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Abstract: This paper concerns the maximum power extraction of a photovoltaic generator system
(PGS). The PGS consists of single photovoltaic (PV) cells. To improve the efficiency of a PGS, it is
necessary to work within its maximum power point (MPP). In a PGS, output power is dependent
on solar irradiance and the operating temperature and, therefore, MPP would be varied. To address
this problem, a converter should be placed after the PGS and a smooth control signal should be
used to adjust its duty cycle. The other challenge of a total system, i.e., PGS and converter, is the
uncertainty involved. To overcome this uncertainty, a dynamic sliding mode control (SMC) can
be used to regulate the smooth duty cycle. The low-pass integrator before the system can remove
the chattering in dynamic SMC. However, due to the integrator, the states of the system increase
and, hence, we propose a dual sliding observer (DSO) to estimate this added state. For a reliable
comparison with the conventional SMC, the same proposed DSO can be applied in both dynamic and
conventional SMC. The provided comparison shows the effectiveness of dynamic SMC in chattering
suppression and real implementation with respect to conventional SMC.

Keywords: photovoltaic generator system; converter control; dual sliding observer; sliding mode
control

1. Introduction

The increase in the consumption of fossil fuels has been shown to result in global
warming. This can be prevented by more widespread use of wind and solar energy [1–3],
which are clean, renewable, and accessible [4]. Solar energy in particular has attracted
much attention because of economical use of a photovoltaic generator system (PGS) on a
worldwide scale [5]. Nevertheless, the output power of PGS is dependent on temperature
and on solar irradiation [6]. Hence, to improve the efficiency of a PGS, it is necessary to
extract its maximum power by a maximum power point tracking (MPPT) controller [7].
It has been shown that MPPT can be achieved using a DC-DC power converter after the
PGS and adjusting its duty cycle [6,7]. Many MPPT controllers have been proposed in
the literature [8–11]. Some approaches are based on a neural network [8] or on the fuzzy
method [9,10]. The P&O methods oscillate around the MPPT [11].

Due to the overall uncertainty associated with these systems, a robust controller such
as sliding mode control (SMC) is needed to regulate the duty cycle. SMC is invariant,
which is its most important property and is stronger than its robustness [12–14]. For this
reason, SMC is used in many MPPT controllers [15–22]. In most of these works, however,
SMC suffers from chattering as a disadvantage phenomenon; this is due to the use of sign
function [12–14], as a result of which a smooth duty cycle cannot be produced. (Note that
the duty cycle should be a smooth signal between zero and one.)
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To remove chattering, some methodologies are proposed in the literature [23]: bound-
ary layer SMC [24], adaptive boundary layer SMC [25–27], higher order SMC [28,29], and
dynamic SMC [30,31]. In boundary layer SMC and adaptive boundary layer SMC, the
invariance, as the predominant property of SMC, is missed [23]. Higher-order SMC requires
the higher-order derivatives of the system function, which should be estimated using an
observer [32–36]. However, in dynamic SMC, the effect of discontinuous sign function is
suppressed by a low-pass integrator, which is located before the system model [31]. Then
the system states increase due to the dynamic behavior of this integrator. Therefore, this
augmented state should be estimated using an observer. Whereas in higher-order SMC the
differentiation of the system model should be estimated, in dynamic SMC the increased
state should be estimated; this constitutes the priority of dynamic SMC.

Moreover, the concepts of model identification [37,38], parameters identification [39,40],
and disturbance observer [41] are used for the control of linear and nonlinear systems, which
also use known inputs and outputs of systems as feedback. Furthermore, similar to the SMC,
sliding observers have invariance property against uncertainty and disturbance [42,43].

Motivated by the above discussion, chattering is the most critical of all these factors.
Therefore, based on the disadvantages problem of boundary layer SMC, adaptive boundary
layer SMC, and higher-order SMC, we propose a dynamic SMC method for the MPPT
control of PGS to reliably prevent chattering while preserving the invariance property to
overcome the inherent uncertainty of the model. Moreover, to implement this controller and
to identify the plant model, a new dual sliding observer (DSO) is constructed. Thereafter, the
theory of Lyapunov stability is used for the stabilization proof of dynamic SMC and DSO.

Therefore, the proposed structure is preceded in six sections. At first, the PGS model
description is presented in Section 2. Then problem formulation and proposed dual
observer design are discussed in Section 3. Finally, in Sections 5 and 6, simulation results
and a conclusion are provided, respectively.

2. Model Description

The system consists of a PGS and a DC-DC converter [19], as in Figure 1.
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Figure 1. The overall model.

Where λ is solar irradiation, T is cell temperature, V and I are PGS voltage and current
outputs, Td is the duty cycle of converter, and Vc and Ic are the fixed outputs voltage and
current of converter.

2.1. Photovoltaic Generator System (PGS) Model

A single PV cell is shown in Figure 2 and its output current is described by the
following equation [8–11,15–22]

IPV = Iph − ID − Ish (1)

such that ID, Ish, and Iph are the diode current, shunt current, and current generated by the
incident light, respectively; all of which can be described using the following equations.

ID = Ir

[
exp

(
VPV + RsIPV

VT

)
− 1
]

(2)

Ish =
VPV + RsIPV

Rsh
(3)
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Iph = [Isc + KI(T− Tr)]
λ

1000
(4)

in which VPV and IPV are the voltage and current of this single PV, VT = kT
q is the thermal

voltage, Tr is the cell reference temperature, Isc and KI are the short-circuit current and
temperature coefficient in the short-circuit case both at reference condition, and Ir is the
cell reverse saturation current. Moreover, q is the electron charge (1.60217× 10−19C) and k
is the Boltzmann’s constant (1.38 × 10−23J/K). As regards PGS, the relation between its
output voltage and current, i.e., V and I is as follows:

I = Iphg − Irg

[
exp

(
V + RsgI

VTg

)
− 1

]
−

V + RsgI
Rshg

(5)

where Rsg = Ns
Np

Rs, Rshg = Ns
Np

Rsh, Iphg = NpIph, Irg = NpIr, VTg = Ns
Np

VT, and Ns and Np

are the numbers of connected-series and parallel PV cells, respectively.
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Figure 2. A single PV cell.

2.2. DC-DC Converter Model

The structure of the utilized converter in continuous conduction mode (CCM) is shown
in Figure 3 and is described by the following equations.

Ci
dV
dt

= I− ILi (6)

Li
dILi

dt
= V− (1− Td)Vc (7)
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Figure 3. The DC-DC converter.

ILi, Li, Ci, and Co are, respectively, the current of inductor, the self-inductor, the input
capacitor, and the output capacitor; Q is the semiconductor switch.
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3. Problem Formulation and Observer Design

Using the two first sentences of Taylor series in Exponential function Equation (5), it
follows that:

I = Iphg − Irg

(
V + RsgI

VTg

)
−

V + RsgI
Rshg

(8)

Rewritten, this results in the following algebraic equation:(
1 +

IrgRsg

VTg
+

Rsg

Rshg

)
I +

(
Irg

VTg
+

1
Rshg

)
V = Iphg (9)

Therefore, using Equation (6) into the second derivative of Equation (9) leads to:(
1 +

IrgRsg

VTg
+

Rsg

Rshg

)
..
I +

(
Irg

VTg
+

1
Rshg

)( .
I−

.
ILi

Ci

)
=

..
Iphg (10)

Rearranging this equation and using Equation (7) has the following result:(
1 +

IrgRsg

VTg
+

Rsg

Rshg

)
..
I +

1
Ci

(
Irg

VTg
+

1
Rshg

)
.
I− 1

Ci

(
Irg

VTg
+

1
Rshg

)(
V + u

Li

)
=

..
Iphg (11)

in which u = (Td − 1)Vc is the input control signal of the system. Replacing variable V
from Equation (9), it follows that:(

1 + IrgRsg
VTg

+
Rsg
Rshg

)..
I + 1

Ci

(
Irg

VTg
+ 1

Rshg

) .
I + 1

LiCi

(
1 + IrgRsg

VTg
+

Rsg
Rshg

)
I

− 1
LiCi

(
Irg

VTg
+ 1

Rshg

)
u = 1

LiCi

(
Irg

VTg
+ 1

Rshg

)
Iphg +

..
Iphg

(12)

Using the definition of x1 = I and x2 =
.
I, the matrix form of the last equation is as:

.
x = Ax + Bu + Bd (13)

x =

[
x1
x2

]
, A =

[
0 1
−a1 −a2

]
, B =

[
0
b

]
(14)

where:

a1 = 1
LiCi

, a2 =

1
Ci

(
Irg

VTg
+ 1

Rshg

)
(

1+
IrgRsg

VTg
+

Rsg
Rshg

) , b =

1
LiCi

(
Irg

VTg
+ 1

Rshg

)
(

1+
IrgRsg

VTg
+

Rsg
Rshg

) ,

d =

1
LiCi

(
Irg

VTg
+ 1

Rshg

)
Iphg+

..
Iphg(

1+
IrgRsg

VTg
+

Rsg
Rshg

)
(15)

Variable d is considered as uncertainty, due to unknown variables T,
.
T, λ, and

.
λ. Note

that the pair (A, B) is controllable and that the matrix A is Hurwitz since a1 > 0 and a2 > 0.
Then, with the selection of any arbitrary symmetric positive definite matrix Q ∈ R2×2,
one can find a symmetric positive definite matrix P ∈ R2×2, such that these matrixes satisfy
the following Lyapunov equality equation [12]:

Q = −PA−ATP (16)
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To have the maximum power of PGS, the output power, i.e., P = VI, should be
maximized and then, from Equation (9), we have:(

1 +
IrgRsg

VTg
+

Rsg

Rshg

)
dI
dV

+

(
Irg

VTg
+

1
Rshg

)
= 0 (17)

or:

dI
dV

= −

(
Irg

VTg
+ 1

Rshg

)
(

1 + IrgRsg
VTg

+
Rsg
Rshg

) = −Cia2 (18)

or:
dP
dV

=
d(VI)

dV
= I +

dI
dV

= x1 −Cia2 = 0 (19)

Therefore, the reference of the first state in Equation (13) can be written as xr1 = Cia2.
In this case, the sliding surface of dynamic SMC is defined as:

s = λ1(x1 − xr1) + λ2(x2 −
.
xr1) + λ3(

.
x2 −

..
xr1)

xr1 = Cia2,
.
xr1 =

..
xr1 = 0

(20)

But, variable
.
x2 is unavailable due to the uncertainty in Equation (13). To solve

this problem, a new DSO is designed. The following DSO is proposed for the system
Equation (13): { .

z(t) = −z(t) + µ1(t).
x̂(t) = +z(t) + Ax̂ + Bu + µ2(t)

(21)

where µi : i = 1, 2 are the observer inputs and the vector x̂(t) = [x̂1, x̂2]
T is the estimation of

the system states and z(t) = [z1, z2]
T ∈ R2×1 is the auxiliary vector signal and also |d| ≤ D.

Theorem 1. The observer error estimation e = x− x̂ converges to zero if the inputs of the observer
are selected as follows:

µ1 = e ∈ R2×1

µ2 = P−1(PBD + sign(e)) ∈ R2×1 (22)

Proof of Theorem 1. The error dynamic can be described as:

.
e(t) = −z(t) + Ae + Bd− µ2(t) (23)

Consider the following Lyapunov candidate function:

V(t) =
1
2

z(t)TPz(t) +
1
2

e(t)TPe(t) (24)

then, we will have:
.

V =
1
2

.
zTPz +

1
2

zTP
.
z +

1
2

.
eTPe +

1
2

eTP
.
e (25)

Using the first part of the observer Equation (22) and the error dynamic Equation (24) one
can write:

.
V = 1

2 (−z + µ1)
TPz + 1

2 zTP(−z + µ1)

+ 1
2 (−z + Ae + Bd− µ2)

TPe + 1
2 eTP(−z + Ae + Bd− µ2)

(26)
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or: .
V = − 1

2 zTPz + 1
2µ1

TPz− 1
2 zTPz + 1

2 zTPµ1

− 1
2 zTPe + 1

2 eTATPe + 1
2 d BTPe− 1

2µ2
TPe

− 1
2 eTPz + 1

2 eTPAe + 1
2 d eTPB− 1

2 eTPµ2

(27)

Rearranging this leads to:

.
V = −zTPz + zTPµ1 − zTPe +

1
2

eT
(

PA + ATP
)

e + d eTPB− eTPµ2 (28)

Using Equation (20) and the observer inputs Equation (22), it follows that:

.
V = −zTPz + zTPe− zTPe− 1

2 eTQe + d eTPB−D eTPB− eTsign(e)

= −zTPz− 1
2 eTQe + eTPB(d−D)− eTsign(e)

(29)

Consider the following inequality:

−zTPz ≤ −λmin(P) ‖z‖2 ≤ 0

−eTQe ≤ −λmin(Q) ‖e‖2 ≤ 0

eTPB ≤ |e| |P| |B| ≤ |e| |P|

(30)

where λmin is the minimum of eigen-value and therefore

.
V ≤ −λmin(P) ‖z‖2 − 1

2
λmin(Q) ‖e‖2 + |e| |P| ( |d| −D )−

2

∑
i=1
|ei| (31)

Inequality |d| ≤ D results
.

V ≤ 0 and consequently the signal z and the error dynamic e
converge to zero. �

4. Sliding Mode Control Design

To have the chattering-less duty cycle, a new proposed dynamic SMC is constructed
and then conventional SMC is designed in order to compare it with the dynamic SMC.
The validity of the comparison is comprehensive due to the use of the same DSO Equation
(21) in both approaches. According to the observer Equation (21), one can conclude the
following equations.

.
x̂1 = z1 + x̂2 + C1µ2, C1 = [1, 0] (32)

.
x̂2 = z2 − a1x̂1 − a2x̂2 + bu + C2µ2, C2 = [0, 1] (33)

..
x̂2 =

.
z2 − a1

.
x̂1 − a2

.
x̂2 + b

.
u = −z2 + C2µ1 − a1

.
x̂1 − a2

.
x̂2 + b

.
u (34)

The proof of chattering-less closed loop stability of dynamic SMC controller is pre-
sented as follows:

Theorem 2. The following signal causes the sliding surface in Equation (20) to reach zero in
finite time.

.
u = −

λ1x2 + λ2
.
x̂2 + λ3

(
−z2 + C2µ1 − a1

.
x̂1 − a2

.
x̂2

)
+ η1s + η2sign(s)

bλ3
(35)
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Proof of Theorem 2. From Equations (32)–(34) one can write:

.
s = λ1

.
x1 + λ2

.
x2 + λ3

..
x̂2 = λ1x2 + λ2

.
x̂2 + λ3

..
x̂2

= λ1x2 + λ2
.
x̂2 + λ3

(
−z2 + C2µ1 − a1

.
x̂1 − a2

.
x̂2 + b

.
u
) (36)

Substituting Equation (35) into Equation (36) results in:

.
s = −η1 s− η2 sign(s) (37)

Using the Lyapunov function V = 0.5 s2, then:

.
V = s

.
s = s(−η1 s− η2 sign(s)) = −η1s2 − η2|s| ≤ −η2|s| (38)

Suppose t would be the finite reaching time to the sliding surface, then one can conclude
that t ≤ |s(0)|η2

[13]. �

Now, in the following theorem closed loop stability of conventional SMC controller
is proved.

Theorem 3. Consider the following sliding surface:

s = λ1(x1 − xr1) + λ2(x2 −
.
xr1)

xr1 = Cia2,
.
xr1 = 0

(39)

Then, the following signal causes the sliding surface in Equation (39) to reach zero in finite time.

u = −λ1x2 + λ2(z2 − a1x̂1 − a2x̂2 + C2µ2) + η1s + η2sign(s)
bλ2

(40)

Proof of Theorem 3. From Equation (33) one can write:

.
s = λ1

.
x1 + λ2

.
x2 = λ1x2 + λ2

.
x̂2 = λ1x2 + λ2(z2 − a1x̂1 − a2x̂2 + bu + C2µ2) (41)

Substituting Equation (40) into Equation (41) results in:

.
s = −η1 s− η2 sign(s) (42)

Using the Lyapunov function V = 0.5 s2, then:

.
V = s

.
s = s(−η1 s− η2 sign(s)) = −η1s2 − η2|s| ≤ −η2|s| (43)

Suppose t would be the finite reaching time to the sliding surface, then one can conclude
that t ≤ |s(0)|η2

[13]. �

Remark 1. The coefficients λi in sliding surfaces Equations (20) and (39) are selected such that the
zero dynamics of surface will be stable. In this case x1 tracks its desired value, i.e., xr1.

5. Simulations Presentation

The solar panel used in this research is TE500CR [44] and hence the parameters of the
PV cells are as in Table 1 and also the parameters of the converter are denoted in Table 2.
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Table 1. The parameters of the PV cells.

Parameter Value Unit

Ir 4.842 µA

Isc 3.45 A

Rs 0.1124 Ω

Rsh 6500 Ω

Tr 298.15 ◦K

Table 2. The parameters of the converter.

Parameter Value Unit

Vc 400 V

Ic 12.5 A

Li 3.5 mH

Ci 4700 µF

Co 470 µF

In addition, Np = 20, Ns = 20, and all the observer initial values are set to zero, i.e.,
x̂(0) = [0, 0]T and z(0) = [0, 0]T. For a reliable comparison, two simulations are carried out
using dynamic SMC and conventional SMC, both based on the same DSO observer. Both
simulations are carried out with Matlab using a step size of 0.001. The solar irradiation and
the cell temperature are shown in Figures 4 and 5. The solar irradiation has increased from
λ = 800 W/m2 to λ = 1000 W/m2 at time 10 s, and the temperature has increased from
T = 298.15 ◦K to T = 325 ◦K at time 20 s.
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Remark 2. For calculation of input control duty cycle, we first calculate variables in Equations
(32)–(34) using the observer Equation (21). Then input can be obtained from Equation (35) for
dynamic SMC and from Equation (40) for conventional SMC.

Example 1. The dynamic SMC proposed approach.

The sliding surface coefficients are selected as λ1 = 5, λ2 = 1, and λ3 = 0.1; in addition,
we choose η1 = 5 and η2 = 2. Moreover, to calculate the input control signal from the
Equation (35) we need an initial value selected as u(0) = 0. The results are presented in
Figures 6–9. Figure 6 shows the output current of PGS, which is tracked the xr1 = Cia2
and Figures 7 and 8 present the output voltage of PGS and the smooth duty cycle of
the converter. We can see that when the output voltage of PGS increases, the duty cycle
decreases. This causes the output voltage of the converter to remain fixed at Vc = 400. The
convergence of sliding surface to zero is shown in Figure 9. We can see that all the figures
in this example are without chattering.
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Example 2. The conventional SMC.

In this example conventional SMC is simulated with the same parameters of example
1; i.e., the sliding surface coefficients Equation (39) are selected as λ1 = 5 and 1. In addition,
we choose η1 = 5 and η2 = 2. The results are presented in Figures 10–13. Figure 10 shows
the output current of PGS, which is tracked as xr1 = Cia2, and Figures 11 and 12 present
the output voltage of PGS and the duty cycle of the converter. The convergence of sliding
surface to zero is shown in Figure 13. The effect of chattering can be seen in these figures.
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Comparison and Discussion: From comparison of these figures one can see the good
performance of the proposed DSO. Nevertheless, in the viewpoint of the controller design,
the dynamic SMC has better performance, which can be seen from comparison of the
figures. Moreover, dynamic SMC has better performance in chattering suppression than
conventional SMC. The chattering effect can be observed from Figure 13. Note that this
chattering can reduce the effectiveness and efficiency of the controller and furthermore
can damage the electrical parts. As the simulations results show, the steady state of the
two approaches is zero. This can be seen from Figures 9 and 13, where the sliding surfaces
converge to zero in finite time. Finally, the simple design of dynamic SMC with respect to
conventional SMC can be observed.
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6. Conclusions

In this paper, a new approach is presented for smooth duty cycle regulation of a
converter, which is placed after the photovoltaic generator system (PGS). It has been shown
that by suitable selection of the duty cycle of the converter, the maximum power point
tracking (MPPT) of PGS is achieved. The augmented system, i.e., the PGS and the converter,
has some uncertainties, however. To overcome the uncertainty and have a smooth duty
cycle, we propose a new robust chattering-less controller approach, which is based on a
dynamic sliding mode control (Dynamic SMC). To implement the dynamic SMC, a new
structure of the dual sliding observer (DSO) is constructed. Then a comparison is carried
out by the conventional sliding mode control (Conventional SMC) with the same DSO and
similar parameters. This comparison shows that chattering presents in the conventional
SMC but it is eliminated in the dynamic SMC. Moreover, the simple concept and realization
of dynamic SMC is evident. Closed-loop stability is provided using Lyapunov theory.
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