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Abstract

In the industrial domain, different kinds of sensor devices capture data continuously
and constantly monitor the operation of the machines in real-time. The cost and
size of sensor have reduced dramatically in recent years, making the digitisation of
machines and processes affordable. In the context of the Industrial Internet of Things
concerns come from both the large quantity and the sometimes low quality
of data that it is typically messy, as observations can be noisy, missing or lost in
communications. These limitations can lead to results that negatively impact business
decisions.

This research focuses on time series data, which poses unique challenges due
to the need to properly take into account autocorrelation, trends, seasonality, and
gaps. Moreover, as time series data is often continuously generated, it is important
that cleaning algorithms support near real-time operation. Furthermore, as the data
evolves, the cleaning strategy needs to change in an adaptive and incremental way,
in order to avoid having to start the cleaning process from scratch each time.

The objective of this thesis is to verify the possibility of applying machine learning-
inspired process flows to data pre-processing steps. For that purpose, this work
proposes methods that are capable of selecting optimal pre-processing strategies and
providing insight into the errors made. The proposed methods generate pre- and post-
processing models which are trained using available historical data, by minimising
empirical loss functions.

Specifically, this dissertation studies time series compression, feature joining, ob-
servation imputation and surrogate model generation processes. In each of them, the
optimal selection and combination of multiple strategies is pursued. This approach
is defined according to data characteristics and user-defined system properties and
limitations.

The general results indicate that the proposed approach identifies optimal pre- and
post-processing strategies for univariate time series on a window-by-window basis,
showing its capability to adapt to the current signal window. Specific details of the
data generation process, of the dependency on other internal or external variables, or
even of noise can affect the pre-processing selection results. Controlling the error in

XV



the process is critical in order to detect model drifts and, as a consequence, to retrain
the generated model to maintain data quality. Implementation results have allowed
ensuring data quality control in real-world project scenarios.

XVi
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CHAPTER 1

Background

This chapter starts with a general introduction describing the Industry 4.0 environ-
ment and then continuous with the presentation of the research centre and projects
where this work has been realised. Finally, the structure of the dissertation is detailed.

1.1 General introduction

The cost and size of sensor technology has been reduced dramatically in recent years,
making the digitisation of the instrumentation of machines and processes technically
affordable. Therefore, thanks to the Industrial Internet of Things both the
discrete manufacturing industry (machine tools, parts and components, electronics,
etc.) and the process industry have produced a rapid increase in data volumes [67].
In order to obtain knowledge from the collected data, this data needs to be analysed
by domain experts and data analysts. Combining their knowledge and experience in
the domain, they are capable of developing tools to discover non-evident patterns and
relationships in production data, thus boosting their decision-making capacity.

However, in [[ToT] the concern comes in handling vast quantities of unstructured
data as well as sensor data from multiple devices. Therefore, in order to gain value
from these data there has to be an alternative way to handle and manage it. The rapid
increase over the last decade in data volumes, cloud storage, rental computing power,
and network connectivity has enabled analysis of operational data that was previously
impossible. Furthermore, streaming data velocity in the [[IoT| context, requires real-
time or as close to real-time as possible handling and analysis. This constraint puts
additional pressure on data storage and handling systems [73]. Another characteristic
of this collected data is that it is typically messy, as observations from sensor data are
often missing or lost in communications and therefore requires considerable tidying
up before processing.

Through the latest advances in sensor technologies, sensors instead of just being
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precise, can have self-awareness and can even predict their remaining useful life. Sim-
ilarly, machine sensors through their controllers can be self-conscious, self-predict and
self-compare [27]. Combined with this new breed of self-informed and self-predicting
components, analytic processes can provide accurate predictive maintenance sched-
ules for machinery and assets, keeping them in productive service longer and reducing
the inefficiencies and costs of unnecessary maintenance. Monitoring for productivity
and diagnosis are a valuable suite of functions that permit the detection and pre-
diction of the occurrences of faults or problems. Having the ability to detect and
proactively redress problems is very important in industrial environments.

Summarising, the [[IoT| provides a closer insight into company’s operations and
assets through integration of machine sensors, cloud computing and storage systems.
Once the collected data is processed by means of advanced analytic processes, it pro-
vides a method of transforming business operational processes. Finally, business gains
come from operational efficiency gains and accelerated productivity, with expected
results in reduced unplanned downtime and optimised efficiency [65].

1.2 Research environment

This section describes the research centre and some of the projects in which this work
has been done.

1.2.1 Vicomtech

Activities described in this work have been carried out at VicomtechE], an applied
technological research centre located in Donostia - San Sebastian (Basque Country,
Spain) that combines basic and applied research with the aim of transferring technol-
ogy to the industry. More specifically, one of the main missions of Vicomtech involves
meeting the applied research, technology development and innovation requirements
of local companies and institutions in artificial intelligence, visual computing and
interaction to enhance their competitiveness. To this end, Vicomtech promotes the
development and creation of product prototypes and applications in collaboration
with the industry. Besides, Vicomtech aims at contributing to universal knowledge
by the publication of scientific results.

Nowadays, Vicomtech is composed of seven technological departments, each seek-
ing to develop and apply technology in different fields and industries, as listed below:

e industry and advanced manufacturing

digital media

speech and natural language technologies

data intelligence for energy and industrial processes

e intelligent transport systems and engineering

thttps:/ /www.vicomtech.org/en
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e digital security
e chealth and biomedical applications

This dissertation work corresponds to data intelligence for energy and industrial
processes department and reflects the evolution and growth of data pre-processing and
analysis in the domain. This evolution was given mainly by (1) the expertise
acquired during the execution of several local and European projects, (2) the strong
collaboration with other fields and departments, (3) the knowledge of the market
and the industry in the corresponding technologies, and (4) all the research and
development activities that aspects described above have originated overall.

The Data Intelligence for Energy and Industrial Processes department has exten-
sive experience in the modelling and probabilistic characterisation of systems. In this
sense, its experience covers disciplines as diverse as remote sensing, image character-
isation, thermography and, above all, data processing through machine learning and
Artificial Intelligence techniques. The department applies all these capabilities in the
sectors it addresses (industrial activity, energy, agriculture, environmental manage-
ment, etc.) increasing the competitiveness of these sectors through the prediction and
optimisation of processes as well as improving their interpretability. In addition, the
Data Intelligence department works on aspects of integration and interoperability of
services from the capture of the data itself (through open industrial protocols) to its
deployment in edge/cloud infrastructures.

Furthermore, the department supports teams for analysis and the decision making
of experts in the productive process by means of the development of visual interaction
systems. An important line of work in Visual Analytics is that related to Business
Intelligence. By means of interactive visualisation of the information by experts,
supported by Data Intelligence algorithms, we can achieve a major improvement in
the comprehension of the current situation in business decision-making, such as giving
instructions and allowing the definition of alternative scenarios in the quest for better
solutions or as means of a tool for causality analysis.

The main strength of the group lies in the fact that, thanks to its experience in
R&D projects, it has been trained in the modelling of highly complex systems and
in turn implements, integrates and deploys the algorithms designed in a first phase
of analysis and experimentation with data in which the final modules of prediction,
optimisation, recommendation, etc. are implemented in conjunction with the business
logic of each case.

1.2.2 Projects

The following are some projects, in which I have participated, that have taken place
during the development of this thesis project.
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Sparta - Strategic programs for advanced research and technology in Eu-
ropef| (H2020 2019-2022)

With the real-world applications of Al came the realisation that its security requires
immediate attention. Malicious users can skillfully influence the inputs fed to the
Al algorithms in a way that changes the classification or regression results. The role
of the program lies in conducting a thorough analysis of the threats and risks for
Al This is followed by providing mechanisms and tools to counter the deteriorating
effects of recognised dangers in a variety of critical Al applications, making them safe
and secure from the possibility of being compromised. The evaluation of machine
learning models robustness in adversarial settings is not a trivial task. If the model is
robust to a particular kind of attack, it is not a sufficient measure of its robustness.
In order to have confidence in the predictions made by the model, it is needed to
check its robustness against a variety of attack techniques.

Petroscopio (Industrial 2016-2019)

Generation of tools for analysis, diagnostics and monitoring of the operation by means
of visualisation tools. This system also should integrate the complete process from
data queries and table joining to model generation. With that objective in mind, the
system should allow selecting, filtering and integrating data from multiple databases
and data input characteristics. Once the data is integrated, the domain expert would
use the tools for comparing and relating different operating variables in order to
construct machine learning models for predicting and classifying future events. Sum-
marising, the tools should provide domain experts the capability of training models
ensuring all the pre-processing and integration steps that happen in between.

DataPump (Industrial 2016-2019)

Generation of a tool that allows downloading selected variables from multiple databases
in user determined format. By the use of an interface, a user without any knowledge
of query language should be capable of generating a data table that contains user
selected variables. Apart from the variables, the user can indicate desired time win-
dows and data sampling. With this tool, production process engineers and domain
experts have the accessibility to data in order to carry out their investigations.

Mainwind+ (HAZITEK 2015-2018)

The aim of the project was offering specific solutions to wind turbine manufacturers
who demand, above all, to know the real-time behaviour of components in order to
test their reliability and reduce costs. The challenge was to exploit the potential
offered by the information generated by the components developed so far, providing
intelligent sensorisation, communication, storage and data exploitation technologies,
and integrating them into the entire value chain of the wind business. This would

https://www.sparta.eu/
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make it possible to predict the behaviour of parts during use, reduce the risk of failure
and optimise the logistics of spare parts. For that purpose, different visualisation tools
were generated that allowed the integration of multiple data sources. As visualisations
were integrated in a unique online platform, the different data sources should be joined
and the data volume reduced before introducing them in the system.

Vix3D (Industrial 2019-2022)

Industrial process managers need to investigate the status in their production pro-
cesses for resolving problems and optimise the processes. As big amounts of data are
produced daily, it is not possible to revise all data manually in detail. The objective
of the project was enabling the user through the use of synchronised visualisations
to select the time windows of interest. Due to the volume of data, the visualisation
were generated from reduced number of points capable of representing the general
behaviour of the selected signals.

1.3 Structure of the dissertation

This dissertation is divided in two parts: Part [[| containing the body of the disserta-
tion; and Part [[I] first starts with a summary of the significant papers that are later
included. Part [I] is organised in nine main chapters considering this introduction. A
brief description of the content of each chapter follows.

Chapter [1 Background. This chapter starts with a general introduction. Then, the
research environment is described introducing the research centre and the main
projects where this research has been carried out. Finally, the structure of the
thesis is detailed.

Chapter [2; Motivation. The main context of the research is presented, together
with the research questions and outcomes.

Chapter [3; Theoretical concepts. This chapter presents definition and properties of
the theoretical concepts which are used in the dissertation.

Chapter [4: Compression. The proposed solution to obtain an adaptative observa-
tion selection methodology is presented.

Chapter [5} Joining. This chapter details the optimisation methodology proposed to
select a SQL joining method that satisfies user defined properties in the results.

Chapter [6f Imputation. A methodology to deal with observation imputation strat-
egy selection is described in this chapter.

Chapter [7 Surrogate models. This chapter explains how to apply machine learning
based ensemble models as surrogate models in order to substitute a Lithium ion
battery performance simulation model.
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Chapter [8: Conclusions and future work. Finally, this parts ends with general con-
clusions and future work of the dissertation.



CHAPTER 2

Motivation

This chapter introduces the context of the research, describing the specific problem
to be solved and indicating the objectives. Later, the specific research questions to
be resolved are detailed. Finally, the scientific contributions generated during the
research done are listed.

2.1 Where to push the boundaries: context

Uncontrolled data quality can often result in erroneous upstream results that could
impact business decisions negatively. In view of that, one of the critical challenges is
to maintain large data warehouses and, at the same time, to ensure that the quality of
the data remains high [22]. Data cleaning process is in charge of maintaining high data
quality. Furthermore, this transformation is typically done as batch process, operating
on the whole dataset without any feedback. This leads to long, frustrating delays
during which users have no information of the effectiveness of the transformation
[58]. Finally, data quality is evaluated in a data profiling process, which usually
involves calculating several aggregate data statistics that form the data profile.

Incorporating the user into the cleaning process is critical to achieve high quality
results. Generally, this process is studied as a separated problem and there are no
guides on options available for building or choosing an adequate solution. The main
advantage of domain-specific solutions is that they can incorporate knowledge of the
domain while developing the solutions. As the domain is known, the decisions taken
can often be comprehensive, are easier to deploy and validate the results. In general,
a significant portion of the data cleaning and data transformation is done manually
or by low-level programs that are difficult to write and maintain [57].

The data cleaning process should be supported by tools to limit manual inspection
and programming efforts and be extensible to easily cover additional sources. In
addition, data cleaning and other data transformations should not be performed in
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isolation, and be specified in a declarative way for its later use in other data sources as
well as for query processing. Specially for data warehouses, a workflow infrastructure
should be supported to execute all data transformation steps for multiple sources and
large data sets in a reliable and efficient way.

This research is centered in time series data. Time series data can be defined as a
sequence of random variables, x, zs, - - , x,, where the random variable z; denotes
the value taken by the series at the first time point, the variable x5 denotes the value
for the second time period, x, denotes the value for the n-th time period, and so
on. Time series have been widely used in many fields such as financial economy,
meteorology and hydrology, signal processing and manufacturing industry. In the
particular case of industry, time series data are specially important. In this domain,
different kinds of sensor devices capture data continuously and constantly monitor
the operation of the machine in real-time. However, these sensor devices often save
erroneous values, thus generating low quality data [77].

In recent works, the data quality issues in time series data are studied, which pose
unique challenges due to the presence of autocorrelations, trends, seasonality, and
gaps in the time series data. Moreover, as time series data are often uninterruptedly
generated, it is important that cleaning algorithms support online operation (real-
time operations). Furthermore, as the data evolves, the data cleaning strategy needs
to change in an adaptivity way. The incremental changes should be identified and
updated, in order to avoid having to start the cleaning process from scratch each time
[76]. This online cleaning algorithm can monitor the data quality, detect the problem
and then promptly alarm or perform a reasonable cleaning. Finally, this process needs
to avoid changing the original correct data and be based on the principle of minimum
modification, that is, the smaller the change, the better [14], [, 20].

The data generated by numerical models are capable of representing physical
problems with high precision. However, each new prediction requires excessive com-
putational time, making them not suitable for near real-time applications. In order to
include the valuable information proportioned by the numerical models in the system,
surrogate models can be used. When these models are trained with sufficient data
from simulation results, thus are capable of mimicking the physical relations between
the input and output parameters. By the use of these models, each evaluation result
can be integrated directly together with the rest data in the data warehouse.

The objective of this research is providing guidelines to the pre-processing steps
described in this section and tools to control and monitor the data availability and
quality on the system. A general overview of the data quality process is described in
the Figure [2.1

Input data from multiple sources should be integrated in a common data ware-
house. Previous to the integration, first, the quality of the data is evaluated and
cleaned. Then, the cleaned data is compressed before saving it in the data ware-
house. For the simulated data, depending on the data availability needed, surrogate
models are generated to ensure that data can be provided in near real-time. On the
one hand, the data in the warehouse is monitored by the system manager to ensure
the quality of data is maintained. On the other hand, database manager uses the
query tool to revise the data available in the warehouse. Finally, the desired data is
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Figure 2.1: General idea schema. Data from multiple sources is collected and cleaned
a compressed previous saving it in the warehouse. Simulation results are integrated
by surrogates models in the data collection process. Later, the desired data is joined
and the gaps imputed for its integration in previously defined services.
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joined and the gaps imputed for its integration in previously defined services in which
final users are connected.

2.2 An illustrative example

Networks of meteorological sensors are essential to monitor atmospheric processes,
and to assess both long-term climate change and short-term weather events. Sensor
network nodes typically have a set of design goals including sensor integration, data
quality, size, cost, robustness and power management. Due to the harsh nature of
most of the host environments, they are designed to be robust but there may be
difficulties with transmitting through the environment being sensed, e.g. through
ice, water or forests. Different types of data are collected by the sensor nodes, but
some of the variables such as precipitation, ground water and surface water chemistry,
vegetation and animal observations continue being measured manually.

Figure 2.2: Meteorological global observing system schem

Figure 2.2 shows the different elements that provide meteorological information
and are part of the global observing system. Surface station and automatic stations
located all around the world provide at least every three hours and often hourly
meteorological parameters such as atmospheric pressure, wind speed and direction,
air temperature and relative humidity. Upper-air stations, radiosondes, attached to
free-rising balloons, make measurements of pressure, wind velocity, temperature and

Thttps://public.wmo.int /en /programmes /global-observing-system
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humidity from just above ground to heights of up to 30km. Over the oceans the
Global Observing System relies, in addition to satellites, on ships, moored and drift-
ing buoys and stationary platforms. They comprise much the same variables as at
surface land stations with the important additions of sea surface temperature, wave
height and period. Aircraft-based observation provide reports of pressure, winds,
temperature, humidity, turbulence and other parameters during flight. Polar orbiting
and geostationary satellites are normally equipped with visible and infra-red imagers
and sounders from which one can derive many meteorological parameters. Several
of the polar-orbiting satellites are equipped with sounder instruments that can pro-
vide vertical profiles of temperature and humidity in cloud-free areas. Geostationary
satellites can be used to measure wind velocity in the tropics by tracking clouds and
water vapour. Finally, weather radars have been used in the detection of precipitating
water droplets and the derivation of rainfall rates within clouds for decades. All the
information collected in different sources is received in the national meteorological
services where data is processed and integrated in the forecasting systems.

For all these reasons, meteorological forecasting remains challenging due to the
strong heterogeneity of land cover, the data management and access difficulties and
the multiscale meteorological dynamics. Data pre-processing steps are essential in
order to construct accurate forecasting models. Large data volumes from multi-
ple origins should be integrated in a single system with difficulties such as different
data samplings and missing observations. Furthermore, sensor network data should
be combined with numerical model results that provide information that cannot be
measured directly or from locations where data coverage is not available.

This thesis present a set of novel methods that can be integrated in a pipeline
aiming at composing such heterogeneous, streaming, uncompressed, incomplete data
from sensors, potentially integrating them with simulators via surrogates capable of
generating samples in near-real time.

2.3 Research questions

Based on the previous experience of Vicomtech and its closeness to real industrial
applications a set of common scenarios is identified. These scenarios include:

e no supervised sampling / compression strategy
e crroneous values stored and no unified strategy for indicating missing values

e misalignment in data

This context identified by Vicomtech is quite frequent. That is, clients and
databases can vary, but the decisions previously taken of pre-processing steps or their
supervision are similar. For that reason, this thesis formulates and tries to answer the
following Research Questions, that provide solutions to the data cleaning processes
that fall in the previous scenarios:
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3.

. How to automatise or select pre-processing depending on system derived prop-

erties?

. How can these pre-processing steps adapt to new characteristics without needing

to change completely the framework?

How can the user manage / monitor the pre-processing steps?

This work is an attempt to provide answers to this set of research questions.

2.4 Research outcomes

Regarding the scientific contributions generated in the framework of this research,
the following articles have been published and include contributions of the author.
Journal articles:

(a)

(b)

(e)

(f)

A. Gil, M. Quartulli, I. G. Olaizola, B. Sierra, Learning Optimal Time Series
Combination and Pre-Processing by Smart Joins, in Applied Sciences,
vol. 10, no. 18:6346, 2020.

A. Gil, M. Quartulli, I. G. Olaizola and B. Sierra, Towards Smart Data
Selection From Time Series Using Statistical Methods, in IEEE Access,
vol. 9, pp. 44390-44401, 2021.

M. Quartulli, A. Gil, A.M. Florez-Tapia, P. Cereijo, E. Ayerbe, and I.G. Olaizola.
Ensemble Surrogate Models for Fast LIB Performance Predictions.
Energies 2021, 14, 4115.

X. Echeberria-Barrio, A. Gil-Lerchundi, J. Egana-Zubia and R. Orduna-Urrutia.
Understanding Deep Learning defenses Against Adversarial Examples Through
Visualizations for Dynamic Risk Assessment. Neural Computing & Applica-
tions. Springer, 2022.

X. Echeberria-Barrio, A. Gil-Lerchundi, R. Orduna-Urrutia and Inigo Mendi-
aldua. Optimized Parameter Search Approach For Weight Modification Attack
Targeting Deep Learning Models. Applied Sciences. (Accepted)

A. Gil, M. Quartulli, I. G. Olaizola and B. Sierra, ASSIST: Automatic Smart
Selection of the Suitable Imputation Technique. (Submitted)

Conference articles:

(a)

A. Gil, E. Ayerbe, 1. Urdampilleta, O. Miguel, H. J. Grande, F. Varas and L.
Saavedra. Li-ion Cell design optimization based on 3D electric-thermal model.

In Symposium for Fuel Cell and Battery Modeling and Experimental Validation
(ModVal13), 2013.
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(b) G. Nico, A. Gil, M. Quartulli, P. Mateus and J. Catalao. Merging InSAR and
GNSS meteorology: How can we mine InSAR and GNSS datasets to extract
and visualize information on atmosphere processes? In Proceedings of the 2017
conference on Big Data from Space (BIDS’ 2017), pp. 375-378, 2017

(c¢) X. Echeberria-Barrio, A. Gil-Lerchundi, I. Goicoechea-Telleria and R. Orduna-
Urrutia. Deep Learning Defenses Against Adversarial Examples for Dynamic
Risk Assessment. 13th International Conference on Computational Intelligence
in Security for Information Systems (CISIS 2020). Advances in Intelligent Sys-
tems and Computing, vol. 1267, pp. 316-326, 2020.

(d) J. Franco, A. Garcia and A. Gil. Multivariate Adaptive Downsampling Algo-
rithm for Industry 4.0 Data Visualization. 16th International Conference on
Soft Computing Models in Industrial and Environmental Applications (SOCO
2021). Advances in Intelligent Systems and Computing, vol 1401. Springer,
2021.

From the previous, only those publications with major contributions (remarked in
bold) on the author and answering the research questions are presented in Part



16

Motivation




CHAPTER 3

Theoretical concepts

This chapter introduces time series data and machine learning concepts that will be
used in the following chapters.

3.1 Time series definition and properties

When a variable is measured sequentially in time over or at a fixed interval, known
as the sampling interval, it forms a time series. The term wunivarite time series
refers to a time series that consists of a single observation recorded sequentially in
time and multivariate time series is used when multiple dependent variables obser-
vations are received each time. A time series of length n can be represented by
{z; :t=1,...,n} ={x1,29,...,2,}, which consists of n values sampled at discrete
times 1,2,...,n. When all the observations between specific start and end time are
extracted from a time series, the term time (series) window is used to refer to it.

The special structure of time series produces unique challenges for machine learn-
ing researchers. A consideration due to the special nature of time series is the fact
that individual observations are typically highly related with their neighbours in time.
Indeed, it is this property that makes most time series excellent candidates for dimen-
sionality reduction by compression. However, for learning algorithms that assume the
independence of features, this lack of independence must be countered or mitigated
in some way.

The main features of many time series are trends and seasonal variations that
can be modelled deterministically with mathematical functions in time. A systematic
change in a time series that does not appear to be periodic is known as trend and
the repeating pattern within any fixed period is called seasonality. Figure [3.1] shows
a descomposition of a time series using its trend and seasonality patterns. stationary
time series is one whose properties are constant.

The covariance is a measure of the linear association between two variables. Being

17
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Figure 3.1: Time series example and its decomposition using trend and seasonality

[49].

T and 7y the sampling estimates of mean values of variables x and y, the covariance is
defined as follows:

Cov(w,y) =Y (x:i —=T)(yi —7)/(n — 1)

If the data pairs are plotted, the lines + = ¥ and y = ¥ divide the plot into
quadrants. Points in the lower left quadrant and in the upper right contribute to
the covariance in positive manner. In contrast, points in the upper left and lower
right quadrants make a negative contribution to the covariance. Thus, if y tends to
increase when z increases, most of the points will be in the lower left and upper right
quadrants and the covariance will be positive. Conversely, if y tends to decrease as x
increases, the covariance will be negative. If there is no such linear association, the
covariance will be small relative to the standard deviations of {z;} and {y;}. Figure
[3.2] shows two time series samples that have a positive covariance value between them.

Correlation is a dimensionless measure of the linear association between a pair
of variables (x,y) and is obtained by standardising the covariance by dividing it by
the product of the standard deviations of the variables. Correlation takes a values
between -1 and +1, with a value of 0 indicating no linear association. The sampled
correlation is calculated using the following equation:

Cov(z, y)
sd(x)sd(y)
where sd(z) and sd(y) are the sampling estimations of standard deviation values of

variables  and y. A correlation of a variable with itself at different times is known
as autocorrelation.

Cor(z,y) =
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Figure 3.2: Scatter plot generate from two time series samples that have a positive
covariance value associated [49].

3.2 Machine learning concept definitions

A dataset is a collection of data used for some specific machine learning purpose,
which at least is divided in two separated sets: training and test set. A training set
is a data set that is used as input to a learning system, which analyses it to learn a
model. A test set (or evaluation set) is a data set containing data that are used to
evaluate the model learned by a learning system.

Attributes (or features) are properties of things, actions or physical magnitudes
that we, as humans, use to describe them. An instance is an individual object descrip-
tion, which is often represented as a vector of attribute values, each position in the
vector corresponding to a unique attribute. Attribute-value pairs are standard way of
describing things within the machine learning community. Traditionally, values have
come in one of three types: binary, nominal and real.

Before the data can be analysed, they must be organised into an appropriate form.
Data pre-processing (or preparation) is the process of manipulating and organising the
data prior to the analysis. Missing values are a common problem to be resolved in this
pre-processing step. Missing values is equivalent to unknown attribute values. First,
the source of “unknowness” should be investigated; there are several such sources: A
value is missing because it was forgotten or lost, a certain attribute is not applicable
for a given instance, an attribute value is irrelevant in a given context, for a given
observation the designer of a training database does not care about the value of a
certain attribute. Strategies to work with missing values: ignore the example with
missing values, consider the missing value as an additional regular value, substitute
the missing value for matching purposes by a suitable value. Other common process
that is applied in the data pre-processing steps is the identification of outliers instances
and erroneous observations. The outliers are instances which are markedly different
from their nearest neighbours. It is important to distinguish them from erroneous
observations as one cause of the latter is that missing data are sometimes coded using
a specific value. Such values need to be handled as missing values in the analysis and
must not be included as observation values when fitting a model to data. Outlying
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values that cannot be attributed to some coding should be checked carefully. If they
are correct, they are likely to be of particular interest and should not be excluded
from the analysis. However, it may be appropriate to consider robust methods of
fitting models, which reduce the influence of outliers. Figure [3.3] shows the difference
between missing data observations and outliers.
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Figure 3.3: Examples showing the difference between missing data and outliers [47].

On one hand, unsupervised learning refers to any machine learning process that
seeks to learn structure in the absence of either an identified output. Clustering is a
type of unsupervised learning in which the goal is to partition a set of examples into
groups called clusters. Intuitively, the examples withing a cluster are more similar to
each other than to examples from other clusters. In order to measure the similarity
between examples, clustering algorithms use various distortion or distance measures.

On the other hand, supervised learning refers to any machine learning process
that learns a function from an input type to an output type using data comprising
examples that have both input and output values. Two typical examples of supervised
learning are regression and classification learning. In regression learning, we are
typically interested in inferring a real-valued function (called a regression function)
whose values correspond to the mean of a dependent (or response or output) variable
conditioned on one or more independent (or input) variables. Classification means
to put things into categories, group them together in some useful way. A class is
a collection of things that might reasonably be grouped together. Data are said to
suffer the class imbalance problem when the class distributions are highly imbalance.
In this context, many classification learning algorithms have low predictive accuracy
for the infrequent class.

Figure [3.4] shows graphical examples of clustering, classification and regression
models.

The cost (or loss) of a prediction 3/, when the correct value y, is a measure of the
relative utility of that prediction given that correct value. A common loss function
used in classification learning is zero-one loss. Zero-one loss assigns 0 to loss for a
correct classification and 1 for a incorrect classification. A common loss function
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Figure 3.4: The three pillars of learning in data science: clustering, classification and
regression [51].

used with regression is error squared. This is the square of the difference between the
predicted and true values. In the model training, selected model’s parameter values
are optimised with the training set in order to minimise the cost function value.

Ensemble learning refers to the procedures employed to train multiple learning
machines and combine their outputs, treating the as a “committee” of decision mak-
ers. The principle is that the decision for the committee, with individual predictions
combined appropriately, should have better overall accuracy, on average, than any
individual committee member. Two common strategies used in ensemble learning
are bagging and stacking. In bagging, each member of the ensemble is constructed
from a different training set and the models are combined by a uniform average or
vote. However, when stacking strategy is applied, a set of models are constructed
from bootstrap samples of a dataset, then their outputs on a hold-out dataset are
used as input to a “meta”model. Figure [3.5] shows stacking and bagging techniques
architectures diagrams.
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Figure 3.5: Ensemble architecture diagram for (a) stacking and (b) bagging techniques
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When it comes to machine learning model evaluation, accuracy refers to a measure
of the degree to which the predictions of a model match the reality being modeled.
For the classification models, the confusion matriz summarises the classification per-
formance of a classifier respect to some test data. It is a two-dimensional matrix,
indexed in one dimension by the true class of an object and in the other by the class
that the classifier assigns. Figure|3.6|shows how the confusion matrix is calculated in
a binary classification example, together with the equation of evaluation measures.

l Ground truth ‘

+

True positive False positive Precision =
3 (TP) (FP) TP /(TP + FP)
B
o
£
o False negative True negative

(FN) (TN)
Recall = Accuracy =

(TP+TN)/

UR/ AU e 0] (TP + FP + TN + FN)

Figure 3.6: Confusion matrix of a binary classification example and evaluation metrics
calculation definition [32].

In order to obtain a more robust evaluation of the model that is not so dependent
of the initial dataset division, cross-validation strategy can be used. Cross-validation
is a process for creating a distribution of pairs of training and test sets out of a single
data set. In cross validation the data are partitioned into k subsets each called a fold.
The folds are usually of approximately the same size. The learning algorithm is the
applied k times, each time using the union of all subsets other than the one selected
for training set and using the selected as the test set. Figure shows the k-fold
cross-validation methodology.

Finally, the model evolution should be evaluated after being introduced in the
application for which it was generated. Concept drift occurs when the values of
hidden variables change over time. That is, there is some unknown context for concept
learning and when that context changes, the learned concept may no longer be valid
and must be updated or relearned.
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CHAPTER 4

Compression

Dynamic data from fine grained, high temporal resolution sensors is often useful for
short-term forecasting and visualization [19]. However, communication latency, band-
width constraints, high energy consumption and storage requirements for such data
can be problematic [6]. Reducing the amount of data to be transmitted can help con-
trol latency time and save in energy consumption and storage [5]. A natural solution
is to compress the data at the sensing devices, monitoring in real time the error in-
troduced by this process. Point selection is a possible strategy for lossy compression.
A key challenge in the setup of point selection methodologies is reducing the size of
the transmitted data without sacrificing its quality.

4.1 Background

Blalock et al. [§] describe desirable properties of the compression algorithms:

1. Minimal buffering: on devices with small memory capacities, only small time
windows can be used before data is compressed.

2. High decompression speed: decompression of data in order to recover the time
series for such as visualization and machine learning applications needs to be
quick.

3. Losslessness: using lossless compression algorithms ensure that the data could
not depend on previously defined pre-processing strategies.

On the one hand, most work on compressing time series has focused on lossy
techniques, i.e., after compression the original data cannot be recovered. Classical
approaches for data compression include Fourier transforms [9], wavelets transforms
[29], symbolic representation [41] and piecewise regression [19, 40]. Classical com-
pression techniques reduce the volume of data by using transformations, regression

25
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models or aggregations functions. The result of the transformations, the parameters
of the regression models or the symbolic representation of the aggregated values are
stored to represent the signal. None of the data points measured are transmitted
and the signal representation is dependent on the efficacy and adequateness of the
compression methodology used.

On the other hand, lossless compresssion techniques [54) [8, [75] help reducing the
volume and storage of data to be transmitted without loosing any information and
satisfy all the properties above mentioned. However, the compressed version of the
signal cannot be used for visualization, control or analytic applications directly, as
the encoding of data has been optimized to save storage.

A lossy compression technique is based onS point selection algorithms to reduce
the data volume. These techniques aim to select the most significant or representative
points. One option apart from selecting points from a regular sampled signal uses
adaptive sampling methods [31]. These approaches study the level of variance between
the collected data over a certain time frame and dynamically adjust the sampling
frequency of the device. Adaptive sampling approaches work well in applications
where the collected time series is stationary. In the case of quickly varying data,
these approaches often perform poorly.

4.2 Case study

Consider a time series signal which is sampled with a constant frequency. Due to
system limitations, for example with respect to memory, not all captured points can
be stored, and therefore a data point selection methodology needs to be applied.
One possible classification of point selection algorithms considers the way in which
those are applied [I1]. On the one hand, algorithms can work in batch mode, i.e., the
data is processed when the batch or group is complete. On the other hand, there are
algorithms that work in online or streaming mode, in other words, when a new point
arrives to the system, the data points selection methodology is applied directly.
Other possibility was proposed by Keogh et al. [35], a classification for data point
selection algorithms based on the point selection strategy they adopt. Some of them
select observations guaranteeing that the maximum allowed error is met in the time
series representation. Other methods, select the best representation of the time series
using limited quantity of memory, i.e., kK — 1 segments (or equivalently & points).
Classical data point selection methodologies are based on a maximal error value
by point of the time series [78]. Therefore, these strategies work in online mode
and depend on a maximum error threshold that would decide if the new received
observation is saved or not. Among the classical procedures are the following ones:
boxcar algorithm, backward slope methodology and swinging door strategy. The
problem of these methodologies is that the compression level is dependent on the
signal and as they work in online mode, latency is not controlled either.
The following algorithms work in batch mode. In the case of data points selection
using maximum number of segments, a fixed window in time series data is used as a
batch, and from there, a maximum number of points k is selected to be part of the
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compressed signal.

The simplest way to select data points from a time series with a constant sampling
frequency is to pick them using a lower frequency value than the original one, i.e,
selecting a point each n points (oer)).

The different versions of the largest triangle algorithm [71] are based on the use of
the effective area of the data points: the significance of a point is indicated by the area
of the triangle formed with its two adjacent points. Depending on how the adjacent
points are selected or how the buckets are constructed, three different algorithms are
generated: largest-triangle-one-bucket starts from equal size buckets, selecting
one point from each bucket regardless of which points are selected in nearby buckets;
in the largest-triangle-three-buckets version similar strategy to is used but
this time takes into account the point selected in the previous bucket; and in largest-
triangle-dynamic, buckets are generated dynamically depending on the linearity of
the inner buckets points. The mode-median-bucket [71] algorithm uses the
mode and the median values of data points in each bucket in order to select a point
from it. The M4 (m4d) strategy was defined by Jugel et al. [34]. First, n buckets are
generated containing approximately equal number of points. Then, from each bucket
the minimum and maximum values from both axis (time index and data values) are
selected.

4.3 Innovation

It is desirable to be able to compress time series from stochastic processes into streams
with constant or limited length in order to meet memory capacity limitations. To the
best of our knowledge, there has been no reported work on time series compression
with rate adaptability and the ability to flexibly preserve different characteristics of
interest of a given time series. In this sense, the contributions this thesis puts forward
are:

1. The idea of combining different data points selection methodologies taking into
account their adequateness in the current signal window.

2. A definition of errors for the determination of the optimal data points selec-
tion methodology, in each moment and for different characteristics of interest,
depending on the envisaged application

In Figure the application of the idea is shown. The compress steps receives as
inputs the data to be processed, the maximum number of data points to select from
the signal and the definition of the error function to be used to determine the quality
of the compression. The smart compress model evaluates the input data and responds
with the “optimal” compression method used, the selected observations of the signal
and the error obtained in the compression. These three outputs are saved in a data
storage, the selected points in order to reduce the data volume, the identifier of the
method for decompressing adequately afterwards the data when it is needed, and the
error for being capable of monitoring the error generated in this process.
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Figure 4.1: Schema of the smart compression method. The input data, the maximum
number of data points and the error function are received in the compression system.
Then, this inputs are evaluated by the smart compress model and responds with the
“optimal” compression method, the selected observations and the error value. Finally,
all information is saved and compression quality can be visualised.

Furthermore, this work proposes a smart data selection method based on a opti-
mization process. The aim of this optimization problem is to select the method that
minimizes the errors of the point selection process for each feature. Figure shows
two compression methods applied to a piecewise constant signal.

The general method pursued for generating the smart compress model is shown
in Figure [4.3] and can be described as follows:

1. First, the data point selection method is adjusted using training data, in other
words, the fit method selects the optimal algorithm that suits best the time
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Figure 4.2: Two different compression examples are shown. In the first, a new data
observation is saved when the difference with the previous observation is > 1. On the
second case, only observations with time indices multiple of four are saved.

series provided in the training.

2. Then, a compressed version of the signal is obtained by applying the proper
data selection method to the test data.

3. Finally, the adequateness of the data selection model is validated using the error
between the original and the recovered signal from decoding the compressed
signal.

In order to be able to compare different data point selection methodologies, the
different compressed versions of the time series should have a similar quantity of
selected points after each compression strategy is applied to the original data. For
this reason, the methods considered in the smart selection algorithm are the ones
that guarantee that the compressed version has a well-defined number of points in
the compressed version and that can work in batch mode.

Depending on the purpose of the application, properties of interest of the signal
could be totally different. The error functions can be defined in order to maintain
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Figure 4.3: Smart compress methodology schema describing input parameters and
the outputs of the methods provided.

these properties of the signal. Different signal characteristics are listed next for three
different purposes:

e In visualization applications, properties such as shape of the signal, visual out-
liers, linear trend of data and number of peaks are important to maintain.

e In control applications, the appearance of new events (peaks), change in signal
tendency or frequency are important.

e For analytical processes, outliers and statistical properties such as kurtosis,
maximum, mean, median, minimum, quantiles, skewness, standard deviation
and variation coefficient are essential.

Even if the total number of points in the compressed time series is the same,
the distribution of the optimal method can change. In a smaller window sizes, the
quantity of points to select from is reduced, and as consequence the algorithm can
select them quicker. Furthermore, a smaller window allows adjusting the algorithm
to the actual time series characteristics. However, a bigger window size could help
distributing the points in time in a smarter way. It is important, therefore, that
experiments are made with data from different origins and characteristics in order to
ensure that the selection of the algorithm does not only depend on the error function
used.

There are two possible strategies to define window size or batch length:

1. Based on a temporal window to schedule the data points selection periodically

2. Based on memory limitations, the compression methodology is planned only
when a reduction is needed.

Suppose there is a window of the time series y,(t,) where t, = [to1, %02, -+, tom] and
being m the number of points in the selected window. Let d be a data points selection
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method from the available methods set D = {{ltoblf [ttt m4al mmbloenl}. Then, the
compressed version of the time series, y.(t.), is defined by the selected data points
from y, corresponding to time indices t. = [t1, te, ..., ten). The value n < k where k
is the maximum allowed number of points in y.(t.).

From y.(t.) the removed data points values are recovered by the use of a linear
interpolation method between available points of y.(¢.). The notation used to refer
to the reconstructed version of the time series is y, and it is defined for time index
values that were contained in the original time series signal ¢,,.

Finally, an optimization problem is defined to select the most adequate compres-
sion method for the signal. This optimization is represented by:

arg min Eq(y,, yr) (4.1)
deD

For evaluation and validation experiments, the considered datasets are the ones
available at the UCR Time Series Classification Archive [16]. The Archive contains
128 classification time series datasets of different types including sensor data, sim-
ulated data, motion data from several devices and health data such as electrocar-
diograph , electrooculography and hemodynamic data. Depending on
the dataset, either all the time series contained in it have same length, or the length
varies between different time series.

For each time series from each dataset, the mean error value between ¥, and y,
is used. The ‘opt’ column presents the mean values in the case of using the optimal
method (minimal error) in each the time series. The datasets are sorted in ascending
order starting with the dataset with the minimal mean value of the mean of errors of
all the time series contained in the dataset. In this particular case, the mean absolute
error [12] (MeAE]) is used and k value is selected in order to reduce at leas 50% of the
data points available in the time series. Due to printable table dimension limitations,
datasets have been grouped in 8 different groups (16 datasets per group) in the same
order and the sum of mean errors per method are shown in the Table 1.1} The article
[25] appended in Part [[[|shows complete results per datasets and with the applications
of two different error functions.

Table 4.1: Grouped sum of mean errors of values obtained from each time
series for datasets from URC Time Series Classification Archive.

datasets group opt |ltob| |lttb| |m4a| |mmb| |oen|
group 1 0.377 0.493 0.386 0.695 0.635 0.657
group 2 0.853 1.22 0.863 1.585 1.334 1.29
group 3 1.508 2.026 1.526 2.79 2.243 2.203
group 4 2.74 3.821 2.892 4.15 4.192 4.052
group 5 4.493 6.016 4.674 6.506 6.956 7.134
group 6 7.055 9.632 7.306 10.278 10.996 10.795
group 7 10.384  14.267  10.698  17.227 17.429 17.093
group 8 59.529 89.281  66.442  75.056 75.641 87.967

total sum 86.939 126.756 94.787 118.287 119.426 131.191
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In general, the method when using the [MeAE] is the most adequate method
when different datasets are grouped. Moreover, when the capabilities for the represen-
tation of a complex signal are limited due to the maximum number of selected points
allowed in the compression, selecting the optimal compression strategy adapted to
the specific properties of the window is crucial. This is shown in Table as the
difference between choosing the optimal method in each window each time (column
opt of the table) or using the same method for all the dataset (rest of the columns).
The total sum of the grouped using the optimal point selection method in
each time series is 86.939 that has nearly eight point difference compared to globally
optimal methodology value 94.787. Furthermore, this difference becomes much
bigger when if another algorithm from the set D apart from is selected, with value
ranges from 31 to 44 points.

4.4 Conclusions and future work

When the selected points are not capable of representing the original signal with de-
sired precision, selecting the optimal points in each compressed window is essential.
Each downsampling method considered has its own characteristics and adaptability
depending on the time series properties. In case of having a variable that has a sta-
tionary or similar statistical properties in the complete time domain, it is possible to
select an unique optimal downsampling method that suits adequately the compres-
sion of the signal. However, this is not the usual case in industrial real sensor data
as production processes vary with time and therefore variable properties also change
with time.

The experiments carried out show that a methodology to adaptively select or /
and monitor the point selection strategy is needed. Not all the time windows of a
certain time series can be compressed equally, and this is even more important when
it comes to real sensor data where context variables vary with time. A change in the
production process, the dependency on other internal or external variables, or even
noise can affect the point selection method. Controlling the error values is critical in
order to detect a point selection model drift and, in consequence, retrain the point
selection strategy to maintain point selection quality.

Considering the need to adaptively compress time series from stochastic processes
into streams with constant or limited length in order to meet memory capacity limi-
tation. The results have put forward and demonstrated in a practical implementation
the idea of combining different data point selection methodologies using their potential
in the current signal window, while providing a definition of errors for the determi-
nation of the optimal data points selection methodology. In each moment, and for
different characteristics of interest relative depending on the envisaged application.

Future work to be considered includes combining algorithms to select points using
a maximum allowed error value, in the signal representation in windows where max-
imum memory limitation per window is satisfied, together with methodologies that
use maximum number of segments when memory limits are exceeded. With these
combinations, it is possible to work with a trade off between the maximum error
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allowed in the signal representation and the memory limitations due to the system
properties. Furthermore, it should be possible to select points for multiple time series
at once, for the cases in which they need to be synchronized for their use in an ap-
plication such as visualisation [21]. Finally, controlling the window size and quantity
of data points to be selected depending on the characteristics of the time series can
prove beneficial in a number of application scenarios [36].
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CHAPTER b

Joining

For machine learning applications, an alignment between features is needed. Each
feature should be resampled to obtain a common desired temporal reference system
previous to any feature extraction / selection algorithm application. Depending on
the feature and the application system, the optimal joining method could be different.

The sampling frequency of a signal is determined by the nature of the variable
itself and the capabilities of the infrastructure and storage of the system where it
is collected. Furthermore, if the time series data is collected by [[ToT] devices, the
variables tend to have irregular sampling rate. When it comes to analysing the
collected data from multiple devices, data should be combined and analysed together.

In the pre-processing steps of time series analytics by machine learning, one of
the main steps often consists in joining all the features that will be used in model
generation joined in an equally-sampled table. The specific case of working with time
series has the advantage of the use of a temporal reference system, a timeline that
enables merging the observations. However, often each feature has its own sampling,
and all of them should be resampled to construct a synchronized single multi-variate
time series.

5.1 Background

Very often, all the time series which are needed for a certain application are not
preintegrated in a unique table; data is extracted from multiple sources, transformed
and combined during query run-time. The effort needed for data cleaning during
extraction and integration increases query response times, but it is mandatory in
order to achieve useful query results. A task that often proceeds record matching is
that of schema matching: the task of aligning attributes from different schemes.
Each attribute has its own sampling time, which can be uniform or varying in
time. To integrate all the time series in a single table, it is necessary to resample each
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of the variables in order to have a common time index in all the variables needed in
the system. Resampling time series can be problematic, specially when dealing with
streaming data. First of all, the selection of an appropriate resampling frequency is
always something to be determined by subject matter experts. Once the frequency is
set, for each new timestamp observation in the resampled set, there is no previously
defined strategy to select which value to assign to it, the last recorded value, the next
one or the closest observation. Furthermore, if several values were recorded between
two new timestamps, the values in between could be aggregated or could be lost in
the way.

Suppose that the system captures and stores streaming sensor-based data and
in order to maintain a reduced number of registration entries, each sensor registers
a new observation in the database only when there is a significant change in data
values. The decision of the significance of the difference between data points is based
on the scale of each feature. The aim of this data recording strategy is reducing data
volume. Consequently, if a feature becomes unstable the writing frequency increases
drastically.

5.2 Case study

In the context of Structured Query Language database engines [15], a time
series is a sequence of data values measured at successive, though not necessarily
regular, points in time. Each entry in a time series is called an observation. Each
observation comprises a timetick that indicates when the observation was made, and
the data recorded for that observation. The set of timeticks defines a temporal base
or temporal reference system for the series.

A temporal join is a join operation that operates on time series data. It produces
a single array time series based on the original input data and the new temporal
reference system. The most common joining strategies are described next.

Left Join The left join method takes only samples from y that are synchronized
with ¢p, in other words, only data that has originally the desired time is used.

Nearest Join A Nearest Join takes into account the nearest known available data
from y. Depending on the distribution of y, future knowledge of future data can be
added to the past in a non-causal manner.

Forward join In a forward join, samples of tp that are not available in to are
selected using subsequent matches from y.

Backward join In a backward join, samples of tp that are not available in ¢y are
selected using the nearest prior match.



5.3. Innovation 37

Outer join In an outer join, samples of tp and tp are combined and sorted. Missing
values can be filled before selecting only the observations from ¢, for the resulting
table.

This section introduces a range of common [SQI] joining methodologies. Specifi-
cally, the following methods will be introduced: left join, nearest join, forward join
and backward join. Notably, the outer join is not contemplated, as the obtained re-
sults are the same as those from other selected methods (backward join or forward
join) depending on the selection of a function for filling in Non-Available values
(propagating the last valid observation or using next valid observation ({bfill)).

An example on the possible effect of the selection of the joining method for a simple
time series is shown in Figure 5.1l Depending on the selected joining strategy, future
values are used for filling undetermined observations (as shown in the forward case)
or multiple missing values can be obtained in the joined time series version (shown in
the left case). This example demonstrates the importance of selecting adaptively the
joining method and the necessity of monitoring the pre-processing steps to ensure, or
at least being aware of, the propagation of errors that can affect the system.

Given the above existing methods, the remanding of this section considers the
problem of locally selecting a optimal method by the optimization of a quantitative
measure of the quality of the obtained joined series.

5.3 Innovation

The resampling step is done separately by feature, and, depending on the applica-
tion objectives, different characteristics of data joining methods should be taken into
account. Examples of objective measures of pre-processing quality are based on mea-
sures of distortion and on the number of unused observations in the process. Further
considerations might be related to the causal nature of the resulting system, or the
amount of delay or anticipation applied to the different original time series to syn-
chronize them to the desired time sampling. The main idea of the application is
described in Figure [5.2

First of all, the user indicates the specific feature selected for the resapmling and
the desired time index distribution for the joining. Apart from that, the system or
application provides the properties or limitations that should be taken into account
in the resampling. For example, these properties could limit the use of future time
index values in the joining process. Later, with these inputs, the “smart join” model
recommends the selected optimal joining method, and gives information about the
quality of the join provided in this case. With both results, the user applies the
joining method, obtaining the desired time distribution for the feature, and is capable
of monitoring the error introduced in the pre-processing step.

The procedure pursued for defining the smart join model is described next. This
smart join method is generated based on an optimization process. The aim of this
optimization problem is to select the method that minimizes the errors of the sampling
process for each feature. The general concept of the methodology of the smart join
is shown in Figure [5.3| and explained as follows:
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Figure 5.1: The most common joining strategies are applied to a piecewise constant
function. In each case the obtained observation values are indicated, as well as the
interpolated curve in order to compare the distortion with the original signal.
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Figure 5.2: Smart joining application schema description. The original observations,
the desired time sampling and the system dependencies are received as the inputs of
the smart joining model. Then, the model process them and provides as output the
signal with the desired sampling and the joining strategy used for it.

3.

First, the joining model is fitted using training data. This needs to be done for
each feature separately.

Then, resampled data is predicted by applying the selected join method to the

test data.

Finally, the model is validated using resampling error.

Suppose we have a time series slice y of the selected feature that needs to be
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Figure 5.3: Smart join methodology schema describing input parameters and the
outputs of the methods provided.

resampled to be joined with a desired time index. First of all, the fit method is used
in order to obtain the “optimal” join method. The inputs needed for the join are the
original time series slice (y with the original time index) and the desired time index.
Another optional parameter can be a fill [NA] function as it can affect selecting the
“optimal” method. Then, another slice of the same feature (z) is used for the testing
by the use of the method score. Finally, the optimal joined strategy determined is
used for resampling other time slices of the features with the predict method.

The fitting process to find an optimal joining model can be mathematically rep-
resented as follows:

Suppose we have the time series y(tp) where to = [to1,t02, - - ., tom] is the initial
temporal reference system. Let j be a join method from the available methods set J
(left, backward, forward, nearest). We need to obtain a new time series §(tp; j, y) with
the desired temporal reference system tp = [tpi1,tpa,...,tps]. The smart join algo-
rithm aims to find the optimal join method j € J = {left, backward, forward, nearest}
that minimizes an error function E(y,y). The parameters for applying the smart join
method are the function meant to fill unavailable measurement values f € F =
{None,[bfill[[[il} nearest} . In case of not being specified, default values will be used
(in which case f = None). The possible values of the imputation function f are None

(not filling values), (using subsequent value that is nearest) and (using
prior value that is nearest). The optimization problem is defined as:

argmin E(y, ) (5.1)
jeJ
The current section introduces an illustrative example of the application of the
proposed method to a dataset from a simple piecewise function.
Suppose that the piecewise function is sampled irregularly in order to save memory
applying two criteria:
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e The system checks every minute if the value of the data point has changed
enough according to a pre-established criterion (in this particular case, a differ-
ence with the prior data point higher than 0.5) to save that data point.

e Every minute the system also checks the difference in time with the last saved
data point and, if this difference is greater than or equal to four minutes, it
saves the last available data point.

As an illustrative example, the methodology described above is applied to an
piecewise function. The original piecewise function and the saved data using these
criteria are shown in Figure [5.I] Suppose that the desired time reference system
corresponds to t; = {1,3,5,...,33}. Results after the application of different joining
methods are shown in Figure 5.1} For example, a magnitude indicating the distortion
committed due to the need of a joined data with synchronized temporal reference
system can be used as error function. Specifically, Diff (y, ) calculates the difference
between the two time series (original and resampled).

mean ( abs (yz’nter - Qint@r ) )

Diff (y,9) = max(y) — min(y)

, (5.2)

where Yinier and Yiner are obtained by means of linear interpolation of time series y
and gy respectively for time values in to | Jtp. The value of this error is shown in the
Table B.11

Table 5.1: Error values for the different join methods in the application example.

Method Diff(y,9)
left 1.0
nearest 0.045
forward 0.092
backward 0.084

In the article [24] (appended in Part [lI) experimental results with synthetic simu-
lated data and a real industrial application are shown. In addition, an error function
is proposed especially designed taking into account time series properties.

5.4 Conclusions and future work

This section introduced the definition of an optimization problem for data pre-processing,
and in particular for data joining process that imply a need for data resampling. In
the experiments, only methodologies are considered with basic filling strate-
gies and the data joining is dependent of the desired time index and the window
considered for evaluating the joining. Even considering the previously mentioned de-
tails, the proposed approach shows the capability to select the best fitting joining
strategy and the necessity of using monitoring tools to control propagated errors due
to pre-processing steps.
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The approach presented in this section has several new paths to follow as future
work. On the one hand, the approach could be improved, adding automatic selection
of the time window size, or applying imputation strategies for missing observations.
On the other hand, the benefits of the proposed Smart Join method should be quan-
tified on a diverse range of real world applications.



CHAPTER 0

Imputation

Missing observations in time series data can be produced by multiple causes such as
network communication problems, measurement errors or data acquisition problems.
In general, the cause of a missing observation is unknown and its appearance is
unpredictable.

The data quality and availability are essential for applications where decisions are
taken based on data [55, 45] [17]. Depending on the relative amount of missing data
and the cause(s) generating the missingness, the imputed data can be biased, severely
affecting performance of algorithms, machine learning models, etc [2§].

6.1 Background

Zhang [86] presents a categorization of imputation methods based on the number of
imputations generated for each missing observation:

e Single imputation. This method provides a unique estimation for each miss-
ing value [69].

e Multiple imputation. This strategy makes multiple estimation values for
each missing observation providing uncertainty measures in each case in order
to combine them and reach a final imputation value [61].

e Fractional imputation. In this case, several imputed values are generated
together with conditional probabilities given a known observation [82].

e Iterative imputation. These techniques are capable of estimating missing val-
ues when data points are incomplete by the use of multiple iterations obtaining
refinement in the estimation values [43].

43
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The rest of the section is centered in the description of different single imputation
techniques as the research presented in this chapter is focused on their use.

The simplest imputation method is replacing missing observations with a constant
value. This value could indicate that the data is missing, or be replaced by a statistical
property such as mean, median or nearest, previous or following data points.

Interpolation methods [70] consist of constructing new observations from the in-
formation provided from a given amount of data points. Linear interpolation, and its
generalization polynomial interpolation, are commonly used due to their simplicity.
In the case of needing smooth functions, spline interpolation can be used [48]. Akima
splines [3] are capable to adjust smooth functions near outliers without creating oscil-
lations due to its non-linearity interpolation function. Kriging [53] is a geostatistical
interpolation method that is based on a regression method of Gaussian processes that
can be used for point estimation.

In the cases when sufficient historical data is available, time series forecasting
models can be generated. Once the model is trained, it is possible to forecast the
missing observations and use those predictions to fill the gaps. For this purpose,
classical statistical models can be used [23] [13, [66]. Additionally, machine learning
models [46], 83] [10] have been applied with success in time series forecasting.

Another possibility is using pattern recognition methods [80} [72] to identify similar
patterns (or neighbours) in the historical data using observations previous to missing
values to fill the gaps. In addition, clustering techniques |2}, [50] are capable of grouping
similar signals that can later be used for imputing missing data.

6.2 Case study

The case study considered is centered in univariate time series data with missing
values with unknown origin. As univariate time series are considered, there is no
relation to other time series that can provide information about the actual missing
observations. There are three possible types of missing data [60, [42]:

e Missing completely at random describes the situation when missing
data occurs entirely at random, all data points in the time series have the same
probability of becoming missing data. In other words, the missing observation
cannot depend on the value of the data point itself, neither on the value of
another variable.

e If the data is missing at random (MAR)]), the missing probability for an obser-
vation is independent of the value of the observation itself, but it depends on
the value of other variables. In the time series univariate case, the values of the
time can be used as the other variable.

e Missing not at random (MNAR)J) denotes the case when the probability o an

observation being missing depends on the value of the observation itself.

In Figure [6.1] an example of each type of amputation strategy is shown.
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Figure 6.1: Three types of amputation strategies are applied to a piecewise constant
example. In the MCAR]|case, 10 points are removed randomly. For amputation
strategy, the points with time index multiple of five are removed. Finally, for
amputation method, the observations with values > 3 are removed.

In real cases, the cause generating missing values is unknown, and can be a com-
bination of multiple types described previously. Due to the lack of knowledge of the
cause that has generated them, there is no defined “optimal” imputation strategy.
In this thesis, imputation process is treated as a pre-processing step that should be
controlled and optimized during data cleaning process and previous to any machine
learning or similar type of application.

Multiple imputation strategies have been proposed in the latest years [52], 1]
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7, [79). However, as most of these methods are specifically designed for data with
certain given characteristics of specific application fields, undesired results can be
obtained when applied to real data or previously unconsidered situations [I8] 64].
Therefore, as data in warehouses combines multiple input sources, each one with
its own characteristics, and since the imputation methods should give support to
multiple applications with different properties and needs, a combination of multiple
imputation strategies is proposed.

The general idea is to work in a window-by-window basis, selecting in each case
the imputation strategy that suits the situation best according to available signal
information, missing data characteristics and known context (such as specific time
series data properties or availability of historical data that contain similar patterns).
The considered imputation methods between the ones to select from is dependent
on the system properties such as context information and admissible time latency to
impute.

6.3 Innovation

The work presented in this dissertation proposes a method for adaptively identifying
an optimal data imputation method for a specific time series on a window-by-window
basis. Thus, this contribution focuses on quantifying the effect of the application of
different imputation algorithms to a time series depending on the characterization
of the observed data and gap distribution characteristics. The approach consists
of training a machine learning model that is able to predict, from signal and gap
characterization, which imputation method to use in each case.

The model is trained simulating missing values in available historical data. The
missing data is generated by amputing historical data, considering and combining the
three types of missing values described above, and with different missing percentages.
In this way, it is possible to optimise which imputation strategies work best in each
case. It is necessary to amputate the time series, as this is the only way to guarantee
with certainty the error made by the imputation algorithm.

First, a gap is defined as continuous rank of missing observations. For each gap
their position in time, length, and known previous and following observations are
used as descriptors. Then, for describing the signal values, statistical descriptors and
signal processing features such as coefficient of variation, shape factor or mobility are
proposed. Finally, imputation methods used in the optimisation and the error value is
determined by the system limitations and application necessities. This methodology
is described in Figure

The methodology used for generating the model for selecting the imputation
method is shown in Figure [6.3| and detailed next:

1. First, historical data is divided in training and test sets. Each time series
window is amputed by a strategy defined previously and with a fixed missing
percentage.
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Figure 6.2: Imputation strategy application schema. The signal with the missing val-

ues is received and the signal and the gaps are characterised. The imputation method
processes both characterisation results and the signal with the imputed observations

are received in the output.
2. Then, each amputed time series is characterised and imputed by all available

imputation method separately.
3. The error generated by each imputation strategy is calculated comparing im-
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puted result with the original time series. The imputed method with minimal
error value is determined as optimal for reconstructing the missing observations
in this specific case.

4. The dataset for training the classification model is generated by the features
obtained in the characterisation of each time series, together with the optimal
imputation strategy as target value. Once the model is trained, the validation
is pursued by the test set constructed similarly.

5. Finally, this classifier can be used when a new time series with missing obser-
vations arrives to the system in order to decide which imputation method from
the available ones fits better.

6. Using statistical distribution descriptors of the historical data, classification
model’s uncertainty and its properties, the obtained results’ evaluation is pro-
posed. These results could be used for monitoring imputation quality, classifier’s
capability and detect when a model drift occurs or retraining is needed.

As an illustrative example, Figure [6.4] shows two curves with multiple amputation
strategies applied to them. Depending on the distribution of the missing observations
and signal characteristics, the confidence interval provided by Krige [38] in the missing
data zones varies notably.

With this in mind, the proposed methodology aims to learn the optimal imputa-
tion strategies starting from the gap distribution and signal characterisation. In larger
gaps the uncertainty is greater as distance between known observations is greater and
therefore the importance of the known values used for imputation is reduced. Not
only the distance between the known values and missing observations is decisive for
imputation, the certainty of the results depends on signal properties such as linearity,
seasonality or complexity. In Figure multiple imputation methods are applied to
three different amputed versions of two examples where the previously commented
properties are visible.

In the article [26] (appended in Part |II) an unique imputation methodology selec-
tion model is presented that provides an adaptative imputation strategy for the 128
classification time series datasets of the UCR Time Series Classification Archive [16].

6.4 Conclusions and future work

A general data imputation method is proposed that is not dependent of the data
neither of the missing observation causes. This characteristics ensure that the strategy
pursued is applicable in different domains, and that the imputation can be applied
when the origin of the missingness is unknown. For that purpose, gap distributions
and time series characterizations are provided in order to learn the the best suitable
imputation methods in each case. The proposed methodology identifies an optimal
imputation strategy for univariate time series in a window-by-window basis. This
allows applying the proposed strategy in parallel for each time series and in user
defined batch sizes.
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Figure 6.3: Imputation model generation description. First, historical data is am-
puted and characterised. Then, multiple imputation methods are applied and the
resulting errors are calculated in each case. Finally, a machine learning model is
trained using as input the characterisation features and as target the optimal impu-
tation strategy obtained in the previous step.

Future work to be considered includes adding a risk assessment method at the
end of the imputation process. In this step, the quality of the imputation method
recommended can be evaluated before saving the data. For the suggested evaluation
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Figure 6.4: Two examples with different amputation strategies applied to them. In
each of the examples, the original signal, the missing observations zone (red shade)
and the confidence interval (calculated using Krige methodology [53]) for missing
values is marked.

dataset, general historical characteristics can be used and monitored in time to detect
drifts in data. Finally, the same data characteristics can be used to consider only a
subset of imputation methods from the available ones in the training phase.
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Figure 6.5: Multiple imputation methods are applied to two different signals with
three different amputation strategies. In each of the examples, the original signal and
the missing observations zones (red shade) are marked. These examples show the
signal properties and missing observations distributions are decisive in the imputation
success.
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CHAPTER [/

Surrogate models

Computer simulations often used to model physical problems, play crucial roles in
engineering, but can be so computationally expensive due that the computation re-
quired for a predictions makes them not suitable where results are expected in near
real-time. For this purpose, machine learning surrogate models can be built on expen-
sive simulation results, in order to estimate the predictions of mathematical models
with far less computational load.

7.1 Background

Complex systems often involve exploring broad design spaces to obtain a general
overview of the simulating scenario. Typically, the design space is screened to identify
and remove design variables which are less important. Bearing this in mind, as
surrogate models evaluations are capable of replacing individual simulations, they are
widely used in initial phases of design to explore the solution space. These surrogate
models can be used as guidance for optimising the simulation parameters to reduce
the number of experiments and design settings.

The selection of the type of surrogate models to use for mimicking the simulation
system depends on several factors. Elements to consider in selecting an appropriate
surrogate model include the following:

e Size: the number of input and output parameters of the simulation

e Accuracy: the level of the approximation needed to consider the surrogate model
adequate

e Computational time: how much time is required for training the surrogate model
and, once trained for providing the prediction result(s)

53
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e Quantity of samples: the number of simulation experiments needed to train and
test the surrogate model

e Complexity of the surrogate model: includes surrogate model characteristics
such as level of interpretability and number of parameters to estimate

All these factors are dependent on the simulating scenario and the specific appli-
cation use case specifications such as response time limits, level of accuracy needed
in the prediction and computation process available. The accuracy of a surrogate
model is determined by the experimental design used to select data points, the size
of the design space, or range of explored values of design variables. There is a trade-
off between the accuracy of a surrogate model and the resources needed to build it.
If surrogate models are built with a reduced number of data points, they are gen-
erally less accurate than models built with a larger number of data points. Using
dimensionality reduction methods, sensitivity analysis or partitioning the problem in
training multiple simpler surrogates models can help reducing the size of design ex-
periments needed. An alternative is replacing computationally expensive simulations
with approximate simulations, obtaining many more data points with less compu-
tational cost. However, a surrogate model built with approximate information may
produce biased results. A combination of previous strategies is to run a large number
of approximate simulations and a smaller number of detailed simulations and then
combining the two sets of results to produce a final surrogate model.

7.2 Case study

Over the last three decades there have been big advances in lithium ion (Li-ionl)
batteries. Their interest resides in their high power and energy density characteristics
and, because of that, nowadays they are popular in small devices, such as cell phones
or laptops. However, durability, performance and security are critical characteristics
of this technology and constitute a barrier to accessing other markets. There is interest
in using this lithium ion batteries for other applications that may require bigger
sizes, capacities or life, and therefore it is necessary to get to know how different
variables can affect them. Furthermore, ensuring their correct performance under
different conditions is essential for designing and predicting different problems as
ageing phenomena. Having the capacity of simulating batteries performance under
different conditions can help in experimental design, battery design optimisation and
understanding their limitations.

The Figure describes the inner functionality of a battery. The elec-
trochemical reaction, where lithium ions (Li+) and the electrons separate, occurs at
the electrode-electrolyte interface. Li+ are shuttled from one electrode to the other
through the separator; the direction in which the ions flow depends on whether the
battery is charging or discharging. When a leaves one electrode, the electron
that was paired with it travels through an external circuit producing work and meets
up with the lithium ion on the other electrode. Charge and discharge processes are
detailed next.
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e Charge process: In this process, electrical current is supplied to the battery, in
such a way that lithium ions flow from the cathode to the anode through the
electrolyte. Then, a reduction reaction in the host of anode happens, which
causes guests (Li+) insertion between the layers of negative electrode. During
this process, the cathode oxidises. At the same time, the electrons flow from the
cathode to the anode through the external circuit, since the electrolyte does not
allow passing them through it. This movement causes a rise in the differential
potential between the electrodes that can be seen in the rise of voltage of the
cell.

e Discharge process: During this process the battery supplies electrical current
and the electrons flow from the external circuit, passing through the cathode
and finally leaving through the anode. This process forces to leave the
anode, causing its oxidation, as well as lithium ions are inserted in the cathode,
what causes its reduction.

Charge Discharge

2 Load/Charger

/ Electrglyte \

Negative Positive

Current Anode Separator Cathode Currant QL
Collector Collector
(cu) (Al

Figure 7.1: Lithium-ion battery schema [34].

Research interest resides in designing cells, needing optimising their material, cost
and performance for different applications and scales. Therefore, the model should
include electrochemical effects that are characteristic of material and electrolyte used
in each case. Furthermore, it is necessary to solve the problem in an efficient way,
because optimising requires large amount of simulations. Different simulations are
needed to compare different characteristics of each cell, and to ensure that each of
them performs correctly in different operations modes for a particular application.



56 Surrogate models

cell models are categorized into two main groups. The first type is based on
an empirical approach that relyies on capacitor-resistor networks such as equivalent
circuit models. Due to simplicity and low computational cost, empirical models have
been used widely in online implementations. However, physical insight of the cell is
neglected, resulting in prediction errors when used over a broad operating region. The
second type includes physics-based models like pseudo two dimensional model where
the distribution inside the cell along cell sandwich is obtained by solving material and
charge balances. Thus, physics-based models can be applied in different operation
modes, but the complexity and computational cost restricts the use of these models
for on-board applications [33].

When it comes to modelling, most of the work focuses on validating and demon-
strating 1D models for constant current charge or discharge. In low rates, [Li-ion] diffu-
sion resistance within active particles can be treated as lumped masses and therefore,
for the solid phase concentration, simplistic sub-grid scale models can be applied.
However, Smith and Wang [68] pointed out that this assumption is inadequate for
some applications such as hybrid electric vehicles. Consequently, physics-based mod-
els become essential for some applications that do not only work in low rates. In
addition, physics-based models give the chance of using the model and its physical
parameters to optimise the design of a cell for a specific use.

Furthermore, it is interesting to have an electrochemical based model in order to
detect ageing effects. Dealing with the analysis and identification of deterioration of
cells could lead to complex work if all influential parameters should take into account,
such as operation mode, state of charge, state of health and so on. In a real use of a
battery, the conditions in which it operates are part of large variety. That is why the
experimentation can become unfeasible. In a model of this kind, there are difficulties
that can be foreseen when it comes to physical-chemical parameters identification.
In order to obtain the parameters, several electrochemical, morphological and phase
analysis techniques can be applied.

Even so, in the literature for similar cells, it is easy to find different experimental
equations and physical-chemical parameters [4, [62] due to parameter identification
difficulties. Zhang et al. [85] analysed physical-chemical parameters sensitivity
to explain this issue in detail. More difficulties are found to get to know a parameter
dependence to temperature in order to obtain a better thermal model. In these cases,
dependencies are usually taken from literature, due to the difficulties involved to
obtain them experimentally for a specific cell, as can be seen in [74].

7.3 Innovation

Due to the complexity of the simulation of the case study, surrogate models where
proposed in order to reduce design space. The approximate predictions obtained
by surrogates are good enough to guide domain experts in simulation parameters
identification.

A two step solutions is proposed:

1. Determining if simulation with certain input parameters is capable of converg-
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ing. A classification ensamble model is proposed as surrogate due to the com-
plexity available in simulation data.

2. For the cases when the simulation model is expected to converge, obtaining
Ragone energy and power estimates using two regression models (one per output
to be estimated).

These two steps are represented in the diagram shown in Figure [7.2]

Input parameters

[Physical simulator]

Power  Convergence Energy

Input parameters

Trained

convergence

[ Trained ] classifier [ Trained ]

power regressor energy regressor
T Convergence T

Power estimate  estimate Energy estimate

Figure 7.2: The general structure of the model. A simulator produces values for
energy and power density integrals, together with a convergence flag indicating the
successful execution of a run, up to a fixed end time. A classifier and two regressors
learned from the simulated data can be exploited to generate estimates. The classifier
estimates whether a simulation will produce physically unrealizable conditions, and
therefore stop without completing a run. The two regressors estimate integrated
energy and power for converging runs.

We consider that, in a Pseudo-2D electrochemical model, the completion status
of a simulation can either be full (corresponding to propagation up to the intended
complete temporal extension) or partial (corresponding to early termination). This
status depends on several phenomenas, such as the consumption of chemical species
or variations in the separator/electrode interface resistance due to parasitic ion de-
position and layering reactions. In order to provide with flexibility capacity to the
surrogate, the use of ensemble methods [63] was selected for this purpose. The article
[56] appended in Part [II] details the ensemble method strategy and the classification
models used for this particular approach.

7.4 Conclusions and future work

The present contribution has introduced and evaluated composite surrogate models
for the prediction of the performance of Lithium-Ion Batteries which combine classi-
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fiers based on deep ensembles and structured regressors for the prediction of energy
and power densities. The quantitative results obtained indicate that ensemble models
can indeed outperform state of the art models based on a single deep network. Fur-
thermore, we have quantitatively validated the applicability of structured regressors
to the estimation of energy and power.

Future work to be considered includes analyzing feature and parameter sensitivi-
ties [44] and the use of explainability and interpretability methodologies in order to
understand the effect if the input parameters in the results. Furthermore, model and
data uncertainty management [37, 30] should also be analyzed for the quantification
of the prediction error before applying the developed methodology in a real-world
scenario.



CHAPTER 8

Conclusions and future work

This chapter describes the general conclusions obtained in the framework of this
research and ends with proposed future work.

8.1 Conclusions

In the context of industry 4.0, with the objective of providing insight into company
operations, the data collected from multiple sensors together with external data and
numerical models need to be processed in a controlled manner. However, multiple
sources may contain erroneous observations, missing values and not uniform sampling,
leading to low quality data. Thus, this uncontrolled collection process can produce
poor decisions making that affects directly business results.

The aim of this thesis is guiding data managers in the definition of data pre-
processing steps in order to guarantee the data quality of the system without loosing
the traceability of the introduced errors. For that purpose, different tools are pro-
posed that are capable of selecting optimal pre-processing strategies and providing
insight into the errors made in the meantime. This work was inspired by the machine
learning models generation. These models are trained using available historical data,
minimising the errors of the fitting process.

Specifically, time series compression, feature joining, observation imputation and
surrogate model generation processes are studied. In each of them, the adequate
combination and selection between multiple strategies is pursued. This approach
is defined according to data characteristics and user defined system properties and
limitations.

With this objective in mind, this research has aimed to answer the three research
questions posed in Chapter [I]

First of all, with the aim of automating each of the pre-process steps, the gen-
eration of a model for strategy selection has been proposed. In each of the cases

59



60 Conclusions and future work

considered, the model acts as an oracle that, depending on the characteristics of the
data received and the system limitations provided by the user, is able to decide which
strategy fits best (i.e., the one generating the minimal error). For the generation of
this model, previously user selected historical data is used. In each of the time series
from the historical data, all the pre-processing strategies are tried separately and their
response and committed error are saved. With these results and a characterization
of the input signal, a machine learning model is trained for predicting which is the
optimal strategy when a new signal arrives to the system.

Then, for controlling model’s prediction quality, the pre-processing error is moni-
tored in streaming mode. These models need to be revised with time to ensure that
their strategy selection continuous to be valid. During the lifecycle of the machine
learning model, the relationship between the input variables and the target variable
can change. When this occurs, the model needs to be retrained with newer historical
data to consider the new conditions. Using this strategy, the model is capable to
adapt to the new situations.

Finally, the integration of the proposed methodology in the multiple pre-processing
steps, allows the system manager to control the data quality of the data warehouse
and to ensure that the applications that use those data as input will continue work-
ing as expected. This dissertation has studied specifically data compression, join,
imputation and surrogate model construction steps. In each pre-processing steps,
the experiments demonstrated how the proposed methodology is capable to adapt to
different scenarios, showing its potential.

8.2 Future work

The approaches presented in this dissertation have several new paths to follow as
future works. On the one hand, the proposed pre-process strategy selection models
are specific for numerical time series data. Even if multiple datasets have been used
in the experiments, with the idea that the provided results are not attached to specific
dataset properties, unexplored situations may occur when unexpected data is received
such as erroneous observations or unexpected data typology. On the other hand,
each pre-processing steps considers a limited number of strategies to select from.
Furthermore, the experiments use fixed input parameters, such as window size or
univariate time series.

Apart from that, each pre-processing step has been considered separately, when
in reality the performance of data cleaning can be evaluated in a combination on
multiple processes. For example, in the optimisation of the joining method selection,
observation imputation has not been considered as a possible method for filling miss-
ing time series values or reconstructing compressed versions of the time series. The
combination of the pre-processing steps can enable a major precision in data cleaning,
but at the same time keeping them separate allows detecting a problematic cleaning
process in a simpler way.

Finally, in industrial environments, there are other processes related with data
that still are not automated. One of those approaches is machine model generation,
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where the model selection depends on the data experts and domain experts. In the
lastest years, there is demand for machine learning systems that can be used by
non-experts. This systems are supposed to automatically choose a good algorithm
and feature pre-processing steps for the dataset. Moreover, this also allows replacing
hand-engineered algorithms with novel approaches learned in a data-driven way.

Meta learning is the name given to the strategy of learning about the performance
of machine learning algorithms across different datasets. For this purpose, the char-
acteristics and performance of a large number of datasets are collected in order to
determine which model could fit best in a new dataset. This technique can be used
to recommend algorithms and search spaces parameters configuration from previous
knowledge in similar tasks. These meta-models recommend algorithms or model con-
figurations, but these models or configuration should be trained and parameters tuned
for the specific task of the new dataset. In other words, the meta-learning results can
be used as a guide or model parameter search space but it is not directly trained for
the new dataset.

The features to construct the meta-models should be capable of estimating task
similarity in order to provide promising configurations for the new task. There are
two ways to characterise the dataset: 1) by features that describe statistical and
information based properties of the dataset; 2) by the use of the performance of
very simple learners (landmarking approach). In the first approach, to characterise
datasets including simple, information-theoretic and statistical features are used, such
as the number of instances, features, and classes of the datasets, as well as data
skewness, and the entropy of the targets. For the second approach, simple models
such as linear regressors or decision trees are used in order to estimate the relations
between inputs and outputs. Once the relations are detected, these data properties
are used for selecting adequate models for problem representations.

The results of meta-learning strategies can provide directly the recommended
models and configurations for the new dataset, or provide a prediction of the error
committed by certain algorithm.
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CHAPTER 9

Summary of the appended papers

This Part first presents a summary of the four appended papers. It gives the tile, the
purpose, the proposed methodology and the findings of each paper. Then, the listed
papers are appended.

9.1 Paper 1

Title: Towards Smart Data Selection From Time Series Using Statistical Methods.
Journal: IEEE Access, IEEE
Year: 2021

Purpose: Effectively select a subset of significant data points in order to reduce
data volumes without sacrificing the quality of the results of the subsequent analysis.

Methodology: This paper proposes a method for adaptively identifying optimal
data point selection algorithms for sensor time series on a window-by-window basis.
Thus, this contribution focuses on quantifying the effect of the application of data
selection algorithms to time series windows.

Findings: The proposed method has been implemented and applied to a wide va-
riety of real-world time series datasets from a public open database, demonstrating
their value for the characterization and the compression of the data.
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9.2 Paper 2

Title: Learning Optimal Time Series Combination and Pre-Processing by Smart
Joins.

Journal: Applied Sciences, MPDI
Year: 2020

Purpose: This paper proposes the use of optimization in the pre-processing step,
specifically studying a time series joining methodology, and introduces an error func-
tion to measure the adequateness of the joining.

Methodology: The proposed smart join methods is inspired in machine learning
models generation. First, the joining model is fitted using training data; then, resam-
pled data is predicted by applying the selected join method to the test data; finally,
the model is validated using resampling error.

Findings: Experiments show how the method allows monitoring pre-processing er-
rors for different time slices, indicating when a retraining of the pre-processing may
be needed. Thus, this contribution helps quantifying the implications of data pre-
processing on the result of data analysis and machine learning methods. The method-
ology is applied to two cases studies: synthetic simulation data with controlled dis-
tortions, and a real scenario of an industrial process.

9.3 Paper 3

Title: ASSIST: Automatic Smart Selection of the Suitable Imputation Technique.
Journal: Springer
Year: 2022 (submitted)

Purpose: Dealing with data that is missing due to unknown causes is a common
problem in industrial applications. A possibility to mitigate this issue is to effectively
impute missing observations that adjust to the actual characteristics of the signal
received.

Methodology: This paper proposes a new method called ASSIST for adaptively
identifying optimal imputation strategies for time series data on a window-by-window
basis. For this purpose, time series and gap distributions are characterized first, and
a model is trained from those features in order to predict the best fit imputation
strategy from the available ones.
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Findings: By the use of a simple machine learning model trained from signal fea-
tures and gap distribution characteristics, the model is capapble of selecting an ap-
propriate imputation method. This approach has been validated in the entire UCR
time series public data archive.

9.4 Paper 4

Title: FEnsemble Surrogate Models for Fast LIB Performance Predictions.
Journal: Energies, MPDI
Year: 2021

Purpose: Battery Cell design and control have been widely explored through mod-
elling and simulation. Empirical models obtained for example by Machine Learning
(ML) methods represent a simpler and computationally more efficient complement to
electrochemical models and have been widely used for Battery Management System
control purposes.

Methodology: This article proposes ML-based ensemble models to be used for the
estimation of the performance of a LIB cell across a wide range of input material
characteristics and parameters and evaluates 1. Deep Learning ensembles for simu-
lation convergence classification and 2. structured regressors for battery energy and
power predictions.

Findings: The results represent an improvement on state-of-the-art LIB surrogate
models and indicate that deep ensembles represent a promising direction for battery
modeling and design.
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ABSTRACT Transmitting and storing large volumes of dynamic / time series data collected by modern
sensors can represent a significant technological challenge. A possibility to mitigate this challenge is to
effectively select a subset of significant data points in order to reduce data volumes without sacrificing the
quality of the results of the subsequent analysis. This paper proposes a method for adaptively identifying
optimal data point selection algorithms for sensor time series on a window-by-window basis. Thus, this
contribution focuses on quantifying the effect of the application of data selection algorithms to time series
windows. The proposed approach is first used on multiple synthetically generated time series obtained by
concatenating multiple sources one after the other, and then validated in the entire UCR time series public

data archive.

INDEX TERMS Data selection, machine learning, optimization, time series.

I. INTRODUCTION

Fine grained, high temporal resolution sensor dynamic data is
often useful for short-term forecasting and visualization [1].
However, communication latency, bandwidth constraints,
high energy consumption and storage requirements for such
data can be problematic [2]. Reducing the amount of data
to be transmitted can help control latency time and save in
energy consumption and storage [3].

A key challenge in the setup of point selection method-
ologies is reducing the size of the transmitted data without
sacrificing its quality. A natural solution is to compress the
data at the sensing devices, monitoring in real time the error
introduced by this process. When adaptive point selection
strategies are used [4], the objective is to select a subset
of data points with a well-defined number of items to be
transmitted periodically. Then, the effect of this compression
methodology on subsequent data analysis and exploitation
processes can be studied, for instance considering the differ-
ence between the recovered and the compressed versions of
the data for a given original time series.

Blalock et al. [5] describe desirable properties of the com-
pression algorithms:

The associate editor coordinating the review of this manuscript and
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1) Minimal buffering: on devices with small memory
capacities, only small time windows can be used before
data is compressed. Furthermore, large buffering can
add unacceptable latency.

2) High decompression speed: decompression of data in
order to recover the time series for other parts of the
service such as visualization and machine learning
applications needs to be quick.

3) Losslessness: noise and oversampling of data vary with
time and depend on application. The compression is
seen as a preprocessing step that is application specific.
Using lossless compression algorithms ensure that the
data could not depend on previously defined prepro-
cessing strategies.

On the one hand, most work on compressing time series
has focused on lossy techniques. Classical approaches for
data compression include Fourier transforms [6], wavelets
transforms [7], symbolic representation [8] and piecewise
regression [1], [9].

The Fourier transform is a tool widely used for spectral
analysis, signal filtering and compression. This transforma-
tion is adequate for analyzing the components of a station-
ary signal, as the sinusoidal components are propagated in
all the time domain. For non-stationary signals the Fourier
transform analysis is not appropriate because it is not able to
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maintain any localized information of a signal. Wavelets are
oscillations that decay quickly allowing an adequate analysis
of non-stationary signals [10]. A common application of these
transformations is signal compression. A threshold is defined
and components with smaller value than the threshold defined
are removed. Thus, after reconstruction by inversion formulas
the signal maintains its original shape [11].

Symbolic representation approaches are designed to pre-
serve enough information about the time series to support
indexing or specific data mining algorithms, rather than
to compress the time series per se. In order to change to
symbolic compression, dimensionality reduction is usually
applied by a window aggregation function such as piece-
wise aggregate approximation. Later, the variable values are
normalized. Defining the aggregate functions implies not
being able to reconstruct the signal easily, which amounts to
losing the original measured data points. Finally, a symbol is
selected depending on the range of values that it maps to.

Piecewise regression techniques divide a time series into
fixed-length or variable length intervals and describe them
using regression functions. As for regression functions,
all types of functions can be used in principle. However,
low-order polynomial functions, particularly constant and
linear functions, can be estimated efficiently and are used
frequently [12].

Yang et al. [13] propose using clustering techniques to
group time series by similarity. A workload distribution strat-
egy can be taken using this cluster division saving time in
processing the compression. Then, each of the time series is
compressed using autoregressive models.

Classical compression techniques reduce the volume of
data by using transformations, regression models or aggrega-
tions functions. The result of the transformations, the parame-
ters of the regression models or the symbolic representation of
the aggregated values are stored to represent the signal. None
of the data points measured are transmitted and the signal
representation is dependent on the efficacy and adequateness
of the compression methodology used.

On the other hand, lossless compression techniques use
binary encoding for the representation. Pelkonen et al. [14]
propose a compression algorithm that maintains the full
representation of time series. It compresses separately the
timestamp and the value of the data point. The timestamp
part employs an efficient delta-of-delta encoding, while the
measurement part uses a XOR’d floating point approach. The
strategy of Blalock et al. [5] employs the predictability of a
data point to obtain an effective encoding of the difference
between the predicted values and the original one. This is
done in order to take advantage of the correlation between
continuous data samples.

Vestergaard et al. [15] propose a two step compression
technique that allows advantages in terms of random access.
First, in the preprocessing step the system determines the
adequate values of the input parameters of the compression
technique, such as number of samples in a chunk, using part
of the data for the training. Then, the time series is divided
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in chunks and compressed separately, implying no need to
decompress complete the time series for a random access.

Lossless compresssion techniques help reducing the vol-
ume and storage of data to be transmitted and satisfy all
the properties above mentioned. However, the compressed
version of the signal cannot be used for visualization, control
or analytic applications directly, as all the data points are
saved with the same quality, only the encoding time series
data has been optimized to save storage.

An alternative to compressing techniques is using point
selection algorithms to reduce the data volume. These tech-
niques aim to select the most significant or representa-
tive points. One option apart from selecting points from a
regular sampled signal would be using adaptive sampling
methods [16]. These approaches study the level of variance
between the collected data over a certain time frame and
dynamically adjust the sampling frequency of the device.
Adaptive sampling approaches work well in applications
where the collected time series are stationary. In the case of
quickly varying data, these approaches perform poorly.

It is desirable to be able to compress time series from
stochastic processes into streams with constant or limited
length in order to meet memory capacity limitations. To the
best of our knowledge, there has been no reported work on
time series compression with rate adaptability and the ability
to flexibly preserve different characteristics of interest of a
given time series. In this sense, the contributions put forward
by the present paper are:

1) The idea of combining different data points selection
methodologies using their potential in the current signal
window.

2) A definition of errors for the determination of the opti-
mal data points selection methodology in each moment
and for different characteristics of interest relative
depending on the envisaged application

3) An algorithm that implements the above methodology.

The proposed approach searches, inside a defined set
of point selection algorithms, the optimal solution for the
actual time frame of the time series. The adequateness of the
selected algorithm can be evaluated and monitored in time to
guarantee the quality of the compression technique.

Even if this compression strategy is lossy, monitoring the
compression allows controlling window sizes and deciding
when to retrain the point selection model in order to adjust it
to the current characteristics of the signal. With this approach,
the above mentioned desired properties of compression sys-
tems can be controlled by the user. This process is shown
in Figure 1.

This methodology has been validated with several synthet-
ically generated time series and with all the datasets available
in the UCR Time Series Classification Archive [17]. The
proposed approach is capable to adapt to the dynamics of the
time series effectively using different error functions.

The rest of the paper is structured as follows. Section II
introduces the available point selection methods. Then,
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FIGURE 1. Adaptive optimal point selection method process. First,

the training data is selected and multiple point selection methods are
applied. Then, the optimal algorithm is selected and introduced in the
system as subsampling method. Finally, the errors are monitored in the
process and if a model drift is detected, the point selection model is
retrained.

the methodology and the proposed approach are explained in
section III-A. Next, an example is shown in order to demon-
strate its usefulness in section III-B. Section IV provides
a description of the experiments setup, whereas section V
shows the results of those experiments. Finally, conclusions
and future work are presented in section VI.

Il. THEORETICAL BACKGROUND

Consider a time series signal which is sampled with a con-
stant frequency. Due to system limitations, for example with
respect to memory, not all captured points can be stored,
and therefore a data point selection methodology needs to be
applied.

One possible classification of the data points selection
algorithms is to consider the way in which those are
applied [18]:

o Algorithms that work in batch mode: the data is pro-
cessed in group or batches. The algorithm is used only
when the batch or group is complete. This can require
fewer network resources than online systems.

o Algorithms that work in online / streaming mode: when
anew point arrives to the system the data points selection
methodology is applied directly. A previously saved
snapshot representing the (e.g. statistical) properties of
previous points and the most recently received points
need to be available in order to decide if the actual
received point is saved.

Other possibility was proposed by Keogh et al. [4], a classi-
fication for data point selection algorithms based on the point
selection strategy they adopt:

« Selection of the best representation of the time series
with a maximum error at each point (local error) less
than a certain value (max_error).

« Selection of the best representation of the time series
with a maximum combined error by all the segments
(global error) less than a given value (max_total_error).

« Selection of the best representation of the time series
using k — 1 segments (or equivalently k points).

In sections II-A, II-B and II-C different point selection

algorithms found in the state of the art are explained using
the above mentioned classification system.
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A. DATA POINTS SELECTION USING A MAXIMUM

VALUE FOR LOCAL ERRORS

A review of classical data point selection methodologies
based on a maximal error value in a point of the time series
is described in Watson et al. [19]. All the strategies work
in online mode and depend on a maximum error threshold
(max_error) that should be indicated by the user. This input
value is defined using background knowledge such as sensor
limitations or a variable noise scale. The appropriate selection
of a threshold value guarantees that no important information
is lost in the data point selection procedure.

The boxcar algorithm makes a selection of a point when
the current value differs from the last saved value by an
amount greater than or equal to the determined maximum
error threshold bound for that variable. The last processed
value before the one which exceeds the limit should be saved.

The backward slope methodology projects the error bound
into the future on the basis of the line formed by the previous
two data points. The first data point is selected if the second
value lies outside the error bound. Once a new data point is
recorded, the new line and the error bound are projected into
the future, repeating the same strategy.

The swinging door strategy is similar to the one considered
by the backward slope algorithm, except that the error bound
is based on the slope of the line between the first and the cur-
rent data point. When the current data point has exceeded the
error bound defined, the data point at the previous time index
is selected. Then the error bound and line are recalculated and
the algorithm is repeated.

Keogh et al. [4] propose two point selection strategies
that work in an iterative mode. Therefore, a fixed buffer or
window size is needed in these cases, i.e, these strategies work
in batch mode.

The top-down strategy starts considering all the segments
between adjacent points. Then, the algorithm continuous
merging contiguous segments by removing the intermediate
point, i.e., the common extreme of the contiguous segments,
that adds a minimal error value from all the possibilities. This
is done in a iterative way and until the max_error value is not
exceeded.

The bottom-up strategy starts instead with a unique seg-
ment defined by the two extreme points of the time series
(first and last in time index). The algorithm adds points to the
selected set in an iterative. Each time the point that have the
greatest error in the actual representation of segments is added
in the set and the segments are recalculated. This is done until
the error committed is less than the max_error value.

These two strategies are adapted to the specific cases
detailed in sections II-B and II-C by specifying different
stopping criteria.

B. DATA POINTS SELECTION USING A MAXIMUM

TOTAL ERROR VALUE

In the case of data points selection using a maximum total
error value, a total error is calculated each time using an
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aggregation function from total errors. That value is used and
points are added to the selected set while the total error value
is higher that the defined limit max_total_error.

C. DATA POINTS SELECTION USING MAXIMUM

NUMBER OF SEGMENTS

The algorithms detailed in this section work in batch mode.
In the case of data points selection using maximum number of
segments, a fixed window in time series data is used as a batch
and from there a maximum number of points k is selected
to be part of the compressed signal. The value k should be
defined by the user taking into account the limitations of the
system, such as memory limits. The following paragraphs
detail different algorithms with this objective.

The different versions of the largest triangle algorithm [20]
are based on the use of the effective area of the data points:
the significance of a point is indicated by the area of the
triangle formed with its two adjacent points. Depending on
how the adjacent points are selected or how the buckets are
constructed, three different algorithms are generated.

o Largest-triangle-one-bucket (Itob): first, the effective
areas for each point is calculated using prior and pos-
terior data points in the time series. Then, k buckets are
generated splitting the time series with approximately
equal number of points in each of them. From each
bucket the data point with the largest effective area is
selected. In order to guarantee that the first and last point
of the time series are selected, extreme buckets only
contain those points.

o Largest-triangle-three-buckets (l#tb): in this case,
the effective area of a point does not depend on the
position of its two adjacent points as in the previous case,
it takes into account all data points from previous and
posterior buckets. For that, first buckets are generated in
the same way as the previous version of the algorithm
(each bucket with nearly equal quantity of data points,
except for extreme buckets that only contain the first
an the last data points). Then, the effective area of each
point is calculated using the mean value of data points
from the posterior bucket and the data point selected
from the previous bucket. Finally, the point with largest
effective area is selected in each bucket.

o Largest-triangle-dynamic: this version of the algorithm
does not rely on equal size buckets, but the buckets are
generated in a iterative mode, starting from default buck-
ets (equally sized). In order to determine which bucket
needs to be larger or smaller, a linear regression model
is fitted with the data points in each the bucket, the last
data point of the previous bucket and the first point of the
posterior bucket. Then, the fitted linear model validity
is measured by the sum of squared error (SSE). Later,
the bucket with the maximum SSE is divided in two
and the bucket containing the minimum error is merged
with one of its adjacent buckets (the one with minimum
error option), guaranteeing that the number of buckets
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continuous to be equal to the limitation of the maximum
number of selected points k. After each iteration, as new
buckets are generated, linear regression models need to
be recalculated. After a certain number of iterations,
when the buckets sizes have become stable (or with simi-
lar SSE values), largest-triangle-three-buckets algorithm
is used to calculate the effective area of each data point,
finally selecting the most meaningful data point from
each bucket.

The mode-median-bucket (mmb) [20] algorithm uses the
mode and the median values of data points in each bucket
in order to select a point from it. The data points are split
into buckets that contain approximately the same number of
data points. Then, each bucket is studied separately. If there
is a unique mode in the bucket, the leftmost corresponding
data point is selected. Otherwise, the data point equal to
the median value from the bucket is selected. An exception
happens with the minimum and maximum values of the time
series, these peak points are selected directly from the buckets
that contain them, in order to guarantee the preservation of
extreme data points.

The M4 (m4a) strategy was defined by Jugel et al. [21].
First, n buckets are generated containing approximately equal
number of points. In this case, as 4 points could be selected
from each bucket, the number of buckets is equal to n =
truncate(k /4). Then, from each bucket the minimum and
maximum values from both axis (time index and data values)
are selected (hence the name M4). In some cases, the min-
imum or/and maximum point(s) in both axes can be rep-
resented by a unique data point, i.e., when the maximum
or minimum data values occur in the minimum or maxi-
mum time index of the bucket, one point could be selected
by two rules, selecting finally less quantity of points than
expected initially. Bae et al. [22] expand the m4a point selec-
tion strategy for visualization services also using gradient
values between adjacent columns of pixels to reduce more
points.

Major extrema extraction technique proposed by Fink and
Gandhi [23] consists on ranking the extrema values of the
time series and selecting the most meaningful ones. These
extremes would be the finally selected points for the com-
pressed version of the time series. They considered four types
of extrema: strict, left, right and flat. By strict they refer to
local minimum and maximum points of the time series. Left
and right are the extremes in time of a flat chunk and flat
is a inner point of the flat chunk. Then, the importance of
each type of extrema is calculated by the use of a distance
and a positive parameter that determines the compression
rate.

The simplest way to select data points from a time series
with a constant sampling frequency is to pick them using a
lower frequency value than the original one, i.e, selecting a
point each n points (oen). This algorithm takes into account
the maximum number of selected points (k) in order to select

the new frequency w (w = truncate (%)).
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Top-down and bottom-up strategies can be modified using
this time the length of the selected points set equal to the
number of desired selected points k£ as stopping rule.

Ill. PROPOSED APPROACH: SMART COMPRESS
In this paper, a smart data selection method based on a opti-
mization process is proposed. The aim of this optimization
problem is to select the method that minimizes the errors of
the point selection process for each feature.

First, a detailed explanation of the methodology is pre-
sented in section III-A and an example of application is shown
afterwards in section III-B.

A. METHODOLOGY
The general concept of the proposed Smart Compress
methodology can be described as follows:

1) First, the data point selection model is fitted using
training data; in other words, the fit method selects
the optimal algorithm that suits best the time series
provided in the training.

2) Then, a compressed version of the signal is obtained
by applying the fitted data selection method to the test
data.

3) Finally, the adequateness of the data selection model is
validated using the error between the original and the
recovered signal from decoding the compressed signal.

Suppose there is a time window of the selected time series
¥, that needs to be compressed to be transmitted by a limited
channel. First of all, the fitting method is used to identify the
optimal data points selection method for compression. The
inputs needed for the fitting method are the data points in
the selected time window y, and a threshold indicating the
maximum number of points that a compressed version of the
signal could have (k). Then, another window of the same time
series (z,) can be used for testing the adequateness of the data
points selection algorithm by the use of the method score.
Finally, the optimal data points selection method is used for
compressing other windows of the same time series with the
predict method. This process is depicted in Figure 2.

In order to be able to compare different data point selection
methodologies, the compressed version of the time series (y.)
should have a similar quantity of selected points after the
compression strategy is applied to the original data (y,). For
this reason, the methods considered in the smart selection
algorithm are the ones described in section II-C.

The algorithm selected as the baseline is oen as it is the
simplest strategy that can be applied and the quality of the
signal can be random in some cases. Furthermore, top-down,
bottom-up, major extrema extraction and largest-triangle-
dynamic algorithms are not considered in the experiments as
the methods become very slow depending on the length of
points in the window / buffer considered and the number of
points to be selected.

The fitting process to find an optimal data points selection
model could be mathematically represented as follows:
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FIGURE 2. High-level view of the Smart Compress concept. The three
available methods (fit, predict and score) are shown to indicate outputs
and inputs in each case. First, a training time series is used, together with
the parameter k, to identify an optimal points selection method (yellow
part of the diagram). Once the method is identified, this optimal point
selection is used by the score method to validate the result (shown in
orange) and by the predict method to obtain the compressed version of a
time series (shown in blue).

Suppose there is a window of the time series y,(z,)
where t, = [to1,202,.-.,tm] and being m the number
of points in the selected window. Let d be a data points
selection method from the available methods set D =
{ltob, lttb, m4a, mmb, oen}. Then, the compressed version of
the time series, y.(#.), is defined by the selected data points
from y, corresponding to time indexes t. = [fc1, tc2, . - -, tenl-
The value n < k where k is the maximum allowed quantity
of ye(te).

From y.(t.) the removed data points values are recovered
by the use of linear interpolation method between available
points of y.(z.). The notation used to refer to the reconstructed
version of the time series is y, and it is defined for time
index values that where contained in the original time series
signal 7,,.

Finally, an optimization problem is defined to select the
most adequate method for the signal. This optimization is
represented by:

argmin E(y,, yr) (1
deD

The detail of the fit method just explained is described
graphically in Figure 3.

Depending on the purpose of the application, the most
interesting properties of the signal could be totally different.
The error functions can be defined in order to maintain these
properties of the signal. Different signal characteristics are
listed next for three different purposes:

« In visualization applications, properties such shape of
the signal, visual outliers, linear trend of data and num-
ber of peaks are important to maintain. The general
visual distortion generated from the compression can be
measured by absolute sum of changes, mean absolute
change, mean change, mean second derivative central
and complexity-invariant distance.

« In control applications, the appearance of new events
(peaks), change in signal tendency or frequency are
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fit method

calculate errar

optimal point selection model O

FIGURE 3. Fit methodology detail. The k parameter and the time series
used for the training (yo) are the inputs of the fit method. All the points
selection methods available in D are considered separately. From each
method used, a compressed version y¢c and a recovered version y, of the
time series are obtained. This last time series y, is compared with y,, and
the quality of the compression algorithm is measured by the error
function. Finally, the identified optimal algorithm is saved as an inner
object of the Smart Compress system for its later use by the score and
predict methods.

important. In statistical control process applications,
values ratio beyond r times standard deviation, longest
strike above/below mean and count elements above /
below certain value need to be considered.

« For analytical proposes, outliers and statistical proper-
ties such kurtosis, maximum, mean, median, minimum,
quantiles, skewness, standard deviation and variation
coefficient are essential.

Four different error functions have been used in the experi-
ments. These error functions are selected in order to measure
the distortion generated due to the use of the point selection
algorithm. These error functions are detailed next:

« Percentage RMS difference [24]:

DI V2!
PRD = (Z(yo(l) .)’rz(l)) ) )
Z(yo(l))
« Normalized root mean square deviation [25]:
(M)‘“
[ h 0
NRMSD = ~_"8"00) 3)

max(y,) — min(y,)

o Mean absolute error [26]:

MeAE — mean(abs(y,(i), yr(0)))) @

max(y,) — min(yy)

« Maximum absolute error [27]:

MaAE — Mx@bsGo(®). yr 1)) s

max(y,) — min(y,)

B. PRELIMINARY APPLICATION EXAMPLE

The considered datasets are the ones available at the UCR
Time Series Classification Archive [17]. The Archive con-
tains 128 classification time series datasets of different types
including sensor data, simulated data, motion data from
several devices and health data such as electrocardiograph
(ECQG), electrooculography (EOG) and hemodynamic data.
Depending on the dataset, either all the time series contained
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FIGURE 4. y, (in blue), yr (in orange), yr — yo (in green) time series from
a synthetically generated time series. The optimal method selected by
MaAE in each window is highlighted. At right, a detailed view of a
representative time segment is added.
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FIGURE 5. yo (in blue), yr (in orange), yr — yo (in green) time series from
a synthetically generated time series. The optimal method selected by
MeAE in each window is highlighted. At right, a detailed view of a
representative time segment is added.

in it have same length, or the length varies between different
time series.

Several synthetic time series are generated combining time
series from two different datasets (AllGestureWiimoteX and
UWaveGestureLibraryX) with significantly different statisti-
cal properties. The optimal method changes depending on the
error considered and the characteristics of the synthetic time
series in the time window that is being processed. Figure 4
considers MaAE, Figure 5 MeAE, Figure 6 NRMS and Fig-
ure 7 PRD. The figures show the original time series values
(blue), the recovered time series values (orange) and the error
in each point (green). The analysis window size is fixed to
200 points and from each window the maximum number of
points that can be selected (k) is fixed to 50. In each window,
the optimal method is marked with a green background.

In all cases, the method that is selected as optimal in most
of the windows is the /b algorithm. This effect is more
notable where a mean or cumulative value of point to point
errors is used. By contrast, if the importance to extreme values
is given, for example using maximum value, when a function
such as MaAFE is used, the optimal method depends more
on the local characteristics of the window studied. Thus,
Figure 4 shows that it is not a clear winner when it comes
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FIGURE 6. yo (in blue), yr (in orange), yr — yo (in green) time series from
a synthetically generated time series. The optimal method selected by
NRMS in each window is highlighted. A detailed view of the some
representative time segment is added. At right, a detailed view of a
representative time segment is added.

200M

FIGURE 7. y, (in blue), y, (in orange), yr — yo (in green) time series from
a synthetically generated time series. The optimal method selected by
PRD in each window is highlighted. At right, a detailed view of a
representative time segment is added.

to point selection strategies, as all depends on the time series
characteristics and on the error used to measure it.

In Figure 8 the effect of the window size selection is shown.
Even if the total number of points in the complete time series
is the same, the optimal method distribution changes. In a
smaller window size, the quantity of points to select from is
reduced so the algorithm can select them quicker. Further-
more, a smaller window allows adjusting the algorithm to the
actual time series characteristics. However, a bigger window
size could help distributing the points in time in an smarter
way.

It is important, therefore, that experiments are made
with data from different origins and characteristics in order
to ensure that the selection of the algorithm does not
only depend on the error function used. For that purpose,
an extensive experimentation is needed and this is shown in
sections IV and V.

IV. EXPERIMENTAL SETUP
The experiments presented in this Section use the UCR
Time Series data archive introduced in Section I1I-B is used.
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FIGURE 8. Effect of window size parameter in the optimal method
selection.

In all experiments, each dataset from the Archive is studied
separately. Furthermore, from each dataset, each time series
contained in the train or test set is used as an independent time
series for point selection algorithm applications.

There are two possible strategies to define window size or
batch length:

1) Based on atemporal window to schedule the data points
selection periodically

2) Based on memory limitations that raise the data points
selection algorithm when a reduction is needed.

In the particular case of having equidistant points, both
previous cases arrive into the same definition of window size
or batch length.

Time series in UCR Time Series Classification Archive do
not have a time index. Therefore, an uniformly sampled index
is used as time index of the series. As an uniformed time
sampling is used, both strategies detailed above are equiva-
lent. For each dataset, each time series is taken independently
and the objective is to reduce at least 50% of the data points
available in each of the time series. If the length of time series
is variant among the dataset, the maximum length of the time
series is taken to define the value of k in the downsampling
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FIGURE 9. Zoom of the Figures 13 and 14 that are commented in the
discussion for an easier comparison.

methodologies. Hence, k value corresponds to:

max(length(yo))>

> (6)

k = truncate <

This k value was selected in order to ensure that in the inner

buckets generated by the algorithms Ittb and Iltob contain at

least two points. For each time series available in the dataset

the fit method is applied, i.e, all available point selection algo-

rithms are tried for compressing the signal and the optimal
solution is saved.

V. EXPERIMENTAL RESULTS
Tables and Figures with the results of all datasets from UCR
Time Series Classification Archive can be found in A.

For each time series from each dataset, the mean error value
between y, and y, is used. Tables 2 and 3 report the mean and
standard deviation values of all the errors among datasets for
each method. The opt column presents the mean and standard
deviation values in the case of using the optimal method (min-
imal error) in each of the time series. The datasets are sorted
in ascending order starting with the dataset with the minimal
mean value of the mean of errors of all the time series con-
tained in the dataset. Similar information is shown visually
in Figure 12. Due to printable table dimension limitations,
datasets have been grouped in 8 different groups (16 datasets
per group) in the same order that appear in Tables 2 and 3
and the sum of mean errors per method are shown in the
Table 1.

TABLE 1. Grouped sum of mean errors of MeAE values obtained from
each time series for datasets from URC Time Series Classification Archive.

datasets group opt Itob 1ttb mda mmb oen

group 1 0.377 0.493 0.386 0.695 0.635 0.657
group 2 0.853 1.22 0.863 1.585 1.334 1.29
group 3 1.508 2.026 1.526 2.79 2.243 2.203
group 4 2.74 3.821 2.892 4.15 4.192 4.052
group 5 4.493 6.016 4.674 6.506 6.956 7.134
group 6 7.055 9.632 7.306 10.278 10.996 10.795
group 7 10.384 14.267 10.698 17.227 17.429 17.093
group 8 59.529  89.281 66.442  75.056 75.641 87.967

total sum 86.939 126.756 94.787 118.287 119.426 131.191

In general, the lttb method when using the MeAE is the
most adequate method when different datasets are grouped.
Moreover, selecting the optimal method in each time window
when the difference between y, and y, time series is greater
becomes more important. In other words, when the selecting
points are not enough to preserve all the data adequately,
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FIGURE 10. Difference between y, and y, when different point selection
algorithms from D are applied to the PigCVP dataset.
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FIGURE 11. Difference between y, and y, when different point selection
algorithms from D are applied to the CricketY dataset.

selecting the optimal points each time could have a greater
impact. This is shown in Table 1 as the difference between
choosing the optimal method in each window each time
(column opt of the table) or using the same method for all the
dataset (rest of the columns). The total sum of the grouped
MeAE using the optimal point selection method in each time
series is 86.939 that has nearly eight point difference com-
pared to globally optimal methodology Iftb value 94.787.
Furthermore, this difference becomes much bigger when if
another algorithm from the set D apart from /ttb is selected,
with value ranges from 31 to 44 points.

Each downsampling method has its own characteristics and
adaptability depending on the time series properties. In case
of having a variable that has a static or similar properties dur-
ing all the time range, it is possible to select an unique optimal
downsampling method that suits adequately the needs. How-
ever, this is not the usual case in real sensor data as process
properties may vary with time and there is an stochastic part
of the variable that cannot be controlled. In Figures 13 and 14
for each dataset, the percentage of the number of times each
method has become the optimal one for downsampling a time
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FIGURE 12. Mean value per dataset of MeAE values obtained for each
time series of the dataset.

series (an instance of the dataset, equivalent to a specific time
window) is shown.

In some cases, a unique method is responsible of being the
most adequate in more than 90% of the cases, as it happens in
StarlightCurves and Fish datasets. However, the selection for
an adequate downsampling method is not obvious for others,
such as for the PigCVP and CricketY datasets where the
optimal solution is divided between llth and m4a methods or
even more distributed as it happens for datasets ScreenType,
Computers and SmoothSubspace. In Figure 9 a zoom of
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FIGURE 13. Distribution by dataset of the optimal data points selection
method as determined by the use of MeAE per time series separately for
datasets in Subset 1 of the UCR archive.

Figures 13 and 14 is shown for datasets mentioned in both
cases.

Figures 10 and 11 show point to point errors between y,
and y, time series of the PigCVP and CricketY datasets where
the optimal point selection strategy is not obvious. In both
Figures, certain peaks of errors that appear using one of the
methods are considerably reduced by the use of the other
method.

This experiment shows that a methodology to adaptively
select or / and monitor the point selection strategy is needed.
Not all the time windows of a certain time series can be
treated equally and even less when it comes to a real sensor
data where all the context variables are not totally controlled.
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selection methodologies using their potential in the current
signal window, while providing a definition of errors for the
determination of the optimal data points selection method-
ology in each moment, and for different characteristics of
interest relative depending on the envisaged application.

The proposed methods have been implemented and applied
to a wide variety of real-world time series datasets from
a public open database, demonstrating their value for the
characterization and the compression of the data.

Future work to be considered includes combining algo-
rithms to select points using a maximum value error for local
errors, the ones that appeared in section II-A, in windows
where maximum memory limitation per window is satisfied
with methodologies that use maximum number of segments.
With these combinations, it is possible to work with a trade off
between maximum error allowed and memory size control.
Furthermore, it should be possible to select points for multiple
time series at once, as all of them will be saved in the
same dataset or need to be synchronized, for example to be
able to plot them in multiple dimensions. Finally, controlling
the window size and quantity of data points to be selected
depending on the characteristics of the time series would
prove beneficial in a number of application scenarios [28].
Jain et al. [16] introduce an adaptive resampling frequency
depending on the time series characteristics. The idea is using
the actual error values not only to retrain the point selection
strategy, but also to select adequate input parameters.

yPowerDemand TABLE 2. Per-dataset mean and standard deviation values of the MeAE
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APPENDIX
COMPLETE RESULTS OF UCR ARCHIVE
See Tables 2 and 3.

TABLE 3. Per-dataset mean and standard deviation values of the MeAE
values obtained for each time series and by each method separately for
Subset 2 of the UCR archive. The optimal column shows the mean and
standard deviation values of the MeAE values when the optimal point
selection method is selected for each time series of the dataset.
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Abstract: In industrial applications of data science and machine learning, most of the steps of a typical
pipeline focus on optimizing measures of model fitness to the available data. Data preprocessing,
instead, is often ad-hoc, and not based on the optimization of quantitative measures. This paper
proposes the use of optimization in the preprocessing step, specifically studying a time series
joining methodology, and introduces an error function to measure the adequateness of the joining.
Experiments show how the method allows monitoring preprocessing errors for different time slices,
indicating when a retraining of the preprocessing may be needed. Thus, this contribution helps
quantifying the implications of data preprocessing on the result of data analysis and machine learning
methods. The methodology is applied to two case studies: synthetic simulation data with controlled
distortions, and a real scenario of an industrial process.

Keywords: optimization; machine learning; preprocessing

1. Introduction and Description of the Problem

In machine learning there are several steps to follow in order to perform model construction.
Many of them, such as feature selection, feature extraction and model training, are based
on mathematical optimization. However, the initial preprocessing is often not explicitly and
quantitatively optimized.

In preprocessing, one of the main steps consists of obtaining all the features that will be used in
model generation. The features can come from different origins and joining all the data adequately
can be hard. The specific case of working with time series has the advantage of the use of a temporal
reference system, a timeline that enables merging the observations. Nevertheless, each feature has its
own sampling, and all of them should be resampled to construct a single multi-variate time series in a
synchronized way.

This resampling is done by feature, and, depending on the application objectives, different
characteristics of data joining methods should be taken into account. Examples of objective measures
of preprocessing quality might be based on measures of distortion and on the information lost in the
process. Further considerations might be related to the causal nature of the resulting system, or to
the amount of delay (or anticipation, in case of being shifted to a prior time instance) applied to the
different original series to synchronize them.

Note that these properties can have different degrees of practical importance depending on the
application domain. On the one hand, in the case of real-time prediction, data anticipation can imply
the need of waiting for a new data entrance, resulting a big delay in the prediction; obviously a
data prediction approach based on time series analysis could be used to avoid this problem, using a
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correction method in case a significant difference between predicted and real values is detected. On the
other hand, information loss and data distortion can have a significant impact on the predictive power
of the model.

1.1. Background

In the context of SQL database engines [1], a time series is a sequence of data values measured at
successive, though not necessarily regular, points in time (https://cloud.ibm.com/docs/sql-query?
topic=sql-query-ts_intro—IBM Cloud SQL Query documentation). Each entry in a time series is called
an observation. Each observation comprises a timetick that indicates when the observation was made,
and the data recorded for that observation. The set of timeticks defines a temporal base or temporal
reference system for the series.

A temporal join is a join operation that operates on time series data. It produces a single array
time series based on the original input data and the new temporal reference system.

This section introduces a range of common SQL joining methodologies. Specifically, the following
methods will be introduced: left join, nearest join, forward join and backward join. Notably, the outer
join is not contemplated, as the obtained results are the same as those from other selected methods
(backward join or forward join) depending on the selection of a function for filling in Non-Available
(NA) values (ffill or bfill).

In order to simplify the explanation of these methods, a specific example will be used, together
with terminology from the documentation of the widely adopted pandas (https://pandas.org—Python
data analysis and manipulation tool) data analysis library. Suppose that sensor data y(to) is acquired
with the temporal reference system ¢ as shown in Table 1a. For model learning, suppose the temporal
reference system tp shown in Table 1b is required.

Table 1. Problem definition. (a) Captured data. (b) Desired temporal reference system.

(@)

to Yy
10:00 n
10:02  yp
10:16  y3
10:27  yy

(b)

tp 7
10:00
10:15
10:30

Finally, suppose the function ffill is selected for filling NA values, and that this function operates
by forward-filling such NA values with the nearest prior known data value.

1.1.1. Left Join

The left join method takes only samples from y that are synchronized with tp, in other words,
only data that originally had the desired time is used. Table 2a shows the application of a left join to
the example. After filling NA values, the results shown in Table 2b are obtained.

In this particular example, three samples from y are not taken into account in the joined dataset.
In this sense, part of the information in the original data is lost.
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Table 2. Result of left join. (a) After applying the join. (b) After filling Non-Available (NA) values.

(@)

tp v
10:00
10:15 NA
10:30 NA

(b)

tp ]?
10:00
10:15 n
10:30 n

1.1.2. Nearest Join

A nearest join takes into account the nearest known available data from y. Results from the join
are shown in Table 3.

Table 3. Result nearest join.

tp 7
10:00 vy
10:15  y3
10:30 2

Depending on the distribution of y, future knowledge of future data can be added to the pastin a
non-causal manner. In the example, the joined series at 10:15 uses data from 10:16.

1.1.3. Forward Join

In a forward join, samples of ¢p that are not available in f are selected using subsequent matches
from y. Results from the join are shown in Table 4a, and after filling NA values in Table 4b.

Table 4. Result of forward join. (a) After applying the join. (b) After filling NA values.

(@)

tp 7
10:00 1
10:15 Y3
10:30 NA

(b)

tp ]?
10:00 1
10:15 Y3
10:30  y3

1.1.4. Backward Join

In a backward join, samples of tp that are not available in tp are selected using the nearest
prior match. Results from the join are shown in Table 5.

Given the above existing methods, the remainder of this paper considers the problem of locally
selecting an optimal method by the optimization of a quantitative measure of the quality of the
obtained joined series.
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Table 5. Result of backward join.

tp g
10:00 n
10:15 o
10:30 vy

1.2. Paper Contributions and Structure

We consider that the need to define an operational mechanism to align multiple time series with a
different time base by optimizing of a cost function that can be defined by the user is not adequately
addressed in the present literature. In this sense, the contributions put forward by this paper include:

e  The idea that the preprocessing steps in a machine learning workflow can be subject to an
optimization procedure that is similar to the one used with e.g., an empirical risk estimate in the
actual model learning step.

e  Theidea that a join operation among tables representing time series with different time bases as
operated by e.g., a SQL database engines can be learned based on previous data records.

e A specific algorithm and implementation for a method meant to align multiple time series with
different time bases.

The rest of the paper is structured as follows. Section 2 introduces the state of the art approaches.
The methodology and a proposed solution are explained in Section 3. Section 4 provides a description
of the case studies, whereas Section 5 shows the results of those case studies. Finally, conclusions and
future work are presented in Section 6.

2. State of the Art

A number of contributions have been put forward in the literature that deal with the need to align
of time series. On the one hand, such a need could stem from the fact that the time series described
related phenomena with “warped” temporal aspects (as in Dynamic Time Warping). On the other
hand, such a need could depend on the fact that the time series suffer from the effects of different
decimation processes (as in the literature related to Dynamic Processes).

In the first group, Folgado et al. [2] considered an extension of Dynamic Time Warping based
on a distance which characterized the degree of time warping between two sequences meant for
applications where the timing factor is essential, and proposed a Time Alignment Measurement,
which delivered similarity information on the temporal domain.

Morel et al. [3] extended Dynamic Time Warping to sets of signals. A significant point with respect
to the topic of the present paper is the definition of a tolerance that takes into account the admissible
variability around the average signal.

One of the nearest related topics is trying to solve, at the same time, several goals, or to deal with
several constraints in parallel. In this sense, there are some works which tackle scheduling problems;
a review of this type of models in a practical problem related to flow shop scheduling is presented by
Sun et al. [4]. The authors stated that that heuristic and meta-heuristic methods and hybrid procedures
were proven much more useful than other methods in large and complex situations.

Tawhid and Savsani [5] proposed a novel multi-objective optimization algorithm named
multi-objective sine-cosine algorithm (MO-SCA) which was based on the search technique of the
sine—cosine algorithm. They ended obtaining different non-discriminatory levels to preserve the
diversity among the set of solutions.

Task scheduling is another problem related to this paper requiring multi-objective optimization
paradigms. Zuo et al. [6] presented a solution based on an Ant Colony approach to deal with Cloud
Computing computational load and storage minimization. In the same direction, Zahedi et al. [7]
presented an approach related to vehicle routing for goods distributions in emergency situations.
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The data from a 2017 big earthquake in India was used, considering the demands heterogeneity
and dynamics, distribution planning of goods and routing of vehicles simultaneously by means of a
genetic algorithm.

Finally, regarding forecasting, Yang et al. [8] presented a system based on a dual decomposition
strategy and multi-objective optimization for electricity price forecasting with the goal of balancing
electricity generation and consumption. Data pre-processing was fundamental in the selected time
window.

3. Proposed Solution: Smart Join

In this paper, a smart join method based on an optimization process is proposed. The aim of this
optimization problem is to select the method that minimizes the errors of the resampling process for
each feature.

First, a detailed explanation is presented in Section 3.1 and an example of application is shown
afterwards in Section 3.2.

3.1. Description of The Methodology

The general concept of the methodology of the smart join is explained next:

1. First, the joining model is fitted using training data; in other words, the optimal joining solution
of the process is obtained. This needs to be done for each feature separately.

Then, resampled data is predicted by applying the selected join method to the test data.

3. Finally, the model is validated using resampling error.

N

Suppose we have a time series slice y of the selected feature that needs to be resampled to be
joined with a desired time index. First of all, the fit method is used in order to obtain the “optimal” join
method. The inputs needed for the join are the original time series slice (y with the original time index)
and the desired time index. Other optional parameter can be a fill NA function as it can affect selecting
the “optimal” method. Then, another slice of the same feature (z) is used for the testing by the use of
the method score. Finally, the optimal joined method is used for resampling other time slices of the
features with the predict method. The structure of the different methods can be depicted as in Figure 1.

optimal join model

desired time index for y y with original time index fill NA function
@ © o
desired time index for z  z in original time index desired time index for z z with original time index
i smart join|
i 1
i 1
‘ fit ;
i 1
| |
| s
‘ redict i
| P s
| !
| H
| H
i 1
i 1
| |

Error between z and 2 z
(z resampling with desired time index)

Figure 1. Smart join methodology implementation structure. Firstly fit method is used for the selection
of the optimal join method and then, predict and score methods are used to resample other slices of the
time series and in order to control the error produced by the join.

The fitting process to find an optimal joining model could be mathematically represented
as follows:
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Suppose we have the time series y(tp) where to = [to1,to2, - ., tom] is the initial temporal
reference system. Let j be a join method from the available methods set | (left, backward, forward, nearest).
We need to obtain a new time series J(tp;j,y) with the desired temporal reference system
tp = [tp1,tD2,-- ., tDy)- The smart join algorithm aims to find the optimal join method j € | =
{left, backward, forward, nearest } that minimizes an error function E(y, 7). The parameters for applying
the smart join method are the function meant to fill unavailable measurement values f € F =
{None, tfill, ffill, nearest} . In case of not being specified, default values will be used (in which case
f = None). The possible values of the imputation function f are None (not filling NA values), bfill (using
subsequent value that is nearest) and ffill (using prior value that is nearest). The optimization problem
is defined as:

arg min E(y, 7) M
i€l

With respect to the second contribution put forward by the present paper, the error function
E(y, ) proposed is defined by Equation (2).

E(y,§) =wq - NaEI(§) + wo - MissEl(y, §) + w3 - DelEl(y, §)
+ wy - DelT(y,9) + ws - AntEl(y, §) + we - AntT(y,§) 2
+ws - Diff (y,9),

where w; > 0 withi € {1,2,...,7} and 21-7:1 w; = 1 are the weights for the total error calculation and,
in case of not being specified, their default value is w; = 1/7 Vi.
In the following paragraphs, each function that takes part in the error E(y,#) is presented.
Suppose k € {1,2,...,n}and! € {1,2,...,m} indicate the index of elements in § and y respectively.
NaEIl(3j) represents the percentage of NA elements of 7 after the application of f. NA values can
be problematic in machine learning applications implying for example the need to remove data points
with NA value on the model training process or the impossibility to predict an output value using the
trained model.
1 if g is NA
0 otherwise

n
NaEl(g) = @, where s, = { 3)
MissEl(y, 1) is the percentage of elements from y that are not used in . This value is related to
the lost of information from the original time series due to the resampling needed.

1 ify &9

MissEl(y, 1) 0 otherwise

)

m
Tox

= Q,where X = {
m

DelEl(y, 7) indicates the percentage of delayed elements. If most of the data points from y are
delayed, the reality for the machine learning model is displaced. Depending on the application
environment, taking decisions supported by the machine learning system that could not adequately
represent the current situation can be problematic.

1 if (Jx = y;) and (tpx > toy) VI

DelEl(y, ) ©)

" od
= @, where d, =
n 0 otherwise

DelT(y, ) is the maximum difference in time between a delayed element used in § and its original
time position normalized by the time window of yy. Whereas the previous case considers the frequency
of delayed elements, DelT(y, ) takes into account the magnitude of the displacement.

DelT(y,9) =

max(ex) oo o — {tDk —tor if (Jx = y1) and (tpx > tor) VI ©)

tom — to1 0 otherwise
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AntEl(y, ) and AntT(y, ) are equivalent functions but in this case for anticipated elements.

1 if (= d (t tor) Vi
 where a, = if (9x = y1) and (tpx < tor) )
0 otherwise

n
AntEI(y,9) = Lk;l i

and
tor —t if (7, = d (t t VI
AntT(y,m—ma"“”‘),wherebk:{oz pi i (9 = ) and (tpy < tor) "

tom — to1 otherwise

On the one side, the use of anticipated data is equivalent to the use of future information for
prediction and results can be misleading and the used approximation should be sound enough to
deal with value forecasting. On the other side, using future data could imply a need to wait for the
arrival of a new observation to be able to make a prediction, or a correction would be needed once the
predicted value and the real one are compared.

Finally Diff (y, ) calculates the difference between the two time series (original and resampled).
This value could represent the magnitude of the distortion committed due to the need of a joined data
with synchronized temporal reference system.

_ mean(abs(Yinter — Jinter))
max(y) — min(y)

Diff (y, ) , )

where Viytor and §;,1er are obtained by means of linear interpolation of time series y and 1 respectively
for time values in o J tp.

Each part of the sum of the error calculation Equations (3)—(9) is normalized to guarantee that the
result is in range [0, 1] so different errors are comparable between them.

The fitting method can be seen graphically in Figure 2.

tp ¥(tO)

=:'!\ O /C)\ fit
\ ¥ / ?J\

j generate ¥ 4>O—> error calculation

e

select optimal

Y

O

j_opt

Figure 2. Fitting method diagram. First, §; resampled time series are generated from each joining
method (j € J). Using the generated resampled time series, error is calculated in each case and the
optimal solution is selected jop;.

Validating the joined method in different time slices of the time series is crucial. If the slice of data
used to train the joining model is adequately selected, the errors should be similar in different time
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windows. Depending on the stability of the feature, retraining may be required as the optimal join
method could not be the most adequate during all time period. Furthermore, selecting the desired
temporal reference system (tp) has equal importance as it should be the same for all the features,
in order to be able to construct a database with all the features used by the model. Although the error
calculation and the optimal joining methodology is chosen separately per feature, the desired temporal
reference system is a common input of all the optimization problems and its selection affects to all
the features.

3.2. Application Example

The current subsection introduces an illustrative example of the application of the proposed
method to a dataset from a simple piecewise function. Suppose that the piecewise function is sampled
irregularly in order to save memory applying two criteria:

e  The system checks every minute if the value of the data point has changed enough according to a
pre-established criterion (in this particular case, a difference with the prior data point higher than
0.5) to save that data point.

e  Every minute the system also checks the difference in time with the last saved data point and if
this difference is greater than or equal to four minutes it saves the last available data point.

The original piecewise function and the saved data using these criteria are shown in Figure 3.
~— real signal

~—@— recieved

®  notreceived
25

15

Values

0 5 10 15 20 25 30 35

Time (minutes)

Figure 3. Application example problem.

Suppose that the desired time reference system corresponds to t; = {1,3,5,...,33}. Results after
the application of different joining methods are shown in Figure 4. Error values used in the optimization
of the Smart Join methodology are shown in Table 6.

Because the input for the algorithm is the received data, when default weights in the error function
are used (w; = 1/7 Vi), the minimal error is obtained by the nearest join (see Figure 4b). However,
if knowledge about the irregular sampling approach used by the system is introduced by penalizing the
anticipation of data points (for example with ws = wg = 2/9 and w1 = wy = w3 = wy = wy; =1/9),
the optimal join method is backward join. Figure 4d shows that the data points obtained by the
backward join as a result of taking into account this extended description of the data sampling
mechanism are the ones that are the closest to the real piecewise function.
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—— realsignal

Values
Values

0 X X X %X X %X X X 0
o 5 10 15 20 2 30 3 0 5 10 15 2 2 0 3

Time (minutes) Time (minutes)

@ (b)

Values
Values

0 5 10 15 20 2 30 35 ) 5 10 15 2 2 0 £

Time (minutes) Time (minutes)

() (d)
Figure 4. Application example results for different joining methods. (a) Left join. (b) Nearest join.
(c) Forward join. (d) Backward join.

Table 6. Error values for different join methods in the application example.

Method  NaEI(§j) MissEl(y,§j) DelEl(y,§) DelT(y,§j) AntEl(y,§) AntT(y,9) Diff(y,9)

left 0.882 0.818 0.0 0.0 0.0 0.0 1.0
nearest 0.0 0.0 0.471 0.031 0.412 0.031 0.045
forward 0.0 0.091 0.0 0.0 0.882 0.094 0.092
backward 0.0 0.091 0.882 0.094 0.0 0.0 0.084

Having established the significance of the measure of quality of a joining method, in the
remainder of this contribution we leverage mathematical optimization techniques on training data to
automatically determine which of the joining methods is most adequate for a given time series.

4. Experimental Setup

Two experiments were used in order to show the usefulness of the proposed smart
join methodology.

The first one is a controlled application from simulated data and working with a unique time
series to resample. Different distortion methods were applied to the data in order to have a practical
use case with known theoretical result.

The second case is an application from an industrial chemical process. The aim of showing
this example is to demonstrate the performance of the smart join method in a real scenario and the
importance of adequately selecting the joining method and its implications.

4.1. Experiments on Synthetic Data

The experiments on synthetic data are carried out on the x, y,z 3D curve generated in time ¢ by a
Lorenz system (originally a simplified model for atmospheric convection) [9].

dx

E—U(y—x)

dy

27 ) — 10
5 =xp-2) -y (10)
dz

prim i s
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with parameters o = 10,p = 28 and f = 8/3 and initial conditions x(0) = y(0) = z(0) = 1 and
t € [0,40]. The time sampling interval selected for the time series was 0.1 time units.

The simulated data can be observed in Figure 5a. To apply the smart join methodology only
dimension x was used. The time series is shown in Figure 5b.

20

15

10

0 5 10 15 20 25 30 35 40
t(s)
(@) (b)

Figure 5. Lorenz system result data. (a) Three-dimensional data. (b) First dimension time series.

In order to generate a distorted version of this time series in a controlled manner, some distortion
methods were applied, inspired by from the work of Kreindler and Lumsden [10], which will be
described later in the section.

This controlled experiment setup was used to demonstrate how errors change depending on
the join method and on the type of distortion that is applied to each time window. The distortions
have been selected in order to represent usual problems such as missing data or delays in receiving
data points.

The series was divided into four parts of equal size. In the first part (t € (0,10]) the time series
remains unaltered. In the range t € (10,20], 20% randomly selected data points were removed.
This distortion can be seen in Figure 6a. In the remaining part of the time series, 20% of data were
shifted forward (in t € (20,30]) or backward (in t € (30,40]). The shifted quantity was selected by
a random uniform variable, guaranteeing that data points cannot be disordered. In other words,
the maximum possible shifted quantity was set by the sampling frequency value of the original
simulation data. The distortion effect generated in the time series can be observed in Figure 6b.

ts) t(s)

@) (b)

Figure 6. Zoomed distortions of Lorenz first dimension. (a) Removed data. (b) Shifted data.

The difference between modified and original data can be seen in Figure 7.



Appl. Sci. 2020, 10, 6346 11 0f 18

20
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-15

0 10 20 30 40

t(s)
Figure 7. Original vs. distorted Lorenz first dimension.

4.2. Experiments on Real Industrial Dataset

The efficient management and the energy optimization of distillation units [11,12] in terms of
both product quality and energy efficiency in both the petro-chemical and in the sustainable sector
pose a great challenge to process and control engineers because of their complexity. The management,
optimization and fault analysis of such units all require accurate process models, which in recent
years have started to be generated directly from the data available in SCADA Historian databases by
using machine learning methods [13-15] whose performance depends on the availability of properly
pre-processed multi-variate data.

Suppose that the system captures and stores real-time sensor-based data. In this particular case,
each sensor writes values in the database only when there is a significant change in the values of data.
The decision on the significance of the difference between data points is based on the scale of each
feature. The aim of this data recording strategy is reducing data volume. Consequently, if a feature
becomes unstable the writing frequency augments drastically.

For machine learning applications, an alignment between features is needed. Each feature
should be resampled to obtain a common desired temporal reference system previous to any feature
extraction/selection algorithm application. Depending on the feature and the application system,
the optimal joining method can be different.

Figure 8 shows the initial sampling for different features. Each column represents a feature
and each row an hour time window. The number of samples is counted per hour and feature,
and represented by the colour.

60

Time (h)

anoy 1ad sanjea Jo Jaquinu

20

Feature (id)

Figure 8. Original sampling of real industrial data from a distillation unit.
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Figure 8 shows how, depending on the feature the frequency of data availability can be constant
or variable, and the quantity of samples can be very different among features. For example, the feature
with id 14 changes drastically from very low frequency to high frequency only in a couple of hours.
The data points for this particular feature are shown in Figure 9, where the frequency change
is observable.

QOOOOODOOOQOOOOODOOQOOOOOOOOOOOOOQOOOOOOOOW o
112 % B &b
© o0

e
o
mO

110 06 o

Values
[+
o
O
o

108 o &,

o
106 3° %

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Mar 24, 2019 Mar 25, 2019

Timestamp

Figure 9. Original data of the feature with id 14 from Figure 8.
In this particular case, the desired time sampling interval is selected to be 15 min.

5. Experimental Results

This section presents experimental results for the aforementioned case studies.

5.1. Results on Synthetic Data

For synthetic data, different time series joining methods were used separately and the error,
defined by Equation (2), was calculated for each method using windows of t € (p,p + 2] with
p €{0,2,...,38}. The selected values for the parameters of smart join methodology were w; = 1/7 Vi
(i.e., the same importance for all different functions taking part in the error calculation) and the
imputation function was f = ffill.

Table 7 shows the error values per method and time window. The optimal solution (minimum
error) is marked in bold. An additional column labelled “theoretical” represents the theoretically
optimal solution. Thus, the obtained optimal solution in each time window can be compared and
contrasted with the theoretical solution. In Figure 10 numerical results are shown graphically.

As per Table 7, the optimal joining method (the one that has minimal error in each window)
depends on the controlled distortion introduced. The proposed methodology is capable of obtaining
as one of the optimal available results the theoretical solution. On the one hand, for t € (0,10],
the data was already available for the needed temporal reference system and for that reason all the
methods were able to obtain a 0.0 value error. On the other hand, for t € (10,20], as data points
are removed randomly, there was no optimal theoretical solution, as from known data points the
joining method should not be able to reconstruct the time series. For this range, the optimal solution
for the joining method depends on Diff (y, ), i.e., the distortion introduced is comparable to the one
obtained with the lineal interpolation result. For t € (20,30] and ¢ € (30,40] the optimal theoretical
solutions were backward and forward join, respectively. However, in multiple windows, the nearest
join method obtained the same solution as the theoretically optimal method, as the shifted data points
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(tor introduced in the smart join system) are the nearest ones to the desired data points (fpy output
temporal reference system).

Table 7. Results on synthetic data, in bold the method with minimal error (multiple solutions are possible).

t Range Backward Join Forward Join Left Join Nearest Join Theoretical
0-2 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° all
2-4 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° all
46 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° all
6-8 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° all
8-10 0.00 x 10° 0.00 x 10° 0.00 x 10° 0.00 x 10° all
10-12 456 x 1072 456 x1072 456 x 1072 532 x 1072 none
12-14 5.08 x 1072 508 x1072 5.08 x1072 5.08 x 102 none
14-16 335 x 1072 277 x1072 335 x1072  4.06 x 1072 none
16-18 455 x 1072 455 x1072 455 x1072 5.35 x 1072 none
18-20 436 x 1072 483 x1072 436 x1072  4.36 x 1072 none

20-22 1.89 x 1072 361 x1072 361 x1072 1.89 x10°2  backward
22-24 1.50 x 1072 361 x1072 361 x1072 150 x10~2  backward
24-26 1.67 x 1072 361 x1072 361 x1072 1.67 x1072  backward
26-28 7.69 x 1072 121 x1071 192 x107! 939 x1072  backward
28-30 361 x 1072 586 x1072 586 x1072 3.00 x 1072  backward
30-32 5.75 x 1072 355 x1072 722 x1072 444 x 1072 forward
32-34 5.04 x 1072 272 x1072 504 x1072 272 x 1072 forward
34-36 8.90 x 1072 526 x 1072 111 x10°! 5.26 x 1072 forward
36-38 444 x 1072 286 x 1072 444 x1072 2.86 x 1072 forward
38-40 361 x1072 199 x1072 361 x1072 199 x 102 forward

~—— original
10 - distorted
= error left
= 0 ~—— eITor nearest
error forward
-10 = error backward
0 5 10 15 20 25 30 35
0.2
0.15
S o1 ‘
@
0.05
0
0 5 10 15 20 25 30 35

t(s)
Figure 10. Synthetic data results.

5.2. Results on Real Industrial Datasets

With respect to the real dataset, all features had a common sampling distribution after the joining
as per Figure 11. In this case, the common sampling distribution was represented by having the same
colour by row for all the features (represented by columns). Furthermore, as the selected temporal
reference system (tp) had a constant sampling interval, the figure results in constant colour (four data
points for each feature each hour).
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Figure 11. Result after the use of smart join. After the joining, all features have a common

sampling distribution.

In Figure 12 the original time series (y) and the one obtained from the joining methodology (1) are
shown for making a visual comparison. Both time series (y and ) had similar appearance until 16:00
where the feature became unstable. Due to the selected time sampling and the joins considered for
finding the optimum being the ones operated by SQL database engines, only a data point near the

needed sampling was selected.
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Figure 12. Comparison between original time series and after the use of smart join for the feature with

id 14.

Figure 13 shows the alignment distortion for the feature with id 14. Negative values in this
misalignment imply that anticipated time data were used in the join, whereas positive values imply
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delayed time. The difference in the alignment could imply delays in prediction if anticipated data were
used in the join or did not really have updated information of the process in order to make an adequate
decision. In this particular case as the original time sampling initially writes nearly each 20 min and
the desired time sampling is every 15 min, delays or anticipations of nearly 8 min become common.
In the last part of the original time series, as data were available every minute or two, the delays or
anticipations are drastically reduced for the joined time series.

00:00 03:00 06:00 X 12:00 15:00 18:00 21:.00 00:00
Mar 24, 2019 Mar 25, 2019

tp — tp in minutes

Desired final timestamp

Figure 13. Alignment distortion for feature 14 between y and . Negative values in this misalignment
imply that anticipated time data has been used in the join, whereas positive values imply delayed time.
The difference in the alignment could imply delays in prediction if anticipated data was used in the
join or did not really have updated information of the process in order to make an adequate decision.

Figure 14 shows used and unused points from the original time series in the join time series.
Depending on the application the lost information could have a great impact. For time later that 16:00,
as the selected time sampling (tp) is slower than the dynamic of the original time series, a lot of data
points are unused in the joining process, losing the information provided by those data points showed
in blue in the figure. In some cases, different aggregation methods or rolling windows could be more
adequate to use the data that otherwise will be lost.
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Figure 14. Data used and not used from y to generate 7.
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The difference between the original time series and the joined one can help optimize the time
sampling for a specific application. At the top of Figure 15 both the time series used for error calculation
in part of Diff(y,9) (Jinterp a0 Yinterp, i-€., generated by linear interpolation of time series y and
in order to have common data sampling distribution (o |Jtp)) are shown, while the lower diagram
shows the absolute error value calculated at each point. For a comparison of how the frequency
selection can affect the desired time sampling, a similar diagram with a desired sampling frequency
modified from 15 min to one minute is shown in Figure 16. In both figures, as initially the original
time series has constant values, there is no difference between both interpolated time series. However,
as time passes by and the time series becomes unstable, the difference is remarkable. This error is
greater in Figure 15, as the desired time sampling frequency is slower than the real dynamic of the
feature and data is not linear.

112 = Vinterp
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=~ absolute error
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Figure 15. Difference between original data and joined data with a desired time sampling frequency

15 min.
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Figure 16. Difference between original data and joined data with desired time sampling frequency
1 min.

In Table 8 the effect in the error of different selections of desired sampling frequency are shown
for comparison.
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Table 8. Error values for the nearest joining method for different requested sampling frequencies.

Frequency NaEI(§) MissEl(y,9) DelEl(y,9J) DelT(y,§) AntEl(y, ) AntT(y,9) Diff(y,9)

1 0.0 0.494 0.333 0.007 0.667 0.006 0.004
5 0.0 0.851 0.322 0.007 0.678 0.005 0.036
10 0.0 0.903 0.315 0.007 0.685 0.005 0.054
15 0.0 0.921 0.333 0.007 0.667 0.004 0.058

6. Conclusions and Future Work

Standard data analysis pipelines often include resampling, interpolation and aggregation steps
that are not optimized in the model learning procedure.

This paper introduced the definition of an optimization problem for data preprocessing, and in
particular for data joining processes that imply a need for data resampling. The defined problem
has been addressed by a method designed to efficiently solve it. The case studies introduced have
demonstrated the applicability of the proposed method to time series data, using standard SQL-like
data joining primitives as a basis to be optimized upon. The first case study, with simulated data and
controlled distortions, means to provide insight into the methodology and its applicability. In the
second experiment, the proposed methodology is applied in a real scenario, showing the impact of the
decisions taken in the preprocessing step on the learning of data-based models.

Furthermore, the paper proposed an error function for its use in the optimization problem of
joining time series. This error function allows comparisons across different features and time slices,
which is needed to select among different join methods or to monitor their quality on different time
series slices. As errors are comparable, selecting the optimal solution or knowing when there is a
need for retraining is possible. Moreover, using the input parameters (w and f) of the proposed error
function allows adapting the function to an adequate solution for different applications.

The approach presented in this paper has several new paths to follow as future works: on the
one hand, the approach could be improved, adding automatic selection of the time window size,
or applying B-Spline mode approximations of the missing values; on the other hand, the benefits of
the proposed Smart Join method should be quantified on a diverse range of real world applications.
Energy consumption, storage and production, supply transportation and storage management are
candidates towards this end.

Author Contributions: A.G. and M.Q. designed and implemented the experimental testbed and algorithm,
B.S. and 1.G.O. supervised the experimental design and managed the project. M.Q. and B.S. reviewed the new
approach of this research. A.G. performed the experimental phase. All authors contributed to the writing and
reviewing of the present manuscript. All authors read and agreed to the published version of the manuscript.

Funding: This research has been partially funded by the 3KIA project (ELKARTEK, Basque Government).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Codd, E.F. The Relational Model for Database Management; Addison-Wesley Publishing Company: Boston, MA,
USA, 1990.

2. Folgado, D.; Barandas, M.; Matias, R.; Martins, R.; Carvalho, M.; Gamboa, H. Time alignment measurement
for time series. Pattern Recognit. 2018, 81, 268-279. [CrossRef]

3. Morel, M.; Achard, C.; Kulpa, R.; Dubuisson, S. Time-series averaging using constrained dynamic time
warping with tolerance. Pattern Recognit. 2018, 74, 77-89. [CrossRef]

4, Sun, Y.; Zhang, C.; Gao, L.; Wang, X. Multi-objective optimization algorithms for flow shop scheduling
problem: A review and prospects. Int. |. Adv. Manuf. Technol. 2011, 55, 723-739. [CrossRef]

5. Tawhid, M.A ; Savsani, V. Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering
design problems. Neural Comput. Appl. 2019, 31, 915-929. [CrossRef]

6. Zuo,L.;Shu, L; Dong, S.; Zhu, C.; Hara, T. A Multi-Objective Optimization Scheduling Method Based on
the Ant Colony Algorithm in Cloud Computing. IEEE Access 2015, 3, 2687-2699. [CrossRef]



Appl. Sci. 2020, 10, 6346 18 of 18

10.

11.

12.

13.

14.

15.

Zahedi, A.; Kargari, M.; Husseinzadeh Kashan, A. Multi-objective decision-making model for distribution
planning of goods and routing of vehicles in emergency multi-objective decision-making model for
distribution planning of goods and routing of vehicles in emergency. Int. |. Disaster Risk Reduct. 2020,
48,101587. [CrossRef]

Yang, W.; Wang, J.; Niu, T.; Du, P. A hybrid forecasting system based on a dual decomposition strategy and
multi-objective optimization for electricity price forecasting. Appl. Energy 2019, 235, 1205-1225, [CrossRef]
Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130-141. [CrossRef]

Guastello, S.J.; Gregson, R.A. (Eds.) Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using
Real Data; CRC Press Taylor & Francis Group: Abingdon, UK, 2011.

Ciric, A.R.;; Miao, P. Steady state multiplicities in an ethylene glycol reactive distillation column. Ind. Eng.
Chem. Res. 1994, 33, 2738-2748. [CrossRef]

Kumar, A.; Daoutidis, P. Modeling, analysis and control of ethylene glycol reactive distillation column.
AICHhE J. 1999, 45, 51-68. [CrossRef]

Osuolale, EN.; Zhang, J. Energy efficiency optimisation for distillation column using artificial neural network
models. Energy 2016, 106, 562-578. [CrossRef]

Tehlah, N.; Kaewpradit, P.; Mujtaba, LM. Artificial neural network based modeling and optimization of
refined palm oil process. Neurocomputing 2016, 216, 489-501. [CrossRef]

Mirakhorli, E. Fault diagnosis in a distillation column using a support vector machine based classifier. Int. J.
Smart Electr. Eng. 2020, 8, 105-113.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).



Springer Nature 2021 IXTEX template

ASSIST: Automatic Smart Selection of the
Suitable Imputation Technique

Amaia Gil"*, Marco Quartulli’, Igor G. Olaizola'
and Basilio Sierra?

Vicomtech Foundation, Basque Research and Technology
Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian,
Spain.
2Department of Computer Sciences and Artificial Intelligence,
University of the Basque Country (UPV/EHU), 20018
Donostia-San Sebastidn, Spain.

*Corresponding author(s). E-mail(s): agil@vicomtech.org;
Contributing authors: mquartulliQvicomtech.org;
iolaizola@vicomtech.org; b.sierra@ehu.eus;

Abstract

Dealing with data that is missing due to unknown causes is a com-
mon problem in industrial applications. A possibility to mitigate this
issue is to effectively impute missing observations that adjust to the
actual characteristics of the signal received. This paper proposes a
new method called ASSIST for adaptively identifying optimal impu-
tation strategies for time series data on a window-by-window basis.
For this purpose, time series and gap distributions are characterized
first, and a model is trained from those features in order to predict
the best fit imputation strategy from the available ones. This proposed
approach is validated in the entire UCR time series public data archive.

Keywords: data imputation, time series, machine learning, adaptive method
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1 Introduction and description of the problem

Missing observations in data can be produced by multiple causes such as
network communication problems, measurement errors or data acquisition
problems. In general, the cause of a missing observation is unknown and its
appearance is unpredictable. The data quality and availability are essential for
applications where decisions are taken based on data [1-3]. Depending on the
relative amount of missing data and the cause or multiple causes generating the
missingness, the data obtained can be biased severely affecting performance of
algorithms, machine learning models, etc [4, 5].

The processes of filling in the unknown observations is defined as impu-
tation. This research is centered on univariate time series data and single
imputation methods, in other words, there is no relation to other time series
that can provide information about the actual missing observation being con-
sidered and each missing observation has a unique estimation value. Multiple
imputation strategies have been proposed in the last years [6-10]. However,
as most of these methods are specifically designed for data with certain given
characteristics or specific application fields, undesired results can be obtained
when applied to real data or previously unconsidered situations [11, 12].

A key challenge of imputation selection is filling the gaps in a controlled
manner [13]. The imputation method should adapt to the actual signal and to
the missing data pattern. This paper proposes a methodology that is able to
select the imputation technique to the observed data and missing observations
distribution.

The rest of the paper is structured as follows. Section 2 introduces different
imputation methods. Then, the proposed approach is explained in Section 3.
Section 4 provides a description of the experiments setup, whereas Section 5
shows the results of those experiments. Finally, conclusions and future work
are presented in Section 6.

2 Theoretical background of data imputation

Zhang [14] presents a categorization of imputation methods based on the
number of imputations generated for each missing observation: 1) single impu-
tation, 2) multiple imputations, 3) fractional imputation and 4) iterative
imputation. Single imputation methods provide a unique estimation for each
missing value [15], while multiple imputation method makes multiple estima-
tion values for each missing observation providing uncertainty measures in
each case in order to combine them and reach a final imputation value [16]. In
the fractional imputation case, several imputed values are generated together
with conditional probabilities given a known observation [17]. Finally, itera-
tive imputation techniques are capable of estimating missing values when data
points are incomplete and by the use of multiple iterations obtaining refine-
ment in the estimation values [18]. The rest of the Section is centered in the
description of different single imputation techniques as this research is focused
on their use.
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The simplest imputation method is replacing missing observations with a
constant value. This value could indicate that the data is missing or be replaced
by a statistical property such as mean, median or mode. In the particular
case of the time series, missing observations can be replaced with the nearest
previous or following data points.

Interpolation methods [19] consist of constructing new observations from a
discrete quantity of data points. Using known observations, interpolation func-
tion parameters are estimated, and later the interpolated function is evaluated
to obtain missing data observations. The simplest interpolation function is the
piecewise constant, which locates the nearest value and uses it to construct
the function. The linear interpolation, and its generalization the polynomial
interpolation, are also commonly used due to their simplicity. In the case of
needing smooth functions, spline interpolation can be used. This variant uses
lower degree polynomial functions as interpolate functions as in the previous
case but this time guaranteeing that the resulting function is differentiable [20].
Akima splines [21] are capable to adjust smooth functions near outliers with-
out creating oscillations due to its non-linearity interpolation function. Piece
cubic Hermite interpolating polynomial [22] is capable to adapt better to flat
areas compared to spline interpolation, due to slope interpolation differences.
However, depending the position of flat areas, this could imply obtaining flat
interpolation functions near the local extrema. Kriging [23] is a geostatisti-
cal interpolation method that is based on a regression method of Gaussian
processes that can be used for point estimation.

In the cases when sufficient historical data is available, time series fore-
casting models can be generated. Once the model is trained, it is possible to
forecast the missing observations and use those predictions to fill the gaps. For
this purpose, classical statistical models can be used, such as exponentially
weighted moving average [24] or its generalization Holt-Winters [25] model and
autoregressive models variants [26]. Additionally, the application of machine
learning models, such as decision trees [27], neural networks [28] and support
vector machines [29], have been applied with success in time series forecast-
ing. These models should be applied guaranteeing that the time series specific
characteristics as temporal relations between observations [30] are met. Fur-
thermore, hybrid models have been applied that include the statistical power
of classical models joined to the capability of learning non-linear models of
machine learning methods [31, 32].

Another possibility is using pattern recognition models [33] to identify sim-
ilar patterns (or neighbours) in the historical data using previous observations
to missing values and to fill the gaps them with those values. For example Ster-
nickel [34] characterized the time series using wavelet transformation methods,
and trained a neural network with those features in order to detect similar pat-
terns in the complete time series data. In addition, clustering techniques [35]
are capable of grouping similar signals that can be later be used for imputing
missing data. These techniques use algorithms such as dynamic time warping
(DTW) [36] that provide a measure of similarity between time series. Finally,
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lazy learning techniques [37] are capable of adapting the number of neighbours
needed depending on the results obtained by cross-validation methods.

3 Proposed approach

This paper proposes a method for adaptively identifying an optimal data impu-
tation method for a specific time series on a window-by-window basis. Thus,
this contribution focuses on quantifying the effect of the application of differ-
ent imputation algorithms to a time series depending on the characterization
of the observed data and gap distribution characteristics. The approach con-
sists in training a machine learning model that is able to predict from signal
and gap characterization which imputation technique to use in each case. The
proposed approach is validated in all the datasets available at UCR time series
public data archive [38].

4 Experimental setup

The schema showing the steps in the experimental setup is shown in Figure 1.
Each step is detailed in the following subsections.

The section is structured as follows. Subsection 4.1 describes the dataset
used and how missing observations are generated. Then, characterization fea-
tures used in the experiments are detailed in Subsection 4.2. Subsection 4.3
provides a description of the selected imputation methods, whereas Subsection
4.4 shows the measure used for validating the imputation. Finally, the model
generation is described in Subsection 4.5.

4.1 Dataset and missing values generation

The considered datasets are the ones available at the UCR, Time Series Classifi-
cation Archive [38]. The Archive contains 128 classification time series datasets
of different types including sensor data, simulated data, motion data from
several devices and health data such as electrocardiograph (ECG), electroocu-
lography (EOG) and hemodynamic data. First, as UCR archive datasets are
complete (without missing values) multiple observations should be deleted, in
other words amputed, in order to later impute. The training set in each dataset
is amputed, whereas the test set is used to generate descriptors of the dataset
and as historical complete data for imputation methods that need it.

There are three possible types of missing data [39, 40]: missing completely
at random (MCAR), missing at random (MAR) and not missing at random
(NMAR). MCAR describes the situation when missing data occurs entirely
at random, all data points in the time series have the same probability of
becoming missing data. In other words, the missing observation cannot depend
on the value of the data point itself, neither on the value of another variable.
In the MAR type the missing probability for an observation is independent
of the value of the observation itself, but it depends on the value of other
variables. In the time series univariate case the values of the time can be used
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Fig. 1 Schema showing the experiment setup.

as other variable. Finally, in the NMAR case, the probability of a observation
being missing depends on the value of the observation itself.

For simulating MCAR type missing values, time series were amputed using
a uniform distribution in time index. For MAR case Poisson distribution was
used to decide which observations were removed from the time series. A =
len(z)/2, being x the time series, was selected for for defining the distribution
and to be adaptable with different length of the time series in the dataset.
Finally, for replicating MNAR, case and with the idea that the probability of
some observation being removed depends on the value of observation itself,
observation values are sorted and higher removing probability is given to low,
central or high values depending on the option selected.

The amputation is done separately for each time series contained in each
dataset. The amputation technique and the percentage are selected randomly
between MAR and MNAR methods and missing percentage values (20% or
50%). Initially, MCAR amputation method was included in the experiment but
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later, it was discarded as the majority of the gaps generated by this method
were small (gap length less than 3); due to their limited length, there were
minimal differences between imputed observations using different techniques.

4.2 Time series, dataset and gap characterization

Firstly, a gap is defined as continuous rank of missing observations. For each
gap their position in time in the considered time window, length, and known
previous and following observations of the actual gap being characterized are
used as descriptors.

Let z; be the observation value of the time series x in time ¢. Suppose
r; = xip1 — x; is the first derivative, z} = i, — 2] the second derivative,
i the mean and o the standard deviation of observations values. Then, the
features for characterizing the time series are defined next:

Coefficient of variation (CV)

Oz

V=2 (1)

Root mean square (RMS)

RMS = | =) a2 (2)
n-
i=1
Mean absolute change (MAC)
1 n—1
MAC’:n_llz::lx',l (3)
Mean distance (MD)
1 n—1
MD = +1 4
n_liﬁ(\/xﬁ) (1)

Shape factor (SF)

Mobility (M)

- (6)

Complexity (C)
Mz/ - Ux”/0$’

C = p—
Mw 0'9;//0'3;

(7)
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The slope of the linear regression of the known observations and the R?
indicating the linearity of the observations are also calculated in the time series
characterization. As a predictability measure of the time series, autocorrelation
is another feature considered.

Continuing with dataset descriptors, statistical distribution descriptors are
used as features. Concretely the mean, median, standard value, skewness, kur-
tosis and maximum and minimum values. Gap characterization features is used
to select the imputation method together with time series characterization.

4.3 Data imputation

This research focuses on single imputation due to simplicity needed for stream-
ing or IOT applications. The list of selected imputation techniques is the
following: Akima and Krige interpolation methods and k-nearest method using
for imputing the observation the mean value in the same position of 3 curves
that are the most similar using DTW score as distance measure.

On one hand, Akima should be the adequate imputation method for small
gaps and smooth time series but depends totally on the previous and posterior
gap nearby observations. On the other hand, Krige takes into account gaussian
processes not, centering all the attention of the interpolation technique in the
gap nearby observations. Finally, k-nearest method allows looking patters that
had occurred previously enabling considering different imputation shapes in

bigger gaps.

4.4 Imputation validation measure

The optimal imputation between selected imputation methods is validated by
the method obtaining the minimal error indicated by Percentage root mean
square difference (PRD) measure in in the amputed observations. Let z; be
the observation value of the time series z in time 7 and Z; the observation
value of the imputed time series in the same time %, the the PRD measure is
defined by the following equation:

PRD(#, ) = <Z(Zx(;;)2) - (8)

4.5 Model generation

The training dataset used for model generation is created by the character-
ization of first 20 amputed time series of the training set of each dataset as
described in Subsections 4.1 and 4.2. Then, each time series is imputed with
all available imputation methods (Krige, k-nearest and Akima) and error value
defined in the subsection 4.4 are calculated comparing imputed observations
of each time series with original time series values from the dataset.

The optimal imputation method for each time series in considered the one
with the lowest error value. The feature selection is done by point biserial cor-
relation coefficient [41] between the features obtained in the characterization
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and optimal imputation method obtained for each time series. A combination
of two SVC models are trained in order to predict which imputation method
is the most adequate regarding time series known values characterization and
gaps distribution. The first model is trained to separate Krige and k-nearest
imputation methods vs Akima interpolation and the second trained to separate
the methods Krige and k-nearest.

5 Experimental results

The results shown in this section are generated using the PRD error method
to select the optimal imputation method in each time series. The number of
time series for each imputation methods is shown in Table 1. The most cor-
related features obtained in this specific case are the largest length of gaps
in each time series and the mobility value of the amputed time series. The
largest length of gaps feature is changed to logarithmic scale to separate the
imputation methods more significantly. The two models are generated for pre-
dicting the optimal imputation method for all the datasets contained in the
UCR time series archive. With those two features, the first model reached
accuracy is 78% and the second model with accuracy of 67%. The combina-
tion of both models reaches an accuracy of 65% and the confusion matrix is
shown in Figure 2. Finally features selected for model generation and sepa-
rated by each imputation and coloured depending on the prediction of each
method are shown in Figure 3. In general terms, the classification model rec-
ommends Akima for small gaps imputation and k-nearest for bigger gaps and
Krige when the mobility reaches high values.

Table 1 Model training dataset distribution by optimal imputation method for PRD error

Imputation method | Optimal method times count

Akima 1304
k-nearest 649
Krige 588

Confusion Matrix
- 1000

600

True labels

400

<4
s
3
<
&

200

Akima Krige k-nearest
Predicted labels

Fig. 2 Confusion matrix of the generated model
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Fig. 3 Selected features log_length_holes_max vs mobility

In the Tables 2 and 3 the mean PRD imputation value aggregated by
dataset is shown. The datasets are ordered in ascending order from the mini-
mum mean error value obtained using the optimal imputation method for each
time series (Optimal column). The Akima, k-nearest and Krige columns show
the mean error value when a fixed imputation method is used for imputing the
dataset and finally the Predicted column shows the quality of the imputation
with the combination of models’ predicted imputation method is used in each
time series. The Optimal column is used as reference and from the rest of the
columns the method obtaining the minimum mean error value is marked in
bold.

A final total count indicating how many times each of the studied methods
are optimal for a dataset is provided at the end of Tables 2 and 3 as summary.
In both tables proposed model’s predictions is optimal most of the times.
As the mean error increases using Akima as unique interpolation technique
appears to be adequate and in the last half Krige method appears considerable
times. Rarely k-nearest imputation method is selected as optimal imputation
technique for time series and this maybe due to the fact that the amputed time
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series is pre-imputed by linear interpolation before calculating DTW distance
with time series of the test set. This pre-imputation may devalue the distance
score between time series.

Table 2 Mean PRD error values aggregated by each dataset from the UCR time series
classification archive

Dataset Optimal Akima k-nearest Krige Predicted
Insect EPGRegularTrain 0.005 0.007 0.016 0.008 0.013
Insect EPGSmallTrain 0.026 0.035 0.063 0.034 0.032
GestureMidAirD2 0.032 0.036 0.181 0.067 0.073
GunPointMaleVersusFemale 0.033 0.056 0.101 0.068 0.043
GunPointOld VersusYoung 0.039 0.058 0.099 0.099 0.053
PigArtPressure 0.039 0.082 0.132 0.139 0.045
GunPointAgeSpan 0.042 0.057 0.125 0.08 0.043
Meat 0.042 0.227 0.059 0.209 0.046
GunPoint 0.057 0.084 0.178 0.12 0.057
OliveOil 0.071 0.677 0.101 0.627 0.073
Rock 0.073 0.102 0.265 0.095 0.097
Wine 0.089 0.555 0.111 0.608 0.12
FreezerRegularTrain 0.094 0.18 0.106 0.62 0.107
FreezerSmallTrain 0.096 0.243 0.112 0.775 0.115
ProximalPhalanxTW 0.099 0.292 0.185 0.278 0.107
DistalPhalanxTW 0.103 0.296 0.187 0.28 0.109
EthanolLevel 0.105 0.152 0.165 0.283 0.105
DiatomSizeReduction 0.109 0.529 0.143 0.344 0.122
StarLightCurves 0.114 0.234 0.265 0.276 0.142
Crop 0.12 0.141 0.203 0.21 0.188
ProximalPhalanxOutlineCorrect 0.12 0.561 0.202 0.446 0.123
PickupGestureWiimoteZ 0.121 0.134 0.376 0.182 0.125
ProximalPhalanxOutlineAgeGroup 0.127 0.649 0.206 0.516 0.129
Trace 0.129 0.164 0.382 0.248 0.242
Strawberry 0.131 0.339 0.151 0.432 0.171
Coffee 0.136 0.54 0.157 0.538 0.142
GestureMidAirD3 0.153 0.17 0.613 0.219 0.272
AllGestureWiimoteZ 0.156 0.186 0.34 0.194 0.169
TwoLeadECG 0.157 0.322 0.277 0.41 0.16
EOGHorizontalSignal 0.162 0.164 0.665 0.2 0.203
GestureMidAirD1 0.165 0.167 0.975 0.382 0.415
Chinatown 0.171 0.186 0.256 0.223 0.186
DistalPhalanxOutlineCorrect 0.172 0.462 0.292 0.471 0.199
NonlInvasiveFetal ECGThorax1 0.175 0.44 0.257 0.721 0.196
MiddlePhalanxOutlineAgeGroup 0.176 0.764 0.231 0.569 0.194
NonlInvasiveFetal ECGThorax2 0.191 0.425 0.24 0.724 0.201
DistalPhalanxOutlineAgeGroup 0.191 0.95 0.284 0.594 0.201
MiddlePhalanxTW 0.192 0.829 0.231 0.64 0.2
MiddlePhalanxOutlineCorrect 0.193 1.123 0.232 0.658 0.193
MelbournePedestrian 0.198 0.216 0.275 0.396 0.228
PLAID 0.2 0.408 0.49 0.239 0.361
InlineSkate 0.201 0.248 0.414 0.313 0.243
UWaveGestureLibraryY 0.201 0.272 0.515 0.385 0.294
Adiac 0.205 0.73 0.266 0.459 0.217
Symbols 0.208 0.375 0.351 0.479 0.276
PigCVP 0.208 0.892 0.364 0.282 0.225
Beef 0.214 0.554 0.292 0.546 0.247
PhalangesOutlinesCorrect 0.222 0.648 0.3 0.577 0.253
UMD 0.226 0.336 0.465 0.37 0.337
Herring 0.227 0.609 0.294 0.413 0.244
UWaveGestureLibraryZ 0.229 0.437 0.498 0.374 0.379
Mallat 0.238 0.644 0.276 0.708 0.238
Fish 0.238 0.721 0.337 0.38 0.263
BME 0.242 0.286 0.512 0.33 0.425
EOG VerticalSignal 0.244 0.306 0.833 0.328 0.516
SwedishLeaf 0.25 0.477 0.442 0.303 0.267
DodgerLoopWeekend 0.255 0.755 0.287 0.278 0.291
AllGestureWiimoteY 0.257 0.269 0.905 0.345 0.462
DodgerLoopGame 0.26 0.428 0.299 0.294 0.297
ShapesAll 0.26 0.284 0.817 0.372 0.561
Car 0.262 0.628 0.397 0.405 0.309
DodgerLoopDay 0.266 0.595 0.293 0.334 0.287
ECG5000 0.273 0.371 0.325 0.449 0.301
BirdChicken 0.275 0.287 0.809 0.488 0.555

Best approach total count - 14 4 5 40



Springer Nature 2021 IXTEX template

ASSIST: Automatic Smart Selection of the Suitable Imputation Technique

Table 3 Mean PRD error values aggregated by each dataset from the UCR time series

classification archive

Dataset Optimal Akima k-nearest Krige Predicted
Medicallmages 0.276 0.346 0.54 0.458 0.344
MixedShapesRegularTrain 0.282 0.545 0.785 0.424 0.456
FiftyWords 0.295 0.568 0.821 0.502 0.402
Wafer 0.298 0.425 0.414 0.622 0.358
ArrowHead 0.299 0.592 0.444 0.426 0.362
‘WordSynonyms 0.302 0.392 0.997 0.489 0.419
UWaveGestureLibraryX 0.306 0.537 0.655 0.369 0.498
Yoga 0.307 0.413 0.648 0.45 0.546
Haptics 0.323 0.42 0.576 0.694 0.422
Ham 0.339 0.997 0.447 0.765 0.352
ECG200 0.35 0.57 0.53 0.549 0.378
PigAirwayPressure 0.35 0.452 0.504 0.534 0.45
HandOutlines 0.361 0.791 0.451 0.818 0.393
UWaveGestureLibraryAll 0.371 0.89 0.744 0.57 0.461
MoteStrain 0.378 0.56 0.571 0.561 0.478
ItalyPowerDemand 0.385 0.461 0.662 0.481 0.46
AllGestureWiimoteX 0.396 0.521 0.832 0.494 0.485
MixedShapesSmallTrain 0.416 0.789 0.825 0.594 0.617
PowerCons 0.418 0.479 0.689 0.476 0.457
‘Worms 0.421 0.605 0.844 0.569 0.494
BeetleFly 0.423 0.822 1.037 0.635 0.532
ShakeGestureWiimoteZ 0.44 0.926 0.735 0.55 0.644
ECGFiveDays 0.449 0.651 0.717 0.845 0.57
HouseTwenty 0.451 0.474 0.751 0.542 0.564
SmoothSubspace 0.457 0.62 0.496 0.487 0.495
OSULeaf 0.461 0.674 0.975 0.598 0.619
Plane 0.465 0.771 0.641 0.704 0.597
SemgHandSubjectCh2 0.474 2.705 0.553 0.475 0.475
SonyAIBORobotSurfacel 0.474 0.673 0.616 0.755 0.543
InsectWingbeatSound 0.489 1.092 1.098 0.652 0.803
Fungi 0.49 0.545 0.741 0.688 0.618
GesturePebbleZ1 0.491 0.547 0.945 0.605 0.591
SemgHandMovementCh2 0.494 1.526 0.62 0.496 0.496
WormsTwoClass 0.5 1.087 0.905 0.624 0.599
CricketZ 0.52 0.756 0.808 0.709 0.608
SemgHandGenderCh2 0.527 1.955 0.609 0.533 0.535
FordA 0.55 1.826 1.202 1.063 0.641
ToeSegmentationl 0.553 1.031 0.913 0.754 0.617
GesturePebbleZ2 0.56 0.87 1.013 0.743 0.61
LargeKitchenAppliances 0.562 2.053 1.818 0.859 1.6
SonyAIBORobotSurface2 0.563 0.787 0.779 0.869 0.748
ToeSegmentation2 0.578 0.813 1.048 0.66 0.743
CBF 0.596 0.909 0.736 0.684 0.668
Lightning7 0.598 0.819 0.825 0.657 0.627
FaceFour 0.604 0.877 0.785 0.934 0.655
CinCECGTorso 0.606 0.787 1.122 0.657 0.784
Computers 0.612 0.702 1.256 0.72 1.063
FacesUCR 0.619 1.063 0.904 0.975 0.716
CricketY 0.637 0.781 0.913 0.82 0.685
ScreenType 0.642 0.812 0.986 0.734 0.795
CricketX 0.649 0.81 0.84 0.793 0.699
Phoneme 0.655 2.406 1.111 0.944 0.737
ChlorineConcentration 0.687 0.916 0.718 0.849 0.766
RefrigerationDevices 0.707 0.972 1.154 0.974 0.849
Lightning2 0.734 1.399 1.049 0.814 0.861
TwoPatterns 0.738 0.894 1.124 0.858 0.895
FaceAll 0.759 1.355 0.998 1.017 0.908
FordB 0.773 2.738 1.176 1.117 0.904
ElectricDevices 0.818 1.432 2.5 1.489 1.52
SmallKitchenAppliances 0.938 0.956 1.443 1.038 1.043
Earthquakes 1.015 1.142 1.125 1.015 1.015
ACSF1 1.021 15.607 1.186 1.032 1.032
ShapeletSim 1.073 4.58 1.147 1.086 1.086
SyntheticControl 1.074 1.38 1.153 1.145 1.149
Best approach total count - 9 1 20 39

6 Conclusions and future work

11

This paper has introduced a novel method called ASSIST aimed at adaptively
identifying optimal imputation strategies for time series data, on a window-by-
window basis. A method to characterize time series and gap distributions has
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been presented, together with a procedure to train a model in order to predict
a best-fit imputation strategy. This approach has been validated in the entire
UCR time series public data archive.

In the actual experiment only 20 time series of each dataset are amputed,
characterized and used for generating the model. The features obtained from
in each time series of all the datasets in the UCR, Archive are combined in an
unique dataset for its later use as training data for model generation. From the
defined characterization features two of them reach biserial point correlation
values greater than 0.25 for selected imputation methods. Finally, the selected
model has been trained with default parameter values and limited and imbal-
anced data for classification strategies. Even though the previously mentioned
details, the proposed methodology is able to select best fitting imputation
method from the available ones for each time series. This experiment shows
that the gap characterization and actual observations values are valuable for
selecting adequate imputation strategies.

Future work to be considered includes characterizing all the time series
of training sets of the URC Archive datasets obtaining enough data to train
more complex classification models or even considering separating different
time series datasets depending on their characteristics. In this way, more accu-
rate models could be generated allowing imputation method prediction with
a controlled risk assessment technique. Finally, the imputed observations can
be validated previous to final imputation method selection by the use of the
characteristics of the datasets that are not currently used in none of the steps
of the proposed methodology.
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Abstract: Battery Cell design and control have been widely explored through modeling and simula-
tion. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models
are among the most popular electrochemical models capable of predicting battery performance and
therefore guiding cell characterization. On the other hand, empirical models obtained, for example,
by Machine Learning (ML) methods represent a simpler and computationally more efficient comple-
ment to electrochemical models and have been widely used for Battery Management System (BMS)
control purposes. This article proposes ML-based ensemble models to be used for the estimation of
the performance of an LIB cell across a wide range of input material characteristics and parameters
and evaluates 1. Deep Learning ensembles for simulation convergence classification and 2. struc-
tured regressors for battery energy and power predictions. The results represent an improvement
on state-of-the-art LIB surrogate models and indicate that deep ensembles represent a promising
direction for battery modeling and design.

Keywords: Li-ion battery; surrogate modeling; deep learning ensembles

1. Introduction

This paper considers the task of estimating the energy and power density of LIB
designs across a range of characteristics and parameters and focuses on the problem of
obtaining these results without incurring the considerable computational costs of detailed
physical simulations in a recurrent manner. While state-of-the-art contributions such as [1]
exploit Deep Learning neural networks trained on simulated data as surrogate models for
this objective, to the best of our knowledge, no literature contribution yet has evaluated
the performance of so-called ensemble models for this task. We address this gap in the
literature by comparing state-of-the-art models with a number of ensemble surrogates.

Even though Lithium-Ion Batteries (LIB) have progressively been improved since their
market introduction in 1991 by Sony, their massive deployment requires them to be further
optimized in terms of performance, durability, and safety. From the physical point of view,
to obtain these results, in the battery design phase, it is important to reduce limitations to ion
transport, thus avoiding undesirable cell polarization effects. Consequently, an extensive
literature describes the effect each design parameter has on transport mechanisms, and
therefore on cell performance. On the one hand, the effects of several parameters (including
electrode thickness, particle size, tortuosity and discharge rate) have been investigated
by experimental methods. On the other hand, cell design has also been explored through
modeling approaches, demonstrating that model-based design can be used to reduce the
number of experiments, while accurately describing battery performance and providing
guidance for battery characterization.

In general, the battery models presented in the literature mainly fall into two cate-
gories: physics-based electrochemical models and empirical ones. In addition, the recent
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development of physics-based equivalent circuit models aims to combine the high accuracy
of physical models with the reduced computational cost of empirical ones.

Physics-based electrochemical models [2—-4] use partial differential equations to de-
scribe the phenomena taking place within the battery. They can be used to forecast its
electrochemical state, and to provide accurate information about variables such as lithium
concentrations and over-potentials, which can be used to understand the phenomena
that are limiting performance or durability. For example, the widely used Pseudo-two-
Dimensional (P2D) electrochemical model developed by Doyle and Newman [5,6] is based
on porous electrode theory, concentrated solution theory, and kinetics equations. Further
electrochemical modeling approaches rely on Single Particle (SP) simplifications, in which
the properties of the electrolyte are normally ignored [7-9]. Further recent approaches
such as SPMe [10] consider electrolyte dynamics in SP models. Other possibilities include
Simplified Models building on polynomial profiles [11,12], Galerkin approximations [13],
transfer function modeling [14], and the like. Concerning limitations, a drawback of de-
tailed electrochemical models is the significant computational cost of simulations [15].
To overcome this limitation, various reduced-order models have been developed, which
are either distributed-parameter models [10,13] or lumped-parameters models [14,16].
Distributed-parameter models are normally expressed in the form of ordinary differential-
algebraic equations (DAEs), derived, for example, using the Galerkin projection methods
or Proper Orthogonal Decomposition, trying to preserve the physical meaning of all model
parameters. Lumped-parameter models, which mimic the output voltage of the battery
using electrical components such as resistors and capacitors, are described below.

Empirical models are typically either based on equivalent circuits [16,17] or on data-
driven approaches [18,19]. battery control algorithm rather than in cell design optimization
applications. They are composed of an open-circuit voltage source connected to a set of
electric elements, such as resistors and capacitors, to model the electrical behavior of a battery.
While these models are intuitive and relatively simple to use in control system design and
implementation, they do not provide insights on the internal behavior of the battery. In this
regard, new approaches have recently been explored, such as the developed distributed-
parameter ECMs [20,21], in which the models are normally expressed in the form of DAEs,
which can be solved rapidly using the proposed method with high accuracy. This represents
an improvement on existing physics-based Li-ion battery models, especially in real-time,
dynamic environments. Physics-based equivalent circuit models combine the benefits of high
accuracy physical models with the lower computational cost of empirical ones, for instance,
by combining a concise transmission line structure with partial differential equations for the
mass transport processes that describe the concentration distributions and that are solved with
the finite difference method, avoiding simplifications or approximations, thus guaranteeing
the accuracy of the results [20]. Online estimation and prediction of the Remaining Useful
Life also often use data-driven empirical methods which, however, have not been commonly
exploited for cell design purposes.

So-called ‘surrogate’ models are obtained by Machine Learning methods from data
generated by simulations. Once the training phase is completed, these models can pro-
vide estimations of battery performance indicators with a lower computational cost and
with an accuracy similar to that of physical simulators. Probabilistic surrogate models
are often used for optimization: by running the simulations at a set of points (experimen-
tal design), one obtains fast surrogates for otherwise expensive objective functions [22].
In methods such as Upper and Lower Confidence Bound [23], Expected Improvement [24],
DYCORS [25], and SOP [26], the optimization jointly performs both exploration and ex-
ploitation, looking for an optimum, while, at the same time, sampling by simulation the
most uncertain parameter regions. In this sense, surrogate optimization schemes can
efficiently leverage the ability of probabilistic surrogate model classes, from Gaussian
Processes to Sequential Radial Basis Functions, to jointly generate estimates for both the
local value and the local uncertainty of an objective function of interest. Relevant efforts
for LIB aging modeling include those based on Gaussian processes by Liu et al. [27-29].



Energies 2021, 14, 4115

30f17

Contributing to the domain of such surrogates, Wu et al. [1] propose to address cell
design characterization by combining Machine Learning classifiers and regressors based
on deep feed-forward neural network models. While the first neural network is a classifier
that predicts whether a set of input design variables would result in a physically realizable
cell, the second neural network estimates the specific energy and specific power of the
design. Both neural networks are trained and validated using data from finite-element,
thermo-electrochemical simulations.

Although ensemble models are well represented in the literature, to the best of our
knowledge, no contribution yet has evaluated their performance as surrogates of phys-
ical LIB simulators. This paper addresses this gap by comparing a state-of-the-art LIB
surrogate model based on deep feed-forward networks with a set of ensemble models
integrating deep classifiers and regressors. In this sense, we demonstrate the accuracy of
composite surrogate models for the estimation of the density of power and energy of a
given LIB parameter set. The input and output parameters taken into consideration for
the electrochemical simulations are listed in Table 1. Their values are measured by propri-
etary electrochemical and physicochemical protocols for a set of proprietary electrodes in
CIDETEC, and vary between the minimum and maximum values shown in Table 1.

Table 1. Input and output parameters for both the simulators and the proposed surrogate models.
The simulated dataset consists of 1000 records with 11 input and 3 output attributes.

Variable Type Units Range
Anode/Cathode

thickness input Ly, Lp pum 45-75/60-90
porosity input €n,€p - 0.2-0.3/0.18-0.28
particle radius input Tn,Tp um 3.5-8.5/8-11
Separator

thickness input Ls um 15.0-30.0
porosity input € - 0.35-0.45
Electrolyte

ionic conductivity input ke S/m 0.1-1.0
initial concentration input co mol/m3 1750-2250
Whole Cell

applied C-rate input Crate 1/h 0.33-3.0
convergence status output Boolean - N.A.

energy output E Wh N.A.

power output P w N.A.

In terms of application, the present paper does not directly focus on optimization.
Instead, as also previously done in [1], it considers surrogates that can be used to estimate
the performance of battery designs across a wide range of material characteristics and pa-
rameters. This applicative objective reduces the importance of using surrogate models that
can output estimated values and their uncertainties, for instance by exploiting techniques
such as Monte Carlo Dropout [30] and Variational Inference [31]. Consequently, in the rest
of our treatment, we limit ourselves to non-probabilistic surrogates.

The methodology we introduce and detail in the sections below is based on the general
framework put forward by [32,33], integrating and extending the Pseudo-2D surrogate pro-
posed by [1] to evaluate the performance of composite surrogate models integrating both
classification and regression. Through classification, a Machine Learning model evaluates
the convergence of the simulator, while, through regression, the algorithms predict the out-
put parameters of the Ragone plot [34] (energy and power, as per Figure 1). We extend the
state of the art in [1] by showing the advantage of adopting respectively ensemble methods
for convergence classification and structured regression for the estimation of the Ragone
parameters, rather than simpler feed-forward networks for both tasks. Furthermore, from
the methodological point of view, we apply a quantitative performance evaluation proce-
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dure that is based on K-fold validation [35] rather than on simple train/test/validation
splitting as in [1]. The accuracy of some of the ensemble surrogate models we introduce
compares favorably to that of the state-of-the-art method introduced in [1]. Furthermore,
the approach in the reference is extended by using a K-fold cross-validation method to
evaluate if the model can generalize the quality of its results.

Regression: Estimate
Ragone plot parameters

Classification:
Predict convergence status

: ‘ Simulation: Run
. physical P2D simulation

Figure 1. Global workflow. The methodology progresses from physical simulations to simulator convergence
classification to the estimation by regression of a specific subset of Li-ion battery parameters of interest.

2. Methods

The construction and validation of the P2D-based surrogate model have involved
several steps:

*  Selection of the appropriate input and output parameters. In this regard, measurable
electrode and electrolyte transport properties are selected as input parameters, while
the parameters of the very-well known Ragone plot (energy and power) are selected
as outputs to be used for battery characterization purposes, as shown in Table 1, where
the minimum and maximum values for each of the parameters are also reported.

*  Selection of electrochemical model and Design of Experiments. A proprietary P2D
model is used to generate the data set.

*  Development of surrogate models. Each surrogate is composed of three models: a
binary simulation convergence classifier and two separate regression models that
estimate integrated power and energy density values from the input parameters
(see Figure 2).

*  Model validation, typically carried out similarly as for the data-driven models.

2.1. Electrochemical Model and Design of Experiments

The electrochemical model used for building the data-set is expressed in terms of four
conservation relations described in Smith et al. [36] by partial differential equations and
their corresponding boundary conditions. The numerical approach considered for solving
the system of equations is based on Finite Elements Methods (FEM) for space-discretization
as implemented in the open-source FEniCS toolkit (https:/ /fenicsproject.org/, accessed on
8 May 2021), and on Implicit Euler methods for time-discretization.

The data set is generated by running the model with the selected input variables and
their ranges presented in Table 1.

As in Wu et al. [1], in this paper, we focus on the variables that are controllable during
battery manufacturing. Among all the design variables, the electrode thickness, porosity,
and particle radius are chosen because they can be controlled within the material or the
electrode manufacturing steps. For example, electrode thickness and porosity can be
experimentally adjusted during the calendering step of the cell manufacturing process.
Separator thickness and porosity ranges are defined considering commercially available
components. In addition, the initial electrolyte concentration and ionic conductivity are
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further important tunable variables and are considered as they play an important role in
determining thick electrode performance limitations due to the dry-out of the electrolyte.
When it comes to the electrolyte, two parameters are selected for the design of experiments.
First, the ionic conductivity (k) is selected as it can be modulated by doping salts, acids,
metals, alkali, etc. to the solvent matrix and the initial salt concentration for a similar
reason (i.e., ¢g). For the sake of simplicity, we have assumed that the ionic conductivity
has no dependence on the electrolyte concentration. In further developments, we envision
that this dependency will be taken into account. Finally, the applied C-rate is also selected
as an input variable, as this parameter may vary from very low values to very high ones
depending on the battery application. Constant-current discharge protocols are used as a
baseline, with the aim of the characterization of the cell in terms of energy and power during
discharge. Even so, the testing protocol could be adapted to other battery applications.
The rest of the parameters needed to simulate battery performance using a P2D model are
summarized in Table 2 and Figure 3.

Input parameters

[Physical ;imulator]

Power Convergence Energy

Input parameters

|

Trained
convergence
Trained classifier Trained
power regressor energy regressor
T Convergence T
Power estimate estimate Energy estimate

Figure 2. The general structure of the model. A simulator produces values for energy and power
density integrals, together with a convergence flag indicating the successful execution of a run, up
to a fixed end time. Run-stopping criteria corresponding to non-convergence involve, for instance,
physically meaningless negative ion density values. A classifier and two regressors learned from the
simulated data can be exploited to generate estimates. The classifier estimates whether a simulation
will produce physically unrealizable conditions, and therefore stop without completing a run. The
two regressors estimate integrated energy and power for converging runs.

Anode OCP Cathode OCP
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0.0 2.50
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Figure 3. Open circuit potentials for the electrodes of the P2D model simulator. (a) Anode OCP
curve: voltage response on each stoichiometry; (b) Cathode OCP curve: voltage response on
each stoichiometry.
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Table 2. Further parameters for the P2D model simulator.

Variable Units Value
Anode/Cathode

active material volume fraction % 56/70

effective electrical conductivity S/m 3.0/2.0

maximum lithium concentration mol/m3 73,900.0/28,100.0
initial lithium concentration (100% SOC) mol/m3 59,859.0/3653.0
reference reaction rate coefficient m?%%/mol®? s 6.1-1072/1.0-10°10
reference solid diffusion coefficient m?2/s 1.0-10714/1.0-10°13
open circuit potential (OCP) A% Figure 3a/Figure 3b
Electrolyte

transference number - 0.4

diffusion coefficient m2/s 4.0-107°

Whole Cell & Constants

Area m? 216-1074
Universal gas constant J/K mol 8.31

Faraday constant C/mol 96,485.34

Considering the previous inputs, we generate a simulated data set by running a P2D
model implemented in Python. As previously mentioned, simulations consider a given set
of input parameter values. They propagate a set of variables describing the electrochemical
status of the battery up to a well-defined and fixed time limit. Upon both convergence
and premature termination of the simulation, Ragone energy and power estimates are
integrated as per

E= [iIvdt [WH]
P= [y IV/tgdt [W].

where t; is the discharge time. The Ragone plot [34] is commonly used to illustrate the
performance of energy storage devices, and is widely used to compare technologies catering
to specific demands. Accordingly, in this work, we generate a Ragone plot for a wide range
of electrode/cell design parameters aimed at a variety of future designs of electrochemical
energy storage devices for different usage applications. Constant currents for discharge
are used as a baseline since the Ragone plot is usually generated with a constant C-rate.
Accordingly, we do not consider variable currents.

Reasons for failures in simulating up to the specified end time include reaching
physically meaningless or non-realizable situations, such as negative values for ion concen-
trations. In these cases, the run will stop prematurely, producing only partial estimates for
the above Ragone integrals, and appropriately setting a negative convergence status flag.

2.2. Surrogate Modeling

We generate a surrogate model to reproduce the results of the P2D model simulator.
Once trained, this empirical model can approximate simulation results in a fraction of the
running time of the physical simulator, keeping the approximation errors under control.
The input parameters taken into account correspond to the inputs of simulations. As previ-
ously mentioned, the output variables include the convergence status of the simulation,
and the Ragone plot variables corresponding to energy and power integrals. The proposed
surrogate model structure is a composite one: the convergence status is modeled by a bi-
nary classifier (Section 2.2.1) and the energy and power output integrals are approximated
by regressors (Section 2.2.4).

2.2.1. Simulation Convergence Classification

We consider that, in a Pseudo-2D electrochemical model, the completion status of a
simulation can either be full (corresponding to propagation up to the intended complete
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temporal extension) or partial (corresponding to early termination). This status can depend
on several phenomena with varying degrees of complexity. Those phenomena range from
the consumption of chemical species to variations in the separator/electrode interface
resistance due to parasitic ion deposition and layering reactions. Modeling the range of
phenomena involved requires adding flexibility to the surrogate model. To that end, we
combine the prediction capabilities of committees of ML classifiers by using ensemble
methods [37].

The key hypothesis is that, by exploiting extended ensembles of classifiers, we can
implicitly learn about the different mechanisms that can stop the execution of the simulator.
The resulting composite models can then better reproduce the varying degrees of complex-
ity of the physical phenomena that lead a simulation to an early stop, thereby improving
on state-of-the-art approaches such as the one in [1].

To evaluate this hypothesis, we compare a single feed-forward network (indicated
by the ‘single” label in subsequent tables and diagrams), corresponding to the state of
the art in [1], to a set of ensemble binary classifiers based on different approaches: a
voting ensemble composing a small number of tree-based classifiers (‘voting’), an efficient
Gradient Boosting ensemble implementation (‘xgboost’), and a stacking ensemble of models
including feed-forward networks (‘stacking’). The list of classifiers is in Table 3.

Table 3. Convergence classifier types.

Classification Model Type Label
Feed-forward deep network ‘single’
Voting ensemble ‘voting’
Gradient boosting ensemble ‘xgboost’
Deep stacking ensemble ‘stacking’

We briefly introduce each model in the present section and detail implementation
parameters in Section 3, dedicated to experiments.

2.2.2. Feed-Forward Deep Network

We start by establishing a baseline for the performance of convergence estimators,
by considering a deep learning classifier as per the state of the art in [1], as a reference
against which the performance of the rest of the models can be quantitatively evaluated.
To that end, we define a fully connected network with a single hidden layer, considering a
log-entropy loss function suited for classification [38], and an ADAMW optimizer [39] to
address possible weight decay issues [40]. The limited structural complexity of the network
corresponds to the results published in the literature.

2.2.3. Voting Ensemble of Classifiers

We build a first ensemble classifier by combining three simple models. The combina-
tion operates by basic voting among level-1 members, listed in Table 4. We describe them
briefly. A pruned decision tree is one in which sections that are not critical to reducing an
empirical loss function are iteratively eliminated. The pruning operates by considering
the Minimum Description Length principle to reduce the risk of over-fitting [41]. The
second type of level-1 model is a decision stump, a basic single-level decision tree [42]. The
third type of level-1 model considered is a random forest, in itself an ensemble of decision
trees [43] that outputs the mode of the output of the trees that compose it.

Table 4. Voting ensemble instance types.

Voting Ensemble Member Type Instances
Pruned decision tree 1
Decision stump optimized by AdaBoost 1

Random forest 1
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We then consider a Gradient Boosting implementation in XGBoost [44]. This specific
model is selected on account of its flexibility and of the robustness of available implemen-
tations, which draw on efficient linear model solvers and effective tree learning algorithms.
We complete the set of classifiers by taking into account a further model ensemble that
includes instances of the feed-forward network. In this last case, the stacking is performed
by a second-level classifier that takes as input the outputs of the first-level classification
models that compose the committee. In this sense, the predictions of the first-level models
are combined by an ensemble bagging/boosting combination mechanism that is based on
a ‘stacking’ second-level classifier.

The models considered in the set are listed in Table 5. The three level-1 instances of
the feed-forward network in the ensemble are similar in structure yet independent of one
another, in the sense that they are independently trained on non-overlapping subsets of
the data set.

Table 5. Stacking ensemble instance types.

Stacking Ensemble Member Type Instances

Feed-forward network 3
Pruned decision tree

Decision stump optimized by AdaBoost
Random forest

=

Detailed descriptions of the models, together with the results obtained on a test data
set, are reported and compared in Section 3.

2.2.4. Ragone Variable Regression

Regression is carried out separately on the integrated energy and power values
generated by the simulation. The input data set is filtered considering only the samples that
correspond to complete propagation of the model through time. The integrated energy
and power values are approximated by regressors whose functional structure has a basis in
the physical model. In particular, a polynomial structure is extended to a more general one,
by considering an exponential transformation of the ionic conductivity of the electrolyte

N
V({#}ico) = Y aj®,  witha; € R, 8; € {6;,exp(6;)}ico 4]
=0

so that an estimate V for one of the integrated Ragone integrals (energy or power) is
expressed in terms of a polynomial of order N of the ® input parameters 6; of the simu-
lation as well as of their exponential exp(6;). This inclusion of the exponentiation of the
parameters of the simulation is motivated by the structural form of the Butler—Volmer
equation, as well as by the solution implied by the conservation and diffusion equations in
the model. Note that, for simplicity, neither temperature nor concentration dependence
is assumed for parameters such as the ionic conductivity in the present contribution. We
plan to address this relation in future extensions of this work.

3. Results

Simulated data consists of 11 input and 3 output attributes, as detailed in Table 1. The
outputs are not temporally located, since they represent the integration of the state of a
simulation that is successfully extended until a given time limit. Concerning the available
data and parameter measurements, we observe that uncertainties from sensors and experi-
mental measurements are not considered at this stage. We believe that sensor noises are
more critical in BMS development, as they could have a big impact on the performance of
the numerical algorithms used to estimate the state variables. They can be incorporated in
treatments such as the present one by e.g., Variational Inference techniques, modifying the
output layers of the network architectures considered and the loss functions specified.
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3.1. Simulation Convergence Prediction by Classification

We partition the data set into separate training, testing and validation sets by 60/20/20%
stratified sampling without replacement. Consequently, the distribution of the simulation
convergence status is preserved in the generated sets. The data points from each set are
shown in Figure 4. We use K-fold validation [35] as a strategy for the measurement of
performance of the classification methods, with the K parameter set to 8. The input variables
are normalized by a Z-score transformation in the preprocessing step. The randomized
data are organized in batches of 32 samples to speed up the learning [45,46]. While the
validation subset is fixed, the train/test split varies by k € {1...K} in the K-fold validation
procedure. The values of the input simulation parameters tend to be uniformly distributed
in the input data set, with a maximum absolute value of the Pearson correlation between
variables around 0.19.

Simulated input dataset as Ragone plot

(\Q
150 ! @
§
Q _ @0
= 100
=
> @ ®
2
[ - @
c 9
[15] L]
or © example train - full run
- © example test - full run
(] O wvalidation - full run
° @ example train - partial runfnot converged
» example test - partial run/not converged
x 5 validation - partial run/not converged
[l wd & g 'o*o‘l "
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Power [W]

Figure 4. Simulated input data set as Ragone power/energy plot, describing an example partition of
the data into model training, testing, and validation sets by stratified sampling without replacement.
Asterisks are used to mark partial and non-converging runs. Samples in the 20% validation set
are in orange. Samples from an example training/testing 60%/20% split are depicted in green and
blue, respectively. While the validation subset is fixed, the train/test split varies by k in the K-fold
validation procedure.

To establish baseline results, we first consider a state-of-the-art single fully connected
feed-forward network as in [1]. The hyper-parameters for the surrogate are summarized in
Table 6. The number of epochs is experimentally limited to 15, observing the convergence
plots produced during the learning phase. As a consequence of the limited number
of training epochs, training time is limited to five seconds on a single Intel i7-8550U
CPU device running at 1.80 GHz. Though a GPU can be used as a learning device, the
fast convergence of the learning procedure means that learning directly on the CPU is
practically usable. The Confusion Matrix for the single feed-forward network for simulation
convergence estimation as trained with the whole training/testing set and measured on
the validation set is reported in Table 7. The results for this fully connected deep classifier
are included and compared in Figure 5.
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Table 6. Feed-forward convergence classifier configuration.

Batch size

Optimizer

Number of epochs

Loss function

Hidden layer neurons
Number of hidden layers
Activation functions
Dropout

32

ADAMW [47]

15

Mean Absolute Error
O x4

1

tanh

0.2

Table 7. Confusion Matrices for a single run of the simulator convergence classification models: feed-

forward network (a), voting ensemble (b), gradient boosting ensemble (c), deep stacking ensemble

(d). The results for the single run may not be representative of the full results obtained via the K-fold

validation in Figure 5.

(@)
True convergence status
Positive Negative Total
Convergence estimate Positive 90.0 7.0 97.0
Negative 9.0 94.0 103.0
Total 99.0 101.0 200.0
(b)
True convergence status
Positive Negative Total
Convergence estimate Positive 93.0 10.0 103.0
Negative 6.0 91.0 97.0
Total 99.0 101.0 200.0
(©
True convergence status
Positive Negative Total
Convergence estimate Positive 95.0 10.0 105.0
Negative 4.0 91.0 95.0
Total 99.0 101.0 200.0
G
True convergence status
Positive Negative Total
Convergence estimate Positive 92.0 7.0 99.0
Negative 7.0 94.0 101.0
Total 99.0 101.0 200.0
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Figure 5. K-fold validation accuracy densities for the simulation convergence classifiers considered
in the experiments. The curves indicate that a stacking deep ensemble (‘stacking’) can outperform a
state of the art fully connected network (‘feedforward_sota’) as well as Gradient Boosting and voting
ensembles (respectively ‘xgboost” and ‘voting’).

A first ensemble model implements a voting committee with simple tree-based models
as described in the above Section 2.2.1. The confusion matrix is reported in Table 7, while
K-fold and validation results are summarized and compared in Figure 5.

After that, a gradient boosting ensemble classifier is configured with the hyper-
parameter values in Table 8. At each training cycle, an ensemble of decision trees with
a predefined maximum depth is improved through adding estimators for residuals to
globally optimize a given objective function [48]. In our case, the maximum depth and the
number of training cycles for the classifier are both set to two, while the objective taken
into account for the loss function minimization is a binary logistic function. The step size
shrinkage hyper-parameter used in the updating steps to prevent over-fitting is set to one,
to indicate that no shrinking should take place. The Confusion Matrix for the gradient
boosting simulation convergence estimator trained with the whole training/testing data
and validated on the validation set is reported in Table 7. The resulting performance
indicators for the gradient boosting ensemble classification model are included in Figure 5.

Table 8. Boosting ensemble classifier configuration.

Number of rounds
Maximum depth
Step size shrinkage
Objective function

o= NN

inary logistic.

Finally, we consider an ensemble convergence model operating by a second-level
classifier stacking the results obtained by first-level classifiers as per Section 2.2.1. The
Confusion Matrix for the stacking ensemble simulation convergence model is reported
in Table 7. The performance for the simulator convergence prediction of the stacking
ensemble model is again reported in Figure 5.

3.2. Regression

Regression is carried out separately on the integrated energy and power values
generated by the simulation. The input data set is filtered considering only the samples
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that correspond to the successful propagation of the model through time. For both
models, we consider 70% of the samples for training and the remaining 30% of the samples
for testing.

3.2.1. Energy

The distribution of the energy integral is shown in Figure 6. Values lower than 80 J are
considered as outliers and filtered out. By considering the correlations between the energy
and the input variables, a first simple model is proposed to predict the values of the energy
integral, E, in the form of Equation (2):

E=a-L,+b-e+d )

Ly being the thickness of the positive electrode and k. the ionic conductivity of the elec-
trolyte. The resulting mean squared error and the R? score are MSE = 32.83 and R? = 0.848,
respectively. In order to improve these results, a more complete model is introduced, as
shown in Equation (3):

E=ﬂ’Lp+b'ec'ke+d'Ln+e'Cmte+f (3)

where L, represents the thickness of the negative electrode and C,t is the applied current
as a C-rate. Doing so results in a mean squared error of MSE = 19.30 and a R* = 0.911.
Both models can be compared as in Figure 7a.

To ensure that the models have the desired accuracy and variance, some cross-
validation is needed. To avoid the possibility of high bias in cases of limited data, a
K-Fold cross-validation technique is used with K = 30, which means that the data set is
split into 30 different groups. The value for K is chosen so that each train/test group of
data samples is large enough to be statistically representative of the broader data set. The
R? and the MSE are compared to those obtained when creating the model in Figure 7b,c.

From Figure 7b,c, it can be concluded that, in the Simple Model, around 20 out of
30 times, the R? values are higher than 0.8, and the same number of times, the MSE is
below 25. For the Complete Model, around 20 of 30 times, the R%is higher than 0.9 and the
MSE lower than 20. The models behave as expected and are validated by comparing these
values with the ones obtained first in the models.
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Figure 6. Distribution of the integrated energy variable (output of the simulation). Histogram (left)
and box-plot (right) of the variable. As shown in the box-plot, values lower than 80 J are considered
as outliers in this distribution.
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Figure 7. Results of the proposed regression models for the energy output integral (a) and histograms
of the MSE (b) and R? (c) of 30 K-Folds performed to the model for the energy.

3.2.2. Power

The distribution of the power integral of simulation outputs is shown in Figure 8.
Values higher than 285 W can be considered as outliers, and, therefore, the dataset is again
filtered for these values. The power integral presents a significantly higher correlation with
the applied current and the thickness of the positive electrode, compared to that of other
input variables. Thus, a first simple linear regression is proposed to predict the values of
the power integral, P based on the following equation:

p:ﬂ'crute+b'Lp+C 4)

with Crgte the C-rate and Ly, the thickness of the positive electrode. The results obtained by
optimizing the constants in Equation (4) can be observed in Figure 9a. The resulting mean
squared error and the R? score would be MSE = 183.49 and R? = 0.988, respectively.

As in the case of energy estimates, K-fold cross-validation is performed in the devel-
oped model, with K = 30 meaning that the dataset is again split into 30 different groups.
R? and MSE values are compared to those obtained when creating the model. The results
for the power model are shown in Figure 9b,c.

From Figure 9b,c, it can be concluded that, 20 out of 30 times, the R2 values are above
0.985, and that, although there are instances for which the MSE’s values are high, 20 out of
30 times, this MSE is below 60.
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Figure 9. Results of the proposed regression model for the power integral (a) and histograms of the
MSE (b) and R? (c) of 30 K-folds performed to the model for the power integral estimation.

4. Discussion

The results above indicate that an effective way to speed up the characterization of LIB
designs involves complementing simulations with empirical, ML surrogate models learned
from simulation results [33]. In terms of computational performance, P2D simulations
using CIDETEC’s proprietary code take, on average, 20 seconds for a 1C discharge. Once
the surrogate models are trained, instead, predictions can be obtained in a few hundredths
of a second. Deep ensembles and structured regression models represent an interesting di-
rection for the development of efficient surrogate models capable of rapidly and accurately
predicting Ragone plot variables such as energy and power integrals. Those results can
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be integrated with design workflows and extended to other fields such as management
and control. In the specific case of the prediction of early termination of the simulator by
classification, the results seem to indicate that ensemble models can indeed outperform
state-of-the-art surrogates based on deep learning fully connected networks, exploiting
their flexibility in implicitly learning the multiple mechanisms that can stop the execution
of the simulator.

On the other hand, it is perhaps worth mentioning that an important point that is
sometimes overlooked [49] is that physical simulations are complemented rather than
substituted by such data-based modeling: some of the computational costs are moved in
time rather than eliminated, since some simulated data need to be generated first for the
learning to take place.

5. Conclusions and Future Work

The present contribution has introduced and evaluated composite surrogate models
for the prediction of the performance of Lithium-Ion Batteries which combine classifiers
based on deep ensembles and structured regressors for the prediction of energy and power
densities. We have compared a single state-of-the-art feed-forward network to three types
of ensemble binary classifiers for the prediction of simulation convergence. The quanti-
tative results obtained indicate that ensemble models can indeed outperform state of the
art models based on a single deep network. Furthermore, we have quantitatively vali-
dated the applicability of structured regressors to the estimation of LIB energy and power.
Future work to be considered includes analyzing feature and parameter sensitivities [50]
and the use of ML explainability /interpretability methods to ensemble models from an
electrochemical perspective. Furthermore, model and data uncertainty management [51,52]
should also be analyzed: the quantification of the risk from different sources is valuable for
the real-world applicability of the developed methodology.
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