
����������
�������

Citation: Khan, M.S.; Samreen, M.;

Khan, M.A.; De la Sen, M. A

Dynamically Consistent Nonstandard

Difference Scheme for a Discrete-Time

Immunogenic Tumors Model.

Entropy 2022, 24, 949. https://

doi.org/10.3390/e24070949

Academic Editors: Philip

Broadbridge and Takuya Yamano

Received: 6 May 2022

Accepted: 30 June 2022

Published: 7 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Dynamically Consistent Nonstandard Difference Scheme for
a Discrete-Time Immunogenic Tumors Model
Muhammad Salman Khan 1, Maria Samreen 1,*, Muhammad Asif Khan 2 and Manuel De la Sen 3

1 Department of Mathematics, Quaid-I-Azam University, Islamabad 44230, Pakistan; mskhan@math.qau.edu.pk
2 Department of Mathematics, Kahota-Haveli Campus, University of the Poonch Rawalakot,

Rawalakot 12350, Pakistan; asif31182@gmail.com
3 Department of Electricity and Electronics, Institute of Research and Development of Processes,

Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Campus of Leioa,
48940 Leioa, Bizkaia, Spain; manuel.delasen@ehu.eus

* Correspondence: maria.samreen@hotmail.com or msamreen@qau.edu.pk

Abstract: This manuscript deals with the qualitative study of certain properties of an immunogenic
tumors model. Mainly, we obtain a dynamically consistent discrete-time immunogenic tumors model
using a nonstandard difference scheme. The existence of fixed points and their stability are discussed.
It is shown that a continuous system experiences Hopf bifurcation at one and only one positive
fixed point, whereas its discrete-time counterpart experiences Neimark–Sacker bifurcation at one
and only one positive fixed point. It is shown that there is no chance of period-doubling bifurcation
in our discrete-time system. Additionally, numerical simulations are carried out in support of our
theoretical discussion.
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1. Introduction

A tumor is a cluster of infections produced by the irregular evolution of cells described
by DNA latent to a blowout in additional body parts. In every category of a tumor, certain
cells in the body develop strangely and damage the nearby tissues. The healthy physique
has a strict immune arrangement to protect it in case of tumors caused by the letdown of the
immune system and the supplementary mechanism inside the body [1]. Tumor cases have
been increasing very rapidly in recent eras, and it has been estimated that approximately
18.1 million persons suffer from them each year, out of which 9.6 million die [2]. The
incidence of new tumors has been ascending, and it is projected that the number may
reach 22.2 million by 2030 [3]. Therefore, it is necessary to improve novel, progressive, and
cost-effective approaches to deal with these circumstances. Presently, the most public tumor
treatments are chemotherapy [4], immunotherapy ([5,6]), surgery [7], and radiotherapy [8].
Despite all of these management options, it reverts. Thus it is essential for additional and
operational treatment to be understandable. The immune reaction to a tumor is frequently
cell-refereed cytotoxic T lymphocytes (CTL), and natural killer (NK) cells show a leading
character. Various scientific models of the interactions between the increasing tumor and
immune system have been established [9–12]. Moreover, several mathematical models
describe the kinetics of cells refereed cytotoxicity in vitro [13–15]. With these mathematical
models, several occurrences understood, statistical estimates for biologically essential
factors have been acquired, and guesses made. The qualitative analysis of anti-tumor
immune response in vivo is complicated and not well-understood. Freely ascending
cancers have little immunogenicity, and frequently spread out of control in most creatures.
Sometimes, the escape of any tumor from immune reconnaissance is connected with many
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different applications, namely, the damage or covering of cancer antigens, cancer-influenced
disorders in safe regulation, damage to MHC class-I particles, and the addition of a variety
of cancer duplicates resistant to cytolytic mechanisms [16–18]. Although attacking cells of
the immune system may kill tumor cells, protected reconnaissance of natural cancers may
be operative and significant in keeping tumor frequency low. The leading efforts to improve
arrangements for immunotherapy or its grouping with other treatment approaches focus
on reducing cancer mass. However, the bulk of such efforts remain ineffective. The critical
explanation for this is that even after “effective” and “clinically comprehensive” elimination
of cancer cells, a small number of “remaining” cancer cells remain, which may develop into
subordinate cancers or “latent” metastases.

Cancer dormancy is a functioning span used to define a state in which a possibly
dead cancer cells persevere for a protracted time with slight or no growth in the cancer
cell population. It is commonly supposed that cancer cells do not develop at a speedy
frequency throughout the dormancy period, apparently due to the nonappearance of a
factor required for advanced evolution into cancer [19–21]. Nevertheless, a substitute
probability is that quickly increasing cells are exterminated at a frequency equivalent to
their creation. Undeveloped conditions develop both during essential treatment for cancer,
and in the initial phases of cancer development. In truth, there is a typical arrangement
in that neoplastic cells discharge from significant cancer very initial in its growth in any
person [22]. The providence of these evading neoplastic compartments regulates whether
the enduring cancer survives or kills the tumor. The straight contribution of CTL in the
provision of a latent cancer state has been revealed in certain specific investigational
models. Moreover, CTL’s different kinds of protected system cells, such as NK cells and
macrophages, may preserve a latent cancer state [22].

In the past two decades, many authors have presented various clarifications for the
expiry of a latent cancer state, snitching over cancers, and immune inspiration properties.
Frequently, these clarifications are centred on the concepts of protected range, antigenic
variation, creation by cancer cells of unlike kinds of immune cell delaying factors, group
of immune suppressor cells, variations in auto-governing systems in a cancer localization
area, and other new complex concepts that are very challenging to verify or invalidate
experimentally. We consider that these occurrences might result from nonlinear dynamic
connections between cancer and the insusceptible system [23–26]. The authors of [26] have
examined a simple scientific model of a compartment-refereed reaction to a developing
cancer compartment population. They have explained that their model contrasts with most
models in the literature because it explains the penetration of cancer by consequence or
cells and the probability of consequence or cell in the beginning. Kuznetsov [26] have
studied an alternative to this model. Moreover, ref. [26] discussed the qualitative conduct
of the structure using methods from the bifurcation concept. They applied the model
to discuss the appliances of cancer latency and snitching through. They discussed that
a non-zero frequency of consequence or cell, in the beginning, is necessary to achieve
snitching through. They have found that snitching over, cancer latency, and the immune
motivation of cancer development, properties which have been investigated independently,
might be connected, which is similar to our model. Here, we study cancers with cells that
are “immune genetic”, and consequently focus on the insusceptible attack by cytotoxic
effector cells, for example, CTL, or NK cells. The communication among effector cells (EC)
and cancer cells (TC) in vitro can defined using the kinetic scheme below.

Where, in Figure 1, T, E, C, T∗, E∗ are the limited meditations of cancer cells, effector
cells, effector cell–cancer cell conjugates, “critically hit” TC cells and deactivated effector
cells, respectively. Critically hit cancer cells are intended to die. They similarly have been
named cells “encoded to die”. The addition of deactivated effector cells is a strange feature
of this model. In cases with a lesser degree of CTL, culture appears to have a limited ability
to constantly destroy target cells [27]. This is because particle collapse is responsible for
cytotoxic influences or other controlling effects, probably due to the discharge of particles
from the cancer cell after EC and TC are conjugated. Moreover, k1, k−1, k2, and k3 are
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non-negative kinetic real numbers; k1 and k−1 refer to the degrees of binding of TC from
EC and objectivity of TC to EC without injuring cells, k2 is the degree at which EC to TC
connections conclusively program TC for lysis, and k3 is the degree at which EC to TC
connections deactivate EC. Hence, we have the following system of differential equations as
a model for the communication among EC and increasing immunogenic cancer in vivo [27]:

dE
dt = s + G(C, T)− d1E− k1ET + (k−1 + k2)C,
dT
dt = aT(1− bT)− k1ET + (k−1 + k3)C,
dC
dt = k1ET − (k−1 + k2 + k3)C,
dE∗
dt = k3C− d2E∗,

dT∗
dt = k2C + d3T∗,

(1)

where
G(C, T) =

f C
g + T

.

The authors of [28] have explained that the last two equations from the system (1) are
“slaves” to the first three equations in that system, as variables T∗ and E∗ have no influence
on each other or the other variables in the system. Hence, in their work, they reduced
the system (1) to the first three equations (see [28]) in order to dictate the dynamics of the
system (1). Moreover, the development and division of cellular conjugates C follows the
time measure of numerous tens of minutes to a limited number of hours. A time interval
of this type is similarly detected before the disintegration of lethally hit tumor cells by
separating the cell wall or membrane. However, the growth along with the inflow of
effector cells into the spleen arises on a considerably slower time measure, possibly tens of
hours. This inspires the application of a quasi-steady state estimate to the third equation of
system (1) (that is, dC

dt ≈ 0), which yields the following system of equations (see [28]):{
dE
dt = s + pET

g+T −mET − dE,
dT
dt = aT(1− bT)− nET,

(2)

where p = f K, m = Kk3, n = Kk2, and d = dl are dimensional parameters. In addition,
for better study of the dynamics of model (2) it is necessary to non-dimensionalize the
system (2).

Figure 1. Data flow diagram for our system.

Non-Dimensionalization of System

The non-dimensionalized form of model (2) is obtained by selecting an order of degree
application measure for E and T cell populations, E0 and T0, respectively, as proposed from
the tests discussed in the previous section: E0 = T0 = 106 cells (see [28]). Time is scaled
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comparative to the degree of cancer cell deactivation, that is, τ = nT0t. Formally, the model
can be re-articulated as {

dx
dt = σ + ρx(t)y(t)

η+y(t) − µx(t)y(t)− δx(t),
dy
dt = αy(t)(1− βy(t))− x(t)y(t),

(3)

where x = E
E0

, y = T
T0

and parameter estimates for system (3) are the following (see
Table 1):

Table 1. Parameter estimates from [28].

System Parameters Dimensional Parameters Estimated Values

σ σ = s
nE0T0

0.001181
ρ ρ = p

nT0
11.131

η η = g
T0

20.19
µ µ = m

n 0.00311
δ δ = d

nT0
0.3743

α α = a
nT0

1.636
β β = bnT0 2.0× 10−3

The authors of [29] considered the post-collapsing conduct of functionally classified
curved shell sections. Moreover, they investigated different shell geometries (cylindri-
cal, elliptical, spherical, and hyperbolic) under the biaxial and uniaxial edge density.
Duan et al. [30] have discussed a chemotherapy system’s stability analysis in cancer–
immune responses. Moreover, their system has more than one fixed point. In order
to conduct a stability analysis of these fixed points, they computed the upper Lyapunov
exponents of the linearized system for these fixed points. They show that, while one
fixed point is globally asymptotically stable if the noise is weak, another fixed point is
constantly unstable whether the noise is weak or strong. We refer readers to [31] for
further information on cancer–immune response systems. The authors of [32] discussed
the discrete-time counterpart of a tumor–immune interaction model and analyzed the
bifurcation in that model in fractional form. The authors of [33] studied the prime control
for a tumor behaviour mathematical model using Atangana–Baleanu–Caputo fractional
derivatives. In [34], the modeling and study of the dynamics of cancer virotherapy with an
immune response were considered. For further study of attractive models related to tumor
dynamics, we refer the reader to [35–37]. It is suitable to analyze any biological system’s
qualitative behaviour by discrete-time systems compared to their alternatives in differential
equations. Additionally, there is superior observation and investigation of chaos in all
biological systems through discrete-time mathematical systems [38]. Hence, it is motivating
to study the qualitative behaviour of the system (3) in its discrete form. In recent times,
numerous scientific approaches have been presented to discretize any scientific model from
continuous time. The traditional method is to use ordinary difference systems such as
Euler’s approximations and Runge–Kutta methods to attain this objective.

Nevertheless, mathematical unpredictability is experienced using traditional finite
difference approaches. To escape from this mathematical unpredictability it is possible
to use a nonstandard finite difference technique, as specified by Mickens [39]. Generally,
a nonstandard finite difference scheme is directed to protect the following characteristics
of the corresponding continuous-time system: boundedness, the positivity of results,
stability of fixed points, and bifurcations. The development of these varieties of difference
methods is not straightforward, and no usual methods can be found in the literature for
building them, possibly reflecting a chief disadvantage of nonstandard difference methods.
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Therefore, by applying a Mickens-type nonstandard scheme to model (3), we obtain the
following discrete-time mathematical model (see [39,40]):{ xn+1−xn

h = σ + ρxnyn
η+yn

− µxnyn − δxn,
yn+1−yn

h = αyn(1− βyn)− xnyn
(4)

where h ∈ [0, 1) is the step size for discretization. Furthermore, system (4) can be trans-
formed into the following form: xn+1 =

xn+h
(

σ+
ρxnyn
η+yn

)
1+h(δ+µyn)

,

yn+1 = yn(1+hα)
1+h(xn+αβyn)

.
(5)

The subsequent parts of this manuscript are directed at: Andronov–Hopf bifurcation
in system (3); the boundedness of solutions of system (5); the existence of fixed points
and local stability analysis of system (5); the presence and direction of Neimark–Sacker
bifurcation about the positive fixed point of system (5); the control of Neimark–Sacker
bifurcation in system (5); and finally, several numerical simulations which support our
theoretical discussion.

2. Andronov–Hopf Bifurcation

Let (x∗, y∗) be the positive fixed point of map (3). First, we explore the behavior of
continuous system (3). In order to explore the behavior of system (3), the Jacobian matrix
V(E) at (x∗, y∗) is provided by

V(E) =

[
− σ

x∗ x∗
(

ηρ

(y∗+η)2 − µ
)

−y∗ α− x∗ − 2y∗αβ

]
.

where detV(E) = x∗y∗
(

ηρ

(y∗+η)2 − µ
)
+ σ + α(2βy∗−1)σ

x∗ and TrV(E) = α− 2αβy∗ − σ
x∗ − x∗.

Hence, per the Routh–Hurwitz stability criterion, (x∗, y∗) is sink if and only if

x∗y∗
(

ηρ

(y∗+η)2 − µ

)
+ σ >

α(1−2βy∗)σ
x∗ and α(1− 2βy∗) < x∗ + σ

x∗ and source if and only

if x∗y∗
(

ηρ

(y∗+η)2 − µ

)
+ σ >

α(1−2βy∗)σ
x∗ and α(1− 2βy∗) > x∗ + σ

x∗ . Moreover, system (3)

experiences Hopf bifurcation if the parameters lie in the following curve:

THB = {(α, β, δ, σ, ρ, µ, η) ∈ R7
+ : σ = x∗(α− x∗ − 2y∗αβ)}.

Furthermore, Figure 2 shows the topological classification of the fixed point (x∗, y∗). To ex-
plore the periodic nature of solutions of system (3), we study the exitances of subcritical
and supercritical Hopf bifurcation. For this, we assume the next planar system:

dx
dt

= f (a, x, y),

dy
dt

=g(a, x, y),
(6)

where a ∈ R is the bifurcation parameter. Let V(x∗, y∗) be the Jacobian matrix of (6)
computed at equilibrium point (x∗, y∗). Moreover, the eigenvalues of (6) computed at any
equilibrium point (x∗, y∗) are of the following form:

λ1,2(a) = φ(a)± ιϕ(a).

Furthermore, we assume that there is a particular value of the bifurcation parameter a, say
a0, for which the following conditions hold true (see [40]):
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(i) φ(a0) = 0 and ϕ(a0) = ϕ0 6= 0. Then, there exists a conjugate pair of complex
eigenvalues of V(x∗, y∗) in the condition of non-hyperbolicity.

(ii) dφ(a)
da |a=a0 = T 6= 0, which is known as a transversality condition, that is, the eigenval-
ues of V(x∗, y∗) cross the imaginary axis with non-zero speed [40].

(iii) There exists a discriminatory quantity L(a0) 6= 0, which is known as the first Lyapunov
exponent (FLE) and is defined as follows:

L(a0) = L1 + L2,

where {
L1 = 1

16
[

fxxx + fxyy + gxxy + gyyy
]

L2 = 1
16ϕ0

[
fxy( fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy

]
with fxy = ∂2 f (a,x,y)

∂x∂y computed at (x, y) = (x∗, y∗) and a = a0.

Figure 2. Topological classification of the one and only fixed point of system (3) for 0 < α < 2, 0 <

β < 1, δ = 0.3743, η = 20.19, µ = 0.00311, ρ = 11.131, and 0 < σ < 3.5 with initial conditions
x0 = 1.6197 and y0 = 0.82317.

Theorem 1 ([40]). Assume that conditions (i), (ii), and (iii) are satisfied; then, there exists a unique
curve of periodic solutions. Moreover, this curve bifurcates from the fixed point into the region
with a > a0 if L(a0) < 0 or L(a0) > 0 if a < a0. In addition, the fixed point is stable whenever
a > a0 (respectively, a < a0) and unstable for a < a0 (respectively, a > a0) for T < 0 and T > 0,
respectively.

It can be seen that periodic solutions are stable (respectively, unstable) if the fixed
point is unstable (respectively, stable) on the side of a = a0 where the periodic solutions
exist. Keeping in view the above discussion for Andronov–Hopf bifurcation, we con-

sider the system (3). For this, we assume that 4
(

σ + ασ(2βy∗−1)
x∗ + x∗y∗

(
ηρ

(η+y∗)2 − µ

))
−(

σ
x∗ + x∗ + α(2βy∗ − 1)

)2
> 0; then, it is easy to see that the eigenvalues of the Jacobian

matrix V(x∗, y∗) are of the form
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λ1,2(σ) = φ(σ)± ιϕ(σ),

φ(σ) =
1
2

(
α− σ

x∗
− x∗ − 2αβy∗

)
and

ϕ(σ) =
1
2

√√√√4

(
σ +

ασ(2βy∗ − 1)
x∗

+ x∗y∗
(

ηρ

(η + y∗)2 − µ

))
−
( σ

x∗
+ x∗ + α(2βy∗ − 1)

)2
.

Next, φ(σ) = 0 provides σ = σ0 = x∗(α− x∗ − 2αβy∗). At σ = σ0, we have

ϕ(σ0) = ϕ0 =

√√√√x∗
(

2α + y∗
(

ηρ

(η + y∗)2 − 4αβ− µ

))
− (x∗)2 − α2(1− 2βy∗)2 6= 0.

For the transversality condition, we can see that

dφ(σ)

dσ
|
σ=σ0

= − 1
2x∗

< 0.

In order to shift the fixed point of system (3) to origin (0, 0), we consider the following
translations:

u(t) = x(t)− x∗, v(t) = y(t)− y∗.

Moreover, by implementing this transformation on system (3), we obtain

du
dt

=σ +
ρ(u + x∗)(v + y∗)

η + y
− µ(u + x∗)(v + y∗)− δ(u + x∗),

dv
dt

=α(v + y∗)(1− β(v + y∗))− (u + x∗)(v + y∗),
(7)

Application of Taylor series expansion on (u, v) = (0, 0) provides the following system:

[
du
dt
dv
dt

]
= B

[
u
v

]
+


(

1
η+y∗

(
ρ− ρ (η y∗+y∗2)

(η+y∗)2

)
− µ

)
vu− ρ x∗v2η

(η+y∗)3 −
ρ η v2u
(η+y∗)3 +

ρ v3η x∗

(η+y∗)4

−α v2β− uv

 (8)

where

B =

[
− σ

x∗ x∗
(

ηρ

(y∗+η)2 − µ
)

−y∗ α− x∗ − 2y∗αβ

]
.

Next, we want to convert matrix B into its canonical form. For this, the following similarity
transformation is considered:

[
u(t)
v(t)

]
=

 x∗
(

ηρ
(y∗+η)2 − µ

)
0

σ
x∗

√
x∗y∗

(
ηρ

(y∗+η)2 − µ
)
+ σ +

α(2y∗β−1)σ
x∗

[ w(t)
z(t)

]
(9)

From (8) and (9), it follows that[ dw
dt
dz
dt

]
=

[
0 ϕ0
−ϕ0 0

][
w(t)
z(t)

]
(10)

where

f (w, z) =
uv(y∗ + η)4µ− v(v− y∗ − η)η(vx∗ − u(y∗ + η))ρ

x∗(y∗ + η)4µ− x∗η(y∗ + η)2ρ
,
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and

g(w, z) =
v
(

(x∗+α(2y∗β−1))(u(y∗+η)4µ−η(−v+y∗+η)(−vx∗+u(y∗+η))ρ)
x∗(y∗+η)4µ−x∗η(y∗+η)2ρ

− u− vαβ

)
√

x∗
(

α(2− 4y∗β)− y∗µ + y∗ηρ

(y∗+η)2

)
− x∗2 − α2(1− 2y∗β)2

,

u = x∗
(

ηρ

(y∗ + η)2 − µ

)
w, v = (

σ

x∗
)w + (

√
x∗y∗

(
ηρ

(y∗ + η)2 − µ

)
+ σ +

α(2y∗β− 1)σ
x∗

)z.

Then, the first Lyapunov exponent for system (3) is computed as follows:

L(σ0) = L1 + L2,

where 
L1 = 1

16

(
2ρy∗

(η+y∗)3 −
2ρ

(η+y∗)2

)
L2 =

−2αβ−2αβ

(
2ρx∗y∗

(η+y∗)3
− 2ρx∗

(η+y∗)2

)
+

(
2ρx∗y∗

(η+y∗)3
− 2ρx∗

(η+y∗)2

)(
−µ− ρy∗

(η+y∗)2
+

ρ
η+y∗

)
16

√
−(x∗)2−α2(1−2βy∗)2+x∗

(
2α+y∗

(
−4αβ−µ+

ηρ

(η+y∗)2

)) .

Finally, we have the following theorem:

Theorem 2. Assume that conditions (i), (ii), and (iii) are satisfied; then, there exists a unique curve
of periodic solutions. Moreover, this curve bifurcates from the fixed point into the region with σ > σ0

if (ρy∗(η + y∗)2 − ρ(η + y∗)3)

√
−(x∗)2 − α2(1− 2βy∗)2 + x∗

(
2α + y∗

(
−4αβ− µ +

ηρ

(η+y∗)2

))
−

αβ(η + y∗)5 + ηρx∗(η(2αβη + ηµ− ρ) + (2αβ + µ)y∗(2η + y∗)) < 0
or

(ρy∗(η + y∗)2 − ρ(η + y∗)3)

√
−(x∗)2 − α2(1− 2βy∗)2 + x∗

(
2α + y∗

(
−4αβ− µ +

ηρ

(η+y∗)2

))
−

αβ(η + y∗)5 + ηρx∗(η(2αβη + ηµ− ρ) + (2αβ + µ)y∗(2η + y∗)) > 0 if σ < σ0. In addition, the fixed
point is stable whenever σ > σ0 (respectively, σ < σ0) and unstable for σ < σ0 (respectively,
σ > σ0) for T < 0 and T > 0, respectively.

The plot of FLE is depicted in Figure 3.

Figure 3. FLE for system (3) for α = 1.636, β = 2× 10−3, δ = 0.3743, η = 20.19, µ = 0.00311,
ρ = 11.131, and σ = 0.001181 with initial conditions x0 = 1.6197 and y0 = 0.82317.
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3. Boundedness of Solutions

From the second equation of system (5) it follows that

yn+1 ≤
yn(1 + hα)

1 + hαβyn
. (11)

Consequently, by solving (11) and then applying the limit, we obtain

lim
n−→∞

supyn ≤
1
β

, (12)

for all n ≥ 0. In the same way, from the first equation of system (5) we obtain

xn+1 =
xn + h

(
σ + ρxnyn

η+yn

)
1 + h(δ + µyn)

≤
xn + h

(
σ + ρxn

1+ηβ

)
1 + hδ

, (13)

because

xn + h
(

σ +
ρxnyn

η + yn

)
≤ xn + h

(
σ +

ρxn

1 + ηβ

)
yields

yn ≤
1
β

for all n ≥ 0. Then, from (13) we have

xn+1 ≤
xn(1 +

hρ
1+ηβ ) + hσ

1 + hδ
.

Hence, we can obtain the upper bound for xn as

lim
n→∞

supxn ≤
σ + βησ

δ + βδη − ρ
, (14)

for all n ≥ 0. Finally, we have the following theorem concerning the boundedness of all
solutions of (5).

Theorem 3. Assume that 0 < y0 ≤ 1
β and 0 < x0 ≤ σ+βησ

δ+βδη−ρ ; then, for all n ≥ 0, every positive

solution (xn, yn) of system (5) is bounded and contained in the set
[
0 , σ+βησ

δ+βδη−ρ

]
×
[
0 , 1

β

]
whenever ρ < δ(1 + βη).

4. Existence of Fixed Points and Local Stability Analysis

It is easy to see that systems (3) and (5) have more than one fixed point by performing
simple algebraic manipulation. Moreover, most of them are complex and have no biological
significance. Here, the fixed points with biological significance are boundary fixed points
and the unique positive fixed point. In order to obtain those significant fixed points of
system (5), we consider the following system of equations: x∗ =

x∗+h
(

σ+
ρx∗y∗
η+y∗

)
1+h(δ+µy∗) ,

y∗ = y∗(1+hα)
1+h(x∗+αβy∗) .

(15)



Entropy 2022, 24, 949 10 of 26

Furthermore, from (15) we obtain the following pair:

δx∗ + µy∗ = σ +
ρx∗y∗

η + y∗
, y∗ =

α− x∗

αβ
.

Moreover, we have two fixed points from (15), namely, ( σ
δ , 0) and (x∗, y∗), where x∗ is

solution of the following equation:

a11x2 + a12x + a13 = 0, (16)

with {
a11 = µ + αβ(ρ− δ), , a12 = αβ(αβηδ− ηµ− α + σ + αρ)− 2αµ
and a13 = η(α2βµ− σ)− α2(βσ− µ).

(17)

In addition, a11, a12 > 0 and a13 < 0 if we have{
ρ > δ, , σ + α(βηδ + ρ) < ηµ + α(1 + 2µ)
and α2µ(βη + 1) < σ(η + α2β).

(18)

Hence, using Descartes’ rule of signs (see [41]), we have the following result:

Theorem 4. Assume that 0 < y0 ≤ 1
β and 0 < x0 ≤ σ+βησ

δ+βδη−ρ ; then, for{
ρ > δ, , σ + α(βηδ + ρ) < ηµ + α(1 + 2µ)
and α2µ(βη + 1) < σ(η + α2β)

(19)

there exists a unique positive constant solution (x∗, y∗) of system (5) in
[
0 , σ+βησ

δ+βδη−ρ

]
×
[
0 , 1

β

]
if and only if x∗ < α for each y∗ ∈

[
0, 1

β

]
.

In order to discuss the stability of system (5) about these fixed points, we compute the
Jacobian matrix J(x,y) of system (5) about each of its fixed points (x, y). Moreover, J(x,y) is

J(x,y) =

[
m11 m12
m21 m22

]
.

In addition, the characteristic polynomial C(φ) of J(x,y) is

C(φ) = φ2 − Tφ + D, (20)

where T and D represent the trace and determinants of J(x,y), respectively. The following
lemma describes the condition equivalent to the Jury conditions for the local stability of
fixed points (see [42]).

Lemma 1 ([42]). Let H(φ) = φ2 − Tφ + D be the characteristic equation obtained from a 2× 2
Jacobian matrix J(x,y). Moreover, let J(x,y) be any Jacobian matrix of system (5) about each of its
equilibrium points. Additionally, assume that H(1) > 0. Then:

(i) |φ1| < 1 and |φ2| < 1 if and only if H(−1) > 0 and D < 1
(ii) |φ1| > 1 and |φ2| > 1 if and only if H(−1) > 0 and D > 1
(iii) |φ1| < 1 and |φ2| > 1 or (|φ1| > 1 and |φ2 < |1) if and only if H(−1) < 0
(iv) φ1 and φ2 represent complex conjugates with |φ1| = 1 = |φ2| if and only if T2 − 4D < 0

and D = 1.
As φ1 and φ2 are characteristic values of (20), the point (x, y) is sink if |φ1| < 1 and |φ2| < 1.

Furthermore, it is locally asymptotically stable. The point (x, y) is known as source(repeller)
if |φ1| > 1 and |φ2| > 1. The point (x, y) is a saddle point if |φ1| < 1 and |φ2| > 1 or
(|φ1| > 1 and |φ2| < 1). Finally, (x, y) is non-hyperbolic if condition (iv) is satisfied.
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First, we study the stability conditions for (5) about the fixed point ( σ
δ , 0). The matrix

J(x,y) evaluated at ( σ
δ , 0) is provided by

J( σ
δ ,0) =

[
1

1+hδ
h(ρ−ηµ)σ
δ(1+hδ)η

0 δ+hαδ
δ+hσ

]
.

Furthermore, the eigenvalues of J( σ
δ ,0) are ξ1 = 1

1+hδ and ξ2 = δ+hαδ
δ+hσ with |ξ1| < 1 for all

parametric values. Hence, we have the following result related to the dynamics of (5) about
( σ

δ , 0):

Proposition 1. The boundary equilibrium ( σ
δ , 0) of system (5) is source and saddle i f f conditions

αδ < σ and αδ > σ are satisfied respectively (see Figure 4).

Figure 4. Topological classification of boundary fixed point of system (5) for 0 < α < 1.5,
β = 2× 10−3, δ = 0.3743, η = 20.19, µ = 0.00311, ρ = 11.131, σ = 0.001181 and 0 < h < 1 with
initial conditions x0 = 1.6197, and y0 = 8.2317.

Next, our task is to explore of the local stability of system (5) about the point (x∗, y∗).
Let J(x∗ ,y∗) be the Jacobian matrix of system (5) about the fixed point (x∗, y∗); then, J(x∗ ,y∗)
has the following mathematical form:

J(x∗ ,y∗) =

 1+ hρy∗
η+y∗

1+hδ+hµy∗ − h(hµσ(η+y∗)2+x∗(η(ηµ−(1+hδ)ρ)+µy∗(2η+y∗+hρy∗)))
(η+y∗)2(1+hδ+hµy∗)2

− hy∗
1+hα 1− hαβy∗

1+hα

.

Moreover, from J(x∗ ,y∗) we can obtain the following characteristic polynomial:

C(φ) = φ2 − φ

1− hαβy∗

1 + hα
+

1 + hρy∗
η+y∗

1 + hδ + hµy∗

+ D, (21)

where

D =
1

1 + hδ + hµy∗
+

hy∗

1 + hα

(
S(1 + hα)2

(1 + hx∗ + hαβy∗)2 −
αβ

1 + hδ + hµy∗
+

ρ + hαρ− hαβρy∗

(η + y∗)(1 + hδ + hµy∗)

)
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and

S = −
h
(

hµσ(η + y∗)2 + x∗(η(ηµ− (1 + hδ)ρ) + µy∗(2η + y∗ + hρy∗))
)

(η + y∗)2(1 + hδ + hµy∗)2 .

By considering (19) and taking{
s1 = h

(
hµσ(η + y∗)2 + x∗(η(ηµ− (1 + hδ)ρ) + µy∗(2η + y∗ + hρy∗))

)
,

s2 = (η + y∗)2(1 + hδ + hµy∗)2,
(22)

it follows that

C(1) = hy∗((S + h(S + αβ)δ)η + y∗(S(1 + hδ + hηµ) + hαβ(δ + ηµ− ρ) + h(S + αβ)µy∗))
(1 + hα)(η + y∗)(1 + hδ + hµy∗)

> 0,

for

hs2αβ(δ(1 + η) + µ(η + y∗)) > s1(η(1 + hδ) + y∗(1 + h(δ + 2µη))) + hs2αβρ.

Moreover, we have

h =
δη + y∗(δ + η(αβ + µ− S)− ρ + (αβ + µ− S)y∗)

y∗(Sδη − α(δ + ηµ− ρ) + y∗(S(δ + ηµ)− α(µ + βρ) + Sµy∗))− αδη
(23)

and

C(−1) = 1 +
(1 + hα)(1 + hx∗)

(1 + hx∗ + hαβy∗)2 +
1 + hρy∗

η+y∗

1 + hδ + hµy∗
+

1
1 + hδ + hµy∗

+
hy∗

1 + hα

(
S(1 + hα)2

(1 + hx∗ + hαβy∗)2 −
αβ

1 + hδ + hµy∗
+

ρ + hαρ− hαβρy∗

(η + y∗)(1 + hδ + hµy∗)

)
.

Hence, for the study of the linearized stability of system (5) about (x∗, y∗), we have the
following proposition (see Lemma 1).

Proposition 2. Let (18) remain true; then, (x∗, y∗) is positive equilibrium of (5). Moreover, let us
assume that {

Ω11 = 1 + hx∗ + hαβy∗, Ω12 = 1 + hδ + hµy∗, Ω13 = η + y∗,
Ω14 = 1 + hα,

(24)

then,

• The fixed point (x∗, y∗) is stable if and only if for

ηx∗(ρ + 2µy∗) < hµσx∗(y∗)2 + µ(hσ + x∗)(η + y∗)2

we have

Ω2
11Ω12Ω13 > Ω14(Ω11(Ω13 + hρy∗) + hy∗(δη + (hSδ− αβ)Ω13 + hSηµy∗ − αβρy∗))

• The fixed point (x∗, y∗) is non-hyperbolic if and only if

h =
δη + y∗(δ + η(αβ + µ− S)− ρ + (αβ + µ− S)y∗)

y∗(Sδη − α(δ + ηµ− ρ) + y∗(S(δ + ηµ)− α(µ + βρ) + Sµy∗))− αδη

and

1 + Ω13+hρy∗
Ω13Ω12

< hαβy∗
Ω14

+ 4
(

1
Ω12

+ hy∗
Ω14

(
SΩ2

14
(Ω11)

2 −
αβ

Ω12
+ ρ+hαρ−hαβρy∗

(η+y∗)(Ω12)

))
. (25)
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Remark 1. Let (18) remain true; then, there is no chance of system (5) undergoing period-doubling
bifurcation, as C(−1) > 0 for every σ, ρ, η, δ, µ, α, β > 0 and ρ > δ.

We now have the following theorem for the possible validation of Remark 1.

Theorem 5. Let (18) remain true and let ρ > δ. Moreover, let (x∗, y∗) be the positive fixed point
of system (5) and

C(−1) = 1 +
(1 + hα)(1 + hx∗)

(1 + hx∗ + hαβy∗)2 +
1 + hρy∗

η+y∗

1 + hδ + hµy∗
+

1
1 + hδ + hµy∗

+
hy∗

1 + hα

(
S(1 + hα)2

(1 + hx∗ + hαβy∗)2 −
αβ

1 + hδ + hµy∗
+

ρ + hαρ− hαβρy∗

(η + y∗)(1 + hδ + hµy∗)

)
.

Then, C(−1) > 0 for every σ, ρ, η, δ, µ, α, β > 0.

Proof. Assume (18) and ρ > δ. Additionally, let (x∗, y∗) be the positive fixed point of
system (5) and

C(−1) = 1 +
(1 + hα)(1 + hx∗)

(1 + hx∗ + hαβy∗)2 +
1 + hρy∗

η+y∗

1 + hδ + hµy∗
+

1
1 + hδ + hµy∗

+
hy∗

1 + hα

(
S(1 + hα)2

(1 + hx∗ + hαβy∗)2 −
αβ

1 + hδ + hµy∗
+

ρ + hαρ− hαβρy∗

(η + y∗)(1 + hδ + hµy∗)

)
.

Then, from

S = −
h
(

hµσ(η + y∗)2 + x∗(η(ηµ− (1 + hδ)ρ) + µy∗(2η + y∗ + hρy∗))
)

(η + y∗)2(1 + hδ + hµy∗)2 ,

we have

hµσ(η + y∗)2 + x∗(η(ηµ− (1 + hδ)ρ) + µy∗(2η + y∗ + hρy∗)) > 0

⇔ hµσy∗(η + x∗y∗) + µ(hσ + x∗)
(

η2 + ηy∗ + (y∗)2
)
> ηx∗(ρ + µy∗)

⇔ ηx∗(ρ + 2µy∗) < hµσx∗(y∗)2 + µ(hσ + x∗)(η + y∗)2. (26)

Finally, under condition (26), we have C(−1) > 0 if and only if

(η + y∗)(1 + hx∗ + hαβy∗)2(1 + hδ + hµy∗) >

(1 + hα)(η + y∗ + h(x∗(η + y∗ + hρy∗) + y∗(S(η + hδη) + ρ + Sy∗(1 + hδ + hηµ + hµy∗))))

⇔ Ω2
11Ω12Ω13 > Ω14(hδηx∗ + Ω13(1 + hx∗) + hy∗(hSη(δ + µ) + ρ + hρx∗ + SΩ12y∗))

⇔ Ω2
11Ω12Ω13 > Ω14(Ω11(Ω13 + hρy∗) + hy∗(δη + (hSδ− αβ)Ω13 + hSηµy∗ − αβρy∗)). (27)

where, Ω11, Ω12, Ω13, Ω14 are defined in (24). Hence, under condition (26), the above
inequality (27) is true for every choice of σ, ρ, η, δ, µ, α, β > 0 and ρ > δ. This completes
the proof.



Entropy 2022, 24, 949 14 of 26

5. Neimark–Sacker Bifurcation

This section is related to the bifurcation analysis of system (5) about (x∗, y∗). More-
over, all conditions for the existence and positivity of (x∗, y∗) are provided in Section 2.
The Neimark–Sacker bifurcation in discrete-time mathematical systems corresponds to the
Hopf bifurcation in continuous-time systems. For example, when Neimark–Sacker bifurca-
tion is supercritical, a stable centre loses its stability. A parameter, namely, the bifurcation
parameter, is varied with the resulting birth of an established quasi-cycle or cycle. Moreover,
we mention any of these as an invariant closed curve. Additionally, for subcritical Neimark–
Sacker bifurcation, a stable centre bounded by an unstable closed arc loses its stability
through a resulting vanishing of the invariant closed curve as a bifurcation parameter is
varied. Here, we discuss the Neimark–Sacker bifurcation experienced by system (5) about
(x∗, y∗) under certain mathematical conditions. For further study of bifurcation theory and
to better understand this surprising behaviuor of discrete-time mathematical systems, we
refer readers to [42–48]. Here, we use the standard theory of bifurcation for study of the
Neimark–Sacker bifurcation of system (5) at (x∗, y∗). Assume that

S = −
h
(

hµσ(η + y∗)2 + x∗(η(ηµ− (1 + hδ)ρ) + µy∗(2η + y∗ + hρy∗))
)

(η + y∗)2(1 + hδ + hµy∗)2 ,

then, one can see from Proposition 2 that roots φ1, φ2 of (21) are complex and satisfy
|φ1| = |φ2| = 1 if and only if

h =
δη + y∗(δ + η(−S + αβ + µ)− ρ + (−S + αβ + µ)y∗)

−αδη + y∗(Sδη − α(δ + ηµ− ρ) + y∗(S(δ + ηµ)− α(µ + βρ) + Sµy∗))

and

1− hαβy∗

1 + hα
+

1 + hρy∗
η+y∗

1 + hδ + hµy∗
< 4D,

where

D =
η + hαη + y∗(1 + h(α + Sη − αβη + hSδη + ρ + hαρ))

(1 + hα)(η + y∗)(1 + hδ + hµy∗)

+
y∗(hy∗(S(1 + hδ + hηµ)− αβ(1 + hρ) + hSµy∗))

(1 + hα)(η + y∗)(1 + hδ + hµy∗)
.

Furthermore, under the suppositions that{
ρ > δ, , σ + α(βηδ + ρ) < ηµ + α(1 + 2µ)
and α2µ(βη + 1) < σ(η + α2β)

(28)

we study the following set:

Ψ∗ =
{

σ, ρ, η, δ, µ, α, β ∈ <+, h =
δη + y∗(δ + η(−S + αβ + µ)− ρ + (−S + αβ + µ)y∗)

−αδη + y∗(Sδη − α(δ + ηµ− ρ) + y∗(S(δ + ηµ)− α(µ + βρ) + Sµy∗))

}
.

Then, the positive fixed point X of system (5) experiences Neimark–Sacker bifurcation such
that h is taken as the bifurcation parameter and varies slightly in the neighborhood of ĥ,
which is provided as

ĥ =
δη + y∗(δ + η(−S + αβ + µ)− ρ + (−S + αβ + µ)y∗)

−αδη + y∗(Sδη − α(δ + ηµ− ρ) + y∗(S(δ + ηµ)− α(µ + βρ) + Sµy∗))
.
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In addition, assume that (σ, ρ, η, δ, µ, α, β) ∈ Ψ2; then, system (5) is characterized equiva-
lently with the following planar map:

(
x
y

)
→

 x+ĥ
(

σ+
ρxy
η+y

)
1+ĥ(δ+µy)
y(1+ĥα)

1+ĥ(x+αβy)

. (29)

In order to discuss and analyze the normal form theory for Neimark–Sacker bifurcation for
fixed point X = (x∗, y∗) of (29), we suppose that h1 represents a small perturbation in ĥ.
Then, the perturbed mapping for (29) can be described by the next map:

(
x
y

)
→

 x+(ĥ+h1)
(

σ+
ρxy
η+y

)
1+(ĥ+h1)(δ+µy)

y(1+(ĥ+h1)α)
1+(ĥ+h1)(x+αβy)

. (30)

By taking p̄ = x− x∗, z̄ = y− x∗ and h = ĥ + h1, from (30) we can obtain the following
mapping with an equilibrium point at (0, 0):(

p̄
z̄

)
→ M

(
p̄
z̄

)
+

(
F1( p̄, z̄)
F2( p̄, z̄)

)
, (31)

where

M =

 1+ hyρ
y+η

1+h(δ+yµ)

h
(
− xyρ

(y+η)2
+

xρ
y+η

)
1+h(δ+yµ)

−
hµ
(

x+h
(

xyρ
y+η +σ

))
(1+h(δ+yµ))2

− hy(1+hα)
(1+h(x+yαβ))2

(1+hx)(1+hα)
(1+h(x+yαβ))2

, (32)

and

F1( p̄, z̄) =

−h(y∗ + η)2µ + h
(

η + hδη − hy∗2µ
)

ρ

(y∗ + η)2(1 + h(δ + x∗µ))2

 p̄z̄

+

 h
(

2x∗y∗ρ
(y∗+η)3 −

2x∗ρ
(y∗+η)2

)
2(1 + h(δ + y∗µ))

−
h2µ
(
− x∗y∗ρ

(y∗+η)2 + x∗ρ
y∗+η

)
(1 + h(δ + y∗µ))2 +

h2µ2
(

x∗ + h
(

x∗y∗ρ
x∗+η + σ

))
(1 + h(δ + y∗µ))3

z̄2

+

 2hy∗ρ
(y∗+η)3 −

2hρ
(y∗+η)2

2(1 + h(δ + y∗µ))
−

hµ
(
− hy∗ρ

(y∗+η)2 + hρ
y∗+η

)
(1 + h(δ + y∗µ))2 +

h2µ2
(

1 + hy∗ρ
y∗+η

)
(1 + h(δ + y∗µ))3

 p̄z̄2

+

 h
(
− 6x∗y∗ρ

(y∗+η)4 + 6x∗ρ
(y∗+η)3

)
6(1 + h(δ + y∗µ))

−
h2µ
(

2x∗y∗ρ
(y∗+η)3 −

2x∗ρ
(y∗+η)2

)
2(1 + h(δ + y∗µ))2 +

h3µ2
(
− x∗y∗ρ

(y+η)2 + x∗ρ
y∗+η

)
(1 + h(δ + y∗µ))3

z̄3

−

 h3µ3
(

x∗ + h
(

x∗y∗ρ
y∗+η + σ

))
(1 + h(δ + y∗µ))4

z̄3,

F2( p̄, z̄) =

(
h2y∗(1 + hα)

(1 + hx∗ + hy∗αβ)3

)
p̄2 +

(
2h2y∗α(1 + hα)β

(1 + h(x∗ + y∗αβ))3 −
h(1 + hα)

(1 + h(x∗ + y∗αβ))2

)
p̄z̄

−
(

h(1 + hx∗)α(1 + hα)β

(1 + h(x∗ + y∗αβ))3

)
z̄2 −

(
− h3y∗(1 + hα)

(1 + h(x∗ + y∗αβ))4

)
p̄3

+

(
h2(1 + hα)(1 + h(x∗ − 2y∗αβ))

(1 + h(x∗ + y∗αβ))4

)
p̄2 z̄ +

(
h2α(1 + hα)β(2 + 2hx∗ − hy∗αβ)

(1 + h(x∗ + y∗αβ))4

)
p̄z̄2

+

(
h2(1 + hx∗)α2(1 + hα)β2

(1 + h(x∗ + y∗αβ))4

)
z̄3.
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The characteristic equation S(φ) = 0 generated by the Jacobian matrix of (31) about (0, 0)
can be written as

φ2 − T̂(h1)φ + D̂(h1) = 0, (33)

where

D̂(h1) =
η + (ĥ + h1)αη + y∗

(
1 + (ĥ + h1)(α + Sη − αβη + (ĥ + h1)Sδη + ρ + (ĥ + h1)αρ)

)
(1 + (ĥ + h1)α)(η + y∗)

(
1 + (ĥ + h1)δ + (ĥ + h1)µy∗

)
+

y∗
(
(ĥ + h1)y∗

(
S(1 + (ĥ + h1)δ + (ĥ + h1)ηµ)− αβ(1 + (ĥ + h1)ρ) + (ĥ + h1)Sµy∗

))
(1 + (ĥ + h1)α)(η + y∗)

(
1 + (ĥ + h1)δ + (ĥ + h1)µy∗

) ,

T̂(h1) = 1− (ĥ + h1)αβy∗

1 + (ĥ + h1)α
+

1 + (ĥ+h1)ρy∗
η+y∗

1 + (ĥ + h1)δ + (ĥ + h1)µy∗
.

Consider that (σ, ρ, η, δ, µ, α, β) ∈ Ψ2; at that point, the complex solutions for (33) are
calculated as follows:

φ1 =
T̂(h1)− i

√
4D̂(h1)− T̂2(h1)

2

and

φ2 =
T̂(h1) + i

√
4D̂(h1)− T̂2(h1)

2
.

Moreover, we have (
d | φ1 |

dh1

)
h1=0

6= 0 (34)

because |T̂(0)| < 2 as (σ, ρ, η, δ, µ, α, β) ∈ Ψ2. Moreover, a simple computation yields that

T̂(0) = 1− ĥαβy∗

1 + ĥα
+

1 + ĥρy∗
η+y∗

1 + ĥδ + ĥµy∗
,

and we suppose that T̂(0) 6= 0 and T̂(0) 6= 1, that is,

1 +
1 + ĥρy∗

η+y∗

1 + ĥδ + ĥµy∗
6= ĥαβy∗

1 + ĥα
,

1 + ĥρy∗
η+y∗

1 + ĥδ + ĥµy∗
6= ĥαβy∗

1 + ĥα
. (35)

Suppose that (35) holds and (σ, ρ, η, δ, µ, α, β) ∈ Ψ2. Then, it follows that T̂(0) 6= ±2, 0,−1,
that is, φm

1 , φm
2 6= 1 for every m ∈ {1, 2, 3, 4} about h1 = 0. Consequently, both solutions

of (33) do not lie inside the intersection of the unit circle with the coordinate axes when

h1 = 0. In the same way, we assume that λ = T̂(0)
2 , ω = 1

2

√
4D̂(0)− T̂2(0). Formerly,

to change (31) into normal form, we used the following similarity transformation:(
p̄
z̄

)
=

(
l12 0

λ− l11 −ω

)(
u
v

)
. (36)

By using (36), we obtain the next typical form for (31):(
u
v

)
→
(

λ −ω
ω λ

)(
u
v

)
+

(
F̃(u, v)
G̃(u, v)

)
. (37)
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Moreover, we have

F̃(u, v) =
(
((λ− l11)u−ω v)2l15 + ((λ− l11)u−ω v)l13

)
u

+
((λ− l11)u−ω v)3l16 + ((λ− l11)u−ω v)2l14

l12
+ O

(
(|u|+ |v|)4

)
,

G̃(u, v) =

 (λ− l11)
(
((λ− l11)u−ω v)2l15 + ((λ− l11)u−ω v)l13

)
l12ω

l12u− l26l12
3u3

ω

− ((λ− l11)u−ω v)l27l12
2u2

ω
−
(
((λ− l11)u−ω v)2l28 + ((λ− l11)u−ω v)l24

ω

)
l12u

+
(λ− l11)

(
((λ− l11)u−ω v)3l16 + ((λ− l11)u−ω v)2l14

)
l12ω

−
((λ− l11)u−ω v)3l29 + l2

12u2l23 + ((λ− l11)u−ω v)2l25

ω
+ O

(
(|u|+ |v|)4

)
.

where l11, l12, l13 and l14 are respective elements of M. In addition, l1j for j = 3, 4, 5, 6 and l2j
for j = 3, 4, . . . , 9 are coefficients from expressions F1( p̄, z̄) and F2( p̄, z̄), respectively. Now,
we describe the next non-zero real numbers:

z =

([
−Re

(
(1− 2φ1)φ

2
2

1− φ1
ξ20ξ11

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(φ2ξ21)

])
h1=0

,

where

ξ20 =
1
8

(
2(λ− l11)l13 −

2ω2l14

l12
+

2(λ− l11)
2l14

l12

)
+

1
4

(
−2(λ− l11)

2l14

l12
+ l12

(
− (λ− l11)l13

l12
+ l24

)
+ 2(λ− l11)l25

)
+

i
4

(
−ω(λ− l11)l14

l12
+

(λ− l11)
3l14

ωl12
−
(
−ωl13 −

2ω(λ− l11)l14

l12

))
+ l12

i
4

((
(λ− l11)

2l13

ωl12
− (λ− l11)l24

ω

)
+ ωl25 −

l2
12l23 + (λ− l11)

2l25

ω

)

ξ11 =
1
2

(
(λ− l11)l13 +

ω2l14

l12
+

(λ− l11)
2l14

l12
+ i
(

ω(λ− l11)l14

l12
+

(λ− l11)
3l14

ωl12

))
+

i
2

(
l12

(
(λ− l11)

2l13

ωl12
− (λ− l11)l24

ω

)
−ωl25 −

l2
12l23 + (λ− l11)

2l25

ω

)
,

ξ02 =
1
4

(
(λ− l11)l13 −

ω2l14
l12

+
(λ− l11)

2l14
l12

+
2(λ− l11)

2l14
l12

+ l12

(
(λ− l11)l13

l12
− l24

))
+

1
4

(
(2(λ− l11)l25) + i

(
−ω(λ− l11)l14

l12
+

(λ− l11)
3l14

ωl12
+ ωl25 −ωl13

))
− i

4

(
2ω(λ− l11)l14

l12
− l12

(
(λ− l11)

2l13
ωl12

− (λ− l11)l24
ω

)
+

l2
12l23 + (λ− l11)

2l25

ω

)
,
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and

ξ21 =
1
8

(
ω2l15 + 3(λ− l11)

2l15 + l2
12l27 − l12

(
2(λ− l11)

2l15

l12
− 2(λ− l11)l28

))
+

1
8

(
3ω2l29 + 3(λ− l11)

2l29 + i
(

2ω(λ− l11)l15 +
3ω3l16

l12
+

6ω(λ− l11)
2l16

l12

))
+

i
8

(
3(λ− l11)

4l16

ωl12
−

3l3
12l26

ω
−

3(λ− l11)l2
12l27

ω
+ l12

(
ω(λ− l11)l15

l12
−ωl28

))

+
i
8

(
3l12

(
(λ− l11)

3l15

ωl12
− (λ− l11)

2l28

ω

)
− 3ω(λ− l11)l29 −

3(λ− l11)
3l29

ω

)
.

Hence, we have the following theorem.

Theorem 6. Assume that (35) holds true and z 6= 0. Then, the positive fixed point

X = (x∗, y∗)

of system (5) experiences Neimark–Sacker bifurcation whenever h changes in the least neighbor-
hood of

ĥ =
δη + y∗(δ + η(−S + αβ + µ)− ρ + (−S + αβ + µ)y∗)

−αδη + y∗(Sδη − α(δ + ηµ− ρ) + y∗(S(δ + ηµ)− α(µ + βρ) + Sµy∗))
.

In addition, if z < 0, (z > 0), respectively, then an attracting or repelling invariant closed curve
bifurcates from the equilibrium point for h > ĥ(h < ĥ), respectively.

6. Control of Neimark–Sacker Bifurcation

The study of chaos theory and bifurcation control is a multidisciplinary area of math-
ematics research that concentrates on basic designs and extremely complex categorical
laws of primary conditions in any dynamical systems that are supposed to have entirely
arbitrary statuses of disorder and inconsistency. Generally, the leading standard of disorder
defines how a minor variation in any state of a nonlinear dynamical system can result in
significant changes in an advanced state (the implication being that a complex dependency
on primary conditions is close) [48]. Every disordered attractor encloses a countless amount
of periodic and unstable orbits. Chaotic behaviour at any time is a gesture where the
state system moves in the vicinity of any of these regions for a time and then drops to a
closer periodic and unstable orbit, where it hangs for a degree of time, etcetera [48]. Chaos
control stabilizes any of these irregular periodic orbits by the worth of small structure
perturbations. Hence, we use a simple chaos control method for system (5). Furthermore,
many well-known techniques have been developed in previous decades to control chaos in
any discrete dynamical system. We refer readers to [48–50] for additional details connected
to these methods. Here, we implement a generalized hybrid control technique to control the
Neimark–Sacker bifurcation (seecite [51–53]). The generalized hybrid control method [48]
is centred on parameter perturbation and a state feedback control technique. By applying
generalized hybrid control methodology (with control parameter b ∈ (0, 1]) to system (5),
we obtain 

xn+1 = sin b

(
xn+h

(
σ+

ρxnyn
η+yn

)
1+h(δ+µyn)

)
+ (1− sin b)xn,

yn+1 = sin b
(

yn(1+hα)
1+h(xn+αβyn)

)
+ (1− sin b)yn.

(38)
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Then, system (38) is controllable provided that its fixed point (x∗, y∗) is locally asymptot-
ically stable. Additionally, the Jacobian matrix for system (38) at its positive fixed point
(x∗, y∗) is calculated as follows:

Jc =

 1− sin b +
sin b

(
1+ hρy∗

η+y∗
)

1+hδ+hµy∗ − h sin b(hµσ(η+y∗)2+x∗(η(ηµ−(1+hδ)ρ)+µy∗(2η+y∗+hρy∗)))
(η+y∗)2(1+hδ+hµy∗)2

− h sin b(1+hα)y∗

(1+hx∗+hαβy∗)2 1− sin b + sin b(1+hα)(1+hx∗)
(1+hx∗+hαβy∗)2

 (39)

where

Trace[Jc] = 2− 2 sin b +
sin b(1 + hα)(1 + hx∗)

(1 + hx∗ + hαβy∗)2 +
sin b

(
1 + hρy∗

η+y∗

)
1 + hδ + hµy∗

(40)

and 

Det[Jc] =
(1−hÃδ−hÃµy∗)(1+h sin bα−hÃ(x∗+αβy∗)(2+hx∗+hαβy∗))

(1+hx∗+hαβy∗)2(1+hδ+hµy∗)

− h sin b(1+hα)x∗((1−hÃδ)η+y∗(1−hÃ(δ+ηµ)+h sin bρ−hÃµy∗))
(η+y∗)(1+hx∗+hαβy∗)2(1+hδ+hµy∗)

+h sin by∗

 S(sin b+h sin bα)

(1+hx∗+hαβy∗)2 +
ρ

(
1+sin b

(
1+hα

(1+hx∗+hαβy∗)2
−1
))

(η+y∗)(1+hδ+hµy∗)

,

(41)

with sin b− 1 = Ã. Moreover, we have the following result:

Theorem 7. Assume the fixed point (x∗, y∗) of system (38). Then, (x∗, y∗) is locally asymptotically
stable⇐⇒ we have

|Trace[Jc]| < 1 + Det[Jc] < 2,

where Trace[Jc] and Det[Jc] are as defined in (40) and (41), respectively.

7. Numerical Simulations

First, assume that α = 1.636, β = 2× 10−3, δ = 0.3743, η = 20.19, µ = 0.00311,
ρ = 1.131, σ = 0.1181, and h ∈ [0, 1). Then, from system (5) we have (x∗, y∗) = (1.61954,
8.2317). Moreover, in this case x0 = 1.61954 and y0 = 8.2317 are initial conditions.
The graphical behavior of both variables is shown in Figure 5. It can be seen that xn
and yn undergo Neimark–Sacker bifurcation at unique positive fixed points (x∗, y∗) =
(1.61954, 8.2317). In addition, in Figure 5c the maximum Lyapunov exponents are rep-
resented. To understand the consistency between bifurcation diagrams and Lyapunov
exponents, in Figure 5a, one can see that bifurcation in the first variable occurs when h
passes through h = 0.5, and the Lyapunov exponent changes from negative to positive as h
crosses the horizontal line at h = 0.5.

In this case, we have z = −0.00065841 < 0, which verifies Theorem 6. Moreover, we
have C(−1) = 3.2136789 > 0, which validates Theorem 5. By varying the stepsize, h, in
[0, 1) phase portraits for system (5) can be obtained, as shown in Figure 6. Hence, we can
observe that system (5) experiences Neimark–Sacker bifurcation when the parameter h
certainly passes through h = 0.4917267952 (see Figure 6c). Second, to discuss the feasibility
of the designed control technique, we take α = 1.636, β = 2× 10−3, δ = 0.3743, η = 20.19,
µ = 0.00311, ρ = 1.131, σ = 0.1181 and h ∈ [0, 1).

Then, from system (38), we have (x∗, y∗) = (1.61954, 8.2317). Moreover, by taking
b as the control parameter, it can be observed from Figure 7 that the Neimark–Sacker
bifurcation at unique positive fixed point (x∗, y∗) is effectively controlled for a large range
of the control parameter b. Additionally, the MLE for controlled system (38) is provided in
Figure 7c. From Figure 7a, it can be seen that bifurcation in the first variable occurs when
b lies between 0 < b < 0.1. Moreover, the controlled system is stable in 0.1 < b < 0.69,
and the Lyapunov exponent changes from positive to negative at the point b = 0.1(approx)
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and negative to positive as b crosses the horizontal line at b = 0.69, which shows the
consistency of controlled plots with corresponding MLE.

Finally, to discuss the dynamics of system (3), we take α = 1.636, β = 2 × 10−3,
δ = 0.3743, η = 20.19, µ = 0.00311, ρ = 11.131, and σ = 0.1181. Then, from system (3) we
have (x∗, y∗) = (1.519, 0.823). Consequently, we obtain a stable system (3) for these values.
In addition, the qualitative behaviour of system (3) is shown in Figure 8. On the other side,
by taking σ as bifurcation parameter and taking σ = 0.001181, it can be observed from
Figure 9 that the system (3) experiences Hopf bifurcation at positive fixed point (x∗, y∗).
Additionally, the plots of both variables for system (3) are provided in Figure 9a,b. In this
case, the value of FLE is calculated as approximately L(σ0) = −0.00645890013.

(a) (b)

(c)

Figure 5. Bifurcation diagrams for system (5) for α = 1.636, β = 2× 10−3, δ = 0.3743, η = 20.19,
µ = 0.00311, ρ = l.131, σ = 0.1181, and h ∈ [0, 1) with initial conditions x0 = 1.6197 and y0 = 8.2317.
(a) Bifurcation diagram for xn; (b) Bifurcation diagram for yn; (c) MLE.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Phase portraits for system (5) for α = 1.636, β = 2 × 10−3, δ = 0.3743, η = 20.19,
µ = 0.00311, ρ = 1.131, σ = 0.1181, and h ∈ [0, 1) with initial conditions x0 = 1.6197 and y0 = 8.2317.
(a) Phase portrait for h = 0.014912; (b) phase portrait for h = 0.40891412; (c) phase portrait for
h = 0.491289; (d) phase portrait for h = 0.591289; (e) phase portrait for h = 0.991289; (f) phase
portrait for h = 0.961289; (g) phase portrait for h = 0.521289; (h) phase portrait for h = 0.531289.
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(a) (b)

(c)

Figure 7. Controlled plots of system (38) for α = 1.636, β = 2× 10−3, δ = 0.3743, η = 20.19,
µ = 0.00311, ρ = 1.131, σ = 0.1181, h ∈ [0, 1), and b ∈ [0, 1) with initial conditions x0 = 1.6197 and
y0 = 8.2317. (a) Bifurcation diagram for xn; (b) Bifurcation diagram for yn; (c) MLE.

(a) (b)

(c)

Figure 8. Plots of system (3) for α = 1.636, β = 2× 10−3, δ = 0.3743, η = 20.19, µ = 0.00311,
ρ = 11.131, and σ = 0.2181 with initial conditions x0 = 1.6197, and y0 = 0.82317. (a) Plot of x(t) for
system (3); (b) plot of y(t) for system (3); (c) stable phase portrait for system (3).
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(a) (b)

(c)

Figure 9. Plots of system (3) for α = 1.636, β = 2× 10−3, δ = 0.3743, η = 20.19, µ = 0.00311,
ρ = 11.131, and σ = 0.001181 with initial conditions x0 = 1.6197 and y0 = 0.82317. (a) Plot of x(t) for
system (3); (b) plot of y(t) for system (3); (c) phase portrait for system (3).

8. Conclusions

Here, we have considered an immunogenic tumor model for discretization and quali-
tative study. The original model (3) was presented and studied by Kuznetsov et al. [28] in
its continuous form. Moreover, they studied the dynamics of (3) in its continuous form as
well. This work is focused on the study of the consistent counterpart of (3) and comparing
the dynamics of model (3) with its discrete-time counterpart, which has not been performed
previously for this model. Hence, we first converted the system (3) into its discrete form us-
ing a consistency-preserving discretization method. For this purpose, a nonstandard finite
difference method was applied to obtain a discrete counterpart of the particular model (3).
Our examination exposes that the continuous system (3) undergoes Hopf bifurcation about
its positive fixed point σ, which is considered a bifurcation parameter, and passes over
a critical value σ0 = x∗(α− x∗ − 2y∗αβ), such as ρ > δ. Furthermore, the first Lyapunov
exponent is calculated in the closed form, specified as follows:

L(σ0) = L1 + L2,

where 
L1 = 1

16

(
2ρy∗

(η+y∗)3 −
2ρ

(η+y∗)2

)
L2 =

−2αβ−2αβ

(
2ρx∗y∗

(η+y∗)3
− 2ρx∗

(η+y∗)2

)
+

(
2ρx∗y∗

(η+y∗)3
− 2ρx∗

(η+y∗)2

)(
−µ− ρy∗

(η+y∗)2
+

ρ
η+y∗

)
16

√
−(x∗)2−α2(1−2βy∗)2+x∗

(
2α+y∗

(
−4αβ−µ+

ηρ

(η+y∗)2

)) .
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On the other hand, when h is taken as a bifurcation parameter, the discrete-time version,
which is obtained using a nonstandard finite difference scheme, experiences Neimark–
Sacker bifurcation about its positive fixed point (x∗, y∗) whenever h passes through

ĥ =
δη + y∗(δ + η(−S + αβ + µ)− ρ + (−S + αβ + µ)y∗)

−αδη + y∗(Sδη − α(δ + ηµ− ρ) + y∗(S(δ + ηµ)− α(µ + βρ) + Sµy∗))
.

The conditions for the presence of Neimark–Sacker bifurcation are specified in Theorem 6.
Mathematical simulation exposes that our discretization is bifurcation-conserving and
equal with lesser step size value; the first Lyapunov exponents are approximately the same
in both cases, that is, z ≈ L(σ0) = −0.006832. From Theorem 5, it can be seen that there
is no chance of period-doubling bifurcation in our discrete-time system, which shows the
consistency of the discretizing technique used here. Moreover, to analyze the wide-ranging
and rich dynamics of another discrete-time counterpart of the immunogenic tumors model,
it is possible to use the Euler method or piecewise constant arguments with system (3).
Using the Euler method or piecewise constant arguments, it is possible to discuss other
types of bifurcations and chaos control. We refer readers to [44–48] and the references
therein for further consideration. We anticipate that analysis of system (3) using the Euler
method and bifurcation analysis with chaos control for the obtained system will be our
future tasks.
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