agree with the MAE and AFM prediction. The

magnetic coupling constant J , remains unchanged upon various alteritions, such as,

increasing the U value, non-collinear spin orders or distorting the chain.

To sum up, we show that electron correlation is a key feature to determine the

magnetic properties of one-dimensional systems. The cRPA calculations show that

different values of U are allowed for different atomic species depending on the configu-

ration of the d orbital and the interaction with the substrate. In addition, a study over

different U needs to be made to not miss the possible states with different orbital con-

figurations. Magnetic properties, in localized magnetism, is governed by the orbital

occupations, hence, varying the orbital occupations can alter the magnetic properties

of the same atomic species. Metastable states are a handicap for the DFT+U cal-

culation, as the energy minimization procedure can get trapped in a local minimum.

Hence, methods like the OMC needs to be applied to facilitate finding the ground

state.



Appendix A

Magnetic Anisotropy Energy

(MAE) convergence test

A.1 Convergence details

The small value of the MAE in bulk (∼ 10 µeV) and low dimensional systems (∼ 10

meV) imposes a strict convergence criterion. We compute the MAE of the TMO chains

for different energy cut-offs for the plane-wave basis, from 350 to 650 eV, with a step

of 50 eV. and 25× 1× 1, 35× 1× 1 and 45× 1× 1 k-point grids. For the DFT+SOC

calculations, the convergence threshold of the total energy is set to 10−8. The MAE

can be considered converged by 500 eV, with subtle differences (∼ µeV) for higher

cut-offs. All chains show a properly converged MAE for a 35×1×1 k-grid, except the

MnO2 where 45 k-points are needed. To characterize the orbital partial occupation

effects, we calculate the self-consistent MAE with the tetrahedron method1 [196] and

with Fermi-Dirac distribution for several values of the width, σ = 0.02, 0.05, 0.1 eV.

In the FT approach, we use an Fermi smearing of σ = 0.05 eV width, to consider an

in-between value of the SCF.

In Tables A.1 to A.3 the resulting energy differences are shown. In the SCF

calculations, the MAE shows little variation with the smearing, particularly in the

1We say tetrahedron as it is the methods name, but as 1D instead of tetrahedron is triangular.
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FeO2 chain. Considering that σ influences the partial occupations of orbitals, it is to

be expected that the metallic systems, i.e., NiO2, and MnO2, are the ones that have a

larger variation compared to the semimetallic CoO2 and the insulating FeO2 chains.

MAE= Ex − Ey (meV)

FT SCF

σ = 0.05 (eV) Tetra σ = 0.02 σ = 0.05 σ = 0.1

NiO2 1.74 6.09 6.62 7.06 5.23

CoO2 0.40 0.57 0.57 0.58 0.59

FeO2 0.02 0.07 0.07 0.08 0.07

MnO2 0.23 0.32 0.29 0.25 0.21

Table A.1: XO2 MAE between x − y directions computed with a cut-off of 650 eV
and a 45×1× 1 k-point mesh.

MAE= Ex − Ez (meV)

FT SCF

σ = 0.05 (eV) Tetra σ = 0.02 σ = 0.05 σ = 0.1

NiO2 -0.29 -0.35 -0.36 -0.36 -0.33

CoO2 -0.12 -0.27 -0.26 -0.28 -0.30

FeO2 0.83 1.12 1.20 1.20 1.22

MnO2 0.31 0.64 0.59 0.52 0.51

Table A.2: Same as Table A.1 for directions x− z.

MAE= Ey − Ez (meV)

FT SCF

σ = 0.05 (eV) Tetra σ = 0.02 σ = 0.05 σ = 0.1

NiO2 -2.04 -6.43 -6.98 -7.15 -5.57

CoO2 -0.51 -0.84 -0.83 -0.86 -0.86

FeO2 0.81 1.13 1.27 1.13 1.13

MnO2 0.54 0.96 0.88 0.78 0.96

Table A.3: Same as Table A.1 for directions y − z.
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cRPA calculations

B.1 FLEUR and SPEX convergence parameters

A summary of the convergence parameters is given in Table B.1. The FLAPW wave-

functions are expanded up an the angular moment lmax = 8, 6, 8 for X, O and Ir atoms

respectively, and the non-spherical contribution is set to lnonsphmax = lmax− 2. In SPEX,

the mixed basis product angular moment is set to Lmax = lmax/2 and the plane wave

energy cut-off is set to 0.75Ewvf
c , where Ewvf

c is the plane-wave energy cut-off.

MnO2 FeO2 CoO2 NiO2

RX
MT (a.u.) 2.24(2.16) 2.28(2.14) 2.23(2.11) 2.23(2.11)

RO
MT (a.u.) 1.27(1.22) 1.29(1.21) 1.26(1.19) 1.26(1.19)

RIr
MT (a.u.) 2.45 2.35 2.37 2.34

Ewvf
c (a.u.−1) 4.7(4.9) 4.5(5.0) 4.7(5.0) 4.6(4.5)

Epot
c (a.u.−1) 14.2(14.7) 13.8(14.9) 14.2(14.9) 14.1(13.0)

Table B.1: Convergence parameter used in the FLAPW and SPEX calculations for
the unsupported (supported) chains. The R are the muffin-tin radii where the local
basis functions are considered for each atom. The energy cut-offs of the interstitial
planes and potential are given by Ewvf

c and Epot
c . Values between the parenthesis are

for the supported case.
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B.2 cRPA calculation results

In Table B.2 we give the converged U and J values at each spin channel combination.

The maximum spread between the different spin channels is ∼ 0.5 eV for the U value

and ∼ 0.15 eV for the J .

U↑↑ U↑↓ U↓↓ J↑↑ J↑↓ J↓↓

MnO2 6.21 5.95 5.73 1.04 0.95 0.89

MnO2/Ir(100) 3.78 3.53 3.33 0.98 0.88 0.83

FeO2 7.67 7.38 7.12 1.13 1.04 0.97

FeO2/Ir 1.38 - 1.32 0.80 - 0.73

CoO2 5.73 5.58 5.45 1.11 1.05 1.00

CoO2/Ir 2.39 - - 0.90 - -

NiO2 (C1) 6.59 6.49 6.38 1.17 1.13 1.10

NiO2 (C2) 2.41 2.40 2.39 1.01 1.00 1.00

NiO2/Ir 1.71 - 1.70 0.87 - 0.86

Table B.2: Averaged screened Coulomb parameter for different spin channels. All
values in eV.

MnO2 with 3 layers of Ir(100)

We calculate the Hubbard-U interaction for a three layered MnO2/Ir system. We

obtain U = 3.86 eV and J = 1.00 eV on a first iteration with cRPA. The obtained

U value differs slightly by 0.12 eV from the two-layer case, suggesting that two layers

are enough to characterize the screening due to Ir substrate. In Fig. B.1 we show the

MLWFs band interpolation compared to the band structure obtained with FLEUR.
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Figure B.1: Wannier band interpolation (FLAPW band structure) for MnO2 with 3
layers of Ir in red (black).
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Ponweiser, Junfeng Qiao, Florian Thöle, Stepan S. Tsirkin, Ma lgorzata

Wierzbowska, Nicola Marzari, David Vanderbilt, Ivo Souza, Arash A. Mostofi,

and Jonathan R. Yates. Wannier90 as a community code: New features and

applications. Journal of Physics Condensed Matter, 32(16), 2020. (Cited in

page 31.)

[129] Christoph Friedrich, Arno Schindlmayr, and Stefan Blügel. Efficient calculation
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