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Title: Spectral analysis of Dirac operators on bounded domains

Abstract This thesis is devoted to the spectral study of two types of perturbation of the
Dirac operator, which are singular from the point of view of scaling.

In the first part of this thesis, we consider the coupling of the Dirac operator with a combi-
nation of delta-shell interactions of electrostatic, Lorentz scalar, and magnetic type supported
either on regular compact surfaces or locally deformed hyperplanes. We develop an approach
based on regularization techniques that will allow us to describe the self-adjoint realization
of the perturbed Dirac operator for any combination of the coupling constants. We then in-
vestigate the qualitative spectral properties of the various models using a Birman-Schwinger
principle and a Krein-type formula relating the resolvent of the perturbed operator to that
of the free Dirac operator, and we pay special attention to the case of critical combinations
of coupling constants and those that give rise to the phenomenon of confinement.

In the second part, we study the coupling of the Dirac operator with non-critical combi-
nations of delta interactions supported on non-regular compact surfaces. We first generalize
the results obtained in the context of regular surfaces to the case of surfaces locally coincident
with the graph of a Lipschitz function whose gradient is bounded and has vanishing mean
oscillations. For this we use some techniques from harmonic analysis, potential theory and
Fredholm’s theory. Moreover, in the case of Hölder surfaces, we show how the smoothness
of the surface supporting the delta interactions affects the Sobolev regularity of the domain
of the operator under consideration. In a second step, we investigate delta-interactions sup-
ported on surfaces satisfying certain weak topological conditions. We first study the Dirac
operator coupled with the electrostatic and Lorentz scalar delta-shell interactions supported
on uniformly rectifiable surfaces. Under certain conditions on the coupling constants, we
prove the self-adjointness fo the perturbed operator and we establish several spectral proper-
ties in the Lipschitz case. In particular, we determine the essential spectrum of the perturbed
operator and we show that at most a finite number of eigenvalues can appear in the gap.
Moreover, we fit these results to other delta-shell interactions and derive several models of
Dirac operators that give rise to the confinement phenomenon.

In the third part of this thesis, we are concerned the study of the pseudodifferential
properties of Poincaré-Steklov (PS) operators associated with the Dirac operator with the
MIT bag boundary condition. First, we show that the PS operators fit well into the framework
of classical pseudodifferential operators. Then, we study the PS operators from the point
of view of semiclassical pseudodifferential operators, where the semiclassical parameter is
given by the inverse of the mass. In particular, using some regularity properties of the MIT
bag operator, we show that the PS operators are zero-order semiclassical pseudodifferential
operators, and we determine their semiclassical principal symbols. In a second step, we study
the Dirac operator coupled with a potential depending on an additional mass and supported
outside a regular domain. When the additional mass is large enough, using the symbolic
calculus and the properties of the PS operators, we establish a Krein-type formula relating
the resolvent of the perturbed operator to that of the MIT bag operator. With its help, we
show that the perturbed operator converges in the norm resolvent sense towards the MIT
bag operator and give a sharp estimate of the convergence rate.

Keywords: Spectral analysis, Dirac operators, self-adjoint extensions, shell interactions,
quantum confinement, Poincaré-Steklov operators, the MIT bag model, h-Pseudodifferential
operators, large coupling limits.

Titre: Analyse spectrale d’opérateurs de Dirac sur des domaines bornés
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Résumé Cette thèse est consacrée à l’étude spectrale de deux types de perturbations de
l’opérateur libre de Dirac en dimension 3, qui sont singulières d’un point de vue de changement
d’échelle.

Dans la première partie, nous nous intéressons au couplage de l’opérateur de Dirac avec
une combinaison de delta interactions du type électrostatique, scalaire de Lorentz et mag-
nétique, qui sont supportés soit sur des surfaces régulières et compactes ou sur des per-
turbations locales et régulières de l’hyperplan. Nous développons une approche basée sur
des techniques de régularisations qui nous permettra de décrire pour toute combinaison des
constantes d’interactions la réalisation auto-adjoint de l’opérateur considéré. Ensuite, nous
étudions les propriétés spectrales qualitatives des différents modèles à l’aide d’un principe
de Birman-Schwinger et une formule de Krein qui relie la résolvante de l’opérateur perturbé
avec celle de l’opérateur libre de Dirac, et nous portons une attention particulière au cas des
combinaisons critiques de constantes de couplage et à celles qui donnent lieu au phénomène
de confinement.

Dans la deuxième partie, nous étudions le couplage de l’opérateur de Dirac avec une
combinaison de delta interactions non critiques supportées sur des surfaces compactes non
régulières. Dans un premier temps, nous généralisons les résultats obtenus dans le cadre des
surfaces régulières au cas des surfaces qui coïncident localement avec le graphe d’une fonction
dont le gradient est borné et a des oscillations moyennes nulles. Pour cela, nous utilisons
des techniques d’analyse harmonique et la théorie du potentiel. De plus, nous mettons en lu-
mière l’influence de la régularité de la surface supportant les delta interactions sur la régularité
Sobolev du domaine de l’opérateur sous considération dans le cas des surfaces Hölderienne.
Dans un second temps, nous considérons le cas de delta interactions supportées sur des sur-
faces satisfaisant certaines conditions topologiques faibles. Nous étudions d’abord l’opérateur
de Dirac couplé avec les delta interactions électrostatique et scalaire de Lorentz supportées
sur des surfaces uniformément rectifiables. Sous certains conditions sur les constantes de cou-
plages, nous prouvons que l’opérateur perturbé est auto-adjoint et nous établissons plusieurs
propriétés spectrales dans le cas Lipschitzienne. En particulier, on détermine le spectre es-
sentiel de l’opérateur perturbé et on démontre qu’au plus un nombre fini de valeurs propres
peut apparaître. Puis, nous adaptons ces résultats à d’autres interactions et nous dérivons
plusieurs model d’opérateur de Dirac qui donnent lieu au phénomène de confinement.

Dans la troisième partie de cette thèse, nous nous intéressons à l’étude des propriétés
pseudodifférentiel d’opérateurs de Poincaré-Steklov (PS) associés à l’opérateur de Dirac avec
la condition au bord dite MIT bag. Dans un premier temps, nous montrons que ces derniers
s’inscrivent bien dans le cadre des opérateurs pseudodifférentiel classiques. Ensuite, nous
étudions les opérateurs PS d’un point de vue d’opérateurs pseudodifférentiel semiclassique,
où le paramètre semi-classique est donné par l’inverse de la masse. En particulier, à l’aide de
certaines propriétés de régularités de l’opérateur MIT bag, nous montrons que les opérateurs
PS sont des pseudo semi-classique d’ordre zéro et nous déterminons également leurs symboles
principaux semi-classique. Dans un second temps, nous étudions le couplage de l’opérateur
de Dirac avec un potentiel supporté à l’extérieur d’un domaine régulier et qui dépend d’une
masse supplémentaire. Quand cette dernière est suffisamment grande, en utilisant le calcul
symbolique et les propriétés des opérateurs PS, nous établissons une formule de Krein reliant
la résolvante de l’opérateur perturbé avec celle de l’opérateur MIT bag. De plus, nous mon-
trons que l’opérateur perturbé converge au sens de la norme de la résolvante vers l’opérateur
MIT bag et nous donnons une estimation précise du taux de convergence.

Mots-clés: Analyse spectrale, opérateurs de Dirac, extensions auto-adjointes, δ-interactions,
opérateurs de Poincaré-Steklov, le model MIT bag, opérateurs h-Pseudodifferentiel, couplage
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fort.

Título: Análisis espectral de operadores de Dirac en dominios acotados

Resumen Esta tesis está dedicada al estudio espectral de dos tipos de perturbaciones del
operador libre de Dirac en dimensión 3, que son singulares desde el punto de vista de la
escala.

En la primera parte, nos interesa el acoplamiento del operador de Dirac con una combi-
nación de interacciones delta del tipo electrostático, escalar de Lorentz y magnético, que se
apoyan bien en superficies regulares y compactas o en perturbaciones locales y regulares del
hiperplano. Desarrollamos una aproximación basada en técnicas de regularización que nos
permitirá describir para cualquier combinación de constantes de interacción la realización au-
toadjunta del operador considerado. A continuación, estudiamos las propiedades espectrales
cualitativas de los diferentes modelos con la ayuda de un principio de Birmann-Schwinger y
una fórmula de Krein que relaciona el resolvente del operador perturbado con el del oper-
ador libre de Dirac, y prestamos especial atención al caso de las combinaciones críticas de
constantes de acoplamiento y a las que dan lugar al fenómeno de confinamiento.

En la segunda parte, estudiamos el acoplamiento del operador de Dirac con una combi-
nación de interacciones no críticas delta soportadas en superficies compactas no regulares. En
primer lugar, generalizamos los resultados obtenidos en el marco de las superficies regulares
al caso de las superficies que coinciden localmente con la gráfica de una función cuyo gradi-
ente está acotado y tiene oscilaciones medias nulas. Para ello, utilizamos técnicas de análisis
armónico y la teoría del potencial. Además, destacamos la influencia de la regularidad de la
superficie que soporta las interacciones delta en la regularidad de Sobolev del dominio del
operador considerado en el caso de las superficies hölderianas. En un segundo paso, con-
sideramos el caso de las interacciones delta soportadas en superficies que satisfacen ciertas
condiciones topológicas débiles. En primer lugar, estudiamos el operador de Dirac acoplado
con las interacciones electrostáticas delta y escalares de Lorentz soportadas en superficies
uniformemente rectificables. Bajo ciertas condiciones sobre las constantes de acoplamiento,
demostramos que el operador perturbado es autoadjunto y establecemos varias propiedades
espectrales en el caso Lipschitziano. En particular, determinamos el espectro esencial del
operador perturbado y mostramos que a lo sumo puede aparecer un número finito de valores
propios. A continuación, adaptamos estos resultados a otras interacciones y derivamos varios
modelos de operadores de Dirac que dan lugar al fenómeno de confinamiento.

En la tercera parte de esta tesis, estudiamos las propiedades pseudodiferenciales de los
operadores de Poincaré-Steklov (PS) asociados al operador de Dirac con la condición de bolsa
MIT. En primer lugar, mostramos que estos operadores encajan bien en el marco de los op-
eradores pseudodiferenciales clásicos. A continuación, estudiamos los operadores PS desde el
punto de vista de los operadores pseudodiferenciales semiclásicos, donde el parámetro semi-
clásico viene dado por la inversa de la masa. En particular, utilizando algunas propiedades
de regularidad del MIT operador , mostramos que los operadores PS son pseudo-semiclásicos
de orden cero y también determinamos sus símbolos principales semiclásicos. En un segundo
paso, estudiamos el acoplamiento del operador de Dirac con un potencial soportado fuera de
un dominio regular y que depende de una masa adicional. Cuando este último es lo sufi-
cientemente grande, utilizando el cálculo simbólico y las propiedades de los operadores PS,
establecemos una fórmula de Krein que relaciona el resolvente del operador perturbado con
el del MIT operador . Además, mostramos que el operador perturbado converge en el sentido
de la norma del resolvente al del MIT operador y damos una estimación precisa de la tasa
de convergencia.

5



Palabras clave: Análisis espectral, operadores de Dirac, extensiones autoadjuntas, δ-
interacciones, operadores de Poincar’e-Steklov, el modelo del MIT bag, acoplamiento fuerte,
operadores h-Pseudodiferenciales.

Research units:

• Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, 33405
Talence Cedex, France,

• Departamento de Matemáticas, Universidad del País Vasco, Barrio Sarriena s/n 48940
Leioa, Spain,

• BCAM-Basque Center for Applied Mathematics, Alameda Mazarredo 14, 48009 Bilbao,
Spain.

This research is supported by the ERC-2014-ADG Project HADE Id. 669689
(European Research Council) and by the Spanish State Research Agency through
BCAM Severo Ochoa excellence accreditation SEV-2017-0718.

6



Contents

Contents 7

Introduction 9

Introduction (french) 27

Introducción (spanish) 33

1 Layer potentials associated with the Dirac operator 38
1.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2.1 Sobolev and Besov spaces . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.2.2 The Dirac-Sobolev space . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.3 Integral operators associated with H, Hardy spaces and Calderón’s decompo-
sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.3.1 The case of C 2-smooth domains . . . . . . . . . . . . . . . . . . . . . 56

2 On the Dirac operator with δ-interactions supported on smooth surfaces 63
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2 Self-adjointness of Hκ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.1 On the Dirac Operator with Electrostatic and Lorentz scalar δ-Shell
interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.2 The operators Λa± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Spectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3.1 Non-critical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.3.2 Critical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.4 Quantum confinement induced by Dirac operators with anomalous magnetic
δ-shell interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3 Analysis of Dirac operators with δ-interactions supported on the bound-
aries of rough domains 99
3.1 Self-adjointness and confinement: critical and non-critical case . . . . . . . . 100

3.1.1 Non-critical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.1.2 Critical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1.3 On the confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.1.4 The β and the γ transformations of the electrostatic and the magnetic

δ-potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.2 Delta interactions of electrostatic and magnetic type . . . . . . . . . . . . . . 109

3.2.1 δ-interactions supported on the boundary of a Lipschitz domain with
a normal in VMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7



CONTENTS

3.2.2 Sobolev regularity of dom(Hκ) for δ-interactions supported on the bound-
ary of a C 1,ω-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2.3 δ-interactions supported on the boundary of a bounded uniformly rec-
tifiable domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.2.4 Spectral properties of Hµ̃ and Hυ̃ . . . . . . . . . . . . . . . . . . . . . 124
3.3 On the confinement induced by delta interactions involving the Cauchy operator127

4 Poincaré-Steklov operators for the MIT bag Model 133
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.1.1 Symbol classes and Pseudodifferential operators . . . . . . . . . . . . . 134
4.2 Basic properties of the MIT bag operator . . . . . . . . . . . . . . . . . . . . 136
4.3 Principal symbol of the Poincaré-Steklov operator . . . . . . . . . . . . . . . 140
4.4 Approximation of the Poincaré-Steklov operators for large mass . . . . . . . 147

4.4.1 Algebric properties of L0 . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.4.2 Semiclassical parametrix for the boundary problem . . . . . . . . . . . 151
4.4.3 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.5 Krein-type resolvent formula and resolvent convergence to the MIT bag operator159
4.6 Appendix A. Resolvent convergence: the case of C 2-smooth domains . . . . . 169

Bibliography 172

8



Introduction

This introduction presents the context of δ-interactions for Dirac operators and Dirac
operators on domains treated in this thesis. We first review the existing literature on the
subject, then we briefly present our contributions.

The intertwining of mathematics with physics has led to their evolution over the centuries,
and has resulted in a vast development of mathematics as well as many fields in physics. The
development of the theory of (special and general) relativity and the theory of quantum
mechanics made the beginning of the 20th century a turning point in the history of physics.
Indeed, on the one hand, the relativistic Pythagorean energy relation E =

√
c2p2 +m2c4

(here E, p, m > 0 and c denote the energy, the momentum, the mass and the speed of light,
respectively) of the special theory of relativity coherently describes the physical phenomena
involving speeds close to that of light. On the other hand, with its fundamental Schrödinger
equation, the theory of quantum mechanics describes the structure and the evolution in
time and space of physical phenomena at the scale of the atom and below. Very quickly,
physicists noticed that Schrödinger’s equation does not respect covariance, a principle arising
from special relativity, which leads them to the following question: can we unify quantum
mechanics and special relativity in order to describe the evolution of particles moving at great
speeds (i.e., close to that of light)?. Relativistic quantum mechanics thus began with the
arrival of the Klein-Gordon equation. Indeed, starting from the classical relativistic energy-
momentum relation E2 = c2p2 + m2c4, and using the operators associated with the energy
and the momentum, i.e.,

E −→ i~∂t, p −→ −i~∇,

where ~ is the Planck’s constant and∇ is the gradient in R3, we end up with the Klein-Gordon
equation

i~∂2
t ψ(t, x) = (−c2~2∆ +m2c4)ψ(t, x), t ∈ R, x ∈ R3,

where, ψ denotes the wave function and ∆ is the Laplace operator. However, the Klein-
Gordon equation is not consistent with a quantum mechanical interpretation since it has
a second time derivative and does not have an L2-conservation law. Indeed, to formulate
an equation consistent with a quantum mechanical interpretation, one needs an equation
that conserve the L2-norm of the solution and such that the wave function at time t = 0
determines the wave function at all times. Paul Dirac then looked for a way to modify the
Klein-Gordon equation to obtain an equation containing a first order derivative in time, like
the Schrödinger equation, while respecting the covariance from the point of view of special
relativity. The first step in his approach consists in setting a linear Hamiltonian in the time
derivatives. It is normal to believe that the dependence of the Hamiltonian on the spatial
derivatives will also be linear. With these considerations, we get the following equation

i~∂tψ(t, x) = −ic~(α1∂x1 + α2∂x2 + α3∂x3)ψ(t, x) + βmc2ψ(t, x), t ∈ R, x ∈ R3,
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where α = (α1, α2, α3) and β have to be determined from the energy-momentum relation.
We then see that it is impossible for the coefficients αj and β to be scalars, but it is possible
if αj and β are 4× 4 matrices satisfying α2

j = β2 = I4 and the anticommutation relationship

αjαk = −αkαj for j 6= k, and αjβ = −βαj .

Using the Pauli matrices σ = (σ1, σ2, σ3) defined by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (0.0.1)

Dirac introduced the standard representation

αk =
(

0 σk
σk 0

)
for k = 1, 2, 3, β =

(
I2 0
0 −I2

)
, (0.0.2)

which satisfies the above relations. Thus, he introduced the equation which bears his name
"the Dirac equation":

i∂tϕ(t, x) = Hϕ(t, x), ϕ(·, x) : R3 → C4,

which describes the motion of a free massive particle of spin-1/2 in R3 (typically relativistic
electron or positron). Since then the Dirac equation has played an important role in several
areas of physics and mathematics and has plenty of applications in quantum mechanics.

It is well-know that the study of spectral properties of an operators gives fundamental
informations from point of view of quantum mechanics, since when the particle is subjected to
the action of an external potential V , the linear Dirac equation (H+V )ϕ = λϕ appears when
looking for bound states of the particle; cf. [103] for example. The dynamical properties of the
considered quantum system can be derived from the understanding of the spectral features
of the resulting Hamiltonian.

In contrast to the Schrödinger operator, in which the free operator −∆ is nonnega-
tive, the free Dirac operator H is unbounded both above and below, and its spectrum is
Sp(H) = (−∞,−m] ∪ [m,∞). Hence, one cannot define the Friedrich’s extension for sym-
metric perturbations of H since they are not bounded below, and this creates challenges in
the analysis of perturbations for the Dirac operator.

The aim of this doctoral thesis is to investigate the spectral properties of some particular
perturbation of the Dirac operator H = −iα · ∇+mβ (where from now on, we use the units
c = ~ = 1), which are singular from the point of view of scaling, and Dirac operators on
domains of R3 with special boundary conditions.

In the first part of this thesis, we study several Dirac operators with δ-interactions sup-
ported on the boundaries of domains. Formally, for Ω an open set of R3, these operators act
on L2(R3)4 and are defined by the following common (differential) expression

Ha,τ := H + Va,τ = H +Aa,τδ∂Ω, (0.0.3)

where Aa,τ is a bounded invertible, self-adjoint operator in L2(∂Ω)4, which depends on pa-
rameters (a, τ) ∈ R × Rn, n > 1, and the δ-potential is the Dirac distribution supported on
∂Ω.

In the second part, we focus on the study of the spectral asymptotic of the coupling of the
Dirac operator with a large mass potential supported on the exterior of a domain Ω ⊂ R3,
and we study its connection with the Dirac operator on Ω with the MIT bag boundary

10



Introduction

condition. There, the operator we are interested on acts on L2(R3)4, and is defined by the
formal expression:

HM := H +Mβ1R3\Ω. (0.0.4)

Shell interactions for Dirac operators. The study of Dirac operators coupled with
interactions supported on sets of zero Lebesgue measure has a long story. As far as we know,
in three dimension, [48] is first paper providing a rigorous mathematical analysis of relativistic
shell interactions of the form (0.0.3), where J. Dittrich, P. Exner and P. Šeba studied in the
case of the sphere (i.e., ∂Ω = S2

r) the Dirac operator with electrostatic and Lorentz scalar
δ-sphere interactions, defined by the expression:

Hε,µ := H + (εI4 + µβ)δ∂Ω, (ε, µ) ∈ R2.

Here, εI4 is the electrostatic potential and µβ is the Lorentz scalar potential. In [48], the
operators Hε,µ was defined as follows

Hε,µφ = Hφ for φ ∈ C∞0 (R3 \ S2
r ,C2) =: C∞0 (R3 \ S2

r)4.

After reducing the problem to the one-dimensional case by using the spherical symmetry and
the decomposition into spherical harmonics, the authors proved the essential self-adjointness
of Hε,µ and constructed its self-adjoint extension for any ε, µ ∈ R such that ε2 − µ2 6= 4.
Moreover, they pointed out that under the assumption ε2−µ2 = −4, the spherical shell (i.e.,
the boundary of Ω) becomes impenetrable barrier between the two regions Ω and R3 \ Ω.
Physically, this means that at the time t = 0, if the particle in consideration (an electron
for example) is in the region Ω (respectively in R3 \ Ω), then during the evolution in time,
it cannot cross the surface ∂Ω to join the region R3 \ Ω (respectively Ω ) for all t > 0.
Mathematically, this means that the Dirac operator in consideration decouples into a direct
sum of two Dirac operators acting respectively on Ω and R3 \Ω, with appropriate boundary
conditions. In particular, when ε = 0 and µ = 2, this phenomenon has been known to physi-
cists since the 1970’s (cf.[44] and [70] for example); and its mathematical model described by
the so-called Dirac operator with the MIT boundary conditions (see below for its rigorous
definition). Shortly afterwards and independently, in his paper [49], F. Dominguez-Adame
also considered the operator Hε,µ in the spherical case with a special attention to the study
of bound and scattering states. A decade later, J. Shabani and A. Vyabandi [98] took over
the spectral analysis of the Dirac operator Hε,µ. In particular, they proved a resolvent for-
mula for Hε,µ and studied the scattering theory of this model. Moreover, they investigated
the non-relativistic limit, proving that the non-relativistic limit of Hε,0 and H0,µ (i.e., when
µ = 0 and ε = 0, respectively) yield the Schrödinger operator with δ-interactions.

Since the arguments used in the papers cited above are specific to δ-sphere interactions,
it is not possible to extend them to more general domains. Because of that (but not only),
the study of relativistic δ-interactions supported on general surfaces has known a long period
of silence (24 years !), unlike its non-relativistic counterpart (i.e., Schrödinger operators with
δ-shell interactions) where the approach involving a quadratic form is available to tackle such
a problem. Indeed, to the best of our knowledge, since the publication of [48, 49], and apart
from J. Shabani and A. Vyabandi paper [98], and the paper [5] where N. Arrizabalaga studied
the self-adjointness of the Dirac operator with purely electrostatic δ-sphere interactions (i.e.,
Hε,0) via Hardy-Dirac inequalities, no progress has been made in the study of the spectral
properties of Dirac operators with δ-interactions supported on general surfaces. This obstacle
was finally broken by the arrival of the paper [10], where N. Arrizabalaga, A. Mas and L.
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Vega developed a new strategy based on Fredholm theory and integral operators to prove
the self-adjointness and to study the spectral properties of the Dirac operator coupled with
a singular measure valued potential with respect to the Lebesgue measure. Indeed, instead
of using Von Neuman’s classical approach, in [10] the authors argued as follows. For Σ a
closed surface in R3 (satisfying some assumption, e.g., Σ preserves Markov’s inequality, Σ
is locally the graph of a Lipschitz function from R2 to R3), σ is 2-dimensional Hausdorff
measure restricted to Σ, and for V a generic L2(Σ, σ)4-valued potential, they considered the
operator T = H + V and looked for a domain D ⊂ L2(R3)4 such that (T,D) is self-adjoint.
By assumption, for any ϕ ∈ D , one has

V ϕ = −g for some g ∈ L2(Σ, σ)4 and Tϕ = G ∈ L2(R3)4, (0.0.5)

in the sense of distributions. From this, one see that Hϕ = G + gσ must be satisfied in the
sense of distributions, and thus ϕ must be expressed by taking the convolution of G + gσ
with the fondamental solution of H. This means that D is a subdomain of

X = {φ ∗ (G+ g) : G ∈ L2(R3)4 and g ∈ L2(Σ, σ)4},

where φ is given by

φ(x) = e−m|x|

4π|x|

(
mβ + (1 +m|x|)iα · x

|x|2
)
, for all x ∈ R3 \ {0}. (0.0.6)

Since the mapping L2(R3)4 3 G 7−→ φ ∗ G defines the resolvent of H, and H defined in the
first order Sobolev space H 1(R3)4 is a self-adjoint operator, we see that

X = {u+ φ ∗ g : u ∈ H 1(R3)4 and g ∈ L2(Σ, σ)4}, (0.0.7)

and under the above assumption on Σ, the trace of u, u|Σ, belongs to L2(Σ, σ)4, and it was
shown in [10] that the mapping defined for g ∈ L2(Σ)4 by Φ[g] = φ ∗ g, is indeed bounded
from L2(Σ)4 to L2(R3)4. In order to ensure the self-adjointness of T , one needs to imposing
some linear relations between u|Σ and g. One of these possibilities which was obtained in [10]
reads as follows

Theorem 0.0.1. [10, Theorem 2.1.] Given an operator Λ : L2(Σ, σ)4 −→ L2(Σ, σ)4 bounded,
self-adjoint and with closed range. Define the domain

dom(T ) =
{
u+ φ ∗ g : u ∈ H 1(R3)4, g ∈ L2(Σ)4, u|Σ = −Λ[g]

}
⊂ L2(R3)4.

If V (u + φ ∗ g) = −gσ for (u + φ ∗ g) ∈ dom(T ), then T = H + V σ defined on dom(T ) is
essentially self-adjoint. Moreover, if Λ is Fredholm, then (T, dom(T )) is self-adjoint.

The above theorem means in particular that, given V such that V (u + φ ∗ g) = −gσ, if
we can find a suitable Fredholm and self-adjoint operator Λ : L2(Σ, σ)4 −→ L2(Σ, σ)4 such
that u|Σ = −Λ[g], then (T, dom(T )) is self-adjoint.

It is worth mentioning that, since the fundamental solution φ behaves like |x|−2 when |x|
goes to 0, the mapping Φ has a jump at Σ. Indeed, it was shown in [10] that for Ω a smooth
bounded domain with

Ω+ := Ω Ω− = R3 \ Ω+ and Σ := ∂Ω,

and assuming that the δ-interactions are supported on Σ, then the nontangential limit Φ
∣∣nt
Ω±

exists and is bounded in L2(Σ)4 and satisfies the following Plemelj-Sokhotski jump formula

Φ
∣∣nt
Ω± = ∓ i2(α ·N ) + CΣ, ((α ·N )CΣ)2 = −1

4I4, (0.0.8)
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where N is the unit normal vector field at Σ which points outwards of Ω, and CΣ is the Cauchy
operator associated with H, defined for g ∈ L2(Σ)4 as the principal value CΣ[g] = pv(φ ∗ g).
With the above properties in hand, for ϕ = u+ Φ[g] ∈ X , the authors defined the expression
ϕδΣ) as the distribution

ϕδΣ = 1
2(ϕ

∣∣nt
Ω+

+ ϕ
∣∣nt
Ω−) = u|Σ + CΣ[g].

Then, as an application of Theorem 0.0.1, the authors dealt in [10, 11] with the Dirac operator
Hε,µ when the δ-interactions are supported on the boundary of a bounded C 2-smooth domain,
and they proved that Hε,µ is self-adjoint when ε2 − µ2 6= 4. Moreover, they have showed
that the confinement stills occur when ε2 − µ2 = −4, generalizing the result of [48] for
sufficiently regular surfaces. The same authors continued the spectral study of Hε,µ, proving
several symmetry relations on the point spectrum (where the algebraic identity (0.0.8) for the
Cauchy-type operators play an important role), and showing an adapted Birman-Schwinger
principle which gives a criterion for the existence of point spectrum in the gap (−m,m).
Moreover, in the case of the sphere, a deeper study of the point spectrum of Hε,µ had been
carried out by the same authors in [11]. The study was then continued in [12] where an
isoperimetric-type inequality for the admissible range of ε’s for which Hε,0 (i.e., in the purely
electrostatic case) generates pure point spectrum in (−m,m) was obtained.

Since then, the mathematical study of Dirac operators gained a lot of attention and dif-
ferent approaches based on self-adjoint extensions of symmetric operators have been adapted
and developed. Namely, the abstract theory of quasi boundary triples and their Weyl func-
tions proposed by J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik in [16], where
they studied the Dirac operators with electrostatic δ-shell interactions. The theory of quasi
boundary triples is a systematic approach that gives suitable framework to describe self-
adjoint extensions of a symmetric operator, study its self-adjointness and spectral properties.
Using this approach, the authors of [16] were able to recover the result of [10] concerning the
spectral properties of the operator Hε,0, proving the self-adjointness for all ε 6= ±2. Moreover,
they noticed that functions in dom(Hε,0) have the H 1-Sobolev regularity, and they obtained
a Krein-type resolvent formula, allowing them to study the scattering theory and asymptotic
properties of the model.

We mention that the case ε = ±2 (known as the critical interaction strengths) has been
only considered in [10] when the δ-interactions are supported in an hyperplan (i.e., Σ =
R2×{0} for example), and it turned out that H±2,0 is essentially self-adjoint and the domain
of H±2,0 is completely different from the case ε 6= ±2, moreover, the authors showed that
0 is an eigenvalue of H±2,0 with infinite multiplicity. This gap has been covered for general
bounded C 2-smooth domains by T. Ourmières-Bonafos and L. Vega in [90] and by J. Behrndt
and M. Holzmann in [19] with different approaches. Indeed, in this particular case, it turns
out that the restriction of H±2,0 on H 1(R3 \ Σ)4 is essentially self-adjoint, and functions in
the domain of the closure do not have the H 1-Sobolev regularity, and therefore, less regular
comparing to the non critical case. Moreover, in [19] it is shown that if Σ = ∂Ω+ contains
a flat part, then the point 0 belongs to the essential spectrum of H±2,0, generalizing in this
sense the result obtained in [10] in the case of hyperplans. A similar phenomenon appears
when studying the operator Hε,µ. In fact, in this case, the critical combinations of coupling
constants are ε2 − µ2 = 4. The self-adjointness in this critical case was proved for the
two dimensional analogue of Hε,µ in [22], where J. Behrndt, M. Holzmann, T. Ourmières-
Bonafos and K. Pankrashkin considered δ-interactions supported on a smooth closed curve.
Furthermore, by making use of complex analysis and periodic pseudodifferential operators
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techniques, they showed that

Spess(Hε,µ) =
(
−∞,−m

]
∪
{
−mµ

ε

}
∪
[
m,+∞

)
. (0.0.9)

Since 2014 (date of publication [10]), the literature around Dirac operators with δ-
interactions supported on smooth compact surfaces has been enriched with the contribution
of several authors, and several progresses have been made on this subject. The coupling
H + (εI4 + η(α · N ))δΣ in the non critical case (i.e., ε2 − η2 6= 4) had been explored in
[78], where the author used an appropriate change of gauge (given by a discontinuous gauge
function across Σ) to prove that the latter operator is unitarily equivalent to the coupling
(H + ε′I4δΣ) for some ε′ 6= ±2; moreover, he also performed a spectral study of coupling
H + λ(α · N )δΣ when λ is a C 1-smooth function along the boundary Σ. In [66] the eigen-
value asymptotics of Dirac operators with Lorentz scalar δ-interactions (when µ 6= ±2) as
the mass becomes large have been investigated, showing that the behaviour of the individ-
ual eigenvalues and their total number are governed by an effective Schrödinger operator on
the boundary with an external Yang-Mills potential and a curvature-induced potential. In
[20] a limiting absorption principle for the Dirac operator Hε,µ is obtained, and the com-
pleteness for the scattering couple (Hε,µ, H) (ε2 − µ2 6= 4) and a representation formula for
the corresponding scattering matrix is shown. We also mention the survey [91] where the
state of the art on the subject and the results obtained before 2020 are gathered and discussed.

We emphasize that the intentions related to the intensive study of relativistic δ-interactions
are due not only to the mathematical challenges just mentioned above, but also for their
applications in various areas of physics. On one hand, similarly to its non-relativistic coun-
terpart, from the mathematical physics point of view, δ-shell potential are often used as
idealized models for strongly localized electric or magnetic potentials. This fact has been
proved mathematically in [79, 80], where A. Mas and F. Pizzichillo used the approach of
[10, 11] and proved that Hε,0 and H0,µ can be approximated in the strong resolvent sense
by Dirac operators coupled with squeezed electrostatic and scalar potentials, respectively.
However, the recovered coupling constant in the limit does depend nonlinearly on the po-
tential, a phenomenon that was observed in [97], where P. Šeba studied the one dimensional
version of this problem. We also mention that the exact solvability of relativistic quantum
Hamiltonians describing such models has been (see, e.g., [48, 98, 49]) and still remains an
interesting and open theoretical question for general surfaces. On the other hand, it is known
that strong scalar coupling confine relativistic particles at high energies inside a bag (i.e.,
a bounded region of R3), and they are described by Dirac operators acting on domains; cf.
[39, 44, 70]. In particular, when µ = 2 the Dirac operator H0,µ gives rise to the MIT bag
operator mentioned above, and describes the confinement of quarks in 3D (dimension three).
More recently, 2-dimensional massless Dirac operators on domains with boundary conditions
have been used to describe the evolution of quasi-particles in Dirac materials, cf. [39]. All
these physical motivations made the mathematical study of Dirac operators with δ-shell inter-
actions a very important subject. Moreover, as already mentioned above, for some particular
values of the parameters the phenomenon of confinement arises. Thereby, the Dirac operator
under consideration decouples into the orthogonal sum of two Dirac operators acting respec-
tively on L2(Ω+)4 and L2(Ω−)4, with appropriate boundary conditions, and this crucially
gives the link between Dirac operators with boundary conditions and the Dirac operators
with δ-interactions.

In the following two parts of this introduction, we will describe our main results from
Chapters 2 and 3 on the study of Dirac operators with δ-shell interactions, which correspond
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to the results obtained in [29] and [30], respectively.
The case of smooth non-compact interaction supports (Chapter 2). For me, as a
first step to get into this business, I considered in [29] δ-interactions supported on C 2-smooth
(non) compact surfaces and I have taken up the strategy of [10] with the initial motivation
of, on the one hand, closing the gap concerning self-adjointness in the critical case and, on
the other hand, understanding the role played by the operator Λ (from Theorem 0.0.1) in
both the critical and non-critical cases. My second motivation was to tackle the problem
of characterizing the essential spectrum of the Dirac operator Hε,µ in the critical case in
the three-dimensional case. Indeed, as I mentioned above the techniques used in [22] to
prove (0.0.9) are specific to the bidimensional case and are no longer available in the three
dimensional case. So I asked my self the following question:

(Q1) Given a smooth domain Ω ⊂ R3 (bounded or not), and assuming thatHε,µ is self-adjoint
when ε2 − µ2 = 4, does (0.0.9) holds true?

Notice that when ε and µ run through the whole branch of the hyperbola ε2 − µ2 = 4 the
point −mµ/ε can take any value in the gap (−m,m).

Let us now present the context we consider in Chapter 2 and summarize the main results
obtained there. We assume that the open set Ω satisfies one of the following hypotheses:

(1) Ω is a C 2-bounded domain.

(2) Ω := Ων := {(x, t) ∈ R2×R : t > νφ(x)}, where ν ∈ R and φ : R2 → R is a C 2-smooth,
compactly supported function.

We mention that the consideration of the assumption (2) was inspired by [51], where in the
same setting the Schrödinger operator with δ-shell interactions was considered.
As before, we use the notations

Ω+ := Ω Ω− = R3 \ Ω+ and Σ := ∂Ω,

and we let N donotes the unit normal vector field at Σ which points outwards of Ω+, and δΣ
denotes the Dirac distribution supported on Σ.

We investigate in Chapter 2 the self-adjointness character and the spectral properties
of the free Dirac operator H (in R3) coupled with combinations of the following singular
potentials:

Vε = εI4δΣ, Vµ = µβδΣ, Vη = η(α ·N)δΣ, ε, µ, η ∈ R,
Vζ = ζγ5δΣ := −iζα1α2α3δΣ, Vυ = iυβ (α ·N) δΣ, ζ, υ ∈ R.

To be precise, our main objective in Chapter 2 is to study the spectral properties and the
phenomenon of the confinement of the following couplings:

Hκ := H + (εI4 + µβ + η(α ·N))δ∂Ω, κ := (ε, µ, η) ∈ R3,

Hζ,υ := H + (−iζα1α2α3 + iυβ (α ·N)) δ∂Ω, (ζ, υ) ∈ R2.
(0.0.10)

We recall that the coupling constants ε, µ, η and υ represent the constants strength of the
electrostatic, Lorentz scalar, magnetic and anomalous magnetic potentials, respectively. We
will see later that the singular interaction given by the coupling constant ζ can be considered
as an interactions of electrostatic type.
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Now, we define on L2(Σ)4 the bounded linear operators

Λκ,± = 1
ε2 − µ2 − η2 (εI4 ∓ (µβ + η(α ·N)))± CΣ,

Λ(ζ,υ),± = 1
ζ2 + υ2 (ζγ5 + iυβ(α ·N))± CΣ,

(0.0.11)

for all (ε, µ, η) ∈ R3 such that ε2 − µ2 − η2 6= 0, and for all (ζ, υ) ∈ R2 \ {(0, 0)}, respectively.
Then, following the strategy of [10], we define the Dirac operators H•, • = κ or (ζ, υ), on the
domain

dom(H•) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4, u|Σ = −Λ•,+[g]

}
,

where for g ∈ L2(Σ)4, Φ[g] = (φ ∗ g) with φ as in (0.0.6).
In a first step of Chapter 2, we study the self-adjointness character ofHκ when Ω+ satisfies

the assumption (1) or (2). We begin by proving that Hκ is self-adjoint when ε2−µ2− η2 6= 4
(i.e., in the non-critical case), and we show that dom(Hκ) ⊂ H 1(R3 \∂Ω)4, which means that
functions in dom(Hκ) have a Sobolev regularity. When ε2 − µ2 − η2 = 4, which is actually
the critical case, we show that Hκ defined on dom(Hκ) is essentially self-adjoint (i.e., Hκ is
self-adjoint). More precisely, in Section 2.2 we prove that

Theorem 0.0.2. The following statements hold true:

(i) If ε2 − µ2 − η2 6= 4, then Hκ is self-adjoint and we have

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, u|Σ = −Λκ,+[g]

}
.

(ii) If ε2 − µ2 − η2 = 4, then Hκ is essentially self-adjoint and we have

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, u|Σ = −Λ̃κ,+[g]

}
.

where Λ̃κ,± is the continuous extension of Λκ,± defined from H−1/2(Σ)4 into itself.

To prove this result we develop in Section 2.2 a strategy close to the one of [90], it is
based essentially on the fact that the anticommutators of the Cauchy operator CΣ with β or
with (α · N ) have a regularizing effect. Indeed, as we will see in Section 2.2, the operator
Λκ,∓Λκ,± involves the above anticommutators and it turns out that in the non-critical case,
the regularization effect of these anticommutator pushes Λκ,+ to regularize the functions in
dom(H∗κ) to have the H 1-Sobolev regularity. In the critical case, the regularization property
of the anticommutators play a crucial role in proof of the inclusion dom(H∗κ) ⊂ dom(Hκ),
but in contrast to non-critical case, it doesn’t push Λκ,+ to regularizes functions in dom(H∗κ).

As a second step, we turn in Section 2.3 to the spectral study of Hκ, and we pay a special
attention to the case where Ω+ satisfies the second assumption, and we show several spectral
properties of Hκ. Namely, using Fourier analysis, compactness and suitable localization
arguments, we compute precisely the essential spectrum of Hκ in the non-critical case, cf.
Theorem 2.3.3 (for the sake of readability, we don’t want to write it here). More precisely,
under certain conditions on the sign of the parameters ε, µ, η and ε2 − µ2 − η2 6= 4, it
turns out in Theorem 2.3.3 that the continuous spectrum emerge in the gap (−m,m) (e.g.,
Spess(Hκ) = R, when µ = −2 and ε = η = 0), in contrast to the case when Ω+ satisfies the
first assumption where we prove in Theorem 2.3.2 that Spess(Hκ) = (−∞,−m] ∪ [m,+∞)
and that Spdisc(Hκ) ∩ (−m,m) is finite.

In the critical case, we give a complete characterization of the essential spectrum of Hκ

when Ω+ satisfies the second assumption. More precisely, we prove that
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Theorem 0.0.3. Let κ = (ε, µ, η) ∈ R3 be such that ε2 − µ2 − η2 = 4, and assume that Ω+
satisfies the second assumption, then it holds that

Spess(Hκ) =
(
−∞,−m

]
∪
{
−mµ

ε

}
∪
[
m,+∞

)
,

and the equality Sp(Hκ) = Spess(Hκ) holds true for Σ = R2 × {0}

This theorem answers positively to the question (Q1) and generalizes the result of [22] to
this kind of surfaces. We remark that even after adding the perturbation by the potential
Vη, the point which appears in the gap remains the same (see the discussion after Theorem
2.3.4 for more details).

The proofs of the above results are based on a Krein-type resolvent formula and an adapted
Birman-Schwinger principle that we prove in Proposition 2.3.1 and Theorem 2.3.1, combined
with sophisticated compactness and localization arguments of some nonlocal operators on
the boundary when Ω+ satisfies the second assumption.

The last part of Chapter 2 is devoted to the spectral study of the Dirac operator Hζ,υ.
There, we adapte the strategy developed in Section 2.2 for the operator Hκ, and we show in
Theorems 2.4.1 and 2.4.2 that Hζ,υ is self-adjoint for all possible combinations of interaction
strengths, and we prove in the critical case (i.e., ζ2 + υ2 = 4) that dom(Hζ,υ) 6⊂ H s(R3 \Σ)4

for any s > 0.
The spectral properties of Hζ,υ obviously depend on the interaction strengths and are

significantly different whether Ω+ satisfies the assumption (1) or (2). Thereby, we choose to
discuss the most important ones here.

Theorem 0.0.4. If ζ2 + υ2 = 4, then Hζ,υ induce confinement, and the following hold:

(i) If ζ = 0, then Spess(Hζ,υ) = (−∞,−m]∪ [m,+∞). Moreover, −m and m are eigenval-
ues of H0,υ with infinite multiplicities.

(ii) If ζ = 0, Ω+ satisfies the assumption (1), and {λj}j∈N∗ is the sequence of eigenvalues
of the Dirichlet Laplacian (−∆) in Ω+, counted with their multiplicities. Then, for all
j ∈ N∗, λ±j (m) = ±

√
m2 + λj is an embedded eigenvalue of Hζ,υ with finite multiplicity.

(iii) If υ = 0 and Ω+ satisfies the assumption (2), then Spess(Hζ,υ) = (−∞,−m] ∪ {0} ∪
[m,+∞).

Theorem 0.0.4 reveals an interesting phenomenon concerning the confinement in contrast
to what we have seen before, and actually this is one of the main motivations for considering
the coupling Hζ,υ. Indeed, the operator Hζ,υ induces in the critical case the confinement
with a loss of regularity in the operator domain, and such effects have not been known
before. Moreover, in one hand H±ζ,0 coincides with the Dirac operator coupled with the
electrostatic δ-interactions of strengths ∓ζ. On the other hand, the inner part of H0,±υ
acting on Ω+ coincides with the so-called Dirac operator with zig-zag boundary condition,
one of the quantum dot boundary conditions describing the graphene. We note that the
presence of embedded eigenvalues expressed in terms of the Dirichlet eigenvalues is due the
boundary condition. The proof of assertions (i) and (ii) in Theorem 0.0.4 is based on some
symmetry relations of the spectrum and quadratic forms techniques.

Finally, we mention that the two-dimensional analogue of the anomalous magnetic po-
tential was introduced and studied at the same time in [41], and similar results have been
obtained.
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The case of rough interaction supports (Chapter 3). A very important issue that
arises when we study δ-shell interactions of the form (0.0.3) is the regularity of the surface
∂Ω. As far as we know, apart from the paper [10], all the works dealing with the study
of three-dimensional Dirac operators with δ-shell interactions have been carried out for C 2-
smooth domains. Nevertheless, thanks to the properties of Φ and {α ·N ,C∂Ω}, these results
can be generalized (in the non-critical case) without difficulty to C 1,ω-smooth domains for
ω ∈ (1/2, 1) as we will see below.

In 2D, the self-adjointness of the coupling H + Vµ (in the massless case) was proved in
[92], when |µ| < 2, and ∂Ω is a closed curve with finitely many corners and piecewise smooth.
We also mention the works [42, 76], where the self-adjointness of the Dirac operator with
infinite mass boundary conditions on sectors and wedges have been studied. It is worth
mentioning that the techniques used in the papers previously cited depend significantly on
the canonical identification R2 ' C, and the nature of the problem. Consequently, if Ω is
a general Lipschitz domain, then the strategies of [42, 76, 92] cannot be used to prove the
self-adjointness of Dirac operator coupled with the usual δ-interactions, especially in 3D and
this problem remains open.

As already mentioned, far less attention has been paid to the spectral study of Dirac
operators with δ-interactions supported on rough surfaces (and Dirac operators acting in
rough domains with boundary conditions), yet this context is the most relevant from the
point of view of physics (especially when the domain involves corners), for two principal
reasons. Firstly, although in the study of quarks physicists often use simplified geometries
in their experiments (such as spherical bags for optimization reasons), quarks appear to be
confined in nature independently of the geometry of the bag. The 2D situation is more
illustrative and the most famous example is the graphene. In fact, the graphene consists of a
layer of carbon atoms arranged in a honeycomb lattice, and recently experiments have shown
that Dirac materials share this structure (see e.g. [105]), which justify the consideration
of corner domains. The second reason which justify the consideration of much more rough
domains is due to the deformation of Dirac materials. A concrete example that illustrates
this is the deformation of monolayer graphene, we refer to [77] where it was shown that a very
rough geometry appears under chemical vapor deposition (see panels (a) and (b) in Figure
1. of [77]).

Recall the Dirac operator Ha,τ = H+Aa,τδ∂Ω defined in (0.0.3). In view of the discussion
above, one can ask naturally the following questions:

(Q1) Until what extent the results on self-adjointness of Ha,τ (at least when Aa,τ is one of
the usual δ-interactions) also hold for non smooth domains (Lipschitz for example)?

(Q2) If Ha,τ is self-adjoint, can we characterize its (essential/discrete) spectrum?

(Q3) In the non-critical case, is it possible to characterize the dependence of the Sobolev
regularity of the domain of Ha,τ through the regularity of Ω?

Clearly, the above questions are interconnected and depend on the regularity of Ω and on the
operator Aa,τ .

The main goal of Chapter 3 is to generalize the result of Chapter 2 and to study questions
(Q1),(Q2) and (Q3) under the weakest geometric assumptions on Ω (i.e., possibly for non-
Lipschitz domains). Also, being motivated by the confinement phenomenon, the second
goal of Chapter 3 is to derive some important models of Dirac operators that generate this
phenomenon. However, in the study of the spectral properties we are not going to do a whole
catalog, but we will take as a reference the operator Hκ defined previously in (0.0.10), whose
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spectral properties have been discussed above for a critical and non-critical parameter when
Ω is a C 2-smooth domain. Once we understand how to answer the questions (Q1),(Q2) and
(Q3) for the operator Hκ, we will look at

Hµ̃ = H + Vυ̃ = H + iµ̃γ5βδΣ, µ̃ ∈ R,
Hυ̃ = H + Vυ̃ = H + iυ̃γ5β(α ·N )δΣ, υ̃ ∈ R,

(0.0.12)

and also to the families of Dirac operators given by:

(−m,m) 3 a 7−→ Ha,λ = H + λC a
ΣδΣ, λ ∈ R \ {0},

(−m,m) 3 a 7−→ Ha,λ′ = H + λ′(α ·N )C a
Σ(α ·N )δΣ, λ′ ∈ R \ {0},

(0.0.13)

where C a
Σ is the Cauchy operator associated with (H − a). We will see that Hµ̃, Hυ̃, Ha,λ

and Ha,λ′ induce confinement, with some new boundaries conditions.
Let us now describe the main results of Chapter 3 and explain the strategy used there.

First of all, we shall always distinguish between the critical and non-critical parameters. In
the critical case, the self-adjointness of Ha,τ requires in general the C 2-smoothness, we are
therefore particularly interested in what happens in the non critical case for non-smooth
domains. Nevertheless, we provide in Theorem 3.1.2 a systematic approach that generalize
the strategy developed in Section 2.2 in order to prove the self-adjointness of Ha,τ in the
critical case. Moreover, in order to take into account the confinement phenomenon in the
later situation, we give in Propositions 3.1.3 and 3.1.4 a sufficient condition on the operator
Aa,τ so that Ha,τ generates confinement in the critical and non-critical case, respectively.

In order to tackle the questions (Q1),(Q2) and (Q3) under the weakest geometric assump-
tions on Ω, we will follow the strategy of [10]. Before going into more details, let us first
explain why we have chosen to use the strategy developed in [10]. Indeed, there are several
reasons prompt us to choose to work with the strategy of [10], we cite here:

• For functions in H 1(R3), one can give meaning to the trace on ∂Ω for a very large class
of surfaces (Ahlfors-David regular surfaces). If Ω is a non Lipschitz domain, then this
becomes a real obstacle if we work with transmission conditions, see the discussion in
the beginning of Subsection 3.1.3.

• For non-critical combinations of coupling constants, the main result of [10] (i.e., Theo-
rem 0.0.1) gives us a powerful tool to prove the self-adjointness of Ha,τ (recall that it
suffices to show that Λτ,+ is Fredholm to prove the self-adjointness of Ha,τ ), in addition,
we can easily extend it to more rough surfaces (see Theorem 3.1.1 for its generalization).

• In order to study the Sobolev regularity of dom(Ha,τ ), it is sufficient to study the
regularity properties of the mapping Φ and the Sobolev regularity of the singular part
of ϕ ∈ dom(Ha,τ ) (i.e., the function g with ϕ = u+ Φ[g]).

Since our strategy is based on the same set of techniques and in order to simplify our
exposition, we are going to summarize our main results concerning the Dirac operator Hκ.
As before, with Λκ,+ as in (0.0.11), we define the operator Hκ on the domain

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(∂Ω)4, u|∂Ω = −Λκ,+[g]

}
,

In Section 3.2, our main purpose is to identify some situations where Λκ,+ gives rise to
a Fredholm operator. As we will see throughout Chapters 2 and 3, the anticommutators
{α · N ,C∂Ω} play a central role in our study. Indeed, as already mentioned, the operator
Λκ,±Λκ,∓ involves the anticommutators {α · N ,C∂Ω}, and we will see that the compactness
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on L2(∂Ω)4 of {α ·N ,C∂Ω} implies that Λκ,+ is a Fredholm operator. It is worth pointing out
that for bounded C 1-smooth domains, the compactness of {α ·N ,C∂Ω} have been established
in [10, Lemma 3.5 and Remark 3.6], so one may ask whether this property is still true for
less regular domains. Actually, this question was formulated in the survey [91] as follows:

(Q4) Given a bounded Lipschitz domain Ω, what is the necessary regularity on ∂Ω so that
the anticommutator {α ·N ,C∂Ω} gives rise to a compact operator on L2(∂Ω)4?

In this direction, we investigate the regularity and the geometric properties of the domain Ω
which ensures this compactness property. Looking closely at the anticommutator {α·N ,C∂Ω},
we observe that it involves a matrix version of the principal value of the harmonic double-
layer K, its adjoint K∗ and the commutators [Nk, Rj ], where Rj are the Riesz transforms
(see (3.2.4) for the precise definitions). Hence the situation is more clear. In fact, from
the harmonic analysis and geometric measure theory point of view, it is shown that the
boundedness of Riesz transforms characterizes the uniform rectifiability of ∂Ω; cf. [88], for
example. In addition, functional analytic properties of the Riesz transforms (such as the
identity

∑3
j=1R

2
j = −I ) and the analogue version of the strongly singular part of (α ·N )C∂Ω

in the Clifford algebra Cl3, i.e., the Cauchy-Clifford operator (especially its self-adjointness
and compactness character) are strongly related to the regularity and geometric properties
of the domain Ω. For more details we refer to [61] and [63].

Using the materials provided in [63], it turns out in Theorem 3.2.2 that the answer to the
question (Q4) is:

Theorem 0.0.5. Let Ω be a bounded Lipschitz domain, and let z ∈ ρ(H). Then, {α ·N ,C z
∂Ω}

is compact in L2(Σ)4 if and only if N ∈ VMO(∂Ω,dS)3. Here VMO(∂Ω, dS)3 is space of
functions with vanishing mean oscillation on ∂Ω.

Once we have established that, we use a characterization of Fredholm operators to prove
that Λκ,+ is Fredholm, and we show in Subsection 3.2.1 the following result:

Theorem 0.0.6. Assume that Ω is a bounded Lipschitz domain with N ∈ VMO(∂Ω, dS)3,
and let κ = (ε, µ, η) ∈ R3 be such that ε2 − µ2 − η2 6= 0, 4. Then, Hκ defined on dom(Hκ) is
self-adjoint, and we have

(i) Spess(Hκ) = (−∞,−m] ∪ [m,∞).

(ii) Spdisc(Hκ) ∩ (−m,m) is finite.

In addition to this result, we prove several qualitative spectral properties as in the C 2-
smooth case. The proof of the assertions (i) and (ii) in Theorem 0.0.6 are based on a Krein-
type resolvent formula (that we prove in Proposition 3.1.1, which is valid in the Lipschitz
case), the fact that dom(Hκ) ⊂ H 1/2(R3 \ ∂Ω)4 and quadratic forms techniques.

At this stage, it is clear that if we restrict ourselves to the Lipschitz setting, then beyond
the class of Lipschitz domains with VMO normals (which contains C 1-smooth domains), the
compactness arguments mentioned previously are no longer valid. So, in order to go further in
our study and to be able to consider situations that are close to the physical reality, we change
the strategy and we turn to the invertibility arguments which are rather valid for a large
class of domains. Indeed, we investigate the case of bounded uniformly rectifiable domains
(aka UR domains). Uniform rectifiability is a natural quantitative analogue of rectifiability,
which is intimately connected with the boundedness properties of singular integral operators.
As already mentioned, the L2-boundedness of Riesz transforms characterizes the uniform
rectifiability of ∂Ω, and more precisely, uniformly rectifiable surfaces is the most general
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setting on which all Calderón-Zygmund operators with odd and smooth kernels are bounded
in L2(∂Ω).

In Subsection 3.2.3, we study the spectral properties of Hκ in the setting of bounded
uniformly rectifiable domains, and we focus on the case κ = (ε, µ, 0), i.e., the Dirac operator
with electrostatic and Lorentz scalar δ-interactions Hε,µ. There, as a first step, we prove the
following:

Theorem 0.0.7. Assume that Ω is a bounded uniformly rectifiable domain and let ε, µ ∈ R
be such that 0 < |ε2 − µ2| < 1/‖C∂Ω‖2L2(∂Ω)4→L2(∂Ω)4, then Hε,µ is self-adjoint. In particular,
if Ω is Lipschitz and there is z0 ∈ C \ R such that |ε2 − µ2| < 1/‖C z0

∂Ω‖2L2(∂Ω)4→L2(∂Ω)4, then
it holds that

Spess(Hε,µ) = (−∞,−m] ∪ [m,+∞).

Although the quantitative assumption on the parameters assumed in Theorem 0.0.7 gives
us a sufficient condition to guarantee the self-adjointness of Hε,µ, but unfortunately it is very
restricted and it does not allow to make a more advanced spectral study. To get around
this problem, we impose a better quantitative assumption than the previous one involving
the strongly singular par of the Cauchy operator. Indeed, let W be the Cauchy operator
associated with the massless Dirac operator −i(σ ·∇), defined for h ∈ L2(∂Ω)2 as the principal
value W [g] = pv(φ̃ ∗ g), where for x ∈ R3 \ {0}, φ̃(x) = −i(σ · x)/|x|3 is the fundamental
solution of −i(σ · ∇). Then, the main result of Subsection 3.2.3 reads as follows:

Theorem 0.0.8. Let Ω be a uniformly rectifiable domain. Assume that ε and µ satisfy one
of the following assumptions:

(a) 16‖W‖2L2(Σ)2→L2(Σ)2 < ε2 − µ2, (b) ε2 − µ2 < 1/‖W‖2L2(Σ)2→L2(Σ)2 .

Then Hε,µ is self-adjoint. In particular, Hε,µ generates confinement when ε2 − µ2 = −4.
Moreover, if Ω is Lipschitz, then

(i) Spess(Hε,µ) = (−∞,−m] ∪ [m,∞).

(ii) Spdisc(Hε,µ) ∩ (−m,m) is finite.

(iii) C0 := supa∈[−m,m] ‖C a
Σ‖ <∞. Moreover, Spdisc(Hε,µ)∩ (−m,m) = ∅ either if |ε− µ| <

1/C0 and |ε+ µ| < 1/C0, or if |ε− µ| > 4C0 and |ε+ µ| > 4C0.

(iv) If ε = 0 and µ > 0, then Spdisc(Hε,µ) ∩ (−m,m) = ∅.

This result clearly generalizes the known results on the spectral properties of the Dirac
operator Hε,µ. Moreover, it shows that the phenomenon is still occur under the condition
ε2 − µ2 = −4 even in this very general framework.

Having established the above results and in order to give an answer to question (Q3), we
consider the class of Hölder’s domains C 1,ω, with ω ∈ (0, 1). In Subsection 3.2.2 we show the
following result.

Theorem 0.0.9. Let κ = (ε, µ, η) ∈ R3 be such that ε2 − µ2 − η2 6= 0, 4. Then we have:

(i) If Ω is C 1,ω-smooth and ω 6 1/2, then for all s < ω, we have

dom(Hκ) ⊂
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H s(∂Ω)4, u|∂Ω = −Λκ,+[g]

}
⊂ H 1/2+s(R3 \ ∂Ω)4.

21



(ii) If Ω is C 1,ω-smooth and ω > 1/2, then

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(∂Ω)4, u|∂Ω = −Λκ,+[g]

}
⊂ H 1(R3 \ ∂Ω)4.

From this result, we clearly see how the Sobolev regularity of dom(Hκ) depends on the
smoothness of Ω. The proof of Theorem 0.0.9 is based on the regularization property of the
anticommutator {α · N ,C∂Ω} (see Lemma 3.2.3) and the mapping Φ as well as the regular-
ization effect of the operators Λκ,+.

Finally, the above compactness and invertibility arguments are then applied to the spectral
study of the Dirac operators given by (0.0.12) and (0.0.13), and the their spectral study is
performed in Subsection 3.2.4 and Section 3.3, respectively.

We end this part of the introduction by noting that we recently learned (more precisely,
when the paper [40] appeared on arXiv) that the Dirac operator with Lorentz scalar δ-
interactions supported on compact Lipschitz surfaces was being considered in the paper [24],
and that similar results have been obtained there.

In the following, we address the second topic of this thesis, which we discuss in Chapter
4.

Poincaré-Steklov operators and large mass Dirac operators (Chapter 4). The
study of boundary integral operators has been the motivation behind the development of sev-
eral tools and branches in mathematics, e.g., Fredholm theory, Singular integral and Pseudod-
ifferential operators. Moreover, it turned out that functional analytic and spectral properties
of some of these operators are strongly related to the regularity and geometric properties
of surfaces. Two typical examples are the Neumann-Poincaré (NP) operator (also known as
the harmonic double layer) and the Dirichlet-to-Neumann (DtN) operator. Indeed, in the
classical setting of a bounded domain Ω ⊂ Rd with smooth boundary (C 1-smooth for exam-
ple), it is well-known that the NP operator is compact operator in L2(∂Ω) (1 < p < ∞), cf.
[52]. Generally, this compactness property fails when Ω is less regular, however, as we have
seen before, it has been shown that the compactness criterion in L2(∂Ω) of the NP operator
(and the commutators of the Riesz transforms with the outward normal) characterizes the
class of regular Semmes-Kening-Toro domains, see [63] for details. We also mention that,
from the viewpoint of the spectral theory, it was shown that the asymptotic behaviour of
the eigenvalues of the NP operator involve some topological properties of surface ∂Ω (in the
case of smooth domains), such as the Willmore energy and the Euler characteristic, see, e.g.,
??. In the same vein, the eigenvalue problem for the DtN operator, called the Steklov prob-
lem, occurs in many applications which makes the subject especially appealing. We mention
that several geometric properties of the DtN eigenvalue (such as isoperimetric inequalities,
spectral asymptotics and geometric invariants) are closely related to the theory of minimal
surfaces [54], as well as the problem of determining a complete Riemannian manifold with
boundary from the Cauchy data of harmonic functions, see [75] (see also the survey [57] for
further details).

The main goal of Chapter 4 is to introduce a Poincaré-Steklov map for the Dirac operator
(i.e., an analogue of the Dirichlet-to-Neumann map for the Laplace operator) and to study
its (semiclassical) pseudodifferential properties. Our main motivation for considering this
operator arises from the fact that it is naturally related to the Dirac operator with the MIT
bag boundary condition, HMIT(m), which will be rigorously defined below, and in particu-
lar, from the key role it plays in the study of the large mass problem that we are going to
formulate in question (Q5) below.
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Let Ω ⊂ R3 be a domain with a compact smooth boundary ∂Ω, set Ωi = Ω and Ωe = R3\Ω,
let n be the outward unit normal to Ω, and define the projections P± := (I4 ∓ iβ(α · n)) /2
along the boundary ∂Ω. Similarly to the Dirichlet and Neumann traces ΓD and ΓN , we
introduce the following trace mappings

Γ± = P±ΓD : H 1(Ω)4 −→ P±H 1/2(∂Ω)4. (0.0.14)

We investigate in Chapter 4 the specific case of the Poincaré-Steklov (PS for short) operator,
Am, defined by

Am : P−H 1/2(∂Ω)4 −→ P+H 1/2(∂Ω)4, g 7−→ Am(g) = Γ+Uz(g), (0.0.15)

where for z ∈ ρ(HMIT(m)), Uz(g) ∈ H 1(Ω)4 is the unique solution of the following elliptic
boundary problem: {

(H − z)Uz(g) = 0, in Ω,
Γ−Uz(g) = g, on ∂Ω.

(0.0.16)

Let us now briefly describe our main results concerning the properties of the operators
Am. The pseudodifferential character of Am is the central element of discussion in Sections
4.3 and 4.4. To begin with, we show in Section 4.3 that Am fits into the framework of
pseudodifferential operators and we focus in particular on the case where the mass m is fixed.
Working on local coordinates and denoting by ∇∂Ω and ∆∂Ω the surface gradient and the
Laplace-Beltrami operator on ∂Ω, respectively, we prove in Sections 4.3 the following result:

Theorem 0.0.10. For any fixed m > 0 and z ∈ ρ(Dm), the Poincaré-Steklov operator Am

is a classical homogeneous pseudodifferential operators of order 0, and it holds that

Am = S ·
(∇∂Ω ∧ n√
−∆∂Ω

)
P− mod OpS−1(∂Ω),

where S = i(α ∧ α)/2 denotes the spin angular momentum.

From this result, one may ask if there is a link between Am and the Cauchy opera-
tor associated with (H − z) (which we denote here by Cz,m). In fact, the familiar reader
with the Cauchy operator Cz,m may recognize that the Riesz operator on ∂Ω coincides with
∇∂Ω(−∆∂Ω)−1/2, and comes essentially from the singular part of the Cauchy operator Cz,m
(i.e., the operatorW from Theorem 0.0.8). Indeed, as we will see in Section 4.3, for z ∈ ρ(Dm)
we have an explicit solution of the system (0.0.16), and in this case, the PS operator takes
the layer potential form:

Am = −P+β (β/2 + Cz,m)−1 P−, (0.0.17)

So the starting point of the proof of Theorem 0.0.10 is to analyze the pseudodifferential
properties of the Cauchy operator. In this sense, we show that 2Cz,m is equal, modulo
OpS−1(∂Ω), to α · (∇∂Ω(−∆∂Ω)−1/2). Then, the explicit layer potential description of Am

and the symbol calculus allow us to prove the pseudodifferential character of Am and to trap
its principal symbol.

While the above strategy allows us to capture the pseudodifferential character of Am,
unfortunately, it does not allow us to trace the dependence on the parameterm, and it imposes
also a restriction on z (i.e., z ∈ ρ(Dm)), whereas Am is well defined for any z ∈ ρ(HMIT(m)).
In Section 4.4, we address the m-dependence of the pseudodifferential properties of Am for
any z ∈ ρ(HMIT(m)). Since in our application we mainly deal with large masses m, we treat
this problem from the semiclassical point of view by using h = 1/m ∈ (0, 1] as a semiclassical
parameter, and we show the following result:
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Theorem 0.0.11. Let h ∈ (0, 1] and let A h := Am. Then, for h0 > 0 sufficiently small and
for any h < h0, A h is a h-pseudodifferential operator of order 0, and it holds that

A h = S ·
(

h∇∂Ω ∧ n√
−h2∆∂Ω + I + I

)
P− mod hOphS−1(∂Ω).

The main idea to prove Theorem 0.0.11 is to use the system (0.0.16) instead of the explicit
formula (0.0.17), and it is based on the following two steps. The first step is to construct a
local approximate solution for (the pushforward of) the system (0.0.16) of the form

Uh(x̃, x3) =
∫
R2
Ah(x̃, ξ, x3)eiy·ξ g̃(ξ)dξ, (x̃, x3) ∈ R2 × [0,∞),

where Ah belongs to a specific (tangential) symbol class and admits an asymptotic expansion
of the form

Ah(x̃, ξ, x3) ∼
∑
j≥0

hjAj(x̃, ξ, x3),

so that, for each x3 > 0, Uh(·, x3) is a h-pseudodifferential operator of order 0. The second
step is to show that when applying the trace mapping Γ+ to the pull-back of Uh(·, 0), it
coincides locally with A h modulo a regularizing and negligible operator. It is at this precise
point that the properties of the MIT bag operator become crucial, in particular, the regu-
larization property of its resolvent (see Theorem 0.0.12 below) that allows us to achieve this
second step, as it will be seen in Section 4.4.

We recall that the Dirac operator with the MIT bag boundary condition on Ωi, or simply
the MIT bag operator, is the operator (HMIT(m),dom(HMIT(m))) defined by

HMIT(m)ψ = Hψ, for all ψ ∈ dom(HMIT(m)) :=
{
ψ ∈ H 1(Ωi)4 : P−t∂Ωψ = 0 on ∂Ω

}
.

(0.0.18)

This operator corresponds to the inner part of the Dirac operator Hε,µ acting on Ω in the
confining case µ = 2 and ε = 0. We mention that direct proofs of the self-adjointness of
HMIT(m) have been established in [7, 8, 90, 94], we refer also to [21] where special boundary
conditions similar to the ones in the MIT bag model were investigated. In the same vein, the
bidimensional analogue of HMIT(m) (in the massless case, i.e., m = 0), known as the Dirac
operator with the infinite mass boundary condition, was treated in [26, 27].

In Section 4.2, we briefly discuss the basic spectral properties of HMIT(m) when Ωi is a
domain with compact Lipschitz boundary (see Theorem 4.2.1) and we establish some regular-
ity results concerning the regularization property of the resolvent and the Sobolev regularity
of the eigenfunctions of HMIT(m). In particular, we prove the following result:

Theorem 0.0.12. Let k > 1 be an integer and assume that Ωi is C 2+k-smooth. Given 0 6=
φ ∈ dom(HMIT). If φ satisfies (H − z)φ = f in Ωi, with f ∈ H k(Ωi)4 and z ∈ ρ(HMIT(m)),
then φ ∈ H 1+k(Ω)4.

Let M be a nonnegative real, and consider in R3 the Dirac operator HM = H +Mβ1Ωe ,
where 1Ωe is the characteristic function of Ωe. By Kato-Rellich theorem and Weyl’s theorem,
we easily see that HM defined on dom(HM ) := H 1(R3)4 is self-adjoint, and that

Spess(HM ) = (−∞,−(m+M)] ∪ [m+M,+∞),
Sp(HM ) ∩ (−(m+M),m+M) is purely discrete.
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Recently it turned out that there is a close relation between the MIT bag operator and the
Dirac operator HM . In [6, 87] it was shown that, in the limite M → ∞, any eigenvalue
of HMIT(m) is a limit of eigenvalues of HM , similar result in higher dimension have been
obtained [87] (see also [98] for the two-dimensional setting). Moreover, for m = 0, it is shown
in [14] that the bidimensional analogue of HM convergences to the bidimensional analogue of
HMIT(0) (i.e., m = 0) in the norm resolvent sense with a convergence rate of O(M−1/2). We
point out that these results fits with similar well-known results for the stationary Schrödinger
operator, for more details we refer to [34] and the references therein.

After reviewing briefly the connection between the Dirac operators HM and HMIT(m),
namely the fact that (at least on a purely formal level) HM = HMIT(m) when M = ∞, it
seems reasonable to ask the following questions about the intermediate values of M :

(Q6) Let M0 > 0 be large enough, fix M > M0 and z ∈ ρ(HMIT(m)) ∩ ρ(HM ). Given
f ∈ L2(R3)4 and U ∈ H 1(R3)4, what is the boundary value problem on Ωi whose
solutions closely approximate those of (H +Mβ1Ωe − z)U = f?

Notice that the answer to this question becomes trivial if one establishes an explicit formula
for the resolvent of the operator HM . In fact, having in mind the connection between HM and
HMIT(m), in [31] V. Bruneau, M. Zreik and myself addressed the following problem: for M
sufficiently large, is it possible to relate the resolvents of HM and HMIT(m) via a Krein-type
resolvent formula? When trying to solve this question, it turned out that it was necessary
to invert in H 1/2(∂Ω)4 operators of the form (I4 +KM ), where KM is uniformly bounded in
L(H 1/2(∂Ω)4) with respect to M , and involves the Poincaré-Steklov operators. We mention
that the standard arguments do not allow us to ensure the invertibility of (I4+KM ), which led
us to consider the h-pseudodifferential properties of the PS operators (with h = 1/M being
the semiclassical parameter) in order to overcome this obstacle. In the end of the day, we
establish in Theorem 4.5.1 a Krein-type resolvent formula for HM in terms of the resolvent of
HMIT(m) and prove a Birman-Schwinger principle relating the eigenvalues of HM in the gap
(−(m+M),m+M) with a spectral property of certain bounded operators in H 1/2(∂Ω)4, see
Theorem 4.5.1 for the precise statement. With the help of these tools, we show in Corollary
4.5.1 that there is a 1/M -pseudodifferential operators of order 0, Ξ−M (z), such that for U as
in question (Q5), U|Ωi satisfies the following elliptic problem

(H − z)U|Ωi = f in Ωi,

Γ−U|Ωi = Ξ−M (z)Γ+(HMIT(m)− z)−1(f|Ωi) on ∂Ω,
Γ+U|Ωi = Γ+(HMIT(m)− z)−1(f|Ωi) + AmΓ−U on ∂Ω.

Moreover, using the Krein-type resolvent formula from Theorem 4.5.1, the boundedness prop-
erties of PS operators between Sobolev spaces and the regularity estimates of some layer po-
tential carried out in Proposition 4.5.1, we establish in Section 4.5 an asymptotic expansion
in L(L2(R3)4) for the resolvent of HM in terms of the resolvent of HMIT(m), and we give a
sharp estimate for the convergence rate, which reads as follows:

Theorem 0.0.13. Let rΩi be the restriction operator on Ωi, and let eΩi be the extension
operator by 0 on Ωe. Then, the resolvent HM admits an asymptotic expansion in L(L2(R3)4)
of the form:

(HM − z)−1 = eΩi(HMIT(m)− z)−1rΩi + 1
M
KM (z) + 1

M
LM (z) (0.0.19)

where KM (z) and LM (z) are bounded from L2(R3)4 into itself uniformly with respect to M ,
and we have

rΩiKM (z)eΩi = 0 = rΩeKM (z)eΩe .
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In particular, it holds that∣∣∣∣∣∣(HM − z)−1 − eΩi(HMIT(m)− z)−1rΩi

∣∣∣∣∣∣
B(L2(R3)4)

= O

( 1
M

)
.

26



Introduction (french)

L’équation de Dirac

i∂tϕ(t, x) = Hϕ(t, x), ϕ(·, x) : R3 → C4,

oùH = −iα·∇+mβ est l’opérateur libre de Dirac dans R3, est utilisé en mécanique quantique
relativiste pour décrire la dynamique de particules élémentaires de spins demi-entiers.

Ces dernières années, l’étude mathématique des perturbations singulières de l’opérateur de
Dirac a connu un rebond considérable et a attiré beaucoup d’attention. D’une part, cet intérêt
vient du fait que certains de ces opérateurs de Dirac ont été récemment associés à l’évolution
des quasi-particules dans les nouveaux matériaux dites de Dirac tel que le graphène. D’autre
part, cela est dû aux défis mathématiques que représente l’étude des opérateurs de Dirac,
que se soit d’un point d’EDP ou d’analyse.

Dans cette thèse, nous nous intéressons à l’étude spectrale de deux types de perturbation
de l’opérateur libre de Dirac en dimension 3, qui sont singulières du point de vue de change-
ment d’échelle, ainsi qu’à l’étude des opérateurs de Dirac agissant sur des domaines avec des
conditions aux bords issues du phénomène de confinement. Plus précisément, nous consid-
érons dans la première partie de cette thèse des opérateurs de Dirac formellement définis par
l’expression différentielle

Hτ := H + Vτ = H +AτδΣ,

où Σ est une surface (compacte ou non-compacte) de l’espace euclidienne R3 qui le divise en
deux ouverts Ω±, Aτ est un opérateur borné, inversible et auto-adjoint dans L2(Σ)4 et qui
dépend d’un paramètre τ ∈ Rn avec n > 1. Ici δ est la distribution de Dirac supporté sur Σ.
Ce type de perturbation est souvent appelée opérateurs de Dirac avec δ-interactions.

Afin de simplifier l’illustration de nos résultat concernant l’étude spectrale de l’opérateur
Hτ , nous nous restreignons dans la suite au cas où Hτ est donné par le couplage de l’opérateur
de Dirac avec une combinaison de delta interactions électrostatique et scalaire de Lorentz,
qui est définit par

Hε,µ := H + (εI4 + µβ)δΣ, (ε, µ) ∈ R2.

Ici ε et µ désignes respectivement les amplitudes des potentiels électrostatique et scalaire de
Lorentz.

La littérature concernant l’étude spectrale de l’opérateur de Dirac Hε,µ est très riche. En
particulier, plusieurs progrès ont été réalisés dans le cas où Σ est une surface compacte de
régularité C 2, on cite par exemple [48, 10, 11, 16, 17] où l’auto-adjonction a été prouvé et
différents aspects de l’opérateur ont été analysés quand les paramètres ε et µ satisfont la
condition ε2 − µ2 6= 4. Il s’avère que le cas ε2 − µ2 = 4 (que nous appelons cas critique)
est plus délicat à analyser et les propriétés de l’opérateur Hε,µ sont totalement différentes en
comparaison avec le cas non-critique ε2−µ2 6= 4. En effet, contrairement au cas non-critique,
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la restriction de l’opérateur Hε,µ sur l’espace de Sobolev H 1(R \ Σ)4 n’est pas auto-adjointe
mais plutôt essentiellement auto-adjointe, voir [90, 19, 22]. De plus, il a été remarqué dans
[10] et [19] que si Σ est un hyperplan ou une surface compacte de régularité C 2 et qui
contient une partie plate alors le point 0 appartient au spectre essentiel de Hε,0 (c’est-à-
dire quand µ = 0). Dans [22] à l’aide des techniques d’analyse complexe et d’opérateurs
pseudodifférentiels périodiques ont été utilisés pour donner une caractérisation complète du
spectre essentiel de Hε,µ dans le cas 2-dimensionnel quand Σ une courbe C∞-compacte, et il
s’est avéré que

Spess(Hε,µ) =
(
−∞,−m

]
∪
{
−mµ

ε

}
∪
[
m,+∞

)
.

Cependant, la caractérisation complète du spectre essentiel deHε,µ dans le cas de la dimension
trois reste encore une question ouverte et a été l’une des motivations du chapitre 2.

Toute au long de cette thèse, nous suivons la terminologie développée dans [10] pour
définir rigoureusement l’opérateur Hε,µ. Ainsi, nous définissons Hε,µ sur le domaine

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4, u|Σ = −Λ+[g]

}
,

où il agit au sens des distributions de la manière suivante :

Hε,µ(u+ Φ[g]) = Hu, ∀u+ Φ[g] ∈ dom(Hε,µ).

Ici Φ est une solution fondamental de l’opérateur libre de Dirac, et Λ± un opérateur borné
de L2(Σ)4 dans lui même et qui est défini par la formule

Λa± = 1
ε2 − µ2 (εI4 ∓ (µβ))± C a

Σ, ε2 6= µ2,

où a ∈ (−m,m) et C a
Σ est l’opérateur de Cauchy associé à l’opérateur de Dirac (H − a).

L’objectif du chapitre 2 est d’étudier les propriétés spectrales de l’opérateur de Dirac Hε,µ

quand la surface Σ satisfait l’une des hypothèses suivantes :

(1) Σ est le bord d’un ouvert borné de classe C 2.

(2) Σ := Σν := {(x, t) ∈ R2 × R : t > νφ(x)}, où ν ∈ R et φ : R2 → R est une fonction à
support compact et de régularité C 2.

Nos contributions principales portent essentiellement sur l’étude du cas des surfaces qui sat-
isfont l’hypothèse (2). Néanmoins, nous développerons une approche uniforme basée sur
des techniques de régularisations qui nous permettra de décrire pour toute combinaison des
constantes d’interactions la réalisation auto-adjoint de l’opérateur de Dirac Hε,µ quand Σ
satisfait l’hypothèse (1) ou (2). Plus précisément, la stratégie que nous développerons repose
essentiellement sur le fait que les anti-commutateurs {β,CΣ} et {(α · N ),CΣ} (où N est le
vecteur normal sur Σ) ont un effet régularisant. Comme on le verra au long de cette thèse, les
opérateurs Λ0

∓Λ0
± font intervenir ces anti-commutateurs ce qui fait que l’opérateur Λ0

+ force
les fonctions dans dom(H∗ε,µ) pour avoir la régularité H 1-Sobolev, et ainsi nous permettra de
montrer que Hε,µ est auto-adjoint dans le cas non-critique. Dans le cas critique, la propriété
de régularisation des anti-commutateurs joue un rôle crucial dans la preuve de l’inclusion
dom(H∗ε,µ) ⊂ dom(Hε,µ), mais contrairement au cas non critique, cette propriété ne permet
pas à l’opérateur Λ0

+ de régulariser les fonctions dans dom(H∗ε,µ), et induit ainsi une perte de
régularité de Sobolev des fonctions dans dom(Hε,µ). Plus précisément nous montrons que
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Theorem 0.0.14. Soit Hε,µ comme ci-dessus, alors les assertions suivantes sont vraies :

(i) Si ε2 − µ2 6= 4, alors Hε,µ est auto-adjoint et on a

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, u|Σ = −Λ0

+[g]
}
.

(ii) Si ε2 − µ2 = 4, alors Hε,µ est essentiellement auto-adjoint et on a

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, u|Σ = −Λ̃0

+[g]
}
.

où Λ̃0
± est l’extension continues de Λ0

± définie de H−1/2(Σ)4 dans H−1/2(Σ)4.

Nous complémentons notre étude en mettant en évidence dans section 2.2.2 la relation
entre l’auto-adjonction de Hε,µ et l’opérateur Λ0

+, qui est l’idée principale derrière le concept
des quasi boundary triples utilisé dans [16, 19, 17, 22].

Ensuite, nous étudions les propriétés spectrales qualitatives de l’opérateur Hε,µ. En parti-
culier, nous effectuerons une étude détaillée du spectre de Hε,µ quand Σ satisfait l’hypothèse
(2) dans le cas critique ou non-critique. Dans un premier temps, nous montrons un principe
de Birman-Schwinger adapté à notre contexte qui relie le spectre de l’opérateur de Dirac Hε,µ

dans la gap (−m,m) avec les propriétés spectrales des opérateurs Λa+. Ce principe nous per-
mettra de déduire en particulier l’existence des valeurs propres pour l’opérateur Hε,µ dans la
gap (−m,m). Nous montrons aussi une formule de Krein reliant la résolvante de l’opérateur
Hε,µ avec celle de l’opérateur libre de Dirac, voir Proposition 2.3.1 et Théorème 2.3.1 pour
plus de détails. Avec ces deux outils en main, et à l’aide des arguments de compacité et de
localisation de certains opérateurs non locaux que nous développons dans les lemmes 2.3.2 et
2.3.3 , nous donnons dans les théorèmes 2.3.3 et 2.3.4 une caractérisation complète du spectre
essentiel de Hε,µ pour toute combinaison des constantes d’interactions lorsque Σ satisfait la
seconde hypothèse. En particulier, nous remarquons que dans le cas non-critique, et con-
trairement au cas des surfaces compactes, le spectre essentiel émerge dans la gap (−m,m),
voir le théorème 2.3.3. Dans le cas critique, nous montrons que le spectre essentiel Hε,µ est
donné par

Spess(Hε,µ) =
(
−∞,−m

]
∪
{
−mµ

ε

}
∪
[
m,+∞

)
,

ce qui rejoint le résultat obtenu dans [22].

La difficulté la plus importante qui se pose lorsque nous étudions le couplage de l’opérateur
de Dirac avec des δ-interactions est la régularité de la surface Σ qui supporte ces dernières.
Comme on le notera dans le chapitre 2, la régularité C 2 de la surface Σ s’avère essentiel pour
montrer l’auto-adjonction de l’opérateur Hε,µ. Ainsi, l’objectif principal du chapitre 3 est de
généraliser les résultats obtenus dans le chapitre 2 au cas des surfaces compactes non régulières
pour des combinaisons de constantes d’interactions non-critiques, c’est-à-dire ε2 − µ2 6= 4.
Pour cela, nous utilisons des techniques d’analyse harmonique et la théorie du potentiel. Dans
un premier temps, nous généralisons les résultats obtenus dans le cadre des surfaces régulières
au cadre des surfaces qui coïncident localement avec le graphe d’une fonction Lipschitzienne
dont les oscillations sont nulles en moyenne, c’est-à-dire N ∈ L∞(Σ)∩VMO(Σ). Dans ce cas,
nos principaux résultats peuvent être grossièrement résumés comme suit :

• L’opérateur Hε,µ est auto-adjoint et dom(Hε,µ) ⊂ H 1/2(R3 \ Σ)4.

• Spess(Hε,µ) = (−∞,−m] ∪ [m,∞).

29



• Spdisc(Hε,µ) ∩ (−m,m) is finite.

De plus, nous mettons en lumière l’influence de la régularité de la surface supportant les
delta interactions sur la régularité Sobolev du domaine de l’opérateur sous considération dans
le cas des surfaces Hölderienne. En effet, dans la section 3.2.2, après avoir étudié les propriétés
de régularisations de l’anti-commutateur {α · N ,CΣ} (voir le lemme 3.2.3) et l’opérateur Φ
ainsi que l’effet de régularisation de l’opérateur Λ+, nous montrons que

• Si Σ est de classe C 1,ω avec ω 6 1/2, alors pour tout s < ω on a

dom(Hε,µ) ⊂
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H s(Σ)4, u|Σ = −Λ+[g]

}
⊂ H 1/2+s(R3 \ Σ)4.

• Si Σ est de classe C 1,ω avec ω > 1/2, alors

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, u|Σ = −Λ+[g]

}
⊂ H 1(R3 \ Σ)4.

Ce résultat montre clairement comment la régularité de la surface Σ affecte la régularité
Sobolev de dom(Hε,µ).

Dans un second temps, nous considérons le cas de delta interactions supportées sur des
surfaces satisfaisant certaines conditions topologiques faibles. Plus précisément, nous étudions
dans la section 3.2.3 les propriétés spectrales de l’opérateur de Dirac Hε,µ dans le cadre de
surfaces uniformément rectifiables. Sous certains conditions sur les constantes de couplages,
nous montrons que l’opérateur Hε,µ est auto-adjoint et nous établissons plusieurs propriétés
spectrales qualitatives dans le cas lipschitzienne. Plus précisément, on supposons que ε et µ
satisfont l’une des hypothèses suivantes :

(a) 16‖W‖2L2(Σ)2→L2(Σ)2 < ε2 − µ2, (b) ε2 − µ2 < 1/‖W‖2L2(Σ)2→L2(Σ)2 ,

où W est la partie singulière de l’opérateur de Cauchy CΣ, nous montrons que Hε,µ est auto-
adjoint. Si on suppose de plus que Σ est lipschitzienne, nous montrons alors que les assertions
suivantes sont vraies :

• Spess(Hε,µ) = (−∞,−m] ∪ [m,∞).

• Spdisc(Hε,µ) ∩ (−m,m) is finite.

• C0 := supa∈[−m,m] ‖C a
Σ‖ <∞. De plus, Spdisc(Hε,µ)∩(−m,m) = ∅ soit si |ε−µ| < 1/C0

et |ε+ µ| < 1/C0, ou bien si |ε− µ| > 4C0 et |ε+ µ| > 4C0.

• Si ε = 0 et µ > 0, alors Hε,µ n’a pas de spectre discret dans la gap (−m,m).

Nous mentionnons que le chapitre 3 ne porte pas seulement sur l’étude de l’opérateur de
Dirac Hε,µ, mais plutôt plusieurs couplages de l’opérateur de Dirac avec des combinaisons
de potentiels singuliers de types électrostatique et magnétiques ainsi que le couplage de
l’opérateur de Dirac avec des potentiels singuliers qui font intervenir l’opérateur de Cauchy
C a

Σ pour a ∈ (−m,m). De plus, nous dérivons plusieurs model d’opérateur de Dirac qui
donnent lieu au phénomène de confinement.

Dans le chapitre 4 qui est la deuxième partie de cette thèse, nous nous intéressons à
l’étude des propriétés pseudodifférentiel de l’analogue de l’opérateur de Dirichlet-Neumann
pour l’opérateur de Dirac. Nous étudions en particulier les opérateurs de Poincaré-Steklov
(PS) associés à l’opérateur de Dirac avec la condition au bord dite MIT bag défini par

HMIT(m)ψ = Hψ, pour toutψ ∈ dom(HMIT(m)) :=
{
ψ ∈ H 1(Ω)4 : P−tΣψ = 0 sur Σ

}
.

(0.0.20)
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Ici Ω est un ouvert borné de R3 dont la frontière Σ est régulière, et P± := (I4 ∓ iβ(α · n)) /2
sont des projections toutes au long de la frontière Σ. Nous mentionnons que l’opérateur
HMIT(m) est auto-adjoint avec un spectre discret, et correspond à la partie intérieure de
l’opérateur de Dirac Hε,µ agissant sur Ω dans le cas du confinement avec paramètres µ = 2
et ε = 0 (voir aussi [7, 8, 90, 94] pour une preuve directe de l’auto-adjonction de HMIT(m)).

Plus concrètement, nous considérons l’opérateur Poincaré-Steklov Am défini par

Am : P−H 1/2(Σ)4 −→ P+H 1/2(Σ)4, g 7−→ Am(g) = P+tΣUz(g), (0.0.21)

où pour z ∈ ρ(HMIT(m)), Uz(g) ∈ H 1(Ω)4 est l’unique solution du problème elliptic suivant :{
(H − z)Uz(g) = 0, dans Ω,
P−tΣUz(g) = g, sur Σ.

Dans un premier temps, nous montrons que pour tout z ∈ ρ(H) et tout m > 0 fixes,
l’opérateur Poincaré-Steklov Am s’inscrivit bien dans le cadre des opérateurs pseudodifféren-
tiel classiques, et que

Am = S ·
(∇Σ ∧ n√
−∆Σ

)
P− mod OpS−1(Σ),

où S = i(α ∧ α)/2 désigne le moment angulaire de spin. La preuve de ce résultat repose
essentiellement sur le calcul symbolique et le fait que pour z ∈ ρ(H), nous obtenons facilement
une formule explicite de l’opérateur Am faisant intervenir l’opérateur de Cauchy C z

Σ, voir
théorème 4.3.1.

Dans un second temps, nous considérons le cas de grandes masses m > 0, et nous
nous intéressons à l’étude des propriétés des opérateurs Poincaré-Steklov d’un point de
vue d’opérateurs pseudodifférentiel semiclassique avec 1/m comme paramètre semiclassique.
Nous mentionnons que l’étude semiclassique des opérateurs PS est motivé par la question
suivante:

• Soit M0 > 0 suffisamment grand, et fixons M >M0 et z ∈ ρ(HMIT(m)) ∩ ρ(H). Étant
donné f ∈ L2(R3)4 et U ∈ H 1(R3)4, quel est le problème aux limites sur Ω dont les
solutions se rapprochent étroitement de celles de (H +Mβ1R3\Ω − z)U = f ?

Cette question nous amène à l’étude spectrale de l’opérateur de Dirac HM = H +Mβ1R3\Ω,
où 1R3\Ω est la fonction caractéristique de R3 \ Ω. En effet, la question ci-dessus qui peut
être vue comme un problème d’EDP, se ramène simplement à un problème spectral pour
l’opérateur HM , à savoir obtenir une formule explicite de sa résolvante, et plus précisément
une formule de type Krein reliant la résolvante de HM avec la résolvante d’un opérateur de
référence. Puisque il a été prouvé dans [14] que l’opérateur HM converge au sens de la norme
de la résolavante vers l’opérateur HMIT(m) quandM →∞, cela fait du ce dernier le candidat
idéal pour être l’opérateur de référence. Ainsi, pour d’obtenir cette formule de résolvante, il
s’avère que la considération des opérateurs Poincaré-Steklov d’un point de vue d’opérateurs
pseudodifférentiel semiclassique est essentiel. Dans cette direction, nous montrons dans le
théorème 4.4.1 que pour tout z ∈ ρ(HMIT(m)) et m > 0 suffisamment grand, Am est un
opérateur 1/m-pseudodifférentiel d’ordre 0, et on a :

Am = S ·
(

∇Σ ∧ n√
−∆Σ +m2 +m

)
P− mod 1

m
Op1/mS−1(Σ).

Pour prouver ce résultat, nous utilisons les propriétés spectrales de l’opérateur de Dirac
HMIT(m) que nous montrons dans la section 4.2, et qui jouent un rôle crucial pour prouver le
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résultat ci-dessus, notamment les propriétés de régularisation de la résolvante de HMIT(m),
voir le théorème 4.2.2.

En utilisant les propriétés pseudodifférentiel semiclassique des opérateurs de Poincaré-
Steklov, on arrive finalement à relie les résolvantes des opérateurs de Dirac HM et HMIT(m),
voir le théorème 4.5.1 pour la formule explicite. Ainsi, nous obtenons la réponse à la question
que nous avons posé ci-dessus. En effet, comme corollaire de la formule de résolvante nous
dans le corollaire 4.5.1 qu’il existe un opérateur 1/M -pseudodifferential d’ordre 0, Ξ−M (z), tel
que la restriction de U , noté par U|Ω, satisfait le problème elliptique suivant :

(H − z)U|Ωi = f dans Ω,
P−tΣU|Ω = Ξ−M (z)P+tΣ(HMIT(m)− z)−1(f|Ω) sur Σ,
P+tΣU|Ω = P+tΣ(HMIT(m)− z)−1(f|Ω) + AmP−tΣU sur Σ,

De plus, nous montrons que l’opérateur perturbé converge au sens de la norme de la résolvante
vers l’opérateur MIT bag et nous donnons une estimation précise du taux de convergence,
voir la proposition 4.5.1.
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La ecuación de Dirac

i∂tϕ(t, x) = Hϕ(t, x), ϕ(·, x) : R3 → C4,

donde H = −iα·∇+mβ es el operador libre de Dirac en R3, se utiliza en la mecánica cuántica
relativista para describir la dinámica de las partículas elementales de espines semienteros.

En esta tesis estamos interesados en el estudio espectral de dos tipos de perturbaciones del
operador libre de Dirac en dimensión 3, que son singulares desde el punto de vista del cambio
de escala, así como en el estudio de los operadores de Dirac que actúan sobre dominios
con condiciones de borde derivadas del fenómeno de confinamiento. Más concretamente,
consideramos en la primera parte de esta tesis los operadores de Dirac definidos formalmente
por la expresión diferencial

Hτ := H + Vτ = H +AτδΣ,

donde Σ es una superficie (compacta o no compacta) del espacio euclidiano R3 que lo divide
en dos espacios abiertos Ω±, Aτ es un operador acotado, invertible y autoadjunto en L2(Σ)4 y
que depende de un parámetro τ ∈ Rn con n > 1. Aquí δ es la distribución de Dirac soportada
en Σ. Este tipo de perturbación se suele denominar operadores de Dirac con δ-interacciones.

Para simplificar la ilustración de nuestros resultados relativos al estudio espectral del
operador Hτ , nos limitamos en lo que sigue al caso en que Hτ está dado por el acoplamiento
del operador de Dirac con una combinación de interacciones delta electrostáticas y escalares
de Lorentz, que se define por

Hε,µ := H + (εI4 + µβ)δΣ, (ε, µ) ∈ R2.

Aquí ε y µ denotan las magnitudes de los potenciales electrostáticos y escalares de Lorentz
respectivamente.

La literatura relativa al estudio espectral del operador de Dirac Hε,µ es muy rica. En
particular, se han hecho varios avances en el caso en que Σ es una superficie compacta de
regularidad C 2, se cita por ejemplo [48, 10, 11, 16, 17] donde se ha demostrado la autoadjunto
y se han analizado diferentes aspectos del operador cuando los parámetros ε y µ satisfacen
la condición ε2 − µ2 6= 4. Resulta que el caso ε2 − µ2 = 4 (que llamamos el caso crítico) es
más delicado de analizar y las propiedades del operador Hep,µ son totalmente diferentes en
comparación con el caso no crítico ε2 − µ2 6= 4. En efecto, a diferencia del caso no crítico,
la restricción del operador Hε,µ sobre el espacio de Sobolev H 1(R3 \ Σ)4 no es autoadjunto
sino esencialmente autoadjunto, véase [90, 19, 22]. Además, se observó en [10] y [19] que si
Σ es un hiperplano o superficie compacta de regularidad C 2 y que contiene una parte plana
entonces el punto 0 pertenece al espectro esencial de Hε,0 (es decir, cuando µ = 0). En [22]
se utilizaron técnicas de análisis complejo y operadores pseudodiferenciales periódicos para
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dar una caracterización completa del espectro esencial de Hep,µ en el caso de 2-dimensiones
cuando Σ una curva C∞-compacta, y resultó que

Spess(Hε,µ) =
(
−∞,−m

]
∪
{
−mµ

ε

}
∪
[
m,+∞

)
.

Sin embargo, la caracterización completa del espectro esencial de Hep,µ en el caso de la
dimensión tres sigue siendo una cuestión abierta y fue una de las motivaciones del capítulo
2.

A lo largo de esta tesis, seguimos la terminología desarrollada en [10] para definir rig-
urosamente el operador Hε,µ. Por lo tanto, definimos Hε,µ en el dominio

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4, u|Σ = −Λ+[g]

}
,

El objetivo del capítulo 2 es estudiar las propiedades espectrales del operador de Dirac Hε,µ

cuando la superficie Σ satisface una de las siguientes hipótesis:

(1) Σ es el borde de un abierto acotado de clase C 2.

(2) Σ := Σν := {(x, t) ∈ R2 × R : t > νφ(x)}, onde ν ∈ R y φ : R2 → R es una función con
soporte compacto y regularidad C 2. .

Nuestras principales aportaciones se refieren al estudio del caso de las superficies que satis-
facen la hipótesis (2). No obstante, desarrollaremos una aproximación uniforme basada en
técnicas de regularización que nos permitirá describir para cualquier combinación de con-
stantes de interacción la realización autoadjunta del operador de Dirac Hε,µ cuando Σ sat-
isface la hipótesis (1) o (2). Más concretamente, la estrategia que desarrollaremos se basa
esencialmente en el hecho de que los anticomutadores {β,CS} y {(α ·N ),CS} (donde N es el
vector normal en Σ) tienen un efecto regularizador. Como veremos a lo largo de esta tesis,
los operadores Λ0

∓Λ0
± implican estos anticomutadores lo que hace que el operador Λ0

+ fuerce
funciones en dom(H∗ε,µ) para tener H 1-regularidad de Sobolev, y así nos permitirá demostrar
queHε,µ es autoadjunto en el caso no crítico. En el caso crítico, la propiedad de regularización
anticomutador juega un papel crucial en la prueba de inclusión dom(H∗ε,µ) ⊂ dom(Hε,µ), pero
a diferencia del caso no crítico, esta propiedad no permite que el operador Λ0

+ regularice las
funciones en dom(H∗ε,µ), y por tanto induce una pérdida de regularidad de Sobolev de las
funciones en dom(Hε,µ). Más concretamente, demostramos que

Theorem 0.0.15. Sea Hε,µ como arriba, entonces las siguientes afirmaciones son verdaderas:

(i) Si ε2 − µ2 6= 4, entonces Hε,µ es autoadjunto y tenemos

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, u|Σ = −Λ0

+[g]
}
.

(ii) Si ε2 − µ2 = 4, entonces Hε,µ es esencialmente autoadjunto y tenemos

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, u|Σ = −Λ̃0

+[g]
}
.

donde Λ̃0
± es la extensión continua de Λ0

± definida desde H−1/2(Σ)4 en H−1/2(Σ)4.

Completamos nuestro estudio destacando en la sección 2.2.2 la relación entre la auto-
adjunción de Hε,µ y el operador Λ0

+, que es la idea principal detrás del concepto de quasi
boundary triples utilizado en [16, 19, 17, 22].
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A continuación, estudiamos las propiedades espectrales cualitativas del operador Hε,µ. En
particular, haremos un estudio detallado del espectro de Hε,µ cuando Σ satisface la hipótesis
(2) en el caso crítico o no crítico. En primer lugar, mostramos un principio de Birman-
Schwinger adaptado a nuestro contexto que vincula el espectro del operador de Dirac Hε,µ

en el hueco (−m,m) con las propiedades espectrales de los operadores Λa+. Este principio
nos permitirá deducir, en particular, la existencia de valores propios para el operador Hε,µ

en el hueco (−m,m). También mostramos una fórmula de Krein que vincula el resolvente
del operador Hε,µ con el del operador libre de Dirac, véase la Proposición 2.3.1 y el teorema
2.3.1 para más detalles. Con estas dos herramientas en la mano, y con la ayuda de los
argumentos de compacidad y localización de algunos operadores no locales que desarrollamos
en los lemas 2.3.2 y 2.3.3 damos en los teoremas 2.3.3 y 2.3.4 una caracterización completa del
espectro esencial de Hε,µ para cualquier combinación de las constantes de interacción cuando
Σ satisface la segunda hipótesis. En particular, observamos que en el caso no crítico, y al
contrario que en el caso de las superficies compactas, el espectro esencial emerge en el hueco
(−m,m), véase el teorema 2.3.3. En el caso crítico, mostramos que el espectro esencial Hε,µ

está dado por

Spess(Hε,µ) =
(
−∞,−m

]
∪
{
−mµ

ε

}
∪
[
m,+∞

)
,

lo que coincide con el resultado obtenido en [22].

La dificultad más importante que surge cuando se estudia el acoplamiento del operador de
Dirac con las δ-interacciones es la regularidad de la superficie Σ que soporta este último. Como
se observará en el capítulo 2, la regularidad C 2 de la superficie Σ es esencial para mostrar
la autoadjunte del operador Hε,µ. Así, el objetivo principal del capítulo 3 es generalizar
los resultados obtenidos en el capítulo 2 al caso de superficies compactas no regulares para
combinaciones de constantes de interacción no críticas, es decir, ε2 − µ2 6= 4. Para ello,
utilizamos técnicas de análisis armónico y teoría del potencial. En primer lugar, generalizamos
los resultados obtenidos en el marco de las superficies regulares al marco de las superficies que
coinciden localmente con la gráfica de una función Lipschitziana cuyas oscilaciones son nulas
en promedio, es decir, N ∈ L∞(Σ) ∩ VMO(Σ). En este caso, nuestros principales resultados
pueden resumirse a grandes rasgos como sigue:

• El operador Hε,µ es autoadjunto y dom(Hε,µ) ⊂ H 1/2(R3 \ Σ)4.

• Spess(Hε,µ) = (−∞,−m] ∪ [m,∞).

• Spdisc(Hε,µ) ∩ (−m,m) es finito.

Además, destacamos la influencia de la regularidad de la superficie que soporta las interac-
ciones delta en la regularidad de Sobolev del dominio del operador considerado en el caso
de las superficies hölderianas. De hecho, en la sección ??, después de haber estudiado las
propiedades de regularización del operador {α ·N ,CΣ} (ver lema 3.2.3) y del operador Φ así
como el efecto de regularización del operador Λ+, mostramos que

• Si Σ es de la clase C 1,ω con ω 6 1/2, entonces para todo s < ω tenemos

dom(Hε,µ) ⊂
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H s(Σ)4, u|Σ = −Λ+[g]

}
⊂ H 1/2+s(R3 \ Σ)4.

• Si Σ es de la clase C 1,ω con ω > 1/2, entonces
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dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, u|Σ = −Λ+[g]

}
⊂ H 1(R3 \ Σ)4.

Este resultado muestra claramente cómo la regularidad de la superficie Σ afecta a la regular-
idad de Sobolev de dom(Hε,µ).

En un segundo paso, consideramos el caso de las interacciones delta soportadas en super-
ficies que satisfacen ciertas condiciones topológicas débiles. Más concretamente, estudiamos
en la sección 3.2.3 las propiedades espectrales del operador de Dirac Hε,µ en el marco de
las superficies uniformemente rectificables. Bajo ciertas condiciones sobre las constantes
de acoplamiento, mostramos que el operador Hε,µ es autoadjunto y establecemos varias
propiedades espectrales cualitativas en el caso lipschitziano. Más precisamente, suponemos
que ε y µ satisfacen uno de los siguientes supuestos:

(a) 16‖W‖2L2(Σ)2→L2(Σ)2 < ε2 − µ2, (b) ε2 − µ2 < 1/‖W‖2L2(Σ)2→L2(Σ)2 ,

donde W es la parte singular del operador de Cauchy CS , demostramos que Hep,µ es autoad-
junto. Si además suponemos que Σ es lipschitziano, entonces demostramos que las siguientes
afirmaciones son ciertas:

• Spess(Hε,µ) = (−∞,−m] ∪ [m,∞).

• Spdisc(Hε,µ) ∩ (−m,m) es finito.

• C0 := supa∈[−m,m] ‖C a
Σ‖ <∞. Además, Spdisc(Hε,µ)∩(−m,m) = ∅ bien si |ε−µ| < 1/C0

y |ε+ µ| < 1/C0, bien si |ε− µ| > 4C0 y |ε+ µ| > 4C0.

• Si ε = 0 y µ > 0, entonces Hε,µ no tiene espectro discreto en el hueco (−m,m).

Mencionamos que el capítulo 3 no sólo trata del estudio del operador de Dirac Hε,µ, sino var-
ios acoplamientos del operador de Dirac con combinaciones de potenciales singulares de tipo
electrostático y magnético, así como el acoplamiento del operador de Dirac con potenciales
singulares que implican al operador de Cauchy C a

Σ para a ∈ (−m,m). Además, derivamos
varios modelos de operadores de Dirac que dan lugar al fenómeno de confinamiento.

En el capítulo 4, que es la segunda parte de esta tesis, nos interesa estudiar las propiedades
pseudodiferenciales del análogo del operador de Dirichlet-Neumann para el operador de Dirac.
En particular, estudiamos los operadores de Poincaré-Steklov (PS) asociados al operador de
Dirac con la llamada condición de borde de MIT bag definida por

HMIT(m)ψ = Hψ, pour toutψ ∈ dom(HMIT(m)) :=
{
ψ ∈ H 1(Ω)4 : P−tΣψ = 0 sur Σ

}
.

(0.0.22)

Aquí Ω es un abierto acotado de R3 cuya frontera Σ es regular, y P± := (I4 ∓ iβ(α · n)) /2
son proyecciones a lo largo de la frontera Σ. Mencionamos que el operador HMIT(m) es
autoadjunto con un espectro discreto, y corresponde a la parte interna del operador de Dirac
Hε,µ que actúa sobre Ω en el caso de confinamiento con parámetros µ = 2 y ε = 0 (ver
también [7, 8, 90, 94] para una prueba directa de la auto-adjunción de HMIT(m)).

Más concretamente, consideramos el operador de Poincaré-Steklov Am definido por

Am : P−H 1/2(Σ)4 −→ P+H 1/2(Σ)4, g 7−→ Am(g) = P+tΣUz(g), (0.0.23)

donde para z ∈ ρ(HMIT(m)), Uz(g) ∈ H 1(Ω)4 es la solución única del siguiente problema
elíptico: {

(H − z)Uz(g) = 0, en Ω,
P−tΣUz(g) = g, en Σ.
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Introducción (spanish)

En primer lugar, mostramos que para cualquier z ∈ ρ(H) fijo y m > 0, el operador de
Poincaré-Steklov Am se ajusta bien al marco de los operadores pseudodiferenciales clásicos,
y que

Am = S ·
(∇Σ ∧ n√
−∆Σ

)
P− mod OpS−1(Σ),

donde S = i(α∧α)/2 denota el momento angular de espín. La demostración de este resultado
se basa esencialmente en el cálculo simbólico y en el hecho de que para z ∈ ρ(H), obtenemos
fácilmente una fórmula explícita para el operador Am que implica al operador de Cauchy C z

S ,
véase el teorema 4.3.1.

En un segundo paso, consideramos el caso de masas grandesm > 0, y nos interesa estudiar
las propiedades de los operadores de Poincaré-Steklov desde el punto de vista de los operadores
pseudodiferenciales semiclásicos con 1/m como parámetro semiclásico. Mencionamos que el
estudio semiclásico de los operadores PS está motivado por la siguiente cuestión:
• Sea M0 > 0 suficientemente grande, y sean M > M0 y z ∈ ρ(HMIT(m)) ∩ ρ(H) fijos.

Dados f ∈ L2(R3)4 y U ∈ H 1(R3)4, ¿cuál es el problema de frontera en Ω cuyas
soluciones se aproximan mucho a las de (H +Mβ1R3\O − z)U = f?

Esta cuestión nos lleva al estudio espectral del operador de Dirac HM = H + Mβ1R3\Ω,
donde 1R3\Ω es la función característica de R3 \Ω. En efecto, la cuestión anterior, que puede
verse como un problema de EDP, se reduce simplemente a un problema espectral para el
operador HM , a saber, obtener una fórmula explícita de su resolvente, y más precisamente
una fórmula de tipo Krein que relacione el resolvente de HM con el resolvente de un operador
de referencia. Como se ha demostrado en [14] que el operador HM converge en el sentido
de la norma del resolvente al operador Hm cuando M → ∞, esto hace que este último
sea el candidato ideal para ser el operador de referencia. Así, para obtener esta fórmula
de resolvente, resulta imprescindible la consideración de los operadores de Poincaré-Steklov
desde el punto de vista de los operadores pseudodiferenciales semiclásicos. En esta dirección,
mostramos en el teorema 4.4.1 que para cualquier z ∈ ρ(HMIT(m)) y m > 0 suficientemente
grande, Am es un operador 1/m-pseudodiferencial de orden 0, y tenemos :

Am = S ·
(

∇Σ ∧ n√
−∆Σ +m2 +m

)
P− mod 1

m
Op1/mS−1(Σ).

Para demostrar este resultado, utilizamos las propiedades espectrales del operador de Dirac
HMIT(m) que mostramos en la sección 4.2, y que juegan un papel crucial en la demostración
del resultado anterior, en particular las propiedades de regularización del resolvente de
HMIT(m), véase el teorema 4.2.2.

Utilizando las propiedades semiclásicas pseudodiferenciales de los operadores de Poincaré-
Steklov, llegamos finalmente al resolvente de los operadores de Dirac HM y HMIT(m), véase el
teorema 4.5.1 para la fórmula explícita. De este modo, obtenemos la respuesta a la pregunta
que formulamos anteriormente. En efecto, como corolario de la fórmula del resolvente tenemos
en el corolario 4.5.1 que existe un operador 1/M -pseudodiferencial de orden 0, Ξ−M (z), tal
que la restricción de U , denotada por U|Ω, satisface el siguiente problema elíptico :

(H − z)U|Ωi = f en Ω,
P−tΣU|Ω = Ξ−M (z)P+tΣ(HMIT(m)− z)−1(f|Ω) en Σ,
P+tΣU|Ω = P+tΣ(HMIT(m)− z)−1(f|Ω) + AmP−tΣU en Σ,

Además, mostramos que el operador perturbado converge en el sentido de la norma resolvente
al operador MIT bag y damos una estimación precisa de la tasa de convergencia, véase la
proposición 4.5.1.
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Chapter 1

Layer potentials associated with the
Dirac operator

The purpose of this chapter is to fix some terminology that will be used throughout this
thesis, and to present some tools that will be used in the following chapters.

We start first by setting notations, recalling some definitions and results from geometric
measure theory, used in particular in Chapter 3. Subsequently, we recall the definition of some
function spaces that are often used, in particular, we present some important properties of
the Dirac-Sobolev space on Lipschitz domains. Then, we shall introduce and study some
integral operators associated with the fundamental solution of the free Dirac operator, which
will play an important role in the analysis of Dirac operators with δ-interactions.

1.1 Notation and Definitions

We use the following notations:

• For a Hilbert space h, we denote by B(h) (respectively K(h)) the space of bounded
(resp. compact), everywhere defined linear operators in h. If T is a closed operator
in h then its spectrum, essential spectrum, point spectrum and discrete spectrum are
denoted by Sp(T ), Spess(T ), Sppp(T ) and Spdisc(T ), respectively.

• For A, B ∈ B(h), we denote by [A,B] and {A,B} the usual commutator and anticom-
mutator brackets, respectively.

• We use the letter C (or c) to denote harmless positive constant, not necessarily the
same at each occurrence.

• We write A . B if there is C > 0 so that A 6 CB and A .h B if the constant C
depends on the parameter h.

• We use the notation R3
± = {x ∈ R3 : ±x3 > 0} for the upper/lower half space. Also,

the upper/lower complex half plane is denoted by C±.

• The square root
√
z is fixed by the convention =(z) > 0 for z ∈ C \ [0,∞).

• For x = (x1, · · · , xd) ∈ Rd, we let |x|∞ := supj∈1,··· ,d{|xj |} to be the l∞ norm of x, and
we denote by |x| := |x|2 the standard Euclidean l2 distance.
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1. Layer potentials associated with the Dirac operator

• For α = (α1, · · · , αd) ∈ Nd a vector of nonnegative integers, denote

∂α = ∂|α|

∂xα1
1
· · · ∂xαd1

with |α| =
1∑
d

αj ,

and for a sufficiently smooth function u and x ∈ Rd, denote

∂αu = ∂|α|u

∂xα1
1
· · · ∂xαd1

and xα = xα1
1 · · ·x

αd
d .

• By H2 we denote the 2-dimensional Hausdorff measure, and we let dσ = dH2∣∣
E to be

the surface measure on a closed set E ⊂ R3 of dimension 2.

• For p, d ∈ N∗ and a closed subset E ⊂ Rd, we always denote by Lp(Rd) and Lp(E) the
Lp-based Banach space with respect to the Lebesgue measure and the surface measure,
respectively.

• We denote by diam(E) the diameter of E, that is diam(E) := supx,y∈E |x− y|.

• We denote by B(x, r) the Euclidean ball of radius r centred at x ∈ R3.

• For an Ω open (proper) subset of R3, Ωc denotes the complement of Ω.

• For a Borel set B ⊂ R3, we denote by 1B the characteristic function of B, that is
1B(x) = 1 if x ∈ B and 1B(x) = 0 if x /∈ B.

• For a Borel set B of R3, the Lebesgue measure of B is denoted by |B|.

• For a Borel measure µ, and a Borel set B with 0 < µ(B) <∞, we set∮
B
Udµ := µ(B)−1

∫
B
Udµ,

where U is any µ-integrable function on B.

Definition 1.1.1 (Ahlfors-David regular). We say that a set E ⊂ R3 is 2-dimensional
Ahlfors-David regular, or simply ADR, if it is closed and there is some uniform constant
C such that

1
C
r2 6 H2(B(x, r) ∩ E) 6 Cr2, ∀x ∈ E, r ∈ (0,diam(E)). (1.1.1)

Definition 1.1.2 (Uniformly rectifiable domains). We say that a compact set E ⊂ R3 is
uniformly rectifiable provided that it is ADR and the following holds. There exist ρ, M ∈
(0,∞) (called the UR character of E) such that for each x ∈ E, r ∈ (0, 1], there is a Lipschitz
map φ : Br ⊂ R2 → R3 (where Br is a ball of radius r in R2) with Lipschitz constant Lφ 6M ,
such that

H2(E ∩B(x, r) ∩ φ(Br)) > ρr2. (1.1.2)

A nonempty, proper and bounded open subset Ω ⊂ R3 is called uniformly rectifiable, or simply
UR, provided that ∂Ω is uniformly rectifiable and also H2(∂Ω \ ∂∗Ω) = 0, where ∂∗Ω denotes
the measure theoretic boundary of Ω, defined as

∂∗Ω :=
{
x ∈ ∂Ω : lim sup

r→0

|B(x, r) ∩ Ω|
r3 > 0, lim sup

r→0

|B(x, r) ∩ Ωc|
r3 > 0

}
.
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1.1. Notation and Definitions

Remark 1.1.1. Notice that there are numerous characterizations of UR sets that are equiv-
alent to the one given above. For our purposes, the most useful equivalent definition that
one should keep in mind is as follows: If E is ADR, then E is UR if and only if the Riesz
transform defined by

g ∈ L2(E)→ R[g](x) = lim
ρ↘0

∫
|x−y|>ρ

x− y
|x− y|3

g(y)dσ(y), for all x ∈ E, (1.1.3)

is bounded from L2(E) into itself, cf. [88].

Remark 1.1.2. It is worth pointing out that, in principle, the measure theoretic boundary ∂∗Ω
can be a much smaller than the topological ∂Ω. In this sense, the condition H2(∂Ω\∂∗Ω) = 0
in Definition 1.1.2 ensures that near points in boundary ∂∗Ω there is enough mass relative to
the scale, both in Ω and Ωc.

Definition 1.1.3 (Lipschitz domains). We say a domain (connected open set) Ω ⊂ Rd is
γ-Lipschitz domain if for every x ∈ Ω there exists r > 0 and an isometric coordinate system
with origin x = x0 such that

{y ∈ Rd : |x− y|∞ < r} ∩ Ω = {y ∈ Rd : |x− y|∞ < r} ∩ {(ỹ, t) : ỹ ∈ Rd−1, φ(ỹ) < t},

for some Lipschitz function φ : Rd−1 → R with φ(x0) = x0 and ‖φ‖∞ 6 γ. We say a domain
is a Lipschitz domain if it is a γ-Lipschitz domain for some γ > 0. We call a domain Ω ⊂ Rd
of the form

Ω = {(ỹ, t) : ỹ ∈ Rd−1, φ(ỹ) < t},

for some Lipschitz function φ : Rd−1 → R with ‖φ‖∞ 6∞ a Lipschitz graph domain.

Remark 1.1.3. It is worth noting that, if φ : Rd−1 → R is a Lipschitz function, then
Rademacher’s therem entails that φ is Fréchet-differentiable almost everywhere with

‖∇φ‖L∞(Rd−1) 6 Lφ,

where Lφ is the Lipschitz constant of φ. In particular, if Ω is a Lipschitz graph domain (as
in the definition above), then for x = φ(x̃) ∈ ∂Ω the surface measure and the unit normal
vector field are given by

dσ(x) =
√

1 + |∇φ(x̃)|2dx̃, N (x) = (−∇φ(x̃),−1)√
1 + |∇φ(x̃)|2

.

Notice that when Ω is an ADR domain then the unit normal N is defined almost everywhere
on ∂∗Ω, and it is often referred to as the geometric measure theoretic outward unit normal to
Ω, cf. [63].

Sometimes, a different smoothness condition will be needed, so we broaden the above
definition as follows:

Definition 1.1.4. For an integer k > 1, we say a domain Ω ⊂ Rd is a C k-smooth domain
if the properties in the previous definition hold but with φ of class C k and the L∞ norm of
all these φ and their first k derivatives are uniformly bounded. Likewise, for ω ∈ (0, 1], we
define a C k,ω-smooth domain by adding the requirement that the kth order partial derivatives
of φ be Hölder-continuous with exponent ω, i.e.,

|∂αφ(x̃)− ∂αφ(ỹ)| . |x̃− ỹ|ω for all x̃, ỹ ∈ Rd−1 and |α| = k.

Finally, we say that Ω is a C∞-smooth domain if it is C k-smooth for any k ∈ N.
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1. Layer potentials associated with the Dirac operator

Definition 1.1.5 (BMO and VMO). For an ADR set E ⊂ R3, BMO(E,dσ) stands for the
space of functions with bounded mean oscillation, relative to the surface measure dσ. We
denote by VMO(E,dσ) the Sarason space of functions with vanishing mean oscillation on
E, i.e., the closure of the set of bounded uniformly continuous functions defined on E in
BMO(E,dσ).

Let us now assume that Ω is a UR domain with ∂Ω = ∂Ω, and set

Ω+ = Ω and Ω− := R3 \ Ω. (1.1.4)

Then, Ω− is also a UR domain with the same ADR boundary as Ω+ (cf. [63, Proposition
3.10]), which we denote by Σ := ∂Ω+ = ∂Ω−.

Definition 1.1.6. Let Ω± be as above. Fix a > 0 and let x ∈ Σ, then the nontangential
approach regions of opening a at the point x are defined by

ΓΩ±(x) = ΓΩ±
a (x) = {y ∈ Ω± : |x− y| < (1 + a)dist(y,Σ)}. (1.1.5)

If x ∈ Σ and U : Ω± → C4, then

U±(x) = U
∣∣nt
Ω±(x) := lim

ΓΩ± (x)3y−→x
U(y), (1.1.6)

is the nontangential limit of U with respect to Ω± at x. We also define the nontangential
maximal function of U on Σ by

NΩ± [U ](x) = NΩ±
a [U ](x) = sup{|U(y)| : y ∈ ΓΩ±(x)}, x ∈ Σ, (1.1.7)

with the convention that NΩ± [U ](x) = 0 when ΓΩ±(x) = ∅. Given g ∈ L2(Σ), we define the
Hardy-Littlewood maximal operator by

MΣg(x) = sup
r>0

∮
B(x,r)∩Σ

|g(y)|dσ, x ∈ Σ. (1.1.8)

Then, by [45, p. 624], there is C > 0 such that

‖MΣg‖L2(Σ) 6 C‖g‖L2(Σ), for all g ∈ L2(Σ). (1.1.9)

1.2 Function spaces

1.2.1 Sobolev and Besov spaces

Sobolev spaces are fundamental in the study of partial differential equations. Since we
are going to deal with partial differential operators, we shall present in this section several
Sobolev and Besov spaces on Lipschitz domains (resp. on the boundary of Lipschitz domains).
We refer to [1, 81] for comprehensive treatment of Sobolev spaces.

Sobolev on domains

Definition 1.2.1. Let Ω be a non-empty open subset of f Rd. For an integer k > 0 we let

C k(Ω) = {u : Ω→ C : ∂αu exists and is continuous on Ω for |α| 6 k},

and we let C∞(Ω) denotes the usual space of indefinitely differentiable functions, i.e,

C∞(Ω) =
⋂
k>0

C k(Ω).
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1.2. Function spaces

Similarly, we let

C k
0 (Ω) = {u ∈ C k(Ω) : supp(u) ⊂ K ⊂⊂ Ω for some compact set K},

and set

D(Ω) = C∞0 (Ω) = {u ∈ C∞(Ω) : supp(u) ⊂ K ⊂⊂ Ω for some compact set K}.

Finally, we denote by D′(Ω) the dual space of D(Ω), i.e., the usual set of all distributions on
Ω.

Definition 1.2.2 (Tempered distributions). For an integer d > 1, we let S (Rd) be the
Schwartz class of functions, i.e.,

S (Rd) = {u ∈ C∞(Rd) : sup
x∈Rd

|xα∂βu(x)| <∞, for all multi-indices α, β ∈ Nd}.

We denote by S ′(Rd) the dual space of S (Rd), i.e., the space of tempered distributions.

Definition 1.2.3 (Fourier transform). For a function f ∈ S (Rd), its Fourier transform is
defined by

F[u](ξ) = 1
(2π)d/2

∫
Rd
e−ix·ξu(x)dx, ∀ξ ∈ Rd,

and its inverse Fourier transform is given by

F−1[u](x) = 1
(2π)d/2

∫
Rd
eiξ·xu(ξ)dξ, ∀x ∈ Rd.

The Fourier transform defines a continuous linear operator from S (Rd) into itself. By du-
ality, we can also extend F to the space of tempered distributions S ′(Rd). In particular, the
Fourier transform can be extended into an isometry in L2(Rd).

Remark 1.2.1. For x ∈ Rd−1 we will abbreviate the partial Fourier (resp. inverse Fourier)
transform on the variable x with Fx (resp. F−1

x ).

Definition 1.2.4 (Sobolev space on Rd). For s ∈ R, we define the Sobolev space H s(Rd) as
follows:

• If s = 0, then H s(Rd) = L2(Rd).

• If s > 0, then H s(Rd) = {u ∈ L2(Rd) :
∫
Rd(1 + |ξ|2)s|F[u](ξ)|2dξ < ∞}, endowed with

the norm
‖f‖2Hs(Rd) =

∫
Rd

(1 + |ξ|2)s|F[u](ξ)|2dξ, ∀f ∈ H s(Rd).

• If s < 0, then H s(Rd) is defined as as the completion of L2(Rd) with respect to the norm
‖ · ‖Hs(Rd). Equivalently, H s(Rd) can be viewed as an isometric realization of the dual
space of H−s(Rd).

Definition 1.2.5 (Sobolev space on domains). Let Ω be a Lipschitz domain of Rd and let
k ∈ N. Then the Sobolev space H k(Ω) of order k based on L2(Ω) is defined by

H k(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) for |α| 6 k},
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1. Layer potentials associated with the Dirac operator

endowed with the norm
‖u‖2Hk(Ω) =

∑
|α|6k

∫
Ω
|∂αu(x)|2dx.

For k = 1 we often use that

H k(Ω) = {u ∈ L2(Ω) : there exists ũ ∈ H 1(Rd) such that ũ|Ω = ui},

endowed with the norm
‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω),

and we let H 1
0 (Ω) to be the closure of C∞0 (Ω) with respect to the above norm.

Now, for 0 < r < 1 we define the semi-norms

‖u‖2r,Ω =
∫

Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2r dxdy.

Then, for s = k + r the Sobolev space of fractional order s is defined by

H s(Ω) = {u ∈ H k(Ω) : ‖∂αu‖2r,Ω <∞ for |α| = k},

equiped with the norm
‖u‖2Hs(Ω) = ‖u‖2Hk(Ω) +

∑
|α|=k

‖∂αu‖2r,Ω.

We recall that all the Sobolev spaces defined above are Hilbert spaces with respect to
their norms.

Sobolev on the boundary

We next give the definition of Sobolev spaces on the boundary of Lipschitz domain. We
also define the Besov space B2

1/2(∂Ω) when Ω is an a ADR domain, which is very important
when dealing with δ-interactions supported on ADR surfaces. Recall that L2(∂Ω,dσ) :=
L2(∂Ω) denotes the usual L2-space over ∂Ω.

Definition 1.2.6. Let Ω be a Lipschitz graph domain of Rd, i.e.,

Ω = {(ỹ, t) : ỹ ∈ Rd−1, φ(ỹ) < t}.

For g ∈ L2(∂Ω), we define gφ(x) = g(x, νφ(x)) for x ∈ Rd−1. Then, for s ∈ [0, 1], the Sobolev
space H s(∂Ω) of order s is defined by

H s(∂Ω) := {g ∈ L2(∂Ω) : gφ ∈ H s(Rd−1)},

equipped with the scalar product

〈g, f〉Hs(∂Ω) = 〈gφ, fφ〉Hs(Rd−1),

and we define H−s(∂Ω) as the completion of L2(∂Ω) with the following norm:

‖g‖H−s(∂Ω) := ‖gφ
√

1 + |∇φ|2‖H−s(Rd−1), for all s ∈ [0, 1].

If Ω is a Lipschitz domain with a compact boundary ∂Ω. Then, for s ∈ [0, 1], the Sobolev
space H s(∂Ω) of order s is defined using local coordinates representation on the surface ∂Ω,
see [81] for example.
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Notice that H−s(∂Ω) is a realization of the dual space of H s(∂Ω). That is,

‖g‖H−s(∂Ω)4 = sup
06=f∈Hs(∂Ω)

〈g, f〉H−s(∂Ω),Hs(∂Ω)
‖f‖Hs(∂Ω)4

.

see, e.g. [81].

When Ω is in the class C 1,ω with a compact boundary, ω ∈ (0, 1), one can define equiva-
lently the Sobolev space H s(∂Ω)4 as follows (see [67, Chapter 4] for example):

Definition 1.2.7. Given ω ∈ (0, 1) and assume that Ω is a bounded C 1,ω-smooth domain
with a compact boundary. Then, g ∈ H s(∂Ω) with s ∈ (0, ω), if and only if

‖g‖2Hs(∂Ω)4 :=
∫
∂Ω
|g(x)|2dσ(x) +

∫
∂Ω

∫
∂Ω

|g(x)− g(y)|2

|x− y|2(1+s) dσ(y)dσ(x) <∞.

When studying δ-interaction supported on surface, we shall need to make sense of the
restriction U �∂Ω as an element of a Sobolev space on ∂Ω when U belongs to a Sobolev space
on Ω or Rd. Let us now recall some trace theorems that will be used in the rest of this thesis.

First, recall that if Ω is an non-empty open set of Rd, then the mappings

t∂Ω : D(Ω) −→ D(∂Ω)
U 7−→ t∂ΩU = U �∂Ω,

t∂Ω : D(Rd) −→ D(∂Ω)
U 7−→ t∂ΩU = U �∂Ω,

are well-defined and continuous.

Proposition 1.2.1. Assume that Ω is a Lipschitz domain of Rd. Then, the trace opera-
tor t∂Ω : D(Ω) −→ D(∂Ω) extend to a unique bounded linear operator t∂Ω : H s(Ω) −→
H s−1/2(∂Ω) for all s ∈ (1/2, 3/2), i.e.,

‖t∂ΩU‖Hs−1/2(∂Ω) . ‖U‖Hs(Ω), ∀U ∈ H s(Ω).

Moreover, if s ∈ (1/2, 1], then t∂Ω has a bounded linear inverse operator EΩ : H s−1/2(∂Ω) −→
H s(Ω), i.e.,

‖EΩ[g]‖Hs(Ω) . ‖g‖Hs−1/2(∂Ω) and t∂ΩEΩ[g] = g ∀g ∈ H s−1/2(∂Ω).

For a function u ∈ H 1(Rd), with a slight abuse of terminology we will refer to t∂Ωu as the
restriction of u on ∂Ω when Ω is Lipschitz. We shall also use a trace theorem for functions in
the Sobolev space H 1(Rd) in the case of ADR surfaces. Assume that Ω is an ADR domains,
then the Besov space B2

1/2(∂Ω) (see [73, Chapter V] for example), consists of all functions
g ∈ L2(∂Ω) for which ∫ ∫

|x−y|<1

|g(x)− g(y)|2

|x− y|3
dσ(y)dσ(x) <∞. (1.2.1)

The Besov space is equipped with the norm

‖g‖2B2
1/2(∂Ω) :=

∫
∂Ω
|g(x)|2dσ(x) +

∫ ∫
|x−y|<1

|g(x)− g(y)|2

|x− y|3
dσ(y)dσ(x). (1.2.2)
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Given U ∈ H 1(Rd), set

T∂Ωu(x) := lim
r↘0

∮
B(x,r)

U(y)dy, (1.2.3)

at every point x ∈ ∂Ω where the limit exists. Then, we have the following trace theorem, for
the proof we refer to [72, Theorem 1 and Example 1] and [73, Theorem 1, p.182 ].

Proposition 1.2.2. Suppose that Ω is an ADR domain. Then the trace operator t∂Ω :
D(Rd) −→ D(∂Ω) extend to a bounded linear operator T∂Ω from H 1(Rd) to B2

1/2(∂Ω) (where
TΣ is given by (1.2.3)) with a bounded linear inverse operator E from B2

1/2(∂Ω) to H 1(Rd).
In other words, B2

1/2(∂Ω) is the trace to ∂Ω of H 1(Rd) and T∂ΩE is the identity operator.

Remark 1.2.2. For notational convenience, we use t∂Ω in the rest of the paper to denote
the trace operator when ∂Ω is ADR, and we often use the fact that the trace operator T∂Ω
coincide with t∂Ω when Ω is a Lipschitz domain (i.e., H 1/2(∂Ω) is the trace to ∂Ω of H 1(Rd)).

1.2.2 The Dirac-Sobolev space

The aim of this part is to study the first order Sobolev space associated with the Dirac
operator H on a Lipschitz domain Ω ⊂ R3. The study of this space is crucial in the analysis
of Dirac operators on domains with boundary condition, as well as shell interactions for Dirac
operators. The results we are going to present here are well-known when Ω is a C 2-smooth
domain with a compact boundary, and can be found in [90].

Throughout this subsection, unless stated otherwise, we assume that Ω is a Lipschitz
domain, we let Σ := ∂Ω and we denote by N the outward unit normal to Ω.

Definition 1.2.8. Let Ω be an open subset of R3. The first order Dirac-Sobolev space H (α,Ω)
is defined as follows:

H (α,Ω) = {ϕ ∈ L2(Ω)4 : (α · ∇)ϕ ∈ L2(Ω)4}, (1.2.4)

equipped with the scalar product

〈ϕ,ψ〉H(α,Ω) = 〈ϕ,ψ〉L2(Ω)4 + 〈(α · ∇)ϕ, (α · ∇)ψ〉L2(Ω)4 , ϕ, ψ ∈ H (α,Ω).

Here (α · ∇)ϕ is taken in the sense of distributions.

Remark 1.2.3. Notice that if Ω = R3, then H (α,Ω) coincides with H 1(R3). We also note
that, since the multiplication by β is bounded in L2(Ω)4, we have

H (α,Ω) = {ϕ ∈ L2(Ω)4 : Hϕ ∈ L2(Ω)4}.

Let us now give some basic properties of this Dirac-Sobolev space. First, we recall the
following consequence of the Green’s formula.

Proposition 1.2.3. Assume that Ω is a Lipschitz domain. Then, for all ψ,ϕ ∈ H 1(Ω)4 it
holds that

〈(−iα · ∇)ϕ,ψ〉L2(Ω)4 − 〈ϕ, (−iα · ∇)ψ〉L2(Ω)4 = 〈(−iα ·N )tΣϕ, tΣψ〉L2(Σ)4 .

Lemma 1.2.1. Let Ω be a Lipschitz domain, then (H (α,Ω), 〈·, ·〉H(α,Ω)) is a Hilbert space
and the following statement hold:
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(i) C∞0 (Ω)4 is a dense subspace of H (α,Ω). In particular, H 1(Ω)4 is dense in H (α,Ω) and
it holds that

‖ψ‖H(α,Ω) . ‖ψ‖H1(Ω)4 for all ψ ∈ H 1(Ω)4.

(ii) Let H0(α,Ω) be the completion of C∞0 (Ω)4 with respect to the norm ‖ · ‖H(α,Ω). Then,
H0(α,Ω) coincides with H 1

0 (Ω)4.

Proof. Given a Cauchy sequence (ψj)j∈N ⊂ H (α,Ω). Then, we have

ψj −−−→
j→∞

ψ ∈ L2(Ω)4 and (α · ∇)ψj −−−→
j→∞

ϕ ∈ L2(Ω)4,

Since both (ψj)j∈N and ((α · ∇)ψj)j∈N are Cauchy sequence in L2(Ω)4, and as (α · ∇)ψ =
lim
j→∞

(α · ∇)ψj = ϕ holds in D′(Ω)4 and ϕ ∈ L2(Ω)4, it follows that ϕ = (α · ∇)ψ in L2(Ω)4.
Therefore, (H (α,Ω), 〈·, ·〉H(α,Ω)) is a Hilbert space.

Since C∞0 (Ω)4 is dense in H 1(Ω)4, to prove (i) it suffices to show that H 1(Ω)4 is continu-
ously embedded in H (α,Ω). Let ψ ∈ H 1(Ω)4, then Hölder’s inequality yields that

|(α · ∇)ψ|2 =

∣∣∣∣∣∣
3∑
j=1

(αj∂j)ψ

∣∣∣∣∣∣
2

6

 3∑
j=1
|(αj∂j)ψ|

2

= 3

 3∑
j=1
|(αj∂j)ψ|2

 = 3|∇ψ|2,

here we used that |αjψ| = |ψ|. Hence we get

‖(α · ∇)ψ‖L2(Ω)4 =
(∫

Ω
|(α · ∇)ψ|2

)1/2
6 31/2

(∫
Ω
|∇ψ|2

)1/2
= 31/2‖∇ψ‖L2(Ω)4 .

Thus the inclusion H 1(Ω)4 ⊂ H (α,Ω) is continuous and the inequality ‖ψ‖H(α,Ω) . ‖ψ‖H1(Ω)4

holds for all ψ ∈ H 1(Ω)4, which proves (i).
Now, let us prove (ii). By definition, it is clear that H 1

0 (Ω)4 ⊂ H0(α,Ω). To show the
reverse inclusion, it is straightforward to see that

H0(α,Ω) = {ϕ ∈ L2(Ω)4 : (α · ∇)ϕ ∈ L2(Ω)4 and tΣϕ = 0 on Σ}.

From this and the assertion (i) of this lemma, we easily get the inclusion H0(α,Ω) ⊂ H 1
0 (Ω)4,

which completes the proof of (ii).

Notice that if ψ1, ψ2 ∈ H 1(Ω)4 are such that ‖ψ1−ψ2‖H(α,Ω) = 0, then ψ1 = ψ2 in L2(Ω)4,
and thus ψ1 = ψ2 holds in H 1(Ω)4. As consequence of this and lemma 1.2.1 we have:

Corollary 1.2.1. The following statements hold true:

(i) The mapping H 1(Ω)4 3 ψ 7−→ F (ψ) = ψ ∈ H (α,Ω) is one-to-one and continuous.

(ii) The mapping H 1
0 (Ω)4 3 ψ 7−→ F (ψ) = ψ ∈ H0(α,Ω) is continuous and bijective.

The next proposition shows that the trace of a function ψ ∈ H (α,Ω) belongs to H−1/2(Σ)4,
and in particular, if tΣψ is in H 1/2(Σ)4 then ψ is in H 1(Ω)4. The proof of this result follows
the same lines as the one of [90, proposition 2.1], where the case of a C 2-smooth domain with
a compact boundary is considered.

Proposition 1.2.4. The following statements hold true:
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(i) If Ω is a Lipschitz domain, then the operator (α ·N )tΣ : H 1(Ω)4 → L2(Σ)4 extends into
a continuous map t̃Σ : H (α,Ω)→ H−1/2(Σ)4, and we have

〈(−iα · ∇)ψ,ϕ〉L2(Ω)4 − 〈ψ, (−iα · ∇)ϕ〉L2(Ω)4 = 〈t̃Σψ, tΣϕ〉H−1/2(Σ)4,H1/2(Σ)4 , (1.2.5)

for all ψ ∈ H (α,Ω) and ϕ ∈ H 1(Ω)4.

(ii) if Ω is C 1,ω-smooth domain, with ω ∈ (1/2, 1), then the trace operator tΣ : H 1(Ω)4 →
H 1/2(Σ)4 has a unique extension to a bounded linear operator tΣ : H (α,Ω)→ H−1/2(Σ)4,
and we have

〈(−iα · ∇)ψ,ϕ〉L2(Ω)4 − 〈ψ, (−iα · ∇)ϕ〉L2(Ω)4 = 〈(−iα ·N )tΣψ, tΣϕ〉H−1/2(Σ)4,H1/2(Σ)4 ,

(1.2.6)

for all ψ ∈ H (α,Ω) and ϕ ∈ H 1(Ω)4. In particular, for any ψ ∈ H (α,Ω) satisfying
tΣψ ∈ H 1/2(Σ)4, it holds that ψ ∈ H 1(Ω)4.

Proof. Fix ψ ∈ H (α,Ω) and let (ψj)j∈N ⊂ H 1(Ω)4 be a sequence of functions that
convergences to ψ in H (α,Ω). Given an arbitrary function g ∈ H 1/2(Σ)4 and let EΩ(g) ∈
H 1(Ω)4, where EΩ is the extension operator from H 1/2(Σ)4 to H 1(Ω)4 from Proposition 1.2.1.
It follows from Proposition 1.2.3 that

〈(−iα · ∇)ψj ,EΩ(g)〉L2(Ω)4 − 〈ψj , (−iα · ∇)EΩ(g)〉L2(Ω)4 = 〈(−iα ·N )tΣψ, g〉L2(Σ)4 .

Hence, Cauchy-Schwarz inequality yields that∣∣∣〈(α ·N )tΣψj , g〉L2(Σ)4

∣∣∣ 6 ‖(α · ∇)EΩ(g)‖L2(Ω)4‖ψj‖L2(Ω)4 + ‖EΩ(g)‖L2(Ω)4‖(α · ∇)ψj‖L2(Ω)4

6 ‖EΩ(g)‖H1(Ω)4‖ψj‖H(α,Ω).

Now, applying the trace theorem (see Proposition 1.2.1) to the above inequality yields∣∣∣〈(α ·N )tΣψj , g〉L2(Σ)4

∣∣∣ . ‖g‖H1/2(Σ)4‖ψj‖H(α,Ω).

Notice that for all j ∈ N we have (α ·N )tΣψj ∈ L2(Σ)4, and by definition it holds that

‖(α ·N )tΣψj‖H−1/2(Σ)4 = sup
06=g∈H1/2(Σ)

∣∣∣〈(α ·N )tΣψj , g〉H−1/2(Σ)4,H1/2(Σ)

∣∣∣
‖f‖H1/2(Σ)4

= sup
06=g∈H1/2(Σ)

∣∣∣〈tΣψj , (α ·N )g〉L2(Σ)

∣∣∣
‖f‖H1/2(Σ)4

. ‖ψj‖H(α,Ω),

because (α ·N ) ∈ L2(Σ)4. It follows from the above consideration that ((α ·N )tΣψj)j∈N is a
Cauchy sequence of H−1/2(Σ)4. Consequently we get

(α ·N )tΣψj −−−→
j→∞

f ∈ H−1/2(Σ)4,

‖f‖H−1/2(Σ)4 = lim
j→∞

‖(α ·N )tΣψj‖H−1/2(Σ)4 . ‖ψ‖H(α,Ω),

Since H 1(Ω)4 is a dense subspace of H (α,Ω), it follows that the mapping t̃Σ : H (α,Ω) −→
H−1/2(Σ)4 defined by

〈t̃Σψ, tΣϕ〉H−1/2(Σ)4,H1/2(Σ)4 = 〈(−iα · ∇)ψ,ϕ〉L2(Ω)4 − 〈ψ, (−iα · ∇)ϕ〉L2(Ω)4 , ∀ϕ ∈ H 1(Ω)4,
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is a continuous extension of the mapping (α · N )tΣ : H 1(Ω)4 → L2(Σ)4. From this we have
also the identity (1.2.5) and this proves (i).

Now we turn to the proof of (ii). Let ω ∈ (1/2, 1) and assume that Ω is C 1,ω-smooth
domain. Fix again ψ ∈ H (α,Ω) and let (ψj)j∈N ⊂ H 1(Ω)4 be a sequence of functions that
convergences to ψ in H (α,Ω). Since, N is C 0,ω-smooth and that |(α · N (x))| = I holds for
all x ∈ Σ, it follows that the multiplication operator by (α · N ) is bounded from H 1/2(Σ)4

into itself. Therefore, following exactly the same arguments as in the proof of the statement
(i) of this proposition, we get that (tΣψj)j∈N is a Cauchy sequence of H−1/2(Σ)4, and that

‖tΣψ‖H−1/2(Σ)4 = lim
j→∞

‖tΣψj‖H−1/2(Σ)4 . ‖ψ‖H(α,Ω).

Thus, the trace operator extends into a continuous map tΣ : H (α,Ω) → H−1/2(Σ)4. As
consequence, density arguments yields the Green’s formula (1.2.5).

Finally, let ψ ∈ H (α,Ω) be such that tΣψ ∈ H 1/2(Σ)4. Set ψ̃ = ψ − EΩ(tΣψ), then
ψ̃ ∈ H 1

0 (Ω)4 holds by Corollary 1.2.1. Since, ∇ψ̃, ∇EΩ(tΣψ) ∈ L2(Ω)4, it follows that
∇ψ ∈ L2(Ω)4 which yields that ψ ∈ H 1(Ω)4. This completes the proof of the proposition.

We finish this part be recalling the following result concerning the trace of function in the
Dirac-Sobolev space of order 1/2, H 1/2(α,Ω)4, it will be very useful when studying the point
spectrum of Dirac operators with δ-interactions supported on compact Lipschitz surfaces.
For the proof we refer to [24, Lemma 5.1].

Lemma 1.2.2. Let Ω be a Lipschitz domain with a compact boundary Σ, and define the the
Dirac-Sobolev space of order 1/2 by

H 1/2(α,Ω) = {ϕ ∈ H 1/2(Ω)4 : Hϕ ∈ L2(Ω)4}.

Then, the trace operator tΣ : H 1(Ω)4 → H 1/2(Σ)4 has a unique extension to a bounded linear
operator tΣ : H 1/2(α,Ω)→ L2(Σ)4

1.3 Integral operators associated with H, Hardy spaces and
Calderón’s decomposition

Boundary integral operators have played a key role in the study of many boundary value
problems for partial differential equations that arise in various fields of mathematical physics,
such as electromagnetism, elasticity and potential theory. They are namely involved as a
tool for proving the existence of solutions as well as theirs construction via integral equation
methods, cf. [52, 68, 69, 104].

To begin with, we give general results in the case of bounded uniformly rectifiable domains,
which for our applications, is the most general framework that we can consider. Then, we
consider the case of smooth domains, where there, we will be able to show some regularity
results for these integral operators.

We first recall Schur’s lemma for integral operators with a reproducing kernel. The proof
is a standard application of Cauchy-Schwarz’s inequality.

Theorem 1.3.1. (Schur’s test) Let K(x, y) be a measurable function on a product space
(X,Σ, µ) × (Y,Υ, ν). Suppose that there are measurable functions K1(x, y), K2(x, y) such
that

|K(x, y)| 6 K1(x, y)K2(x, y),
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1. Layer potentials associated with the Dirac operator

and there are constants C1, C2 > 0 such that

‖K1(x, ·)‖L2(X,µ) 6 C1, ‖K2(·, y)‖L2(Y,ν) 6 C2,

for µ-almost every x, respectively, ν-almost every y. Then the operator TK : L2(X,µ) −→
L2(Y, ν) defined by

TK [f ](x) :=
∫
Y
K(x, y)f(y)dν(y),

µ-almost every x and f ∈ L2(Y, ν), is bounded with ‖TK‖L2(X,µ)−→L2(Y,ν) 6 C1C2.

Proof. Let f ∈ L2(Y, ν), then applying Cauchy-Schwarz’s inequality,

|TK [f ](x)| =
∫
Y
|K(x, y)||f(y)|dν(y) =

∫
Y
K1(x, y)K2(x, y)|f(y)|dν(y)

6
(∫

Y
K1(x, y)2dν(y)

)1/2 (∫
Y
|K2(x, y)f(y)|2dν(y)

)1/2

6 C2
1

(∫
Y
|K2(x, y)f(y)|2dν(y)

)1/2

x almost every. Thus, integrating with respect to x and using Fubini’s yields that∫
X
|TK [f ](x)|2dµ(x) 6 C2

1

∫
X

(∫
Y
|K2(x, y)f(y)|2dν(y)

)
µ(x)

= C2
1

∫
Y

(∫
X
K2(x, y)dµ(x)

)
f(y)|2dν(y) 6 (C1C2)2

(∫
Y
|f(y)|2dν(y)

)
,

finishing the proof of the theorem.

The following lemma gives the fundamental solution of (H − z).

Lemma 1.3.1. For z ∈ ρ(H), the fundamental solution of (H − z) is given by

φz(x) = ei
√
z2−m2|x|

4π|x|

(
z +mβ + (1− i

√
z2 −m2|x|)iα · x

|x|2
)
, for all x ∈ R3 \ {0}.

(1.3.1)

Proof. Let z ∈ ρ(H), and recall the algebraic identity (H + z)(H + z) = ∆ + m2 − z2.
Since the fundamental solution of (∆ +m2 − z2)I4 is given by

ψz(x) = ei
√
z2−m2|x|

4π|x| I4, for x ∈ R3. (1.3.2)

Thus, (H + z)ψz is the fundamental solution of (H − z). Now, a simple computation shows
that (H + z)ψz(x) = φz(x) for all x ∈ R3 \ {0}, completing the proof.

In the sequel, unless stated otherwise, we always assume that Ω ⊂ R3 is a bounded UR
domain with ∂Ω = ∂Ω, or Ω is a graph Lipschitz domain, and we set

Ω+ = Ω and Ω− := R3 \ Ω, Σ = ∂Ω. (1.3.3)
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Let us now introduce the families of integral operators we are interested in. For z ∈ ρ(H)
and g ∈ L2(Σ)4, we define the following operators

Φz[g](x) =
∫

Σ
φz(x− y)g(y)dσ(y), for all x ∈ R3,

C z
Σ[g](x) = lim

ρ↘0

∫
|x−y|>ρ

φz(x− y)g(y)dσ(y), for all x ∈ Σ,

C z
±[g](x) = Φz

∣∣nt
Ω± [g](x) = lim

ΓΩ± (x)3y−→x
Φz[g](y), for all x ∈ Σ.

(1.3.4)

Denote by φ̃ the fundamental solution of the massless Dirac operator −iσ · ∇, that is

φ̃(x) = iσ · x

|x|3
, for all x ∈ R3 \ {0}, (1.3.5)

and we define the operator Φ̃ : L2(Σ)2 −→ L2(R3)2 as follows

Φ̃[h](x) =
∫

Σ
φ̃(x− y)h(y)dσ(y), for all x ∈ R3 and ∀h ∈ L2(Σ)2.

Also, for x ∈ Σ and h ∈ L2(Σ)2, we set

W±[h](x) = Φ̃
∣∣nt
Ω± [h](x) = lim

ΓΩ± (x)3y−→x
Φ̃[h](y),

W [h](x) = lim
ρ↘0

∫
|x−y|>ρ

φ̃(x− y)h(y)dσ(y).
(1.3.6)

Proposition 1.3.1. For all z ∈ ρ(H), the operators Φz : L2(Σ)4 −→ L2(R3)4 and Φ̃ :
L2(Σ)2 −→ L2(R3)2 are well defined and bounded.

Proof. Fix z ∈ ρ(H) and recall that Im(
√
z2 −m2) > 0. By definition of the fundamental

solution φz, there is δ > 0 such that

|φz(x)| . e−Im(
√
z2−m2)|x|, for all |x| > 1/δ, (1.3.7)

|φz(x)| . 1
|x|2

for all |x| < δ. (1.3.8)

Thus, |φz(x− y)| 6 K1(x, y)K2(x, y), with

K1(x, y) = K2(x, y) = e
−Im(

√
z2−m2)|x−y|

2

|x− y|
, x ∈ R3, y ∈ Σ.

Hence, the estimates (1.3.7) easily yield that

sup
y∈Σ

∫
R3
Kj(x, y)2dx .

∫
R3

e
−Im(

√
z2−m2)|x|
2

|x|
dx <∞,

and that

sup
x∈R3

∫
|x−y|<R
y∈Σ

Kj(x, y)2dσ(y) <∞,
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1. Layer potentials associated with the Dirac operator

for all R > 0, as can be easily seen by decomposing the domain of integration in dyadic annuli
and using the fact that σ is a 2-dimensional measure in R3. Hence we also have that

sup
x∈R3

∫
Σ
Kj(x, y)2dσ(y) <∞,

and therefore theorem 1.3.1 yields that Φz is bounded from L2(Σ)4 to L2(R3)4.
The statement about the boundedness of φ̃ : L2(Σ)2 −→ L2(R3)2 is more delicate and

needs sophisticated tools. The proof for the case of bounded UR domains can be found in
[63, Section 3.3] and is based on the boundedness of the gradient of the Single layer. For the
case of Lipschitz domain or the graph of Lipschitz domain, it is contained in [82, Proposition
5.2.8].

The following lemma gives us the relations between the operators defined above, and
gathers their important properties. We mention that when Ω+ is a bounded Lipschitz domain
these results are well known, in this case we refer to [10, Lemma 3.3] for example. In the
case of UR domains the lemma is somehow contained in [63], but for the convenience of the
reader we give here the main ideas to establish it.

Lemma 1.3.2. Let z ∈ ρ(H) and suppose that Ω+ is a bounded UR domain or a graph of
Lipschitz domain. Let C z

Σ, C z
±, W± and W be as above. Then C z

Σ[g](x), C z
±[g](x), W±[h](x)

and W [h](x) exist for σ-a.e. x ∈ Σ, C z
Σ, C z

± ∈ B(L2(Σ)4) and W, W± ∈ B(L2(Σ)2). Fur-
thermore, the following hold true:

(i) W± = ∓ i
2(σ ·N ) +W .

(ii) C z
± = ∓ i

2(α ·N ) + C z
Σ.

(iii) ((σ ·N )W )2 = (W (σ ·N ))2 = −1
4I2.

(iv) ((α ·N )C z
Σ)2 = (C z

Σ(α ·N ))2 = −1
4I4.

In particular, we have ‖W‖ > 1
2 and ‖C z

Σ‖ > 1
2 .

Proof. We first give the proof in the case where Ω+ is a bounded UR domain. Given
f ∈ L2(Σ), thanks to [63, Proposition 3.30] we know that for each j ∈ {1, 2, 3}, the limit

lim
ρ↘0

∫
|x−y|>ρ

xj − yj
4π|x− y|3 f(y)dσ(y), (1.3.9)

exist at almost every x ∈ Σ. Moreover, it holds that

lim
ΓΩ± (x)3w−→x

∫
wj − yj

4π|w − y|3 f(y)dσ(y) = ∓1
2Nj(x)f(x) + lim

ρ↘0

∫
|x−y|>ρ

xj − yj
4π|x− y|3 f(y)dσ(y).

(1.3.10)

Thus, working component by component it follows thatW±[h](x) andW [h](x) exist for σ-a.e.
x ∈ Σ, and W, W± ∈ B(L2(Σ)2). Item (i) follows by applying the jump relation (1.3.10) to
the functions σjh, j = 1, 2, 3.

Now, we are going to show (ii) and complete the proof of the first statement. For that,
fix z ∈ ρ(H) and set

k(x) := φz(x)− i
(
α · x

|x|3
)
, for all x ∈ R3 \ {0}. (1.3.11)
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1.3. Integral operators associated with H, Hardy spaces and Calderón’s decomposition

Then there is a constant C such that |k(ω, y)| 6 C/|ω − y|3/2 := k̃(ω, y), for ω, y ∈ Ω+.
Define

T [g](x) =
∫

Σ
k̃(x, y)g(y)dσ(y). (1.3.12)

Clearly, T is bounded in L2(Σ)4. Now, recall the definition of ΓΩ±(x) from (1.1.5). Let x ∈ Σ
and ω ∈ ΓΩ+(x), then∣∣∣∣∣

∫
B(ω,2|x−ω|)∩Σ

k(ω, y)g(y)dσ(y)
∣∣∣∣∣ 6

∫
B(ω,2|x−ω|)∩Σ

C

( 1 + a

|x− ω|

)3/2
|g(y)|dσ(y). (1.3.13)

Using the ADR property of Σ (more precisely, use the inequality H2(B(x, r) ∩Σ) 6 Cr2), it
follows that there is C1 depending only on the ADR constant of Σ such that∣∣∣∣∣

∫
B(ω,2|x−ω|)∩Σ

k(ω, y)g(y)dσ(y)
∣∣∣∣∣ 6 C1|x− ω|1/2MΣg(x), (1.3.14)

where MΣ is the Hardy-Littlewood maximal operator defined by (1.1.8). Now, let y ∈
Σ\B(x, 2|x−ω|), then |ω−y| 6 2|x−y|, and thus |k(ω, y)| 6 k̃(ω, y) 6 23k̃(x, y). Therefore,
we get ∣∣∣∣∣

∫
Σ\B(ω,2|x−ω|)

k(ω, y)g(y)dσ(y)
∣∣∣∣∣ 6 23T [|g|](x). (1.3.15)

Thus, (1.3.14), (1.3.15) and the dominate convergence theorem yield that

lim
ΓΩ+ (x)3ω−→x

∫
Σ
k(ω, y)g(y)dσ(y) =

∫
Σ
k(x, y)g(y)dσ(y), (1.3.16)

holds for all g ∈ L2(Σ)4 and dσσ-a.e. x ∈ Σ. Similarly, one can show that

lim
ΓΩ− (x)3ω−→x

∫
Σ
k(ω, y)g(y)dσ(y) =

∫
Σ
k(x, y)g(y)dσ(y), (1.3.17)

holds for all g ∈ L2(Σ)4 and for σ-a.e. x ∈ Σ. Thus, given any g ∈ L2(Σ)4, it follows from
the above considerations and (1.3.11) that C z

Σ[g](x) and C z
±[g](x) exist for σ-a.e. x ∈ Σ,

and C z
Σ, C z

± ∈ B(L2(Σ)4). Now, using (1.3.16), (1.3.17) and (i) (i.e working component by
component) we easily get (ii).

Finally the proof of (iii) and (iv) is a relatively straightforward modification of the tech-
nique used in the proof of [10, Lemma 3.3](ii). Indeed, by [63, p. 2659] it follows that

‖NΩ±
a [Φ̃[h]]‖L2(Σ)2 6 C‖h‖L2(Σ)2 ,

‖NΩ±
a [Φz[g]]‖L2(Σ)4 6 C‖g‖L2(Σ)4 ,

(1.3.18)

for some C > 0 depending only on a as well as the ADR and the UR constants of Σ. Now,
observe that

(−iσ · ∇)Φ̃[h] = 0 and (H − z)Φz[g] = 0 in Ω±. (1.3.19)

Then, by [63, Theorem 4.49] it holds that

Φ̃[h] =
∫

Σ
φ̃(x− y)(±iσ ·N (y))h(y)dσ(y), x ∈ Ω±,

Φz[g] =
∫

Σ
φz(x− y)(±iα ·N (y))g(y)dσ(y), x ∈ Ω±.

(1.3.20)
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Although [63, Theorem 4.49] was stated in the case of tow-sided NTA domains with ADR
boundaries (cf. Definition 1.3.1) it also holds for UR domains by the discussion on [63, p.
2758]. Now, given x ∈ Ω+, h ∈ L2(Σ)2 and g ∈ L2(Σ)4. Then, (i) (respectively (ii)) and
(1.3.20) yield that

Φ̃[(iσ ·N )h](x) = Φ̃[(iσ ·N )W+(iσ ·N )h](x),
Φz[(iα ·N )g](x) = Φz[(iα ·N )C z

+(iσ ·N )g](x).
(1.3.21)

Thus, taking the nontangential limit and using (i) yields that

1
2 +W (iσ ·N ) = W+(iσ ·N ) = W+(iσ ·N )W+(iσ ·N )

= 1
4 +W (iσ ·N ) + (W (iσ ·N ))2.

Thus, −4(W (iσ · N ))2 = I4, and hence −4W (iσ · N )W = −(iσ · N ) which yields that
−4((iσ · N )W )2 = I4. This proves the statements (iii). Similarly, (iv) follows by taking the
nontangential limit in (1.3.21) using (ii). This completes the proof of the lemma when Ω+ is
a bounded UR domain.

Now assume that Ω+ is a graph of Lipschitz domain. Then, the formulas (1.3.9) and
(1.3.10) are still hold true by [82, Proposition 5.4.4] and [82, Theorem 5.4.7], respectively.
Thus, one can adapt the above arguments in this case and get the claimed results, we omit
the details.

Remark 1.3.1. Note that since φz(y − x)∗ = φz(x − y), it follows that (C z
Σ)∗ = C z

Σ in
L2(Σ)4. In particular, C z

Σ (W ) is self-adjoint operators in L2(Σ)4 (respectively in L2(Σ)2),
for all z ∈ (−m,m).

In order to understand better Lemma 1.3.2, we need to investigate the following class of
domains.

Definition 1.3.1 (two-sided NTA domains). Following [68], we say that a nonempty, proper
open set Ω of R3 is an NTA (non-tangentially accessible) domain if Ω satisfies both the
two-sided Corkscrew and Harnack Chain conditions∗ (see [68],[63] or [61, Appendix] for the
precise definition). Furthermore, we say that Ω is a two-sided NTA domain if both Ω and
R3 \ Ω are non-tangentially accessible domains.

Assume that Ω+ is a two-sided NTA domain with an ADR boundary† (which makes it a
UR domain). Following [61], we define the Hardy spaces H2

z(Ω±)4 by

H2
z(Ω+)4 =

{
u : Ω+ → C4 : N[u] ∈ L2(Σ)4 and (H − z)u = 0

}
,

and

H2
z(Ω−)4 =

{
u : Ω− → C4 : N[u] ∈L2(Σ)4, (H − z)u = 0

and u(x) = O(|x|−2) as |x| → ∞
}
.

∗Generally speaking, the Corkscrew condition is a quantitative, scale invariant version of openness, and
the Harnack Chain condition is a scale invariant version of path connectedness.

†In the literature, a two-sided NTA domain whose boundary is ADR is often referred to as a 2-sided Chord
arc domain.
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Then, from (1.3.18) it follow that

Φz �Ω±∈ H2
z(Ω±)4.

Now, the boundary Hardy spaces are defined as follows

H2
z,±(Σ)4 =

{
u �Σ: u ∈ H2(Ω±)4

}
,

where the boundary trace is taken in a nontangential pointwise sense. Then, we have the
following proposition is contained in [61, Subsection 2.3], but we give the proof for the sake
of completeness.

Proposition 1.3.2. Let z ∈ C \ ((−∞,−m] ∪ [m,∞)), then the following decomposition
holds

L2(Σ)4 = H2
z,+(Σ)4 ⊕H2

z,−(Σ)4,

Moreover, it holds that

Rn
(1

2 + iC z
Σ(α ·N )

)
= H2

z,+(Σ)4 = Kr
(
−1

2 + iC z
Σ(α ·N )

)
,

Rn
(
−1

2 + iC z
Σ(α ·N )

)
= H2

z,−(Σ)4 = Kr
(1

2 + iC z
Σ(α ·N )

)
.

In other words,
(

1
2 ± iC

z
Σ(α ·N )

)
is the Calderón’s projector associated to H2

z,±(Σ)4.

Proof. Since C z
Σ is bounded invertible by Lemma 1.3.2, it follows that(
±1

2 + iC z
Σ(α ·N )

)2
= 1

4 ± iC
z
Σ(α ·N )− (C z

Σ(α ·N ))2

=
(
±1

2 + iC z
Σ(α ·N )

)
,

proving that
(

1
2 ± iC

z
Σ(α ·N )

)
are projectors, and hence

L2(Σ)4 = Rn
(
±1

2 + iC z
Σ(α ·N )

)
⊕Kr

(
±1

2 + iC z
Σ(α ·N )

)
.

Thus, to complete the proof of the proposition it suffices to show that

H2
z,+(Σ)4 = Rn

(1
2 + iC z

Σ(α ·N )
)
.

For this, note that by definition of the Hardy spaces H2
z(Ω±)4, we know that for any u ∈

H2
z(Ω+)4 there is g ∈ L2(Σ)4 such that u± = Φz[i(α ·N )g] �Ω± . Thus, Lemma 1.3.2 (ii) yields

that
u
∣∣nt
Ω+

=
(
− i2 + C z

Σ

)
(i(α ·N )g) =

(1
2 + iC z

Σ(α ·N )
)
g.

This gives the inclusion H2
z,+(Σ)4 ⊂ Rn (1/2 + iC z

Σ(α ·N )). Conversely, let f ∈ L2(Σ)4 and
set g = (1/2 + iC z

Σ(α ·N )) f . Then u = Φz[i(α · N )g] ∈ H2
z(Ω+)4 and same the computation

as above yields that g = u
∣∣nt
Ω+
∈ H2

z,+(Σ)4, since (1/2 + iC z
Σ(α ·N )) is a projector. Therefore,

Rn (1/2 + iC z
Σ(α ·N )) ⊂ H2

z,+(Σ)4, completing the proof of the proposition.
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1. Layer potentials associated with the Dirac operator

Remark 1.3.2. From the above proposition, we conclude that C z
±[i(α ·N )g] ∈ H2

z,±(Σ)4, for
all g ∈ L2(Σ)4. Note that (1/2± i(α ·N )C z

Σ) are also projectors. This observation, is the
main idea behind the Dirac operators considered in Section 3.3.

In the sequel, we shall write Φ, CΣ and C± instead of Φ0, C 0
Σ and C 0

±, respectively.
We next give some properties of the mapping Φz.

Lemma 1.3.3. Let Φz be as in (1.3.4) with z ∈ ρ(H), then

(i) (H−z)Φz[g] = 0 holds in R3\Σ for all g ∈ L2(Σ)4, and (Φz)∗ = tΣ(H−z)−1. Moreover,
(Φz)∗ is bounded surjective from L2(R3)4 to B2

1/2(Σ)4 if Ω+ is a bounded UR domain,
and to H 1/2(Σ)4 if Ω+ is a bounded Lipschitz domain or a graph of Lipschitz domain.
In particular, it holds that

Kr((Φz)∗) = {u ∈ L2(R3)4 : (H − z)−1u ∈ H 1
0 (R3 \ Σ)4}. (1.3.22)

(ii) For u ∈ L2(R3)4 and g ∈ L2(Σ)4 it holds that

〈Φ[g], u〉L2(R3)4 = 〈ψ, tΣ(H−1u)〉L2(Σ)4

Proof. (i) Since φz is the fundamental solution of (H − z) we immediately get that
(H − z)Φz[g] = 0 in Ω± for any g ∈ L2(Σ)4. Now, using that φz(x− y)∗ = φz(y−x), a direct
computation using Fubini’s theorem yields that

〈u,Φz[g]〉L2(R3)4 =
∫
R3

〈
u(x),

∫
Σ
φz(x− y)g(y)dσ(y)

〉
C4

dx

=
∫
R3

∫
Σ
〈u(x), φz(x− y)g(y)〉C4 dσ(y)dx

=
∫
R3

∫
Σ

〈
φz(x− y)u(x), g(y)

〉
C4

dσ(y)dx

=
∫

Σ

〈∫
R3
φz(x− y)u(x)dx, g(y)

〉
C4

dσ(y)

= 〈tΣ
(∫

R3
φz(y − x)u(x)dx

)
, g〉L2(Σ)4

Since for all u ∈ L2(R3)4 and all x ∈ R3 we have

(H − z)−1u(x) :=
∫
R3
φz(x− y)u(x)dy,

it follows that

〈u,Φz[g]〉L2(R3)4 = 〈tΣ(H − z)−1u, g〉L2(Σ)4

which means that that (Φz)∗ = tΣ(H−z)−1. Notice that (H−z)−1 is bounded from L2(R3)4

to H 1(R3)4 and tΣ is surjective, thus the boundedness and the surjectivety of (Φz)∗ from
L2(R3)4 to B2

1/2(Σ)4 (resp. H 1/2(Σ)4) in the case of UR domains (resp. Lipschitz domains)
follows by Proposition 1.2.2 (resp. Proposition 1.2.1). Now, the formula (1.3.22) follows
immediately from the formula (Φz)∗ = tΣ(H − z)−1, the fact that tΣ is surjective and that
Kr(tΣ) = H 1

0 (R3 \ Σ)4, which completes the proof of (i). The assertion (ii) is a consequence
of (i) and can also be proved exactly as in [10, Lemma 2.10.].

We finish this part be recalling the following result from [24, Lemma 5.2]. Recall the
definition of the Dirac-Sobolev space H 1/2(α,Ω±)4 from Lemma 1.2.2.
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Lemma 1.3.4. Let Φz be as in (1.3.4) and assume that Ω+ is a bounded Lipschitz do-
main. Then Φz is bounded from L2(Σ)4 to H 1/2(α,Ω+)4 ⊕ H 1/2(α,Ω−)4. Moreover, the
non-tangential limit in Lemma 1.3.2-(ii) coincides with the trace operator, that is

tΣΦz
∣∣
Ω± = C z

± = ∓ i2(α ·N ) + C z
Σ.

1.3.1 The case of C 2-smooth domains

The main goal of this part is to establish some regularity results concerning the operators
defined by (1.3.4) in the case of C 2-smooth domains, which will be crucial in the following
chapters. We will use them to describe the domain of the adjoint of the Dirac operator with
delta interactions supported on smooth surfaces. We mention that this results are well known
in the case of bounded C 2-smooth domains, see, e.g., [16, 90, 19, 22].

Recall the definition of the Dirac-Sobolev space H (α,Ω±) from Subsection 1.2.2. Then,
the following proposition gathers some properties of the Sobolev space H (α,Ω±) and of the
integral operators Φz and C z

Σ.

Proposition 1.3.3. Let ω ∈ (1/2, 1) and assume that Ω+ is a bounded C 1,ω-smooth domains
or the the graph of C 1,ω-smooth function , i.e.,

Ω+ = {(ỹ, t) : ỹ ∈ Rd−1, φ(ỹ) < t},

with φ : R2 −→ R a C 1,ω-smooth function. Let Φz and C z
± be as in Lemma 1.3.2. Then, for

all z ∈ ρ(H) the following hold:

(i) The operator Φz is bounded from H 1/2(Σ)4 to H 1(R3 \ Σ)4, and admits a continuous
extension from H−1/2(Σ)4 to H (α,Ω+)⊕H (α,Ω−), which we still denote by Φz.

(ii) The operator C z
Σ is bounded from H 1/2(Σ)4 into itself, and admits a continuous exten-

sion C̃ z
Σ : H−1/2(Σ)4 → H−1/2(Σ)4.

(iii) For any g ∈ H 1/2(Σ)4 and h ∈ H−1/2(Σ)4 it holds that

tΣ(Φz[h] �Ω±) =
(
∓ i2(α ·N ) + C̃ z

Σ

)
[h],

〈C̃ z
Σ[h], g〉H−1/2,H1/2 = 〈h,C z

Σ[g]〉H−1/2,H1/2 .

(1.3.23)

(iv) For all ϕ± ∈ H (α,Ω±) one has
(
1/2∓ iC̃ z

Σ(α ·N )
)
tΣϕ± ∈ H 1/2(Σ)4.

Proof. Fix ω ∈ (1/2, 1) and z ∈ ρ(H). As a preliminary step, we establish the following
result of general nature. Suppose that Ω+ is a Lipschitz domain and consider the operator
D0 defined by

D0ϕ = Hϕ, ∀ϕ ∈ H 1
0 (R3 \ Σ)4 =: dom(D0).

Then, using the properties of Sobolev spaces and the Green formulas from Proposition 1.2.3
and Proposition 1.2.4, it is easy to show that (D0, dom(D0)) is densely defined, closed and
symmetric, and that

D∗0ϕ = Hϕ, ∀ϕ ∈ dom(D∗0) = H (α,Ω+)⊕H (α,Ω−)

Moreover, since H 1(Ω±)4 is a dense subspace of H (α,Ω±) by Lemma 1.2.1, it easy follows
that the operator T = D∗0 � H 1(Ω+)4 ⊕H 1(Ω−)4 is closable and that T = D∗0.
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After this preamble, assume that Ω+ is a bounded C 1,ω-smooth domains or the the
graph of C 1,ω-smooth function. We are going to prove that Φz is bounded from H 1/2(Σ)4

to H 1(R3 \ Σ)4. Notice first that Rn(Φz) = Kr(T − z) holds for all z ∈ ρ(H). Since
Kr(T −z) ⊂ H 1(R3 \Σ)4 it follows that Φz : H 1/2(Σ)4 −→ H 1(R3 \Σ)4 is everywhere defined.
Now, given any subsequence (gj)j∈N such that

gj −−−→
j→∞

g in H 1/2(Σ)4, Φz[gj ] −−−→
j→∞

h, in H 1(R3 \ Σ)4.

Then, the continuity of Φz from L2(Σ)4 to L2(R3)4 provided in Proposition 1.3.1 yields that
Φz[gj ] −−−→

j→∞
Φz[g] in L2(Σ)4, and hence Φz[g] = h holds in L2(R3)4 and then in H 1(R3 \Σ)4.

As g ∈ H 1/2(Σ)4 we deduce that Φz : H 1/2(Σ)4 −→ H 1(R3 \ Σ)4 is closed, and therefore
bounded which prove the first statement of (i). To prove the second statement, recall the
adjoint operator (Φz)∗ : L2(R3)4 −→ H1/2(Σ)4 from Proposition 1.3.3 and denote by Φ̃z it
anti-dual, that is

Φ̃z : H−1/2(Σ)4 −→ L2(R3)4.

Given g ∈ L2(Σ)4 and u ∈ L2(R3)4, then Proposition 1.3.3 yields that

〈Φz[g], u〉L2(R3)4 = 〈g, (Φz)∗u〉L2(Σ)4 = 〈g, (Φz)∗u〉H−1/2(Σ)4,H1/2(Σ)4

〈Φ̃z[g], u〉L2(R3)4 .

We deduce from this that Φ̃z is an extension of Φz. Hence, to complete the proof of (i) it
suffices to prove that Φ̃z is bounded from H−1/2(Σ)4 to H (α,Ω+)⊕H (α,Ω−). For this, note
that

Rn(D0 − z) = {u ∈ L2(R3)4 : (H − z)−1u ∈ H 1
0 (R3 \ Σ)4},

and hence Rn(D0 − z) = Kr((Φz)∗) holds by (1.3.22). Since (Φz)∗ : L2(R3)4 −→ H1/2(Σ)4 is
closed, it follows from the closed range theorem that

Rn(Φ̃z) = (Kr((Φz)∗))⊥ = (Rn(D0 − z))⊥ = Kr(D∗0 − z),

is closed in L2(R3)4 which means that

Φ̃z : H−1/2(Σ)4 −→ Kr(D∗0 − z) ⊂ H (α,Ω+)⊕H (α,Ω−),

is bounded and bijective, which completes the proof of (i).
Let us move to the proof of (ii). Let g ∈ H 1/2(Σ)4, then (i) yields Φ[g] ∈ H 1(R3 \ Σ)4.

Since tΣ(Φz
∣∣
Ω±)[g] coincides with the nontangential limit (Φz[g])

∣∣nt
Ω± , by Lemma 1.3.2 we get

that

C z
Σ[g] = 1

2
(
tΣ(Φz

∣∣
Ω+

) + tΣ(Φz
∣∣
Ω−)

)
[g] ∈ H 1/2(Σ)4.

Hence, C z
Σ is bounded from H 1/2(Σ)4 into itself. Consequently, using that (C z

Σ)∗ = C z
Σ, by

duality we get the second statement statement of (ii). Finally, using (i) together with (ii),
duality and density arguments we immediately get the assertions (iii).

The proof of (iv) follows exactly the same lines as the one [90, Proposition 2.7]. Indeed,
fix ϕ ∈ H (α,Ω±) and let (ϕj)j∈N ⊂ H 1(Ω±)4 be a sequence of functions that convergences
to ϕ in H (α,Ω±). Given g ∈ H 1/2(Σ)4 and fix z ∈ ρ(H). Thanks to (i) we know that
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Φz[g] ∈ H 1(Ω+)4⊕H 1(Ω−)4, thus the Greean’s formula together with Lemma 1.3.2-(ii) yield
that

〈(H − z)ϕj ,Φz[g]〉L2(Ω±)4 =〈ϕ, (H − z)Φz[g]〉L2(Ω±)4 + 〈∓i(α ·N )tΣϕj , tΣ〉L2(Σ)4

=
〈
∓i(α ·N )tΣϕj ,

(
∓ i2(α ·N ) + C z

Σ

)
[g]
〉

L2(Σ)4

= 〈(1/2∓ iC z
Σ(α ·N )) tΣϕj , g〉L2(Σ)4 .

Thus (i) of this proposition yields that∣∣∣∣〈g, (1/2∓ iC̃ z
Σ(α ·N )

)
tΣϕj

〉
L2(Σ)4

∣∣∣∣ =
∣∣∣〈(H − z)ϕ,Φz[g]〉L2(Ω±)4

∣∣∣
. ‖g‖H−1/2(Σ)4‖ϕj‖H(α,Ω±).

Since H 1/2(Σ)4 is dense in H−1/2(Σ)4, (1/2 ∓ iC̃ z
Σ(α · N ))tΣϕj ∈ H 1/2(Σ)4 for all j ∈ N, it

follows that (1/2 ∓ iC̃ z
Σ(α · N ))tΣϕj defines a bounded linear form on H−1/2(Σ)4, and thus

taking the limit j −→∞ yields that

‖ (1/2∓ iC z
Σ(α ·N )) tΣϕ‖H1/2(Σ)4 . ‖ϕ‖H(α,Ω±),

which means that (1/2∓iC z
Σ(α·N ))tΣϕ ∈ H 1/2(Σ)4, finishing the proof of the proposition.

Remark 1.3.3. The proof above gives more, namely Φz is a bounded bijective operator from
H−1/2(Σ)4 to H (α,Ω+)⊕H (α,Ω−).

For z ∈ ρ(H), recall that the trace of the single-layer operator associated with (∆ +
m2 − z2)I4, denoted by Sz (and we simply write S := S0 when z = 0), has the integral
representation

Sz[g](x) =
∫

Σ
ψz(x− y)g(y)dσ(y), for all x ∈ Σ and g ∈ L2(Σ)4. (1.3.24)

where ψz(x) is the fundamental solution of (∆ +m2 − z2)I4 defined by (1.3.2).

In the rest of this section, we restrict ourselves to the following setting that we will
consider in Chapter 2. We consider a surface Σ ⊂ R3 dividing the space into two regions Ω±,
and we assume that it satisfies one of the hypotheses:

(H1) Σ = ∂Ω+ with Ω+ a C 2-smooth bounded domain.

(H2) Σ := Σν := {(x1, x2, x3) ∈ R3 : x3 = νφ(x1, x2)}, where ν ∈ R+ and φ : R2 → R is a
C 2-smooth, compactly supported function. We denote by Lφ the Lipschitz constant of
φ and by F we denote the flat part of Σν i.e.

F := {x = (x1, x2, νφ(x1, x2)) ∈ Σν : (x1, x2) /∈ supp(φ)}. (1.3.25)

We parameterize Σν by the mapping{
τ : R2 −→ R3

x 7−→ (x, νφ(x))
(1.3.26)

For x = (x, νφ(x)) ∈ Σν , we express the surface measure on Σν via the formula dσ(x) =
Jν(x)dx, where Jν is the Jacobian given by

Jν(x) =
√

1 + ν2|∇φ(x)|2. (1.3.27)
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The next result contains the main tools to prove the self-adjointness of Dirac operators
with δ-interactions supported on surfaces satisfying (H1) or (H2). Recall that {A,B} =
AB +BA is the usual anticommutator bracket.

Lemma 1.3.5. Let z ∈ ρ(H), then the following hold:

(i) The anticommutator {β,C z
Σ} extends to a bounded operator from H−1/2(Σ)4 onto H 1/2(Σ)4.

In particular, if Σ satisfies (H1), then {β,C z
Σ} is a compact operator in L2(Σ)4.

(ii) The anticommutator {α · N ,C z
Σ} extends to a bounded operator from H−1/2(Σ)4 to

H 1/2(Σ)4. In particular, if Σ satisfies (H1), then {α · N ,C z
Σ} is a compact operator in

L2(Σ)4.

(iii) If Σ satisfies (H2), then {α ·N ,CΣ} is a compact operator in L2(Σ)4.

Before going through the proof of Lemma 1.3.5, we introduce some suitable truncation
functions that we often use in localization arguments when the surface Σ satisfies the as-
sumption (H2).

Notation 1.3.1. Fix ν > 0 and suppose that Σ satisfies the assumption (H2). We fix
R2 > R1 > 0 such that Σν \ F ⊂ B(0, R1/2), where F is the flat part of Σν given by
(1.3.25). We consider the C∞-smooth and compactly supported functions χν : Σν → R and
χ0 : Σ0 → R, which satisfy

supp(χν) ⊂ B(0, R2) ∩ Σν and χν(x) = 1 for x ∈ B(0, R1) ∩ Σν ,

supp(χ0) ⊂ B(0, R2) ∩ Σ0 and χ0(x) = 1 for x ∈ B(0, R1) ∩ Σ0,

χν(x) = χ0(x) for x ∈ C(0, R1, R2) ∩ Σν = C(0, R1, R2) ∩ Σ0,

where C(0, R1, R2) denotes the annulus B(0, R2) \ B(0, R1). We also denote by Ξ : R3 → R
a C∞-smooth and compactly supported function, such that Ξ(x) = 1 for x ∈ B(0, R1) and
Ξ(x) = 0 for x ∈ R3 \B(0, R2).

Remark 1.3.4. Note that by definition, if g ∈ H 1/2(Σν)4 and f ∈ H 1/2(Σ0)4 are such that
g = f on F , then it holds that

(1− χν)g = (1− χ0)f.

Proof of Lemma 1.3.5. Fix z ∈ ρ(H), we are going to prove item (i). For this, observe
that by the anticommuation relations of the Dirac matrices we have

βφz(x− y) + φz(x− y)β = 2e
i
√
z2−m2|x−y|

4π|x− y| (zβ +mI4) ,

and thus

{β,C z
Σ}[g](x) = 2(zβ +mI4)Sz[g](x), ∀g ∈ L2(Σ)4.

Hence, by [81, Theorem 6.11] (see also [82] for example) we know that Sz is bounded
from L2(Σ)4 to H 1(Σ)4. Thus, {β,C z

Σ} is bounded from L2(Σ)4 to H 1(Σ)4, and hence the
first statement of (i) follows by duality and interpolation arguments. Since the embedding
H 1/2(Σ)4 ↪→ L2(Σ)4 is compact when Σ satisfies (H1), we then get that {β,C z

Σ} is a compact
operator in L2(Σ)4, finishing the proof of (i).

Proof of (ii): the case of (H1). The proof of this statement is similar to that of [90,
Proposition 2.8] where the case z = 0 was proved, and follows essentially from the fact the
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kernel of {α · N ,C z
Σ} is not singular. Indeed, let x ∈ Σ and y ∈ R3, then a straightforward

computation using the anticommutation relations of the Dirac matrices yields that

(α ·N (x))(α · y) = −(α · y)(α ·N (x)) + 2(N (x) · y)I4. (1.3.28)

Recall the definition of ψz from (1.3.2), then it follows from (1.3.28) that

(α ·N (x))φz(y) =− φz(y)(α ·N (x))− ei
√
z2−m2|y|

2iπ|y|3 (1− i
√
z2 −m2|y|)(N (x) · y)I4 (1.3.29)

+ 2z(α ·N (x))ψz(y). (1.3.30)

Note that there are constants C1 and C2 such that, for all x, y ∈ Σ, it holds that

|N (x)−N (y)| 6 C1|x− y| and |N (x) · (x− y)| 6 C2|x− y|2,

this can be proved in the same way as in Proposition 4.4.5 below, see also [53, Lemma 3.15].
Using this, for g ∈ L2(Σ)4, we get that

{α ·N ,C z
Σ}[g](x) =

∫
Σ
Kz(x, y)g(y)dσ(y) + 2z(α ·N (x))Sz[g](x)

:= Tz,1[g](x) + Tz,2[g](x),
(1.3.31)

where the kernel Kz is given by

Kz(x, y) =φz(x− y)(α · (N (y)−N (x)) (1.3.32)

− ei
√
z2−m2|x−y|

2iπ|x− y|3 (1− i
√
z2 −m2|x− y|)(N (x) · (x− y))I4. (1.3.33)

Since Σ is C 2-smooth, it follows immediately from (i) that Tz,2 is bounded from H−1/2(Σ)4 to
H 1/2(Σ)4. Hence, it remains to prove that Tz,1 is bounded from H−1/2(Σ)4 to H 1/2(Σ)4. For
this, recall that |φz(x−y)| = O(|x−y|)−2) when |x−y| → 0, thus (1.3.29) and (1.3.32) implies
that |Kz(x, y)| 6 O(|x − y|−1) when |x − y| → 0. Therefore, Kz is a pseudo-homogeneous
kernel of class −1 in the sense of [89, §4.3.3] , and thus [89, Theorem 4.4.2] yields Tz,1 is
bounded from L2(Σ)4 to H 1(Σ)4. Hence, by duality and interpolation arguments it follows
that Tz,1 extends continuously to a bounded from H−1/2(Σ)4 to H 1/2(Σ)4. Thus, {β,C z

Σ} is
bounded from H−1/2(Σ)4 to H 1/2(Σ)4, and hence compact in L2(Σ)4.

Proof of (ii): the case of (H2). Now, assume that Σ satisfies (H2) and recall that F
denotes the flat part of Σ = Σν . Notice that

N (y)−N (x) = 0 = N (x) · (x− y) if x, y ∈ F.

Therefore the kernel Kz(x, y) vanishes for all x, y ∈ F , and from the above considerations
it holds that |Kz(x, y)| 6 C|x − y|−1 when |x − y| → 0. Let R2 > R1 > 0 and χν be as in
Notation 1.3.1. SinceKz(x, y) vanishes for all x, y ∈ F , it follows that (1−χν)Tz,1(1−χν) = 0.
Thereby, Tz,1 can be written as follows

Tz,1 = χνTz,1χν + χνTz,1(1− χν) + (1− χν)Tz,1χν := T1 + T2 + T3. (1.3.34)

Again, T1 can be extended to a bounded operators from H−1/2(Σ)4 to H 1/2(Σ)4 in the same
way as in the case of the assumption (H1). Now we are going to show that T2 is bounded
from H−1/2(Σ)4 into H 1/2(Σ)4, the proof for T3 is similar. For this, we first observe that T2
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vanishes identically for x /∈ Σ ∩ B(0, R1/2), and it can be written for x ∈ Σ ∩ B(0, R1/2) as
follows:

T2[g](x) =
∫
y∈Σ\B(0,R1)∩Σ

Kz(x, y)(1− χν)(y)g(y)dσ(y).

which means that T2 is not singular. Indeed, this follows from the definition of the cut-
off function χν and the fact that the kernel Kz(x, y) vanishes for x, y ∈ (B(0, R1) ∩ Σ) \
(B(0, R1/2) ∩ Σ) ⊂ F .

Next, recall the definitions of τ and Jν from (3.1.6) and (1.3.27). Since the mapping
(Jνg)(x̃) = J

1/2
ν (x̃)g(τ(x̃)) is an isometric isomorphism from L2(Σ)4 into L2(R2)4. If we let

V = {x̃ ∈ R2 : τ(x̃) ∈ Σ∩B(0, R1/2)}, then it is not difficult to check that JνT2J −1
ν = T̃2,

where T̃2 : L2(R2)4 → L2(R2)4 is defined, for x̃ ∈ V , by

T̃2[f ](x̃) =
∫

ỹ∈R2

τ(ỹ)∈Σ\B(0,R1)∩Σ
J1/2
ν (x̃)Kz(τ(x̃), τ(ỹ))(1− χν(τ(ỹ)))J1/2

ν (ỹ)f(ỹ)dỹ,

and T̃2[f ](x̃) = 0 for x̃ ∈ R2 \ V . Since N is C 1-smooth, it is clear that the mapping
V 3 x̃ → Kz(τ(x̃), τ(ỹ)) is C 1-smooth for all ỹ ∈ R2, and the mapping R2 \ V 3 ỹ →
Kz(τ(x̃), τ(ỹ))(1 − χν(τ(ỹ))) is C∞-smooth for all x̃ ∈ V , since N (τ(ỹ)) is constant in this
case. From this, it follows that T̃2[f ] is differentiable on V and it holds that

∂x(T̃2[f ])(x̃) =
∫

ỹ∈R2

τ(ỹ)∈Σ\B(0,R2)∩Σ
(∂xJ1/2

ν )(x̃)Kz(τ(x̃), τ(ỹ))(1− χν(τ(ỹ)))J1/2
ν (ỹ)f(ỹ)dỹ

+
∫

ỹ∈R2

τ(ỹ)∈Σ\B(0,R2)∩Σ
J1/2
ν (x̃) (∂xKz(τ(x̃), τ(ỹ)) (1− χν(τ(ỹ)))J1/2

ν (ỹ)f(ỹ)dỹ

:=(T2,1[f ])(x) + (T2,2[f ])(x).

Since (∂xJ1/2
ν ) is bounded, it is easy to see that T2,1 is bounded from L2(R2)4 into itself.

Now, observe that |x̃− ỹ|2 6 |τ(x̃)− τ(ỹ)|2 holds for x̃, ỹ ∈ R2, using this we see that

|J1/2
ν (x̃) (∂xKz(τ(x̃), τ(ỹ)) (1− χν(τ(ỹ)))J1/2

ν (ỹ)| 6 K1(x̃, ỹ)K2(x̃, ỹ),

where K1(x̃, ỹ) = |x̃− ỹ|−2 and K2(x̃, ỹ) = e−Im
√
z2−m2|x̃−ỹ|/|x̃− ỹ|. Note that

sup
x∈V

∫
ỹ∈R2

τ(ỹ)∈Σ\B(0,R1)∩Σ
|K1(x̃, ỹ)|2dỹ <∞, sup

ỹ∈R2

τ(ỹ)∈Σ\B(0,R1)∩Σ

∫
x̃∈V
|K2(x̃, ỹ)|2dx <∞.

Hence, the Schur test from Theorem 1.3.1 yields that T2,2 is bounded from L2(R2)4 into itself.
Thus T2 is bounded from L2(Σ)4 to H 1(Σ)4, and by duality and interpolation arguments it can
be continuously extended to a bounded operator from H−1/2(Σ)4 to H 1/2(Σ)4. Therefore {α ·
N ,C z

Σ} extends to a bounded operator from H−1/2(Σ)4 to H 1/2(Σ)4. The second statement
is a direct consequence of the Sobolev injection, and this completes the proof of (ii).

Now we turn to the proof of (iii). Assume that Σ satisfies (H2), then from (ii) we know
that the operator {α ·N ,CΣ} coincides with Tz,1 for z = 0, and it is bounded from H−1/2(Σ)4

to H 1/2(Σ)4. Hence, {α · N ,CΣ} is compact on L2(Σ)4 by the decomposition (1.3.34) and
the compactness of the Sobolev embedding χνH 1/2(Σ)4 ↪→ L2(Σ)4. This finishes the proof of
the lemma.
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Remark 1.3.5. Actually the above result is not surprising since the integral kernels associated
to the anticommutators {α · N ,C z

Σ} and {β,C z
Σ} behave locally like |x − y|−1, when |x − y|

tends to zero. Moreover, the anticommutators are actually bounded from L2(Σ)4 to H 1(Σ)4,
and since Σ is C 2-smooth, by interpolation arguments we get that {α · N ,C z

Σ}, {β,C z
Σ} :

H s−1(Σ)4 → H s(Σ)4 are bounded operators for any s ∈ [0, 1].
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Chapter 2

On the Dirac operator with
δ-interactions supported on smooth
surfaces

The results presented in this chapter have been the subject of the paper [29].

2.1 Introduction

The purpose of this chapter is to study spectral properties of the families of Dirac operators
defined formally by

Hκ := H + (εI4 + µβ + η(α ·N))δ∂Ω, κ := (ε, µ, η) ∈ R3,

Hζ,υ := H + (−iζγ5 + iυβ (α ·N)) δ∂Ω, (ζ, υ) ∈ R2,
(2.1.1)

in the Hilbert space L2(R3)4 when Σ ⊂ R3 is a smooth surface. Here γ5 := α1α2α3 denotes
the so-called chirality matrix, and satisfies the algebraic properties

γ5 =
(

0 I2
I2 0

)
, γ5β = −βγ5 and γ5(α · x) = (α · x)γ5, ∀x ∈ R3. (2.1.2)

We shall consider throughout this chapter surfaces Σ ⊂ R3 satisfying either the assumption
(H1) or the assumption (H2).

Let us now describe the structure of this chapter. We first focus on the study of the
Dirac operator Hκ. In the next section, we give the rigorous definition of the Hamiltonian
Hκ and we developed a strategy to prove its self-adjointness when Σ satisfies the first and
second assumptions, the main result being Theorem 2.2.1. Section 2.3 is devoted to the
spectral study of Hκ. There, we focus on the case where Ω is a locally deformed half-space
and we give a complete description of the essential spectrum of Hκ, for the non-critical and
critical combinations of coupling constants in Theorem 2.3.3 and Theorem 2.3.4, respectively.
Finally, in Section 2.4, we adapt the arguments developed in Sections 2.2 and 2.3 to study
the spectral properties of the Dirac operator Hζ,υ, for all possible combinations of interaction
strengths. The main results in this section are Theorem 2.4.1 and Theorem 2.4.2.
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2.2 Self-adjointness of Hκ

In this section, we study the self-adjointness of the Dirac operator Hκ. In our setting,
it will be seen that the special value ε2 − µ2 − η2 = 4 plays a critical role in the analysis of
the spectral properties of Hκ. Before stating the main result of this part, some notations are
needed. Recall the definition of the operators Φz, C z

Σ and C z
± from (1.3.4).

Notation 2.2.1. For κ = (ε, µ, η) ∈ R3, we set

sgn(κ) := ε2 − µ2 − η2. (2.2.1)

If sgn(κ) 6= 0, then for z ∈ ρ(H) we define the operators Λz± as follows:

Λz± = 1
sgn(κ)(εI4 ∓ (µβ + η(α ·N)))± C z

Σ, ∀z ∈ C \ ((−∞,−m] ∪ [m,∞)) .

Since (α · N) is C 1-smooth and symmetric, thanks to the properties of Cauchy operator C z
Σ

from Lemma 1.3.2 and Proposition 1.3.3, it easily follows that Λz± are bounded (and self-
adjoint for z ∈ (−m,m)) from L2(Σ)4 onto itself, and bounded from H 1/2(Σ)4 onto itself.

In the sequel, we shall write Φ, CΣ, C± and Λ± instead of Φ0, C 0
Σ, C 0

± and Λ0
±, respectively.

Now we are in position to give the first definition of the Dirac Hamiltonian with δ-interactions
supported on Σ, the main object of the present paper.

Definition 2.2.1. Let κ = (ε, µ, η) ∈ R3 be such that sgn(κ) 6= 0. The Dirac operator coupled
with a combination of electrostatic, Lorentz scalar and normal vector field δ-shell interactions
of strength ε, µ and η respectively, is the operator Hκ = H+Vκ, acting in L2(R3)4 and defined
on the domain

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4, tΣu = −Λ+[g]

}
,

where

Vκ(ϕ) = 1
2(εI4 + µβ + η(α ·N)))(ϕ+ + ϕ−)δΣ,

with ϕ± = tΣu+ C±[g]. Hence, Hκ acts in the sense of distributions as Hκ(ϕ) = Hu, for all
ϕ = u+ Φ[g] ∈ dom(Hκ).

In what follows we denote by Λ̃z± the continuous extension of Λz± defined from H−1/2(Σ)4

into itself. Now we can state the first main theorem of this chapter. The rest of this part will
be devoted to the proof of this result.

Theorem 2.2.1. Let Hκ be as in Definition 2.2.1. Then, the following statements hold true:

(i) If sgn(κ) 6= 4, then Hκ is self-adjoint and we have

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, tΣu = −Λ+[g]

}
.

(ii) If sgn(κ) = 4, then Hκ is essentially self-adjoint and we have

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, tΣu = −Λ̃+[g]

}
.

Proposition 2.2.1. Let Hκ be as in Definition 2.2.1, then Hκ is closable.
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Proof. Since any symmetric operator on a Hilbert space with dense domain of definition
always admits a closure, to prove the proposition it suffices to show the following:

(i) dom(Hκ) is dense in L2(R3)4.

(ii) Hκ is symmetric on dom(Hκ).

First, observe that C∞0 (R3\Σ)4 ⊂ dom(Hκ) ⊂ L2(R3)4. since C∞0 (R3\Σ)4 is a dense subspace
of L2(R3)4 we then get (i). Now we are going to prove (ii). For this, let ϕ,ψ ∈ dom(Hκ) with
ϕ = u+ Φ[g] and ψ = v + Φ[h], then we have

〈Hκϕ,ψ〉L2(R3)4 − 〈ϕ,Hκψ〉L2(R3)4 = 〈Hu, v + Φ[h]〉L2(R3)4 − 〈u+ Φ[g], Hv〉L2(R3)4

= 〈Hu,Φ[h]〉L2(R3)4 − 〈Φ[g], Hv〉L2(R3)4

= 〈tΣu, h〉L2(Σ)4 − 〈g, tΣv〉L2(Σ)4 ,

where in the last equality Lemma 1.3.3 was used. Now, the self-adjointness of Λ+ together
with the conditions tΣu = −Λ+[g] and tΣv = −Λ+[h] yield that

〈Hκϕ,ψ〉L2(R3)4 − 〈ϕ,Hκψ〉L2(R3)4 = 〈−Λ+[g], h〉L2(Σ)4 − 〈g,−Λ+[h]〉L2(Σ)4 = 0, (2.2.2)

which means that Hκ is symmetric on dom(Hκ), and this concludes the proof.

The following proposition gives a description of the domain of the adjoint operator H∗κ.

Proposition 2.2.2. Let Hκ be as in Definition 2.2.1. Then we have

dom(H∗κ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, tΣu = −Λ̃+[g]

}
. (2.2.3)

Proof. Let D be the set on the right-hand side of (2.2.3). First we prove the inclusion
D ⊂ dom(H∗κ). Given ϕ := v + Φ[h] ∈ D and ψ = u+ Φ[g] ∈ dom(Hκ), then

〈ϕ,Hκψ〉L2(R3)4 = 〈Hv, u〉L2(R3)4 + 〈Φ[h], Hu〉L2(R3)4 = 〈Hv, u〉L2(R3)4 + 〈h, tΣu〉H−1/2,H1/2

= 〈Hv, u〉L2(R3)4 + 〈h,−Λ+[g]〉H−1/2,H1/2 = 〈Hv, u〉L2(R3)4 + 〈tΣv, g〉H−1/2,H1/2

= 〈Hv,ψ〉L2(R3)4 .

Which yields ϕ ⊂ dom(H∗κ) and thus D ⊂ dom(H∗κ).
Now we prove the inclusion dom(H∗κ) ⊂ D. Fix ϕ ∈ dom(H∗κ), we first show that

there exist functions v ∈ H 1(R3)4 and h ∈ H−1/2(Σ)4 uniquely determined by ϕ such that
ϕ = v + Φ[h]. For that, let ψ = (ψ+, ψ−) ∈ D(Ω+)4 ⊕ D(Ω−)4, then by definition there is
U = (U+, U−) ∈ L2(R3)4 such that

〈Hϕ,ψ〉D′(R3)4,D(R3)4 = 〈ϕ,Hψ〉D′(R3)4,D(R3)4 = 〈ϕ+, Hψ+〉L2(Ω+)4 + 〈ϕ−, Hψ−〉L2(Ω−)4

= 〈U+, ψ+〉L2(Ω+)4 + 〈U−, ψ−〉L2(Ω−)4 = 〈U,ψ〉L2(R3)4

Thus we obtain Hϕ± = U± in D′(Ω±)4 and then in L2(Ω±)4. From this we conclude that
ϕ ∈ H (α,Ω+)⊕H (α,Ω−). Set

h = i(α ·N )(tΣϕ+ − tΣϕ−) and v = ϕ− Φ[h]. (2.2.4)

As tΣϕ± ∈ H−1/2(Σ)4 holds by Proposition 1.3.3, it follows that h ∈ H−1/2(Σ)4 and v ∈
H (α,Ω+)⊕H (α,Ω−). Moreover, a simple computation yields that

tΣ(v �Ω±) =
(1

2 − iC̃Σ(α ·N )
)
tΣϕ+ +

(1
2 + iC̃Σ(α ·N )

)
tΣϕ−.
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Thanks to Proposition 1.3.3-(iv) we know that tΣv ∈ H 1/2(Σ)4, which yields that v ∈ H 1(R3)4

and justifies the decomposition ϕ = v + Φ[h]. Since ϕ ∈ dom(H∗κ) ∩H (α,Ω+)⊕H (α,Ω−) it
follows that

0 = 〈(−iα ·N )tΣϕ+, tΣψ+〉H−1/2,H1/2 − 〈(−iα ·N )tΣϕ−, tΣψ−〉H−1/2,H1/2

= 〈tΣv, g〉L2(Σ)4 − 〈h, tΣu〉H−1/2,H1/2 ,
(2.2.5)

for all ψ = u + Φ[g] ∈ dom(Hκ) ∩ H 1(Ω+)4 ⊕ H 1(Ω−)4. Indeed, using the Green’s formula
(1.2.6) we easily get

〈ϕ,Hκψ〉L2(R3)4 =〈ϕ+, Hψ+〉L2(Ω+)4 + 〈ϕ−, Hψ−〉L2(Ω−)4

=〈Hϕ+, ψ+〉L2(Ω+)4 + 〈Hϕ−, ψ−〉L2(Ω−)4

− 〈(−iα ·N )tΣϕ+, tΣψ+〉H−1/2,H1/2 + 〈(−iα ·N )tΣϕ−, tΣψ−〉H−1/2,H1/2 .

Therefore, (2.2.5) follows from the above computations, the definition of the adjoint operator
and (1.3.23).

Let g ∈ H 1/2(Σ)4 and set u = E(−Λ+[g]) ∈ H 1(R3)4, where E is the extension operator.
Since u+ Φ[g] ∈ dom(Hκ), by (2.2.5) we obtain

〈tΣv, g〉L2(Σ)4 − 〈h, tΣu〉H−1/2,H1/2 = 〈tΣv + Λ̃+[h], g〉H−1/2,H1/2 = 0, (2.2.6)

where the condition tΣu = −Λ+[g] was used in the last step. Since (2.2.6) holds for all
g ∈ H 1/2(Σ)4, we conclude that tΣv = −Λ̃+[h] holds in H−1/2(Σ)4 and then in H 1/2(Σ)4.
Consequently, we get the inclusion dom(H∗κ) ⊂ D, which completes the proof of the proposi-
tion.

We are now in position to prove Theorem 2.2.1.
Proof of Theorem 2.2.1 (i) Let z ∈ ρ(H) and let κ ∈ R3 be such that sgn(κ) /∈ {0, 4}

(where sgn(κ) is given by (2.2.1)). Using the definition of Λ̃z± and Lemma 1.3.2-(iv), a simple
computation gives

Λ̃z±Λ̃z∓ = 1
sgn(κ) − (C̃ z

Σ)2 + µ

sgn(κ){β, C̃
z
Σ}+ η

sgn(κ){α ·N , C̃
z
Σ}

= 1
sgn(κ) −

1
4 − C z

Σ(α ·N ){α ·N , C̃ z
Σ}+ µ

sgn(κ){β, C̃
z
Σ}+ η

sgn(κ){α ·N , C̃
z
Σ}.

(2.2.7)

Thus, if g ∈ H−1/2(Σ)4 is such that Λ̃z+[g] ∈ H 1/2(Σ)4, then from (2.2.7) we see that

g = 4(sgn(κ))
4− sgn(κ)

(
Λz−Λ̃z+ + C z

Σ(α ·N ){α ·N , C̃ z
Σ} −

µ

sgn(κ){β, C̃
z
Σ} −

η

sgn(κ){α ·N , C̃
z
Σ}
)

[g].

Therefore, Lemma 1.3.5 yields that g ∈ H 1/2(Σ)4. Consequently, given any ϕ = u + Φ[g] ∈
dom(H∗κ), since g ∈ H−1/2(Σ)4 and tΣu = Λ̃+[g] ∈ H 1/2(Σ)4, we deduce that g ∈ H 1/2(Σ)4.
Thus, dom(H∗κ) = dom(Hκ) and it holds that

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, tΣu = −Λ+[g]

}
.

This finishes the proof of (i).
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(ii) Fix κ ∈ R3 such that sgn(κ) = 4. Since Hκ is closable by Proposition 2.2.1, it follows
that Hκ ⊂ H∗κ. Let us prove the other inclusion, for this given ϕ = u+ Φ[g] ∈ dom(H∗κ) and
let (hj)j∈N ⊂ H 1/2(Σ)4 be a sequence of functions that converges to g in H−1/2(Σ)4. Set

gj := g + 2
ε

Λ̃−[hj − g], ∀j ∈ N. (2.2.8)

Then (gj)j∈N, (Λ+[gj ])j∈N ⊂ H 1/2(Σ)4, and it holds that

gj −−−→
j→∞

g in H−1/2(Σ)4, Λ+[gj ] −−−→
j→∞

Λ̃+[g], in H 1/2(Σ)4. (2.2.9)

Indeed, note that Λ̃+ + Λ̃− = ε/2, thus one can write gj as follows

gj = 2
ε

(Λ̃+[g] + Λ̃−[hj ]).

Using this, (2.2.9) easily follows since Λ̃±Λ̃∓ are bounded from H−1/2(Σ)4 to H 1/2(Σ)4 by
Lemma 1.3.5 and (2.2.7). Now for j ∈ N, we define ϕj := uj + Φ[gj ], where

uj = u− vj and vj = E

(2
ε

Λ̃+Λ̃−[hj − g]
)
,

where E is the extension operator from H 1/2(Σ)4 to H 1(R3)4. Clearly, uj ∈ H 1(R3)4 and
tΣuj = −Λ+[gj ] ∈ H 1/2(Σ)4, which means that (ϕj)j∈N ⊂ dom(Hκ). Moreover, since (hj)j∈N
(resp. (gj)j∈N) converges to g in H−1/2(Σ)4 as j −→ ∞, using the continuity of Λ̃±Λ̃∓ from
H−1/2(Σ)4 to H 1/2(Σ)4, it follows that

(ϕj , Hκϕj) −−−→
j→∞

(ϕ,H∗κϕ) in L2(R3)4.

Therefore H∗κ ⊂ Hκ and the Theorem is proved.

Remark 2.2.1. It is worthwhile to mention that, in view of (2.2.4), the functions u and g
in ϕ = u + Φ[g] ∈ dom(Hκ) are uniquely determined by ϕ. Moreover, by Proposition 1.3.3-
(iv) we have that (Φz − Φ)[g] ∈ H 1(R3)4. Consequently, for any z ∈ ρ(Hκ) ∩ ρ(H) and ϕ =
u+Φ[g] ∈ dom(Hκ), there exist uniquely determined functions v ∈ H 1(R3)4 and g ∈ H 1/2(Σ)4

(resp. g ∈ H−1/2(Σ)4 when sgn(κ) = 4) such that ϕ = v + Φz[g] and (Hκ − z)ϕ = (H − z)v
(just write ϕ = u− (Φz − Φ)[g] + Φz[g]).

In the following, we explain how to define the Dirac operator Hκ via a transmission
condition. Let ϕ = u+Φ[g] ∈ dom(Hκ) and set ϕ± := ϕ �Ω± . It is clear that ϕ±, (α ·∇)ϕ± ∈
L2(Ω±)4. Now, we define δΣϕ as the distribution

〈δΣϕ,ψ〉D′(R3)4,D(R3)4 := 1
2

∫
Σ
〈tΣϕ+ + tΣϕ−, ψ〉C4dσ(x), for all ψ ∈ D(R3)4.

Therefore, a computation in the sense of distributions yields

Hκϕ =(−iα · ∇+mβ)ϕ+ 1
2(εI4 + µβ + η(α ·N))(tΣϕ+ + tΣϕ−)δΣ,

=(−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ− + iα ·N (tΣϕ+ − tΣϕ−)δΣ

+ 1
2(εI4 + µβ + η(α ·N))(tΣϕ+ + tΣϕ−)δΣ.
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Using the Plemelj-Sokhotski jump formula (see Lemma 1.3.2), a computation shows that

1
2(εI4 + µβ + η(α ·N))(tΣϕ+ + tΣϕ−)δΣ + iα ·N (tΣϕ+ − tΣϕ−)δΣ = 0, (2.2.10)

holds in H−1/2(Σ)4. Since (−iα · ∇ + mβ)ϕ+ ⊕ (−iα · ∇ + mβ)ϕ− ∈ L2(R3)4, given ϕ =
(ϕ+, ϕ−) ∈ L2(R3)4 such that (α · ∇)ϕ± ∈ L2(Ω±)4 and satisfying (2.2.10), it holds that
Hκϕ ∈ L2(R3)4. In particular, this leads to the following definition:

Definition 2.2.2. Let κ = (ε, µ, η) ∈ R3 be such that sgn(κ) 6= 0 and m > 0. The self-adjoint
Dirac operator coupled with a combination of electrostatic, Lorentz scalar and normal vector
field δ-shell interactions of strength ε, µ and η respectively, is the operator Hκ defined on the
domain

dom(Hκ) =
{
ϕ = (ϕ+, ϕ−) ∈ L2(Ω+)4 ⊕ L2(Ω−)4 : (α · ∇)ϕ± ∈ L2(Ω±)4

and (2.2.10) holds in H−1/2(Σ)4},
and acts in the sense of distributions as Hκ(ϕ) = (Hϕ+)⊕ (Hϕ−), for all ϕ ∈ dom(Hκ).

Remark 2.2.2. Assume that sgn(κ) 6= 0, 4. Since the operator Φ is bounded from H 1/2(Σ)4

to H 1(R3\Σ)4, it holds that ϕ± := ϕ|Ω± ∈ H 1(Ω±)4. Moreover, following the same arguments
as above, we conclude that the transmission condition (2.2.10) holds actually in H 1/2(Σ)4.
Therefore, it follows that

dom(Hκ) =
{
ϕ = (ϕ+, ϕ−) ∈ H 1(Ω+)4 ⊕H 1(Ω−)4 : (2.2.10) holds in H 1/2(Σ)4

}
.

Let us make some comments on the technique developed here. Note that the condition
on Σ of being C 2-smooth is minimal to prove the self-adjointness of Hκ when sgn(κ) = 4.
Indeed, the main ingredient that we have used is the continuity of Λ±Λ∓ from H−1/2(Σ)4 to
H 1/2(Σ)4, or equivalently, the continuity of the anticommutators {β,CΣ} and {α · N ,CΣ}.
Since {β,CΣ} involves the trace of the single-layer potential, we can always extend it to a
bounded operator from H−1/2(Σ) to H 1/2(Σ), even if Σ is Lipschitz. However, {α · N ,CΣ}
involves the principal value of the double-layer potential, its adjoint and the commutascrtors
[Nk, Rj ], where Rj are the Riesz transforms (see Lemma 3.2.1), and it is well known that the
C 2 regularity is minimal to extend continuously these operators from H−1/2(Σ) to H 1/2(Σ).
However, if sgn(κ) 6= 0, 4 and Ω+ is a bounded C 1,γ-smooth domain, for some γ ∈ (1/2, 1),
then one can manage to prove the self-adjointness of Hκ using the technique developed in
this part, see Chapter 3 for more details.

2.2.1 On the Dirac Operator with Electrostatic and Lorentz scalar δ-Shell
interactions

We discuss in this part the self-adjointness of the Dirac operator Hκ in the case η = 0,
and we denote it by Hε,µ. This operator is known as the Dirac operator with electrostatic
and Lorentz scalar δ-shell interactions, cf. [11],[17],[22]. If |ε| 6= |µ|, from Theorem 2.2.1 we
get immediately the following result.

Proposition 2.2.3. Given ε, µ ∈ R \ {0} such that |ε| 6= |µ|, and define the operators Λ± as
follows

Λ± = 1
ε2 − µ2 (εI4 ∓ µβ)± CΣ.

Then, the following hold:
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

(i) If ε2 − µ2 6= 4, then Hε,µ is self-adjoint and we have

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, tΣu = −Λ+[g]

}
.

(ii) If ε2 − µ2 = 4, then Hε,µ is essentially self-adjoint and we have

dom(Hε,µ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, tΣu = −Λ̃+[g]

}
.

Next we turn to the special case µ = ±ε. Set P± = (I4±β)/2, then Hε,µ is formally given
by

Hε,±ε = H + P±Vε,±ε = −iα · ∇+mβ + 2εP±δΣ.

Define

Λ+ = P+ (1/2ε+ CΣ)P+ and Λ− = P+ (1/2ε− CΣ)P+, if µ = ε,

Λ+ = P− (1/2ε+ CΣ)P− and Λ− = P− (1/2ε− CΣ)P−, if µ = −ε,
(2.2.11)

Clearly, Λ± are bounded and self-adjoint from P±L2(Σ)4 onto itself (resp. from P±H 1/2(Σ)4

into itself). To define Hε,±ε as in Definition 2.2.1 (i.e., Hε,±εϕ = Hu holds in the sense
of distributions for ϕ = u + Φ[g], with u ∈ H 1(R3)4 and g ∈ H 1/2(Σ)4), we shall take
g ∈ P±H 1/2(Σ)4 and assume the condition P±tΣu = −P±Λ+[g]. Indeed, if we take

dom(Hε,±ε) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ P±L2(Σ)4 and P±tΣu = −P±Λ+[g]

}
, (2.2.12)

Then, in a similar way as in Proposition 2.2.1 and Proposition 2.2.2, one can check that
(Hε,±ε,dom(Hε,±ε)) is closable and its adjoint is defined on the domain

dom(H∗ε,±ε) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ P±H−1/2(Σ)4, P±tΣu = −P±Λ̃+[g]

}
, (2.2.13)

where Λ̃± denotes the bounded extension of Λ± from P±H−1/2(Σ)4 into itself, and we obtain
in this case the analogue of Theorem 2.2.1, which is as follows:

Proposition 2.2.4. Assume that ε 6= 0, then (Hε,±ε,dom(Hε,±ε)) is self-adjoint and we have

dom(Hε,±ε) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ P±H 1/2(Σ)4, P±tΣu = −P±Λ+[g]

}
.

Proof. We show the result only for the case µ = ε, since the case µ = −ε can be treated
analogously. Fix ε 6= 0 and let Λ̃± be as in (2.2.11). Using the relations P±αj = P∓αj and
P±β = βP±, a simple computation yields

Λ̃−Λ̃+ = 1
4ε2P+ − P+C̃ΣP+C̃ΣP+ = 1

4ε2P+ −m2(S)2P+, (2.2.14)

where S is given by (1.3.24). Recall that SP+ is bounded from P+H−1/2(Σ)4 into P+H 1/2(Σ)4.
Since Λ− is bounded from P+H 1/2(Σ)4 onto itself, it follows from (2.2.14) that if g ∈
P+H−1/2(Σ)4 and Λ̃+[g] ∈ P+H 1/2(Σ)4, then g ∈ P+H 1/2(Σ)4. Which yields that dom(Hε,ε) =
dom(H∗ε,ε) and the proposition is proved.
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2.2.2 The operators Λa
±

Let a ∈ (−m,m) and let Λa± be as in the Notation 2.2.1. From the proof of Theorem
2.2.1, it is evident that the study of the self-adjointness character of Hκ is related to the
spectral properties of Λ+. The goal of this part is to establish the connection between Hκ

and Λ+. For this, we introduce the Laplace-Beltrami operators ∆Σ on Σ and we define the
operator L := (c−∆Σ)I4 with c� 1 (we assume here that c is big enough if Σ satisfies (H2),
so that c is not in the spectrum of ∆Σ and there is γ > 0 such that (−∆Σ + c− γ) is strictly
positive). It is well known that L±1/4 is a bijective operator from H±1/2(Σ)4 onto L2(Σ)4.
Hence, one can write the domain of Hκ as follows:

dom(Hκ) =
{
u+ ΦL1/4[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4 and L1/4tΣu = −L1/4Λ+L

1/4[g]
}
,

which leads us to define the following unbounded operators

La
± := L1/4Λa±L1/4 with dom(La

±) =
{
g ∈ H 1/2(Σ)4 : Λa±L1/4[g] ∈ H 1/2(Σ)4

}
.

(2.2.15)

In the following lemma, we study the self-adjointness character of La
±, which will clarify the

relation between Hκ and Λa±.

Lemma 2.2.1. Let κ ∈ R3 be such that sgn(κ) 6= 0, and let La
± be as in (2.2.15). The

following hold:

(i) If sgn(κ) 6= 4, then La
± is self-adjoint with dom(La

±) = H 1(Σ)4.

(ii) If sgn(κ) = 4, then La
± is essentially self-adjoint and we have

dom(La
±) =

{
g ∈ L2(Σ)4 : Λ̃a±L1/4[g] ∈ H 1/2(Σ)4

}
.

Proof. Since L1/4 and C a
Σ are self-adjoint operators on L2(Σ)4, it follows that La

± is
symmetric. Moreover, we have C∞(Σ)4 ⊂ dom(La

±) ⊂ L2(Σ)4, which yields that dom(La
±) is

a dense subspace of L2(Σ)4, therefore La
± is closable. Let h ∈ dom(La∗

± ) and let g ∈ C∞(Σ)4.
By Proposition 1.3.3 we have

〈h,La
±[g]〉L2(Σ)4 = 〈L1/4h,Λa±L1/4[g]〉H−1/2,H1/2 = 〈Λ̃a±L1/4h, L1/4[g]〉H−1/2,H1/2 .

As h ∈ dom(La∗
± ), there is f ∈ L2(Σ)4 such that

〈f, g〉L2(Σ)4 = 〈h,La
±[g]〉L2(Σ)4 = 〈Λ̃a±L1/4h, L1/4[g]〉H−1/2,H1/2 .

Hence, for all g ∈ C∞(Σ)4, we get

〈L−1/4[f ], L1/4g〉H−1/2,H1/2 = 〈Λ̃a±L1/4h, L1/4[g]〉H−1/2,H1/2 ,

which implies that Λ̃a±L1/4[h] = L−1/4[f ] holds in H−1/2(Σ)4 and then in H 1/2(Σ)4. Therefore
Λ̃a±L1/4[h] ∈ H 1/2(Σ)4, and we have the inclusion

dom(La∗
± ) ⊂

{
g ∈ L2(Σ)4 : Λ̃a±L1/4[g] ∈ H 1/2(Σ)4

}
.

Now, one can easily check the other inclusion and we thus get the equality. Hence, item (i)
is an immediate consequence of Lemma 1.3.5 and (2.2.7). To prove the second item, it is
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sufficient to show that La∗
± ⊂ La

±. For this, one can take the sequence of functions defined
by (3.3.24) (just switch the roles of Λ̃a± and Λ̃a∓) and use the fact that Λ̃a±Λ̃a∓ are continuous
from H−1/2(Σ)4 to H 1/2(Σ)4, we omit the details. This finishes the proof of the lemma.

Note that, for any ψ = u+ Φ[g] ∈ dom(Hκ) and ϕ = v + Φ[h] ∈ dom(H∗κ), it holds that

〈H∗κϕ,ψ〉L2(R3)4 − 〈ϕ,Hκψ〉L2(R3)4 = 〈−Λ̃+[h], g〉H−1/2,H1/2 − 〈h,−Λ+[g]〉H−1/2,H1/2 .

(2.2.16)

Taking into account the above lemma, from (2.2.2) and (2.2.16) it easily follows that:

Hκ is (essentially) self-adjoint ⇐⇒ L+ is (essentially) self-adjoint. (2.2.17)

As mentioned in the introduction, the operator L+ appears in this form when we study
the self-adjoint extension of Hκ from the point of view of the boundary triples theory (see
[19] and [22]; for a more general view of the theory we refer to [18] and [35] for example).
Indeed, denote by S := H � H 1

0 (R3 \ Σ)4, and define the operator

Tϕ = Hu, for ϕ = u+ Φ[g] ∈ dom(T ) = {u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4},

Next, we define the linear mappings Γ1,Γ2 : dom(T ) −→ L2(Σ)4 by

Γ1(ϕ) = g and Γ2(ϕ) = tΣu+ CΣ[g].

Then, {L2(Σ)4,Γ1,Γ2} is a quasi-boundary triples for T = S∗ (see e.g., [19, Theorem 4.1]),
where

dom(T ) = {u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4} = H (α,Ω+)⊕H (α,Ω−),

and Tϕ = Hu (in the sense of distributions) and the space H (α,Ω±) has been defined
in (1.2.4). Moreover, if we define the mappings Γ̃1 : dom(T ) −→ H−1/2(Σ)4 and Γ̃2 :
dom(T ) −→ H 1/2(Σ)4 by

Γ̃1(ϕ) = g and Γ̃2(ϕ) = tΣu,

then L−1/4Γ̃1, L
1/4Γ̃2 : dom(T ) −→ L2(Σ)4 are well-defined and bounded, and that

{L2(Σ)4, L−1/4Γ̃1, L
1/4Γ̃2}

is an ordinary boundary triple for T = S∗. Now it is easy to check that

Hκ = T � Kr((εI4 + µβ + η(α ·N))Γ2 + Γ1) and H∗κ = T � Kr(L1/4Γ̃2 + L∗+L
−1/4Γ̃1).

Thus, after transforming the quasi-boundary triples to an ordinary boundary triples (see e.g.,
[19, Theorem 4.5]), we get the equivalence (2.2.17), see, e.g., [19, Corollary 2.8].

2.3 Spectral properties
In this section, we examine the spectral properties of the operator Hκ. First, we give a

necessary condition for the existence of the point spectrum in the gap (−m,m) and a Krein-
type resolvent formula. More precisely, recall that sgn(κ) is defined in (2.2.1), then we have
the following.

Proposition 2.3.1. Let Hκ be as in Definition 2.2.1 and let (Φz)∗ be the adjoint of Φz from
Lemma 1.3.3. If sgn(κ) = 4 , then the following hold:
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(i) Given a ∈ (−m,m), then one has Kr(Hκ − a) 6= {0} ⇐⇒ Kr(Λ̃a+) 6= {0} (Birman-
Schwinger principle) and Kr(Hκ − a) = {Φa[g] : g ∈ Kr(Λ̃a+)}.

(ii) For all z ∈ C \R, the operator Λ̃z+ takes the space {g ∈ H−1/2(Σ)4 : Λ̃z+[g] ∈ H 1/2(Σ)4}
bijectively to H 1/2(Σ)4. In particular, Λ̃z+ admits a bounded inverse from H 1/2(Σ)4 to
H−1/2(Σ)4, and we have

(Hκ − z)−1 = (H − z)−1 − Φz(Λ̃z+)−1(Φz)∗. (2.3.1)

If sgn(κ) 6= 0, 4 and z ∈ C \R, then Λz+ is bounded invertible from H 1/2(Σ)4 to H 1/2(Σ)4 and
the above statements hold true with Λ•+ instead of Λ̃•+. In particular ,

(Hκ − z)−1 = (H − z)−1 − Φz(Λz+)−1(Φz)∗.

Proof. We prove the statements for sgn(κ) = 4, the case sgn(κ) 6= 0, 4 follows the same
lines.

(i) Let us prove the implication (⇒) and the inclusion Kr(Hκ−a) ⊂ {Φa[g] : g ∈ Kr(Λ̃a+)}.
Let a ∈ (−m,m) and assume that there is a nonzero ϕ = u + Φ[g] ∈ dom(Hκ) such that
Hκϕ = aϕ. First observe that Λ̃a+− Λ̃+ = C̃ a

Σ− C̃Σ. Now, using the definition of Hκ, we then
get

Hu = aϕ = a(u+ Φ[g]). (2.3.2)

From this we deduce that (H − a)Hu = agδΣ holds in D′(R3)4, and therefore

Hu = aΦa[g]. (2.3.3)

From this, it is clear that if a = 0 then u = 0. Therefore, ϕ = Φ[g] 6= 0 (with g 6= 0, as
otherwise ϕ would be zero) and g ∈ Kr(Λ̃+), which yields that Kr(Hκ) ⊂ {Φ[g] : g ∈ Kr(Λ̃+)}.
Now assume that a 6= 0, then from (2.3.2) and (2.3.3) it follows that u = (Φa − Φ)[g]. Since
ϕ = u+Φ[g] ∈ dom(Hκ), it holds that tΣu = −Λ̃+[g], and by Proposition 1.3.3(iii) we also get
that tΣu = (C̃ a

Σ − C̃Σ)[g] = −Λ̃+[g]. Hence, we obtain that 0 6= g ∈ Kr(Λ̃a+) and ϕ = Φa[g],
therefore Kr(Hκ − a) ⊂ {Φa[g] : g ∈ Kr(Λ̃a+)}.

Conversely, let a ∈ (−m,m) be such that Λ̃a+[g] = 0, for a nonzero g ∈ H−1/2(Σ)4. Then,
it is clear that ϕ = Φ[g] ∈ dom(Hκ) and we have 0 6= ϕ ∈ Kr(Hκ) when a = 0, which gives
the result in this case. Now suppose that a 6= 0, let u = aH−1Φa[g] ∈ H 1(R3)4 and set
ϕ = u+ Φ[g]. Then Hu = aΦa[g] and (H − a)u = aΦ[g] in D′(R3)4, this amounts to saying
that Hκϕ = Hu = a(u + Φ[g]) = aϕ and u = Φa[g] − Φ[g]. Furthermore, we can easily see
that tΣu = (C̃ a

Σ− C̃Σ)[g] = −Λ̃+[g]. Summing up, we have proved that ϕ = Φa[g] ∈ dom(Hκ)
and Hκϕ = aϕ, which yields that ϕ ∈ Kr(Hκ − a). This ends the proof of (i).

(ii) Fix z ∈ C \ R and set G = {g ∈ H−1/2(Σ)4 : Λ̃z+[g] ∈ H 1/2(Σ)4}. Since Hκ is self-
adjoint it follows that (Hκ − z)−1 is well-defined and bounded. Moreover, using the same
arguments as in the proof of (i), one can see that Kr(Λ̃z+) = {0}, as otherwise z would be
a non-real eigenvalue of Hκ. Now we are going to prove that Λ̃z+ admits a bounded inverse
from H 1/2(Σ)4 to H−1/2(Σ)4 and to show the identity (2.3.1). For this, let u ∈ L2(R3)4

and set ϕ := (Hκ − z)−1u ∈ dom(Hκ). Thanks to Remark 2.2.1, we know that there are
unique functions v ∈ H 1(R3)4 and g ∈ H−1/2(Σ)4 such that ϕ = v + Φz[g]. Moreover
one has (Hκ − z)ϕ = (H − z)v, and thus v = (H − z)−1u, which means actually that
ϕ = (H − z)−1u+ Φz[g]. Next, observe that

iα ·N (tΣϕ+ − tΣϕ−) = g and 1
2(tΣϕ+ + tΣϕ−) = (H − z)−1u �Σ +C̃ z

Σ[g].
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

Using that (H − z)−1u �Σ= (Φz)∗u and the transmission condition (2.2.10), we obtain that
Λ̃z+[g] = −(Φz)∗u ∈ H 1/2(Σ)4. Since this is true for all u ∈ L2(R3)4, Rn((Φz)∗) = H 1/2(Σ)4

and Kr(Λ̃z+) = {0}, it follows that the mapping

Λ̃z+ : {g ∈ H−1/2(Σ)4 : u+ Φz[g] ∈ dom(Hκ) for some u ∈ H 1(R3)4} → H 1/2(Σ)4

is well-defined and bijective, and that

{g ∈ H−1/2(Σ)4 : u+ Φz[g] ∈ dom(Hκ) for some u ∈ H 1(R3)4} ⊂ G.

Now, given g ∈ G, then as simple computation shows that the function ϕ = E(Λ̃z+[g]) + Φz[g]
fulfils the transmission condition (2.2.10), and that

H(ϕ �Ω±) = HEΩ±(Λ̃z+[g]) + z(Φz[g] �Ω±) + (H − z)(Φz[g] �Ω±)
= HEΩ±(Λ̃z+[g]) + z(Φz[g] �Ω±) ∈ L2(Ω±)4,

which implies that ϕ ∈ dom(Hκ) and proves the inclusion

G ⊂ {g ∈ H−1/2(Σ)4 : u+ Φz[g] ∈ dom(Hκ) for some u ∈ H 1(R3)4}.

From the above considerations we deduce that the mapping Λ̃z+ : G → H 1/2(Σ)4 is well-
defined and bijective, which proves the first statement of (ii). Since the inverse (Λ̃z+)−1 :
H 1/2(Σ)4 → G is everywhere defined and Λ̃z+ is injective, to complete the proof of (ii) it
suffices to show that Λ̃z+ : G → H 1/2(Σ)4 it is closed. So, suppose that (gj)j∈N ⊂ G is a
sequence of function such that

gj −−−→
j→∞

g ∈ H−1/2(Σ)4 and Λ̃z+[gj ] −−−→
j→∞

h ∈ H 1/2(Σ)4.

Since, Λ̃z+ is bounded from H−1/2(Σ)4 into itself, it follows that Λ̃z+[gj ] −−−→
j→∞

Λ̃z+[g] = h in

H−1/2(Σ)4. Thus, Λ̃z+[g] = h in H 1/2(Σ)4 which implies that Λ̃z+ : G → H 1/2(Σ)4 is closed.
Therefore, (Λ̃z+)−1 : H 1/2(Σ)4 → G is everywhere defined and closed, and hence bounded.
Consequently, we get that the operator Λ̃z+ admits a bounded inverse (Λ̃z+)−1 from H 1/2(Σ)4

to H−1/2(Σ)4. Summing up, we have proved that

(Hκ − z)−1u = (H − z)−1u− Φz[(Λ̃z+)−1(Φz)∗u],

holds for all u ∈ L2(R3)4, which proves the identity (2.3.1) and completes the proof of the
proposition.

Remark 2.3.1. A careful inspection of the argument used above reveals that dimKr(Hκ− a)
is equal to dimKr(Λ̃a+), since Φz is injective. Moreover, item (ii) holds true for all z ∈
ρ(Hκ) ∩ ρ(H).

The following lemma refines and reformulates Proposition 2.3.1 in terms of the operator
La

+ introduced in Subsection 2.2.2, and will be a key tool in the analysis of the spectrum of
Hκ when sgn(κ) = 4.

Theorem 2.3.1. Let La
+ be the self-adjoint operator in Lemma 2.2.1, and let Hκ be as in

Definition 2.2.1. For z ∈ C \ R we define the operator Lz
+ = L1/4Λ̃z+L1/4 with L1/4 as in

Subsection 2.2.2. Then the following hold true:
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(i) For all a ∈ (−m,m), one has

a ∈ Spp(Hκ)⇐⇒ 0 ∈ Spp(La
+), (2.3.4)

a ∈ Spdisc(Hκ)⇐⇒ 0 ∈ Spdisc(La
+), (2.3.5)

a ∈ Spess(Hκ)⇐⇒ 0 ∈ Spess(La
+). (2.3.6)

(ii) Let z ∈ ρ(Hκ) ∩ ρ(H) and assume that sgn(κ) = 4. Then, the operator Lz
+ is bounded

from L2(Σ)4 to H−1(Σ)4 and admits a bounded inverse from L2(Σ)4 to L2(Σ)4 for
z ∈ C \ R, and admits a bounded inverse from L2(Σ)4 to dom(Lz

+) for z ∈ (−m,m).
Moreover, it holds that

(Hκ − z)−1 = (H − z)−1 − ΦzL
1
4
(
Lz

+

)−1
L

1
4 (Φz)∗.

Before going through the proof of Theorem 2.3.1 we establish the following lemma.

Lemma 2.3.1. Let z1, z2 ∈ ρ(H) and let Lzj
+ be as in Theorem 2.3.1, then

Lz1
+ −Lz2

+ = (z1 − z2)L
1
4 (Φz2)∗Φz1L

1
4 , (2.3.7)

In particular, for a ∈ (−m,m) and r0 < dist(a,Sp(H)∪Sp(Hκ) \ {a}), one has an expansion
of the form

Lz
+ = La

+ + (z − a)L
1
4 (Φa)∗ΦaL

1
4 + (z − a)2R(z), (2.3.8)

for any z such that 0 < |z − a| < r0, where R is holomorphic in a neighbourhood of a.

Proof. Fix z1, z2 ∈ ρ(H), recall the first resolvent identity

(H − z1)−1 = −(H − z2)−1 + (z1 − z2)(Φz1)∗(H − z2)−1,

By definition of the mapping (Φzj )∗, we have that

(Φz1)∗ − (Φz2)∗ = tΣ[(H − z1)−1 − (H − z2)−1] = (z1 − z2)tΣ[(H − z1)−1(H − z2)−1]
= (z1 − z2)(Φz1)∗(H − z2)−1,

(2.3.9)

where the first resolvent identity was used in the second equality. Since Φzk is the adjoint of
(Φzk)∗, taking the adjoint in (2.3.9) yields that

Φz1 − Φz2 = (z1 − z2)(H − z2)−1Φz1 (2.3.10)

Since Λ̃z1+ − Λ̃z2+ = tΣ(Φz1 − Φz2) holds by Proposition 1.3.3, taking the trace in (2.3.10) and
multiplying by L

1
4 yields the formula (2.3.7). Notice that (2.3.7) implies that

d

dz
Lz

+ = L
1
4 (Φz)∗ΦzL

1
4 , ∀z ∈ ρ(H).

Using this and the fact that C z
Σ is holomorphic for all z ∈ ρ(H), we get the last statement of

the lemma.
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

In particular, for a ∈ (−m,m) and r0 < dist(a,Sp(H) ∪ Sp(Hκ) \ {a}), one has an
expansion of the form

Lz
+ = La

+ + (z − a)L
1
4 (Φa)∗ΦaL

1
4 + (z − a)2R(z), (2.3.11)

for any z such that 0 < |z − a| < r0, where R is holomorphic in a neighbourhood of a. As
L

1
4 (Φa)∗ΦaL

1
4 is a bounded, positive definite and self-adjoint operator in L2(Σ)4

Proof of Theorem 2.3.1. We will prove the statements for sgn(κ) = 4, the case
sgn(κ) /∈ {0, 4} follows in the same way.

Proof of (ii). We note first that, for z ∈ C \ R, the statement follows from the def-
inition of Lz

+, the fact that L
1
4 : H s(Σ)4 → H s−1/2(Σ)4 is bijective and continuous for any

s ∈ [−1/2, 1], Proposition 2.3.1-(ii) and Remark 2.3.1. Note that the case z ∈ (−m,m)
follows in the same way, since Lz

+ is self-adjoint and dom(Lz
+) = L

1
4G, where the set G is

defined as in the proof of Proposition 2.3.1-(ii).

Proof of (ii). Fix a ∈ (−m,m), then by definition it holds that : 0 is an eigenvalue
of La

+ if and only if Kr(Λ̃a+) 6= {0}, and that dimKr(La
+) = dimKr(Λ̃a+). Thus, Proposition

2.3.1-(i) together with Remark 2.3.1 yield that 0 is an eigenvalue of La
+ if and only if a is an

eigenvalue of Hκ, and that

Kr(Hκ − a) = {ΦaL
1
4 [g] : g ∈ Kr(La

+)}, dimKr(Hκ − a)) = dimKr(La
+). (2.3.12)

This gives in particular the equivalence (2.3.4).

Thanks to (2.3.4) and (2.3.12), to show the equivalence (2.3.5) it is sufficient to prove
that

a ∈ (−m,m) is an isolated point of Sp(Hκ)⇐⇒ 0 is an isolated point of Sp(La
+). (2.3.13)

Let us prove the implication (⇐=). Assume that a ∈ (−m,m) and 0 ∈ Spdisc(La
+). Define

the operators

Ba = La
+ � (Kr(La

+)⊥ ∩ dom(La
+)), Aa = (Hκ − a) � (Kr(Hκ − a)⊥ ∩ dom(Hκ)). (2.3.14)

Thanks [60, Theorem 6.7.], we know that Ba has a bounded inverse (Ba)−1. Thus, the
operator

(Aa)−1 = (H − a)−1 − ΦaL
1
4 (Ba)−1L

1
4 (Φa)∗,

is everywhere defined and bounded from L2(R3)4 to dom(Hκ). Moreover, from (2.3.12) and
the definition of Aa and Ba it follows that (Aa)−1 : L2(R3)4 −→ (Kr(Hκ− a)⊥ ∩dom(Hκ)) is
bounded and that Aa(Aa)−1f = f for all f ∈ L2(R3)4. Therefore, Aa has a bounded inverse,
which means that using (2.3.11) and following exactly the same arguments as in the proof
of [35, Theorem 3.2.] we obtain that (Hκ − a) � (Kr(Hκ − a)⊥ ∩ dom(Hκ)) has a bounded
inverse. Thus, [60, Theorem 6.7.] yields that a is an isolated point of Sp(Hκ), and thus
a ∈ Spdisc(Hκ).

The proof of the implication (=⇒) follows exactly the same lines as in [35, Theorem
3.2.]. Suppose that a ∈ (−m,m) ∩ Spdisc(Hκ), then there is r0 > 0 such that for all z ∈
B(a, r0)\{a} ⊂ ρ(Hκ), the resolvent (Hκ−z)−1 is holomorphic and (Hκ−a)−1 is meromorphic.
Thanks to the resolvent formula from (ii) and the holomorphic properties of Φz and (Φz)∗,
it follows that (La

+)−1 is meromorphic and the mapping B(a, r0) \ {a} 3 z 7−→ (Lz
+)−1 is
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holomorphic, and thus the inverse (Lz
+)−1 exist and is bounded for all z ∈ B(a, r0) \ {a}.

Using this and the formula (2.3.11) from Lemma 2.3.1, we can choose 0 < r1 < r0 small
enough such that for 0 < |z − a| < r1, the operator

La
+ + (z − a)L

1
4 (Φa)∗ΦaL

1
4 ,

has a bounded inverse. As P(a) := L
1
4 (Φa)∗ΦaL

1
4 is a bounded, positive definite and self-

adjoint operator in L2(Σ)4, we have

La
+ + (z − a)L

1
4 (Φa)∗ΦaL

1
4 = P(a)1/2(P(a)−1/2La

+P(a)−1/2 + (z − a)I4)P(a)1/2.

Since this true for all z such that 0 < |z − a| < r1, using the properties of P(a) we deduce
that

P(a)−1/2La
+P(a)−1/2 + (z − a)I4,

has a bounded inverse, and thus 0 is an isolated point of Sp(P(a)−1/2La
+P(a)−1/2). There-

fore, [35, Lemma 3.1] yields that 0 is an isolated point of Sp(La
+), finishing the proof of

(2.3.13) and the equivalence (2.3.5).
Finally, thanks to (2.3.5) and the self-adjointness of La

+ for a ∈ (−m,m), to show the
equivalence (2.3.6) is suffices to prove that

a ∈ ρ(Hκ) ∩ (−m,m)⇐⇒ 0 ∈ ρ(La
+). (2.3.15)

Let a ∈ ρ(Hκ) ∩ (−m,m), then (2.3.12) implies that Kr(La
+) = {0}. On the other hand,

from (ii) and the proof of Proposition 2.3.1-(ii) we know that Rn(La
+) = L2(Σ)4 and that

La
+ admits a bounded inverse from L2(Σ)4 to dom(La

+). Since La
+ is self-adjoint in L2(Σ)4

by Lemma 2.2.1, it follows that La
+ is invertible from L2(Σ)4 to dom(La

+), and hence 0 ∈
ρ(La

+). Conversely, if a ∈ (−m,m) and 0 ∈ ρ(La
+), then (La

+)−1 is bounded from L2(Σ)4 to
dom(La

+) ⊂ L2(Σ)4. Using the properties of Φa and Lemma 1.3.2, it is straightforward to
check that

g := (H − a)−1f − ΦaL
1
4
(
La

+

)−1
L

1
4 (Φa)∗f ∈ dom(Hκ),

(Hκ − a)g = f,

hold for any f ∈ L2(R3)4. From this it follows that (Hκ − a) admits a bounded inverse
from L2(R3)4 to dom(Hκ) and that Rn(Hκ − a) = L2(R3)4. Since Kr(Hκ − a) = {0} holds
by (2.3.12), we get that (Hκ − a) is boundedly invertible from L2(R3)4 to dom(Hκ), which
implies that a ∈ ρ(Hκ). This proves the equivalence (2.3.15) and completes the proof of the
lemma.

2.3.1 Non-critical case

This part deals with the basic spectral properties of Hκ when κ = (ε, µ, 0) (i.e., η = 0)
and sgn(κ) 6= 0, 4. We first discus the basic spectral properties for surfaces satisfying the
assumption (H1), which are mainly known for the Dirac operator coupled with a combination
of electrostatic and Lorentz scalar δ-interactions (i.e η = 0), see e.g., [17]. Then, we address
the case of surfaces satisfying the hypothesis (H2).

Theorem 2.3.2. Let κ ∈ R3 be such that sgn(κ) 6= 0, 4, and suppose that Σ satisfies (H1).
The following statements hold true:
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

(i) Spess(Hκ) = (−∞,−m] ∪ [m,+∞).

(ii) Spdisc(Hκ) ∩ (−m,m) is finite.

proof. (i) Since Σ is compact and (Φz)∗ is bounded from L(R3)4 to H 1/2(Σ)4, and
H 1/2(Σ)4 is compactly embedded in L2(Σ)4, thanks to the boundedness properties of the
operators Φz and (Λz+)−1 we get that Φz(Λz+)−1(Φz)∗ is a compact operator in L(R3)4. As
Spess(H) = (−∞,−m] ∪ [m,+∞), and

(Hκ − z)−1 − (H − z)−1 = −Φz(Λz+)−1(Φz)∗,

holds by Proposition 2.3.1. By Weyl’s theorem we deduce that Spess(Hκ) = Spess(H), and
this proves the assertion (i).

(ii) As Hκ is self-adjoint, in order to prove the statement it is sufficient to show that the
square operator (Hκ)2 has at most finitely many eigenvalues in (−∞,m2). To this end, let
Q be the quadratic form associated to (Hκ)2 with domain dom(Hκ), then following the idea
of [22, Proposition 3.9] (see also [66, 17]) we will construct a closed quadratic form Q̃ such
that its associated self-adjoint operator has at most finitely many eigenvalues in (−∞,m2),
dom(Q) ⊂ dom(Q̃) and Q̃[ϕ] 6 Q[ϕ] holds for all ϕ ∈ dom(Q) (i.e., Q is minorated by Q̃ in
the sense of closed quadratic forms).

We first note that Q is closed because Hκ is self-adjoint, and thanks to Proposition 1.2.3,
for all ϕ ∈ dom(Hκ) we have

‖Hκϕ‖2L2(R3)4 =‖(−iα · ∇+mβ)ϕ+‖2L2(Ω+)4 + ‖(α · ∇+mβ)ϕ−‖2L2(Ω−)4

=‖(α · ∇)ϕ+‖2L2(Ω+)4 + ‖(α · ∇)ϕ−‖2L2(Ω−)4 +m2‖ϕ‖2L2(R3)4

+ 〈(−iα ·N )tΣϕ+,mβtΣϕ+〉L2(Σ)4 − 〈(−iα ·N )tΣϕ−,mβtΣϕ−〉L2(Σ)4

= Q[ϕ]

Now we are going to construct the closed form Q̃. Let r1 > r0 > 0 be such that Σ is
strictly contained in the ball B(0, r0), and let f0, f1 ∈ C∞(R3; [0, 1]) such that

f2
0 + f2

1 = 1, f0 = 1 in B(0, r0), f1 = 1 in R3 \B(0, r1). (2.3.16)

Clearly, we have

f0 = 0 in R3 \B(0, r1) and f1 = 0 in B(0, r0),
supp(∇(fj)2) ⊂ C(0, r0, r1) and ∇(f0)2 = −∇(f1)2 in C(0, r0, r1),

(2.3.17)

where C(0, r0, r1) is the annulus B(0, r1) \B(0, r0). Now, it is straightforward to check that

fjϕ ∈ dom(Hκ), Hκ(fjϕ) = fjHκϕ− iα · (∇fj)ϕ, (2.3.18)

for all ϕ ∈ dom(Hκ). Notice also that, since f1 = 0 in B(0, r0), and Σ ⊂ B(0, r0) it holds
that

f1ϕ ∈ H 1
0 (Ω−)4 for all ϕ ∈ dom(Hκ). (2.3.19)

Fix ϕ ∈ dom(Hκ) and j ∈ {0, 1}, then

Q[fjϕ] =‖H(fjϕ)‖2L2(Ω+)4 + ‖H(fjϕ)‖2L2(Ω−)4

=〈fjHϕ − iα · (∇fj)ϕ, fjHϕ− iα · (∇fj)ϕ〉L2(Ω+)4

+ 〈fjHϕ − iα · (∇fj)ϕ, fjHϕ− iα · (∇fj)ϕ〉L2(Ω+)4 =: IΩ+
j + I

Ω−
j .
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Using that |α · (∇fj)ϕ|2 = |∇fj |2|ϕ|2 , we get that

I
Ω±
j =〈f2

jHϕ,Hϕ〉L2(Ω±)4 + 〈|∇fj |ϕ,ϕ〉L2(Ω±)4 + 2Re〈fjHϕ,−iα · (∇fj)ϕ〉L2(Ω+)4

=〈f2
jHϕ,Hϕ〉L2(Ω±)4 + 〈|∇fj |ϕ,ϕ〉L2(Ω±)4 + Re〈Hϕ,−iα · (∇f2

j )ϕ〉L2(Ω+)4 .

Using that ∇(f0)2 = −∇(f1)2 (see (2.3.17)), we deduce that

Q[f0ϕ] + Q[f1ϕ] =〈(f2
0 + f2

1 )Hϕ,Hϕ〉L2(Ω+)4 + 〈(f2
0 + f2

1 )Hϕ,Hϕ〉L2(Ω−)4

+ 〈(|∇f0|+ |∇f1|)ϕ,ϕ〉L2(R3)4 .

As f2
0 + f2

1 = 1, it follows that

Q[f0ϕ] + Q[f1ϕ] =‖Hϕ‖2L2(Ω+)4 + ‖Hϕ‖2L2(Ω−)4 + 〈(|∇f0|+ |∇f1|)ϕ,ϕ〉L2(R3)4

=‖Hκϕ‖2L2(R3)4 + 〈(|∇f0|+ |∇f1|)ϕ,ϕ〉L2(R3)4

=Q[ϕ] + 〈(|∇f0|+ |∇f1|)ϕ,ϕ〉L2(R3)4 .

Therefore

Q[ϕ] = Q[f0ϕ] + Q[f1ϕ]− 〈(|∇f0|+ |∇f1|)ϕ,ϕ〉L2(R3)4 ,

using f2
0 + f2

1 = 1, the above equality becomes

Q[ϕ] =
(
Q[f0ϕ]− 〈V (f0ϕ), (f0ϕ)〉L2(R3)4

)
+
(
Q[f1ϕ]− 〈V (f1ϕ), (f1ϕ)〉L2(R3)4

)
where V := (|∇f0|+ |∇f1|).

Next, notice that for all ψ ∈ dom(Hκ) ∩H 1
0 (R3 \B(0, r0))4, we have that

Q[ψ] =‖(α · ∇)ψ‖2L2(Ω−\B(0,r0))4 +m2‖ψ‖2L2(Ω−\B(0,r0))4

=‖∇ψ‖2L2(Ω−\B(0,r0)))4 +m2‖ψ‖2L2(Ω−\B(0,r0))4

Now, thanks to (2.3.19), the above considerations lead us to define the sesquilinear formsdom(Q1) := H 1(R3 \B(0, r1))4

Q1[ψ] := ‖∇ψ‖2L2(R3\B(0,r1))4 +m2‖ψ‖2L2(R3\B(0,r1))4 ,

{
dom(Q2) := {ψ ∈ H 1(C(0, r0, r1))4 : ψ = 0 on ∂B(0, r0)},
Q2[ψ] := ‖∇ψ‖2L2(C(0,r0,r1))4 +m2‖ψ‖2L2(C(0,r0,r1))4 − 〈V ψ, ψ〉L2(C(0,r0,r1))4 ,{

dom(Q3) := {ψ ∈ dom(Hκ) : supp(ψ) ⊂ B(0, r1)},
Q3[ψ] := Q[ψ]− 〈V ψ, ψ〉L2(C(0,r0,r1))4 ,

It is clear that Qj [ψ] > C‖ψ‖2 for j ∈ {1, 2, 3}, thus Qj is semibounded from below, which
actually means that Qj is a closed quadratic form. Therefore, the quadratic form

Q̃ = Q1 ⊕ Q2 ⊕ Q3

is a closed. Now, it is straightforward to check that dom(Q) ⊂ dom(Q̃) and Q̃[ϕ] 6 Q[ϕ]
holds for all ϕ ∈ dom(Q), which actually means that Q is minorated by Q̃ in the sense of
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

closed quadratic forms. Therefore, if we denote by Hj and Hj the operators associated with
Qj and Qext, respectively, then the min-max principle yields that

Spdisc(H1 ⊕H2 ⊕H3) ∩ (−∞,m2) is finite =⇒ Spdisc((Hκ)2) ∩ (−∞,m2) is finite
⇐⇒ Spdisc(Hκ) ∩ (−m,m) is finite

Since the injections dom(Q2) ↪→ L2(C(0, r0, r1))4 dom(Q3) ↪→ L2(B(0, r1))4 are compact,
we conclude that the operator (H2,dom(Q2)) and (H3, dom(Q3)) have compact resolvent.
Therefore, H2 and H3 have a finite purely discrete spectrum in (−∞,m2). Now, note that
for all ψ ∈ dom(Q1) we have

‖H1ψ‖2L2(R3\B(0,r1))4 = ‖∇ψ‖2L2(R3\B(0,r1))4 +m2‖ψ‖2L2(R3\B(0,r1))4 > m
2‖ψ‖2L2(R3\B(0,r1))4

Thus Spdisc(H1) ∩ (−∞,m2) = ∅. Therefore, Spdisc(H1 ⊕ H2) ⊕ H3) ∩ (−∞,m2) is finite,
which implies that Spdisc(Hκ)∩ (−m,m) is finite. This finishes the proof of the theorem.

Remark 2.3.2. It is worth noting that the crucial ingredient in the proof of Theorem (2.3.2)(ii)
is the Sobolev regularity of dom(Hκ). In particular, if Σ is less regular (say Lipschitz) and as
far as Hκ is self-adjoint, dom(Hκ) ⊂ H s(R3 \ Σ)4 for some s > 0, and tΣϕ± ∈ L2(Σ)4 holds
for all ϕ = (ϕ+, ϕ−) ∈ dom(Hκ), then Theorem (2.3.2)(ii) remains valid.

In the rest of this section, we focus on the spectral properties of Hκ when Σ satisfies the
assumption (H2). In order to avoid ambiguities we use the following notations:

Notation 2.3.1. For all ν > 0, we denote by Hν
κ (respectively Φz

ν , Λ̃z+,ν and (Φz
ν)∗) the

operator Hκ (respectively Φz, Λ̃z+ and (Φz)∗) whenever Σ = Σν , i.e Σ satisfies (H2), and we
write Hk (respectively Φz, Λ̃z+ and (Φz)∗) instead of H0

κ (respectively Φz
0, Λ̃z+,0 and (Φz

0)∗),
i.e., when ν = 0.

The following theorem gives us a complete description of the essential spectrum of Hκ

when Σ satisfies (H2) and η = 0.

Theorem 2.3.3. Let κ ∈ R2 × {0} be such that sgn(κ) = ε2 − µ2 6= 0, 4, and suppose that Σ
satisfies (H2) with ν > 0. Set

a± = m
−16εµ± (sgn(κ)− 4)2

√
(sgn(κ)+4)2

(sgn(κ)−4)2

(sgn(κ)− 4)2 + 16ε2 , a∗ = −m −16εµ
(sgn(κ)− 4)2 + 16ε2 .

(2.3.20)

The following hold:

(i) If ε2 − µ2 > 4, then

Spess(Hν
κ) =

{
(−∞,−m] ∪ [a+,+∞), for ε > 0 and µ ∈ R,

(−∞, a−] ∪ [m,+∞), for ε < 0 and µ ∈ R.

(ii) If 0 < ε2 − µ2 < 4, then

Spess(Hν
κ) =

{
(−∞, a−] ∪ [m,+∞), for ε > 0 and µ ∈ R,

(−∞,−m] ∪ [a+,+∞), for ε < 0 and µ ∈ R.
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(iii) If −4 < ε2 − µ2 < 0, then

Spess(Hν
κ) =

{
(−∞,−m] ∪ [m,+∞), for µ > 0 and ε ∈ R,
(−∞, a−] ∪ [a+,+∞), for µ < 0 and ε ∈ R.

(iv) If ε2 − µ2 = −4, then

Spess(Hν
κ) =


(−∞,−m] ∪ [m,+∞), for µ > 0 and ε ∈ R,

(−∞, a∗] ∪ [m,+∞), for µ < 0 and ε > 0,
(−∞,−m] ∪ [a∗,+∞), for µ < 0 and ε < 0,

R, for µ = −2 and ε = 0.

(v) If ε2 − µ2 < −4, then

Spess(Hν
κ) =

{
(−∞,−m] ∪ [m,+∞), for µ > 0 and ε ∈ R,
(−∞, a−] ∪ [a+,+∞), for µ < 0 and ε ∈ R.

Furthermore, we have Sp(Hκ) = Spess(Hκ).

Remark 2.3.3. Note that a similar statement can be formulated when η 6= 0, in that case
we have

a± =m
−16εµ± (sgn(κ)− 4)2

√
(sgn(κ)+4)2+16η2

(sgn(κ)−4)2

(sgn(κ)− 4)2 + 16ε2 .

The statements (i) and (ii) still hold true, and for sgn(κ) < 0 several cases should be taken
into account, so for the sake of readability we chose not to write it here.

Tp prove Theorem 2.3.3 for ν > 0 we will use the following compactness result, which will
be used in the localization arguments.

Lemma 2.3.2. Fix ν > 0 and z ∈ C \ R, and let T : L2(R3)4 → L2(R3)4 be the operator
defined, for every f ∈ L2(R3)4, by

T [f ](x) =
(

(1− Ξ)Φz
ν(1− χν)(Λz+,ν)−1(1− χν)(Φz

ν)∗

− (1− Ξ)Φz(1− χ0)(Λz+)−1(1− χ0)(Φz)∗
)

[f ](x).
(2.3.21)

with χ0, χν and Ξ as in Notation 1.3.1. Then T is compact in L2(R3)4.

Proof. Let ν > 0 and z ∈ C \ R be fixed, and note that from definition of the mapping
(Φz

ν)∗ and Remark 1.3.4 it follows that

(1− χν)(Φz
ν)∗[f ] = (1− χ0)(Φz)∗[f ], ∀f ∈ L2(R3)4,

holds in H 1/2(Σν ∩ supp(1 − χν))4 = H 1/2(Σ0 ∩ supp(1 − χ0))4, and can be regarded as an
equality in the sense of functions in H 1/2(Σν)4 and in H 1/2(Σ0)4. Similarly, if g is such that
supp(g) ⊆ supp(1− χ0), we can consider g as a function in H 1/2(Σν)4 and also as a function
in H 1/2(Σ0)4, and we have the equalities
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

(1− Ξ)Φz
νg =(1− Ξ)Φzg,

(1− χν)Λz+,ν(1− χν)g =(1− χ0)Λz+,0(1− χ0)g.

With this interpretation in mind, we can then write T as follows

T [f ](x) =(1− Ξ)Φz
(

(1− χν)(Λz+,ν)−1(1− χν)− (1− χ0)(Λz+)−1(1− χ0)
)

(Φz)∗[f ](x)

:=(1− Ξ)ΦzTν(Φz)∗[f ](x)

Tν is considered as an operator from L2(Σ0)4 into itself. Now, we are going to show that
Tν(Φz)∗ is compact from L2(R3)4 into L2(Σ0)4. Set F = (1−χν)(Φz

ν)∗[f ] = (1−χ0)(Φz)∗[f ]
for f ∈ L2(R3)4, then

Λz+(1− χν)(Λz+,ν)−1F = χ0Λz+(1− χν)(Λz+,ν)−1F + (1− χ0)Λz+(1− χν)(Λz+,ν)−1F

= χ0Λz+(1− χν)(Λz+,ν)−1F + (1− χν)Λz+,ν(1− χν)(Λz+,ν)−1F

= χ0Λz+(1− χν)(Λz+,ν)−1F + (1− χ0)F − (1− χν)Λz+,νχν(Λz+,ν)−1F.

Thus we get

(1− χν)(Λz+,ν)−1F =(1− χ0)(Λz+)−1F + [χ0, (Λz+)−1]F + (Λz+)−1χ0Λz+(1− χν)(Λz+,ν)−1F

− (Λz+)−1(1− χν)Λz+,νχν(Λz+,ν)−1F.

Using the compactness of the embedding χ•H 1/2(Σ•)4 ↪→ L2(Σ•)4 for • = 0, ν, it follows that
Tν(Φz)∗ is compact from L2(R3)4 into L2(Σ0)4. Since (1 − Ξ)Φz is bounded from L2(Σ0)4

into L2(R3)4, we then get that T is compact in L2(R3)4.

We can now establish Theorem 2.3.3.
Proof of Theorem 2.3.3. We first prove assertions (i) − (v) when ν = 0, we then use

compactness arguments and Proposition 2.3.1(ii) to get the result when ν > 0. To this end
and for the convenience of the reader we divide the proof in three steps.

Step 1. We analyze the spectrum of Hκ in the gap (−m,m). For this, let a ∈ (−m,m)
and set

Γ±m,±a(ξ) = [α · (ξ1, ξ2, 0)±mβ ± a] .
Since the αj ’s anticommute with β, a simple computation shows that

(Γm,a(ξ))2 = |ξ|2 +m2 − a2 + 2aΓm,a(ξ),
Γ−m,−a(ξ)Γm,a(ξ) = |ξ|2 +m2 − a2 − 2mβΓm,a(ξ),

Γm,−a(ξ)Γm,a(ξ) = |ξ|2 +m2 − a2.

(2.3.22)

Using the Fourier-Plancherel operator it is not hard to prove that Λa+ is unitarily equivalent
to the following multiplication operator:

Πa
+ := 1

sgn(κ)(εI4 − µβ − η(α ·N)) + 1
2
√
|ξ|2 +m2 − a2 Γm,a(ξ).

Moreover, taking into account the properties (2.3.22), a simple computation shows that Πa
+

is invertible and its inverse is given explicitly by

(Πa
+)−1 = C−1

(
1 + εa+ µm√

|ξ|2 +m2 − a2 −
(ε+ µβ + η(α ·N))
2
√
|ξ|2 +m2 − a2 Γm,a(ξ)

)
(ε+ µβ + η(α ·N)),

(2.3.23)
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if and only if C 6= 0 for all ξ ∈ R2, where C is given by

C = 4− sgn(κ)
4 + εa+ µm√

|ξ|2 +m2 − a2 .

Since sgn(κ) 6= 4, it follows that −mµ/ε /∈ Sp(Hκ), for all ε 6= 0. In the following, we always
assume that a 6= −mµ/ε when ε 6= 0, and we look for the values of a for which we have C = 0.
Note that

C = 0⇐⇒
√
|ξ|2 +m2 − a2 = 4(εa+ µm)

sgn(κ)− 4 .

Thus, C = 0 for some |ξ| ∈ R+, only if

4(εa+ µm)
sgn(κ)− 4 > 0. (2.3.24)

Assume that (2.3.24) holds true, then C = 0 if and only if |ξ|2 = P (a), where the polynomial
P (a) is given by

P (a) = (sgn(κ)− 4)2 + 16ε2

(sgn(κ)− 4)2 a2 + 32εµm
(sgn(κ)− 4)2a−

(sgn(κ)− 4)2 − 16µ2

(sgn(κ)− 4)2 m2.

Recall a+, a− and a∗ from (2.3.20), then a+ and a− are the zeros of P (a) when ε2−µ2 6= −4,
and a∗ is a double root of P (a) when ε2 − µ2 = −4. Thus P (a) > 0 if and only if a > a+ or
a 6 a−. In the remainder of the proof we deal with assertion (i), the other assertions follow
in the same way. Assume that ε2 − µ2 > 4, then

a± =m−16εµ± (sgn(κ)− 4)(sgn(κ) + 4)
(sgn(κ)− 4)2 + 16ε2 and −m < a− < a+ < m.

As sgn(κ) > 4, it follows that the condition (2.3.24) is equivalent to

a > −µm
ε

if ε > 0 or a < −µm
ε

if ε < 0.

Now using the fact that ε2 > µ2, a simple computation yields

a+ > −µm
ε

and a− < −
µm

ε
.

Hence, if ε > 0 (resp. ε < 0) then for all a > a+ (resp. a 6 a−) we have P (a) > 0 and
the condition (2.3.24) holds true. Consequently, the set of ξ for which C = 0 is given by the
circle {ξ : |ξ| =

√
P (a)}, and in that case 0 is in the essential spectrum of Λa+. Therefore we

conclude by Proposition 2.3.1 that

(a+,m) ⊂ Spess(Hκ) and (−m, a+) ⊂ ρ(Hκ), for ε > 0
(−m, a−) ⊂ Spess(Hκ) and (a−,m) ⊂ ρ(Hκ), for ε < 0.

Step 2. Now we prove the inclusion (−∞,−m) ∪ (m,+∞) ⊂ Spess(Hκ), for this we con-
struct a singular sequence for Hκ and a. Fix a ∈ (−∞,−m) ∪ (m,∞) and define

ϕ :


R3 −→ C4

(x, x3) 7−→
(
ξ1 − iξ2
a−m

, 0, 0, 1
)t
eix·ξ,
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

here ξ = (ξ1, ξ2) and |ξ|2 = a2 −m2. Observe that we have (−iα · ∇ + mβ − a)ϕ = 0. Let
R > 0, χ ∈ C∞0 (R2,R) and θ ∈ C∞0 ([0,∞[,R) such that

θ(r) =
{

1 for r ∈ [2R, 3R],
0 for r ∈ [0, R].

For n ∈ N?, we define the sequences of functions

ϕ+,n(x, x3) = n−
3
2ϕ(x, x3)χ(x/n)θ(x3/n) for x3 > 0,

ϕ−,n(x, x3) = n−
3
2ϕ(x, x3)χ(x/n)θ(−x3/n) for x3 < 0.

(2.3.25)

It is clear that ϕ±,n ∈ H 1(Ω±) and tΣϕ±,n = 0, thus ϕn := (ϕ+,n, ϕ−,n) ∈ dom(Hκ).
Moreover, (ϕn)n∈N? converges weakly to zero and we have

‖ϕn‖2L2(R3)4 = ‖ϕ+,n‖2L2(Ω+)4 + ‖ϕ−,n‖2L2(Ω−)4 = 2a
a−m

‖χ‖2L2(R2)‖θ‖
2
L2(R+) > 0,

and

‖ (−iα · ∇+mβ − a)ϕn‖2L2(R3)4 =‖ (−iα · ∇+mβ − a)ϕ+,n‖2L2(Ω+)4

+ ‖ (−iα · ∇+mβ − a)ϕ−,n‖2L2(Ω−)4

6
4a

n2(a−m)

(
‖∇η‖2L2(R2)‖θ‖

2
L2(R+) + ‖χ‖2L2(R2)‖θ

′‖2L2(R+)

)
.

Thus, we get

‖ (−iα · ∇+mβ − a)ϕn‖L2(R3)4

‖ϕn‖L2(R3)4
−−−→
n→∞

0.

From this and Step 1, we deduce that

(−∞,−m) ∪ (a+,m) ∪ (m,∞) ⊂ Spess(Hκ) ⊂ Sp(Hκ) ⊂ (−∞,−m] ∪ [a+,∞), for ε > 0,
(−∞,−m) ∪ (−m, a−) ∪ (m,∞) ⊂ Spess(Hκ) ⊂ Sp(Hκ) ⊂ (−∞, a−] ∪ [m,∞), for ε < 0.

Since the spectrum of a self-adjoint operator is closed, the end-points also belong to the
spectrum, and hence for ε2 − µ2 > 4, we get

Sp(Hκ) = Spess(Hκ) =
{

(−∞,−m] ∪ [a+,+∞), for ε > 0 and µ ∈ R,
(−∞, a−] ∪ [m,+∞), for ε < 0 and µ ∈ R,

which proves the result when ν = 0.
Step 3. Assume that ν > 0, and recall the definitions of χ0, χν and Ξ from Notation 1.3.1.

We are going to show the equality Spess(Hν
κ) = Spess(Hκ). For this, fix z ∈ C \ R and let

T : L2(R3)4 → L2(R3)4 be the bounded operator defined by

T = Φz
ν(Λz+,ν)−1(Φz

ν)∗ − Φz(Λz+)−1(Φz)∗.

Then T is a compact operator in L2(R3)4. Indeed, note that T can be written as follows:

T =Φz
ν(Λz+,ν)−1χν(Φz

ν)∗ − Φz(Λz+)−1χ0(Φz)∗

+
[
Φz
νχν(Λz+,ν)−1(1− χν)(Φz

ν)∗ − Φzχ0(Λz+)−1(1− χ0)(Φz)∗
]

+
[
Φz
ν(1− χν)(Λz+,ν)−1(1− χν)(Φz

ν)∗ − Φz(1− χ0)(Λz+)−1(1− χ0)(Φz)∗
]

:= T1 + T2 + T3 + T4
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Since χν and χ0 are smooth and compactly supported, it follows that the Sobolev injection
χ•H 1/2(Σ•)4 ↪→ L2(Σ•)4 is compact, where • = 0, ν. As (Φz

ν)∗ = (H − z)−1 �Σν is bounded
from L2(R3)4 to H 1/2(Σν)4 and (Λz+,ν)−1 is bounded from H 1/2(Σν)4 into itself, for all ν > 0,
we get that T1, T2 and T3 are compact operators on L2(R3)4. As before, localizing with
respect to the function Ξ and using the compactness of the Sobolev embedding, we see that
T4 = T5 + T , where T5 is a compact operator in L2(R3)4, and T is as in (2.3.21). From this
and Lemma 2.3.2 we deduce that T is a compact operator in L2(R3)4. Hence by Proposition
2.3.1 it follows that T = (Hν

κ−z)−1−(Hκ−z)−1 is a compact operator in L2(R3)4. Therefore,
by Weyl’s theorem we conclude that Hν

κ has the same essential spectrum as Hκ. This finishes
the proof of the theorem.

As mentioned in the introduction, in [51] the Schrödinger operator with δ-interactions
(i.e. the coupling ∆ + εδΣ in R3) was considered for a surface Σ satisfying the assumption
(H2). There the authors showed that for a fixed ε (such that Spdisc(∆+εδΣ) 6= ∅) the discrete
spectrum of ∆ + εδΣ consists of exactly one simple eigenvalue for all sufficiently small ν > 0.
Moreover, an asymptotic of this eigenvalue has been proved in terms of ε, ν and φ. Thus, it
would be interesting to investigate such a problem for the couplings H + εδΣ and H + βδΣ,
and see if results of this type are valid.

2.3.2 Critical case

From now, we assume that sgn(κ) = 4. The goal of this subsection is to prove the following
result.

Theorem 2.3.4. Let κ = (ε, µ, η) ∈ R3 be such that sgn(κ) = 4 and let Hκ be as in Theorem
2.2.1. If Σ satisfies (H2), then for all ν > 0 it holds that

Spess(Hν
κ) =

(
−∞,−m

]
∪
{
−mµ

ε

}
∪
[
m,+∞

)
, (2.3.26)

and the equality Sp(H0
κ) = Spess(H0

κ) holds true (i.e. when ν = 0).

A few comments are in order. Note that ε2 > µ2, thus the point −mµ/ε belongs to the
gap (−m,m). Moreover, one can imagine that the operator Hκ is unitarily equivalent to
Hε1,µ1 , for some ε1, µ1 ∈ R, such that ε21 − µ2

1 = 4 and ε1/ε = µ1/µ. Indeed, in [78] and
[41] it has been shown that the potential η(α ·N)δΣ can always be absorbed as a change of
gauge. So the existence of such a unitary transformation is not excluded. Another way to
understand Theorem 2.3.4 comes from the way in which we have presented the operator Hκ.
In fact, in this chapter we introduced the operator Hκ as the perturbation of the coupling
H + (εI4 + µβ)δΣ with the singular potential η(α · N)δΣ. However, the right way is to say
that Hκ is the perturbation of H+η(α ·N))δΣ with the singular potential (εI4 +µβ)δΣ, since
as we will see in Chapter 3, for all η ∈ R, the operator H + η(α ·N )δΣ is self-adjoint (even if
Σ is Lipschitz) and Sp(H + η(α ·N )δΣ) =

(
−∞,−m

]
∪
[
m,+∞

)
.

From Theorem 2.3.4 we get a simple way to describe functions belonging to the domain
of Hκ when Σ = Σ0, i.e. ν = 0. Indeed, we have the following result.

Corollary 2.3.1. Assume that Σ := Σ0 and let Hκ be as above. The following hold:

(i) If µ 6= 0, then

dom(Hκ) =
{
u+ Φ[−Λ̃−1

+ [tΣu]] : u ∈ H 1(R3)4
}
.
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(ii) If µ = 0, then dom(Hκ) = dom(Hκ) + Φ[Kr(Λ̃+)].

Proof. The assertion (i) is a direct consequence of Theorem 2.3.4 and Proposition 2.3.1.
The assertion (ii) follows exactly as in [10, Proposition 3.10].

The main properties of the operators La
± which are relevant for us to prove Theorem 2.3.4

are collected in the following proposition.

Proposition 2.3.2. Let κ = (ε, µ, η) ∈ R3 be such that sgn(κ) 6= 0 and let La
±,κ := La

± be as
in Lemma 2.2.1. Then, for all a ∈ (−m,m), it holds that

0 ∈ Sp•(La
+,κ)⇐⇒ 0 ∈ Sp•(L−a+,κ̃)⇐⇒ 0 ∈ Sp•(L−a−,κ),

where κ̃ = (−ε, µ,−η) and • ∈ {ess,disc}. In particular, a ∈ Sp(Hκ) if and only if −a ∈
Sp(Hκ̃).

Proof. Fix κ = (ε, µ, η) ∈ R3 such that sgn(κ) 6= 0. Following [17, Proposition 4.2], for
f ∈ L2(Σ)4 we define

C(f) = iβα2f
c
, T (f) = γ5βf, (2.3.27)

γ5 is the chirality matrix defined by (2.1.2), and f c is the complex conjugate of f . Remark
that α2

c = −α2, using this and the properties of γ5 given by (2.1.2), it easily follows that
C2(f) = f and T 2(f) = −f . Moreover, a simple computation using the anticommutation
relations of Dirac matrices yields that

Λ±a±,κ[T (f)] = T (Λ∓a∓,κ[f ]), Λa+,κ[C(f)] = −C(Λ−a
+,̃k

[f ]), Λ−a
+,̃k

[C(f)] = −C(Λa+,κ[f ]).
(2.3.28)

Fix a ∈ (−m,m) and assume that 0 ∈ Spess(La
+). Then, there exists a sequence of functions

(gj)j∈N ⊂ dom(La
+) ⊂ L2(Σ)4, such that ||gj ||L2(Σ)4 = 1, (gj)j∈N converges weakly to 0 and∣∣∣∣∣∣La

+,κgj
∣∣∣∣∣∣

L2(Σ)4
−−−→
j→∞

0. Hence, if we set fj = C(gj) and hj = T (gj), then it is clear that
(fj)j∈N and (hj)j∈N converge weakly to zero and we have

||hj ||L2(Σ)4 = ||fj ||L2(Σ)4 = 1, fj ∈ dom(L−a+,κ̃) and hj ∈ dom(L−a−,κ), ∀j ∈ N.

Now using (2.3.28) it follows that∣∣∣∣∣∣L−a+,κ̃[fj ]
∣∣∣∣∣∣

L2(Σ)4
=
∣∣∣∣∣∣L−a−,κ[hj ]

∣∣∣∣∣∣
L2(Σ)4

=
∣∣∣∣∣∣La

+,κ[gj ]
∣∣∣∣∣∣

L2(Σ)4
.

Therefore 0 ∈ Sp(L−a+,κ̃) and 0 ∈ Sp(L−a−,κ). The reverse implications follow in the same way.

Now that 0 ∈ Spdisc(La
+) ⇐⇒ 0 ∈ Spdisc(L−a+,κ̃) ⇐⇒ 0 ∈ Spdisc(L−a−,κ) is a direct consequence

of (2.3.28), and this finishes the proof of the first statement. The last statement is a direct
consequence of the first one and Theorem 2.3.1. This completes the proof.

Proposition 2.3.3. Let a ∈ (−m,m) and let La
± be as in Lemma 2.2.1. Assume that ν = 0,

then it holds that

0 ∈ Sp(La
+)⇐⇒ a = −mµ

ε
and 0 ∈ Sp(La

−)⇐⇒ a = mµ

ε
.

Moreover, 0 is an isolated eigenvalue of L−mµ/ε+ and L
mµ/ε
− with infinite multiplicity.
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Proof. Given a ∈ (−m,m), once the claimed statement is shown for La
+, by Proposition

2.3.2 we get the result for La
−. As in (the proof of) Theorem 2.3.3, on the Fourier side, if

we let 〈ξ〉 := (1 + |ξ|2)1/2 then one can check that La
+ is unitary equivalent to the following

multiplication operator:

Π̃a
+ := 〈ξ〉

(
1

sgn(κ)(εI4 − (µβ + η(α ·N))) + 1
2
√
|ξ|2 +m2 − a2 Γm,a(ξ)

)
.

Since sgn(κ) = 4, from (2.3.23) it follows that Π̃a
+ is invertible for all a 6= −mµ/ε, and we

have

(Π̃a
+)−1 = 1

〈ξ〉

(
1 +

√
|ξ|2 +m2 − a2

εa+ µm
− (ε+ (µβ + η(α ·N)))

2(εa+ µm) Γm,a(ξ)
)

(ε+ (µβ + η(α ·N))).

Furthermore it holds that

1
〈ξ〉

Π̃a
+

(
1− (ε+ µβ + η(α ·N))

2
√
|ξ|2 +m2 − a2 Γm,a(ξ)

)
= 0, for a = −mµ

ε
.

From this, it follows that 0 is an eigenvalue of the operators L−mµ/ε+ with infinite multiplicity,
and thereby 0 ∈ Spess(L

−mµ/ε
+ ). Thus, we conclude that 0 ∈ Sp(La

+) if and only if aε = −mµ.
Now we turn to prove the last statement for the operator L

−mµ/ε
+ , similar arguments give

the result for Lmµ/ε
− . A simple computation yields

det(Π̃a
+ − θ) =

[
θ

(
θ − 〈ξ〉

(
a√

|ξ|2 +m2 − a2 + ε

2

)
︸ ︷︷ ︸

θ1(|ξ|)

)]2
,

where det(Π̃a
+−θ) is the determinant of (Π̃a

+−θ). By studying the variations of the non-trivial
root θ1 for a = −mµ/ε, we obtain that

Sp(L−mµ/ε+ ) = {0} ∪ θ1([0,∞)) = {0} ∪
[
ε

2 −
µ√

ε2 − µ2 ,∞
]

if ε > 0,

Sp(L−mµ/ε+ ) = θ1([0,∞)) ∪ {0} =
[
−∞, ε2 + µ√

ε2 − µ2

]
∪ {0} if ε < 0.

Since sgn(κ) = ε2 − µ2 − η2 = 4, it follows that

ε

2 −
µ√

ε2 − µ2 =
√
µ2 + η2 + 4

2 − µ√
η2 + 4

> 0, for ε > 0,

ε

2 −
µ√

ε2 − µ2 = −
√
µ2 + η2 + 4

2 + µ√
η2 + 4

< 0, for ε < 0.

From this we get that 0 is an isolated eigenvalue of L−mµ/ε+ with infinite multiplicity, and
this completes the proof of the proposition.

Remark 2.3.4. The reader should not confuse the unbounded operator L
−mµ/ε
+ with the

original operator Λ−mµ/ε+ , which is indeed a bounded operator on L2(Σ)4 with closed range.
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

In the following lemma, we establish compactness results concerning the nonlocal opera-
tors L

1
4
ν := L

1
4 , ν > 0, defined in Subsection 2.2.2, they will be crucial in the proof of Theorem

2.3.4. In the proof we use the same interpretation as in Lemma 2.3.2 with χ0 and χν as in No-
tation 1.3.1. We also recall the unitary transformation Jν : L2(Σν)4 → L2(Σ0)4 ' L2(R2)4,
defined for g ∈ L2(Σν)4, by (Jνg)(x̃) = J

1/2
ν (x̃)g(τ(x̃)) (with τ and Jν as in (3.1.6) and

(1.3.27), respectively).

Lemma 2.3.3. Let ν > 0, then

M1 =
(

(1− χν)L
1
4
ν J −1

ν − (1− χ0)L
1
4
0

)
(1− χ0) : L2(R2)4 → H−1(R2)4,

M2 = (1− χ0)
(

JνL
1
4
ν (1− χν)− L

1
4
0 (1− χ0)

)
: H 1(R2)4 → L2(R2)4,

are compact operators.

proof. We give the proof for the operator M1, the statement for the operator M2 can
be verified in the same way. For this, we first establish a similar property for the resolvents
and their negative powers. Let g ∈ L2(R2)4 and set G = (1 − χ0)g. We note that from the
definition of the cutoff functions it holds that

(1− χν)L1
νJ

−1
ν G− (1− χ0)L1

0G = 0. (2.3.29)

Then, as in the proof of Lemma 2.3.2, we can transmit the above equality, modulo compact
operator, to the resolvents as well. Indeed, given z ∈ ρ(L1

ν) ∩ ρ(L1
0), then using (2.3.29) we

get that

(L1
0 − z)(1− χν)(L1

ν − z)−1J −1
ν G =(1− χ0)G+ L1G, (2.3.30)

where L1 is given by

L1G =
(
χ0(L1

0 − z)(1− χν)− (1− χν)(L1
ν − z)χν

)
(L1

ν − z)−1J −1
ν G.

It is clear that L1 is bounded from L2(R2)4 into itself, and as it contains the cutoff functions
χ0 and χν , the compactness of the embedding χνH s(Σν)4 ↪→ H s−1/2(Σν)4 implies that L1 is
compact from L2(R2)4 to H−1/2(R2)4. Note that from (2.3.30) we have

(1− χν)(L1
ν − z)−1J −1

ν G− (1− χ0)(L1
0 − z)−1G = [χ0, (L1

0 − z)−1]G+ (L1
0 − z)−1L1G,

(2.3.31)

and since (L1
ν − z)−1 is bounded from L2(Σν)4 to H 2(Σν)4, using the compactness property

of L1 and the compactness of the Sobolev embedding we get that(
(1− χν)(L1

ν − z)−1J −1
ν − (1− χ0)(L1

0 − z)−1
)

(1− χ0) : L2(R2)4 → H 3/2(R2)4,

is a compact operator. Next, we use the functional calculus to transmit the above property
for the operators L−

3
4

ν and L−
3
4

0 . Recall that we have chosen c so that (L1
ν−γ) = (−∆Σ+c−γ)

is a positive operator for some γ > 0 (see the beginning of Subsection 2.2.2). Thus, (L1
ν−z)−1

is well-defined for any z ∈ C \ [γ,∞). Moreover, for 0 < θ < π/2 and γ > γ′ > 0, we can
define L−

3
4

ν by the Cauchy formula (see, e.g., [96, Chap III, §3])

L
− 3

4
ν = i

2π

∫
Zθ,γ′

z−
3
4 (L1

ν − z)−1dz,
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2.3. Spectral properties

where for ω ∈ C such that Re(ω) < 0, zω is the determination of the power function defined
on C \ (−∞, 0], and the integration is along the contour Zθ,γ′ defined by

Zθ,γ′ := {z ∈ C : |z| > γ′ and |Arg(z)| = θ} ∪ {z ∈ C : |z| = γ′ and |Arg(z)| 6 θ}.

From the Cauchy formula and the identity 2.3.31 we obtain that

(1− χν)L−
3
4

ν J −1
ν (1− χ0) = i

2π

∫
Zθ,γ′

z−
3
4 (1− χν)(L1

ν − z)−1J −1
ν (1− χ0)dz

= i

2π

∫
Zθ,γ′

z−
3
4 (1− χ0)(L1

0 − z)−1(1− χ0)dz + L2

=(1− χ0)L−
3
4

0 (1− χ0) + L2,

with
L2 := i

2π

∫
Zθ,γ′

z−
3
4
(
[χ0, (L1

0 − z)−1] + (L1
0 − z)−1L1

)
dz.

Since L−
3
4

ν is bounded from L2(Σν)4 to H 3/2(Σν)4, thanks to the cutoff functions and the
properties of L1, we have that L2 is compact from L2(R2)4 to H 1(R2)4. Therefore, the
operator (

(1− χν)L−
3
4

ν J −1
ν − (1− χ0)L−

3
4

0

)
(1− χ0) = L2 (2.3.32)

is a compact from L2(R2)4 to H 1(R2)4. Now we are able to prove the statement for M1.
Indeed, localizing with respect to χ0 and χν , and using the property of the power of the
resolvents (i.e., (2.3.31) and (2.3.32)), we get that

(1− χν)L
1
4
ν J −1

ν G =L1
0L
−1
0 (1− χν)L

1
4
ν J −1

ν G = L1
0(1− χν)L−1

ν (1− χν)L
1
4
ν J −1

ν G+ J1G

=L1
0(1− χν)L−

3
4

ν J −1
ν G+

2∑
k=1

JkG = L1
0(1− χ0)L−

3
4

0 G+
3∑

k=1
JkG

=(1− χ0)L
1
4
0G+

4∑
k=1

JkG,

where for 1 6 k 6 4, Jk is bounded from L2(R2)4 to H−1/2(R2)4 and involves the cutoff func-
tions χ0 and χν , and hence Jk is compact from L2(R2)4 to H−1(R2)4 by the compactness of
the injection χνH−1/2(Σν)4 ↪→ H−1(Σν)4. Therefore, M1 : L2(R2)4 → H−1(R2)4 is compact,
and this completes the proof.

We are now in a position to give the proof of our main result in this subsection. To avoid
ambiguity, in the proof we use the labels Szν and Λ̃z±,ν to denote the trace of the single layer
given by (1.3.24) and the operator Λ̃z±, respectively.

Proof of Theorem 2.3.4. Assume that Σ satisfies (H2) and fix ν > 0. The result will
follow from the following statements:

(a)
(
−∞,−m

)
∪
(
m,+∞

)
⊂ Spess(Hν

κ).

(b) {−mµ/ε} ∈ Spess(Hν
κ) and {mµ/ε} /∈ Spess(Hν

κ).

(c) Spess(Hν
κ) ∩ [(−m,m) \ {−mµ/ε,mµ/ε}] = ∅.
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Proof of (a). Given a ∈ (−∞,−m)∪(m,∞) and let (ϕn)n∈N be the sequence of functions
defined by (2.3.25) with R = 2 sup{|x| : x ∈ Σν \F}. By construction, it is clear that (ϕn)n∈N
is a singular sequence for Hν

κ and a. Thus, we get the inclusion (−∞,−m) ∪ (m,+∞) ⊂
Spess(Hν

κ), which yields (a).
Proof of (b). From Proposition 2.3.3 and Theorem 2.3.1, we know that item (b) holds

true for ν = 0. Next, assume that ν > 0, we are going to prove that {−mµ/ε} ∈ Spess(Hν
κ) and

the same arguments yield that {mµ/ε} /∈ Spess(Hν
κ). To this end, we argue by contradiction

and we split the proof into two steps. Set λ = −mµ/ε and suppose that λ /∈ Spess(Hν
κ), then

by Theorem 2.3.1 and Proposition 2.3.2 it follows that 0 /∈ Spess(Lλ
+,ν) and 0 /∈ Spess(L−λ−,ν).

In the next two steps we will introduce an auxiliary operator which will allow us to obtain a
contradiction to fact that 0 /∈ Spess(Lλ

+,ν).
Step 1. We set Bν := Λ̃λ+,νΛ̃−λ−,ν , Dν := Λ−λ−,νΛλ+,ν , and we consider the operator Υλ

ν :
L2(Σν)4 −→ L2(Σν)4 defined by:

Υλ
ν := L

1
4
νDνBνL

1
4
ν = L

1
4
ν (Λ−λ−,νΛλ+,ν)(Λ̃λ+,νΛ̃−λ−,ν)L

1
4
ν .

From the definitions of φz and ψz (see (1.3.1) and (1.3.2)), it is clear that ψ−λ = ψλ, and
that

φ−λ(x) = φλ(x)− 2λψλ, for all x ∈ R3 \ {0}.

Using this, we get that

Bν = Λ̃λ+,νΛ̃λ−,ν + 2λΛλ+,νSλν , Dν = Λλ−,νΛλ+,ν + 2λSλνΛλ+,ν . (2.3.33)

Since L
1
4
ν : H s(Σ)4 → H s−1/2(Σ)4 is bijective and continuous for any s ∈ [−1/2, 1], using

(2.3.33), (2.2.7) and Lemma 1.3.5 it easily follows that Υλ
ν is a bounded, self-adjoint oper-

ator on L2(Σν)4. Note that by hypothesis and the definition of Υλ
ν it holds that 0 /∈ Spess(Υλ

ν ).

Step 2. We now show that 0 ∈ Spess(Lλ
+,0) implies that 0 ∈ Spess(Υλ

ν ), which is a
contradiction to the fact that 0 /∈ Spess(Υλ

ν ), and hence λ /∈ Spess(Hν
κ) can not be true. For

this, we are going to prove that

JνΥλ
νJ

−1
ν −Υλ

0 : L2(R2)4 → L2(R2)4,

is a compact operator. Indeed, since Λ̃λ+,νΛ̃λ−,ν = Λ̃λ−,νΛ̃λ+,ν and Sλν : H s−1(Σν)4 → H s(Σν)4

is bounded for any s ∈ [0, 1], it follows from (2.3.33) that

JνΥλ
νJ

−1
ν = JνL

1
4
ν

(
Λλ−,νΛλ+,ν

) (
Λ̃λ+,νΛ̃λ−,ν

)
L

1
4
ν J −1

ν + (2λ)2 JνL
1
4
ν S

λ
ν

(
Λ̃λ+,ν

)2
SλνL

1
4
ν J −1

ν

+ 2λJνL
1
4
ν
{
Λ̃λ+,νΛ̃λ−,νΛ̃λ+,ν , Sλ

}
L

1
4
ν J −1

ν := T1,ν + T2,ν + T3,ν .

(2.3.34)

Now, we set T̃j,ν = Tj,ν −Tj,0 for j ∈ {1, 2, 3}. To avoid repetitions, in what follows we only
show that T̃1,ν is a compact operator, since the same arguments yield that T̃2,ν and T̃3,ν are
compact operators. For this, we are going to use localization arguments as in the second
step. Note first that since sgn(κ) = 4, from (2.2.7) and the proof of Lemma 1.3.5 it follows
that

Λ̃λ+,νΛ̃λ−,ν = −Cλ
Σν (α ·N ){α ·N , C̃ λ

Σν}+ µ

4 {β, C̃
λ
Σν}+ η

4{α ·N , C̃
λ
Σν}

=
(
−Cλ

Σν (α ·N ) + η

4

)
Tλ,ν +

(
−2λCλ

Σν + µ

4 (λβ +mI4) + λη

2 (α ·N )
)
Sλν ,

89



2.3. Spectral properties

where Tλ,ν correspond to the integral operator Tz,1 given by (1.3.31). Using this it follows
that T1,ν = K1,ν +K2,ν +K3,ν , where Kj,ν are given by

K1,ν = JνL
1
4
ν

((
−Cλ

Σν (α ·N ) + η

4

)
Tλ,ν

)2
L

1
4
ν J −1

ν ,

K2,ν = JνL
1
4
ν

{(
−Cλ

Σν (α ·N ) + η

4

)
Tλ,ν ,

(
−2λCλ

Σν + µ

4 (λβ +mI4) + λη

2 (α ·N )
)
Sλν

}
L

1
4
ν J −1

ν ,

K3,ν = JνL
1
4
ν

((
−2λCλ

Σν + µ

4 (λβ +mI4) + λη

2 (α ·N )
)
Sλν

)2
L

1
4
ν J −1

ν .

By definition we know that (1− χν)Tλ,ν(1− χν) = 0 and Tλ,0 = 0 (i.e. when Σ = R2 × {0}).
From this we get that K1,ν = Γ1,νΓ2,ν , with

Γ1,ν = JνL
1
4
ν

(
−Cλ

Σν (α ·N ) + η

4

)
Tλ,ν

(
−Cλ

Σν (α ·N ) + η

4

)
,

Γ2,ν = (χνTλ,νχν + χνTλ,ν(1− χν) + (1− χν)Tλ,νχν)L
1
4
ν J −1

ν ,

and that

T1,0 = L
1
4
0

((
−2λCλ

Σ0 + µ

4 (λβ +mI4) + λη

2 (α ·N )
)
Sλ0

)2
L

1
4
0 .

By Remark 1.3.5 we know that Tλ,ν : H s−1(Σν)4 → H s(Σν)4 is bounded for any s ∈ [0, 1], thus
Γ1,ν : L2(R2)4 → H 1/2(Σν)4 and Γ2,ν : H 1/2(Σν)4 → H 1(R2)4 are well-defined and bounded.
Consequently, using the compactness of the Sobolev embedding χνH s(Σν)4 ↪→ H s−1/2(Σν)4

we get that K1,ν : L2(R2)4 → L2(R2)4 is a compact operator. Similarly, one can check that
K2,ν is a compact operator on L2(R2)4.

At this stage, we have shown that T̃1,ν = T1,ν − T1,0 = K3,ν − T1,0 + K̃ν , where K̃ν is
compact in L2(R2)4. Hence, to show the claim of the current step it remains to prove that
K3,ν −T1,0 is compact on L2(R2)4. For this, observe that

(1− χν)Cλ
Σν (1− χν) = (1− χ0)Cλ

Σ0(1− χ0),
(1− χν)Sλν (1− χν) = (1− χ0)Sλ0 (1− χ0),

hold by Remark 1.3.4. Thus, localizing with respect to χ0 and χν and combining the above
observation with the compactness of Sobolev injections and the properties of the opera-
tors Mk from Lemma 2.3.3, it follows that K3,ν − T1,0 is compact in L2(R2)4. There-
fore, JνΥ−mµ/εν J −1

ν − Υ−mµ/ε0 is compact in L2(R2)4. Since 0 ∈ Spess

(
Υ−mµ/ε0

)
be-

cause 0 ∈ Spess

(
L
−mµ/ε
+,0

)
and 0 ∈ Spess

(
L
mµ/ε
−,0

)
by Proposition 2.3.3, it follows from

Weyl’s theorem that 0 ∈ Spess

(
Υ−mµ/εν

)
. Therefore, 0 ∈ Spess(L

−mµ/ε
+,ν ) which implies that

−mµ/ε ∈ Spess(Hν
κ), and this proves (b).

We now show (c), so assume that a ∈ (−m,m) \ {−mµ/ε,mµ/ε}. We introduce the
operator Gaν : L2(Σν)4 −→ L2(Σν)4 defined by Gaν := L

1
4
ν (Λa−,νΛa+,ν)(Λ̃a−,νΛ̃a+,ν)L

1
4
ν . Using that

Λ̃a−,νΛ̃a+,ν = Λ̃a+,νΛ̃a−,ν , it follows that Gaν is bounded and self-adjoint in L2(Σν)4. Moreover,
by definition it holds that

0 ∈ Spess(La
±,ν) =⇒ 0 ∈ Spess(Gaν). (2.3.35)

90
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Since L
1
4
ν is an isomorphism, it follows from Proposition 2.3.3 that Λ̃a+,0 and Λ̃a−,0 are bounded,

invertible operators for all a ∈ (−m,m)\{−mµ/ε,mµ/ε}, and that 0 ∈ Spess(Ga0) if and only
if a = ∓mµ/ε. Next, we claim that, if a 6= ∓mµ/ε then 0 /∈ Spess(Gaν). To see this, note
that JνG

a
νJ

−1
ν coincides with the operator T1,ν defined by (2.3.34), for λ = a. Thus, the

same arguments as those used in the proof of (b) show that JνG
a
νJ

−1
ν − Ga0 is a compact

operator in L2(R2)4. Consequently, Weyl’s theorem yields that Spess(Gaν) = Spess(Ga0), and
this proves the result asserted. Using this, it follows from (2.3.35) that, if a 6= ∓mµ/ε then 0 /∈
Spess(La

±,ν). Therefore, Theorem 2.3.1 yields that Spess(Hν
κ)∩ [(−m,m) \ {−mµ/ε,mµ/ε}] =

∅, which proves (c).
Summing up, from (a) and (b) we obtain that

(
− ∞,−m

)
∪ {−mµ/ε} ∪

(
m,+∞

)
⊂

Spess(Hν
κ). From (b) and (c) we get the inclusion Spess(Hν

κ) ⊂
(
− ∞,−m

]
∪ {−mµ/ε} ∪[

m,+∞
)
. Since the essential spectrum of a self-adjoint operator is closed, we get then the

equality (2.3.26). This completes the proof of the theorem.
Actually in the case Σ = R2×{0}, one can check directly using the separation of variables

that a = −mµ/ε is an eigenvalue of Hκ with infinite multiplicity. Indeed, let a = −mµ/ε and
ϕ ∈ dom(Hκ) such that:

(Hκ − a)ϕ = 0, in L2(R3)4. (2.3.36)

A simple computation yields the following relations[1
2(εI4 − µβ + ηα3) + iα3

] [1
2(εI4 + µβ − ηα3)− iα3

]
= (2− iη)I4,[1

2(εI4 − µβ + ηα3) + iα3

] [1
2(εI4 + µβ − ηα3) + iα3

]
= iα3(ε+ µβ).

(2.3.37)

Hence, using the relation (2.3.37) and the Definition 2.2.2, another way of stating (2.3.36) is
to say: {

(H − a)ϕ = 0 for all x3 6= 0,
(2− iη)tΣϕ+ = −iα3(ε+ µβ)tΣϕ− for x3 = 0.

(2.3.38)

Since (H + a)(H − a) = (−∆ +m2 − a2)I4, one gets that ϕ is also solution to the following
equation

(−∆ +m2 − a2)I4ϕ = 0, for all x3 6= 0

Thus, applying Fourier-Plancherel operator on x = (x1, x2), we get that

Fx [ϕ] (ξ, x3) =

e
−x3
√
|ξ|2+m2−a2

Fx [ψ+] (ξ) for x3 >0,

ex3
√
|ξ|2+m2−a2

Fx [ψ−] (ξ) for x3 <0,

for some ψ± ∈ H
1
2 (R2). Since (H + a)ϕ = 2aϕ, by applying the inverse Fourier-Plancherel

operator, we obtain that

ϕ(x, x3) =


1

2π

∫
R2
eix·ξe−x3

√
|ξ|2+m2−a2Γi(ξ)Fx [ψ+] (ξ)dξ for x3 > 0,

1
2π

∫
R2
eix·ξex3

√
|ξ|2+m2−a2Γ−iFx [ψ−] (ξ)dξ for x3 < 0,

where Γ±i(ξ) =
[
α · (ξ1, ξ2,±i

√
|ξ|2 +m2 − a2) +mβ + a

]
. From this, it is clear that

ϕ±, (α · ∇)ϕ± ∈ L2(Ω±).
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Now, if we set
ψ− = − η − i2

ε2 − µ2 (ε+ µβ)α3ψ+,

then we get

(2− iη)Γ+i(ξ)Fx [ψ+] (ξ) = −iα3(εI4 − µβ)Γ−i(ξ)Fx [ψ−] (ξ).

which means that (ϕ+, ϕ−) satisfies the transmission condition from (2.3.38) . From this
considerations it follows that for all ψ ∈ H

1
2 (R2) the function

ϕ(x, x3) =


1

2π

∫
R2
eix·ξe−x3

√
|ξ|2+m2−a2Γi(ξ)Fx [ψ+] (ξ) for x3 > 0,

−i
4π

∫
R2
eix·ξex3

√
|ξ|2+m2−a2Γ−i(λ− µβ)α3Fx [ψ+] (ξ) for x3 < 0,

is an eigenvector associated to the eigenvalue a = −mµ/ε.

2.4 Quantum confinement induced by Dirac operators with
anomalous magnetic δ-shell interactions

The main goal of this section is to derive a new model of Dirac operators with δ-shell
interactions which generate confinement. Let us explain how to derive this model. Using
the unit c = ~ = 1, where c is the speed of light and ~ is the Planck’s constant, the Dirac
operator for a charge e in an external electromagnetic field (φel, A) is given by:

H(e) = α · (−i∇− eA(t, x)) +mβ + eφel(t, x)I4,

see [103] for example. Recall that the electric and magnetic field strengths are

E(t, x) = −∇φel(t, x)− ∂A(t, x)
∂t

, B(t, x) = ∇×A(t, x),

where ∂/∂t denotes the partial derivative with respect to time t ∈ R. In this case, the
anomalous magnetic potential is given by:

V (t, x) = υ

(
iβ(α · E(t, x))− 1

4β((α× α) ·B(t, x))
)
,

here (α ∧ α)/4 = −iγ5α/2 is the spin angular momentum, γ5 is the chirality matrix defined
by (2.1.2), and the coupling constant υ is the magnitude of the anomalous potential. Now,
if we put φel(t, x) = |x| and A(t, x) = 0, we then obtain

V (x) = iυβ

(
α · x
|x|

)
.

Next, given R > 0, if x ∈ S2
R = {x ∈ R3 : |x| = R}, then x/|x| coincide with the normal

vector field N (x). Thus we get

Vυ(x) := iυβ(α ·N (x)), ∀x ∈ S2
R.

Given a surface Σ ⊂ R3 satisfying the assumption (H1) or (H2), we can now consider the
following Dirac operator

H + Vυ = H + iυβ(α ·N )δΣ, υ ∈ R.
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

and called it Dirac operator with anomalous magnetic δ-shell interactions of strength υ. We
mention that the bidimensional analogue of H + Vυ was also introduced and studied in [41].
However, instead of deriving the potential Vυ as we have done here, they rigorously proved
that the two-dimensional analog of Vυ can be approximated by regular shrinking potentials
of magnetic type, and thus they justified the fact that Vυ is a "magnetic" δ-shell interactions.
In this direction we mention that similar results on the approximation of electrostatic and
Lorentz scalar δ-interactions have been proved in [79, 80].

Remark 2.4.1. If one choose a time independent magnetic field A(x) so that B(x) = x/|x|
and put φel(t, x) = 0 for all t ∈ R, we then get the δ-potential Vυ̃ = iυ̃βγ5(α ·N )δΣ. Note that
in dimension 2, the potential Vυ̃ coincides with the electrostatic δ-potential, and in dimension
3 it gives rise to a different δ-potential. The spectral properties of (H + Vυ̃) will be discussed
in details in Chapter 3.

Now, for ζ ∈ R, we define the potential Vζ = ζγ5δΣ. To our knowledge, the potential Vζ
seems to have no physical interpretation, but mathematically it has the same properties as
the electrostatic potential if ζ = ±2; cf. Remark 2.4.2.

Unless otherwise stated, in this section we assume that Σ satisfies the assumption (H1),
and we consider the Dirac operator Hζ,υ, which is formally given by

Hζ,υ = H + Vζ,υ = H + (ζγ5 + iυβ(α ·N )) δΣ, ζ, υ ∈ R.

Compared to the operators studied before, the operator Hζ,υ is very different. Due to the
presence of an anomalous magnetic potential, several properties of commutativity are no
longer true in this case. Moreover, H0,υ (i.e. ζ = 0) has the particularity of combining
two important phenomena that we have already seen. As indicated in the introduction, the
Dirac operator (H0,±2,dom(H0,±2)) is essentially self-adjoint and Σ becomes impenetrable;
see Theorem 2.4.2 below.

Given z ∈ C \ ((−∞,−m] ∪ [m,∞)), we define the operators Λz± as follows:

Λz± = 1
ζ2 + υ2 (ζγ5 + iυβ(α ·N ))± C z

Σ.

Since iβ(α · N) is C 1-smooth and symmetric, it follows that Λz± are bounded from L2(Σ)4

onto itself (resp. from H 1/2(Σ)4 onto itself). Moreover, Λz± are self-adjoint on L2(Σ)4, for all
z ∈ (−m,m).

Now, using the same notations as in Section 2.1, the Dirac operator Hζ,υ (acting in
L2(R3)4) is defined on the domain

dom(Hζ,υ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4, tΣu = −Λ+[g]

}
,

and the potential Vζ,υ acts as follows

Vζ,υ(ϕ) = 1
2(ζγ5 + iυβ(α ·N ))(ϕ+ + ϕ−)δΣ,

with ϕ± = tΣu + C±[g]. Thus, Hζ,υ acts in the sense of distributions as Hζ,υ(ϕ) = Hu, for
all ϕ = u+ Φ[g] ∈ dom(Hζ,υ).

We remind the reader that Λ̃z± denotes the continuous extension of Λz± defined from
H−1/2(Σ)4 onto itself. Using the same method as in Section 2.2, one can show that Hζ,υ is
closable and the domain of the adjoint is given by

dom(H∗ζ,υ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, tΣu = −Λ̃+[g]

}
.

In the following, we briefly discuss the basic spectral properties of Hζ,υ in the non-critical
case, i.e. ζ2 + υ2 6= 4. The following theorem gathers the most important properties of Hζ,υ.
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Theorem 2.4.1. Let (ζ, υ) ∈ R2 be such that ζ2 + υ2 6= 0, 4. Then Hζ,υ is self adjoint and
we have

dom(Hζ,υ) =
{
u+ Φ(g) : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, tΣu = −Λ+[g]

}
⊂ H 1(R3 \ Σ)4.

Moreover, the following statements hold true:

(i) Given a ∈ (−m,m), then Kr(Hζ,υ − a) 6= {0} ⇐⇒ Kr(Λa+) 6= {0}.

(ii) For all z ∈ ρ(Hζ,υ) ∩ ρ(H), it holds that

(Hζ,υ − z)−1 = (H − z)−1 − Φz(Λz+)−1(Φz)∗.

Furthermore, if Σ satisfies (H1), then

(iii) Spess(Hζ,υ) = (−∞,−m] ∪ [m,+∞).

(iv) Spdisc(Hζ,υ) ∩ (−m,m) is finite.

Proof. Recall that [A,B] = AB − BA denotes the usual commutator bracket. Suppose
that ζ2 + υ2 6= 0, 4 and fix z ∈ C \ ((−∞,−m] ∪ [m,∞)), then a simple computation yields

Λz∓Λz± = 1
ζ2 + υ2 −

1
4 − C z

Σ(α ·N ){α ·N ,C z
Σ} ±

ζ

ζ2 + υ2 [γ5,C
z
Σ]± iυ

ζ2 + υ2 [β(α ·N ),C z
Σ].

Using the anticommuations relations of the Dirac matrices and the properties of γ5 given by
(2.1.2), we easily get that

[γ5,C
z
Σ] = 2mγ5βS

z, [β(α ·N ),C z
Σ] = β{α ·N ,C z

Σ} − {β,C z
Σ}(α ·N ).

Thus, Lemma 1.3.5 implies that Λz∓Λz± extends to a bounded operator from H−1/2(Σ)4 to
H 1/2(Σ)4. Therefore, the same method as in the proof of Theorem 2.2.1 yields that

dom(H∗ζ,υ) = dom(Hζ,υ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, tΣu = −Λ+[g]

}
.

Therefore, Hζ,υ is self-adjoint and dom(Hζ,υ) ⊂ H 1(R3 \ Σ)4. Assertions (i) and (ii) can be
proved as in Proposition 2.3.1.

Now assume that Σ satisfies (H1). Then, Φz(Λz+)−1(Φz)∗ is a compact operator in L(R3)4

and Spess(H) = (−∞,−m] ∪ [m,+∞), and thus the assertion (iii) follows immediately from
(ii) and Weyl’s theorem. Finally, assertion (iv) is a consequence of the Sobolev injection. In-
deed, one can easily adapt the proof of Theorem 2.3.2 and show that Spdisc(Hζ,υ)∩ (−m,m)
is finite. We omit the details.

In the following theorem, we discuss the self-adjointness of Hζ,υ in the critical case, i.e.
ζ2 + υ2 = 4. We mention that the assertions (a) and (c) have already been proved in [65],
where the author studied the inner part of H0,±2 acting on Ω+, known as the Dirac operator
with zig-zag boundary conditions, we refer to [41] for the two-dimensional case.

Theorem 2.4.2. Let (ζ, υ) ∈ R2 be such that ζ2 + υ2 = 4 , then Hζ,υ is essentially self
-adjoint and we have

dom(Hζ,υ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, tΣu = −Λ̃+[g]

}
. (2.4.1)

Moreover, the following assertions hold true:
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

(i) a ∈ Sp(Hζ,υ)⇐⇒ −a ∈ Sp(H−ζ,υ).

(ii) For all z ∈ ρ(H) ∩ ρ(Hζ,υ)r, the operator Λ̃z+ takes the space {g ∈ H−1/2(Σ)4 : Λ̃z+[g] ∈
H 1/2(Σ)4} bijectively to H 1/2(Σ)4. In particular, Λ̃z+ admits a bounded inverse from
H 1/2(Σ)4 to H−1/2(Σ)4, and we have

(Hζ,υ − z)−1 = (H − z)−1 − Φz(Λ̃z+)−1(Φz)∗.

(iii) If ζ = 0, then Σ becomes impenetrable and it holds that

H0,υ = HΩ+
υ ⊕HΩ−

υ = (−iα · ∇+mβ)⊕ (−iα · ∇+mβ) , (2.4.2)

where HΩ±
υ are the self-adjoint Dirac operators defined on

dom(HΩ±
υ ) =

{
ϕ± ∈ L2(Ω±)4 : (α · ∇)ϕ± ∈ L2(Ω±)4 and P∓,υtΣϕ± = 0

}
,

where the boundary condition has to be understood as an equality in H−1/2(Σ)4, and
P±,υ are the projectors defined by

P±,υ = 1
2

(
I4 ±

υ

2β
)
. (2.4.3)

Furthermore, we have

(a) −m and m are eigenvalues of H0,υ with infinite multiplicities.
(b) Sp(H0,υ) = (−∞,−m] ∪ [m,+∞).
(c) if Σ satisfies (H1) and {λj}j∈N∗ is the sequence of eigenvalues of the Dirichlet

Laplacian (−∆) in Ω+, counted with their multiplicities. Then, for all j ∈ N∗,
λ±j (m) = ±

√
m2 + λj is an embedded eigenvalue of H0,υ with finite multiplicity.

Proof. Let us show the first statement. The proof is a relatively straightforward modi-
fication of the technique used in the proof of Theorem 2.2.1. Indeed, as Hζ,υ is closable the
only thing left to prove is the inclusion H∗ζ,υ ⊂ Hζ,υ. For this, let ϕ = u+ Φ[g] ∈ dom(H∗ζ,υ)
and let (hj)j∈N ⊂ H 1/2(Σ)4 be a sequence of functions that converges to g in H−1/2(Σ)4. Set

gj := 1
2 (ζγ5 + iυβ(α ·N ))

(
Λ̃+[g] + Λ−[hj ]

)
, ∀j ∈ N.

Clearly, (gj)j∈N ⊂ H 1/2(Σ)4. Since Λ+ is bounded from H 1/2(Σ)4 onto itself, we then get
that (Λ+[gj ])j∈N ⊂ H 1/2(Σ)4. Now, remark that

−1
2 (ζγ5 + iυβ(α ·N )) Λ̃−[g] = −g + 1

2 (ζγ5 + iυβ(α ·N )) Λ̃+[g].

Using this, we obtain that

gj := g − 1
2 (ζγ5 + iυβ(α ·N )) Λ̃−[hj − g], ∀j ∈ N.

As Λ̃− is bounded from H−1/2(Σ)4 onto itself, it follows that gj −−−→
j→∞

g in H−1/2(Σ)4.
Moreover, we have

Λ̃+[gj − g] = −1
2Λ̃+ (ζγ5 + iυβ(α ·N )) Λ̃−[g − hj ] =

(
Λ̃+Λ̃−Λ̃− + Λ+Λ̃+Λ̃−

)
[hj − g].

(2.4.4)
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From the proof of Theorem 2.4.1 we know that

Λ̃∓Λ̃± = −C̃Σ(α ·N ){α ·N , C̃Σ} ±
mζ

2 γ5βS ±
iυ

4
(
β{α ·N , C̃Σ} − {β, C̃Σ}(α ·N )

)
. (2.4.5)

Thus, it follows from Lemma 1.3.5 that Λ̃±Λ̃∓ are bounded from H−1/2(Σ)4 to H 1/2(Σ)4.
Therefore, (2.4.4) yields that

Λ+[gj ] −−−→
j→∞

Λ̃+[g], in H 1/2(Σ)4.

Let
vj = E

(1
2Λ̃+ (ζγ5 + iυβ(α ·N )) Λ̃−[hj − g]

)
∈ H 1(R3)4, ∀j ∈ N,

and define ϕj := uj + Φ[gj ], where uj = u − vj . It is clear that uj ∈ H 1(R3)4 and tΣuj =
−Λ+[gj ] ∈ H 1/2(Σ)4, hence (ϕj)j∈N ⊂ dom(Hζ,υ). Moreover, since (hj)j∈N (resp (gj)j∈N)
converges to g in H−1/2(Σ)4 as j −→∞, using the continuity of Λ̃±Λ̃∓ it follows that

(ϕj , Hζ,υϕj) −−−→
j→∞

(ϕ,H∗ζ,υϕ) in L2(R3)4.

Therefore H∗ζ,υ ⊂ Hζ,µ and hence Hζ,υ is self-adjoint and dom(Hζ,υ) is given by (2.4.1), and
this finishes the proof of the first statement.
In order to continue the proof of the theorem we use the definition of dom(Hζ,υ) with trans-
mission condition. As in Definition 2.2.2, using the Plemelj-Sokhotski formula, one can show
that Hζ,υ acts in the sense of distributions as

Hζ,υϕ = (−i∇ · α+mβ)ϕ+ ⊕ (−i∇ · α+mβ)ϕ−,

for ϕ = (ϕ+, ϕ−) ∈ L2(R3)4 such that (α · ∇)ϕ± ∈ L2(Ω±)4 and satisfies the following
transmission condition in H−1/2(Σ)4:(1

2(ζγ5 + iυβ(α ·N )) + i(α ·N )
)
tΣϕ+ = −

(1
2(ζγ5 + iυβ(α ·N ))− i(α ·N )

)
tΣϕ−.

Now, let us show item (i), for this recall the operator C defined in (2.3.27). Then, a trivial
computation yields that

ϕ ∈ dom(Hζ,υ)⇐⇒ C[ϕ] ∈ dom(H−ζ,υ).

Since for all u ∈ L2(R3)4, we have

C[(−iα · ∇+mβ)u] = −(−iα · ∇+mβ)C[u],

it follows that a belongs to Sp(Hζ,υ) if and only if −a belongs to Sp(H−ζ,υ), which yields (i).
Item (ii) follows in the same way as Proposition 2.3.1. To prove item (iii), observe that

dom(H0,υ) =
{
ϕ = (ϕ+, ϕ−) ∈ L2(Ω+)4⊕L2(Ω−)4 : (α · ∇)ϕ± ∈ L2(Ω±)4 and

i(α ·N)P−,υtΣϕ+ = i(α ·N)P+,υtΣϕ−

}
,

where P±,υ are the projectors given by (2.4.3). From this we deduce that a function ϕ =
(ϕ+, ϕ−) ∈ L2(Ω+)4 ⊕ L2(Ω−)4 with (α · ∇)ϕ± ∈ L2(Ω±)4 belongs to dom(H0,υ) if and
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2. On the Dirac operator with δ-interactions supported on smooth surfaces

only if P∓,υtΣϕ± = 0 holds in H−1/2(Σ)4. Therefore, Σ becomes impenetrable and the
decomposition (2.4.2) holds true.

In the rest of the proof we assume that υ = 2, the case υ = −2 can be recovered by
the same arguments. Let us show the assertion (a). To do this, we first show that −m
is an eigenvalue of HΩ+

2 with infinite multiplicity, and hence of H0,2. Observe that, for
any ϕ = (ϕ1, ϕ2)> ∈ dom(HΩ+

2 ), we have ϕ1 ∈ H 1
0 (Ω+)2 and (σ · ∇)ϕ2 ∈ L2(Ω+)2. Let

ψ ∈ C 2(Ω+)2 be a harmonic function with respect to σ · ∇ (i.e. (σ · ∇)ψ = 0 in Ω+) and set
ϕ = (0, ψ)>.Clearly ϕ ∈ dom(HΩ+

2 ), and we have that

(HΩ+
2 +m)ϕ =

(
−i(σ · ∇)ψ

0

)
+m

(
2 0
0 0

)(
0
ψ

)
= 0.

Since the set of harmonic functions with respect to (σ · ∇) is infinite dimensional, we get
that −m is an eigenvalue of H0,2 with infinite multiplicity. By (i) we also get that m is an
eigenvalue of H0,2 with infinite multiplicity, which proves the assertion (a).

Now we are going to prove (b) and (c), for this purpose, we consider the following Dirac
operators

D
Ω±
2 ψ = (−iα · ∇+mβ)ψ, ψ ∈ dom(DΩ±

2 ) =
{
ϕ± ∈ H 1(Ω±)4 : P∓,2tΣϕ± = 0

}
.

Then, one can easily verify that DΩ±
2 are symmetric and closable operators. Moreover, it

holds that DΩ±
2 = H

Ω±
2 . Indeed, denote by Q

Ω±
2 the quadratic form associated to (DΩ±

2 )2.
Given ϕ ∈ dom(DΩ±

2 ), using the Green’s formula and the boundary conditions, it easily
follows that:

Q
Ω±
2 [ϕ] =‖(α · ∇)ϕ‖2L2(Ω±)4 +m2‖ϕ‖2L2(Ω±)4 . (2.4.6)

Hence, we get QΩ±
2 [ϕ] > m2‖ϕ‖2L2(Ω±)4 . Thus (DΩ±

2 )2 is lower semi-bounded. Therefore, by
[50, Theorem 6.3.2] it follows that (HΩ±

2 )2 is the Friedrich’s extension of (DΩ±
2 )2 and it holds

that

Sp(HΩ±
2 ) ⊂ (−∞,−m] ∪ [m,+∞).

From this we see that if Σ satisfies (H2), then Sp(H0,υ) ⊂ (−∞,−m]∪ [m,+∞). Since similar
arguments as those of the proof of Theorem 2.3.4 yield the inclusion (−∞,−m)∪ (m,+∞) ⊂
Sp(H0,υ), we then the statement (b) in this case.

In the rest of the proof we assume that Σ satisfies (H1). Let (−∆Ω±) be the Dirichlet
realization of (−∆) in Ω±, with domain H 2(Ω±) ∩ H 1

0 (Ω±). Using Weyl’s theorem and the
fact that H 1

0 (Ω+) is compactly embedded in L2(Ω+), it is not hard to show that

Sp(−∆Ω− +m2) = [m2,+∞),
Sp(−∆Ω+ +m2) = Spdisc(−∆Ω+ +m2) = {m2 + λj , j ∈ N},

(2.4.7)

with λj > 0 for all j ∈ N, and λj −→ ∞ as j −→ ∞. Using the boundary condition, we see
that

ϕ =
(
ϕ1
ϕ2

)
∈ dom(DΩ+

2 ) =⇒ ϕ2 ∈ H 1
0 (Ω+)2, ϕ =

(
ϕ1
ϕ2

)
∈ dom(DΩ−

2 ) =⇒ ϕ1 ∈ H 1
0 (Ω−)2.

(2.4.8)

97



2.4. Quantum confinement induced by Dirac operators with anomalous magnetic δ-shell
interactions

We denote by Q̃Ω± the quadratic form associated to (−∆Ω± +m2)I2, that is

Q̃Ω± [u] = ‖∇u‖2L2(Ω±)2 +m2‖u‖2L2(Ω±)2 , ∀u ∈ H 1
0 (Ω±)2.

Note that, for every u ∈ H 2(Ω±)2 ∩H 1
0 (Ω±)2, it holds that

‖(σ · ∇)u‖2L2(Ω±)2 = 〈u,−∆u〉L2(Ω±)2 ± 〈(σ ·N )tΣu, tΣ(σ · ∇)u〉H1/2(Σ)2

= ‖∇u‖2L2(Ω±)2 ± 〈(tΣu, (N · ∇)tΣu〉H1/2(Σ)2 = ‖∇u‖2L2(Ω±)2 .

By density, it also holds for all u ∈ H 1
0 (Ω±)2. Using this and (2.4.8), it follows from (2.4.6)

that

Q
Ω+
2 [ϕ] = ‖(σ · ∇)ϕ1‖2L2(Ω+)2 +m2‖ϕ1‖2L2(Ω+)2 + Q̃Ω+ [ϕ2], ∀ϕ ∈ dom(DΩ+

2 ),

Q
Ω−
2 [ϕ] = ‖(σ · ∇)ϕ2‖2L2(Ω−)2 +m2‖ϕ2‖2L2(Ω−)2 + Q̃Ω− [ϕ1], ∀ϕ ∈ dom(DΩ−

2 ).

Thus, (2.4.7) together with assertion (i) yield that λ±j (m) = ±
√
m2 + λj is an eigenvalue of

H0,2 with finite multiplicity, and that

Sp(H0,2) = (−∞,−m] ∪ [m,+∞),

which yields (b) and (c) for Σ satisfying (H1), and achieves the proof of theorem.

We finish this Chapter by pointing out the following remark and its consequence.

Remark 2.4.2. Let ζ = ±2 and let Hζ,0 be as in Theorem 2.4.2. Given (ϕ+, ϕ−) ∈
dom(Hζ,0), we write ϕ± = (ϕ±,1, ϕ±,2)>. Then, one can write the transmission condition as
follows:

tΣϕ+,1 = iζ

2 (σ ·N )tΣϕ−,2, tΣϕ+,2 = iζ

2 (σ ·N )tΣϕ−,1.

Thus, we deduce that Hζ,0 coincide with the Dirac operator coupled with the electrostatic δ-
interactions of strength −ζ. Hence, in this sense, one can consider the potential Vζ as an
electrostatic potential for ζ = ±2.

As a direct consequence of Theorem 2.3.4 and Remark 2.4.2 we have:

Corollary 2.4.1. Let Hζ,υ be as in Theorem 2.4.2. If ζ = ±2 and υ = 0, then

Spess(Hζ,υ) =
(
−∞,−m

]
∪ {0} ∪

[
m,+∞

)
.
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Chapter 3

Analysis of Dirac operators with
δ-interactions supported on the
boundaries of rough domains

The results presented in this chapter have been the subject of the paper [30].

Throughout this chapter, unless stated otherwise, we always assume that Ω ⊂ R3 is a
bounded UR domain (see Definition 1.1.2) with ∂Ω = ∂Ω, and we set

Ω+ = Ω and Ω− := R3 \ Ω, Σ = ∂Ω. (3.0.1)

Our main goal in this chapter is to investigate the spectral properties of Dirac operators of the
form Ha,τ = H +Aa,τδΣ, where Aa,τ is a bounded invertible, self-adjoint operator in L2(Σ)4,
depending on parameters (a, τ) ∈ R×Rn, n > 1. We investigate the self-adjointness and the
related spectral properties of Ha,τ , such as the phenomenon of confinement and the Sobolev
regularity of the domain in different situations. More precisely, the structure of the chapter is
as follows. Sections 3.1 and 3.2 are the heart of the chapter and contain our most important
contributions. In Section 3.1, we provide the necessary materials to tackle all the problems
related to the self-adjointness, the confinement phenomenon and the characterization of the
(essential/discrete) spectrum of the operator Hτ . To be precise, it contains Theorem 3.1.2
about the self-adjointness in the critical case, a general criterion on the perturbed Dirac
operator Hτ to induce the confinement phenomenon (see Propositions 3.1.3 and 3.1.4) and
the proof of the Birman-Schwinger principle and the Krein-resolvent formula in the Lipschitz
case (see Proposition 3.1.1).

Section 3.2, is divided into four subsections as follows. Subsection 3.2.1, is devoted to the
study of the Dirac operator Hκ (which has already been studied in Chapter 2)

Hκ = H + Vκ = H + (εI4 + µβ + η(α ·N))δΣ, κ := (ε, µ, η) ∈ R3,

when Ω is a Lipschitz domain with a normal in VMO. In there, we explore the connection
between the geometric properties of the domain Ω and the compactness of the anticommu-
atator {α · N ,CΣ}, and we give the spectral properties of Hκ for non-critical parameters,
the main results being Theorem 3.2.1 and Theorem 3.2.2. Subsequently, in subsection 3.2.2,
we prove Theorem 3.2.3 about the Sobolev regularity of dom(Hκ), in the case of Hölder’s
domains C 1,ω. After this, we consider in subsection 3.2.3 the couplings (H + Vε + Vµ) and
(H + Vη), in the case of UR domains. The main results in this subsection are Theorem 3.2.4
and Theorem 3.2.5 and their consequences regarding the confinement phenomenon.
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3.1. Self-adjointness and confinement: critical and non-critical case

Being interested by the question of confinement and self-adjointness of Dirac operators
with boundary conditions, we introduce and study in subsection 3.2.4 the spectral properties
of the new Dirac operators

Hµ̃ = H + Vυ̃ = H + iµ̃γ5βδΣ, µ̃ ∈ R,
Hυ̃ = H + Vυ̃ = H + iυ̃γ5β(α ·N )δΣ, υ̃ ∈ R.

Namely, we show that Hµ̃ (Hυ̃) shares almost the same properties as the Dirac operator
coupled with the Lorentz scalar (respectively the anomalous magnetic) δ-interactions, and in
particular, it generates the confinement when µ̃ = ±2 (respectively υ̃ = ±2), cf. Propositions
3.2.7 and 3.2.9. In the same spirit, being motivated by the natural way that the Calderón’s
projector appears in our analysis (see Proposition 1.3.2), we consider in Section 3.3 the
families of Dirac operators with δ-interactions defined by:

(−m,m) 3 a 7−→ Ha,λ = H + λC aδΣ, λ ∈ R \ {0},
(−m,m) 3 a 7−→ Ha,λ′ = H + λ′(α ·N )C a

Σ(α ·N )δΣ, λ′ ∈ R \ {0},

where C a
Σ is the Cauchy operator associated with (H−a). There, we prove thatHa,λ andHa,λ′

induce the confinement, and that the boundary conditions of the resulting Dirac operator are
exactly given by the Calderón’s projector or its adjoint.

3.1 Self-adjointness and confinement: critical and non-critical
case

In this section, we gather the main tools to tackle the different problems that we are going
to consider. Before going any further, let us define the general form of the operators we are
interested on and explain the philosophy of our technique.

Let Aτ : L2(Σ)4 −→ L2(Σ)4 be a bounded invertible, and self-adjoint operator depending
on a parameter τ ∈ Rn with n ∈ N∗. We assume that the inverse of Aτ is given explicitly by

A−1
τ = 1

sgn(τ)Ãτ , (3.1.1)

where sgn(τ) is a real number, defined by sgn(τ)I4 = ÃτAτ = Aτ Ãτ . Except for some special
situations, we always deal with the case sgn(τ) 6= 0. For the case sgn(τ) = 0 we need to
slightly modify our definition to handle such a situation.

Next, we define the operators Λzτ,± as follows:

Λzτ,± = A−1
τ ± C z

Σ, ∀z ∈ C \ ((−∞,−m] ∪ [m,∞)) . (3.1.2)

Clearly, Λzτ,± are bounded (and self-adjoint for z ∈ (−m,m)) from L2(Σ)4 onto itself. In the
sequel, we shall write Φ, CΣ, C± and Λτ,± instead of Φ0, C 0

Σ, C 0
± and Λ0

τ,±.
Now, we define the perturbed Dirac operator Hτ acting in L2(R3)4, by

Hτ = H + Vτ = H +AτδΣ, (3.1.3)

on the domain

dom(Hτ ) =
{
ϕ = u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4, tΣu = −Λτ,+[g]

}
, (3.1.4)
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where

Vτ (ϕ) = 1
2Aτ (ϕ+ + ϕ−)δΣ and ϕ± = tΣu+ Φ

∣∣nt
Ω± [g]. (3.1.5)

Notice that Hτ is well defined and acts in the sense of distributions as Hτ (ϕ) = H(u), for
all ϕ = u + Φ[g] ∈ dom(Hτ ). Indeed, thanks to Proposition 1.2.2, we know that for any
u ∈ H 1(R3)4, tΣu is well defined and belongs to the Besov space B2

1/2(Σ)4. Next, recall
that the mapping Φ : L2(Σ)4 −→ L2(R3)4 is well-defined and bounded by Proposition 1.3.1,
moreover, by Lemma 1.3.2 we also know that Φ

∣∣nt
Ω± exists and is bounded in L2(Σ)4. Thus,

for all ϕ = u+ Φ[g] ∈ dom(Hτ ) we have

Vτ (ϕ) =1
2Aτ (ϕ+ + ϕ−)δΣ = 1

2Aτ (tΣu+ Φ
∣∣nt
Ω± [g]

=Aτ (tΣu+ CΣ[g]) = Aτ (−Λτ,+ + CΣ)[g] = −(Aτ )(A−1
τ )[g] = −g,

and since Hτ (ϕ) = Hu + gσ + Vτ (ϕ) holds in the sense of distributions, from the above
computation we see that Hτ (ϕ) = Hu ∈ L2(R3)4. Finally, let u, v ∈ H 1(R3)4 and g, h ∈
L2(Σ)4, then

Hu+ gσ = H(u+ Φ[g]) = H(u+ Φ[g]) = Hv + hσ.

Since σ is 2-dimensional, and thus, the Lebesgue measure in R3 and σ are mutually singular,
it follows that g = h in L2(Σ)4 and H(u − v) = 0 in L2(R3)4. Since H is self-adjoint in
H 1(R3)4, we also get that u = v. Thus, if u, v ∈ H 1(R3)4 and g, h ∈ L2(Σ)4 are such that
u+ Φ[g] = v + Φ[h], then u = v and g = h, and therefore, Hτ is well defined.

As we have seen in Chapter 2, for some particular values of sgn(τ), two interesting phe-
nomena appear in the spectral study of the Dirac operator Hτ . The first one is the con-
finement phenomenon, assuming that Hτ is essentially self-adjoint, from the mathematical
point of view this means that for any datum ϕ0 ∈ dom(Hτ ) with support in Ω±, the unique
solution ϕ ∈ C 1(R,L2(R3)4) of the following Cauchy problem{

i∂tϕ(t, x) = Hτϕ(t, x),
ϕ(0, x) = ϕ0(x),

(3.1.6)

remains for all times supported in Ω±. More concretely, if we let

L2(R3)4 ∼= L2(Ω+)4 ⊕ L2(Ω−)4.

Then Hτ decouples as follows

Hτ = HΩ+
τ ⊕HΩ−

τ , (3.1.7)

where HΩ±
τ are self-adjoint Dirac operators acting in Ω± with some boundary conditions.

Moreover, the propagator satisfies

e−itHτ = e−itH
Ω+
τ ⊕ e−itH

Ω−
τ .

In this chapter, we always use the characterization (3.1.7), and we say that Hτ (or Vτ )
generates confinement or equivalently Σ is impenetrable.

The second one is called critical combinations of the coupling constants, it results in the
loss of the Sobolev regularity of functions in the domain of Hτ for smooth domain Ω+, i.e
dom(Hτ ) 6⊂ H s(R3 \ Σ)4, for all s > 0. To our knowledge, there is no fixed definition for
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3.1. Self-adjointness and confinement: critical and non-critical case

such a case, because the spectral study of Hτ depends significantly on the smoothness of the
domain Ω+. As we have pointed out in Chapter 2, it seems that the C 2-smoothness condition
on Ω+ is necessary to prove the self-adjointness in L2(R3)4 of Hτ in such a case. Thus, for
our applications we fix the definition of the critical combinations of the coupling constants
as follows:

Definition 3.1.1 (Critical parameters). Let Ω+ be a bounded C 2-smooth domain and let Hτ

be as in (3.1.4). We say that the parameter τ ∈ Rn, n ∈ N∗, is critical if Λτ,+ ∈ K(L2(Σ)4)
or Λτ,∓Λτ,± ∈ K(L2(Σ)4).

In what follows, we shall use the phrase "characteristics of the model", or simply "char-
acteristics of the potential", to refer to the above phenomena.

3.1.1 Non-critical parameters

As already mentioned in the introduction, the self-adjointness (in the non-critical case)
of the Dirac operator Hτ will be derived using the main result of [10]. Notice that the way
[10, Theorem 2.11(iii)] was stated does not take into account the case of UR domains, but
can extend to this case without any difficulty. However, for the sake of completeness and for
the convenience of the reader, we give here the proof of this result which reads as follows.

Theorem 3.1.1. Suppose that Ω+ is a UR domain, and let Hτ and Λτ,+ be as above. If Λτ,+
is a Fredholm operator, then (Hτ ,dom(Hτ )) is self-adjoint.

Proof. We first prove that (Hτ ,dom(Hτ )) is closable. For this, note that C∞0 (R3 \Σ)4 ⊂
dom(Hτ ) ⊂ L2(R3)4, and since C∞0 (R3 \ Σ)4 is a dense subspace of L2(R3)4 it follows that
dom(Hτ ) is a dense subspace of L2(R3)4. We next show that Hτ is symmetric on dom(Hτ ).
So, let ϕ,ψ ∈ dom(Hτ ) with ϕ = u+ Φ[g] and ψ = v + Φ[h], then we have

〈Hτϕ,ψ〉L2(R3)4−〈ϕ,Hτψ〉L2(R3)4 = 〈Hu, v + Φ[h]〉L2(R3)4 − 〈u+ Φ[g], Hv〉L2(R3)4

= 〈Hu, v〉L2(R3)4 − 〈u+, Hv〉L2(R3)4 + 〈Hu,Φ[h]〉L2(R3)4 − 〈Φ[g], Hv〉L2(R3)4

= 〈Hu,Φ[h]〉L2(R3)4 − 〈Φ[g], Hv〉L2(R3)4 .

Thanks to Lemma 1.3.3 we have that

〈Hu,Φ[h]〉L2(R3)4 − 〈Φ[g], Hv〉L2(R3)4 = 〈Φ∗Hu, h〉L2(Σ)4 − 〈g,Φ∗Hv〉L2(Σ)4

= 〈tΣ(H−1H)u, h〉L2(Σ)4 − 〈g, tΣ(H−1H)v〉L2(Σ)4

= 〈tΣu, h〉L2(Σ)4 − 〈g, tΣv〉L2(Σ)4 ,

Thus, using the self-adjointness of Λτ,+, the fact that tΣu = −Λτ,+[g] and tΣv = −Λ+,τ [h],
we obtain

〈Hτϕ,ψ〉L2(R3)4 − 〈ϕ,Hτψ〉L2(R3)4 = 〈−Λτ,+[g], h〉L2(Σ)4 − 〈g,−Λτ,+[h]〉L2(Σ)4 = 0,

which actually means that Hτ is symmetric on dom(Hτ ), and hence, (Hτ , dom(Hτ )) is clos-
able. Thus, to prove the self-adjointness of (Hτ , dom(Hτ )) it suffices to show the inclusions
H∗τ ⊂ Hτ . To this end, we claim that for any ψ ∈ dom(H∗τ ) there is a sequence of functions
(hj)j∈N ⊂ Kr(Λτ,+) such that

ψ = lim
j→∞

(H−1H∗τψ − Φ[tΣH−1H∗τψ] + Φ[hj ]) in L2(R3)4.
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Notice that once this claim is shown we then get H∗τ ⊂ Hτ . Indeed, since Λτ,+ is Fredholm
it follows that {Φ[g] : g ∈ Kr(Λτ,+)} is closed in L2(R3)4, and hence, there is h ∈ Kr(Λε,+)
such that

Φ[hj ] −−−→
j→∞

Φ[h] in L2(R3)4.

Since Φ[hj ],Φ[h] ∈ dom(Hτ ), if we set ψj = (H−1H∗τψ − Φ[tΣH−1H∗τψ] + Φ[hj ]), then it is
clear that ψj ∈ dom(Hτ ) and that Hτψj = H∗τψ for all j ∈ N. Therefore, we get

(ψj , Hτψj) −−−→
j→∞

(ψ,H∗τψ) in L2(R3)4,

which actually proves the inclusion H∗τ ⊂ Hτ .
Let us now show the claim, so let (ψ,G) ∈ G(H∗τ ), then we have

〈Hτϕ,ψ〉L2(R3)4 = 〈ϕ,G〉L2(R3)4 , ∀ϕ = u+ Φ[g] ∈ dom(Hτ ).

Since H−1G ∈ H 1(R3)4, using that Λτ,+ is Fredholm it follows that tΣH−1G = h+ Λτ,+[f ],
with h ∈ Kr(Λτ,+). Clearly, Φ[h] ∈ dom(Hτ ) and HτΦ[h] = 0, and thus we get

0 = 〈HτΦ[h], ψ〉L2(R3)4 = 〈Φ[h], G〉L2(R3)4 = 〈h, tΣH−1G〉L2(Σ)4 ,

where in the last equalities Lemma 1.3.3 was used. As tΣH−1G = h+Λτ,+[f ] and Λτ,+[h] = 0,
it follows from the self-adjointness of Λτ,+ that

0 = 〈h, tΣH−1G〉L2(Σ)4 = 〈h, h〉L2(Σ)4 .

From this, we conclude that P+tΣH
−1G = Λε,+[f ]. Hence, combining Lemma 1.3.3 with the

previous conclusion yield that

〈Hu,ψ〉L2(R3)4 = 〈u+ Φ[g], G〉L2(R3)4 = 〈Hu,H−1G〉L2(R3)4 + 〈g, tΣH−1G〉L2(Σ)4

= 〈Hu,H−1G〉L2(R3)4 + 〈g,Λτ,+[f ]〉L2(Σ)4

= 〈Hu,H−1G〉L2(R3)4 − 〈tΣu, f〉L2(Σ)4 ,

From this it follows that 〈Hu,ψ〉L2(R3)4 = 〈Hu,H−1G− Φ[f ]〉L2(R3)4 . Hence, we get

〈Hu,ψ − (H−1G− Φ[f ])〉L2(R3)4 = 0 for all u ∈ H 1(R3)4 such that tΣu ∈ Rn(Λτ,+).

As Λτ,+ is Fredholm and self-adjoint, using Lemma 1.3.3 we obtain that:

tΣu ∈ Rn(Λτ,+) ⇐⇒ 0 = 〈tΣu, h〉Σ = 〈Hu,Φ[h]〉L2(R3)4 for all h ∈ Kr(Λτ,+),

which entails that
ψ −H−1G+ Φ[f ] ∈ {Φ[g] : g ∈ Kr(Λτ,+)}.

Thus, for all (ψ,G) ∈ G(H∗τ ), there exist (hj)j∈N ⊂ Kr(Λτ,+) and f ∈ Rn(Λτ,+) such that
the following hold:

lim
j→∞

Φ[hj ] = Φ[h] ∈ dom(Hτ ) with h ∈ Kr(Λτ,+),

ψ = lim
j→∞

(H−1G− Φ[f ] + Φ[hj ]) = H−1G− Φ[f ] + Φ[h] in L2(R3)4.

This proves the claim and completes the proof the theorem.

To study the spectral properties of Hτ (for non-critical parameter) we shall restrict our-
selves to the case of Lipschitz domains. The following proposition gives us a criterion for the
existence of eigenvalues in the gap (−m,m), and a Krein-type resolvent formula for Hτ .
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3.1. Self-adjointness and confinement: critical and non-critical case

Proposition 3.1.1. Let Hτ be as in (3.1.4) with a non-critical parameter τ ∈ Rn. The
following hold:

(i) Given z ∈ (−m,m), then Kr(Hτ − z) 6= {0} ⇐⇒ Kr(Λzτ,+) 6= {0}.

(ii) Let z ∈ C \R and assume that Λzτ,+ is Fredholm. Then Λzτ,+ is invertible in L2(Σ)4 and
it holds that

(Hτ − z)−1(v) = (H − z)−1(v)− Φz(Λzτ,+)−1tΣ(H − z)−1(v), ∀ v ∈ L2(R3)4. (3.1.8)

In particular, we have

Spess(Hτ ) = (−∞,−m] ∪ [m,+∞). (3.1.9)

(iii) Spdisc(Hκ) ∩ (−m,m) is finite.

Proof. The proof of item (i) follows exactly in the same way as in Proposition 2.3.1. Let
us show (ii). Fix z ∈ C \ R and suppose that Λzτ,+ is Fredholm. Then, from (i) and the fact
that Hτ is self-adjoint it is clear that Kr(Λzτ,+) = 0 and Rn(Λzτ,+) = L2(Σ)4, as otherwise z
will be a non-real eigenvalue of Hτ . Hence, we conclude that Λzτ,+ : L2(Σ)4 −→ L2(Σ)4 is
bijective and thus (3.1.8) makes sense. Now given v ∈ L2(R3)4, we set

ϕ = (H − z)−1(v)− Φz(Λzτ,+)−1tΣ(H − z)−1(v).

To prove item (ii), it remains to show that ϕ ∈ dom(Hτ ). For this, remark that ϕ = u+ Φ[g]
where

u =(H − z)−1(v)− (Φz − Φ)(Λzτ,+)−1tΣ(H − z)−1(v),
g =− (Λzτ,+)−1tΣ(H − z)−1(v).

Notice that (Λzτ,+)−1tΣ(H − z)−1 is bounded from L2(R3)4 to L2(Σ)4 and (H − z)u = v +
zΦ[g] ∈ L2(R3)4. Consequently, we get that g ∈ L2(Σ)4 and u ∈ H 1(R3)4. Moreover, using
Lemma 1.3.2(ii) we obtain

tΣu =
(
tΣ(H − z)−1 − (C z

Σ − CΣ)(Λzτ,+)−1tΣ(H − z)−1
)

(v)

=
(
tΣ(H − z)−1 − (Λzτ,+ − Λτ,+)(Λzτ,+)−1tΣ(H − z)−1

)
[v] = −Λτ,+[g].

Thus ϕ ∈ dom(Hτ ), which yields (ii). Since the Sobolev embedding H 1/2(Σ)4 ↪→ L2(Σ)4 is
compact, it follows that Φz(Λzτ,+)−1tΣ(H − z)−1 ∈ K(L2(R3)4). Therefore, we deduce by
Weyl’s theorem that Spess(Hτ ) is given by (3.1.9).

Finally, by Lemma 1.3.4 we know dom(Hτ ) ⊂ H 1/2(α,Ω+)⊕H 1/2(α,Ω−). Hence, thanks
to Remark 2.3.2, the assertion (iii) follows in the same way as in Theorem 2.3.2. This
completes the proof of the proposition.

3.1.2 Critical parameters

To avoid repetitions, in this part we explain our strategy to prove the self-adjointness of
Hτ in the critical case, which is a generalization of the technique developed in Chapter 2.
Here we assume that Ω+ is a bounded C 2-smooth domain. All the problems that we are
going to consider share the following properties when the parameter τ is critical:

(P1) Aτ and Ãτ admit continuous extensions from H−1/2(Σ)4 into itself, which we still denote
by Aτ and Ãτ . Moreover, sgn(τ)I4 = ÃτAτ = Aτ Ãτ , holds in H−1/2(Σ)4.
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(P2) The operator Λ̃zτ,±Aτ Λ̃zτ,∓ is bounded from H−1/2(Σ)4 to H 1/2(Σ)4, where Λ̃zτ,± is the
continuous extension of Λzτ,± defined from H−1/2(Σ)4 onto itself.

Now, following the same arguments as in Section 2.2, one can easily show that Hτ is closable.
Moreover, the adjoint operator H∗τ acts in the sense of distributions as H∗τ (u+ Φ[g]) = H(u),
on the domains

dom(H∗τ ) =
{
ϕ = u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, tΣu = −Λ̃τ,+[g]

}
. (3.1.10)

Then we have the following theorem.

Theorem 3.1.2. Let Hτ be as in (3.1.4) with a critical parameter τ ∈ Rn. If (P1) and (P2)
hold, then Hτ is essentially self-adjoint and we have

dom(Hτ ) =
{
ϕ = u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H−1/2(Σ)4, tΣu = −Λ̃τ,+[g]

}
. (3.1.11)

Before going through the proof of Theorem 3.1.2, a few remarks are in order. Note that for
u+ Φ[g] ∈ dom(Hτ ) the equality tΣu = −Λ̃τ,+[g] should be read as a transmission condition
(see Proposition 3.1.2 below), and we stress that this does not necessarily imply that Λ̃τ,+
regularizes from H−1/2(Σ)4 to H 1/2(Σ)4, nor that g belongs to H 1/2(Σ)4. We mention that
the assumption (P2) allows us to guarantee the inclusion H∗τ ⊂ Hτ . As in Chapter 2, once
Aτ is given one can usually prove that there exist g ∈ H−1/2(Σ)4 and u ∈ H 1(R3)4, such that
u+ Φ[g] ∈ dom(Hτ ), leading to loss of regularity (i.e., Φ[g] /∈ Hs(R3 \Σ)4 for all s > 0), and
therefore dom(Hτ ) 6⊂ dom(Hτ ), see, e.g., [10, 19, 22, 41, 90].

Proof of Theorem 3.1.2 Since Hτ is closable, it is sufficient to show the inclusion
H∗τ ⊂ Hτ . To this end, fix ϕ = u + Φ[g] ∈ dom(H∗τ ) and let (hj)j∈N ⊂ H 1/2(Σ)4 be a
sequence of functions that converges to g in H−1/2(Σ)4. Set

gj := g +Aτ Λ̃τ,−[hj − g], ∀j ∈ N. (3.1.12)

Then

(gj)j∈N ⊂ H 1/2(Σ)4 and gj −−−→
j→∞

g in H−1/2(Σ)4,

(Λτ,+[gj ])j∈N ⊂ H 1/2(Σ)4 and Λτ,+[gj ] −−−→
j→∞

Λ̃τ,+[g], in H 1/2(Σ)4.
(3.1.13)

Indeed, observe that

−Aτ Λ̃τ,−[g] = −Aτ
( 1

sgn(τ)Ãτ − C̃Σ

)
[g] = −g +Aτ Λ̃τ,+[g]. (3.1.14)

where the property (P1) was used in the last equality. Hence, we obtain that

gj := Aτ
(
Λ̃τ,+[g] + Λτ,−[hj ]

)
,

Λ̃τ,+[gj − g] = Λ̃τ,+Aτ Λ̃τ,−[hj − g].

Therefore, (3.1.13) follows by (3.1.12), the continuity of Λτ,− in H 1/2(Σ)4, and the property
(P2). Now, define

vj = E
(
Λ̃τ,+Aτ Λ̃τ,−[hj − g]

)
, for all j ∈ N. (3.1.15)
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Clearly, vj ∈ H 1(R3)4 and vj −−−→
j→∞

0 in H 1(R3)4. Now set ϕj := uj+Φ[gj ], where uj = u−vj ,
for all j ∈ N. Note that

tΣuj = tΣu− Λ̃τ,+Aτ Λ̃τ,−[hj − g] = −Λ̃τ,+[gj ] + (tΣu+ Λ̃τ,+[g]) = −Λτ,+[gj ].

Thus, tΣuj = −Λτ,+[gj ] holds in H 1/2(Σ)4, which means that (ϕj)j∈N ⊂ dom(Hτ ). Using
that Hτ (ϕj) = H(u) − H(vj), and the fact that (gj)j∈N converges to g in H−1/2(Σ)4 when
j −→∞, we obtain that

(ϕj , Hτϕj) −−−→
j→∞

(ϕ,H∗τϕ) in L2(R3)4 × L2(R3)4, (3.1.16)

which proves the inclusion H∗τ ⊂ Hτ , and this concludes the proof of the theorem.

Remark 3.1.1. Notice that if 0 6= g ∈ H−1/2(Σ)4 \ L2(Σ)4 is such that Aτ Λ̃τ,−[g] /∈ L2(Σ)4,
then dom(Hτ ) 6⊂ dom(Hτ ). Indeed, if we set

ϕ = 1
2E
(
Λ̃τ,+Aτ Λ̃τ,−[g]

)
− Φ[Aτ Λ̃τ,−[g]]. (3.1.17)

Then, it is clear that ϕ /∈ dom(Hτ ) and ϕ ∈ dom(Hτ ).

To make the boundary conditions in (3.1.11) clearer, the next proposition gives us another
way to define the Dirac operator Hτ .

Proposition 3.1.2. Let Hτ be as in Theorem 3.1.2. Then we have

dom(Hτ ) =
{

(ϕ+, ϕ−) ∈ L2(Ω+)4 ⊕ L2(Ω−)4 : (α · ∇)ϕ± ∈ L2(Ω±)4 and(1
2 + iA−1

τ (α ·N )
)
tΣϕ+ = −

(1
2 + iA−1

τ (α ·N )
)
tΣϕ−

}
,

where the transmission condition holds in H−1/2(Σ)4.

Proof. Given ϕ = (u + Φ[g]) ∈ dom(Hτ ), set ϕ± := ϕ|Ω± . Then, a simple computation
in the sense of distributions shows that

Hτ (ϕ) =(−iα · ∇+mβ)ϕ+ 1
2Aτ (tΣϕ+ + tΣϕ−)δΣ,

=(−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ− + iα ·N (tΣϕ+ − tΣϕ−)δΣ

+ 1
2Aτ (tΣϕ+ + tΣϕ−)δΣ.

Thus, the proposition follows from this, the definition of Λ̃τ,+ and Proposition 1.3.3.

3.1.3 On the confinement

In this part, we briefly discuss the case where the operator Hτ generates confinement. In
such a case we shall always restrict ourselves to Lipschitz domains. We mention that, for some
Dirac operators (for example the coupling of the free Dirac operator with the Lorentz scalar
δ-potential), one can prove that they generate the confinement for UR domains, provided
that B2

1/2(Σ) is the trace to H 1(Ω±)4. For instance this is possible if Ω+ is a two-sided
NTA domain with an ADR boundary by combing Proposition 1.2.2 with Jones’s results [71,
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Theorem 1 and Theorem 2], for more details we refer to [59]. As we have observed in Section
2.4 (see also [41] for the two-dimensional case) the anomalous magnetic δ-potential generates
confinement with a critical parameter. So, here we are going to show how to deal with both
situations, i.e., confinement with critical or non-critical parameters.

Recall the definition of dom(Hτ ) from (3.1.4). Let ΦΩ± : L2(Σ)4 −→ L2(Ω±)4 be the
operators defined by ΦΩ± [g](x) = Φ[g](x), for g ∈ L2(Σ)4 and x ∈ Ω±. Given any ϕ =
(u+ Φ[g]) ∈ dom(Hτ ), we set

ϕ± := ϕ|Ω± = u|Ω± + ΦΩ± [g]. (3.1.18)

For simplicity, we denote by lim
nt
ϕ± the nontangential limit of ϕ±. By definition it holds that

tΣu = −Λτ,+[g]⇐⇒ tΣu+ CΣ[g] = −A−1
τ [g]

⇐⇒ 1
2(lim

nt
ϕ+ + lim

nt
ϕ−) = −iA−1

τ (α ·N ))(lim
nt
ϕ+ − lim

nt
ϕ−)

⇐⇒
(1

2 + iA−1
τ (α ·N )

)
lim
nt
ϕ+ = −

(1
2 − iA

−1
τ (α ·N )

)
lim
nt
ϕ−.

(3.1.19)

From this, we get the following properties:

(P3)
(
1/2± iA−1

τ (α ·N )
)
are projectors in L2(Σ)4.

(P4) sgn(τ) = −4 and Ãτ (α ·N ) = (α ·N )Aτ .

Then, the following proposition illustrates the phenomenon of confinement for non-critical
parameters.

Proposition 3.1.3. Let Hτ be as in (3.1.4) with a non-critical parameter τ ∈ Rn. If (P3)
or (P4) holds, then Hτ generates confinement and we have

Hτϕ = HΩ+
τ ϕ+ ⊕HΩ−

τ ϕ− = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−,

where HΩ±
τ are the self-adjoint Dirac operators defined on

dom(HΩ±
τ ) =

{
uΩ± + ΦΩ± [g] : uΩ± ∈ H 1(Ω±)4, g ∈ L2(Σ)4 and(1

2 ± iA
−1
τ (α ·N )

)
(tΣuΩ± + C±[g]) = 0

}
.

Proof. If (P3) holds true, then the proof follows directly from (3.1.19). Assume that
(P4) holds true, then a simple computation yields that(1

2 ± iA
−1
τ (α ·N )

)
Aτ

(1
2 ± iA

−1
τ (α ·N )

)
= −4

(1
2 ± iA

−1
τ (α ·N )

)
(1

2 ± iA
−1
τ (α ·N )

)
Aτ

(1
2 ∓ iA

−1
τ (α ·N )

)
= 0,

Again, using (3.1.19) we get the desired result.

Now, in the case of a critical parameter, one need to replace (P3) and (P4) by the following
properties:

(P′3)
(
1/2± iA−1

τ (α ·N )
)
are projectors in H−1/2(Σ)4.
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(P′4) sgn(τ) = −4 and Ãτ (α ·N ) = (α ·N )Aτ .

Here Aτ (respectively Ãτ ) is the extension given by the property (P1). Then, using Propo-
sition 3.1.2 and following essentially the same arguments as Proposition 3.1.3, we get the
following result for the confinement in this case.

Proposition 3.1.4. Let Hτ be as in (3.1.4) with a critical parameter τ ∈ Rn. If (P′3) or
(P′4) holds true, then Hτ generates confinement and we have

Hτϕ = HΩ+
τ ϕ+ ⊕HΩ−

τ ϕ− = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−,

where HΩ±
τ are the self-adjoint Dirac operators defined on

dom(HΩ±
τ ) =

{
ϕ± ∈ L2(Ω±)4 : (α · ∇)ϕ± ∈ L2(Ω±)4 and

(1
2 ± iA

−1
τ (α ·N )

)
tΣϕ± = 0

}
.

where the boundary conditions holds in H−1/2(Σ)4.

3.1.4 The β and the γ transformations of the electrostatic and the magnetic
δ-potentials

In this part, we introduce the β and the γ transformations of the electrostatic and the
magnetic δ-potentials. We emphasise that we are not formulating a theory here, but rather
describing facts based on our observations.

Let ε, η ∈ R, recall that the electrostatic and the magnetic δ-shell interactions of strength
ε and η, respectively, supported on Σ are defined by

Vε := εI4δΣ and Vη = η(α ·N)δΣ. (3.1.20)

Then the β transformation, which we denote by Γβ is the multiplication operator by β that
preserves the symmetry of the above δ-potentials, that is

Γβ(Vε) := εβδΣ and Γβ(Vη) = iηβ(α ·N)δΣ. (3.1.21)

Thus, the β transformation of the electrostatic δ-potential gives the Lorentz scalar δ-potential,
and the β transformation of the magnetic δ-potential gives what we called in Section 2.4 (and
independently in [41] in the 2D case) the anomalous magnetic δ-potential.

Similarly, the γ transformation denoted by Γγ , is the multiplication operator by γ5

γ5 := −iα1α2α3 =
(

0 I2
I2 0

)
, (3.1.22)

that preserves the symmetry, thus we get the potentials

Γγ(Vε) := εγ5δΣ and Γγ(Vη) = ηγ5(α ·N)δΣ. (3.1.23)

Again, the γ transformation of the electrostatic δ-potential was already considered in Chapter
2, and we have seen in Remark 2.4.2 that ±2γ5δΣ coincided with the electrostatic δ-potential
of constant strength ∓2, so we called it here the modified electrostatic δ-potential. Also we
call ηγ5(α ·N)δΣ the modified magentic δ-potential.

Finally, we have the composition of the β transformation and the γ transformation which
gives us the following potentials

ΓβΓγ(Vε) := iεγ5βδΣ and ΓβΓγ(Vη) = iηγ5β(α ·N)δΣ, (3.1.24)
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and we call them respectively the modified Lorentz scalar δ-potential and the modified anoma-
lous magnetic δ-potential.

To put things in order we use the following notations:

Vε̃ = ε̃γ5δΣ, Vµ = µβδΣ, Vµ̃ = iµ̃γ5βδΣ, ε̃, µ, µ̃ ∈ R. (3.1.25)

Vη̃ = η̃γ5(α ·N )δΣ, Vυ = iυβ(α ·N )δΣ, Vυ̃ = iυ̃γ5β(α ·N )δΣ, η̃, υ, υ̃ ∈ R. (3.1.26)

The reader may wonder why we introduced such transformations, and what is the interest
behind that. In fact, the answer is:

• The γ transformation preserves the characteristics of the potentials given by (3.1.25) and
(3.1.26). That is, the characteristics of the potentials are stable under the γ transfor-
mation in the sense that, for any potential V• from (3.1.25) or (3.1.26), if the parameter
is critical then it remains critical after applying the γ transformation, and the same
holds true to the case of the confinement.

• The characteristics of the potentials given by (3.1.25) and (3.1.26) are not stable under
the β transformation, in the sense that, if V• has a critical parameter, then Γβ(V•)
does not have a critical parameter and vice versa. Similarly, if V• does not generate
confinement for any values of the parameter, then Γβ(V•) can generate confinement for
certain values of the parameter and vice versa.

As a simple example, one can consider the electrostatic δ-potential. As is well-known [90, 19],
Vε has a critical parameter which is ε = ±2, and it does not generate confinement for all ε ∈ R.
Also we know that Vµ generates confinement for µ = ±2; cf. [11]. Moreover, from Section
2.4 we know that Vε̃ has a critical parameter which is ε̃ = ±2. More generally, one can prove
the above facts using directly Definition 3.1.1, (P3), (P4), (P′3) and (P′4). Thus we conclude
that

• Vµ and Vµ̃ generate confinement (for µ = µ̃ = ±2) without critical parameters.

• Vυ and Vυ̃ generate confinement for the critical parameters υ = υ̃ = ±2.

We are going to show this in detail in the next section.

3.2 Delta interactions of electrostatic and magnetic type
As the title of this section indicates, here we focus on the spectral study of the Dirac

operator Hτ when Vτ is a combination of the δ-potentials given by (3.1.25) and (3.1.26). We
first consider the following Dirac operator

Hκ = H + Vκ = H + (εI4 + µβ + η(α ·N))δΣ, κ := (ε, µ, η) ∈ R3,

which has already been studied in Chapter 2 for critical and non-critical parameters, when Ω+
is a C 2-smooth domain. Thus, we only focus on the spectral properties of Hκ for non-critical
parameter in the case of UR domains.

For the convenience of the reader, we begin our study with the subclass of bounded
Lipschitz domains with VMO normals, where we can discuss the spectral properties of Hκ

for all sgn(κ) 6= 0, 4. Subsequently, we discuss the Sobolev regularity of dom(Hκ) in the case
of bounded C 1,ω-smooth domains. Finally, we separately study the couplings (H + Vε + Vµ)
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and (H + Vη) for general UR domains. Then in Subsection 3.2.4, we consider the following
Dirac operators

Hµ̃ = H + Vµ̃ = H + iµ̃γ5βδΣ, µ̃ ∈ R,
Hυ̃ = H + Vυ̃ = H + iυ̃γ5β(α ·N )δΣ, υ̃ ∈ R,

(3.2.1)

which deserve to be analysed in detail. Since Vε̃ (resp. Vη̃) can be treated in a similar way
as Vε (resp. Vη), and the potential Vυ has been studied in Section 2.4, to avoid repetition we
will only make some remarks on the latter potentials.

3.2.1 δ-interactions supported on the boundary of a Lipschitz domain with
a normal in VMO

In what follows, unless otherwise specified, we always suppose that Σ satisfies the following
property:

(H3) Σ = ∂Ω+ with Ω+ a bounded Lipschitz domain with a normal N ∈ VMO(∂Ω, dσ)3.

Roughly speaking, the above assumption implies smallness of the Lipschitz constant of Ω+.
Another way to reformulate the assumption (H3) is to say that Ω+ belongs to the intersection
of the class of bounded Lipschitz domains and the class of regular SKT domains, see the proof
of Proposition 3.2.1.

Recall that sgn(κ) = ε2 − µ2 − η2, and the operators Λzκ,± are given by

Λzκ,± = 1
sgn(κ)(εI4 ∓ (µβ + η(α ·N)))± C z

Σ, ∀z ∈ C \ ((−∞,−m] ∪ [m,∞)) . (3.2.2)

Now we can state the main result about the spectral properties of the Dirac operator Hκ.

Theorem 3.2.1. Let κ ∈ R3 be such that sgn(κ) 6= 0, 4, and assume that Σ satisfies (H3),
and let Hκ be as in (3.1.4). Then Hκ is self-adjoint. Moreover, the following hold true:

(i) For all z ∈ C \ R, it holds that

(Hκ − z)−1 = (H − z)−1 − Φz(Λzκ,+)−1tΣ(H − z)−1. (3.2.3)

(ii) Spess(Hκ) = (−∞,−m] ∪ [m,+∞).

(iii) Spdisc(Hκ) ∩ (−m,m) is finite.

(iv) a ∈ Spdisc(Hκ) if and only if a ∈ Spdisc(Hκ̃), where κ̃ is given by

κ̃ =
(
− 4ε

sgn(κ) ,−
4µ

sgn(κ) ,
4η

sgn(k)

)
.

Before proving this result, we first give a characterization of the assumption (H3) via the
compactness of the anticommutator {α ·N ,C z

Σ}.
Let g ∈ L2(Σ), then the harmonic double layer K and the Riesz transforms (Rk)16k63 on

Σ are defined by

K[g](x) = lim
ρ↘0

∫
|x−y|>ρ

N (y) · (x− y)
4π|x− y|3 g(y)dσ(y),

Rk[g](x) = lim
ρ↘0

∫
|x−y|>ρ

xk − yk
4π|x− y|3 g(y)dσ(y).

(3.2.4)

The following proposition is implicitly contained in [63], but we state and prove it here
for the sake of completeness.
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Proposition 3.2.1. Assume that Σ satisfies (H3). Then, the harmonic double layer K and
the commutators [Nj , Rk], 1 6 j, k 6 3, are compact operators on L2(Σ).

Before giving the proof, we need to introduce the notion of bounded regular Semmes-
Kenig-Toro domains (regular SKT domains for short) developed by S. Hofmann, M. Mitrea
and M. Taylor in [63].

Definition 3.2.1 (regular SKT Domains). We say that a bounded open set Ω ⊂ R3 is
a regular Semmes-Kenig-Toro domain, or briefly regular SKT domain, provided Ω is two-
sided NTA domain, ∂Ω is ADR and whose geometric measure theoretic outward unit normal
ν ∈ VMO(∂Ω,dσ)3.

Remark 3.2.1. We mention that Definition 3.2.1 is a characterization of regular SKT do-
mains, for the precise definition we refer to [63, Definition 4.8].

Proof of Proposition 3.2.1. The result follows from the fact that Ω+ is a regular SKT
domain. To see this, note that bi-Lipschitz mappings preserve the class of two-sided NTA
domains with Ahlfors-David regular boundaries, and the class of regular SKT domains is
invariant under continuously differentiable diffeomorphisms, see [62]. Now, by definition Ω+
is locally the region above the graph of a Lipschitz function φ : R2 −→ R. Therefore, one
may (and do) assume (via a partition of unity and a local flattening of the boundary) that

Ω+ = {x = (x, x3) ∈ R2 × R : x3 > φ(x)}.

Let F : R3 −→ R3 be defined for all (x, x3) ∈ R2 × R as F (x, x3) := (x, x3 + φ(x)).
Then, it easily follows that F is a bijective function with inverse F−1 : R3 −→ R3 given
by F−1(y, y3) := (y, y3 − φ(y)) for all (y, y3) ∈ R2 × R. Moreover, F and F−1 are both
Lipschitz functions with constants LF , LF−1 6 (1 + ||∇φ||L∞). It is clear that Ω+ (resp.
Ω−) is the image of R3

+ (resp. R3
−) under the bi-Lipschitz homeomorphism F , which also

maps R2 × {0} onto Σ. From this, it follows that Ω+ is a two-sided NTA domain and Σ is
ADR (because R3

+ is a two sided NTA domain and R2 × {0} is ADR). Since N ∈ VMO(Σ)3

by assumption, thanks to [63, Theorem 4.21], we know that Ω+ is a regular SKT domain.
Therefore the claimed result follows by [63, Theorem 4.47].

Lemma 3.2.1. Assume that Σ satisfies (H3). Then {α · N ,C z
Σ} is a compact operator on

L2(Σ)4, for all z ∈ C \ ((−∞,−m] ∪ [m,∞)).

Proof. Given g ∈ L2(Σ)4, then a straightforward computation shows that

{α ·N ,C z
Σ}[g](x) = TK1 [g](x) + TK2 [g](x), (3.2.5)

where the kernels Kj , j = 1, 2, are given by

K1(x, y) =ei
√
z2−m2|x−y|

4π|x− y| (α ·N (x))
(
z +mβ +

√
z2 −m2

(
α · x− y
|x− y|

))

+ ei
√
z2−m2|x−y|

4π|x− y|

(
z +mβ +

√
z2 −m2

(
α · x− y
|x− y|

))
(α ·N (y))

+ ei
√
z2−m2|x−y| − 1
4π|x− y|3 [(α ·N (x))(iα · (x− y)) + (iα · (x− y)) (α ·N (y))] .

K2(x, y) = i

4π|x− y|3 ((N (x))(α · (x− y)) + α · (x− y))(N (y))) .

111



3.2. Delta interactions of electrostatic and magnetic type

Using the estimate ∣∣∣ei√z2−m2|x| − 1
∣∣∣ 6 ∣∣∣√z2 −m2

∣∣∣ |x|, (3.2.6)

it easily follows that

sup
16k,j64

|K1(x− y)| = O(|x− y|−1) when |x− y| −→ 0. (3.2.7)

Once (3.2.7) has been established, working component by component and using [53, Lemma
3.11], one can show that TK1 is a compact operator in L2(Σ)4. Now it is straightforward to
check that

TK2 [g](x) = K̃[g](x) + K̃∗[g](x) +
3∑
j=1

3∑
k=1
k 6=j

αjαk [Nj ,Rk] [g](x). (3.2.8)

where K̃ denotes the matrix valued harmonic double layer, K̃∗ is the associated adjoint
operator, and Rk are the matrix versions of the Riesz transforms. That is, for x ∈ Σ and
g ∈ L2(Σ)4, we have

K̃[g](x) = lim
ρ↘0

∫
|x−y|>ρ

N (y) · (x− y)
4π|x− y|3 I4g(y)dσ(y),

K̃∗[g](x) = lim
ρ↘0

∫
|x−y|>ρ

N (x) · (x− y)
4π|x− y|3 I4g(y)dσ(y),

Rk[g](x) = lim
ρ↘0

∫
|x−y|>ρ

xk − yk
4π|x− y|3 I4g(y)dσ(y).

(3.2.9)

Since the adjoint of a compact operator is a compact operator and αj ’s are constants ma-
trices, using Proposition 3.2.1 and working component by component, we get that TK2 is a
compact operator in L2(Σ)4. Therefore {α ·N ,C z

Σ} is a compact operator in L2(Σ)4 and this
finishes the proof of the lemma.

Note that Lemma 3.2.1 is not valid for general Lipschitz surfaces. In fact, it turns out
that assuming (H3) means that we are excluding the special class of corner domains. Indeed,
from the proof of Proposition 3.2.1 we know that any bounded Lipschitz domain Ω+ is an
NTA domain and Σ is ADR. However, the presence of any angle θ 6= 0, implies that

dist(N ,VMO(Σ, dσ)3) > 0,

where the distance is taken in BMO(Σ,dσ)3, cf. [63, Proposition 4.38] and the discussion that
precedes it. Hence, Ω+ is not a regular SKT domain and then by [63, Theorem 4.47] , the
principale value of the harmonic double layer K and the commutators [Nj , Rk], 1 6 j, k 6 3,
are not compact on L2(Σ). So, {α · N ,CΣ} is not a compact operator on L2(Σ)4, and thus
the assumption (H3) is sharp. To make this clearer, we have the following result.

Theorem 3.2.2. Given z ∈ C \ ((−∞,−m] ∪ [m,∞)) and let Ω+ be a bounded Lipschitz
domain, such that the decomposition R3 = Ω+ ∪ Σ ∪ Ω− holds, where ∂Ω+ = Σ. Then, Σ
satisfies (H3) if and only if {α ·N ,C z

Σ} is compact in L2(Σ)4.

Proof. The first implication follows from Lemma 3.2.1. Let us prove the reverse implica-
tion, so assume that {α · N ,C z

Σ} is compact in L2(Σ)4. Recall the definition of the operator
W from (1.3.6). Then, from (3.2.5) it holds that

{α ·N ,C z
Σ} = TK1 +

(
{σ ·N ,W} 0

0 {σ ·N ,W}

)
, (3.2.10)
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where TK1 is a compact operator in L2(Σ)4. Using this, it follows that

{α ·N ,CΣ} is compact in L2(Σ)4 ⇐⇒ {σ ·N ,W} is compact in L2(Σ)2. (3.2.11)

Hence, it remains to show that

{σ ·N ,W} is compact in L2(Σ)2 =⇒ Σ satisfies (H3). (3.2.12)

For this, note that from the proof of Proposition 3.2.1 we know that Ω+ is a two-sided NTA
domain and Σ is ADR. So Ω+ satisfies the two-sided corkscrew condition with an ADR
boundary. Hence, Ω+ is a UR domain by [63, Corollary 3.9] . Next, we claim that there
exists C > 0 depending only on the uniform rectifiability and the ADR constants of Σ, such
that

dist
(
N ,VMO(∂Ω, dσ)3

)
6 Cdist

(
{σ ·N ,W},K(L2(Σ)2)

)
, (3.2.13)

where the distance in the right-hand side is measured in B(L2(Σ)2). Let us now suppose
that (3.2.13) is true. Since {σ · N ,W} is compact in L2(Σ)2, by (3.2.13), it holds that
N ∈ VMO(∂Ω, dσ)3. Therefore, Σ satisfies (H3), which proves the theorem. Let us now
return to the proof of (3.2.13). Given x, y ∈ R3, we define the following multiplication
operator

x� y := (iσ · x)(iσ · y) = (σ · x)(−σ · y). (3.2.14)

Using the anticommutation properties of the Pauli matrices, it is easy to check that:

x� x := −|x|2, x� y + y � x = −2(x · y)I2, ∀x, y ∈ R3.

Now, we make the observation that the multiplication operator defined by (3.2.14) has the
same properties as the multiplication operator in the Clifford algebra Cl3 (see [63, Section
4.6] for the precise definition). Moreover,W (σ ·N ) plays the same role as the Cauchy-Clifford
operator defined on L2(Σ) ⊗ Cl3 (i.e. it acts on Cl3-valued functions), cf. [63, Section 4.6].
Thus, one can adapt the same arguments of [63, Theorem 4.46] and show that the claim
(3.2.13) holds true, we leave the details for the reader. This completes the proof of the theo-
rem.

As it was done in [63, Theorem 4.47], one can also characterize the class of bounded
regular SKT domains via the compactness of the anticommutators {σ · N ,W} in L2(Σ)2, or
equivalently via the compactness of the anticommutator {α · N ,CΣ} in L2(Σ)4. This is the
purpose of the following proposition.

Proposition 3.2.2. Let Ω ⊂ R3 be a bounded two-sided NTA domain with a compact, ADR
boundary. Then the following statements are equivalent:

(i) Ω is a regular SKT domain.

(ii) The harmonic double layer K and the commutators [Nj , Rk], 1 6 j, k 6 3, are compact
operators on L2(∂Ω).

(iii) {α ·N ,C z
∂Ω} is a compact operator on L2(∂Ω)4, for all z ∈ C \ ((−∞,−m] ∪ [m,∞)).

(iv) {σ ·N ,W} is a compact operator on L2(∂Ω)2.
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Proof. (i) ⇒ (ii) is a consequence of [63, Theorem 4.21] and [63, Theorem 4.47].
(ii) ⇒ (iii) readily follows from (3.2.5) and (3.2.8). (iii) ⇒ (iv) is an immediate conse-
quence of (3.2.11). Finally, (iv)⇒ (i) follows from (3.2.13) and [63, Theorem 4.21].

Corollary 3.2.1. Let z ∈ C \ ((−∞,−m] ∪ [m,∞)), then Λzκ,± is a Fredholm operator on
L2(Σ)4.

Proof. Fix z ∈ C \ ((−∞,−m] ∪ [m,∞)). Observe that

{β,C z
Σ}[g](x) = 2(mI4 + zβ)Sz[g](x). (3.2.15)

Using this, it follows that

Λzκ,∓Λzκ,± = 1
sgn(κ) −

1
4 − C z

Σ(α ·N ){α ·N ,C z
Σ}+ 2µ

sgn(κ)(mI4 + zβ)Sz + η

sgn(κ){α ·N ,C
z
Σ},

(3.2.16)

As Sz is bounded from L2(Σ)4 to H 1/2(Σ)4 (see [81, Theorem 6.11] for example), and the
injection H 1/2(Σ)4 into L2(Σ)4 is compact, it follows that Sz is a compact operator in L2(Σ)4.
Now, using that C z

Σ(α ·N ) is bounded in L2(Σ)4 and that {α ·N ,C z
Σ} is a compact operator

on L2(Σ)4 by Lemma 3.2.1, we thus obtain that C z
Σ(α ·N ){α ·N ,C z

Σ} is a compact operator
on L2(Σ)4. Hence Λzκ,∓Λzκ,± is Fredholm operator and therefore Λzκ,± is Fredholm operator
by [2, Theorem 1.46 (iii)]. This finishes the proof of the corollary.

Now we are in position to give the proof of Theorem 3.2.1.
Proof of Theorem 3.2.1 Since Λzκ,+ is Fredholm for all z ∈ C \ ((−∞,−m] ∪ [m,∞)),

a direct application of Theorem 3.1.1 yields that Hκ is self-adjoint which proves the first
statement of the theorem. Assertions (i), (ii) and (iii) are consequences of Proposition 3.1.1.
Finally, it remains to show (iv). For this, if we let

κ̃ =
(
− 4ε

sgn(κ) ,−
4µ

sgn(κ) ,
4η

sgn(k)

)
,

then we have

Λa
κ̃,+ = 1

4(−εI4 + µβ − η(α ·N )) + C a
Σ. (3.2.17)

Using Proposition 3.1.1-(i) and Lemma 1.3.2 it follows that

0 ∈ Spdisc(Λaκ,+)⇐⇒ there is 0 6= g ∈ L2(Σ)4 : − 1
sgn(κ)(εI4 − µβ − η(α ·N ))g = C a

Σ[g]

⇐⇒ 4
sgn(κ)(εI4 − µβ − η(α ·N ))((α ·N )C a

Σ)2[g] = C a
Σ[g]

⇐⇒ C a
Σ((α ·N )C a

Σ)[g] = 1
4(εI4 − µβ + η(α ·N ))(α ·N )C a

Σ[g]

⇐⇒ there is 0 6= f = ((α ·N )C a
Σ)[g] ∈ L2(Σ)4 : Λa

κ̃,+[f ] = 0

⇐⇒ a ∈ Spdisc(Hκ̃) ∩ (−m,m).

Therefore, a ∈ Spdisc(Hκ) if and only if a ∈ Spdisc(Hκ̃), which proves (iv). This completes
the proof of the theorem.
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The reader interested on the confinement may wonder if the Dirac operator Hκ generates
this phenomenon under the assumption that sgn(κ) = −4. To clarify and provide an answer
to this question, pick ϕ = u+ Φ[g] ∈ dom(Hκ) and recall the decomposition 3.1.18. Then

lim
nt
ϕ± = tΣu+ lim

nt
ΦΩ± [g] = tΣu+ (CΣ ∓

i

2(α ·N ))[g]

=
(1

4(ε− µβ − η(α ·N ))∓ i

2(α ·N )
)
g,

(3.2.18)

where in the last equality we used that tΣu = −Λκ,+[g]. Now, multiplying the identity
(3.2.18) by (1

2(ε+ µβ + η(α ·N ))± i(α ·N )
)
,

we get (1
2(ε+ µβ + η(α ·N ))± i(α ·N )

)
lim
nt
ϕ± = ∓iηg. (3.2.19)

As consequence, if sgn(κ) = −4 and η 6= 0, then Hκ cannot generate confinement. Hence Σ
is penetrable. Clearly, if we set η = 0 in (3.2.19), then Hκ generates confinement, but we
postpone this case to subsection 3.2.3, where we establish that for Lipschitz surfaces.

We finish this part by pointing the following result. Thanks to Proposition 3.2.2, if Ω+
is bounded SKT domain then the same arguments used in the proof of Theorem 3.2.1 yields
that Λzκ,+ is Fredholm for all z ∈ C \ ((−∞,−m] ∪ [m,∞)). In addition, the compactness in
L2(Σ)4 of the anticommutator {α · N ,C z

Σ} implies that Spdisc(Hκ) ∩ (−m,m) is finite when
µ = η = 0. Indeed, we have:

Proposition 3.2.3. Suppose that Ω+ is a bounded SKT domain and let Hκ be as in (3.1.4).
Then for all κ ∈ R3 such that sgn(κ) 6= 0, 4, Hκ is self-adjoint. If in addition µ = η = 0,
then Spdisc(Hκ) ∩ (−m,m) is finite.

Proof. The proof of the first statement follows directly by Theorem 3.1.1 and the Freed-
holmness of Λzκ,+ all z ∈ C \ ((−∞,−m] ∪ [m,∞)). The second assertion is consequence of
{α ·N ,C z

Σ} from Lemma 3.2.1. Indeed, assume that µ = η = 0, and hence Λzκ,± = (1/2±C a
Σ

for a ∈ (−m,m). Now, notice that

C0 := sup
a∈[−m,m]

‖C z
Σ‖ <∞. (3.2.20)

This follows in the same way as in [11, Lemma 3.2]. Next, recall that for all a ∈ (−m,m) we
have

Λzκ,∓Λzκ,± = 1
4 − (C a

Σ)2. (3.2.21)

Thus, there exists a finite or countable family of continuous and non-decreasing functions
λj : [−m,m]→ [1/4C0, C0] such that

Sp(C a
Σ) =

{
±1

2

}
∪ {λj(a) : j ∈ N} ∪

{
− 1

4λj(a) : j ∈ N
}
. (3.2.22)

Now, if we assume that Spdisc(Hκ) ∩ (−m,m) is not finite, then the same arguments as in
the proof of [16, Theorem 4.4 (iii)] yields that ε = 2 or ε = −2, which contradicts the fact
that ε 6= ±2. This achieves the proof.
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3.2.2 Sobolev regularity of dom(Hκ) for δ-interactions supported on the
boundary of a C 1,ω-domain

In this part, we discuss how the smoothness of the surface supporting the singular per-
turbation affects the Sobolev regularity of dom(Hκ) in the non-critical case. As shown in
Section 2.2 we know that if Σ is a C 2-smooth compact surface, then dom(Hκ) ⊂ H 1(R3 \Σ)4.
However, such a result may fail if Σ is less regular. In fact, there are two obstacles that
prevent us from obtaining such a result. The first is that (α · N )Λκ,+[g] should belong to
H 1/2(Σ)4, which clearly fails if Σ is only C 1-smooth, for example. The second reason is that
we also need to extend the anticommutator {α · N ,CΣ} to a bounded operator from L2(Σ)4

to H 1/2(Σ)4. Although again, we know that behind this operator there are components of
the Riesz transforms as well as the principal value of the harmonic double layer operator and
its adjoint, which do not have this property, even if Σ is C 1,ω-smooth with ω < 1/2.

In the following, we assume that Ω+ is a bounded C 1,ω-smooth domain with γ ∈ (0, 1).
The main result of this subsection reads as follows:

Theorem 3.2.3. Let κ ∈ R3 be such that sgn(κ) 6= 0, 4 and let Hκ be as in Theorem 3.2.1.
Then Hκ is self adjoint and the following hold:

(i) If ω 6 1/2, then for all s < ω, we have

dom(Hκ) ⊂
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H s(Σ)4, tΣu = −Λκ,+[g]

}
⊂ H 1/2+s(R3 \ Σ)4.

(ii) If ω > 1/2, then

dom(Hκ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, tΣu = −Λκ,+[g]

}
⊂ H 1(R3 \ Σ)4.

Lemma 3.2.2. There is a constant C > 0 such that for all x, y ∈ Σ, it holds that

|N(x) · (x− y)| 6 C|x− y|1+ω. (3.2.23)

Proof. Note first that if |x− y| > 1, then the Cauchy-Schwarz inequality yields that

1
|x− y|1+ω |N(x) · (x− y)| 6 1. (3.2.24)

which gives the result for |x − y| > 1, so it remains to prove the statement for |x − y| < 1.
Without loss of generality (after translation and rotation if necessary), we may assume that
x = 0 and N(x) = (0, 0, 1). There is a C 1,ω-smooth function φ : B(0, 1) ⊂ R2 −→ R such
that φ(0) = 0, |∇φ(0)| = 0 and

B(0, 1) ∩ Σ = {x = (x1, x2, x3) : x3 = φ(x1, x2)}.

Then we get

|N (x) · (x− y)| = |y3| = |φ(y1, y2)| 6 C|y|1+ω. (3.2.25)

Therefore the statement is proven since Σ is compact.

In the following proposition, we prove that {α ·N ,CΣ} is bounded from L2(Σ)4 to H s(Σ)4,
for all s ∈ (0, ω). This result should be compared to [21, Proposition 3.10], where the authors
showed that for Σ a C 2-smooth compact surface, the commutator of the Cauchy operator CΣ
with a Hölder continuous function of order a ∈ (0, 1) is bounded from L2(Σ)4 to H s(Σ)4, for
all s ∈ (0, a). In fact, both results are identical modulo a slight change of the assumptions.
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Lemma 3.2.3. Suppose that Σ is C 1,ω. Then, for all s ∈ (0, ω), the anticommutator {α ·
N ,CΣ} is a bounded operator from L2(Σ)4 to H s(Σ)4 .

Proof. Let g ∈ L2(Σ)4, in the same manner as in the proof of Lemma 3.2.1, one can
check that

{α ·N ,CΣ}[g](x) =
∫
y∈Σ

K ′(x, y)g(y)dS(y) + K̃∗[g](x) := TK′ [g](x) + K̃∗[g](x), (3.2.26)

where K̃∗ is defined by (3.2.9) and the kernel K ′ is given by

K ′(x, y) =φ(x− y)(α · (N (y)−N (x))−m e−m|x−y|

2iπ|x− y|2 (N (x) · (x− y))I4

− e−m|x−y| − 1
2iπ|x− y|3 (N (x) · (x− y))I4.

As Σ is C 1,ω-smooth, there is a constant C > 0 such that |N (x)−N (y)| 6 C|x − y|. Using
this, the estimate (3.2.6) and Lemma 4.4.5, we obtain that |K ′(x, y)| 6 C|x − y|−1. This
implies that the integral operator TK′ is not singular. Since N is in the Hölder class C 0,ω(Σ)4,
for x, y, z ∈ Σ such that |x−y| 6 |x−z|/4, following the same arguments as in [21, Proposition
3.10] one can show that

|K ′(x, z)−K ′(y, z)| 6 C |x− y|
|x− z|2

.

Thus, [21, Lemma A.3] yields that TK′ is bounded from L2(Σ)4 to H 1(Σ)4, and hence TK′ is
bounded from L2(Σ)4 to H s(Σ)4, for all s ∈ (0, ω). Finally, the fact that K̃∗ is bounded from
L2(Σ)4 onto H s(Σ)4, for all s ∈ (0, ω), follows by [101, p. 165] . This completes the proof of
the lemma.

We are now in a position to give the proof of Theorem 3.2.3:
Proof of Theorem 3.2.3. The first statement is a direct consequence of Theorem 3.2.1.

The second statement follows by the same method as in Theorem 2.2.1. Indeed, fix ω ∈ (0, 1)
and assume that Σ is C 1,ω, and let g ∈ L2(Σ)4 be such that Λκ,+[g] ∈ H 1/2(Σ)4. Note that the
multiplication by N is bounded in H s(Σ)4 for all s ∈ [0, ω) (see, e.g., [21, Lemma A.2] ) and
CΣ is bounded from H 1/2(Σ)4 into itself. Therefore, we obtain that Λκ,−Λκ,+[g] ∈ H s(Σ)4,
for all s ∈ [0, ω). Now, observe that

Λκ,−Λκ,+ = 1
sgn(κ) −

1
4 − {α ·N ,CΣ}(α ·N )CΣ + 2mµ

sgn(κ)S + η

sgn(κ){α ·N ,CΣ},

here we used the fact that

CΣ(α ·N ){α ·N ,CΣ} = {α ·N ,CΣ}(α ·N )CΣ.

Thus we get

g = 4(sgn(κ))
4− sgn(κ)

(
Λκ,−Λκ,+ + {α ·N ,CΣ}(α ·N )CΣ −

η

sgn(κ){α ·N ,CΣ} −
2mµ

sgn(κ)S
)

[g],

(3.2.27)

As CΣ(α ·N ) is bounded from L2(Σ)4 into itself and S is bounded from L2(Σ)4 to H 1/2(Σ)4,
by combining Lemma 3.2.3 and (3.2.27) it follows that g ∈ H s(Σ)4, for all s ∈ [0, ω). Notice
that for all ω ∈ [0, 1/2] and all s ∈ (0, ω), the operator Φ gives rise to a bounded operator
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Φ : H s(Σ)4 −→ H 1/2+s(R3 \ Σ)4. Indeed, recall that for any g ∈ H s(Σ)4 we have Φ[g] = (-
iα · ∇+mβ)S[g], where S is the single layer potential associated to (−∆ +m2), that is

S[g](x) =
∫

Σ

e−m[x−y|

4π|x− y|I4g(y)dσ(y), ∀x ∈ R3 \ Σ.

By [81, Theorem 6.13] we know that S is bounded from H s(Σ)4 to H 3/2+s(R3 \ Σ)4 for any
s ∈ (0, ω), which means that Φ is bounded from H s(Σ)4 to H 1/2+s(R3 \ Σ)4. Hence, from
the above considerations we get the inclusions in (i). Finally, if ω > 1/2, we then obtain that
g ∈ H 1/2(Σ)4 and therefore Φ[g] ∈ H 1(R3 \ Σ)4 holds by Proposition 1.3.3, which gives the
equality in (ii) and completes the proof of the theorem.

Remark 3.2.2. Note that if sgn(κ) /∈ {0, 4}, and Σ is C 1,ω-smooth with γ ∈ (1/2, 1), then
using the same technique as in Section 2.2 one can show that Hκ is self-adjoint. In fact,
as {α · N ,CΣ} is self-adjoint, and bounded from L2(Σ)4 to H 1/2(Σ)4, by duality, we can
extend it to a bounded operator from H−1/2(Σ)4 to L2(Σ)4. Hence, by iterating twice the
same argument of the proof of Theorem 2.2.1, we then get that

dom(H∗κ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ H 1/2(Σ)4, tΣu = −Λκ,+[g]

}
,

which proves the self-adjointness of Hκ in this case.

3.2.3 δ-interactions supported on the boundary of a bounded uniformly
rectifiable domain

Here we discuss special cases where we can show the self-adjointness of Hκ, when Ω+ is
bounded uniformly rectifiable and η = 0. The idea is to identify some situations where the
operator Λκ,+ gives rise to a Fredholm operator, and thereby use Theorem 3.1.1 to get the
self-adjointness ofHκ. So in this subsection the domain Ω+ is UR unless stated otherwise, and
we suppose that η = 0. Thus, Hκ coincides with Hε,µ, the Dirac operator with electrostatic
and Lorentz scalar δ-shell interactions supported on Σ. The first main result on the spectral
properties of the Dirac operator Hε,µ reads as follows:

Theorem 3.2.4. Let (ε, µ) ∈ R2 be such that 0 < |ε2 − µ2| < 1/‖CΣ‖2L2(Σ)4→L2(Σ)4, then
Hε,µ is self-adjoint. In particular, if Ω+ is Lipschitz and there is z0 ∈ C \ R, such that
|ε2 − µ2| < 1/‖C z0

Σ ‖2L2(Σ)4→L2(Σ)4, then it holds that

Spess(Hε,µ) = (−∞,−m] ∪ [m,+∞). (3.2.28)

Proof. Fix ε, µ ∈ R such that

0 < |ε2 − µ2| < 1/‖C z
Σ‖2L2(Σ)4→L2(Σ)4 ,

holds for some z ∈ C \ ((−∞,−m] ∪ [m,∞)). Then, from the proof of Corollary 3.2.1 we
have

Λz(ε,µ),∓Λz(ε,µ),± = 1
ε2 − µ2 − (C z

Σ)2 + 2µ
ε2 − µ2 (mI4 + zβ)Sz, (3.2.29)

Recall that C z
Σ is bounded in L2(Σ)4. Using Neumann’s lemma, it follows that

Mz :=
(
I − (ε2 − µ2)(C z

Σ)2
)
,
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domains

is a bounded invertible operator in L2(Σ)4. Now, since (mI4 + zβ) is bounded and S is
compact on L2(Σ)4, we therefore get that Kz := 2µ

ε2−µ2 (mI4 + zβ)Sz is compact on L2(Σ)4.
Combining this with (3.2.29), we obtain that

I − (ε2 − µ2)M−1
z Λz(ε,µ),−Λz(ε,µ),+ = −(ε2 − µ2)M−1

z Kz,

I − (ε2 − µ2)Λz(ε,µ),+Λz(ε,µ),−M
−1
z = −(ε2 − µ2)KzM

−1
z .

(3.2.30)

As M−1
z Λz(ε,µ),− and Λz(ε,µ),−M

−1
z are bounded operators on L2(Σ)4, M−1

z Kz and KzM
−1
z are

compact on L2(Σ)4, then [2, Theorem 1.50 and Theorem 1.51] yields that Λz(ε,µ),+ is Fredholm.
Hence, the first statement is a direct consequence of Theorem 3.1.1 and the fact that Λ(ε,µ),+
is a self-adjoint, Fredholm operator on L2(Σ)4. Since Λz0(ε,µ),+ is Fredholm by assumption, by
Proposition 3.1.1 we easily get the last statement.

Remark 3.2.3. From Lemma 1.3.2(iv) we know that ‖C z
Σ‖ > 1/2, which implies that |ε2 −

µ2| < 4. Hence, the combination of coupling constants ε and µ is not critical. Of course, we
already know that the above result is false in the case ε2 − µ2 = 4. Also, note that Theorem
3.2.4 remains valid if one control the norm of the Cauchy operator instead of controlling
|ε2−µ2|. However, this may affect the geometric characterization of Σ, leading to an increase
in regularity.

As mentioned in the introduction, the existence of a unique self-adjoint realization of the
two dimensional Dirac operator with pure Lorentz scalar δ-interactions was shown in [92] for
m = 0 and µ ∈ (−2, 2), where Σ is a closed curve with finitely many corners. It seems that
their assumption (i.e., the restriction that µ must lie in (−2, 2)) is related to the assumption
we made in the Theorem 3.2.4.

Although Theorem 3.2.4 gives an upper bound for |ε2 − µ2| so that Hε,µ is self-adjoint,
this is not satisfactory in the sense that this bound involves ‖CΣ‖2L2(Σ)4→L2(Σ)4 , which is not
easy to quantify. In what follow, we are going to remove this restriction by imposing a better
quantitative assumption than the one of Theorem 3.2.4.

Theorem 3.2.5. Let (ε, µ) ∈ R2 be such that |ε| 6= |µ|, and let (Hε,µ, dom(Hε,µ)) be as above.
Assume that ε and µ satisfy one of the the following assumptions:

(a) ε2 − µ2 < 1/‖W‖2L2(Σ)2→L2(Σ)2.

(b) ε2 − µ2 > 16‖W‖2L2(Σ)2→L2(Σ)2.

Then Hε,µ is self-adjoint. In particular, if Ω+ is Lipschitz, then the following statements hold
true:

(i) Given a ∈ (−m,m), then Kr(Hε,µ − a) 6= {0} ⇐⇒ Kr(Λa(ε,µ),+) 6= {0}.

(ii) Spdisc(Hε,µ) ∩ (−m,m) is finite.

(iii) For all z ∈ C \ R, it holds that

(Hε,µ − z)−1 = (H − z)−1 − Φz(Λz(ε,µ),+)−1tΣ(H − z)−1.

(iv) Spess(Hε,µ) = (−∞,−m] ∪ [m,+∞).

(v) a ∈ Spp(Hε,µ) if and only if a ∈ Spp(H −4ε
ε2−µ2 ,

−4µ
ε2−µ2

), for all a ∈ (−m,m).

(vi) C0 := supa∈[−m,m] ‖C a
Σ‖ <∞. Moreover, Spdisc(Hε,µ)∩ (−m,m) = ∅ either if |ε− µ| <

1/C0 and |ε+ µ| < 1/C0, or if |ε− µ| > 4C0 and |ε+ µ| > 4C0.
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(vii) If ε = 0 and µ > 0, then Spdisc(Hε,µ) ∩ (−m,m) = ∅.

Proof. To prove the theorem, in both situations, we show that Λz(ε,µ),+ is Fredholm for all
z ∈ C \ ((−∞,−m] ∪ [m,∞)). Once this is shown, we use the fact that Λ(ε,µ),+ is a bounded
self-adjoint operator, and we conclude by using Theorem 3.1.1 to obtain the first statement
of the theorem. So, fix ε, µ ∈ R such that |ε| 6= |µ|, and let z ∈ C \ ((−∞,−m] ∪ [m,∞)).
Then, from the definition of C z

Σ it follows that

C z
Σ = T zK +

(
0 W
W 0

)
:= T zK + W̃ , (3.2.31)

where the kernel K satisfies

sup
16k,j64

|K(x− y)| = O
(
|x− y|−1

)
when |x− y| −→ 0. (3.2.32)

Hence, T zK is compact in L2(Σ)4. Therefore, in the same way as in (3.2.29) we get that

Λz(ε,µ),∓Λz(ε,µ),± = 1
ε2 − µ2 − W̃

2 + (T zK)2 + {T zK , W̃}+ 2µ
ε2 − µ2 (mI4 + zβ)Sz

:= 1
ε2 − µ2 − W̃

2 + TK ,
(3.2.33)

where TK is compact in L2(Σ)4. Now, observe that

W̃ 2 =
(
W 2 0

W 2

)
.

As W is a bounded self-adjoint operator in L2(Σ)2, it follows that W̃ 2 is a nonnegative,
self-adjoint operator on L2(Σ)4. Hence, we get

Sp(W̃ 2) ⊂
(
0, ‖W‖2L2(Σ)2→L2(Σ)2

]
.

From this, it follows that 1/(ε2 − µ2) belongs to the resolvent set of W̃ 2 when ε2 < µ2.
Similarly, if 0 < ε2 − µ2 < 1/‖W‖2L2(Σ)2→L2(Σ)2 holds, then 1/(ε2 − µ2) > ‖W‖2L2(Σ)2→L2(Σ)2 ,
and thus 1/(ε2−µ2) is not in the spectrum of W̃ 2. Hence, if assumption (a) holds true, then
I4−(ε2−µ2)W̃ 2 in invertible on L2(Σ)4. In that case, similar arguments to those of the proof
of Theorem 3.2.4 yield that Λz(ε,µ),+ is Fredholm.

Now assume that assumption (b) holds true. Then, from Lemma 1.3.2 we know that W
is invertible on L2(Σ)2 and W−1 = −4(σ ·N )W (σ ·N ). Thus, from (3.2.33) it follows that

(ε2 − µ2)(W̃−1)2Λz(ε,µ),−Λz(ε,µ),+ = (W̃−1)2 − (ε2 − µ2)I4 + (ε2 − µ2)(W̃−1)2TK ,

(ε2 − µ2)Λz(ε,µ),+Λz(ε,µ),−(W̃−1)2 = (W̃−1)2 − (ε2 − µ2)I4 + (ε2 − µ2)TK(W̃−1)2.
(3.2.34)

As ‖W̃‖L2(Σ)4→L2(Σ)4 = ‖W‖L2(Σ)2→L2(Σ)2 , using again Lemma 1.3.2 we get that

‖W̃−1‖L2(Σ)4→L2(Σ)4 6 4‖W̃‖L2(Σ)4→L2(Σ)4 = 4‖W‖L2(Σ)2→L2(Σ)2 (3.2.35)

Hence, if ε2 − µ2 > 16‖W‖2L2(Σ)2→L2(Σ)2 , then ε2 − µ2 > ‖W̃−1‖2L2(Σ)4→L2(Σ)4 . Thus ε2 − µ2

is not in the spectrum of (W̃−1)2. Thereby W̃−1 − (ε2 − µ2)I4 is invertible on L2(Σ)4. Now,
from (3.2.34) it follows that

I4 − (ε2 − µ2)
(
(W̃−1)2 − (ε2 − µ2)I4

)−1
(W̃−1)2Λz(ε,µ),−Λz(ε,µ),+ = TK1 ,

I4 − (ε2 − µ2)Λz(ε,µ),+Λz(ε,µ),−(W̃−1)2
(
(W̃−1)2 − (ε2 − µ2)I4

)−1
= TK2 .

(3.2.36)
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where TK1 , TK2 ∈ K(L2(Σ)4). Thereby, [2, Theorem 1.50 and Theorem 1.51] yields that
Λz(ε,µ),+ is Fredholm, and this finishes the proof of the first statement.

Item (i) is a consequence of Proposition 3.1.1. The proof of the assertions (ii), (iii), (iv)
and (v) runs as in the proof of Theorem 3.2.1. Now we turn to the proof of item (vi). The
first claim of statement is contained in [11, Lemma 3.2] (see also [16, Proposition 3.5]), for
C 2-compact surfaces, and the same arguments apply to the Lipschitz case. To prove the last
claim of (v), note that for all a ∈ (−m,m) we have

0 ∈ Spdisc(Λa(ε,µ),+)⇐⇒ −1 ∈ Spdisc((εI4 + µβ)C a
Σ). (3.2.37)

Using the first claim of (vi), it follows that if |ε− µ| < 1/C0 and |ε+ µ| < 1/C0, then

‖(εI4 + µβ)C a
Σ‖L2(Σ)4→L2(Σ)4 < 1.

Therefore, −1 /∈ Spdisc((εI4 + µβ)C a
Σ). Hence, (3.2.37) together with assertion (i) yield that

Spdisc(Hε,µ) ∩ (−m,m) = ∅.

Using the equivalence given by (v), and iterating the previous arguments we easily recover
the case |ε− µ| > 4C0 and |ε+ µ| > 4C0, which gives (vi).

Finally, the assertion (vii) is a consequence of (i). Indeed, suppose that ε = 0 and fix
a ∈ (−m,m). Then we have

(Λa(0,µ),+)2 = 1
µ2 + (C a

Σ)2 + 2
µ

(mI4 + aβ)Sa.

As Sa is a positive operator in L2(Σ)4 for all a ∈ (−m,m); cf. [11, Lemma 4.2], it follows
that

(C a
Σ)2 + 2

µ
(mI4 + aβ)Sa,

is also a positive operator for µ > 0. Therefore, 0 /∈ Sp(Λa(0,µ),+) for all a ∈ (−m,m), which
proves (vi). This completes the proof of theorem.

Remark 3.2.4. Assume that Ω+ is Lipschitz. Then, using essentially the same arguments as
in the proof of Theorem 3.2.5, one can show that, if for all a ∈ (−m,m) one of the following
assumptions holds

(a) 16‖C a
Σ‖2L2(Σ)4→L2(Σ)4 < ε2 − µ2, (b) ε2 − µ2 < 1/‖C a

Σ‖2L2(Σ)4→L2(Σ)4 ,

then Hε,µ is self-adjoint. Moreover, if µ = 0, then from Theorem 3.2.5-(v) it follows that

Spdisc(Hε,0) ∩ (−m,m) = ∅,

see also [11, Theorem 3.3] and [16, Theorem 4.4] for a similar result.

Remark 3.2.5. Assume that Ω+ is UR. Then, using exactly the same technique as in the
proof of Theorem 3.2.5, one can show that the coupling (H + ε̃γ5δΣ) is self-adjoint under the
assumption (a) or (b), with µ = 0.

Remark 3.2.6. Note that in Theorem 3.2.5, the combination of the coupling constants ε and
µ is not critical. Moreover, there is an interval J ⊂ R+, such that we have no information
on the self-adjointness character of Hε,µ, if ε2 − µ2 ∈ J . We would also note that if Ω+ is a
ball, the interval reduces to the point J = {4}, since ‖W‖ = 1/2; cf. [12, Lemma 4.2]
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Next, we discuss the particular case ε2 − µ2 = −4. Assume that Ω+ is Lipschitz, then it
is clear that (P4) holds true. Thus, if we let

P± =
(

1∓ i

2(ε+ µβ)(α ·N )
)
.

As a consequence of proposition 3.1.3 we have the following result.

Proposition 3.2.4. Assume that Ω+ is Lipschitz. Let (ε, µ) ∈ R2 be such that ε2−µ2 = −4,
and let Hε,µ be as in Theorem 3.2.5. Then Σ is impenetrable and it holds that

Hε,µϕ = HΩ+
ε,µ (ϕ+)⊕HΩ−

ε,µ (ϕ−) = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ− (3.2.38)

where HΩ±
ε,µ are the self-adjoint Dirac operators defined on

dom(HΩ±
ε,µ ) =

{
ϕ± := uΩ± + ΦΩ± [g], uΩ± ∈ H 1(Ω±)4, g ∈ L2(Σ)4 : P± lim

nt
ϕ± = 0

}
.

Remark 3.2.7. By Taking ε = 0 in Theorem 3.2.5 (a), we conclude that if Ω+ is UR, then
H0,µ is always self-adjoint. Moreover, H0,µ generates confinement when µ = ±2, for any
compact Lipschitz surface Σ.

The reason we assumed that η = 0 is purely technical. The following proposition is about
the self-adjointness of the coupling H + η(α ·N )δΣ.

Proposition 3.2.5. Assume that Ω+ is UR. Let η ∈ R \ {0}, set κ = (0, 0, η) and let Hκ be
as above. Then Hκ is self-adjoint and we have

dom(Hκ) =
{
u+ Φ[−4η2(η2 + 4)−1(α ·N )Λκ,−(α ·N )[tΣu]] : u ∈ H 1(R3)4

}
.

Moreover, If Ω+ is Lipschitz, then the spectrum of Hκ is given by

Sp(Hκ) = Spess(Hκ) = (−∞,−m] ∪ [m,+∞). (3.2.39)

Remark 3.2.8. It is worth noting that in 2D the analog of the coupling H + η(α · N )δΣ is
unitarily equivalent to the two-dimensional Dirac operator, see [41, Theorem 2.1] for more
details.

Proof. Assume that η ∈ R \ {0} and fix z ∈ C \ ((−∞,−m] ∪ [m,∞)). Recall that Λzκ,±
are given by

Λzκ,± = 1
η

(α ·N)± C z
Σ.

Now, using Lemma 1.3.2, a simple computation yields

(η(α ·N ))Λzκ,−(η(α ·N ))Λzκ,+ = Λzκ,+(η(α ·N ))Λzκ,−(η(α ·N )) = 1 + η2

4 .

Therefore, Λzκ,+ is invertible with (Λzκ,+)−1 = 4η2(η2 + 4)−1(α ·N )Λzκ,−(α ·N ). In particular,
Λzκ,+ is Fredholm for all z ∈ C\((−∞,−m] ∪ [m,∞)). As Λκ,+ is invertible and self-adjoint in
L2(Σ)4, using Theorem 3.1.1 we then get the first statement. That Sp(Hκ) is characterized by
(3.2.39) is a consequence of Proposition 3.1.1. This completes the proof of the proposition.
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To finish this part, we briefly discuss the particular case µ = ±ε. Assume that Ω+ is
Lipschitz and given ε ∈ R \ {0}, recall that Hε,µ is defined on the domain

dom(Hε,±ε) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ P±L2(Σ)4 and P±tΣu = −Λε,+[g]

}
, (3.2.40)

where Λε,± are given by

Λε,+ = P+ (1/2ε+ CΣ)P+ and Λε,− = P+ (1/2ε− CΣ)P+, if µ = ε,

Λε,+ = P− (1/2ε+ CΣ)P− and Λε,− = P− (1/2ε− CΣ)P−, if µ = −ε,

where P± = (I4 ± β)/2, see Proposition 2.2.4.

The following proposition is about the self-adjointness of Hε,±ε. Its proof follows exactly
the same lines as the proof of Theorem 3.1.1, so we will only reproduce the main ideas here.
In the proof, we use the notations 〈 , 〉R3 and 〈 , 〉Σ for the scalar product in L2(R3)4 and
L2(Σ)4, respectively.

Proposition 3.2.6. Let ε ∈ R \ {0} and assume that Ω+ is a bounded Lipschitz domain.
Then Hε,±ε is self-adjoint and it holds that

dom(Hε,±ε) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ P±H 1/2(Σ)4, P±tΣu = −Λε,+[g]

}
. (3.2.41)

Proof. The cases ε = µ and ε = µ are almost identical, so we only sketch a proof for
ε = µ. It is clear that Hε,ε is symmetric and densely defined on dom(Hε,ε). Hence, it remains
to prove the inclusions H∗ε,ε ⊂ Hε,ε and that dom(Hε,ε) is given by (3.2.41). First, observe
that

Λε,−Λε,+ = Λε,+Λε,− = 1
4ε2P+ − P+CΣP+CΣP+ = 1

4ε2P+ −m2(S)2P+. (3.2.42)

where in the last equality the anticommutation relations of the Dirac matrices were used. As
Λε,± is bounded and self-adjoint in P+L2(Σ)4, and S is bounded from H−1/2(Σ)4 to H 1/2(Σ)4,
we get by [2, Theorem 1.46 (iii)] that Λε,± is a Fredholm operator in P+L2(Σ)4. Therefore
{Φ[g] : g ∈ Kr(Λε,+)} is closed and the following decomposition holds

P+L2(Σ)4 = Kr(Λε,+)⊕ Rn(Λε,+). (3.2.43)

Now we are going to show that H∗ε,ε ⊂ Hε,ε. To this end, it is sufficient to prove that
G(H∗ε,ε) ⊂ G(Hε,ε), where G(H∗ε,ε) (resp. G(Hε,ε)) denotes the graph of H∗ε,ε (resp. Hε,ε).
Once we know this, it follows immediately from the regularization property of S and (3.2.42)
that, if u+ Φ[g] ∈ dom(Hε,ε) then g ∈ P+H 1/2(Σ)4, which implies that dom(Hε,ε) is given by
(3.2.41).

In what follows we will adapt the proof of Theorem 3.1.1 to the current case. Let (ψ,G) ∈
G(H∗ε,ε), then it holds that

〈Hε,εϕ,ψ〉R3 = 〈ϕ,G〉R3 , ∀ϕ = u+ Φ[g] ∈ dom(Hε,ε).

As H−1G ∈ H 1(R3)4, from (3.2.43) it follows that P+tΣH
−1G = h + Λε,+[f ], with h ∈

Kr(Λε,+). Since Φ[h] ∈ dom(Hε,ε) and Hε,εΦ[h] = 0, we thus get

0 = 〈Hε,εΦ[h], ψ〉R3 = 〈Φ[h], G〉R3 = 〈h, tΣH−1G〉Σ = 〈h, P+tΣH
−1G〉Σ,

where in the last equalities [10, Lemma 2.10] was used. As P+tΣH
−1G = h + Λε,+[f ] and

Λε,+[h] = 0, using the self-adjointness of Λε,+ we obtain that 0 = 〈h, P+tΣH
−1G〉Σ = 〈h, h〉Σ.
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From this, we conclude that P+tΣH
−1G = Λε,+[f ]. Hence, the previous conclusion together

with [10, Lemma 2.10] yield that

〈Hu,ψ〉R3 = 〈u+ Φ[g], G〉R3 = 〈Hu,H−1G〉R3 + 〈g, tΣH−1G〉L2(Σ)4

= 〈Hu,H−1G〉R3 + 〈g,Λε,+[f ]〉Σ = 〈Hu,H−1G〉R3 − 〈tΣu, f〉Σ,

for any ϕ = u+ Φ[g] ∈ dom(Hε,ε). Notice that

P+tΣu = P+tΣHH
−1u = tΣHH

−1P+u = tΣP+u. (3.2.44)

Using this, from the above computations it follows that 〈Hu,ψ〉R3 = 〈Hu,H−1G− Φ[f ]〉R3 .
Hence, we get

〈Hu,ψ − (H−1G− Φ[f ])〉R3 = 0 for all u ∈ H 1(R3)4 such that P+tΣu ∈ Rn(Λε,+).

As Λε,+ is Fredholm and self-adjoint, we get by [10, Lemma 2.10] and (3.2.44) that: P+tΣu ∈
Rn(Λε,+) if and only if 0 = 〈tΣu, h〉Σ = 〈Hu,Φ[h]〉R3 for all h ∈ Kr(Λε,+). Which implies
that ψ − H−1G + Φ[f ] ∈ {Φ[g] : g ∈ Kr(Λε,+)}. Thus, for all (ψ,G) ∈ G(H∗ε,ε), there exist
(hj)j∈N ⊂ Kr(Λε,+) and f ∈ Rn(Λε,+) such that the following hold:

lim
j→∞

Φ[hj ] = Φ[h] ∈ dom(Hε,ε) with h ∈ Kr(Λε,+),

ψ = lim
j→∞

(H−1G− Φ[f ] + Φ[hj ]) = H−1G− Φ[f ] + Φ[h] in L2(R3)4.

Since Hε,ε(H−1G − Φ[f ] + Φ[hj ]) = G for all j ∈ N, we then get G(H∗ε,ε) ⊂ G(Hε,ε), which
completes the proof.

3.2.4 Spectral properties of Hµ̃ and Hυ̃

In this part, we briefly discuss the spectral properties of the Dirac operators Hµ̃ and Hυ̃

defined by (3.2.1). Recall that for µ̃, υ̃ ∈ R \ {0}, the operators Λzµ̃,± and Λzυ̃,± are given by

Λzµ̃,± = i

µ̃
γ5β ± C z

Σ and Λzυ̃,± = 1
υ̃
γ5β(α ·N )± C z

Σ. (3.2.45)

The following two propositions summarise the main spectral properties of Hµ̃. We remark
that Hµ̃ has almost the same properties as the coupling (H + µβδΣ), and this is the reason
why we called the potential Vµ̃ the modified Lorentz scalar δ-potential.

Proposition 3.2.7. Let µ̃ ∈ R \ {0} and assume that Ω+ is UR, then (Hµ̃, dom(Hµ̃)) is
self-adjoint. In particular, if Ω+ is Lipschitz, then the following hold:

(i) Spess(Hµ̃) = (−∞,−m] ∪ [m,+∞).

(ii) If µ̃2 = 4, then Hµ̃ generates confinement and we have

Hµ̃ϕ = H
Ω+
µ̃ ϕ+ ⊕HΩ−

µ̃ ϕ− = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−,

where HΩ±
µ̃ are the self-adjoint Dirac operators defined on

dom(HΩ±
µ̃ ) =

{
uΩ± + ΦΩ± [g] :uΩ± ∈ H 1(Ω±)4, g ∈ L2(Σ)4 and(1

2 ∓
1
µ̃
γ5β(α ·N )

)
(tΣuΩ± + C±[g]) = 0

}
.
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Proof. Fix z ∈ C \ ((−∞,−m] ∪ [m,∞)), and observe that

{γ5β,C
z
Σ} = 2zγ5βS

z. (3.2.46)

Now, using (3.2.31), similar arguments as in the proof of Theorem 3.2.5 yield that

(Λzµ̃,+)2 = 1
µ̃2 + W̃ 2 + i

µ̃
{γ5β,C

z
Σ}+ Tz, (3.2.47)

where Tz ∈ K(L2(Σ)4). Thus (Λzµ̃,+) is Fredholm, for all z ∈ C \ ((−∞,−m] ∪ [m,∞)).
Therefore, Hµ̃ is self-adjoint by Theorem 3.1.1. Assertion (i) follows by Proposition 3.1.1.
Now it is easy to check that (1/2∓ 1

µ̃γ5β(α ·N )) are projectors, thus the property (P3) holds
true. Therefore, (ii) is a direct consequence of Proposition 3.1.3. This completes the proof of
the proposition.

The following proposition gives us more information about the spectrum of Hµ̃ in the
case of C 1,ω domains. The arguments of the proof are rather standard, so we are not going
to give a complete proof.

Proposition 3.2.8. Assume that Ω+ is C 1,ω-smooth with γ > 1/2, and let Hµ̃ be as in
Proposition 3.2.7. Then, the following is true:

(i) The spectrum of Hµ̃ is symmetric with respect to 0.

(ii) Spdisc(Hµ̃) ∩ (−m,m) is finite, and every eigenvalue of Hµ̃ has even multiplicity.

(iii) Hµ̃ is unitarily equivalent to H−µ̃.

(iv) a ∈ Spp(Hµ̃) if and only if a ∈ Spp(H−4
µ̃

), for all a ∈ (−m,m).

(v) There is C0 > 0 such that Spdisc(Hµ̃)∩(−m,m) = ∅ either if |µ̃| < 1/C0 or if |µ̃| > 4C0.

Proof. First, observe that for all µ̃ ∈ R \ {0}, dom(Hµ̃) ⊂ H 1(R3 \ Σ)4 (this follows in
the same way as in Theorem 3.2.3). Moreover, Hµ̃ acts in the sense of distributions as

Hµ̃ϕ = (−i∇ · α+mβ)ϕ+ ⊕ (−i∇ · α+mβ)ϕ−, (3.2.48)

on the domain

dom(Hµ̃) =
{
ϕ = (ϕ+, ϕ−) ∈ H 1(Ω+)4 ⊕H 1(Ω−)4 :(1

2 −
1
µ̃
γ5β(α ·N )

)
tΣϕ+ = −

(1
2 + 1

µ̃
γ5β(α ·N )

)
tΣϕ−

}
.

Now assertions (i) and the fact that every eigenvalue ofHµ̃ has even multiplicity can be proved
as much as [66, Theorem 2.3]. Also, that Spdisc(Hµ̃) ∩ (−m,m) is finite can be deduced by
applying the same arguments as Theorem 2.3.2.

In order to prove (iii) we define the operator

T (ψ) = γ5βψ, ∀ψ ∈ L2(R3)4. (3.2.49)

Then, a simple computation yields that T 2(ψ) = −ψ and T (H(ψ)) = −H(T (ψ)). Moreover,
it is easy to verify that(1

2 ±
1
µ̃
γ5β(α ·N )

)
(γ5βtΣϕ±) = γ5β

(1
2 ∓

1
µ̃
γ5β(α ·N )

)
tΣϕ±.
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Hence, we conclude that ϕ ∈ dom(Hµ̃) if and only if T (ϕ) ∈ dom(H−µ̃), which proves (iii). Fi-
nally, the assertions (iv) and (v) can be proved in the same way as Theorem 3.2.5(v)-(vi).

We now move on to the spectral study of the operator Hυ̃. Again, we note that Hυ̃ has
almost the same spectral properties as (H + iυβ(α ·N )δΣ). In the following proposition, we
are only interested in the self-adjointness character of Hυ̃, we omit the other specific spectral
properties since they can be derived from Theorem 2.4.1 and Theorem 2.4.2

Proposition 3.2.9. Let υ̃ ∈ R \ {0} and let (Hυ̃, dom(Hυ̃)) be as in (3.1.4). Then, the
following hold true:

(i) If Ω+ is a regular SKT domain and υ̃2 6= 4, then (Hυ̃,dom(Hυ̃)) is self-adjoint.

(ii) If Ω+ is a C 2-smooth domain and υ̃2 = 4, then (Hυ̃,dom(Hυ̃)) is essentially self-adjoint
and generates confinement, and we have

Hυ̃ϕ = H
Ω+
υ̃ ϕ+ ⊕HΩ−

υ̃ ϕ− = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−,

where HΩ±
υ̃ are the self-adjoint Dirac operators defined on

dom(HΩ±
υ̃ ) =

{
ϕ± ∈ L2(Ω±)4 : (α · ∇)ϕ± ∈ L2(Ω±)4 and

(1
2 ±

i

υ̃
γ5β

)
tΣϕ± = 0

}
.

Proof. Let z ∈ C \ ((−∞,−m] ∪ [m,∞)), then

Λzυ̃,∓Λzυ̃,± = 1
υ̃2 − (C z

Σ)2 ± 1
υ̃

[γ5β(α ·N ),C z
Σ]. (3.2.50)

Now, observe that

1
υ̃

[γ5β(α ·N ),C z
Σ] = m[γ5(α ·N ), Sz] + γ5β(Tz + {α ·N , W̃}), (3.2.51)

where W̃ is given by (3.2.31), and Tz is an integral operator with kernel Kz given by:

Kz(x, y) =
√
z2 −m2 e

i
√
z2−m2|x−y|

4π|x− y|2 ((α ·N (x))α · (x− y) + α · (x− y)(α ·N (y)))

+ ei
√
z2−m2|x−y| − 1
4π|x− y|3 [(α ·N (x))(iα · (x− y)) + (iα · (x− y)) (α ·N (y))] .

Clearly, Tz, [γ5(α ·N ), Sz] ∈ K(L2(Σ)4). Thus, using Proposition 3.2.2 we get that

Λzυ̃,−Λzυ̃,+ = 4− υ̃2

4υ̃2 − T̃z, (3.2.52)

with T̃z ∈ K(L2(Σ)4). Thus, if Ω+ is a regular SKT domain and υ̃2 6= 4, then similar
arguments to those of the proof of Theorem 3.2.5 yield that Λzυ̃,+ is Fredholm, for all z ∈
C \ ((−∞,−m] ∪ [m,∞)). Therefore, (i) follows by Theorem 3.1.1.

Now we are going to prove (ii), we only consider the case υ̃ = 2, since the case υ̃ = −2
can be treated analogously. So assume that Ω+ is a C 2-smooth, then it is clear that υ̃ = 2
is a critical parameter, and (P1) holds true. Thus, Λ2,± extends to a bounded operator from
H−1/2(Σ)4 onto itself by Proposition 1.3.3.
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Since Λ̃2,+ + Λ̃2,− = γ5β(α ·N ), we then deduce that

Λ̃2,+(γ5β(α ·N ))Λ̃2,− = Λ2,+Λ̃2,+Λ̃2,− + Λ̃2,+Λ̃2,−Λ̃2,−, (3.2.53)

Thus, using the same arguments as in the proof of Lemma 1.3.5 one can show that Λ̃2,+Λ̃2,−
and Λ̃2,+Λ̃2,− are bounded from H−1/2(Σ)4 to H 1/2(Σ)4. Hence, (P2) also holds true and thus
H2 is essentially self-adjoint and generates confinement by Theorem 3.1.2 and Proposition
3.1.4, because (P′3) also holds true. This proves (ii) and complets the proof of the proposition.

3.3 On the confinement induced by delta interactions involv-
ing the Cauchy operator

In this section, we are interested in the families of Dirac operators given by

(−m,m) 3 a 7−→ Ha,λ = H + λC a
ΣδΣ, λ ∈ R \ {0},

(−m,m) 3 a 7−→ Ha,λ′ = H + λ′(α ·N )C a
Σ(α ·N )δΣ, λ′ ∈ R \ {0}.

(3.3.1)

As we have already mentioned in the beginning of this chapter, the above families of Dirac
operators involve the Calderón projectors and their adjoint operator:(1

2 ∓ iC
a
Σ(α ·N )

)
and

(1
2 ∓ i(α ·N )C a

Σ

)
, (3.3.2)

for λ, λ′ ∈ {−4, 4}, and hence they induce confinement. So throughout this section we focus
only on those two cases.

First, we study the Dirac operators Ha,λ. As usual we let

Λzλ,± = − 4
λ

(α ·N )C a
Σ(α ·N )± C z

Σ. (3.3.3)

and

dom(Ha,λ) =
{
u+ Φ[g] : u ∈ H 1(R3)4, g ∈ L2(Σ)4 and tΣu = −Λλ,+[g]

}
. (3.3.4)

The following proposition is about the basic spectral properties of Ha,λ.

Proposition 3.3.1. Let Ha,λ be as in (4.5.2). The following hold true:

(i) If Ω+ is a UR domain and λ = 4, then (Ha,λ,dom(Ha,λ)) is self-adjoint for all a ∈
(−m,m). Moreover, if Ω+ is Lipschitz, then a /∈ Sp(Ha,λ), Σ is impenetrable and the
following hold:

(a) Ha,λϕ = H
Ω+
a,λϕ+ ⊕ H

Ω−
a,λϕ− = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−, where

H
Ω±
a,λ are the self-adjoint Dirac operators defined on

dom(HΩ±
a,λ ) =

{
uΩ± + ΦΩ± [g] :uΩ± ∈ H 1(Ω±)4, g ∈ L2(Σ)4 and(1

2 ∓ i(α ·N )C a
Σ

)
(tΣuΩ± + C±[g]) = 0

}
.

(b) Spess(Ha,λ) = (−∞,−m] ∪ [m,+∞).
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(ii) If Ω+ is a C 2-smooth domain and λ = −4, then (Ha,λ,dom(Ha,λ)) is essentially self-
adjoint. Moreover, we have

Ha,λϕ = H
Ω+
a,λϕ+ ⊕HΩ−

a,λϕ− = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−,

where HΩ±
a,λ are the self-adjoint Dirac operators defined on

dom(HΩ±
a,λ ) =

{
ϕ± ∈ L2(Ω±)4 : (α · ∇)ϕ± ∈ L2(Ω±)4 and

(1
2 ± i(α ·N )C̃ a

Σ

)
tΣϕ± = 0

}
.

Proof. First we prove (i), so assume that Ω+ is a UR domain and λ = 4. Fix a ∈ (−m,m),
then using the decomposition (3.2.31) we obtain that

Λzλ,+ = −(α ·N )W̃ (α ·N ) + W̃ + T zK = −4(α ·N )W̃ (α ·N )(1
4 + W̃ 2) + T zK (3.3.5)

where T zK ∈ K(L2(Σ)4). Since (α · N )W̃ (α · N ) and (1/4 + W̃ 2) are invertible in L2(Σ)4, by
[2, Theorem 1.50 and Theorem 1.51] it follows that Λλ,+ is a Fredholm operator. As Λλ,+ is
self-adjoint in L2(Σ)4, by Theorem 3.1.1 we conclude that (Ha,λ,dom(Ha,λ)) is self-adjoint
for all a ∈ (−m,m), which proves the first statement of (i). Now assume that Ω+ is Lipschitz,
and observe that

Λaλ,+ = −(α ·N )C a
Σ(α ·N ) + C a

Σ = −4(α ·N )C a
Σ(α ·N )(1

4 + (C a
Σ)2). (3.3.6)

Then, the same reasoning as before yields that Λaλ,+ is invertible for all a ∈ (−m,m). There-
fore, by Proposition 3.1.1-(i) it follows that a /∈ Sp(Ha,λ). Item (a) and (b) are consequences
of Proposition 1.3.2 and Proposition 3.1.3, respectively. This finishes the proof of (i).

Now, we prove (ii), so assume that Ω+ is C 2-smooth and λ = −4. It is clear that Λaλ,+ ∈
K(L2(Σ)4), therefore λ = −4 is a critical parameter. Also, observe that the properties (P1)
and (P′3) hold true by Proposition 1.3.3. Thus, the only thing left to check is the property
(P2). To this end, recall again the decomposition (3.2.31), then we make the observation
that in order to prove that {α · N ,C a

Σ} extends to a bounded operator from H−1/2(Σ)4 to
H 1/2(Σ)4 (see the proof of Lemma 1.3.5 and Remark 1.3.5, see also [90, Proposition 2.8]), the
most delicate part is to show that {α ·N , W̃} extends to a bounded operator from H−1/2(Σ)4

to H 1/2(Σ)4, because the kernel of T aK behaves locally as |x− y|−1 and thus T aK extends to a
bounded operator from H−1/2(Σ)4 to H 1/2(Σ)4, even if Σ is Lipschitz. Now, a straightforward
computation shows that

Λ̃λ,+C̃ a
ΣΛ̃λ,− =

(
(α ·N )T aK(α ·N ) + T 0

K +
(
(α ·N )W̃ (α ·N ) + W̃

))
C̃ a

ΣΛ̃λ,−

=
(
(α ·N )T aK(α ·N ) + T 0

K + (α ·N ){α ·N , W̃}
)

C̃ a
ΣΛ̃λ,−.

(3.3.7)

Combining this with the above observation, and taking into account the fact that N is C 1-
smooth we then get the property (P2). Therefore, item (ii) follows by Theorem 3.1.2 and
Proposition 3.1.4. This achieves the proof of the proposition.

Now we turn to the analysis of the Dirac operator Ha,λ′ . We recall that

Λzλ′,+ = − 4
λ′

C a
Σ + C z

Σ, for all (a, λ′) 6= (0, 4). (3.3.8)

The case (a, λ′) = (0, 4) is special, we will discuss it separately in the end of this section. The
main result about the self-adjointness of Ha,λ′ reads as follows.
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Proposition 3.3.2. Let (Ha,λ′ , dom(Ha,λ′)) be as above. The following hold:

(i) If Ω+ is a UR domain and λ′ = −4 , then (Ha,λ′ ,dom(Ha,λ′)) is self-adjoint. Moreover,
if Ω+ is Lipschitz, then a /∈ Sp(Ha,λ′), Σ is impenetrable and we have

Ha,λ′(ϕ) = H
Ω+
a,λ′(ϕ+)⊕HΩ−

a,λ′(ϕ−) = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ− (3.3.9)

where HΩ±
a,λ′ are the self-adjoint Dirac operators defined on

dom(HΩ±
a,λ′) =

{
uΩ± + ΦΩ± [g] :uΩ± ∈ H 1(Ω±)4, g ∈ L2(Σ)4 and(1

2 ± iC
a
Σ(α ·N )

)
(tΣuΩ± + C±[g]) = 0

}
.

(ii) If Ω+ is a C 2-smooth domain, λ′ = 4 and a 6= 0, then (Ha,λ′ , dom(Ha,λ′)) is essentially
self-adjoint. furthermore we have

Ha,λ′(ϕ) = H
Ω+
a,λ′(ϕ+)⊕HΩ−

a,λ′(ϕ−) = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−,

where HΩ±
a,λ′ are the self-adjoint Dirac operators defined on

dom(HΩ±
a,λ′) =

{
ϕ± ∈ L2(Ω±)4 : (α · ∇)ϕ± ∈ L2(Ω±)4 and

(1
2 ∓ iC̃

a
Σ(α ·N )

)
tΣϕ± = 0

}
.

We omit the proof of this proposition, since it is easier than, and can easily be extracted
from the proof of Proposition 3.3.1.

In the following, we describe the property of the confinement induced by Ha,λ′ when
(a, λ′) = (0, 4). From (3.3.8), we notice that Λλ′,+ vanishes in this case. Indeed, let ϕ =
u+ Φ[g] with u ∈ H 1(R3)4 and g ∈ L2(Σ)4, then

Ha,λ′(ϕ) = H(u) + (α ·N )CΣ(α ·N )tΣu, (3.3.10)

holds in the sense of distributions. Thus, we need to assume that u ∈ H 1
0 (R3 \ Σ)4 in order

to ensure that Ha,λ′(ϕ) ∈ L2(R3)4. Hence, we cannot define Ha,λ′ as we did before. To
work around this problem, note that for ϕ = (ϕ+, ϕ−) ∈ H 1(Ω+)4 ⊕ H 1(Ω−)4, a simple
computation in the sense of distributions yields

H0,λ′(ϕ) =H(ϕ) + 2(α ·N )CΣ(α ·N )(tΣϕ+ + tΣϕ−)δΣ

=H(ϕ+)⊕H(ϕ−) + iα ·N (tΣϕ+ − tΣϕ−)δΣ + 2(α ·N )CΣ(α ·N )(tΣϕ+ + tΣϕ−)δΣ.

Thus, if we let (1
2 − iCΣ(α ·N )

)
tΣϕ+ =

(1
2 + iCΣ(α ·N )

)
tΣ, ϕ−, (3.3.11)

then H0,λ′(ϕ) ∈ L2(R3)4. In particular, this leads us to define H0,λ′ as follows:

dom(H0,λ′) =
{
ϕ = (ϕ+, ϕ−) ∈ H 1(Ω+)4 ⊕H 1(Ω−)4 : (3.3.11) holds in H 1/2(Σ)4

}
.

(3.3.12)
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Clearly, H0,λ′ is symmetric. Moreover, if we let P∓ = 1/2∓ iCΣ(α ·N ), then it is straightfor-
ward to check that

H0,λ′(ϕ) = HΩ+(ϕ+)⊕HΩ−(ϕ−) = (−iα · ∇+mβ)ϕ+ ⊕ (−iα · ∇+mβ)ϕ−, (3.3.13)

where HΩ± are the symmetric Dirac operators defined on

dom(HΩ±) =
{
ϕ± ∈ H 1(Ω±)4 :

(1
2 ∓ iCΣ(α ·N )

)
tΣϕ± = 0

}
.

Then, we have the following theorem about the self-adjointness of Ha,λ′ when (a, λ′) = (0, 4).
In the proof, we use the notation 〈 , 〉H−1/2,H1/2 for the duality pairing between H−1/2(Σ)4

and H 1/2(Σ)4.

Theorem 3.3.1. Assume that (a, λ′) = (0, 4) and let Ha,λ′ be as in (3.3.12). Then Ha,λ′

is self-adjoint, the restriction Ha,λ′ � H 1(R3 \ Σ)4 is essentially self-adjoint. Moreover, Σ is
impenetrable and we have Ha,λ′ = HΩ+ ⊕HΩ−, with

dom(HΩ±) =
{
ψ ∈ L2(Ω+)4 : (α · ∇)ψ ∈ L2(Ω+)4 and P∓tΣψ = 0

}
, (3.3.14)

where the boundary condition has to be understood as an equality in H−1/2(Σ)4.

Proof. The proof is standard and follows essentially the same idea as [90, Theorem 3.2
and Theorem 4.2]. Indeed, due to the decomposition (3.3.13), it is sufficient to prove that
both HΩ+ and HΩ− are self-adjoint. In what follows we deal with the self-adjointness of HΩ+

only, since HΩ− can be treated analogously. For the convenience of the reader, the proof is
divided into two streps as follows:

(a) The domain of H∗Ω+
is given by

dom(H∗Ω+) =
{
ψ ∈ L2(Ω+)4 : (α · ∇)ψ ∈ L2(Ω+)4 and P−tΣψ = 0

}
, (3.3.15)

where the boundary condition has to be understood as an equality in H−1/2(Σ)4.

(b) The inclusion HΩ+ ⊂ H∗Ω+
holds.

Once (a) and (b) are proved, we use the fact that HΩ+ is symmetric and then we conclude
that HΩ+ = H∗Ω+

.
Proof of (a). Denote by D be the set on the right-hand of (3.3.15). First, we show the

inclusion D ⊂ dom(H∗Ω+
), for this let ϕ ∈ dom(HΩ+) and ψ ∈ D. Then, using the Green’s

formula from Ref. 1.2.4 it follows that

〈H(ψ), ϕ〉L2(Ω+)4 = 〈ψ,H(ϕ)〉L2(Ω+)4 + 〈−i(α ·N )tΣψ, tΣϕ〉H−1/2,H1/2 . (3.3.16)

Now, using (1.3.23) and the fact that −i(α ·N )tΣψ = 2(α ·N )CΣ(α ·N )tΣψ , it follows that

〈−i(α ·N )tΣψ, tΣϕ〉H−1/2,H1/2 = 〈2(α ·N )CΣ(α ·N )tΣψ, tΣϕ〉H−1/2,H1/2

= 〈−i(α ·N )tΣψ,−2iCΣ(α ·N )tΣϕ〉H−1/2,H1/2 .
(3.3.17)

Similarly, using that tΣϕ = 2iCΣ(α ·N )tΣϕ , we get that

〈−i(α ·N )tΣψ, tΣϕ〉H−1/2,H1/2 = −〈−i(α ·N )tΣψ,−2iCΣ(α ·N )tΣϕ〉H−1/2,H1/2 . (3.3.18)
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From this, we conclude that

〈−i(α ·N )tΣψ, tΣϕ〉H−1/2,H1/2 = 0. (3.3.19)

Therefore, we obtain

〈H(ψ), ϕ〉L2(Ω+)4 = 〈ψ,H(ϕ)〉L2(Ω+)4 ,

which yields the inclusion D ⊂ dom(H∗Ω+
). We now prove the converse inclusion. Given

ϕ ∈ D(Ω+)4 and let ψ ∈ dom(H∗Ω+
). Then by definition there exists χ ∈ L2(Ω+)4 such that

〈H(ψ), ϕ〉D′(Ω+)4,D(Ω+)4 = 〈ψ,H(ϕ)〉D′(Ω+)4,D(Ω+)4 = 〈ψ,H(ϕ)〉L2(Ω+)4 = 〈ψ, χ〉D′(Ω+)4,D(Ω+)4 .

Thus, we get that H(ψ) = χ in D′(Ω+)4 and then in L2(Ω+)4. Hence, ψ, (α ·∇)ψ ∈ L2(Ω+)4,
so it remains to show that P−tΣψ = 0 in H−1/2(Σ)4. To this end, recall the definition of the
extension operator EΩ+ from Subsection 1.2.1. Observe that EΩ+(P+g) ∈ dom(HΩ+), for all
g ∈ H 1/2(Σ)4. Hence, from (3.3.16) and (3.3.19) it follows that

〈−i(α ·N )tΣψ, P+g〉H−1/2,H1/2 = 0. (3.3.20)

Thus, we get

〈−i(α ·N )tΣψ, g〉H−1/2,H1/2 = 〈−i(α ·N )tΣψ, P−g〉H−1/2,H1/2 . (3.3.21)

Now, using (1.3.23) and the identity −4(CΣ(α ·N ))2 = I4, a simple computation yields

〈−i(α ·N )tΣψ, g〉H−1/2,H1/2 = 〈−i(α ·N )tΣψ,−4P−(CΣ(α ·N ))2g〉H−1/2,H1/2

= 〈2iCΣ(α ·N )tΣψ, i(α ·N )P−g〉H−1/2,H1/2 .
(3.3.22)

Therefore, we get

〈
(1

2 − iCΣ(α ·N )
)
tΣψ, g〉H−1/2,H1/2 = 0. (3.3.23)

Since this is true for all g ∈ H 1/2(Σ)4, it follows that ψ ∈ D. Hence dom(H∗Ω+
) ⊂ D, which

proves (a).
Proof of (b). Fix ψ ∈ dom(H∗Ω+

) and let (gj)j∈N = (P+hj)j∈N ⊂ H 1/2(Σ)4 be a sequence
of functions that converges to tΣψ in H−1/2(Σ)4. Set

ψj = ψ + ΦΩ+ [i(α ·N )(gj − tΣψ]) + EΩ+ ({α ·N ,CΣ}(α ·N )(gj − tΣψ)) := ψ + F1 + F2.
(3.3.24)

Clearly, ψj , (α · ∇)ψj ∈ L2(Ω+)4, for all j ∈ N. Now observe that

tΣF1 = P+(gj − tΣψ) and tΣF2 = {α ·N ,CΣ}(α ·N )(gj − tΣψ). (3.3.25)

Hence we get

tΣψj = gj + {α ·N ,CΣ}(α ·N )(gj − tΣψ). (3.3.26)

Since {α ·N ,CΣ} is bounded from H−1/2(Σ)4 into H 1/2(Σ)4, it follows that tΣψj ∈ H 1/2(Σ)4.
Therefore, ψj ∈ H 1(Ω+)4 holds by Proposition 1.2.4-(ii). As P−gj = 0 = P−tΣψ, we get that

2iCΣ(α ·N ){α ·N ,CΣ}(α ·N )(gj − tΣψ) = {α ·N ,CΣ}(α ·N )(gj − tΣψ).
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Using this and the fact that gj = P+gj , from (3.3.26) it follows that P−tΣψj = 0. Thus,
ψj ∈ dom(HΩ+), for all j ∈ N. Now, by Proposition 1.3.3 (i)-(ii), we obtain that

ψj −−−→
j→∞

ψ in L2(Ω+)4. (3.3.27)

Next, by Proposition 1.3.3-(i) and the trace theorem, there is C > 0 such that

‖H(ψj − ψ)‖2L2(Ω+)4 6 ‖tΣψj − tΣψ‖2H−1/2(Σ)4 . (3.3.28)

Thus

H(ψj) −−−→
j→∞

H(ψ) in L2(Ω+)4. (3.3.29)

Summing up, we have proved that (ψj , HΩ+(ψj)) convergences to (ψ,H∗Ω+
(ψ)) when j tends

to infinity. Therefore, HΩ+ ⊂ H∗Ω+
and this completes the proof of (b).

Finally, it remains to prove that HΩ+ 6⊂ HΩ+ . Pick g ∈ H−1/2(Σ)4 \ L2(Σ)4 and set
ψ = EΩ+(P+g). Then ψ ∈ dom(HΩ+) and ψ /∈ dom(HΩ+), as otherwise g ∈ H 1/2(Σ)4 by
Proposition 1.3.3-iv). This achieves the proof of the theorem.

Remark 3.3.1. It should be noted that the reason Ha,λ � H 1(R3\Σ)4 and Ha,λ′ � H 1(R3\Σ)4

are not self-adjoint for critical parameters is that we are projecting in the wrong direction.
In other words, we have forced the terms (more precisely, the projectors associated with each
problem) that allow us to regularize the functions in dom(Ha,λ) (respectively in dom(Ha,λ′))
to be zero; see Proposition 1.3.3-(iv).
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Chapter 4

Poincaré-Steklov operators for the
MIT bag Model

In this chapter, we will describe the results obtained in the article [31] in collaboration
with Vincent Bruneau and Mahdi Zreik.

4.1 Introduction
Throughout this chapter, for m > 0 we use the symbol Dm to denote the Dirac operator

(−iα · ∇ + mβ). For a Lipschitz domain Ω ⊂ R3 with a compact boundary Σ, we let
rΩ : L2(R3)4 → L2(Ω)4 be the restriction operator on Ω and eΩ : L2(Ω)4 → L2(R3)4 is the
extension by 0 outside of Ω. We set

Ωi = Ω and Ωe = R3 \ Ω, Σ = ∂Ω,

and we denote by n and σ the outward pointing normal to Ωi and the surface measure on Σ,
respectively. We denote by P± the orthogonal projections along the boundary Σ defined by

P± := 1
2 (I4 ∓ iβ(α · n(x))) , x ∈ Σ. (4.1.1)

In the previous chapter, we have seen that the coupling (Dm+µβδΣ) generates confinement
when µ = ±2 (see Theorem 3.2.4), and gives rise to the so-called Dirac operator with the MIT
bag boundary condition on Ωi, (HMIT(m), dom(HMIT(m))), or simply the MIT bag operator,
which is defined on the domain

dom(HMIT(m)) :=
{
ψ ∈ H 1/2(Ωi)4 : (α · ∇)u ∈ L2(Ωi)4 and P−tΣψ = 0 on Σ

}
, (4.1.2)

by HMIT(m)ψ = Dmψ, for all ψ ∈ dom(HMIT(m)), and where the boundary condition holds
in L2(Σ)4. We recall that if Ω is in the class of Hölder’s domains C 1,ω, with ω ∈ (1/2, 1),
then Theorem 3.2.3 yields that HMIT(m) is self-adjoint and

dom(HMIT(m)) :=
{
ψ ∈ H 1(Ω)4 : P−tΣψ = 0 on Σ

}
.

Among all Dirac operators acting on domains arising in the context of confining δ-shell
interactions, the MIT bag operator stands out among the latter by the fact that it can also
be obtained as a limit of Dirac operators

HMϕ = (Dm +Mβ1Ωe)ϕ, ∀ϕ ∈ dom(HM ) := H 1(R3)4,
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as M −→∞, where 1Ωe is characteristic function of Ωe. This idea was originally introduced
by Bogolioubov in the late 60’s [33], and has been revised by the MIT physicists almost 52
years ago. Recently, under the assumption that Ωi is bounded smooth domain (C 3-smooth to
be precise), in [99] it is shown that in the massless case (i.e., m = 0) the spectral projections of
bidimensional analogue of HM converge to those of the bidimensional analogue of HMIT(m).
In the same setting, based on a resolvent identity, in [14] it was shown that the convergence
in the norm resolvent sense holds with a convergence rate of O(M−1/2). In three dimensional
case, it was shown that in the limite M → ∞, any eigenvalue of HMIT(m) is a limit of
eigenvalues of HM , cf. [6, 87].

The main goal of this chapter is to relate the resolvents of HM and HMIT(m) via a
Krein-type resolvent formula and answer the following question:

Let M0 > 0 be large enough and fix M >M0. Given f ∈ L2(R3)4 and U ∈ H 1(R3)4, what is
the boundary value problem on Ωi whose solutions closely approximate those of

(Dm +Mβ − z)U = f?

Throughout this chapter, for z ∈ ρ(Dm) we denote by ΦΩ
z,m the restriction on Ω of the

mapping Φz defined by (1.3.4), and by Cz,m the Cauchy operator associated with (Dm − z),
i.e.,

Cz,m[f ](x) = lim
ρ↘0

∫
|x−y|>ρ

φzm(x− y)f(y)dσ(y), for σ-a.e. x ∈ ∂Ω, f ∈ L2(Σ)4, (4.1.3)

and we set

Λzm = 1
2β + Cz,m, for all z ∈ ρ(Dm), (4.1.4)

The following lemma is a consequence of Theorem 3.2.5 and Proposition 2.3.1.

Lemma 4.1.1. For any z ∈ ρ(Dm), the operator Λzm is bounded invertible in L2(Σ)4. If in
addition Ω is C 2-smooth, then Λzm : H 1/2(Σ)4 −→ H 1/2(Σ)4 is bounded invertible.

Proof. From assertions (i) and (vi) of Theorem 3.2.5 and its proof, we know that
Kr(Λzm) = {0} and that Λzm is Fredholm operator with index 0, which implies the first
statement of the lemma. The second statement follows from this and Proposition 2.3.1.

As we will see in Section 4.5, to obtain an explicit formula for the resolvent of HM we
will need to treat certain boundary integral operators as pseudodifferential operators and use
symbol calculus in order to ensure their invertibility in H 1/2(Σ)4. In the following part, we
recall the basic facts concerning the classes of pseudodifferential operators that will serve in
the rest of this chapter.

4.1.1 Symbol classes and Pseudodifferential operators

We recall here the basic facts concerning the classes of pseudodifferential operators that
will serve in the rest of the paper.

Let M4(C) be the set of 4 × 4 matrices over C. For d ∈ N∗ we let Sm(Rd × Rd) be the
standard symbol class of order m ∈ R whose elements are matrix-valued functions a in the
space C∞(Rd × Rd; M4(C)) such that

|∂αx ∂
β
ξ a(x, ξ)| 6 Cαβ(1 + |ξ|2)m−|β|, ∀(x, ξ) ∈ Rd × Rd, ∀α ∈ Nk, ∀β ∈ Nk. (4.1.5)
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Let S (Rd) be the Schwartz class of functions. Then, for each a ∈ Sm(Rd×Rd), for h ∈ (0, 1]
we associate a semiclassical pseudodifferential operator Oph(a) : S (Rd)4 → S (Rd)4 via the
standard formula

Oph(a)u(x) = 1
(2π)d/2

∫
Rd
eiξ·xa(x, hξ)F[u](ξ)dξ, ∀u ∈ S (Rd)4.

If a ∈ S0(Rd ×Rd), then Calderón-Vaillancourt theorem’s [36] yields that Oph(a) extends to
a bounded operator from L2(Rd)4 into itself, and there exists C,NC > 0 such that∣∣∣∣∣∣Oph(a)

∣∣∣∣∣∣
L2→L2

6 C max
|α+β|6NC

∣∣∣∣∣∣∂αx ∂βξ a∣∣∣∣∣∣L∞ . (4.1.6)

Given a C∞-smooth domain Ω ⊂ R3 with a compact boundary Σ = ∂Ω. Then Σ is a
2-dimensional parameterized surface, which in the sense of differential geometry, can also be
viewed as a smooth 2-dimensional manifold immersed into R3. Then, Σ can be covered by an
atlas A = {(Uj , Vj , ϕj)|j ∈ {1, · · · , N}} (i.e., a collection of smooth charts) where N ∈ N∗.
That is

Σ =
N⋃
j=1

Uj ,

and for each j ∈ {1, · · · , N}, Uj is an open set of Σ, Vj ⊂ R2 is an open set of the parametric
space R2, and ϕj : Uj → Vj is a C∞- diffeormorphism. Moreover, by definition of a smooth
manifold, if Uj ∩ Uk 6= ∅ then

ϕk ◦ (ϕj)−1 ∈ C∞
(
ϕj(Uj ∩ Uk); ϕk(Uj ∩ Uk)

)
.

As usual, we define the pull-back (ϕ−1
j )∗ and the pushforward ϕ∗j by

(ϕ−1
j )∗u = u ◦ ϕ−1

j and ϕ∗jv = v ◦ ϕj ,

for u and v functions on Uj and Vj , respectively. We also recall that a function u on Σ is said
to be in the class C k(Σ) if for every chart the pushforward has the property (ϕ−1

j )∗u ∈ C k(Vj).
Following Zworski [106, Part 4]), we define pseudodifferential operators on the boundary

Σ as follows:

Definition 4.1.1. Let A : C∞(Σ)4 → C∞(Σ)4 be a continuous linear operator. Then A is
said to be a h-pseudodifferential operator of order m ∈ R on Σ, and we write A ∈ OphSm(Σ),
if

(1) for every chart (Uj , Vj , ϕj) there exists a symbol a ∈ Sm such that

ψ1A (ψ2u) = ψ1ϕ
∗
jOph(a)(ϕ−1

j )∗(ψ2u),

for any ψ1, ψ2 ∈ C∞0 (Uj) and u ∈ C∞(Σ)4.

(2) for all ψ1, ψ2 ∈ C∞(Σ) such that supp(ψ1) ∩ supp(ψ2) = ∅ and for all N ∈ N we have

‖ψ1A ψ2‖H−N (Σ)4→HN (Σ)4 = O(h∞).

For h fixed (for example h = 1), A is called a pseudodifferential operator.
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Since the study of a given pseudodifferential operator on Σ reduce to the local study on
local charts, in what follows, we shall recall the specific local coordinates and the notations
of surface geometry we will use in the rest of the paper.

We always fix an open set U ⊂ Σ, and we let χ : V → R to be a C∞-function (where
V ⊂ R2 is open) such that its graph coincides with U . Set ϕ(x̃) = (x̃, χ(x̃)), then for x ∈ U
we write x = ϕ(x̃) with x̃ ∈ V . Here and also in what follows, ∂1χ and ∂2χ stand for the
partial derivatives ∂x̃1χ and ∂x̃2χ, respectively. Recall that the first fundamental form, I, and
the metric tensor G(x̃) = (gjk(x̃)), have the form

I = g11dx̃
2
1 + 2g12dx̃1dx̃2 + g22dx̃

2
2,

G(x̃) = (gjk(x̃)) =
(
g11 g12
g21 g22

)
(x̃) :=

(
1 + |∂1χ|2 ∂1χ∂2χ
∂1χ∂2χ 1 + |∂2χ|2

)
(x̃).

As G(x̃) is symmetric, it follows that it is diagonalizable by an orthogonal matrix. Indeed,
let

Q(x̃) :=

 |∂2χ|
|∇χ|

∂1χ∂2χ
|∂2χ||∇χ|

− ∂1χ∂2χ
|∂2χ||∇χ|

|∂2χ|
|∇χ| ,

(1 0
0 g−1/2

)
(x̃). (4.1.7)

where g stands for the determinant of G. Then, it is straightforward to check that

QtGQ(x̃) = I2, QQt(x̃) = G−1(x̃) =:
(
gjk(x̃)

)
, det(Q) = det(Qt) = g−1/2. (4.1.8)

4.2 Basic properties of the MIT bag operator

In this section, we give a brief review of the basic spectral properties of the Dirac operator
with the MIT bag boundary condition on Lipschitz domains. Then, we establish some results
concerning the regularization properties of the resolvent and the Sobolev regularity of the
eigenfunctions in the case of smooth domains.

In order to stress the notations, we often write Ω instead of Ωi. The following theorem
gathers the basic properties of the MIT bag operator. We mention that some of theses
properties are well-known in the case of smooth domains, see, e.g., [6, 7, 9, 21, 90].

Theorem 4.2.1. Let (HMIT(m), dom(HMIT(m))) be as in (4.1.2), then

(HMIT(m)− z)−1 = rΩ(Dm − z)−1eΩ − ΦΩ
z,m(Λzm)−1tΣ(Dm − z)−1eΩ, ∀z ∈ ρ(Dm).

(4.2.1)

Moreover, the following statements hold true:

(i) If Ω is bounded, then Sp(HMIT(m)) = Spdisc(HMIT(m)) ⊂ R \ [−m,m].

(ii) If Ω is unbounded, then Sp(HMIT(m)) = Spess(HMIT(m)) = (−∞,−m] ∪ [m,+∞).
Moreover, if Ω is connected then Sp(HMIT(m)) is purely continuous.

(iii) Let z ∈ ρ(HMIT(m)) be such that 2|z| < m, then for all f ∈ L2(Ω)4 it holds that

∥∥∥(HMIT(m)− z)−1f
∥∥∥

L2(Ω)4
.

1
m
‖f‖L2(Ω)4 .
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4. Poincaré-Steklov operators for the MIT bag Model

Proof. Recall that for any ϕ,ψ ∈ dom(HMIT(m)), density arguments yield the Green’s
formula

〈(−iα · ∇)ϕ,ψ〉L2(Ω)4 − 〈ϕ, (−iα · ∇)ψ〉L2(Ω)4 = 〈(−iα · n)tΣϕ, tΣψ〉L2(Σ)4 . (4.2.2)

We first check the resolvent formula (4.2.1). So let f ∈ L2(Ω)4, z ∈ ρ(Dm) and set

ψ = rΩ(Dm − z)−1eΩf − ΦΩ
z,m(Λzm)−1tΣ(Dm − z)−1eΩf. (4.2.3)

Since (Dm − z)−1eΩ is bounded from L2(Ω)4 into H 1(R3)4 and (Λzm)−1 is well-defined by
Lemma 4.1.1, it follows that

u = rΩ(Dm − z)−1eΩf ∈ H 1(Ω)4 and g = −(Λzm)−1tΣ(Dm − z)−1eΩf ∈ L2(Σ)4.

The properties of ΦΩ
z,m from Proposition 1.3.1 imply that ψ ∈ H 1/2(Ω)4. Next, using Lemmas

4.1.1 (i) and 1.3.2 we easily get

tΣψ = P+β(Λzm)−1tΣ(Dm − z)−1eΩf,

thus P−tΣψ = 0 on Σ, which means that ψ ∈ dom(HMIT(m)). Using that (Dm− z)ΦΩ
z,m[g] =

0, it follows that (HMIT(m)− z)ψ = f and the formula (4.2.1) is proved.
Now, we are going to prove assertions (i) and (ii). First, note that for ψ ∈ dom(HMIT(m))

a straightforward application of the Green formula (4.2.2) yields that

‖HMIT(m)ψ‖2L2(Ω)4 = ‖(−iα · ∇)ψ‖2L2(Ω)4 +m2 ‖ψ‖2L2(Ω)4 +m ‖P+tΣψ‖2L2(Σ)4 . (4.2.4)

Thus ‖HMIT(m)ψ‖2L2(Ω)4 > m2 ‖ψ‖2L2(Ω)4 which entails that Sp(HMIT(m)) ⊂ (−∞,−m] ∪
[m,+∞). Note that this fact can be seen immediately from the formula (4.2.1). Next, we
show that {−m,m} /∈ Spdisc(HMIT(m)). Assume that there is 0 6= ψ ∈ dom(HMIT(m)) such
that (HMIT(m)−m)ψ = 0 in Ω. Then, from (4.2.4) we have that

‖(−iα · ∇)ψ‖2L2(Ω)4 +m ‖P+tΣψ‖2L2(Σ)4 = 0.

Since m > 0 it follows that P+tΣψ = 0, and thus tΣψ = 0. Using this and the above equation,
an integration by parts (using density arguments) gives

‖(−iα · ∇)ψ‖L2(Ω)4 = ‖∇ψ‖L2(Σ)4 = 0.

From this we conclude that ψ vanishes identically, which contradicts the fact that ψ 6= 0,
and thus m /∈ Spdisc(HMIT(m)). Following the same lines as above we also get that −m /∈
Spdisc(HMIT(m)). Thus, if Ω is bounded, then the above considerations and the fact that
dom(HMIT(m)) ⊂ H 1/2(Ω)4 is compactly embedded in L2(Ω)4 yield that Sp(HMIT(m)) =
Spdisc(HMIT(m)) ⊂ R \ [−m,m], which shows the assertion (i).
Lest us now complete the proof of (ii), so suppose that Ω is unbounded. We first show that
(−∞,−m] ∪ [m,+∞) ⊂ Spess(HMIT(m)) by constructing Weyl sequences as in the case of
half-space, see Theorem 2.3.3. As Ω is unbounded it follows that there is R1 > 0 such that the
half-space {x = (x1, x2, x3) ∈ R3 : x3 > R1} is strictly contained in Ω and R3 \Ω ⊂ B(0, R1).
Fix λ ∈ (−∞,−m) ∪ (m,+∞) and let ξ = (ξ1, ξ2) be such that |ξ|2 = λ2 −m2. We define
the function ϕ : R3 −→ C4 by

ϕ(x, x3) =
(
ξ1 − iξ2
λ−m

, 0, 0, 1
)t
eiξ·x, with x = (x1, x2).
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Clearly we have (Dm−λ)ϕ = 0. Now, fix R2 > R1 and let η ∈ C∞0 (R2,R) and χ ∈ C∞0 (R,R)
be such that supp(χ) ⊂ [R1, R2]. For n ∈ N?, we define the sequences of functions

ϕn(x, x3) = n−
3
2ϕ(x, x3)η(x/n)χ(x3/n), for (x, x3) ∈ Ω.

Then, as in the proof of Theorem 2.3.3, it is easy to check that ϕn ∈ H 1
0 (Ω) ⊂ dom(HMIT(m)),

(ϕn)n∈N? converges weakly to zero, and that

‖ϕn‖2L2(Ω)4 = 2λ
λ−m

‖χ‖2L2(R2)‖θ‖
2
L2(R) > 0,

‖ (Dm − λ)ϕn‖L2(Ω)4

‖ϕn‖L2(Ω)4
−−−→
n→∞

0.

Therefore, Weyl’s criterion yields that (−∞,−m) ∪ (m,+∞) ⊂ Spess(HMIT(m)). Since the
spectrum of a self-adjoint operator is closed, we then get the first statement of (ii). Now, if
we assume in addition that Ω is connected, then using the same arguments as in the proof of
[11, Theorem 3.7] (i.e., using Rellich’s lemma and the unique continuation property) one can
verifies that HMIT(m) has no eigenvalues in R \ [−m,m]. As {−m,m} /∈ Spdisc(HMIT(m)) it
follows that HMIT(m) has a purely continuous spectrum.

Now we prove (iii). Let ψ ∈ dom(HMIT(m)), then (4.2.4) yields that

m2 ‖ψ‖2L2(Ω)4 6 ‖HMIT(m)ψ‖2L2(Ω)4 ,

and thus

m ‖ψ‖L2(Ω)4 6 ‖HMIT(m)ψ‖L2(Ω)4 6 ‖(HMIT(m)− z)ψ‖L2(Ω)4 + |z| ‖ψ‖L2(Ω)4

Therefore, for 2|z| < m with z ∈ ρ(HMIT(m)), we get that

‖ψ‖L2(Ω)4 6 2m−1 ‖(HMIT(m)− z)ψ‖L2(Ω)4 .

Thus, (iii) follows by taking ψ = (HMIT(m)− z)−1f .

Now we establish regularity results which concerns the regularization property of the
resolvent and the Sobolev regularity of the eigenfunctions of HMIT(m). The first statement
of the theorem will be crucial in Section 4.4 when studying the semiclassical pseudodifferential
properties of the Poincaré-Steklov operator.

Theorem 4.2.2. Let k > 1 be an integer and assume that Ω is C 2+k-smooth. Then the
following statements hold true:

(i) The mapping (HMIT(m)−z)−1 : H k(Ω)4 −→ H k+1(Ω)4∩dom(HMIT(m)) is well-defined
and bounded for all m > 0 and all z ∈ ρ(HMIT(m)). In particular, for m0 > 0 and all
z ∈ ρ(HMIT(m0)) ∩ ρ(HMIT(m)) we have

‖(HMIT(m)− z)−1‖Hk(Ω)4−→Hk+1(Ω)4 . 1,

uniformly on m > m0.

(ii) If φ is an eigenfunction associated with an eigenvalue z ∈ Sp(HMIT(m)), i.e., (HMIT(m)−
z)φ = 0, then φ ∈ H 1+k(Ω)4. In particular, if Ω is C∞-smooth, then φ ∈ C∞(Ω)4.

To prove this theorem we need the following classical regularity result.
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Proposition 4.2.1. Let k be a nonnegative integer. Assume that Ω is C 3+k-smooth and
u ∈ H 1(Ω). If u solves the Neumann problem

−∆u = f ∈ H k(Ω) and ∂nu = g ∈ H 1/2+k(Σ), (4.2.5)

then u ∈ H 2+k(Ω).

Proof. First, assume that k = 0. As Ω is C 3-smooth we know that the Neumann trace
∂n : H 2(Ω)→ H 1/2(Σ) is surjective. Thus, there is G ∈ H 2(Ω) such that ∂nG = g in Σ. Note
that the function ũ = u−G satisfies the homogeneous Neumann problem

−∆ũ = f + ∆G in Ω and ∂nũ = 0 on Σ.

Therefore, ũ ∈ H 2(Ω) by [84, Theorem 5, p. 217], which implies that u ∈ H 2(Ω) and this
proves the result for k = 0. If k > 1, then the result follows by [58, Theorem 2.5.1.1].

Proof of theorem 4.2.2. The theorem will be proved by induction on k. First, we
show (i), so fix z ∈ ρ(HMIT(m)) and assume that k = 1. Let φ = (φ1, φ2)> ∈ dom(HMIT(m))
be such that (Dm − z)φ = f in Ω, with f = (f1, f2)> ∈ H 1(Ω)4. By assumption we have
(∆ + m2 − z2)φ = (Dm − z)f in D′(Ω)4, and then in L2(Ω)4. We next prove that ∂nφ ∈
H 1/2(Σ)4. To this end, consider Ωε := {x ∈ R3 : dist(x,Σ) < ε} for ε > 0. Then, for δ > 0
small enough and 0 < ε 6 δ the mapping Ψ : Σ× (−ε, ε)→ Ωε, defined by

Ψ(xΣ, t) = xΣ + tn(xΣ), xΣ ∈ Σ, t ∈ (−ε, ε) (4.2.6)

is a C 2-diffeomorphism and Ωε := {x+ tn(x) : x ∈ Σ, t ∈ (−ε, ε)}.
Let P̃− : L2(Ωε ∩ Ω)4 → L2(Ωε ∩ Ω)4 be the bounded operator defined by

P̃−ϕ(Ψ(x, t)) = 1
2(I4 + iβ(α · n(x)))ϕ(Ψ(x, t)), Ψ(x, t) ∈ Ωε ∩ Ω.

Let x0
Σ be an arbitrary point on the boundary Σ, fix 0 < r < ε/2, and let ζ : R3 → [0, 1] be

a C∞-smooth and compactly supported function such that ζ = 1 on B(x0
Σ, r) and ζ = 0 on

R3 \B(x0
Σ, 2r). We claim that P̃−ζφ satisfies the elliptic problem −∆(P̃−ζφ) = g in Ω,

tΣ(P̃−ζφ) = 0 on Σ,
(4.2.7)

with g ∈ L2(Ω)4. Indeed, set B(x) = iβ(α · n(x)) for x ∈ Σ, and observe that

(Dm − z)(P̃−ζφ) =
(
P̃−ζf + 1

2[Dm, ζ]φ
)

+ 1
2[Dm, ζB]φ =: I(φ, f) + 1

2[Dm, ζB]φ.

Since n is C 2-smooth, ζ is infinitely differentiable and ψ, f ∈ H 1(Ω)4, it is clear that I(φ, f) ∈
H 1(Ω)4 and [Dm, ζB]φ ∈ L2(Ω)4. Now, applying (Dm + z) to the above equation yields that
−∆(P̃−ζφ) = g with

g := (z2 −m2)P̃−ζφ+ (Dm + z)I(φ, f) + z

2[Dm, ζB]φ+ 1
2Dm[Dm, ζB]φ.

As before, it is clear that the first three terms are square integrable. Next, observe that

D0[D0, ζB]φ = {D0, [D0, ζB]}φ− [D0, ζB](f − (mβ − z)φ)
= [−∆, ζB]φ− [D0, ζB](f − (mβ − z)φ).
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Using this together with the smoothness assumption on n and the fact (Dm − z)φ = f ∈
H 1(Ω)4, we easily see that D0[D0, ζB]φ ∈ L2(Ω)4. Hence, Dm[Dm, ζB]φ is square integrable,
which means that g ∈ L2(Ω)4. As P−tΣφ = 0 and tΣ(P̃−ζφ) = tΣζP−tΣφ = 0 on Σ, by [56,
Theorem 8.12 ] it follows that P̃−ζφ ∈ H 2(Ωε ∩ Ω)4, which implies that

ζ(φ1 + i(σ · n)φ2) ∈ H 2(B(x0
Σ, 2r) ∩ Ω)2 and ζ(−i(σ · n)φ1 + φ2) ∈ H 2(B(x0

Σ, 2r) ∩ Ω)2.

Consequently, we get

φ1 + i(σ · n)φ2 ∈ H 2(B(x0
Σ, r) ∩ Ω)2 and − i(σ · n)φ1 + φ2 ∈ H 2(B(x0

Σ, r) ∩ Ω)2. (4.2.8)

Since −i(σ · ∇)φ2 = (z −m)φ1 + f1 and −i(σ · ∇)φ1 = (z + m)φ2 + f2 hold in H 1(Ω)2, it
follows from (4.2.8) that

(σ · ∇)φj ∈ H 1(B(x0
Σ, r))2 and (σ · ∇)(σ · n)φj ∈ H 1(B(x0

Σ, r))2, j = 1, 2. (4.2.9)

Using this and the fact that n is C 2-smooth, we easily get that

(σ · n)(σ · ∇)φj + (σ · ∇)(σ · n)φj = 〈n,∇〉I2φj + Fj ∈ H 1(B(x0
Σ, r))2, (4.2.10)

with Fj ∈ H 1(B(x0
Σ, r)∩Ω)2. As a consequence, we get that 〈n,∇〉I2φj ∈ H 1(B(x0

Σ, r)∩Ω)2.
Since this holds true for all x0

Σ ∈ Σ, using the compactness of Σ it follows that ∂nφ ∈ H 1/2(Σ)4.
Therefore, Propositions 4.2.1 yields that φ ∈ H 2(Ω)4.

Next, assume k > 2, Ω is C 2+k-smooth and φ, f ∈ H k(Ω)4. Since n is C 1+k-smooth and Ψ
defined by (4.2.6) is a C 1+k-diffeomorphism, following the same arguments as above we then
conclude that ∂nφ ∈ H k+1/2(Σ)4. Note also that −∆φ = (z2−m2)φ+(Dm−z)f ∈ H k−1(Ω)4.
Therefore, thanks to Propositions 4.2.1, we conclude that φ ∈ H k+1(Ω)4, which proves the
first statement of (i).

Now, the second statement of (i) is a direct consequence of the first one, and this completes
the proof of (i).

Finally, the proof of the first statement of (ii) follows the same lines as the one of (i). In
particular, if Ω is C∞-smooth, we then get φ ∈ H k+1(Ω)4 for any k > 0, which implies that
φ is infinitely differentiable in Ω, and the theorem is proved.

4.3 Principal symbol of the Poincaré-Steklov operator
The main purpose of this section is to define the Poincaré-Steklov operator Am associated

with the Dirac operator and to prove that it fits into the framework of pseudodifferential
operators.

Throughout this section, let Ω be a smooth domain with a compact boundary Σ, let P±
be as in (4.1.1) and set

S ·X = −γ5(α ·X) for all ∀X ∈ R3, γ5 := −iα1α2α3 =
(

0 I2
I2 0

)
. (4.3.1)

Using the anticommutation relations of the Dirac’s matrices we easily get the following iden-
tities

i(α ·X)(α · Y ) = iX · Y + S · (X ∧ Y ),
{S ·X,α · Y } = −(X · Y )γ5, [S ·X,β] = 0, ∀X,Y ∈ R3.

(4.3.2)

We next give the rigorous definition of the Poincaré-Steklov operator Am.
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Definition 4.3.1. (PS operator) Let z ∈ ρ(HMIT(m)) and g ∈ P−H 1/2(Σ)4. We denote by
EΩ
m(z) : P+H 1/2(Σ)4 → H 1(Ω)4 the lifting operator associated with the elliptic problem{

(Dm − z)v = 0 in Ω,
P−tΣv = g on Σ.

(4.3.3)

That is, EΩ
m(z)g is the unique function in H 1(Ω)4 satisfying (Dm − z)EΩ

m(z)g = 0 in Ω and
P−tΣE

Ω
m(z)g = g on Σ. Then the Poincaré-Steklov (PS) operator Am : P−H 1/2(Σ)4 −→

P+H 1/2(Σ)4 associated with the system (4.3.3) is defined by

Amg = P+tΣE
Ω
m(z)g.

Recall the definitions of ΦΩ
z,m and Λzm from Subsection 4.1. Then, the following proposition

justifies the existence and the unicity of the solution to the elliptic problem (4.3.3), and gives
in particular the explicit formula of the PS operator in terms the operator (Λzm)−1 when
z ∈ ρ(Dm). The second assertion of the proposition will be particularly important in Section
4.4 when studying the PS operator from the semiclassical point of view.

Proposition 4.3.1. For any z ∈ ρ(HMIT(m)) and g ∈ P−H 1/2(Σ)4, the elliptic problem
(4.3.3) has a unique solution EΩ

m(z)[g] ∈ H 1(Ω)4. Moreover, the following hold true

(i)
(
EΩ
m(z)

)∗
= −βP+tΣ(HMIT(m)− z)−1.

(ii) For any compact set K ⊂ C, there is m0 > 0 such that for all m > m0 it holds that
K ⊂ ρ(HMIT(m)), and for all z ∈ K we have∣∣∣∣∣∣EΩ

m(z)g
∣∣∣∣∣∣

L2(Ω)4
.

1√
m
||g||L2(Σ)4 , ∀g ∈ P−H 1/2(Σ)4.

(iii) If z ∈ ρ(Dm), then EΩ
m(z) and Am are explicitly given by

EΩ
m(z) = ΦΩ

z (Λzm)−1 and Am = −P+β(Λzm)−1P−. (4.3.4)

Proof. We first show that the boundary value problem (4.3.3) has a unique solution.
For this, assume that u1 and u2 are both solutions of (4.3.3), then (Dm − z)(u1 − u2) = 0
in Ω, and P−tΣ(u1 − u2) = 0 on Σ. Thus, (u1 − u2) ∈ dom(HMIT(m)), and since HMIT(m)
is self-adjoint by Theorem 4.2.1 it follows that u1 = u2, which proves the uniqueness. Next,
observe that the function

vg = EΩ(P−g)− (HMIT(m)− z)−1(Dm − z)EΩ(P−g)

is a solution to (4.3.3). Indeed, we have EΩ(P−g) ∈ H 1(Ω)4 and thus vg ∈ H 1(Ω)4, moreover,
we clearly have that P−tΣvg = g and (Dm − z)vg = 0. Since we already know that the
solution to (4.3.3) is unique, it follows that vg is independent of the extension operator EΩ,
and hence there is a unique solution in H 1(Ω)4 to the elliptic problem (4.3.3).

Let us show the assertion (i). Let ψ ∈ P−H 1/2(Σ)4 and f ∈ L2(Ω)4, then using the
Green’s formula and the fact that P+(−iα · n) = (−iα · n)P− we get that

〈EΩ
m(z)ψ, f〉L2(Ω)4 = 〈EΩ

m(z)ψ, (HMIT(m)− z)(HMIT(m)− z)−1f〉L2(Ω)4

= 〈EΩ
m(z)ψ, (Dm − z)(HMIT(m)− z)−1f〉L2(Ω)4

= 〈(Dm − z)EΩ
m(z)ψ, (HMIT(m)− z)−1f〉L2(Ω)4

+ 〈(−iα · n)tΣEΩ
m(z)ψ, tΣ(HMIT(m)− z)−1f〉L2(Σ)4

= 〈(−iα · n)P−tΣEΩ
m(z)ψ, P+tΣ(HMIT(m)− z)−1f〉L2(Σ)4

= 〈ψ,−βP+tΣ(HMIT(m)− z)−1f〉L2(Σ)4
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which entails that −βP+tΣ(HMIT(m)− z)−1 is the adjoint of EΩ
m(z) and proves (i).

Now we are going to show the assertion (ii). So, let K be a compact set of C, and note
that for all m > sup{|Re(z)| : z ∈ K} it holds that K ⊂ ρ(Dm) ⊂ ρ(HMIT(m)). Hence,
v := EΩ

m(z)g is well defined for any z ∈ K and g ∈ P−H 1/2(Σ)4. Then a straightforward
application of the Green’s formula yields that

0 = ||(Dm − z)v||2L2(Ω)4 = ||(iα · ∇ − z)v||2L2(Ω)4 +m2 ||v||2L2(Ω)4

+m
(
〈−i(α · n)tΣv, βtΣv〉L2(Σ)4 − 2Re(z)〈v, βv〉L2(Ω)4

)
.

(4.3.5)

Observe that

〈−i(α · n)tΣv, βtΣv〉L2(Σ)4 = 〈(P+ − P−)tΣv, tΣv〉L2(Σ)4 = ||P+tΣv||2L!2(Σ)4 − ||P−tΣv||2H1/2(Σ)4 .

Since P−tΣv = g and P+tΣv = Am(g) hold by definition, and that

−Re(z)〈v, βv〉L2(Ωe)4 > −|Re(z)| ||v||2L2(Ωe)4

holds by Cauchy-Schwarz inequality, it follows from (4.3.5) that

||g||2L2(Σ)4 > m ||v||2L2(Ω)4 − 2|Re(z)| ||v||2L2(Ω)4 + ||Am(g)||2L!2(Σ)4 .

Thus, if we take m0 > 4 sup{|Re(z)| : z ∈ K}, then

||Am(g)||2L2(Σ)4 + m

2 ||v||
2
L2(Ω)4 6 ||g||2L2(Σ)4 (4.3.6)

holds for any m > m0, which prove the desired estimate for EΩ
m(z).

Let us now show the assertion (iii), so let z ∈ ρ(Dm) and recall that ΦΩ
z,m(Λzm)−1 :

H 1/2(Σ)4 → H 1(Ω)4 is well defined and bounded by Lemma 4.1.1. Since φzm is a fundamental
solution of (Dm − z), it holds that

(Dm − z)ΦΩ
z,m(Λzm)−1[g] = 0 in L2(Ω)4, ∀g ∈ H 1/2(Σ)4.

Next, observe that if g ∈ P−H 1/2(Σ)4, then a direct application of the jump formula from
Lemma 1.3.2 yields that

tΣΦΩ
z,m(Λzm)−1[g] =

(
− i2(α · n) + Cz,m

)
(Λzm)−1[g] = g − P+β(Λzm)−1[g].

Consequently, we get

P−tΣΦΩ
z,m(Λzm)−1[g] = g and P+tΣΦΩ

z,m(Λzm)−1[g] = −P+β(Λzm)−1[g],

which means that EΩ
m(z)[g] = ΦΩ

z,m(Λzm)−1[g] is the unique solution to the boundary value
problem (4.3.3), and proves the identity Am = −P+β(Λzm)−1P−. This completes the proof
of the proposition.

Remark 4.3.1. The proof above gives more, namely that for all m0 > 0, K ⊂ ρ(Dm0) a
compact set and z ∈ K, there is m1 � 1 such that

sup
m>m1

||Am||2P−H1/2(Σ)4−→P+L2(Σ)4 . 1.
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Remark 4.3.2. It is worthwhile to note that if z ∈ ρ(Dm), then the assertion (i) of Proposi-
tion 4.3.1 is a direct consequence of the resolvent formula (4.2.1). Indeed, let ψ ∈ P−H 1/2(Σ)4

and f ∈ L2(Ω)4, then thanks to Lemma 1.3.3 and Proposition 4.3.1- (iii) we have

〈f,EΩ
m(z)ψ〉L2(Ω)4 = 〈eΩf,−Φz,m(Λzm)−1ψ〉L2(R3)4

= 〈−P−(Λzm)−1tΣ(Dm − z)−1eΩf, ψ〉L2(Σ)4 ,
(4.3.7)

where Φz,m is the mapping given by (1.3.4), which is defined from H 1/2(Σ)4 to H 1(R3 \Σ)4.
Now, from the explicit formula of (HMIT(m)− z)−1 (see (4.2.1)) it is easy to check that

P+tΣ(HMIT(m)− z)−1eΩf = −βP−(Λzm)−1tΣ(Dm − z)−1eΩf.

From this and (4.3.7) we obtain that −βP+tΣ(HMIT(m)− z)−1 is the adjoint of EΩ
m(z).

Remark 4.3.3. Note that if Ω is a Lipschitz domain, then EΩ
m(z) is the unique solution

in H 1/2(Ω)4 to the system (4.3.3) for datum in L2(Σ)4. Moreover, the PS operator Am =
−P+β(Λzm)−1P− is well-defined and bounded as an operator from P−L2(Σ)4 to P+L2(Σ)4.

In the rest of this section, we will only address the case z ∈ ρ(Dm) and we show that
the Poincaré-Steklov operator Am from Definition 4.3.1 is a homogeneous pseudodifferential
operators of order 0 and capture its principal symbol in local coordinates. To this end, we
first study the pseudodifferential properties of the Cauchy operator Cz,m. Once this is done,
we use the explicit formula of Am given by (4.3.4) and the symbol calculus to obtain the
principal symbol of Am.

Recall the definition of φzm from (1.3.1), and observe that

φzm(x− y) = kz(x− y) + w(x− y),

where

kz(x− y) = ei
√
z2−m2|x−y|

4π|x− y|

(
z +mβ +

√
z2 −m2α · x− y

|x− y|

)
+ i

ei
√
z2−m2|x−y| − 1
4π|x− y|3 α · (x− y),

w(x− y) = i

4π|x− y|3α · (x− y).

Using this, it follows that

Cz,m[f ](x) = lim
ρ↘0

∫
|x−y|>ρ

w(x− y)f(y)dσ(y) +
∫

Σ
kz(x− y)f(y)dσ(y)

=W [f ](x) +K[f ](x).
(4.3.8)

As |kz(x−y)| = O(|x−y|−1) when |x−y| → 0, using the standard layer potential techniques
(see, e.g. [101, Chap. 3, Sec. 4] or [100, Chap. 7, Sec. 11]) it is not hard to prove
that the integral operator K gives rise to a pseudodifferential operator of order −1, i.e.
K ∈ OpS−1(Σ). Thus, we can (formally) write

Cz,m = W mod OpS−1(Σ), (4.3.9)

which means that the strongly singular operator W encodes the main contribution in the
pseudodifferential character of Cz,m. So we only need to focus on the study of the pseudod-
ifferential properties of W . The following theorem makes this heuristic more rigorous. Its
proof follows similar arguments as in [4, 85, 86].
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Theorem 4.3.1. Let Cz,m be as (4.1.3), W as in (4.3.8) and Am as in Definition 4.3.1.
Then Cz,m, W and Am are homogeneous pseudodifferential operators of order 0, and we have

Cz,m = 1
2α ·

∇Σ√
−∆Σ

mod OpS−1(Σ),

Am = 1√
−∆Σ

S · (∇Σ ∧ n)P− mod OpS−1(Σ),
(4.3.10)

where, in local coordinates, the symbol of ∇Σ(−∆Σ)−1/2 is given by

〈G−1ξ, ξ〉−1/2
(

G−1ξ
〈∇χ(x̃), G−1ξ〉

)
.

In particular, in local coordinates, Am has principal symbol

pAm(x̃, ξ) = S ·
(
ξ ∧ n(x)√
ξ ∧ n(x)

)
P−. (4.3.11)

Proof. We first deal with the operatorW . So, let ψk : Σ→,R, k = 1, 2, be a C∞-smooth
function. Clearly, if supp(ψ2) ∩ supp(ψ1) = ∅, then ψ2Wψ1 gives rise to a bounded operator
from H−j(Σ)4 into H j(Σ)4, for all j > 0.
Now, fix a local chart (U, V, ϕ) as in Subsection 4.1.1 and recall the definition of first funda-
mental form I and the metric tensor G(x̃). That is, for all x ∈ U we have x = ϕ(x̃) = (x̃, χ(x̃))
with x̃ ∈ V , and where the graph of χ : V → R coincides with U . Notice that if we assume
that ψk is compactly supported with supp(ψk) ⊂ U , then, in this setting, the operator ψ2Wψ1
has the form

ψ2W [ψ1f ](x) =ψ2(x)p.v
∫
V
iα · ϕ(x̃)− ϕ(ỹ)

4π|ϕ(x̃)− ϕ(ỹ)|3ψ1(ϕ(ỹ))f(ϕ(ỹ))
√
g(ỹ)dỹ

=ψ2(x)
√
g(x̃)p.v

∫
V
iα · ϕ(x̃)− ϕ(ỹ)

4π|ϕ(x̃)− ϕ(ỹ)|3ψ1(ϕ(ỹ)f(ϕ(ỹ))dỹ

+ ψ2(x)
∫
V
iα · ϕ(x̃)− ϕ(ỹ)

4π|ϕ(x̃)− ϕ(ỹ)|3 f(ϕ(ỹ))
(√

g(ỹ)−
√
g(x̃)

)
dỹ.

(4.3.12)

where g is the determinant of the metric tensor G. Since g(·) is smooth, it follows that

|
√
g(ỹ)−

√
g(x̃)| . |x̃− ỹ|.

Therefore, the last integral operator on the right-hand side of (4.3.12) has a non singular
kernel and does not require to write it as an integral operator in the principal value sense.
Next, let x, y ∈ U such that x = ϕ(x̃) and y = ϕ(ỹ), with x̃, ỹ ∈ V . Then, a simple
computation using Taylor’s formula shows that

|x− y|2 = |ϕ(x̃)− ϕ(ỹ)|2 = 〈x̃− ỹ, G(x̃)(x̃− ỹ)〉(1 + O|x̃− ỹ|),

where the definition of I was used in the last equality. It follows from the above computations
that

|x− y|−3 = 1
〈x̃− ỹ, G(x̃)(x̃− ỹ)〉3/2

+ k1(x̃, ỹ),
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where the kernel k1 satisfies |k1(x̃, ỹ)| = O(|x̃ − ỹ|−2), when |x̃ − ỹ| → 0. Consequently, we
get that

xj − yj
|x− y|3

=


x̃j − ỹj

〈x̃− ỹ, G(x̃)(x̃− ỹ)〉3/2
+ (x̃j − ỹj)k1(x̃, ỹ), for j = 1, 2,

〈∇χ, x̃− ỹ〉
〈x̃− ỹ, G(x̃)(x̃− ỹ)〉3/2

+ k2(x̃, ỹ), for j = 3,

with |k2(x̃, ỹ)| = O(|x̃− ỹ|−1), when |x̃− ỹ| → 0. Note that this implies

α ·
(
x− y
|x− y|3

)
= α · (x̃− ỹ, 〈∇χ, x̃− ỹ〉)

〈x̃− ỹ, G(x̃)(x̃− ỹ)〉3/2
+ O(|x̃− ỹ|−1)I4.

Combining the above computations and (4.3.12),we deduce that

ψ2W [ψ1f ](x) = ψ2(x)
√
g(x̃)p.v

∫
V
iα

(x̃− ỹ, 〈∇χ, x̃− ỹ〉)
〈x̃− ỹ, G(x̃)(x̃− ỹ)〉3/2

f(ϕ(ỹ))dỹ + ψ2(x)L[ψ1f ](x),

(4.3.13)

where L is an integral operator with a kernel l(x, y) satisfying

|l(x, y)| = O(|x− y|−1) when |x− y| → 0.

Thus, similar arguments as the ones in [100, Chap. 7, Sec. 11] yield that L is a pseu-
dodifferential operator of order −1. Now, for h ∈ L2(R2) and k = 1, 2, observe that if we
set

Rk[h](x̃) = i
√
g(x̃)
4π

∫
R2
rk(x̃, x̃− ỹ)h(ỹ)d(ỹ),

where

rk(x̃, x̃− ỹ) = x̃k − ỹk
〈x̃− ỹ, G(x̃)(x̃− ỹ)〉3/2

, x̃ 6= ỹ.

Then the standard formula connecting a pseudodifferential operator and its symbol yields

Rk[h](x̃) = i
√
g(x̃)

(2π)2

∫
R2

∫
R2
ei〈x̃−ỹ,ξ〉qk(x̃, ξ)h(ỹ)dξdỹ,

where

qk(x̃, ξ) = i
√
g(x̃)
2

∫
R2
e−i〈ω,ξ〉rk(x̃, ω)dξ.

Recall the definition of Q from (4.1.7) and set ω = Q(x̃)τ . Also recall that∫
R2
e−i〈ω,ξ〉

ωk
|ω|3

dω = −i ξk
|ξ|
, k = 1, 2. (4.3.14)

Thus, the above change of variables together with the properties (4.1.8) and (4.3.14) yield
that

qk(x̃, ξ) = i

2

∫
R2
e−i〈τ,Q

t(x̃)ξ〉 (Qt(x̃)τ)k
|τ |3

dτ = (G−1(x̃)ξ)k
2〈G−1(x̃)ξ, ξ〉1/2

= gk1ξ1 + gk2ξ2
2〈G−1(x̃)ξ, ξ〉1/2

, (4.3.15)
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which means that qk(x̃, ξ) is homogeneous of degree 0 in ξ. Therefore Rk is a homogeneous
pseudodifferential operators of degree 0. It is worth mentioning that (G−1(x̃)ξ, 〈∇χ(x̃), G−1ξ〉)t

and 〈G−1(x̃)ξ, ξ〉 are the symbols of the surface gradient ∇Σ and the Laplace-Beltrami oper-
ator ∆Σ, respectively. From the above observation and (4.3.13) if follows that

ψ2Wψ1 = ψ2α · (R1, R2, ∂1χ(x̃)R1 + ∂2χ(x̃)R2)ψ1 + ψ2Lψ1. (4.3.16)

Since L is a pseudodifferential operator of order -1 we deduce that W is a homogeneous
pseudodifferential operators of order 0, and we obtain that

W = 1
2α ·

∇Σ√
−∆Σ

mod OpS−1(Σ). (4.3.17)

Thanks to (4.3.9) and (4.3.17), we deduce that the Cauchy operator Cz,m has the same
principal symbol as the operator W .

Now we are going to deal with the operator Am. Note that we have

1
2

(
β + α · ∇Σ√

−∆Σ

)2
= I4, (4.3.18)

and as Am is given by the formula

Am = −P+β

(1
2β + Cz,m

)−1
P−,

using (4.3.18) and the standard mollification arguments, it follows from the product formula
for calculus of pseudodifferential operators that, in local coordinates, the symbol of Am

denoted by qAm has the form

qAm(x̃, ξ) = −P+β

(
β + α ·

(
(
∑
k g

1kξk,
∑
k g

2kξk, 〈∇χ(x̃), G−1ξ〉)>

〈G−1ξ, ξ〉1/2

))
P− + p(x̃, ξ),

where p ∈ S−1(Σ). Therefore, we get

qAm(x̃, ξ) = −P+βα ·
(

(
∑
k g

1kξk,
∑
k g

2kξk, 〈∇χ(x̃), G−1ξ〉)>

〈G−1ξ, ξ〉1/2

)
P− + p(x̃, ξ).

Hence, using the fact that P± are projectors, a computation shows

qAm(x̃, ξ) = −1
2

[
iα · n(x), α · (

∑
k g

1kξk,
∑
k g

2kξk, 〈∇χ(x̃), G−1ξ〉)>

〈G−1ξ, ξ〉1/2

]
P− + p(x̃, ξ), (4.3.19)

where [ , ] is the commutator bracket. Hence, the formula (4.3.2) together with the fact that(
G−1ξ

〈∇χ(x̃), G−1ξ〉

)
∧ n(x) = ξ ∧ n(x), 〈G−1ξ, ξ〉1/2 = |ξ ∧ n(x)|,

give that

pAm(x̃, ξ) = S ·
(
ξ ∧ n(x)√
ξ ∧ n(x)

)
P− + p(x̃, ξ),

Am = 1√
−∆Σ

S · (∇Σ ∧ n(x))P− mod OpS−1(Σ),

which proves the formula (4.3.11) and the fact that Am is a homogeneous pseudodifferential
operators of order 0. This completes the proof of the theorem.
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Remark 4.3.4. It is worth pointing out that the above result might be generalized for less
regular surface. Indeed, we first notice that the arguments used in the proof remain valid if
one assumes for example that Ω is C 2+α-smooth, α > 0. In this setting, Theorem 4.3.1 can
be generalized without any difficulties by changing slightly the definition of pseudodifferential
operators, see, e.g., [4, 85, 86]. More generally, if we assume that Ω is a Lipschitz domain
with an outward unit normal having vanishing mean oscillations on Σ, then Theorem 4.3.1
can be recovered using the symbol calculus introduced in [64], see also [100].

4.4 Approximation of the Poincaré-Steklov operators for large
mass

Although the technique used in the last section allows us to treat the layer potential
operator Am as pseudodifferential operator and to derive its principal symbol. However, it
does not allow us to capture the dependence on m. The main goal of this section is to study
the Poincaré-Steklov operator, Am, as a m-dependent pseudodifferential operator when m
is large enough. For this purpose, we consider h = 1/m as a semiclassical parameter (for
m � 1) and use the system (4.3.3) instead of the layer potential formula of Am. Roughly
speaking, we will look for a local approximate formula for the solution of (4.3.3). Once this
is done, we use the regularization property of the resolvent of the MIT bag operator to catch
the semiclassical principal symbol of Am.

Throughout this section, we assume that m > 1, z ∈ ρ(HMIT(m)) and that Ω is smooth
with a compact boundary Σ := ∂Ω. We next introduce the semiclassical parameter h =
m−1 ∈ (0, 1], and we set A h := Am. Recall the definition of the spin angular momentum S
from (4.3.1).

The following theorem is the main result of this section, it ensures that A h is a h-
pseudodifferential operator of order 0 and gives its semiclassical principal symbol.

Theorem 4.4.1. Let h ∈ (0, 1] and z ∈ ρ(HMIT(m)), and let A h be as above. Then for any
N ∈ N, there exists a h-pseudodifferential operator of order 0, A h

N ∈ OphS0(Σ) such that for
h sufficiently small, and any 0 ≤ l ≤ N + 1

2

‖A h −A h
N‖H 1

2 (Σ)→HN+ 3
2−l(Σ)

= O(hN+ 1
2 +l), (4.4.1)

and

A h
N = S ·

(
h∇Σ ∧ n√

−h2∆Σ + I + I

)
P− mod hOphS−1(Σ).

Let us consider A = {(Uϕj , Vϕj , ϕj)|j ∈ {1, · · · , N}} an atlas of Σ and (Uϕ, Vϕ, ϕ) ∈ A.
As in Section 4.3 we consider the case where Uϕ is the graph of a smooth function χ, and we
assume that Ω corresponds locally to the side x3 > χ(x1, x2). Then, for

Uϕ ={(x1, x2, χ(x1, x2)); (x1, x2) ∈ Vϕ}; ϕ((x1, x2, χ(x1, x2)) = (x1, x2) (4.4.2)
Vϕ,ε :={(y1, y2, y3 + χ(y1, y2)); (y1, y2, y3) ∈ Vϕ × (0, ε)} ⊂ Ω, (4.4.3)

with ε sufficiently small, we have the following homeomorphism:

φ : Vϕ,ε −→ Vϕ × (0, ε)
(x1, x2, x3) 7→ (x1, x2, x3 − χ(x1, x2)).
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Then the pull-back

φ∗ : C∞(Vϕ × (0, ε)) −→ C∞(Vϕ,ε)
v 7→ φ∗v := v ◦ φ

transforms the differential operator Dm restricted on Vϕ,ε into the following operator on
Vϕ × (0, ε):

D̃ϕ
m := (φ−1)∗Dm(φ)∗ = −i (α1∂y1 + α2∂y2 − (α1∂x1χ+ α2∂x2χ− α3)∂y3) +mβ

= −i(α1∂y1 + α2∂y2) +
√

1 + |∇χ|2(iα · nϕ)(ỹ)∂y3 +mβ,
(4.4.4)

where ỹ = (y1, y2), and nϕ = (ϕ−1)∗n is the pull-back of the outward pointing normal to Ω
restricted on Vϕ:

nϕ(ỹ) = 1√
1 + |∇χ|2

∂x1χ
∂x2χ
−1

 (y1, y2). (4.4.5)

For the projectors P±, we have:

Pϕ± := (ϕ−1)∗P±(ϕ)∗ = 1
2
(
I4 ∓ iβ α · nϕ(ỹ)

)
.

Figure 4.1: Flattening the boundary Σ

Hence, in the variable y ∈ Vϕ × (0, ε), the equation (4.3.3) becomes:{
(D̃ϕ

m − z)u = 0, in Vϕ × (0, ε),
Γϕ−u = gϕ = g ◦ ϕ−1, on Vϕ × {0},

(4.4.6)

where Γϕ± = Pϕ±t{y3=0}.
By isolating the derivative with respect to y3, and using that (iα · nϕ)−1 = −iα · nϕ, the
system (4.4.6) becomes:∂y3u = iα · nϕ(ỹ)√

1 + |∇χ(ỹ)|2
(
− iα1∂y1 − iα2∂y2 +mβ − z

)
u, in Vϕ × (0, ε),

Γϕ−u = gϕ, on Vϕ × {0}.
(4.4.7)
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Let us now introduce the matrices-valued symbols

L0(ỹ, ξ) := iα · nϕ(ỹ)√
1 + |∇χ(ỹ)|2

(
α · ξ + β

)
; L1(ỹ) := −izα · nϕ(ỹ)√

1 + |∇χ(ỹ)|2
, (4.4.8)

with ξ = (ξ1, ξ2) identified with (ξ1, ξ2, 0). Then (4.4.7) is equivalent to{
h∂y3u = L0(ỹ, hDỹ)u+ hL1(ỹ)u, in Vϕ × (0, ε),

Γϕ−u = gϕ, on Vϕ × {0}.
(4.4.9)

Before constructing an approximate solution of the system (4.4.9), let us give some properties
of L0.

4.4.1 Algebric properties of L0

The following lemma will be used in the sequel, it gathers some useful properties which al-
low us to simplify the expression of L0(ỹ, ξ). We omit the proof since it is an easy consequence
of the anticommutation relations of the Dirac’s matrices and the formulas (4.3.2).

Lemma 4.4.1. Let nϕ and ξ be as above, and let S be as in (4.3.1). Then, for any z ∈ C
and any τ ∈ R3 such that τ ⊥ nϕ, the following identities hold:

(S · τ − imβ(α · nϕ(ỹ)))2 =
(
|τ |2 +m2

)
I4. (4.4.10)

Pϕ±(S · τ) = (S · τ)Pϕ∓ and Pϕ±(iα · nϕ) = (iα · nϕ)Pϕ∓ . (4.4.11)

The next proposition gathers the main properties of the operator L0.

Proposition 4.4.1. Let L0(ỹ, ξ) be as in (4.4.8), then we have

L0(ỹ, ξ) = 1√
1 + |∇χ(ỹ)|2

(
iξ · nϕ(ỹ) + S · (nϕ(ỹ) ∧ ξ)− iβ(α · nϕ(ỹ))

)
,

= ξ · ñϕ(ỹ) + λ(ỹ, ξ)√
1 + |∇χ(ỹ)|2

Π+(ỹ, ξ)− λ(ỹ, ξ)√
1 + |∇χ(ỹ)|2

Π−(ỹ, ξ)

where

λ(ỹ, ξ) :=
√
|nϕ ∧ ξ|2 + 1,

ñϕ(ỹ) := 1√
1 + |∇χ|2

nϕ(ỹ),

Π±(ỹ, ξ) :=1
2

(
I4 ±

S · (nϕ(ỹ) · ξ)− iβ(α · nϕ(ỹ))
λ(ỹ, ξ)

)
.

(4.4.12)

In particular, the symbol L0(ỹ, ξ) is elliptic in S1 and it admits two eigenvalues ρ±(·, ·) ∈ S1

of multiplicity 2 which are given by

ρ±(ỹ, ξ) = inϕ(ỹ) · ξ ± λ(ỹ, ξ)√
1 + |∇χ|2

, (4.4.13)

and for which there exists c > 0 such that

±<ρ±(ỹ, ξ) > c〈ξ〉, (4.4.14)
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uniformly with respect to ỹ. Moreover, Π±(ỹ, ξ) are the projections onto Kr(L0(ỹ, ξ) −
ρ±(ỹ, ξ)I4), belong to the symbol class S0 and satisfy:

Pϕ± Π±(ỹ, ξ)Pϕ± = kϕ+(ỹ, ξ)Pϕ± and Pϕ± Π∓(ỹ, ξ)Pϕ∓ = ∓Θϕ(ỹ, ξ)Pϕ∓ , (4.4.15)

with

kϕ±(ỹ, ξ) = 1
2

(
1± 1

λ(ỹ, ξ)

)
, Θϕ(ỹ, ξ) = 1

2λ(ỹ, ξ) (S · (nϕ(ỹ) ∧ ξ)) . (4.4.16)

That is, kϕ+ is a positive function of S0, (kϕ+)−1 ∈ S0 and Θϕ ∈ S0.

Remark 4.4.1. Thanks to the property (4.4.15) a 4× 4-matrix A is uniquely determined by
Pϕ−A and Π+A and we have:

A = Pϕ−A+ Pϕ+A = Pϕ−A+ 1
kϕ+
Pϕ+Π+P

ϕ
+A =

(
I −

Pϕ+Π+
kϕ+

)
Pϕ−A+

Pϕ+
kϕ+

Π+A.

Proof of Proposition 4.4.1. By definition it is clear that L0(ỹ, ξ) belongs to the symbol
class S1, Π±(ỹ, ξ),Θϕ ∈ S0, kϕ+ a positive function of S0 and (kϕ+)−1 ∈ S0. Now, by (4.3.2)
we obtain that

L0(ỹ, ξ) = 1√
1 + |∇χ(ỹ)|2

(
iξ · nϕ(ỹ) + S · (nϕ(ỹ) ∧ ξ)− iβ(α · nϕ(ỹ))

)
,

and since (nϕ ∧ ξ) ⊥ nϕ, Lemma 4.4.1 yields that

(S · (nϕ(ỹ) ∧ ξ)− iβ(α · nϕ(ỹ)))2 = |nϕ ∧ ξ|2 + 1 = (λ(ỹ, ξ))2,

with λ as in (4.4.12). From this we deduce that L0(ỹ, ξ) has two eigenvalues ρ± which are
given by (4.4.13) and Π±(ỹ, ξ) are the corresponding projectors onto Kr(L0(ỹ, ξ)−ρ±(ỹ, ξ)I4).
Next, using that

|nϕ ∧ ξ|2 = (1 + |∇χ|2)−1(|ξ|2 + (ξ1∂χ2 − ξ2∂χ1)2),

and the fact that |∇χ(ỹ)| . 1 holds uniformly with respect to ỹ, we get for some c > 0
independent of ỹ that

±<ρ±(ỹ, ξ) =
√
|nϕ ∧ ξ|2 + 1√

1 + |∇χ|2
> c(1 + |ξ|),

which gives (4.4.14) and shows that ρ± are elliptic in S1. Consequently, we also get that
L0(ỹ, ξ) is elliptic in S1. Now, using Lemma 4.4.1 and the properties (4.3.1), a simple
computation shows that

Pϕ+Π± = kϕ±P
ϕ
+ ±

1
2λ (S · (nϕ(ỹ) ∧ ξ)) Pϕ− ,

Pϕ−Π± = kϕ∓P
ϕ
− ±

1
2λ (S · (nϕ(ỹ) ∧ ξ)) Pϕ+ ,

(4.4.17)

with kϕ± as in (4.4.16). Hence, (4.4.15) directly follows from the above formulas.
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4.4.2 Semiclassical parametrix for the boundary problem

In this subsection, we construct the approximate solution of the system (4.3.3) mentioned
in the introduction of this section. For simplicity of notations, in the sequel we will use y
and P± instead of ỹ and Pϕ± , respectively.

We are going to construct a local approximate solution of the following first order system:{
h∂τu

h = L0(y, hDy)uh + hL1(y)uh, in R2 × (0,+∞),
P−u

h = f, on R2 × {0},
(4.4.18)

where L0(y, ξ) = l0,0(y) + l0,1(y) · ξ with l0,0, l0,1 and L1 matrices-valued symbols of S0, such
that the properties of Proposition 4.4.1 hold for L0 and P±.

To be precise, we will look for a solution uh in the following form:

uh(y, τ) = Oph(Ah(·, ·, τ))f =
∫
R2
Ah(y, hξ, τ)eiy·ξ f̂(ξ)dξ, (4.4.19)

with Ah(·, ·, τ) ∈ S0 for any τ > 0 constructed inductively in the form:

Ah(y, ξ, τ) ∼
∑
j≥0

hjAj(y, ξ, τ).

The action of h∂τ − L0(y, hDy) − hL1(y) on Ah(y, hDy, τ)f is given by T h(y, hDy, τ)f ,
with

T h(y, ξ, τ) = h(∂τA)(y, ξ, τ)−L0(y, ξ)A(y, ξ, τ)+h
(
L1(y)A(y, ξ, τ)−∂ξL0(y, ξ)·∂yA(y, ξ, τ)

)
.

Then we look for A0 satisfying:{
h∂τA0(y, ξ, τ) = L0(y, ξ)A0(y, ξ, τ),

P−(y)A0(y, ξ, τ) = P−(y),
(4.4.20)

and for j ≥ 1,{
h∂τAj(y, ξ, τ) = L0(y, ξ)Aj(y, ξ, τ) + L1(y)Aj−1(y, ξ, τ)− ∂ξL0(y, ξ) · ∂yAj−1(y, ξ, τ),

P−(y)Aj(y, ξ, τ) = 0,
(4.4.21)

Proposition 4.4.2. Let A0 be the solution of (4.4.20), then

A0(y, ξ, τ) = Π−(y, ξ)P−(y)
kϕ+(y, ξ) eh

−1τρ−(y,ξ).

In particular, A0(·, ·, τ) ∈ S0, and for all (k, l) ∈ N2 it holds that

τk∂lτA0(·, ·, τ) ∈ hk−lS−k+l.

Proof. The solutions of the differential system h∂τA0 = L0A0 are

A0(y, ξ, τ) = eh
−1τL0(y,ξ)A0(y, ξ, 0).

By definition of ρ± and Π±, we have:

eh
−1τL0(y,ξ) = eh

−1τρ−(y,ξ)Π−(y, ξ) + eh
−1τρ+(y,ξ)Π+(y, ξ). (4.4.22)
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It follows from (4.4.14) that A0 belongs to S0 for any τ > 0 if and only if Π+(y, ξ)A0(y, ξ, 0) =
0. Moreover, the boundary condition P−A0 = P− implies P−(y)A0(y, ξ, 0) = P−(y). Thus,
thanks to Remark 4.4.1, we deduce that

A0(y, ξ, 0) = P−(y)− P+Π+P−
kϕ+

(y, ξ) = P−(y) + P+Π−P−
kϕ+

(y, ξ) = Π−P−
kϕ+

(y, ξ).

Hence, for τ fixed the properties of ρ−, Π−, P− and k+ given in Proposition 4.4.1, imply that

Π−P−
kϕ+

∈ S0 and τk∂lτ (eh−1τρ−(y,ξ)) ∈ hk−lS−k+l,

for all (k, l) ∈ N2. This concludes the proof of Proposition 4.4.2.

Next we treat the term A1, after that we see more clearly in which symbol class we should
construct the terms Aj , j ≥ 2. Set a0(y) := iα · ñ(y), and define A1(y, ξ, τ), then we have:

Proposition 4.4.3. Let A1 be the solution to the system{
h∂y3A1(y, ξ, τ) = L0(y, ξ)A1(y, ξ, τ) + a0(y)(−iα · ∂y − z)A0(y, ξ, τ),

Γϕ−A1(y, ξ, 0) = 0,
(4.4.23)

Then

A1(y, ξ, τ) = eh
−1τρ−

[
B1,0(y, ξ) + h−1τB1,1(y, ξ) + h−2τ2B1,2(y, ξ)

]
,

with B1k ∈ h1S−1 for k ∈ {0, 1, 2}.

Proof. We have

A1(y, ξ, τ) =eh−1L0 τA1|τ=0 + eh
−1L0 τ

∫ τ

0
e−h

−1sL0a0(y)(−iα · ∂y − z)A0(y, ξ, s)ds,

:= I1(τ) + I2(τ)

with

I1(τ) =
(
eh
−1τρ−Π− + eh

−1τρ+Π+
)
A1|τ=0,

and

I2(τ) = eh
−1τL0

∫ τ

0
e−h

−1sL0a0(y)(iα · ∂y − z)A0|y3=0 ds

=
(
eh
−1y3ρ−Π− + eh

−1y3ρ+Π+
) ∫ y3

0
e−h

−1L0 sa0(y)(−iα · ∂y − z)A0|τ=0 ds,

Using the decomposition of e−h−1sL0 as (4.4.22), we get that∫ y3

0
e−h

−1L0sa0(y)(−iα · ∂y + z)A0|y3=0 ds = J1(y3) + J2(y3),

where

J1(τ) =
∫ τ

0
e−h

−1sρ−Π−a0(y)(−iα · ∂y)
(
eh
−1sρ−Π−A0|s=0

)
ds,
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J2(y3) =
∫ y3

0
e−h

−1sρ+Π+a0(y)(−iα · ∂y − z)
(
esρ−Π−A0|s=0

)
ds,

A simple computation shows that

J1(τ) = Π−a0

(
−h−1 τ

2

2 iα · ∂yρ− − iτα · ∂y

)
Π−A0|τ=0,

and that

J2(τ) :=
∫ τ

0
eh
−1s(ρ−−ρ+)Π+a0

(
−ih−1sα · ∂yρ− − iα · ∂y − z

)
Π−A0|s=0 ds

= Π+a0

[−iτα · ∂yρ−
ρ− − ρ+

+ iα · ∂yρ−
h−1(ρ− − ρ+))2

]
eh
−1τ(ρ−−ρ+)Π−A0|τ=0

+ Π+a0

[(−iα · ∂y − z)
h−1(ρ− − ρ+)

]
eh
−1τ(ρ−−ρ+)Π−A0|τ=0

−Π+a0

[
iα · ∂yρ−

h−1(ρ− − ρ+)2 ) + (−iα · ∂y + z)
h−1(ρ− − ρ+)

]
Π−A0|τ=0.

Thus, we get

A1(y, ξ, τ) =
(
eh
−1τρ−Π− + eh

−1τρ+Π+
)
A1|τ=0

+ eh
−1τρ−Π−a0

(
−h−1 τ

2

2 iα · ∂yρ− − iτα · ∂y

)
Π−A0|τ=0

+ eh
−1τρ−Π+a0

[(
τ(−iα · ∂yρ−)

(ρ− − ρ+) + iα · ∂yρ−
h−1(ρ− − ρ+))2

)]
Π−A0|y3=0

+ eh
−1τρ−Π+a0

[(−iα · ∂y − z)
h−1(ρ− − ρ+)

]
Π−A0|τ=0

− eh−1τρ+Π+a0

[
iα · ∂yρ−

h−1(ρ− − ρ+)2 ) + (−iα · ∂y − z)
h−1(ρ− − ρ+)

]
Π−A0|τ=0.

As the terms involving eh−1τρ+ are not square integrable, it follows that

Π+A1|y3=0 = Π+a0

[
iα · ∂yρ−

h−1(ρ− − ρ+)2 + (−iα · ∂y + z)
h−1(ρ− − ρ+)

]
Π−A0|y3=0, (4.4.24)

Thanks to Remark 4.4.1, we deduce that

A1(y, ξ, y3) = eh
−1y3ρ−

[
B1,0(y, ξ) + h−1y3B1,1(y, ξ) + h−2y2

3B1,2(y, ξ)
]
,

with

B1,0(y, ξ) = −hΠ+a0

((z + iα · ∂y)
2λ − iα · ∂yρ−

4λ2

)
Π−A0(y, ξ, 0),

B1,1(y, ξ) = hΠ+a0

(−iα · ∂yρ−
λ

− (iα · ∂y)
]

Π−A0|y3=0,

B1,2(y, ξ) = hΠ−a0

[
−1

2 iα · ∂yρ−
]

Π−A0|y3=0.
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From this we see that B1k ∈ h1S−1 for k ∈ {0, 1, 2}, and this completes the proof.

The construction of the terms A0 and A1 leads us to introduce the following class of
parametrized symbols

Pm
h := {b(·, ·, τ) ∈ Sm; ∀(k, l) ∈ N2, τk∂lτ b(·, ·, τ) ∈ hk−lSm−k+l}; m ∈ Z, (4.4.25)

in which we shall construct the other terms Aj , j ≥ 2. Indeed, we have

Proposition 4.4.4. Let A0 be defined by Proposition 4.4.2. Then for any j ≥ 1, there exists
Aj ∈ hjP−jh solution of (4.4.21) which has the form:

Aj(y, ξ, τ) = eh
−1τρ−(y,ξ)

2j∑
k=0

(h−1τ〈ξ〉)kBj,k(y, ξ), (4.4.26)

with Bj,k ∈ hjS−j.

Proof. SinceA1 has already the claimed form by Proposition 4.4.3, thus forAj with j ≥ 2,
it is sufficient to prove the induction step. Let us assume there exists Aj ∈ hjP−jh solution
of (4.4.21) satisfying the above property and let us prove that the same holds for Aj+1. In
order to be a solution of the differential system h∂τAj+1 = L0Aj+1 + L1Aj − ∂ξL0 · ∂yAj ,
Aj+1 :

Aj+1 = eh
−1τL0Aj+1|τ=0 + eh

−1τL0

∫ τ

0
e−h

−1sL0(L1Aj − ∂ξL0 · ∂yAj)ds, (4.4.27)

where L1Aj has still the form (4.4.26), and we have

∂yAj = eh
−1τρ−

(
h−1τ∂yρ− + ∂y

) 2j∑
k=0

(h−1τ〈ξ〉)kBj,k.

Thus, thanks to the properties ρ− and Bj,k, the quantity (L1Aj−∂ξL0 ·∂yAj)(y, ξ, s) has the
form:

eh
−1sρ−(y,ξ)

2j+1∑
k=0

(h−1τ〈ξ〉)kB̃j,k(y, ξ) (4.4.28)

with B̃j,k ∈ hjS−j . So, by using the decomposition (4.4.22), for the second term of the r.h.s.
of (4.4.27) we have:

eh
−1τL0

∫ τ

0
e−h

−1sL0(L1Aj − ∂ξL0 · ∂yAj)ds = eh
−1τρ−Π−Ij−(τ) + eh

−1τρ+Π+I
j
+(τ) (4.4.29)

with

Ij±(τ) =
∫ τ

0
eh
−1s(ρ−−ρ±)

2j+1∑
k=0

(h−1s〈ξ〉)kB̃j,kds,

For Ij−, the exponential term is equal to 1 and by integration of sk, we obtain:

Ij−(τ) =
2j+1∑
k=0

(h−1τ〈ξ〉)k+1h〈ξ〉−1

k + 1 B̃j,k. (4.4.30)

For Ij+, let us introduce Pk the polynomial of degree k such that∫ τ

0
eλsskds = 1

λk+1 (eτλPk(τλ)− Pk(0)),
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for any λ ∈ C∗. With this notation in hand, we easily see that the term eτ
hρ+Π+I

j
+(τ) has

the following form:

eτ
hρ+Π+I

j
+(τ) = Π+

2j+1∑
k=0

h〈ξ〉k

(ρ− − ρ+)k+1 B̃j,k
(
eτ
hρ−Pk(τh(ρ− − ρ+))− eτhρ+Pk(0)

)
, (4.4.31)

where τh := h−1τ . Thus, by combining (4.4.30) and (4.4.31) with (4.4.27), (4.4.29) and
(4.4.22), we obtain:

Aj+1 = eh
−1τρ+

(
Π+Aj+1|τ=0 − B̃

+
j+1

)
+ eh

−1τρ−
(
Π−Aj+1|τ=0 +

2(j+1)∑
k=0

(h−1τ〈ξ〉)kB̃−j+1,k

)
,

(4.4.32)
where

B̃+
j+1 = Π+

2j+1∑
k=0

h〈ξ〉k

(ρ− − ρ+)k+1Pk(0)B̃j,k ∈ hj+1S−j−1,

and B̃−j+1,k ∈ hj+1S−j−1 as a linear combination of products of Π− ∈ S0, h〈ξ〉−1 (or
h〈ξ〉k(ρ− − ρ+)−k−1) belonging to hS−1 and of B̃j,k ∈ hjS−j .

Now, in order to have Aj+1 ∈ S0, we let the contribution of the exponentially growing
term vanish by choosing

Π+Aj+1(y, ξ, 0) = B̃+
j+1(y, ξ). (4.4.33)

Then, thanks to Remark 4.4.1, the boundary condition P−(y)Aj+1(y, ξ, 0) = 0 gives

Aj+1(y, ξ, 0) = P+Π+
kϕ+

B̃+
j+1(y, ξ). (4.4.34)

Finally, we have

Aj+1(y, ξ, τ) = eh
−1τρ−(y,ξ)

(Π−P+Π+
kϕ+

B̃+
j+1(y, ξ) +

2(j+1)∑
k=0

(h−1τ〈ξ〉)kB̃−j+1,k(y, ξ)
)
,

and Proposition 4.4.4 is proven with

Bj+1,0 = Π−P+Π+
kϕ+

B̃+
j+1 + B̃−j+1,0,

and for k ≥ 1, Bj+1,k = B̃−j+1,k.

Thanks to the relation (4.4.19), to any Ah ∈ P0
h we associate a bounded operator from

L2(R2) into L2(R2×(0,+∞)). The boundedness in the variable y ∈ R2 is a consequence of the
Calderon-Vaillancourt theorem (see 4.1.6), and in the variable τ ∈ (0,+∞) it is essentially
the multiplication by an L∞-function. Moreover, for Aj of the form (4.4.26), we have the
following mapping property which captures the Sobolev space regularity.

Proposition 4.4.5. Let Aj, j ≥ 0, be of the form (4.4.26). Then, for any s ≥ −j − 1
2 , the

operator Aj defined by

Aj : f 7−→ (Ajf)(y, y3) =
∫
R2
Aj(y, hξ, y3)eiy·ξ f̂(ξ)dξ

gives rise to a bounded operator from H s(R2) into Hs+j+ 1
2 (R2× (0,+∞)). Moreover, for any

l ∈ [0, j + 1
2 ] we have:

‖Aj‖Hs→Hs+j+ 1
2−l

= O(hl−s). (4.4.35)

155



4.4. Approximation of the Poincaré-Steklov operators for large mass

Proof. First, let us prove the result for s = k − j − 1
2 , k ∈ N, between the semiclassical

Sobolev spaces

H s
scl(R2) := 〈hDy〉−sL2(R2)

H k
scl(R2 × (0,+∞)) := {u ∈ L2; 〈hDy〉k1(h∂y3)k2u ∈ L2 for (k1, k2) ∈ N2, k1 + k2 = k},

where 〈hDy〉 =
√
−h2∆R2 + I. Then, for f ∈ H s(R2)4, we have:

‖Ajf‖2Hk
scl(R2×(0,+∞)) =

∑
k1+k2=k

‖〈hDy〉k1(h∂y3)k2Ajf‖2L2(R2×(0,+∞))

=
∑

k1+k2=k

∫ +∞

0
‖〈hDy〉k1(h∂y3)k2(Ajf)(·, y3)‖2L2(R2)dy3.

(4.4.36)

Thanks to the ellipticity property (4.4.14), for Aj given by Proposition 4.4.4 we have:

(h∂y3)k2Aj(y, ξ, y3) = hjbj(y, ξ; y3)e−h−1y3
c
2 〈ξ〉〈ξ〉k2−j ,

with bj satisfying, for any (α, β) ∈ N2 × N2 there exists Cα,β > 0 such that:

|∂αy ∂
β
ξ bj(y, ξ; y3)| ≤ Cα,β, ∀(y, ξ; y3) ∈ R2 × R2 × (0,+∞).

Consequently, from the Calderón-Vaillancourt theorem’s (see (4.1.6)), we can write:

〈hDy〉k1(h∂y3)k2Aj = hjBj(y3)〈hDy〉k1+k2−je−h
−1y3

c
2 〈hDy〉,

with (Bj(y3))y3>0 a family of bounded operators on L2(R2), and uniformly bounded with
respect to y3 > 0. Then, for f ∈ Hs(R2)4, we have:

‖〈hDy〉k1(h∂y3)k2(Ajf)(·, y3)‖2L2(R2) . h
j‖〈hDy〉k1+k2−je−h

−1y3
c
2 〈hDy〉f‖2L2(R2),

and from (4.4.36) we deduce that

‖Ajf‖2Hk
scl(R2×(0,+∞)) . h

2j+1‖〈hDy〉k−j−
1
2 f‖2L2(R2) = h2j+1‖f‖2

H
k−j− 1

2
scl (R2)

,

where we used that for any l ∈ N, f ∈ H l− 1
2

scl (R2),

‖〈hDy〉le−h
−1y3

c
2 〈hDy〉f‖2L2(R2) = 〈e−h−1y3c〈hDy〉〈hDy〉lf , 〈hDy〉lf〉L2

= −h
c

∂

∂y3
〈e−h−1y3c〈hDy〉〈hDy〉l−1f , 〈hDy〉lf〉L2 .

By interpolation arguments we thus deduce that for any j ∈ N, s ≥ −j − 1
2 , it holds that

‖Aj‖
Hs

scl→H
s+j+ 1

2
scl

= O(hj+
1
2 ). (4.4.37)

proving the estimate (4.4.35) and completing the proof of the proposition.

Proposition 4.4.6. Let f ∈ Hs(R2) and Aj, j ≥ 0, be defined as in Propositions 4.4.2 and
4.4.4. Then for any N ≥ −s− 1

2 , the function uhN =
∑N
j=0 h

jAjf satisfies:{
h∂τu

h
N − L0(y, hDy)uhN − hL1(y)uhN = hN+1Rh

Nf, in R2 × (0,+∞),
P−u

h
N = f, on R2 × {0},

(4.4.38)
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4. Poincaré-Steklov operators for the MIT bag Model

with
Rh
N : f 7−→

∫
R2

(
L1AN − ∂ξL0 · ∂yAN

)
(y, hξ, τ)eiy·ξ f̂(ξ)dξ,

a bounded operator from H s(R2) into H s+N+ 1
2 (R2×(0,+∞)) satisfying for any l ∈ [0, N+ 1

2 ]:

‖Rh
N‖Hs→Hs+N+ 1

2−l
= O(hl−s). (4.4.39)

Proof. By construction of the sequence (Aj)j∈{0,··· ,N−1} we have the system (4.4.38) with
Rh
N = Oph(rhN (·, ·, τ)),

rhN (y, ξ, τ) =
(
L1AN − ∂ξL0 · ∂yAN

)
(y, ξ, τ),

(see the beginning of Section 4.4.2). As in the proof of Proposition 4.4.4, rhN has the form
(4.4.28) (with j = N). Then, in similar way as in the proof of Proposition 4.4.5 we obtain
the estimate (4.4.39).

4.4.3 Proof of Theorem 4.4.1

In this section, we apply the above construction in order to prove Theorem 4.4.1.
Let g ∈ P−H 1/2(∂Ω)4, (Uϕ, Vϕ, ϕ) a chart of the atlas A and ψ1, ψ2 ∈ C∞0 (Uϕ). Then
f := (ϕ−1)∗(ψ2g) is a function of H 1/2(Vϕ)4 which can be extended by 0 to a function of
H 1/2(R2)4. Then for h = 1/m and any N ∈ N, the previous construction provides a function
uhN ∈ H 1(R2 × (0,+∞))4 satisfying{

(D̃ϕ
m − z)uhN =hN+1Rh

Nf, in R2 × (0, ε),
Γ−uhN =f, on R2 × {0},

(4.4.40)

with uhN =
∑N
j=0 h

jAjf (see Proposition 4.4.5) and Rh
Nf ∈ HN+1(R2 × (0, ε)) with norm in

HN+1−l, l ∈ [0, N + 1
2 ], bounded by O(hl−

1
2 ). Consequently, vhN := φ∗uhN , defined on Vϕ,ε,

satisfies: {
(Dm − z)vhN =hN+1φ∗(Rh

Nf), in Vϕ,ε,

Γ−vhN =ψ2g, on Uϕ.
(4.4.41)

Now, let EΩ
m(z)[ψ2g] ∈ H 1(Ω)4 be as in Definition 4.3.1. Since Γ−vhN = Γ−EΩ

m(z)[ψ2g] = ψ2g,
then the following equality holds in Vϕ,ε:

vhN − EΩ
m(z)[ψ2g] = hN+1(HMIT(m)− z)−1φ∗

(
Rh
N (ϕ−1)∗(ψ2g)

)
.

From this, we deduce that

ψ1Amψ2(g) := ψ1Γ+E
Ω
m(z)[ψ2g] = ψ1Γ+v

h
N−hN+1ψ1Γ+(HMIT(m)−z)−1φ∗

(
Rh
N (ϕ−1)∗(ψ2g)

)
.

Since φ �Uϕ= ϕ, for any u ∈ H 1(Vϕ × (0, ε))4, we have that

Γ+φ
∗(u) = ϕ∗(P+u �Vϕ×{0}), ψ1Γ+v

h
N = ψ1ϕ

∗Oph(ahN )(ϕ−1)∗ψ2g,

with

ahN (ỹ, ξ) =
N∑
j=0

hjP+Aj(y, ξ, 0) =
N∑
j=0

hjP+Bj,0(y, ξ), (4.4.42)
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where Bj,0 ∈ hjS−j are introduced in Proposition 4.4.4. Thus, in local coordinates, the
principal semiclassical symbol of Am is given by

P+B0,0(y, ξ) = P+A0(y, ξ, 0) = P+Π−P−
kϕ+

(y, ξ).

Thanks to the property (4.4.15) it is equal to

−ΘϕP−(y, ξ) = S · (ξ ∧ nϕ(y))√
|nϕ ∧ ξ|2 + 1 + 1

P−(y, ξ).

We conclude the proof of Theorem 4.4.1 by proving the following Lemma which is a
consequence of the above considerations, the regularity estimates from Theorem 4.2.1-(iii),
Theorem 4.2.2-(i) and Proposition 4.3.1.

Lemma 4.4.2. Let ψ1, ψ2 ∈ C∞(Σ) such that supp(ψ1) ∩ supp(ψ2) = ∅. Then, for m0 > 0
sufficiently large, m > m0, and for any (k,N) ∈ N∗ × N∗ it holds that

‖ψ1Amψ2‖P−H1/2(Σ)4→P+Hk(Σ)4 = O(m−N ).

Proof. Let ψ1, ψ2 ∈ C∞(Σ) with disjoint supports. Thanks to Theorem 4.2.1-(iii) and
Theorem 4.2.2-(i), to prove the lemma it suffices to show that for any (N1, N2) ∈ N2, there
exists CN1,N2 such that

‖(ψ1Amψ2)g‖
P+HN2+ 1

2 (Σ)4 ≤
CN1,N2√

m

(
ΠN2−1
k=0 ‖(HMIT(m)− z)−1‖Hk(Ω)4→Hk+1(Ω)4

)
× ‖(HMIT(m)− z)−1‖N1

L2(Ω)4→L2(Ω)4‖g‖P−H1/2(Σ)4 .

(4.4.43)

For this, let us introduce Φ1 ∈ C∞0 (Ω) such that Φ1 = 1 near supp(ψ1) and Φ1 = 0 near
supp(ψ2). Thus, for g ∈ P−H 1/2(∂Ω)4 and EΩ

m(z)[ψ2g] ∈ H 1(Ω) as in Definition 4.3.1, the
function u1,2 := Φ1E

Ω
m(z)[ψ2g] satisfies:{

(Dm − z)u1,2 =[D0 , Φ1]EΩ
m(z)[ψ2g], in Ω,

Γ−u1,2 =Φ1 �Σ ψ2g = 0, on Σ.
(4.4.44)

Then, u1,2 = (HMIT(m)−z)−1[D0 , Φ1]EΩ
m(z)[ψ2g], and for any Φ̃1 ∈ C∞0 (Ω) equals to 1 near

supp(ψ1) we have:

ψ1Amψ2(g) = ψ1Γ+Φ̃1(HMIT(m)− z)−1[D0 , Φ1]EΩ
m(z)[ψ2g].

Moreover, by choosing Φ̃1 such that Φ̃1 ≺ Φ1, that is Φ1 = 1 on supp(Φ̃1), both functions Φ̃1
and [D0 , Φ1] have disjoint supports, and we can apply the following telescopic formula:

Φ̃1(HMIT(m)− z)−1(1− χ1) =Φ̃1(HMIT(m)− z)−1[D0, χN ] · · · (HMIT(m)− z)−1[D0, χ2]
(HMIT(m)− z)−1(1− χ1),

for (χi)1≤i≤N a family of compactly supported smooth functions such that Φ̃1 ≺ χN ≺
χN−1 ≺ · · · ≺ χ1 ≺ Φ1. Since [D0 , Φ1] = (1 − χ1)[D0 , Φ1], the above telescopic formula
allows us to write ψ1Amψ2(g) as a product of N cutoff resolvents of HMIT(m). Now, by
Proposition 4.3.1 we have ∣∣∣∣∣∣EΩ

m(z)[ψ2g]
∣∣∣∣∣∣

L2(Ω)4
.

1√
m
||g||L2(Σ)4 .

Thus, using the continuity of Γ+ from HN2+1(Ω) to HN2+ 1
2 (Σ), we then get the estimation

(4.4.43) for N = N1 +N2, finishing the proof of the lemma.

158



4. Poincaré-Steklov operators for the MIT bag Model

Remark 4.4.2. Note that for any m > 0 and z ∈ ρ(HMIT(m)), the parametrix we have
constructed for Am is valid from the classical pseudodifferentiel point of view. Actually,
Lemma 4.4.2 is the only result where the assumption that m is big enough has been assumed,
and it is exclusively required to ensures that away from the diagonal the operator Am is
negligible in 1/m. In the same vein, if m is fixed then the proof of Lemma 4.4.2 still ensures
that away from the diagonal Am is regularizing. Consequently, we deduce that for any m > 0
and z ∈ ρ(HMIT(m)), the operator Am is a homogeneous pseudodifferential operator of order
0, and that

Am = 1√
−∆Σ

S · (∇Σ ∧ n)P− mod OpS−1(Σ),

which is in accordance with Theorem 4.3.1.

Remark 4.4.3. If Ω is the upper half-plane {(x1, x2, x3) ∈ R3; x3 > 0}, we easily obtain
that Am is a Fourier multiplier with symbol

am(ξ) = − iα3(α1ξ1 + α2ξ2 − z)√
|ξ|2 +m+m

P−.

Note that this result is straight forward and can be easily derived from the Fourier side, since
by Theorem 2.3.3 Sp(HMIT(m)) = Sp(Dm), and thus Am has the explicit formula given in
Proposition 4.3.1-(iii).

4.5 Krein-type resolvent formula and resolvent convergence
to the MIT bag operator

In the whole section, we let Ω ⊂ R3 be a bounded smooth domain. As in the introduction
of this chapter, we set

Ωi = Ω and Ωe = R3 \ Ω, ∂Ω = Σ.

Fix m > 0 and let M > 0. Recall that the Dirac operator HM is defined by

HMϕ = (Dm +Mβ1Ωe)ϕ, ∀ϕ ∈ dom(HM ) := H 1(R3)4,

where 1Ωe is characteristic function of Ωe. By Kato-Rellich theorem and Weyl’s theorem, it
is easy to see that (HM , dom(HM )) is self-adjoint and that

Spess(HM ) = (−∞,−(m+M)] ∪ [m+M,+∞),
Sp(HM ) ∩ (−(m+M),m+M) is purely discrete.

We also recall that the MIT bag operator acting on L2(Ωi)4, is defined by

HMIT(m)v = Dmv ∀v ∈ dom(HMIT(m)) :=
{
v ∈ H 1(Ωi)4 : P−tΣv = 0 on Σ

}
, (4.5.1)

where tΣ is the trace operator and P± are the orthogonal projections defined by (4.1.1).

The aim of this section is to use the properties of the Poincaré-Steklov operators carried
out in the previous sections to study the resolvent of HM when M is large enough. Namely,
we give a Krein-type resolvent formula in terms of the resolvent of HMIT(m), and we show
that the convergence of HM toward HMIT(m), in the norm resolvent sense, holds with a
convergence rate of O(M−1).
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4.5. Krein-type resolvent formula and resolvent convergence to the MIT bag operator

Before stating the main results of this section, we need to introduce some notations and
definitions. First, we introduce the following Dirac auxiliary operator

H̃Mu = Dm+Mu, ∀u ∈ dom(H̃M ) :=
{
u ∈ H 1(Ωe)4 : P+tΣu = 0 on Σ

}
. (4.5.2)

Notice that H̃M is the MIT bag operator on Ωe. Since Ωe is unbounded, Theorem 4.2.1
implies that (H̃M , dom(H̃M )) is self-adjoint, and that

Sp(H̃M ) = Spess(H̃M ) = (−∞,−(m+M)] ∪ [m+M,+∞).

Let z ∈ ρ(HMIT(m)) ∩ ρ(HM ) and g, h ∈ H 1/2(Σ)4. We denote by EΩi
m (z) : P−H 1/2(Σ)4 →

H 1(Ωi)4 the unique solution of the following boundary value problem:{
(Dm − z)v = 0, in Ωi,

P−tΣv = g, in Σ.
(4.5.3)

Similarly, we denote by EΩe
m+M (z) : P+H 1/2(Σ)4 → H 1(Ωe)4 the unique solution of the

following boundary value problem:{
(Dm+M − z)u = 0, in Ωe,

P+tΣu = h, in Σ.
(4.5.4)

Define the Poincaré-Steklov operators associated to the above problems by

A i
m = P+tΣE

Ωi
m (z)P− and A e

m+M = P−tΣE
Ωe
m+M (z)P+.

Then, from Proposition 4.3.1 we have the explicit formulas

EΩi
m (z) = ΦΩi

z (Λzm)−1P−, A i
m = −P+β(Λzm)−1P−, ∀z ∈ ρ(Dm),

EΩe
m+M (z) = ΦΩe

z,m+M (Λzm+M )−1P+, A e
m+M = −P−β(Λzm+M )−1P+, ∀z ∈ ρ(Dm+M ).

(4.5.5)

Notation 4.5.1. In the sequel we shall denote by RM (z), R̃M (z) and RMIT(z) the resolvent
of HM , H̃M and HMIT(m), respectively. We also use the notations:

• Γ± = P±tΣ and Γ = Γ+rΩi + Γ−rΩe.

• EM (z) = eΩiE
Ω
m(z)P− + eΩeE

Ωe
m+M (z)P+.

• R̃MIT(z) = eΩiRMIT(z)rΩi + eΩeR̃M (z)rΩe.

With these notations in hand, we can state the main results of this section.

Theorem 4.5.1. There is M0 > 0 such that for all M > M0 and all z ∈ ρ(HMIT(m)) ∩
ρ(HM ), the operator ΨM (z) :=

(
I −A i

m −A e
m+M

)
is bounded invertible in H 1/2(Σ)4, and it

holds that

RM (z) = R̃MIT(z) + EM (z)Ψ−1(z)ΓR̃MIT(z). (4.5.6)

Moreover, for any a ∈ (−(m + M),m + M) \ ρ(HMIT(m)) we have a ∈ Spp(HM ) ⇔ 0 ∈
Spp(ΨM (a)), and it holds that

Kr(HM − a) = {EM (a)g : g ∈ Kr(ΨM (a))}.
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4. Poincaré-Steklov operators for the MIT bag Model

Remark 4.5.1. By Proposition 4.3.1 (ii) we have that(
EΩi
m (z)

)∗
= −βΓ+RMIT(z) and

(
EΩe
m+M (z)

)∗
= −βΓ−R̃M (z),

for any z ∈ ρ(HMIT(m)) ∩ ρ(HM ). Thus, the resolvent formula (4.5.6) can be written in the
form:

RM (z) = R̃MIT(z)− (βΓR̃MIT(z))∗Ψ−1(z)ΓR̃MIT(z).

Before going through the proof of Theorem 4.5.1 we first establish a regularity result that
will play a crucial role in the rest of this section. It concerns the dependence on the parameter
M of the norm of an auxiliary operator which involves the composition of the operators A i

m

and A e
m+M . In the proof we use the symbols û and F[u] to denote the Fourier transform of

u.

Theorem 4.5.2. Let A i
m and A e

m+M be as above. Then, there is M0 > 0 such that for every
∞ > M > M0 and all z ∈ ρ(HMIT(m)) ∩ ρ(HM ) the following hold true:

(i) For any s ∈ R the operator ΞM (z) : H s(Σ)4 −→ H s(Σ)4 defined by

ΞM (z) =
(
I4 −A i

mA e
m+M −A e

m+MA i
m

)−1
, (4.5.7)

is everywhere defined and uniformly bounded with respect to M .

(ii) The Poincaré-Steklov operator, A e
m+M , satisfies the estimate

∣∣∣∣A e
m+M

∣∣∣∣
P+Hs+1(Σ)4→P−Hs(Σ)4 .

1
M
, ∀s ∈ R. (4.5.8)

Proof. (i) Set τ := (m+M), then the result essentially follows from the fact that ΞM (z)
is a 1/τ -pseudodifferential operator of order 0. Fix z ∈ ρ(HMIT(m))∩ρ(HM ) and set h = τ−1.
From Theorem 4.3.1 and Remark 4.4.2 we know that A i

m is a homogeneous pseudodifferential
operator of order 0. Thus A i

m can also be viewed as a h-pseudodifferential operators of order
0. That is, A i

m ∈ OphS0(Σ), and in local coordinates, its semiclassical principal symbol is
given by

ph,A i
m

(x, ξ) = S · (ξ ∧ n(x))P−
|ξ ∧ n(x)| .

Similarly, thanks to Theorem 4.4.1, we also know that for h0 sufficiently small (and hence
M0 big enough) and all h < h0, A e

m+M is a h-pseudodifferential operator and that

A e
m+M ∈ OphS0(Σ), ph,A e

m+M
(x, ξ) = − S · (ξ ∧ n(x))P+√

|ξ ∧ n(x)|2 + 1 + 1
.

Therefore, the symbol calculus yields for all h < h0 that
(
I4 −A i

mA e
m+M −A ex

m+MA i
m

)
is

a h-pseudodifferential operator of order 0. Now, a simple computation using Lemma 4.4.1
yields that

S · (ξ ∧ n(x))P±S · (ξ ∧ n(x))P∓
|ξ ∧ n(x)|(

√
|ξ ∧ n(x)|2 + 1 + 1)

= |ξ ∧ n(x)|P∓√
|ξ ∧ n(x)|2 + 1 + 1

.
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Thus

I4 − ph,A i
m

(x, ξ)ph,A e
m+M

(x, ξ)− ph,A e
m+M

(x, ξ)ph,A i
m

(x, ξ) = I4 + |ξ ∧ n(x)|√
|ξ ∧ n(x)|2 + 1 + 1

=
√
|ξ ∧ n(x)|2 + 1 + 1 + |ξ ∧ n(x)|√

|ξ ∧ n(x)|2 + 1 + 1
& 1.

From this, we deduce that
(
I4 −A i

mA e
m+M −A ex

m+MA i
m

)
is elliptic in OphS0(Σ). Thus,

ΞM (z) ∈ OphS0(Σ), and in local coordinates, its semiclassical principal symbol is given by

ph,ΞM (z)(x, ξ) =
√
|ξ ∧ n(x)|2 + 1 + 1√

|ξ ∧ n(x)|2 + 1 + 1 + |ξ ∧ n(x)|
.

As ΞM (z) is a h-pseudodifferential operators of order 0, it follows that for any s ∈ R, ΞM (z) :
H s(Σ)4 → H s(Σ)4 is well-defined and bounded uniformly with respect to M , proving the
statement (i) of the theorem.

The proof of the statement (ii) follows the standard arguments of the proof of the bound-
edness of classical pseudodifferential operators. Indeed, since Σ is compact, it suffices to show
for ϕ ∈ C 2

0 (R2) that Op(ϕpA e
τ

) = ϕOp(pA e
τ

) satisfies the estimate∣∣∣∣ϕOp(pA e
τ

)f
∣∣∣∣

Hs(R2)4 .
1
τ
||f ||Hs+1(R2)4 , ∀f ∈ S(R2)4, (4.5.9)

where pA e
τ
is the principal symbol of A e

τ , i.e.,

pA e
τ

(x, ξ) = − S · (ξ ∧ n(x))P+√
|ξ ∧ n(x)|2 + τ2 + τ

, τ = m+M.

Set aτ (x, ξ) = ϕ(x)pA e
τ

(x, ξ). Thus, aτ is compactly supported with respect to x and satisfies
the estimate

|aτ (x, ξ)| 6 C
(1 + |ξ|
τ + |ξ|

)
, ∀(x, ξ) ∈ R2 × R2.

We set 〈D〉k = Op(〈ξ〉k) ∈ OpSk, Bs := 〈D〉sϕOp(aτ )〈D〉−(s+1), and we let g = 〈D〉s+1f .
Then (4.5.9) is equivalent to

||Bsg||L2(R2)4 .
1
τ
||g||L2(R2)4 .

Observe that

yαâτ (y, ξ) =
∫
R2
e−ix·yyαaτ (x, ξ)dx =

∫
R2
e−ix·yDα

xaτ (x, ξ)dx, ∀α, y,

where in the last equality the support condition on aτ was used. From this it follows for any
N > 0, there is CN > 0 (independent of ξ) such that

|âτ (y, ξ)| 6 CN 〈y〉−N
(1 + |ξ|
τ + |ξ|

)
, ∀(y, ξ) ∈ R2 × R2. (4.5.10)

Notice that for g ∈ S(R2)4, we have that B̂sg(y) = 〈y〉sF[Op(aτ )〈D〉−(s+1)], and that

F[Op(aτ )〈D〉−(s+1)]g(y) =
∫
R2
e−ix·y

(∫
R2
eix·ξaτ (x, ξ)〈ξ〉−(s+1)ĝ(ξ)dξ

)
dx

=
∫
R2

(∫
R2
e−ix·(y−ξ)aτ (x, ξ)〈ξ〉−(s+1)ĝ(ξ)dx

)
dξ

=
∫
R2
âτ (y − ξ, ξ)〈ξ〉−(s+1)ĝ(ξ)dξ.
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Thus

B̂sg(y) = 〈y〉s
∫
R2
âτ (y − ξ, ξ)〈ξ〉−(s+1)ĝ(ξ)dξ =

∫
R2
K(y, ξ)ĝ(ξ)dξ.

Hence, Peetre’s inequality: 〈y〉s〈ξ〉−s 6 2|s|−1〈y − ξ〉|s|, together with (4.5.10) yield that

|K(y, ξ)| . 〈y〉s〈y − ξ〉−N 〈ξ〉−(s+1)
(1 + |ξ|
τ + |ξ|

)
.
〈y〉s〈ξ〉−s〈y − ξ〉−N

(τ + |ξ|)

.
〈y − ξ〉−N+|s|

(τ + |ξ|) .

Since (4.5.10) holds true for any N > 0, choosing N sufficiently large we get that∫
R2
|K(y, ξ)|dξ . 1

τ
and

∫
R2
|K(y, ξ)|dy . 1

τ
.

Therefore, Schur’s test from Theorem 1.3.1 implies that

||Bsg||L2(R2)4 =
∣∣∣∣∣∣B̂sg∣∣∣∣∣∣L2(R2)4

.
1
τ
||g||L2(R2)4 ,

which gives the desired estimate and finishes the proof of (ii).

We can now give the proof of Theorem 4.5.1.
Proof of Theorem 4.5.1. Let M0 be as in Theorem 4.5.2 and M > M0, fix z ∈

ρ(HMIT(m)) ∩ ρ(HM ) and let f ∈ L2(R3)4. We set

v = rΩiRM (z)f and u = rΩeRM (z)f.

Then u and v satisfy the following system
(Dm − z)v = f in Ωi,

(Dm+M − z)u = f in Ωe,

Γ−v = Γ−u on Σ,
Γ+v = Γ+u on Σ.

(4.5.11)

Not that if we let

ϕ = Γ−u and ψ = Γ+v, (4.5.12)

then it holds that 

(Dm − z)EΩi
m (z)ϕ = 0 in Ωi,

(Dm+M − z)EΩe
m+M (z)ψ = 0 in Ωe,

Γ−EΩi
m (z)ϕ = ϕ on Σ,

Γ+E
Ωe
m+M (z)ψ = ψ on Σ.

Since by definition we have that

(Dm − z)RMIT(z)rΩif = f in Ωi,

(Dm+M − z)R̃M (z)rΩef = f in Ωe,

Γ−RMIT(z)rΩif = 0 on Σ,
Γ+R̃M (z)rΩef = 0 on Σ,
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from this we deduce that {
v = RMIT(z)rΩif + EΩi

m (z)ϕ,
u = R̃M (z)rΩef + EΩe

m+M (z)ψ.
(4.5.13)

Thus, to get an explicit formula for RM (z) it remains to find the unknowns ϕ and ψ. For
this, note that from (4.5.13) we have{

ψ = Γ+rΩiRM (z)f = Γ+RMIT(z)rΩif + Γ+E
Ωi
m (z)[ϕ],

ϕ = Γ−rΩeRM (z)f = Γ−R̃M (z)rΩef + Γ−EΩe
m+M (z)[ψ].

(4.5.14)

Substituting the values of ψ and ϕ (from (4.5.14)) into the system (4.5.13), we obtain

RM (z) =eΩiRMIT(z)rΩi + eΩeR̃M (z)rΩe

+
(
eΩiE

Ωi
m (z)Γ−rΩe + eΩeE

Ωe
m+M (z)Γ+rΩi

)
RM (z)

=R̃MIT(z) + EM (z)ΓRM (z).

(4.5.15)

Note that, by definition of the Poincaré-Steklov operators, (4.5.14) is equivalent to{
ψ = Γ+RMIT(z)rΩif + A i

m(ϕ),
ϕ = Γ−R̃M (z)rΩef + A e

m+M (ψ).
(4.5.16)

Thus, applying Γ to the identity (4.5.15) yields that

ΓR̃MIT(z) =
(
I −A i

m −A e
m+M

)
ΓRM (z) = ΨM (z)ΓRM (z). (4.5.17)

Now, we apply (I + A i
m + A e

m+M ) to the last identity and we get(
I + A i

m + A e
m+M

)
ΓR̃MIT(z) =

(
I −A i

mA e
m+M −A e

m+MA i
m

)
ΓRM (z) = (ΞM (z))−1ΓRM (z).

Thanks to Theorem 4.5.2, we know that for M > M0 the operator (ΞM (z))−1 is bounded
invertible from H 1/2(Σ)4 into itself, which actually means that ΨM is bounded invertible
from H 1/2(Σ)4 into itself and that

Ψ−1
M (z) = ΞM (z)

(
I + A i

m + A e
m+M

)
and ΓRM (z) = Ψ−1

M (z)ΓR̃MIT(z).

Thereby, the identity (4.5.6) follows from the above computations and (4.5.15).
Now we turn to the proof the second statement. Let us first prove the implication (=⇒).

Let a ∈ (−(m + M),m + M) \ ρ(HMIT(m)) be such that (HM − a)ϕ = 0 for some 0 6= ϕ ∈
H 1(R3)4. Set ϕ+ = ϕ|Ωi and ϕ− = ϕ|Ωe . Then, it is clear that ϕ+ solves the system (4.5.3)
with g = Γ−ϕ, and ϕ− solves the system (4.5.4) with h = Γ+ϕ. Thus, ϕ+ = EΩi

m (a)Γ−ϕ and
ϕ− = EΩe

m+M (a)Γ+ϕ. Hence, ϕ = EM (a)tΣϕ and Γ±ϕ 6= 0, as otherwise ϕ would be zero.
Using this and the definition of the Poincaré-Steklov operators, we obtain that

(I4 + A i
m)Γ−ϕ := tΣϕ+ = tΣϕ = tΣϕ− := (I4 + A e

m+M )Γ−ϕ,

and since tΣϕ 6= 0 it follows that

ΨM (a)tΣϕ = (I4 + A i
m + A e

m+M )tΣϕ = 0,

which means that 0 ∈ Spp(ΨM (a)) and proves the inclusion Kr(HM − a) ⊂ {EM (a)g : g ∈
Kr(ΨM (a))}.
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We now prove the implication (⇐=). Let a ∈ (−(m + M),m + M) \ ρ(HMIT(m)) and
assume that 0 is an eigenvalue of ΨM (a). Then, there is g ∈ H 1/2(Σ)4 \ {0} such that
ΨM (a)g = 0 on Σ. Note that this is equivalent to

(P− + A i
m)g = (P+ + A e

m+M )g. (4.5.18)

Since a ∈ (−(m+M),m+M) \ρ(HMIT(m)), the operators EΩi
m (a) : P−H 1/2(Σ)4 → H 1(Ωi)4

and EΩe
m+M (a) : P+H 1/2(Σ)4 → H 1(Ωe)4 are well-defined and bounded. Thus, if we let

ϕ = EM (a)g = (EΩi
m (a)P−g,EΩe

m+M (a)P+g), then ϕ 6= 0 and we have that (Dm − a)ϕ = 0
in Ωi, and that (Dm+M − a)ϕ = 0 in Ωe. Now, using the definition of the Poincaré-Steklov
operators and the equation (4.5.18) we get that

tΣE
Ωi
m (a)P−g = (P− + A i

m)g = (P+ + A e
m+M )g = tΣE

Ωe
m+M (a)P+g.

Thanks to the boundedness properties of EΩi
m (a) and EΩe

m+M (a), it follows from the above
computations that ϕ = EM (a)g ∈ H 1(R3)4 \ {0} and satisfies the equation (HM − a)ϕ = 0.
Therefore, a ∈ Spp(HM ) and the inclusion {EM (a)g : g ∈ Kr(ΨM (a))} ⊂ Kr(HM − a) holds
true, and this achieves the proof of the theorem.

As an immediate consequence of Theorem 4.5.2 and Theorem 4.5.1 we have:

Corollary 4.5.1. There is M0 > 0 such that for every M > M0 and all z ∈ ρ(HMIT(m)) ∩
ρ(HM ), the operators Ξ±M (z) : P±H s(Σ)4 → P±H s(Σ)4 defined by

Ξ+
M (z) =

(
I −A i

mA e
m+M

)−1
and Ξ−M (z) =

(
I −A e

m+MA i
m

)−1
,

are everywhere defined and uniformly bounded with respect to M , for any s ∈ R. Moreover, if
v ∈ H 1(R3)4 solves (Dm +Mβ1Ωe − z)v = eΩif , for some f ∈ L2(Ωi)4. Then, rΩiv satisfies
the following boundary value problem

(Dm − z)rΩiv = f in Ωi,

Γ−v = Ξ−M (z)A e
m+MΓ+RMIT(z)f on Σ,

Γ+v = Γ+RMIT(z)f + A i
mΓ−v on Σ.

(4.5.19)

Proof. We first note that Ξ±M (z) = P±ΞM (z)P±. Thus, the first statement follows
immediately from Theorem 4.5.2 . Now, let f ∈ L2(Ωi)4, and suppose tha v ∈ H 1(R3)4

solves (Dm +Mβ1Ωe − z)v = eΩif . Thus (Dm − z)rΩiv = f in Ωi, and if we set

ϕ = P−tΣv and ψ = P+tΣv, (4.5.20)

Then, from (4.5.16) we easily get

ϕ = Ξ−M (z)A e
m+MΓ+RMIT(z)f and ψ = Γ+RMIT(z)f + A i

mϕ,

which means that rΩiv satisfies (4.5.19), and this completes the proof of the corollary.

Remark 4.5.2. Notice that from (4.5.16) we have that(
Γ+rΩiRM (z)f
Γ−rΩeRM (z)f

)
=
(

Ξ+
M (z)

Ξ−M (z)

)(
I4 A i

m

A e
m+M I4

)(
Γ+RMIT(z)rΩif

Γ−R̃M (z)rΩef

)
.

With this observation, we remark that the resolvent formula (4.5.6) can also be written in the
following matrix form(

rΩiRM (z)
rΩeRM (z)

)
=
(
RMIT(z)rΩi
R̃M (z)rΩe

)
+
(

EΩi
m (z)Ξ−M (z)

EΩe
m+M (z)Ξ+

M (z)

)(
A e
m+M I4
I4 A i

m

)(
Γ+RMIT(z)rΩi
Γ−R̃M (z)rΩe

)
.
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We finish this section by providing an asymptotic expansion of RM (z) and proving its
norm convergence toward RMIT(z) and estimate the rate of convergence.

Proposition 4.5.1. For any compact set K ⊂ ρ(HMIT(m)), there is M0 > 0 such that for all
M > M0, K ⊂ ρ(HM ), and for all z ∈ K the resolvent RM admits an asymptotic expansion
in L(L2(R3)4) of the form:

RM (z) = eΩiRMIT(z)rΩi + 1
M

(KM (z) + LM (z)) , (4.5.21)

where KM (z) and LM (z) are bounded from L2(R3)4 into itself independently of M , and we
have

rΩiKM (z)eΩi = 0 = rΩeKM (z)eΩe .

In particular, it holds that

||RM (z)− eΩiRMIT(z)rΩi ||L2(R3)4→L2(R3)4 = O

( 1
M

)
.

Before giving the proof, we need the following estimates:

Lemma 4.5.1. Let K ⊂ C be a compact set. Then, there is M0 > 0 such that for all
M > M0: K ⊂ ρ(H̃M ) and for every z ∈ K the following estimates hold:∣∣∣∣∣∣R̃M (z)f

∣∣∣∣∣∣
L2(Ωe)4

.
1
M
||f ||L2(Ωe)4 , ∀f ∈ L2(Ωe)4,∣∣∣∣∣∣Γ−R̃M (z)f

∣∣∣∣∣∣
L2(Σ)4

.
1√
M
||f ||L2(Ωe)4 , ∀f ∈ L2(Ωe)4,∣∣∣∣∣∣Γ−R̃M (z)f

∣∣∣∣∣∣
H−1/2(Σ)4

.
1
M
||f ||L2(Ωe)4 , ∀f ∈ L2(Ωe)4,∣∣∣∣∣∣EΩe

m+M (z)ψ
∣∣∣∣∣∣

L2(Ωe)4
.

1√
M
||ψ||L2(Σ)4 , ∀ψ ∈ P+L2(Σ)4,∣∣∣∣∣∣EΩe

m+M (z)ψ
∣∣∣∣∣∣

L2(Ωe)4
.

1
M
||ψ||H1/2(Σ)4 , ∀ψ ∈ P+H 1/2(Σ)4.

Proof. Fix a compact set K ⊂ C, and note that for M1 > supz∈K{|Re(z)| −m} it holds
that K ⊂ ρ(H̃M1), and hence K ⊂ ρ(H̃M ) for all M > M1. We next show the claimed
estimates for R̃M (z) and Γ−R̃M (z). For this, given z ∈ K and assume that M > M1. Let
ϕ ∈ dom(H̃M ), then a straightforward application of the Green’s formula yields that

‖H̃Mϕ‖2L2(Ωe)4 =‖(α · ∇)ϕ‖2L2(Ωe)4 + (m+M)2 ||ϕ||2L2(Ωe)4 + (m+M) ||P−tΣϕ||2L2(Σ)4 .

Using this and the Cauchy-Schwarz inequality we obtain that

‖(H̃M − z)ϕ‖2L2(Ωe)4 =‖H̃Mϕ‖2L2(Ωe)4 + |z|2‖ϕ‖2L2(Ωe)4 − 2Re(z)〈H̃Mϕ,ϕ〉L2(Ωe)4

>‖H̃Mϕ‖2L2(Ωe)4 + |z|2‖ϕ‖2L2(Ωe)4 −
1
2‖H̃Mϕ‖2L2(Ωe)4 − 2|Re(z)|2‖ϕ‖2L2(Ωe)4

>

(
(m+M)2

2 + |Im(z)|2 − |Re(z)|2
)
||ϕ||2L2(Ωe)4 + M

2 ||P−tΣϕ||
2
L2(Σ)4 .

Therefore, taking R̃M (z)f = ϕ andM >M2 > supz∈K{
√
|Re(z)|2 − |Im(z)|2−m} we obtain

the inequality∣∣∣∣∣∣R̃M (z)f
∣∣∣∣∣∣

L2(Ωe)4
.

1
M
||f ||L2(Ωe)4 and

∣∣∣∣∣∣Γ−R̃M (z)f
∣∣∣∣∣∣

L2(Σ)4
.

1√
M
||f ||L2(Ωe)4 .
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Since Γ− is bounded from L2(Ωe)4 into H−1/2(Σ)4, using the above inequality we get that∣∣∣∣∣∣Γ−R̃M (z)f
∣∣∣∣∣∣

H−1/2(Σ)4
. ||Γ−||L2(Ωe)4→H−1/2(Σ)4

∣∣∣∣∣∣R̃M (z)f
∣∣∣∣∣∣

H−1/2(Σ)4
.

1
M
||f ||L2(Ωe)4 ,

for any f ∈ L2(Ωe)4, which gives the second inequality.
Let us now turn to the proof of the claimed estimates for EΩe

m+M (z). Let ψ ∈ P+L2(Σ)4,
then from the proof of Proposition 4.3.1 (ii) we have

||ψ||2L2(Σ)4 > (m+M)
∣∣∣∣∣∣EΩe

m+M (z)ψ
∣∣∣∣∣∣2

L2(Ωe)4
− 2|Re(z)|

∣∣∣∣∣∣EΩe
m+M (z)ψ

∣∣∣∣∣∣2
L2(Ωe)4

.

Thus, for any M >M3 > supz∈K{4|Re(z)| −m}, we get that

M
∣∣∣∣∣∣EΩe

m+M (z)ψ
∣∣∣∣∣∣2

L2(Ωe)4
6 2 ||ψ||2L2(Σ)4 ,

and this proves the first estimate for EΩe
m+M (z). Finally, the last inequality is a consequence

of the first one and Proposition 4.3.1. Indeed, from Proposition 4.3.1 (ii) we know that
βΓ−R̃M (z) is the adjoint of the operator EΩe

m+M (z) : P+H 1/2(Σ)4 −→ H 1(Ωe)4. Using this
and the estimate fulfilled by Γ−R̃M (z) we obtain that∣∣∣〈f,EΩe

m+M (z)ψ〉L2(Ωe)4

∣∣∣ =
∣∣∣〈Γ−R̃M (z)f, βψ〉H−1/2(Σ)4,H1/2(Σ)4

∣∣∣
6
∣∣∣∣∣∣Γ−R̃M (z)f

∣∣∣∣∣∣
H−1/2(Σ)4

||ψ||H1/2(Σ)4

.
1
M
||f ||L2(Ωe)4 ||ψ||H1/2(Σ)4 .

Since this is true for all f ∈ L2(Ωe)4, by duality it follows that∣∣∣∣∣∣EΩe
m+M (z)ψ

∣∣∣∣∣∣
L2(Ωe)4

.
1
M
||ψ||H1/2(Σ)4 , ∀ψ ∈ P+H 1/2(Σ)4,

which proves the last inequality. Hence, the lemma follows by takingM0 = max{M1,M2,M3}.

Proof of Proposition 4.5.1. We first show the result for someM ′0 > 0 and any z ∈ C\R.
So, let’s fix such a z and let f ∈ L2(R3)4. Then, it is clear that z ∈ ρ(HMIT(m)) ∩ ρ(HM ),
and from Theorem 4.5.1 and Remark 4.5.2 we know that there is M ′0 > 0 such that for all
M > M ′0 it holds that

||(RM (z)− eΩiRMIT(z)rΩi)f ||L2(R3)4 6
∣∣∣∣∣∣EΩi

m (z)Ξ−M (z)Γ−R̃M (z)rΩef
∣∣∣∣∣∣

L2(Ωi)4

+
∣∣∣∣∣∣EΩe

m+M (z)Ξ+
M (z)Γ+RMIT(z)rΩif

∣∣∣∣∣∣
L2(Ωe)4

+
∣∣∣∣∣∣EΩi

m (z)Ξ−M (z)A e
m+MΓ+RMIT(z)rΩif

∣∣∣∣∣∣
L2(Ωi)4

+
∣∣∣∣∣∣EΩe

m+M (z)Ξ+
M (z)A i

mΓ−R̃M (z)rΩef
∣∣∣∣∣∣

L2(Ωe)4

+
∣∣∣∣∣∣R̃M (z)rΩef

∣∣∣∣∣∣
L2(Ωe)4

=: J1 + J2 + J3 + J4 + J5.

From Lemma 4.5.1 we immediately get that J5 .M−1 ||f ||. Next, observe that Γ+RMIT(z) :
L2(Ωi)4 → H 1/2(Σ)4, A i

m : H 1/2(Σ)4 → H 1/2(Σ)4 and EΩi
m (z) : H−1/2(Σ)4 → H(α,Ωi) ⊂

L2(Ωi)4 (where H(α,Ωi) is defined by (1.2.4)) are bounded operators and do not depend on
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M . Moreover, thanks to Corollary 4.5.1 we know that for all s ∈ R there is C > 0 independent
of M such that ∣∣∣∣∣∣Ξ±M (z)

∣∣∣∣∣∣
P±Hs(Σ)4→P±Hs(Σ)4

6 C.

Using this and the above observation, for j ∈ {1, 2, 3, 4}, we can estimate Jk as follows

J1 .
∣∣∣∣∣∣EΩi

m (z)Ξ−M (z)
∣∣∣∣∣∣

H−1/2(Σ)4→L2(Ωi)4

∣∣∣∣∣∣Γ−R̃M (z)rΩef
∣∣∣∣∣∣

H−1/2(Σ)4
,

J2 .
∣∣∣∣∣∣EΩe

m+M (z)
∣∣∣∣∣∣

H1/2(Σ)4→L2(Ωe)4

∣∣∣∣∣∣Ξ+
M (z)Γ+RMIT(z)rΩif

∣∣∣∣∣∣
H1/2(Σ)4

,

J3 .
∣∣∣∣∣∣EΩi

m (z)Ξ−M (z)
∣∣∣∣∣∣
P−H−1/2(Σ)4→L2(Ωi)4

∣∣∣∣A e
m+M

∣∣∣∣
H1/2(Σ)4→H−1/2(Σ)4 ||Γ+RMIT(z)rΩif ||H1/2(Σ)4 ,

J4 .
∣∣∣∣∣∣EΩe

m+M (z)
∣∣∣∣∣∣

L2(Σ)4→L2(Ωe)4

∣∣∣∣∣∣Ξ+
M (z)A i

m

∣∣∣∣∣∣
L2(Σ)4→L2(Σ)4

∣∣∣∣∣∣Γ−R̃M (z)rΩef
∣∣∣∣∣∣

L2(Σ)4
.

Therefore, Theorem 4.5.2-(ii) together with Lemma 4.5.1 yield that

Jk .
1
M
||f ||L2(R3)4 , for any j ∈ {1, 2, 3, 4}.

Thus, we obtain the estimate

||(RM (z)− eΩiRMIT(z)rΩi)f ||L2(R3)4 6
C

M
||f ||L2(R3)4 . (4.5.22)

Moreover, the asymptotic expansion (4.5.21) holds with

LM (z) =M(eΩeR̃M (z)rΩe + eΩiE
Ωi
m (z)Ξ−M (z)A e

m+MΓ+RMIT(z)rΩi

+ eΩeE
Ωe
m+M (z)Ξ+

M (z)A i
mΓ−R̃M (z)rΩe),

and

KM (z) = M
(
eΩiE

Ωi
m (z)Ξ−M (z)Γ−R̃M (z)rΩe + eΩeE

Ωe
m+M (z)Ξ+

M (z)Γ+RMIT(z)rΩi

)
,

and we clearly see that rΩiKM (z)eΩi = 0 = rΩeKM (z)eΩe .
Finally, since (4.5.22) holds true for any z ∈ C \ R, for any fixed compact subset

K ⊂ ρ(HMIT(m)), one can show by arguments similar to those in the proof of [14, Lemma
A.1] that there is M0 > M ′0 such that K ⊂ ρ(HM ). Therefore, the proposition follows with
the same arguments as before.

We conclude this part by pointing out the following remarks.

Remark 4.5.3. Notice that the rate of convergence given in Proposition 4.5.1 is sharp.
Indeed, since the resolvent R̃M (z) can be viewed as a semiclassical pseudodifferantial operator
of order −1, the L2-norm estimate of R̃M (z) given in Lemma 4.5.1 can not be ameliorated.

Remark 4.5.4. We mention that by mean of the min-max characterization and optimiza-
tions techniques, a first-order asymptotic expansion of the eigenvalues of HM in terms of the
eigenvalues of HMIT(m) has been established in [6] whenM →∞. Note that it is also possible
to obtain such a result using the Krein formula from Theorem 4.5.1 and finite-dimensional
perturbation theory (cf. Kato [74] for example), see, e.g., [28, 34] for similar arguments.
Note also that the asymptotic expansion of the eigenvalues of HM depends only on the term
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EΩi
m (z)Ξ−M (z)A e

m+MΓ+RMIT(z)rΩi. Indeed, let λMIT be an eigenvalue of HMIT(m) with mul-
tiplicity l, and let (f1, · · · , fl) be an L2(Ωi)4-orthonormal basis of Kr(HMIT(m) − λMIT I4).
Then, using the Krein resolvent formula from Theorem 4.5.1 we see that

〈RM (z)eΩifk, eΩifj〉L2(R3)4 = 〈EΩi
m (z)Ξ−M (z)A e

m+MΓ+RMIT(z)fk, fj〉L2(Ωi)4

= 〈Ξ−M (z)A e
m+MΓ+RMIT(z)fk,−βΓ+RMIT(z)fj〉L2(Σ)4

= 1
(z − λMIT )2 〈Ξ

−
M (z)A e

m+MΓ+fk,−βΓ+fj〉L2(Σ)4 ,

which means that EΩi
m (z)Ξ−M (z)A e

m+MΓ+RMIT(z)rΩi is the only term that intervenes in the
asymptotic expansion of the eigenvalues of HM . Since the principle symbol of Ξ−M (z)A e

m+M
is given by

qM (x, ξ) = |ξ ∧ n(x)|√
|ξ ∧ n(x)|2 + (m+M)2 + |ξ ∧ n(x)|+ (m+M)

.

Using this, we formally deduce that for sufficiently large M , HM has exactly l eigenval-
ues (λMk )16k6l counted according to their multiplicities (in B(λMIT , η) with B(λMIT , η) ∩
Sp(HMIT(m)) = {λMIT }) and these eigenvalues admit an asymptotic expansion of the form

λMk = λMIT + 1
M
µk +

N∑
j=2

1
M j

µjk + O
(
M−N−

1
2
)
. (4.5.23)

where (µk)16k6l are the eigenvalues of the matrix M with coefficients:

mkj = −〈βOp(q(x, ξ
M

)Γ+fk,Γ+fj〉L2(Σ)4 = −〈βOp1/M (q(x, ξ)Γ+fk,Γ+fj〉L2(Σ)4 .

4.6 Appendix A. Resolvent convergence: the case of C 2-smooth
domains

We establish in this part the convergence of HM to HMIT(m) in the norm resolvent sense
in the case of C 2-smooth domains. More precisely, with the same notations of the preceding
section and assuming that Ωi is a bounded C 2-smooth domain, we have the following result:

Proposition 4.6.1. Let K ⊂ ρ(HMIT(m)) be a compact set, then there is M0 > 0 such that
for all M > M0: K ⊂ ρ(HMIT(m)) ∩ ρ(HM ) and for any z ∈ K it holds that

||(RM (z)− eΩiRMIT(z)rΩi)f ||L2(R3)4 .
1√
M

To prove this result without using the properties of the Poincaré-Steklov operators we
need the next statement which follows from [6, Propistion 2.1. (i)].

Lemma 4.6.1. There exist C,M0 > 0 such that, for all M > M0 and all ϕ ∈ H 1(Ωe)4 it
holds that

||ϕ||2L2(Ωe)4 +M2 ||∇ϕ||2L2(Ωe)4 > (M − C) ||tΣϕ||2L2(Σ)4 .

Proof of Proposition 4.6.1. As in the proof of Proposition 4.5.1 it suffices to prove
the result for z ∈ C \ R. So, Let f ∈ L2(R3)4 and fix z ∈ C \ R. Set

v = rΩiRM (z)f and u = rΩeRM (z)f.
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Then from the proof of Theorem 4.5.1(ii) and Remark 4.3.3 we know that{
v = RMIT(z)rΩif + EΩi

m (z)Γ−rΩeRM (z)f,
u = R̃M (z)rΩef + EΩe

m+M (z)Γ+rΩiRM (z)f,
(4.6.1)

and that {
Γ+rΩiRM (z)f = Γ+RMIT(z)rΩif + Γ+E

Ωi
m (z)Γ−rΩeRM (z)f

Γ−rΩeRM (z)f = Γ−R̃M (z)rΩef + Γ−EΩe
m+M (z)Γ+rΩiRM (z)f.

which is by definition equivalent to{
Γ+rΩiRM (z)f = Γ+RMIT(z)rΩif + A i

m(Γ−rΩeRM (z)f),
Γ−rΩeRM (z)f = Γ−R̃M (z)rΩef + A e

m+M (Γ+rΩiRM (z)f).
(4.6.2)

Now, we make the observation that from the proof of Lemma 4.5.1 we see that the estimates∣∣∣∣∣∣EΩe
m+M (z)ψ

∣∣∣∣∣∣
L2(Ωe)4

.
1√
M
||ψ||L2(Σ)4 , ∀ψ ∈ P+L2(Σ)4,∣∣∣∣∣∣R̃M (z)f

∣∣∣∣∣∣
L2(Ωe)4

.
1
M
||f ||L2(Ωe)4 , ∀f ∈ L2(Ωe)4,∣∣∣∣∣∣Γ−R̃M (z)f

∣∣∣∣∣∣
L2(Σ)4

.
1√
M
||f ||L2(Ωe)4 , ∀f ∈ L2(Ωe)4,

are still hold true for Ωi a bounded Lipschitz domain, and that, there exists M1 > 0 such
that

sup
M>M1

∣∣∣∣A e
m+M

∣∣∣∣2
P+L2(Σ)4−→P−L2(Σ)4 . 1. (4.6.3)

(note that this last fact follows also from Remark 4.3.1). Using this observation and (4.6.1)
it follows that there is M2 > M1 such that for all M > M2 we have

||(RM (z)− eΩiRMIT(z)rΩi)f ||L2(R3)4 6
∣∣∣∣∣∣EΩi

m (z)Γ−rΩeRM (z)f
∣∣∣∣∣∣

L2(Ωi)4
+
∣∣∣∣∣∣R̃M (z)rΩef

∣∣∣∣∣∣
L2(Ωe)4

+
∣∣∣∣∣∣EΩe

m+M (z)Γ+rΩiRM (z)f
∣∣∣∣∣∣

L2(Ωe)4

. ||Γ−rΩeRM (z)f ||L2(Σ)4 + 1
M
||f ||L2(R3)4

+ 1√
M
||Γ+rΩiRM (z)f ||L2(Σ)4 .

To achieve the proof, it remains to show that

||Γ−rΩeRM (z)f ||L2(Σ)4 .
1√
M
||f ||L2(R3)4 , ||Γ+rΩiRM (z)f ||L2(Σ)4 . ||f ||L2(R3)4 . (4.6.4)

For this, observe that from (4.6.2) we have

||Γ+rΩiRM (z)f ||L2(Σ)4 6 ||Γ+RMIT(z)rΩif ||L2(Σ)4 +
∣∣∣∣∣∣A i

mΓ−rΩeRM (z)f
∣∣∣∣∣∣

L2(Σ)4

. ||RMIT(z)rΩif ||H1/2(Ωi)4 + ||Γ−rΩeRM (z)f ||L2(Σ)4

. ||f ||L2(R3)4 + ||Γ−rΩeRM (z)f ||L2(Σ)4 ,

(4.6.5)

where the boundedness of A i
m and the trace theorem were used in the last inequalities.
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Let ϕ ∈ H 1(R3)4, then a integration by parts yields that

||HMϕ||2L2(R3)4 = ||∇ϕ||2L2(R3)4 +m2 ||ϕ||2L2(Ωi)4 + (M +m)2 ||ϕ||2L2(Ωe)4

+M ||P−tΣϕ||2L2(Σ)4 −M ||P+tΣϕ||2L2(Σ)4 .
(4.6.6)

From this and Lemma 4.6.1 it follows that there exist C,M3 > 0 such that, for all M > M3
it holds that

||HMϕ||2L2(R3)4 > 2mM ||ϕ||2L2(Ωe)4 + 2(M − C) ||P−tΣϕ||2L2(Σ)4 − C ||P+tΣϕ||2L2(Σ)4 . (4.6.7)

Now, similar arguments to those of the proof of Lemma 4.5.1 yield that

‖(HM − z)ϕ‖2L2(R3)4 >
1
2‖HMϕ‖2L2(R3)4 + (|Im(z)|2 − |Re(z)|2)‖ϕ‖2L2(R3)4

>mM ||ϕ||2L2(Ωe)4 + (M − C) ||P−tΣϕ||2L2(Σ)4 −
C

2 ||P+tΣϕ||2L2(Σ)4

+
(
|Im(z)|2 − |Re(z)|2

)
‖ϕ‖2L2(R3)4

Thus, with the substitution ϕ = RM (z)f and taking M0 > sup{M2,M3} such that M0 >
|Re(z)|2/m, we get

M ||Γ−rΩeRM (z)f ||2L2(Σ)4 . ||f ||2L2(R3)4 + ||Γ+rΩiRM (z)f ||L2(Σ)4

+ |Re(z)|2 ||rΩiRM (z)f ||2L2(Ωi)4 .

Now, observe that from the first equation in (4.6.1) we have

||rΩiRM (z)f ||2L2(Ωi)4 . ||f ||2L2(R3)4 + ||Γ−rΩeRM (z)f ||2L2(Ωe)4 ,

and thus

M ||Γ−rΩeRM (z)f ||2L2(Σ)4 . ||f ||2L2(R3)4 + ||Γ+rΩiRM (z)f ||L2(Σ)4

+ |Re(z)|2 ||Γ−rΩeRM (z)f ||2L2(Ωe)4 .

Therefore, (4.6.4) follows by combining the last inequality and (4.6.5), and this completes
the proof of the proposition.
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