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arme y, en fin, sobrellevar esta experiencia. También gracias a mis
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todos los compañeros con los que, entre pasillos, hemos compartido



iv

experiencias, conversaciones y mensajes de ánimo.
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Summary

In Industry 5.0, in which automatization has an increasingly impor-
tant role, human workers and their well-being are placed at the centre of
the production process. In this context, task-oriented dialogue systems
allow workers to delegate simple tasks to industrial assets while working
on other, more complex ones. Also, the possibility of naturally interacting
with these systems reduces the cognitive demand to use them and triggers
acceptation. However, most current solutions do not allow a natural com-
munication, and modern techniques to obtain such systems require large
amounts of data to be trained, which is scarce in these scenarios. This
causes industrial task-oriented systems to be highly specific, which limits
their capacity to be modified or reused in other use cases, which is bound
to high development time and costs.

To overcome these challenges, this thesis leverages Semantic Web Tech-
nologies and Natural Language Processing (NLP) techniques to develop
KIDE4I, a semantics-based task-oriented dialogue system for industrial
scenarios that allows a natural communication between human workers
and industrial systems. The modules in KIDE4I have been designed from
a generic perspective, with the objective of simplifying the process of adap-
tation to new use cases. In this line, different methodologies and resources
have been proposed to promote reuse and encourage the continuous im-
provement of the dialogue system through new interactions.

Among these resources, the TODO (Task-Oriented Dialogue manage-
ment Ontology) is the core of KIDE4I. This modular ontology is in charge
not only of modelling the domain, but also the dialogue process and the
storage of traces. It has been developed by following a well-known method-
ology, LOT, which is reflected in its high quality.

KIDE4I has been implemented and adapted for four industrial use

cases, proving that the adaptation process is not complex and it benefits

from the reuse of resources. Three of these have been evaluated through

user studies, and the results obtained are reported.
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Resumen

En Industria 5.0, en la cual la automatización tiene un papel cada vez
más importante, los trabajadores y su bienestar son cruciales en el pro-
ceso de producción. En este contexto, los sistemas de diálogo orientados
a tareas permiten que los operarios deleguen las tareas más sencillas a los
sistemas industriales mientras trabajan en otras más complejas. Además,
la posibilidad de interactuar de forma natural con estos sistemas reduce la
carga cognitiva para usarlos y genera aceptación por parte de los usuarios.
Sin embargo, la mayoŕıa de las soluciones existentes no permiten una co-
municación natural, y las técnicas actuales para obtener dichos sistemas
necesitan grandes cantidades de datos para ser entrenados, que son esca-
sos en este tipo de escenarios. Esto provoca que los sistemas de diálogo
orientados a tareas en el ámbito industrial sean muy espećıficos, lo que
limita su capacidad de ser modificados o reutilizados en otros escenarios,
tareas que están ligadas a un gran esfuerzo en términos de tiempo y costes.

Dados estos retos, en esta tesis se combinan Tecnoloǵıas de la Web
Semántica con técnicas de Procesamiento del Lenguaje Natural para de-
sarrollar KIDE4I, un sistema de diálogo orientado a tareas semántico
para entornos industriales que permite una comunicación natural entre
humanos y sistemas industriales. Los módulos de KIDE4I están diseñados
para ser genéricos para una sencilla adaptación a nuevos casos de uso.
En ese sentido, se han propuesto distintas metodoloǵıas y recursos para
fomentar el reuso y la mejora continua del sistema de diálogo.

Entre estos recursos, TODO es el núcleo de KIDE4I. Esta ontoloǵıa
modular se encarga de modelar el dominio y el proceso de diálogo, además
de almacenar las trazas generadas. Se ha desarrollado siguiendo una cono-
cida metodoloǵıa, LOT, lo que se refleja en su buena calidad.

KIDE4I se ha implementado y adaptado para su uso en cuatro casos de

uso industriales, demostrando que el proceso de adaptación para ello no es

complejo y se beneficia del uso de recursos. Tres de ellos se han evaluado

a través de estudios de usuario, reportándose los resultados obtenidos.
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Laburpena

Industria 5.0n, automatizazioak geroz eta paper garrantzitsuagoa du,
eta langileak produkzio-prozesuaren erdigunean kokatzen ditu. Testuin-
guru honetan, atazetara bideratutako elkarrizketa-sistemei esker, langileek
ataza errazenak industria-sistemen esku uzten dituzte, konplexuagoak di-
ren beste batzuetan lan egiten duten bitartean. Gainera, sistema hauekin
elkarrizketa modu naturalean gauzatzeak langileek behar duten karga kog-
nitiboa murrizten du, sistema hauen onespena ahalbidetuz. Hala ere,
elkarrizketa-sistema gehienek ez dute komunikazio naturalik ahalbidetzen,
eta sistema horiek lortzeko gaur egungo teknikek datu kopuru handiak
behar dituzte, horrelako testuinguruetan urriak direnak. Horren ondo-
rioz, industrian atazetara bideratutako elkarrizketa-sistemak oso espezi-
fikoak dira eta hauek aldatzea edo berrerabiltzea oso zaila da, denbora eta
ahalegin handia eskatzen baitute.

Erronka hauek gainditzeko, tesi honetan Web Semantikoaren Teknolo-
giak eta Lengoaia Naturalaren Prozesamenduko teknikak uztartzen dira
eta KIDE4I garatu da. Atazetara bideratutako elkarrizketa-sistema se-
mantiko bat da industrian erabiltzeko, gizakien eta industria-sistemen
arteko komunikazio naturala ahalbidetzen duena. Sistema osatzen duten
moduluak generikoak dira, eta erraz molda daitezke erabilpen kasu batetik
bestera. Ildo horretan, hainbat metodologia eta baliabide proposatu dira
elkarrizketa-sistemaren berrerabilera eta etengabeko hobekuntza sustatzeko.
Baliabide horien artean dago TODO ontologia modularra, LOT metodolo-
gia jarraituz garatu dena. Domeinua eta elkarrizketa-prozesua modelatzen
ditu, eta sortutako trazak biltegiratu.

KIDE4I industriako lau erabilpen kasutan inplementatu eta egokitu
da. Horietako hiruretan ebaluazio sakona burutu da, giza erabiltzaileak
erabiliz, eta tesiak lortutako emaitzen berri ematen du. Moldaketa proze-
sua erraza izan dela dela frogatu da, baita baliabideen erabilerari etekina
atera dela ere.
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ogy Metrics tab. Values in parentheses do not consider
imported modules. OP: object properties; DP: data
properties; Ann: annotations; DL Expr: Description
Logics expressivity. . . . . . . . . . . . . . . . . . . . 74

4.2 Results of the evaluation on design correctness per-
formed by OOPS! . . . . . . . . . . . . . . . . . . . . 75

4.3 Results on adherence to FAIR principles, obtained by
FOOPS! . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Distribution of pitfalls found by FOOPS! . . . . . . . 79

4.5 Results of the evaluation on modularity quality. Val-
ues with asterisks refer to values obtained manually.
Ref. value corresponds to the reference values for T2-
type modules (Khan & Keet, 2016). . . . . . . . . . . 82

4.6 Summary of the information obtained through the use
of the population strategy for the guide/logistics use
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Summary of the information obtained through the use
of the population strategy for the CMMS use case. . 94



xxvi List of Tables

4.8 Number of translation equivalents for each PM data
configuration selected and use case. . . . . . . . . . . 96

4.9 Precision (P), recall (R) and F1 metrics for all config-
urations for each use case, and average results. . . . . 96

4.10 Precision (P), recall (R) and F1 metrics for the F+LU
and F+LU+SUMO configurations, comparing the ad-
dition and non-addition of NULL elements. Results
for the guide/logistics use case. . . . . . . . . . . . . 97

5.1 Syntactic features for the sentence ‘Quiero lubricante’.
For extension reasons, only the features for the current
word are depicted. . . . . . . . . . . . . . . . . . . . 111

5.2 Example of annotated sentence from IMH corpus . . 117

5.3 Size of domain datasets and number of occurrences for
each key element, at chunk level. The average number
of words per chunk (AWC) is also provided. . . . . . 118

5.4 Number of word occurrences for each DEST speciali-
sation in domain datasets. . . . . . . . . . . . . . . . 118

5.5 Size of out-of-domain datasets and number of occur-
rences for each key element, at chunk level. The aver-
age number of words per chunk (AWC) is also provided.121

5.6 Number of word occurrences for each DEST special-
ization in domain datasets. . . . . . . . . . . . . . . . 121

5.7 Results of key element identification and classification
algorithms on IMH-TS-HC at chunk level. . . . . . 123

5.8 Results of key element identification and classification
algorithms on IMH-HC at chunk level. . . . . . . . 124

5.9 Out-of-domain data evaluation results using methods
that rely on domain data, performed on HURIC-TS-
HC. For supervised methods, all tree-structure fea-
tures were used for training. . . . . . . . . . . . . . . 126



List of Tables xxvii

5.10 New data evaluation results using methods that rely on
domain and out-of-domain data, performed onHURIC-
TS-HC. For supervised methods, all tree-structure
features were used for training. . . . . . . . . . . . . 126

5.11 Spanish words and scores for each polarity category
obtained with the senti-py library and average scores
for each category. (a) Positive; (b) Neutral-positive;
(c) Negative. . . . . . . . . . . . . . . . . . . . . . . 130

5.12 Classes and individuals for the KIDE4Guide imple-
mentation. . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1 Classes for each KIDE4I adaptation: total and reused
from other resources (TODO included). . . . . . . . . 153

6.2 Instances for each KIDE4I adaptation: total and ob-
tained automatically. . . . . . . . . . . . . . . . . . . 153

6.3 Demographic data for participants in the guide user
study. (a) Gender information. (b) Age information.
(c) Frequency of voice interaction with everyday devices.160

6.4 Demographic data for participants in the bin-picking
user study. (a) Gender information. (b) Age informa-
tion. (c) Frequency of voice interaction with everyday
devices. . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.5 Demographic data for participants in the maintenance
procedure execution assistant ssistant user study. (a)
Gender information. (b) Age information. (c) Fre-
quency of voice interaction with everyday devices. . . 164

6.6 Scores and standard deviation (SD) values over three
different age groups for the two user studies reported
in this section. . . . . . . . . . . . . . . . . . . . . . . 169

6.7 Dialogue completion results for the user studies re-
ported in this work. Values in parentheses stand for
dialogues classified as partially completed. % stands
for percentages and # for absolute numbers. . . . . . 172



xxviii List of Tables

6.8 Number of average number of steps to successfully
complete a dialogue. Values in parentheses stand for
values that exclude steps implemented by default. . . 173

6.9 Sources of the errors observed in the partially com-
pleted and not completed dialogues performed in the
user studies. . . . . . . . . . . . . . . . . . . . . . . . 175

6.10 Average time of response for each use case. . . . . . . 176

A.1 Competency questions for the TODODW module. . . 209

A.2 Competency questions for the TODODFA module. . 210

A.3 Competency questions for the TODODommodule (be-
sides the Competency Question (CQ) for TODODW
and TODODFA). . . . . . . . . . . . . . . . . . . . . 212

A.4 Competency questions for the TODODM module. . . 213

A.5 Competency questions for the TODODM module. . . 213

A.6 Competency questions for the TODODT module. . . 223



List of Abbreviations

AI Artificial Intelligence

ASR Automatic Speech Recognition

BCQ Basic Competency Question

CFG Context-Free Grammars

CMC Collaborative Manipulation Corpus

CMMS Computerized Maintenance Management System

CNN Convolutional Neural Networks

CQ Competency Question

CRF Conditional Random Fields

DL Deep Learning

DLog Description Logic

DM Dialogue Manager

FSAs finite-state automata

FSTs finite-state transducers

HuRIC Human Robot Interaction Corpus

IRI Internationalized Resource Identifier

KEE Key Element Extraction

KIDE4I Knowledge-drIven Dialogue framEwork for Industry

LD Linked Data

xxix



xxx List of Abbreviations

LL Lifelong Learning

LOV Linked Open Vocabularies

LSTM Long Short-Term Memory

LU lexical unit

MCR Multilingual Central Repository

ML Machine Learning

NAF NLP Annotation Format

NER Named Entity Recognition

NERC Named Entity Recognition and Classification

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

ORSD Ontology Requirement Specification Document

OWL Web Ontology Language

PM Predicate Matrix

POS Part-of-Speech

QA Question Answering

RDF Resource Description Language

RDFS RDF Schema

SPARQL SPARQL Protocol and RDF Query Language

SUMO Suggested Upper Merged Ontology

SVM Support Vector Machine

SW Semantic Web

TODO Task-Oriented Dialogue management Ontology

TTS Text-To-Speech



List of Abbreviations xxxi

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XFST Xerox Finite State Tool



xxxii List of Abbreviations



1

Chapter 1

Introduction

Recent technological advances in last decades have caused a great
revolution in industrial settings. Is that so, that terms such as In-
dustry 4.0 –and even more recently, Industry 5.0–, that define sus-
tainable, advanced and human-centred industrial environments, are
now essential in modern industry.

The research area of this thesis is the human-centred component
of Industry 5.0, which situates human workers as one of the fun-
damental pillars in the production process. In this setting, the main
function of digitalisation, rather than replacing workers, is to support
them, and ensuring their security and, most importantly, their well-
being –both physical and mental– when performing their everyday
tasks is of utmost importance. So as to put technological advances
at the service of humans, and not the other way around (Commis-
sion et al., 2021), the use of technologies such as Artificial Intelligence
(AI) to simplify human work in the production process is becoming
widely extended nowadays.

The result is that industrial environments are becoming more au-
tomatised over time, and workers require intuitive and powerful inter-
action techniques so as to successfully perform their assigned tasks
in collaboration with automatisms (Oborski, 2004). In this sense,
workers interact with a wide range of systems at a daily basis, such as
intelligent information systems or advanced collaborative robots, and
it is key to facilitate this interaction to guarantee optimal work condi-
tions. To cover this necessity, Human-Machine Interfaces (HMI) have
increasingly evolved in last years with the development of new mobile
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techniques and new gadgets such as smartphones, tablets or Aug-
mented Reality (AR) glasses. A big number of solutions have been
developed, especially in collaborative robotics, with human-machine
interaction capabilities in different degrees, which allow a more intu-
itive communication with industrial systems, like interaction through
gestures or programming by demonstration (Villani, Pini, Leali, &
Secchi, 2018). Another example are dialogue systems, which allow
workers to interact with industrial systems in a similar way as they
would do with their fellows.

Among dialogue systems, task-oriented dialogue systems –as op-
posed to conversational dialogue systems, which try to emulate reg-
ular conversations– are designed so a target system performs specific
actions upon a user request and, for this, are specially relevant in
industrial contexts. In this sense, task-oriented dialogue systems are
powerful technologies that allow workers to work on multiple tasks
at once by delegating secondary assignments by communicating with
the target system, usually through voice commands. The use of voice
instructions to interact with these systems allow workers to use them
from a safe distance, if necessary, and in a way that they do not need
to interrupt their current tasks, leaving the quality of their work un-
affected. Furthermore, enhancing these systems with the capability
of interacting with users in natural language release workers from
having to learn specific words of commands to use them.

Taking this into account, this thesis is focused on supporting hu-
man workers and improve their work conditions when naturally in-
teracting with industrial systems through the use of task-oriented
dialogue systems.

1.1 Problem and Motivation

Although the implementation of complex and innovative tech-
nologies in industrial scenarios has reduced the physical workload of
workers, an increase of the cognitive load to control and manage such
technologies has been observed as a counterpart (Madonna, Monica,
Anastasi, & Di Nardo, 2019). The possibility of communicating to
industrial systems through natural language is highly encouraged,
since it reduces workers’ mental stress and triggers acceptance (Kil-
dal et al., 2019), as users do not have to memorise specific words or
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sequences to interact with them. However, to develop systems that
facilitate a natural interaction between humans and industrial sys-
tems –being task-oriented dialogue systems the most common– by
using current state-of-the art technologies, such as Deep Learning
(DL) techniques, is a difficult task, and leads to a series of challenges
in their design process. The main issues to develop task-oriented dia-
logue systems for industrial environments that allow communication
in natural language can be summarised in the following points:

1. Lack of training data. The main challenge regarding the
use of DL to develop task-oriented dialogue systems capable of
interacting through natural language is that great amounts of
data for training are needed, and currently available data is usu-
ally bound to specific domains and is also scarce (Budzianowski
et al., 2018), especially in industrial scenarios (Luckow et al.,
2016) and languages other than English.

2. Restricted natural language communication. Since us-
ing modern technologies is conditioned by the lack of data de-
scribed above, most dialogue solutions designed for industrial
settings are highly specific for the application they are intended
to. These solutions usually make use of static structures and
rigid language and, thus, communication through natural lan-
guage is quite restricted (Bugmann & Pires, 2005; Veiga, Pires,
& Nilsson, 2009).

3. Difficult-to-adapt solutions. Due to the high specificity of
dialogue systems designed for industrial environments, their ca-
pacity to be reused in other scenarios is very limited and usually
bound to expert manual work and high development time and
costs (Jurafsky & Martin, 2020).

One possible approach to overcome the challenges described above
is to make use of Semantic Web Technologies to develop a task-
oriented dialogue framework that allows a natural communication
between workers and industrial systems. These technologies are a
powerful asset that allows to define in detail the domain of applica-
tion, reduce ambiguity between agents (Antonelli & Bruno, 2017) and
to easily model the dialogue process through relationships between
individuals and their properties. Moreover, the use of semantics to
develop such a dialogue system framework benefits from one of the
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main premises of these technologies: reuse, which enables the de-
velopment of a generic framework that can reused in different use
cases.

As a result, and motivated by the remarks above, this thesis
presents KIDE4I, a generic semantics-based task-oriented dialogue
system framework for industrial scenarios which has as main objec-
tive to enable workers to naturally interact with industrial systems.
To achieve that, semantic technologies are used as its core component,
and its design is generic enough to allow an easy adaptation to dif-
ferent industrial applications –such as collaborative tasks, guidance,
information systems, assistance, etc.– and languages without requir-
ing great amounts of training data to be constructed. Furthermore,
its architecture is designed so each of its components reuse existing
ontologies and resources and technologies from the NLP field, which
considerably reduce their adaptation time and effort.

To prove KIDE4I’s easy adaptability to different scenarios, it has
been initially implemented for a guide robot, with capabilities that
are analogous to logistics robots. This initial, basic implementation
has been performed with a generic perspective, so as to serve as the
starting point for future adaptations. With this initial implementa-
tion, KIDE4I has been adapted to three different use cases that are
relevant to industrial settings, for the Spanish language: a bin-picking
robot, a computerised maintenance management software (CMMS)
and an assistant for maintenance procedure execution. The guide,
bin-picking and assistant adaptations have been validated and eval-
uated with three user studies, which are described and reported in
this thesis.

1.2 Thesis objectives and contributions

The main objective of this thesis is to develop a system that al-
lows a natural communication between users and industrial systems,
characterised by being easily adaptable to new use cases and lan-
guages and that is able to learn from new interactions. To achieve
this, a generic framework for task-oriented dialogue systems based on
semantic technologies is proposed.

To achieve this goal, the following actions are devised:
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• To develop a core, easy-to-adapt ontology that provides task-
oriented dialogue systems with the necessary means to be capa-
ble of naturally interacting with workers (both at understanding
and at communication level), that can be easily adapted to dif-
ferent industrial scenarios and languages –reducing adaptation
time and costs–, and allows to store and reproduce the dialogue
process.

• To develop a generic task-oriented dialogue system that uses
the ontology described above as its core to enable a natural
interaction between users and industrial systems.

• To obtain an initial implementation of the generic task-oriented
dialogue system that sets the foundations for new adaptations,
oriented to make the resources developed reusable.

• To validate the proposed generic semantic task-oriented dia-
logue system through its adaptation to four use cases that are
of relevance in industrial scenarios.

• To evaluate three of the use case adaptations through user stud-
ies.

Given these objectives, this thesis makes the following contributions:

• The Task-Oriented Dialogue management Ontology (TODO),
a core, modular ontology for task-oriented dialogue systems.
This contribution is addressed in Chapter 4.

• The Knowledge-drIven Dialogue framEwork for Industry
(KIDE4I), a generic semantic-based task-oriented dialogue sys-
tem that uses TODO as its core and allows a natural interaction
between users and industrial systems. This contribution is ad-
dressed in Chapter 5.

• A strategy that leverages existing multilingual lexical, semantic
and syntactic resources to semi-automatically populate domain
ontologies with intent-related information. This contribution is
addressed in Section 4.6.

• A strategy to perform domain data augmentation with data
from different but similar domains for semi-supervised key ele-
ment extraction. This contribution is addressed in Section 5.1.
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• An evaluation framework for task-oriented dialogue systems in
industrial scenarios. This contribution is addressed in Chapter
6.3.

1.3 Thesis structure

So as to achieve the objectives and report the contributions de-
scribed above, the rest of this thesis is divided in the following chap-
ters:

• Chapter 2: Fundamental Technologies, Tools and Resources.
It describes the fundamental technologies that take part in
this thesis, focusing in task-oriented dialogue systems, Semantic
Web Technologies and Natural Language Processing.

• Chapter 3: Research Framework. It provides state-of-the-art
information on task-oriented dialogue systems, their use in in-
dustrial environments and the use of semantic technologies in
their development.

• Chapter 4: The Task-Oriented Dialogue management Ontol-
ogy (TODO). This chapter thoroughly describes TODO. In
here, the process to develop the ontology is reported in terms
of the methodology to do so, and details on its conceptuali-
sation, implementation, evaluation and publication and imple-
mentation are provided. Also, the strategy to populate TODO
semi-automatically using existing resources is reported.

• Chapter 5: KIDE4I: Generic Semantic Task-Oriented Dialogue
System. This chapter describes the main architecture of KIDE4I,
thoroughly describing its modules and their function. The ini-
tial implementation for the guide/logistics robot is provided for
each of the domain-dependent modules.

• Chapter 6: KIDE4I in Use. In this chapter, the adaptation
process of KIDE4I in three industry-relevant use cases –a bin-
picking robot, a CMMS (Computerized Maintenance Manage-
ment System) and a maintenance procedure execution assistant–
is reported. These adaptations, along with the guide/logistics
robot implementation, are validated and evaluated.
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• Chapter 7: Conclusions and Further Work. This chapter sum-
marises the main contributions of this thesis and future direc-
tions of its achievements are discussed.

1.4 Publications

Part of the work in this thesis has been presented at conferences
and published at scientific journals of impact. This section lists all of
them, along with the chapters in this thesis their content is related
to.

1.4.1 Conference Papers

• Kildal, J., Fernández, I., Lluvia, I., Lázaro, I., Aceta, C., Vi-
dal, N., & Susperregi, L. (2019). Evaluating the UX obtained
from a service robot that provides ancillary way-finding sup-
port in an industrial environment. In Advances in Manufactur-
ing Technology XXXIII: Proceedings of the 17th International
Conference on Manufacturing Research, Incorporating the 34th
National Conference on Manufacturing Research (pp. 61-66).
- Chapter 5.1 – Key Element Extraction.

• Aceta, C., Fernández, I., & Soroa, A. (2021). Ontology Popula-
tion Reusing Resources for Dialogue Intent Detection: Generic
and Multilingual Approach. In Proceedings of the International
Conference on Recent Advances in Natural Language Process-
ing (RANLP 2021) (pp. 10-18). - Chapter 4.6 – Semi-
Automatic Population of Intent-Relevant Information.

• Aceta, C., Fernández, I., & Soroa, A. (2021). TODO: A Core
Ontology for Task-Oriented Dialogue Systems in Industry 4.0.
In Further with Knowledge Graphs (pp. 1-15). IOS Press. (SE-
MANTiCS EU Conference 2021) - Chapter 4 – The Task-
Oriented Dialogue management Ontology (TODO).

• del Pozo, A., Garćıa-Sardiña, L., Serras, M., González-Docasal,
A., Torres, M. I., Ruiz, E., Fernández, I., Aceta, C., Konde, E.,
Aguinaga, D., de la Cruz, M., Altuna, I., Agirre, J., Etxebeste,
I. (2021). EKIN: Towards Natural Language Interaction with



8 Introduction

Industrial Production Machines. In Annual Conference of the
Spanish Association for Natural Language Processing (pp. 5-8).
- Chapter 6 – KIDE4I in Use

• Aceta, C., Casla, P., Fernández, I., & Soroa, A. (2022). KIDE4-
Assistant: an Ontology-Driven Dialogue System Adaptation for
Assistance in Maintenance Procedures. FOMI’22: Formal On-
tologies Meet Industry. (submitted) - Chapter 6 – KIDE4I
in Use.

1.4.2 Journal Publications

• Aceta, C., Kildal, J., Fernández, I., & Soroa, A. (2021). To-
wards an optimal design of natural human interaction mecha-
nisms for a service robot with ancillary way-finding capabilities
in industrial environments. Production & Manufacturing Re-
search, 9(1), 1-32. - Chapter 5.1 – Key Element Extrac-
tion.

• Aceta, C., Fernández, I., & Soroa, A. (2022). KIDE4I: A
Generic Semantics-Based Task-Oriented Dialogue System for
Human-Machine Interaction in Industry 5.0. Applied Sciences,
12(3), 1192. - Chapters 5 –KIDE4I: Generic Seman-
tic Task-Oriented Dialogue System– and 6 –KIDE4I in
Use.
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Chapter 2

Fundamental Technologies,
Tools and Resources

This chapter aims to provide basic notions regarding the core
technologies of the research performed in the context of this thesis:
on the one hand, task-oriented dialogue systems –more precisely,
the pipeline-based ones– and, on the other hand, Semantic Web
Technologies.

Furthermore, specific parts of this thesis make use of existing tools
and resources in the Natural Language Processing (NLP) field.
This chapter also reports them and their characteristics.

2.1 Dialogue Systems

Dialogue systems are pieces of software designed to have the ca-
pacity of interacting with human users through natural language
(such as text or speech) or other natural modes of communication
(such as gestures).

The literature distinguishes between two types of dialogue sys-
tems: task-oriented and conversational. On the one hand, task-
oriented dialogue systems are expected to trigger an action to be
performed according to a user request, such as booking a hotel, mak-
ing a reservation at a restaurant or making phone calls. Modern
examples of task-oriented dialogue systems that can be found in ev-
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eryday settings are virtual assistants, such as Alexa or Siri1. On the
other hand, conversational dialogue systems do not have a specific
goal associated to a command but to keep a conversation with the
user about one or different topics.

In this thesis, the focus will be put on task-oriented dialogue
systems, which will be described in the following lines.

2.1.1 Task-Oriented Dialogue Systems

As noted above, the main goal of task-oriented dialogue systems
is that, from a user request, a specific action that supports the user
in carrying out some task is performed.

Traditionally, task-oriented dialogue systems follow a pipeline-
based architecture, in which a series of independent modules inter-
vene in the dialogue process by performing specific actions given a
user input, from its utterance to the response generated by the sys-
tem. This architecture is opposed to the one for end-to-end task-
oriented dialogue systems (Yang, Li, & Quan, 2020), which encapsu-
late all the input-output process in a single step.

Come as it may, according to Jurafsky and Martin (2020), most
task-oriented dialogue systems nowadays are based on frame struc-
tures, in which the action to perform by the system requires a set of
pieces of information to be supplied by the user in its input. If any
information is missing, the dialogue system will engage with the user
to obtain all the necessary information for the requested task to be
performed.

Considering this, this section will, first, provide an overview of
the foundations for frame-based dialogue and, finally, a basic de-
scription of the typical modules in the architecture of pipeline-based
task-oriented dialogue systems, which are the type of task-oriented
dialogue systems that this thesis will deal with.

1These also have conversational capabilities, but in here the focus is put in
them as virtual assistants to perform actions such as setting an alarm or sending
a message.
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2.1.1.1 Foundations of Frame-Based Dialogue: the GUS
Architecture

Nowadays, a wide range of modern commercial task-oriented dia-
logue systems are to some extent inspired in the Genial Understander
System (GUS) architecture in Bobrow et al. (1977), which is a task-
oriented dialogue system framework developed for the travelling do-
main (Jurafsky & Martin, 2020). This architecture conceives task-
oriented interactions as a slot-filling process based on frame struc-
tures. These structures model the user intentions when directing a
command to the target system –the intents– and the elements that
take part in them in a slot form, to be filled with information pro-
vided by the user. For example, for a traditional assistant for travel
booking, ‘book a plane’, would be an intent, and some of its slots
would be the origin city, the destination city, the departure time and
the departure date. Furthermore, the fillers for these slots are re-
stricted to a series of specific values (e.g., for a slot ‘departure date’,
the fillers can only be dates and not city names).

The process to obtain a system output from an user input follows
a simple logic in GUS. First of all, three main pieces of information
are extracted from the user command: the domain, the user intent
and the slot fillers. For example, given the user request “I want to
book a seat for the last train on Monday from Barcelona to Madrid”,
GUS would extract the following information:

• Domain: train-travelling

• Intent: book-train

• Slot - Origin-City: Barcelona

• Slot - Destination-City: Madrid

• Slot - DepartureDate-Day: Monday

• Slot - DepartureDate-Time: last

To obtain the domain, the intent and the slot fillers, GUS relies
on static hand-written rules that determine this information based on
the structure of the user input. Example (1) shows a rule to determine
the set-alarm intent from the alarm-clock domain (extracted from
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Jurafsky and Martin (2020)), and Example (2) shows a possible rule
to determine the fillers for the Origin-City and the Destination-City
slots, respectively, in GUS.

(1) a. wake me (up) | set (the | an) alarm | get me up

(2) a. ‘from {ORIGIN-CITY}’
b. ‘to {DESTINATION-CITY}’

Once all the information has been extracted from the user com-
mand, GUS determines whether all the necessary slots for the re-
quested intent have been filled. If there is missing information, it
will generate an output requesting the user for the values for the slots
that do not have a filler. In GUS, this output is generated according
to a set of templates created for each slot type and considering the
slots filled. For instance, the output in Example (3) would be used
by GUS if the information for the Destination-City slot was missing
and the Origin-City slot was filled:

(3) a. ‘Where do you want to go to from {Origin-City}?
b. ‘Where do you want to go to from {Barcelona}?

In this dialogue conceptualization, the dialogue is considered as
finished when all the necessary slots have been filled.

2.1.1.2 Pipeline-Based Task Oriented Dialogue Systems

Task-oriented dialogue systems, as mentioned above, are usually
based on pipeline architectures inspired in the one in GUS, although
they are more complex and modern. These architectures, as Gao,
Xiong, Bennett, and Craswell (2022) note, are inspired in the prin-
ciples of human cognition. In this sense, cognition is defined as a
process in which the information in the environment and the internal
conception of this environment (the properties and characteristics of
the elements that are present based on one’s perception) are obtained
to then decide which action to take to modify that environment.

Considering this, pipeline-based task-oriented dialogue systems
consist of a set of components that recreate to some extent the cog-
nition process by supplying the following functions:
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Figure 2.1: Typical architecture of a pipeline-based task-oriented di-
alogue system.

• To obtain an uttered user request in a text form: Automatic
Speech Recognition (ASR) component2.

• To interpret the user’s command: Natural Language Un-
derstanding (NLU) component.

• To manage the dialogue process: Dialogue Manager (DM)
component.

• To generate the response(s) to be presented to the user: Nat-
ural Language Generation (NLG) component.

• To output the generated system response in a voice form: Text-
To-Speech (TTS) component2.

Figure 2.1 shows the typical architecture of a pipeline-based task-
oriented dialogue system considering the components above. First,
the user utters a request directed to the system. The audio gen-
erated serves as input to the ASR component, which transcribes it
and outputs a string that corresponds to the user command. This
user command in string form is processed by the NLU module, which

2 If the task-oriented dialogue system has speech-understanding/generation
capabilities.
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determines the domain of the user command and the intent to then
retrieve the slots that apply to them. Then, the relevant pieces of
information are obtained from the command to fill the slots. This
information is given to the DM, which supplies two main functions3:
first, it checks whether all the slot information has been filled in the
NLU module and, then, it determines the action to execute depend-
ing on the outcome of this slot verification. With this information,
the NLG module is in charge of generating a suitable output response
that deals with the action determined by the DM. Finally, the out-
put generated by the NLG module is converted into audio in the TTS
component, which is then returned to the user.

As it can be observed, in pipeline-based task-oriented dialogue
systems the situation is indeed similar to human cognition: the sys-
tem obtains a conceptualisation of the environment according to in-
formation provided in previous dialogues and the user command in
the NLU component and, then, it determines in the DM the action
to execute considering this environment conceptualisation. The re-
sult is an output to be generated by the NLG module and/or a task
execution (in case that all the necessary information to perform it
has been obtained).

To develop each of the modules described in this section, there are
several approaches in the literature. These are described in Chapter
3.

2.2 Semantic Web Technologies

The concept of Semantic Web (SW) –also referred as Web of Data
or Web 3.0– was coined by Sir Tim Berners-Lee in 2001 (Berners-
Lee, Hendler, & Lassila, 2001), in a context in which the World Wide
Web –Web from now on–, had made information openly available
to people in a human-understandable form, being a new paradigm
for information sharing at the time. According to Allemang and
Hendler (2011), the main features of the Web can be summarised in
the following:

3In fact, some authors divide this module into two submodules: the dialogue
state tracker and the dialogue policy, respectively (Gao, Galley, Li, et al., 2019).
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• The AAA (Anyone can say Anything about Any topic)
slogan. The Web has provided people with freedom to express
and publish on the Web content about any topic.

• The Open World Assumption. As a consequence of the
AAA slogan, it cannot be assumed that all information in the
world has been published, not even all the information in regard
to a specific topic/entity.

• The Web as a data wilderness. Considering the AAA slogan,
in which people can contribute to the Web with anything, this
means that there are all sorts of valuable information in any
number of forms, and, due to this, it may not be understand-
able.

• The network effect. As anybody can publish anything on the
Web, the more people that can consume it, the more content is
created and the more people that contribute to it, resulting in
a participation spiral.

• The Nonunique Naming Assumption. As there is no co-
ordination between Web contributors regarding the naming of
the resources they create, it is safe to assume that the same
entity may be referred in more than one way.

Considering these features, the Web includes all sorts of poten-
tially valuable information, but in an unstructured way and only
consumable by humans. With the goal of facilitating cooperation be-
tween humans and machines, the SW was conceived as an extension
of the Web to make the information on it also accessible to machines:

“The Semantic Web is not a separate Web but an extension
of the current one, in which information is given well-defined
meaning, better enabling computers and people to work in
cooperation.” (Berners-Lee et al., 2001)

This cooperation was based on the possibility of humans to dele-
gate on machines “sophisticated tasks” (Berners-Lee et al., 2001) on
the data on the Web. Furthermore, the SW not only allows to struc-
ture the data on the Web, but also allows to establish links between
the different pieces of information in it.
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As the SW intends to provide a structured and interoperable
means of accessing and linking data on the Web, it is important
to have a set of standards to represent, present and exploit informa-
tion. The organism that is in charge of providing these resources is
the World Wide Web Consortium (W3C).

The following lines will describe the main concepts in relation to
the Semantic Web.

2.2.1 Linked Data

As described previously, one of the main objectives of the SW is to
structure data so it can be consumed by both people and machines.
In this sense, Linked Data (LD) stands for the set of best practices
for the data in the Web to be interlinked, resulting in a global data
space. For this data to be properly linked, stored and accessed, the
commonly known as Linked Data Principles were defined (extracted
from (Berners-Lee, 2006)):

• Use Uniform Resource Identifiers (URIs) as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information.

• Include links to other URIs, so that they can discover more
things.

However, LD is not conceptualised as a replacement of other data
sources (such as databases) but as complementary in the sense that
the fulfilment of these principles is encouraged to be able to access,
process and structure heterogeneous sources of data.

2.2.2 The Building Blocks of the SW: RDF, OWL
and Ontologies

TheResource Description Language (RDF) is the data model
convention created by the W3C to represent and relate the different
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Figure 2.2: RDF triple representing “My laboratory contains my
machine”. Each element in the triple is represented in a HTTP URI
form.

resources on the Web so they can also be understandable by machines
as LD. This language describes resources in terms of triples that con-
sist on the following components: the subject, the predicate and
the object. To illustrate these components, Figure 2.2 depicts an
RDF triple that represents the statement “My laboratory contains
my machine”. As it can also be observed in the Figure, each element
of the triple is represented in a HTTP URI/Internationalized Re-
source Identifier (IRI)4 form (Cyganiak, Wood, & Lanthaler, 2014).
The use of URIs/IRIs to designate different pieces of data allows to
identify them unambiguously. A set of RDF triples constitutes an
RDF graph.

As specified above, RDF is a data model to describe resources
in the Web and, therefore, it is a theoretical conception. So as to
be interpreted by machines, it needs to be represented in a machine-
readable format. For this, different serialisation formats have been
created, some of which are standardised by the W3C and others not,
but are widely used due to their easiness to be generated and under-
stood by humans. The most common serialisation formats are the
following:

• RDF/XML5. It is a standardised format to serialise RDF
triples by using XML syntax. Although it is extensively used
in the SW, it is not especially human-friendly to write or read.

4URIs are limited to US-ASCII characters, whereas IRIs support Unicode
characters. Thus, URIs are a subset of IRIs. The main advantage of IRIs is
that they reduce incompatibilities in the long run, as a wider range of characters
are accepted. RDF accepts the use of both URIs and IRIs.

5https://www.w3.org/TR/rdf-syntax-grammar/

https://www.w3.org/TR/rdf-syntax-grammar/
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The following example serialises a situation in which a labora-
tory myLaboratory contains a machine myMachine:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"

xmlns:dom="http://foo.bar/domainOntology#">

<rdf:Description rdf:about="http://foo.bar/

laboratoryOntology#myLaboratory">

<dom:contains rdf:resource="http://foo.bar/

machineOntology#myMachine"/>

</rdf:Description>

</rdf:RDF>

• N-Triples6. This non-standard format serializes RDF triples
in plain-text form, and makes use of the absolute (that is, com-
plete) URIs/IRIs of each element in the triple. These elements
are juxtaposed, separated by spaces, and the triple represented
ends with a dot. This representation is easily readable for hu-
mans. The following example shows the situation described
above in the N-Triples format.

<http://foo.bar/laboratoryOntology#myLaboratory>

<http://foo.bar/domainOntology#contains>

<http://foo.bar/machineOntology#myMachine> .

• Turtle 7. Turtle is a non-standard format inspired in N-Triples,
and allows URI/IRI abbreviation by making use of prefixes, re-
sulting in a compact format that is easily readable for humans.
The following examples shows the situation described above in
the Turtle format.

@PREFIX dom:<http://foo.bar/domainOntology#>

@PREFIX lab:<http://foo.bar/laboratoryOntology#>

@PREFIX mach:<http://foo.bar/machineOntology#>

lab:myLaboratory dom:contains mach:myMachine .

In order to to provide RDF with semantic significance, semantic
extensions are used (Hayes & Patel-Schneider, 2014). In this sense,

6https://www.w3.org/TR/rdf-testcases/#ntriples
7https://www.w3.org/TeamSubmission/turtle/

https://www.w3.org/TR/rdf-testcases/#ntriples
https://www.w3.org/TeamSubmission/turtle/
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RDF Schema (RDFS) is a basic semantic extension for RDF,
that allows to group resources in classes (rdfs:Class) and deter-
mine specific properties (rdfs:Property) on them. These properties
account for the belonging to a specific class (rdf:type), the hier-
archical characteristics of classes and properties (rdfs:subClassOf
and rdfs:subPropertyOf, respectively), the human-readable infor-
mation about resources, such as a label (rdfs:label), comments
(rdfs:comment) or where to find additional information (rdfs:see
Also), as well as their provenance (rdfs:isDefinedBy). RDFS also
allows to characterize8 the resources that may be the subject (rdfs:
domain) and the object (rdfs:range) of a triple in which a spe-
cific property is involved (e.g., for the property contains, as in the
examples in this section, if its domain are resources from the class
Laboratories and its range are resources from the class Machines,
then it can be assumed that the subject of any triple with the pred-
icate contains is of the class Laboratories and the object of the
class Machines).

With RDF it is possible to represent data and their relations
so that machines can interpret them explicitly but not implicitly,
which means that additional information cannot be inferred from
explicit representations. For example, considering the situation de-
scribed in the previous examples, in RDF it cannot be assumed that
myMachine is contained by myLaboratory, even when the relation
myLaboratory contains myMachine is explicitly described. RDFS
does allow a basic inference (for example, given the class Machine

and the subclass BigMachine, it can be inferred that a member of
the class BigMachine is also a member of the class Machine), but in
a limited way.

To represent rich and complex knowledge, the Web Ontology
Language (OWL), which at the time is at its version 2.0 –it will
be referred as simply OWL–, was created. OWL goes a step beyond
representing content on the Web, and allows to model complex rela-
tions that can be exploited and interpreted by machines, providing a
more expressive representation of Web content through the inference
of new information by making use of reasoners. In a nutshell, OWL

8In no case domain and range establish restrictions on the class the subjects
and objects may belong; these are descriptive features. In this sense, if a resource
that is out of the domain of the property is the subject of the triple, it will be
inferred that said resource belongs to the class in the domain, although it may
not be consistent with reality.
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supports the following (Motik & Patel-Schneider, 2012):

• Relationships between classes and properties. OWL enables
establishing relationships between classes and properties other
than hierarchical (i.e., rdfs:SubClassOf, rdfs:SubProperty
Of). In this sense, class/property disjointness (owl:disjoint
With) is very important, as it allows to state that specific
classes/properties cannot overlap. As for class disjointness,
the members of a class cannot belong to its disjoint. For in-
stance, given the disjoint classes Machine and Laboratory, the
instances of Machine cannot belong to Laboratory, and vice-
versa. For disjoint properties, the same individual cannot be
related to the same (other) individual through properties that
are disjoint. An example are the disjoint classes hasParent and
hasChild, since a given person A cannot be the parent and the
child of a given person B.

• Enriched properties. OWL provides richer characterisations of
properties:

– Inverse properties. When two properties are inverse, if
the subject A is related to the object B through one of
these, the relation B inverseProperty A is inferred. For
example, considering the inverse properties contains and
isContainedBy:

∗ myLaboratory contains myMachine .

implies myMachine isContainedBy myLaboratory .

– Symmetrical properties. If a property is symmetrical, it
means that, given the relation A property B, the prop-
erty B property A is inferred. For instance:

∗ John isMarriedTo Mary .

implies Mary isMarriedTo John .

– Transitive properties. When a property is transitive, if the
same property is given between a subject A and an object
B but also between subject B and object C, it is inferred
that A property C, as it can be seen below:

∗ CPU isPartOf motherboard .

motherboard isPartOf PC .

implies CPU isPartOf PC .
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– Functional/InverseFunctional properties. Functional and
InverseFunctional allow to infer equality between concepts.
A typical example of functional property is hasMother.
Since a person can only, biologically speaking, have one
mother, if a subject A is related to objects B and C through
the property hasMother, it can be inferred that B and
C are equal (and can be related through the property
owl:sameAs). For instance:

∗ Mark hasMother Mary .

Mark hasMother MarySmith .

implies Mary owl:sameAs MarySmith .

As for InverseFunctional, these properties establish a one-
to-one relationship between a subject and an object. hasID
is an example, since a person can only have an ID and an
ID can only apply to one person:

∗ Mary hasID 45623964B .

– Reflexive/Irreflexive properties. Reflexive properties allow
an individual to be related to themselves. For example,
combs would be reflexive, as a person can comb themselves
(i.e., A combs A). Irreflexive properties do not allow that.

– Property composition (Krötzsch, Simancik, & Horrocks,
2012). In OWL it is also possible to define properties as
the result of chaining two or more properties (also known
as complex role inclusion axioms). For example, given the
statement A uncleOf B, an equivalent affirmation would
be that “A is the brother of the parent of B” and, thus,
uncleOf can be also expressed by chaining the properties
brotherOf and parentOf:

∗ SubObjectPropertyOf

(ObjectPropertyChain(brotherOf ParentOf)

uncleOf)

∗ A brotherOf C .

C parentOf B .

implies A uncleOf B .

• Restrictions. OWL allows to establish restrictions on the range
of properties, such as cardinality, which determines, for exam-
ple, the number of minimum or maximum objects that sub-
jects of a given class may be related to through a specific
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property. For instance, given the property hasChild, with a
domain Mother, it can be established that any member of the
class Mother must be related to a minimum of one instance
(without specifying its class) through the property hasChild,
as for a person to be considered a mother needs to have at
least one child. If the cardinality also states that the individual
must be of the class Child, it is considered a qualified cardinal-
ity. The difference is illustrated in the following formalisms:

– Class(Mother,

subClassOf(Restriction

(hasChild, minCardinality(1))))

Regular cardinality: a mother is related to minimum one
instance through the property hasChild.

– Class(Mother,

subClassOf(QualifiedRestriction

(hasChild valuesFrom(Child) minCardinality(1)

)))

Qualified cardinality: a mother is related to minimum one
instance of the class Child through the property hasChild.

Other restrictions in OWL enable to define classes according
to specific property values; that is, to establish object value
restrictions. For example, given a class NonVegetarianFood,
it may have a restriction that sets that any individual that
contains meat (hasIngredient meat) belongs to it:

– Class(NonVegetarianFood,

subClassOf(Restriction

(hasIngredient, hasValue(meat))))

– Burger hasIngredient meat .

implies Burger a NonVegetarianFood .

• Literals and datatypes. Ontologies in OWL can also use literal
values for classes and individuals. For example, a given indi-
vidual MachineA may have its serial number associated through
the property hasSerialNumber. As it is not necessary to model
an individual for that information, a literal may be used. OWL
also allows to establish how the literal must be read as; that
is, its datatype. Datatypes account for different literal types,
such as booleans (xsd:boolean) or numbers (xsd:integer,
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Figure 2.3: Basic components of an ontology.

xsd:float), among others. The use of literals and datatypes
can be observed in the following examples:

– MachineA hasSerialNumber "726S4872" .

No datatype.

– MachineA hasSerialNumber "726S4872"^^xsd:string .

The literal “726S4872” must be read as a string.

Taking into account the wide range of relations that OWL allows
(that is, its expressivity), this language also enables ontology devel-
opment environments to verify, through reasoning, the consistency
of data. If an inconsistent statement is found (e.g., a member of
the class Laboratory is also a member of the class Machine, and
those two classes are disjoint), it is possible for the reasoner to raise
inconsistencies on data, that allow to identify modelling errors.

Considering the characteristics of RDFS and the modelling com-
plexity that OWL allows, it is possible to represent complex knowl-
edge in the form of ontologies. Ontologies are classically defined as
“a formal, explicit specification of a shared conceptualisation” (Gru-
ber, 1993). That is, ontologies are a formal representation to define
and classify the concepts and the resources in the Web, as well as the
relationships between them, regarding a specific subject. Ontologies
consist of three basic components, all of them identified through IRIs,
which can also be seen in Figure 2.3:

• Classes define groups or categories, which can be arranged
hierarchically by using super- and sub-classes.
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• Properties are equivalent to predicates, and allow to relate
and describe classes and individuals.

• Instances (or individuals) represent the entities that belong
to a class. The set of instances in an ontology is called ontology
instantiation.

To formally represent the logic in OWL ontologies and describe
their expressivity, formalisms and concepts from the Description Logic
(DLog) field are used. Description logics9 allow to describe and repre-
sent knowledge in a structured form and enable computers to perform
reasoning on it, and constitute the basis of OWL ontologies (Baader,
Horrocks, Lutz, & Sattler, 2017). Thus, it is possible to describe
the expressivity of an ontology by using DLog terminology, consid-
ering the type of knowledge modelled. One of the most popular and
basic description logics in DLog is ALC (Attributive Language with
Complements) (Baader et al., 2017). Depending on the additional ex-
pressivity (in this case, of the ontology), ALC has a set of extensions,
being the most important in the context of this thesis the following:

• F - Presence of functional properties.

• H - Presence of property hierarchy (i.e., presence of subprop-
erties).

• R - Presence of limited complex role10 inclusion axioms (Baader
et al., 2017) and reflexive/irreflexive and disjoint properties.

• O - Presence of object value restrictions (e.g., owl:hasValue).

• I - Presence of inverse properties.

• N - Presence of cardinality restrictions.

• Q - Presence of qualified cardinality restrictions.

• (D) - Presence of datatypes and/or literals.

9Note the difference between Description Logics as a field and description logic
as a logic type used for description (which is in the field of Description Logics).

10In DL, roles are equivalent to properties in OWL.
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To refer to ontologies with ALC expressivity that also present
transitive properties, the label S is used.

According to Baader et al. (2017), OWL 2 has a SROIQ ex-
pressivity. Depending on the purpose or characteristics of the on-
tology, the presence of such rich expressivity may incur in reasoning
efficiency problems. For this, three subsets (called profiles) of OWL
have been released, which sacrifice different characteristics of OWL to
ensure efficiency when performing reasoning on ontology data (Motik
et al., 2012). The different profiles for OWL –which account for dif-
ferent ontology configurations depending on the purpose of the target
application– are the following:

• OWL 2 EL. For applications that make use of ontologies with
a large number of properties and/or classes.

• OWL 2 QL. For applications that make use of ontologies with
a large number of instances.

• OWL 2 RL. For applications that perform reasoning through
rule-based reasoners.

2.2.3 Querying the Semantic Web: SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) (Harris
& Seaborne, 2013; W3C, 2013), in its version 1.1, is the standard
language for querying in the SW. It has been designed to query and
handle content in RDF format, and its syntax is inspired in both SQL
and Turtle languages.

To be able to extensively process data in RDF format, SPARQL
supports the following operations on RDF data:

• SELECT. To retrieve values from a RDF graph according to
a set of restrictions, supporting different output formats, such
as tabular, XML, JSON or CSV/TSV.

• CONSTRUCT. To retrieve information in RDF format ac-
cording to a set of restrictions.

• ASK. To retrieve a True/False result on a set of restrictions
set in the query.
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• DESCRIBE. Used to obtain relevant information from a spe-
cific instance in RDF format. This relevant information is not
determined by the user/system performing the query, but by
the query service (Harris & Seaborne, 2013).

• INSERT. Used to insert data in a given RDF graph.

Furthermore, SPARQL also supports more complex constructions,
being common to order results (ORDER BY), set constraints (FILTER),
avoid duplicates (DISTINCT) or set optional restrictions (OPTIONAL).

The following is a simple example of a SPARQL SELECT query
used to retrieve the elements (?machine) that are contained by the
individual myLaboratory:

PREFIX dom:<http://foo.bar/domainOntology#>

PREFIX lab:<http://foo.bar/laboratoryOntology#>

PREFIX mach:<http://foo.bar/machineOntology#>

SELECT ?machine

WHERE {
lab:myLaboratory dom:contains ?machine .

}

As it can be observed, this query consists of three main elements:
the prefix declaration, the variables to return (preceded of SELECT),
and the pattern to retrieve the desired information from (preceded of
WHERE), in a similar manner as in SQL syntax.

2.3 Natural Language Processing

Natural Language Processing (NLP) is the branch of Computer
Science that deals with providing computers with the ability of gen-
erating, processing and understanding natural language in the same
way as humans. This discipline is intersected with the Linguistics
field, which provides the foundations and mechanisms to enable the
development of NLP resources.
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The main challenge for the NLP field is to deal with the compli-
cated nature of human language:

“Human language is highly ambiguous [...], and also highly
variable [...]. It is also ever changing and evolving. People
are great at producing language and understanding language,
and are capable of expressing, perceiving, and interpreting
very elaborate and nuanced meanings. At the same time,
while we humans are great users of language, we are also very
poor at formally understanding and describing the rules that
govern language.” (Goldberg, 2017)

Following the quote above, NLP is centred in the research on the
methods that allow computers to cope with the particularities of hu-
man language and extract the patterns and formulations to do so.
Nevertheless, this discipline also provides mechanisms to use com-
puters to work with language data at a shallower level (e.g., word
frequencies or average number of words in a text/sentence).

Among the tasks that NLP applications perform, the most com-
mon are the following:

• Speech recognition / speech generation. These tasks deal
with spoken language. On the one hand, speech recognition (or
speech-to-text) deals with spoken language and transcribes it to
obtain its textual form. On the other hand, speech generation
(or text-to-speech) consists on the inverse task: given a text,
its corresponding audio output is generated.

• Syntactic analysis. The main goal of syntactic analysis appli-
cations is to parse textual natural language sequences to obtain
their syntactic representation; that is, the way the elements in
the sequence relate to each other and the functions that these
have in the sequence as a whole (e.g., subject, direct object).

• Named Entity Recognition (NER)/Named Entity Recog-
nition and Classification (NERC). NER/NERC applica-
tions identify, from textual input, the elements (such as words
or phrases) that are considered as relevant entities (also known
as named entities). In this sense, in NER tasks, the identifica-
tion of such elements is performed and NERC, besides identifi-
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cation, also determines the type of named entities. For exam-
ple, in the sentence “John is from London”, NER will determine
that “John” and “London” are named entities, whereas NERC
will additionally classify “John” as a person and “London” as
a location.

• Sentiment analysis. The goal of this task is to extract, from a
text, the subjective qualities that allow to characterise it, such
as whether a text has a positive or negative connotation (e.g.,
a movie review).

• Natural Language Generation (NLG). This task deals
with the automatic generation of natural language sequences
according to specific situations. Examples of the application of
NLG are text summarisation or weather reports.

In order to perform these tasks, several approaches can be distin-
guished. Traditionally, NLP tasks have been performed by manually
defining rules. However, modern approaches make use of Machine
Learning (ML)-based techniques (including Deep Learning (DL)),
which allow to automatically generate and process patterns from big
amounts of data, usually obtaining better results than rule-based
methods. These techniques simplify the amount of work to perform
NLP tasks, although they rely on the data obtained and its qual-
ity. In this sense, rule-based approaches are still a valid option when
quality data is not available.

To develop the modules for the semantic-based task-oriented di-
alogue system in this thesis, several NLP technologies will be used.
Particularly, this section describes both the tools used and the re-
sources exploited.

2.3.1 Tools

This section describes the two most relevant NLP tools in this
thesis, which are the basis to obtain a correct interpretation of user
commands: Foma (Hulden, 2009a) and Freeling (Carreras, Chao,
Padró, & Padró, 2004). Among the many utilities of these tools
–which will be described in the following sections–, in the context
of this thesis they will be used to perform rule-based text processing
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and syntactic analysis, respectively. More specifically, these tools will
be used to perform tasks that are analogous to NERC.

2.3.1.1 Foma

Foma (Hulden, 2009a) is a compiler for finite-state automata
(FSAs) and transducers (FSTs). It is intended to perform NLP tasks,
although it can be used in other cases where FSAs and/or FSTs are
needed.

For the NLP field, some usage examples of Foma are the gener-
ation of morphological analysers (such as Part-of-Speech (POS) tag-
gers) and generators (e.g., word generators based on morphological
features) and spell-checking applications.

To determine the processing to be performed, Foma makes use of
grammars and/or lexicon files. For grammars, the same regular ex-
pressions in Xerox Finite State Tool (XFST)11 (Beesley & Karttunen,
2003) may be used as rules, which have a human-relatively-readable
format. Lexicons, on the other hand, are supplementary files that
allow to model morphological information (e.g., the past tense of a
regular verb is obtained by adding the suffix -ed to the infinitive form
of the verb).

2.3.1.2 Freeling

Freeling (Carreras et al., 2004) is a library that allows to analyse
language in textual form. According to their developers, Freeling al-
lows to perform linguistic analysis at a wide range of levels, developed
as mostly independent modules12,13:

• Tokenisation

• Phonetic encoding

• Sentence splitting

• Syntactic parsing

– Shallow

– Full/dependency

11In fact, Foma is considered the open-source analog to XFST.
12Extracted from Freeling’s documentation in https://freeling-user

-manual.readthedocs.io/en/v4.0/
13Some modules require the input to be previously processed by other modules.

For example, tokenisation is usually required before any analysis.

https://freeling-user-manual.readthedocs.io/en/v4.0/
https://freeling-user-manual.readthedocs.io/en/v4.0/
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• Morphological analysis

– Punctuation detection

– Number detection

– Date detection

– Dictionary search

– Multi-word recogni-
tion

– NER/NERC

– Quantity detection

– Part-of-Speech (POS)
tagging

• WordNet sense annotation

• UKB14 sense disambigua-
tion

• Semantic Role Labelling

• Co-reference resolution

Furthermore, Freeling is available for multiple languages, such as
Spanish, English, German, French, Catalan and Italian. However,
not all functionalities are available for all languages15.

As for the output generated, Freeling is able to produce the de-
sired linguistic analysis in six different format types16:

• Freeling. Text-based, pseudo-column format that is human-
readable.

• CoNLL. This structure is an adapted version of the one used
in the CoNLL competitions which, as in the original, includes
morphological (e.g., POS tags), syntactic (e.g., dependencies)
and miscellaneous information (e.g., comments) for each token
in a given sentence.

• XML. XML generic format for Freeling annotations.

• JSON. JSON generic format for Freeling annotations.

• NAF. Output in NLP Annotation Format (NAF)17, which is
a specialised XML-based schema for linguistic annotations.

• Train. Output generated in a specific format that allows to
train POS taggers.

14https://ixa2.si.ehu.eus/ukb/
15https://freeling-user-manual.readthedocs.io/en/v4.0/basics/
16https://freeling-user-manual.readthedocs.io/en/v4.0/analyzer/

#output-format
17https://github.com/newsreader/NAF

https://ixa2.si.ehu.eus/ukb/
https://freeling-user-manual.readthedocs.io/en/v4.0/basics/
https://freeling-user-manual.readthedocs.io/en/v4.0/analyzer/##output-format
https://freeling-user-manual.readthedocs.io/en/v4.0/analyzer/##output-format
https://github.com/newsreader/NAF
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2.3.2 Resources

Considering that the task-oriented dialogue system developed in
the context of this thesis is conceived as a generic and easy-adaptable
solution, it is very important to take into consideration the implica-
tions that this entails. In this sense, among other uses, ontologies are
used to interpret user commands and, to do so, linguistic information
needs to be instantiated. However, manual population of the ontology
with this information is a time and resource consuming task, since it
needs to be instantiated as comprehensively as possible to cover the
variability of natural language commands. Due to this, the tendency
is to apply semi-automatic or automatic techniques to reduce the
time and effort of doing so (Muscetti, Rinaldi, Russo, & Tommasino,
2022; Sanagavarapu, Iyer, & Reddy, 2022), which is specially relevant
when adapting the system to different use cases. In this context, the
exploitation of existing linguistic resources is key to simplify the on-
tology population task. These linguistic resources include linguistic
information from one or more different perspectives, such as lexical or
semantic information, which are useful to deal with different aspects
of user command interpretation, such as identification of actions or
user intents and slot filling.

This section reports the main resources exploited in this thesis:
FrameNet –which deals with predicate information–, WordNet and
the Multilingual Central Repository (MCR) –lexical information–,
SUMO –semantic information– and Predicate Matrix (PM), which
integrates different semantic, lexical, predicate and verbal resources
–including the ones mentioned above– into a single one.

2.3.2.1 FrameNet

FrameNet (Baker, Fillmore, & Lowe, 1998) is a lexical resource
for English developed at the University of Berkeley. The concept of
FrameNet originates from Frame Semantics, which is the linguistic
theory that asserts that words evoke what are called frames. In a
nutshell, FrameNet constitutes a multilingual predicate resource that
aims to model situations (frames) and the words that elicit them
(lexical units) in a comprehensive way. Moreover, it also provides
with the actors that take part on these situations (frame elements) in
a compulsory manner (that role must be present) or optionally (that
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role may be present or not), as a sort of a slot-modelling approach.

For example, for the frame Motion, as in FrameNet’s online version18:

“Some entity (Theme) starts out in one place (Source) and
ends up in some other place (Goal), having covered some
space between the two (Path). Alternatively, the Area or
Direction in which the Theme moves or the Distance of
the movement may be mentioned”.

In this frame definition, the situation is described, along with
the mention of the different actors that take place in said situation
and both distinguishing between compulsory frame elements (such as
Theme or Source) and the optional ones (e.g., Direction). These
frame elements are also described one by one with more detail in each
frame entry.

The situations described in frames are evoked by lexical units
(LUs), as noted above. LUs correspond to words (predominantly
verbs, although there are also nouns and adjectives, in a minor scale)
that are paired with a meaning and a semantic frame. Thus, a pol-
ysemous word (a word that has different meanings) would have as
many LUs as meanings it has, and each meaning may be linked to
one or more frames19.

Each frame can have different LUs mapped, which allows grouping
semantically similar words through frames, which adds special value
to its data.

Furthermore, FrameNet has been developed for other languages
other than English, such as Spanish (Spanish FrameNet - SFN (Subi-
rats & Sato, 2003)) German (Saarbrücken Lexical Semantics Ac-
quisition Project - SALSA (Burchardt et al., 2006)) and Japanese
(Japanese FrameNet - JFN (Ohara et al., 2004)). However, the de-
gree of comprehensiveness is not as high as in English. The four
previously mentioned FrameNets are available online for free use20.
Other languages include French (ASFALDA French FrameNet (Can-
dito et al., 2014)), Chinese (Chinese FrameNet - CFN (You & Liu,

18http://sato.fm.senshu-u.ac.jp/frameSQL/fn2 15/notes/index.html
19As FrameNet is a work in progress, some meanings may not be mapped to

any frame yet.
20For English: http://sato.fm.senshu-u.ac.jp/frameSQL/fn2 15/notes/

index.html; through this link the other resources can be accessed.

http://sato.fm.senshu-u.ac.jp/frameSQL/fn2_15/notes/index.html
http://sato.fm.senshu-u.ac.jp/frameSQL/fn2_15/notes/index.html
http://sato.fm.senshu-u.ac.jp/frameSQL/fn2_15/notes/index.html
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2005)), Brazilian Portuguese (Salomão, Torrent, & Sampaio, 2013),
Swedish (Heppin & Gronostaj, 2012) and Korean (Nam et al., 2014).

2.3.2.2 WordNet

WordNet (Miller, 1995) is a lexical knowledge base that stores
nouns, verbs, adjectives and adverbs –and their corresponding senses–
and groups them semantically into what are called synsets, which are
described in Miller (1995) as ‘sets of cognitive synonyms’. In this
sense, words are interlinked in semantic terms, taking into account
the senses of each word.

There is a wide range of relations among words in WordNet, being
the most remarkable synonymy and super-subordinate relations, that
mainly state upper and lower categories between words. An example
is hyperonymy-hyponymy, in which a set of terms –hyponyms– are
specializations of a more general term –hyperonym–, as in Flower
(hyperonym) – Rose, Sunflower (hyponym).

The considerations above show that WordNet is a very powerful
tool in terms of lexical information and semantic relations between
words. Another of its strengths is that, due to the robustness of the
concept, it has been adapted to several other languages, such as Chi-
nese (Huang et al., 2010), Italian (Artale, Magnini, & Strapparava,
1997), Spanish (Fernández-Montraveta, Vázquez, & Fellbaum, 2008)
or French (Sagot & Fivser, 2008), among many others21.

It is an open resource, and it may be accessed online22 or through
freely downloading its data.

2.3.2.3 Suggested Upper Merged Ontology (SUMO)

The Suggested Upper Merged Ontology (SUMO) is intended as
an upper level ontology to serve as a “foundation for more specific
domain ontologies” (Niles & Pease, 2001) by including a wide range
of general-purpose terms that comprehensively cover different fields,
such as Linguistics, Computer Science or Artificial Intelligence. Also,

21http://compling.hss.ntu.edu.sg/omw/
22http://wordnetweb.princeton.edu/perl/webwn, for English.

http://compling.hss.ntu.edu.sg/omw/
http://wordnetweb.princeton.edu/perl/webwn
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these terms are formally defined through axioms, which makes SUMO
a specially enriched resource. Thus, the aim of SUMO is to provide
a comprehensive, precisely defined term ontology.

In order to obtain such a wide-coverage ontology, other ontologi-
cal resources have been integrated, such as the MId-Level Ontology
(MILO), or ontologies related to Communications, User interfaces,
Law or Music23. Currently, SUMO includes around 25, 000 terms
and is available in several languages: Hindi, Chinese, Italian, Ger-
man, Czech and English. Moreover, it is also mapped to the WordNet
lexicon allowing the association of words to specific SUMO terms.

2.3.2.4 Multilingual Central Repository (MCR)

The Multilingual Central Repository (MCR), which at the time
of writing this thesis is on version 3.0, aims to provide a powerful
and rich multilingual lexical knowledge base (Atserias et al., 2004).
This lexical knowledge base integrates data from multiple resources,
including WordNet –in its 3.0 version– in six different language ver-
sions (English, Spanish, Catalan, Basque, Galician and Portuguese).
Moreover, following the EuroWordNet architecture (Atserias et al.,
2004), the MCR interconnects these wordnets using interlingual in-
dices (ILI), also based in WordNet 3.0, for equivalent synsets in dif-
ferent languages. Furthermore, the repository has been enriched with
ontological knowledge coming from semantic resources such as Base
Level Concepts (Rosch, 1977), WordNet domains (Bentivogli, Forner,
Magnini, & Pianta, 2004) and SUMO24 (Guinovart, Gonzalez-Dios,
Oliver, & Rigau, 2021; Pease, Niles, & Li, 2002).

All in all, MCR constitutes a very powerful multilingual lexical
repository, which is available both online 25 and as a MySQL database
26.

23https://github.com/ontologyportal/sumo
24Equivalence (“=”), subsumption (“+”) and instantiation (“@”) mapping re-

lations (Alvez, Gonzalez-Dios, & Rigau, 2019).
25https://adimen.si.ehu.es/cgi-bin/wei/public/wei.consult.perl
26http://adimen.si.ehu.es/web/files/mcr30/mcr30-2016.zip

https://github.com/ontologyportal/sumo
https://adimen.si.ehu.es/cgi-bin/wei/public/wei.consult.perl
http://adimen.si.ehu.es/web/files/mcr30/mcr30-2016.zip
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2.3.2.5 Predicate Matrix (PM)

Predicate Matrix (PM) (De Lacalle, Laparra, & Rigau, 2014) is
a lexical resource that arised from the necessity of the integration of
verbal and predicate-related resources. Examples of these resources
are VerbNet (Schuler, 2006), FrameNet and WordNet. Each resource,
according to De Lacalle, Laparra, Aldabe, and Rigau (2016), presents
characteristics that the rest of alternatives do not offer which, in
the end, generated the aforementioned need to integrate them into a
single repository.

To perform the mappings between resources, PM uses Semlink
(Palmer, 2009), which makes use of manual mappings, and its cover-
age is extended through automatic methods. In this case, automation
allows to update the set of mappings when any of the knowledge re-
sources is updated with low maintenance costs. Another reason to
extend Semlink’s coverage is due to the fact that Semlink is unable
to perform specific mappings between resources that have different
granularity (de Lacalle et al., 2014), and some mappings have blank
(NULL) correspondences, as it can be seen in Table 2.1. This Table
shows that verbs (in the member column) may have different senses
(in the class column), and that these senses may not have a corre-
sponding FrameNet lexical unit (in the column lexical-unit), although
this does not imply that the VerbNet form does not correspond to
a specific FrameNet frame (frame column). In this sense, the au-
tomatic mappings to construct PM reduce these NULL elements,
although some of them still remain.

In regard to the resources integrated, PM includes data from a
wide range of repositories, including the previously mentioned Verb-
Net, FrameNet and WordNet, along with the MCR (Gonzalez-Agirre,
Laparra, & Rigau, 2012), the Basque Verb Index (BVI) (Estarrona,
Aldezabal, & de Ilarraza, 2020), AnCora (Taulé, Mart́ı, & Recasens,
2008), PropBank (P. Kingsbury & Palmer, 2003), NomBank (Mey-
ers et al., 2004), the Event and Situation Ontology (ESO) (Segers
et al., 2015) and SUMO. Thus, it constitutes a very comprehensive
knowledge base, that not only gathers knowledge from verb/predicate
resources, but lexical (such as WordNet or NomBank) and semantic
(e.g., ESO and SUMO). Furthermore, the integration of many re-
sources in different languages (either because each repository was
available in several languages –such as WordNet and their ILIs– or
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Table 2.1: Example of Semlink’s mapping limitations between Verb-
Net and FrameNet (extracted from de Lacalle et al. (2014) and
adapted).

VerbNet FrameNet

class member frame lexical-unit

13.1-1 sell Commerce sell sell.v
13.5.1 buy Commerce buy buy.v
53.1-1 delay Hindering delay.v
53.1-1 delay Change event time NULL
13.5.3 employ Employing NULL
105 employ Using NULL

due to the integration of language-specific resources, such as the BVI)
has also allowed to obtain mappings in different languages, which, on
the whole, makes PM a “multilingual interoperable predicate lexicon”
(De Lacalle et al., 2016).

It is worth noting that PM is centred in verbal information. Thus,
for resources that account for multiple parts of speech (such as nouns
or adjectives in WordNet or frames that have nominal lexical units in
FrameNet), only verbal data is integrated, so as to be able to properly
map the data from all the resources involved.

In this thesis, PM will serve as the core source to access to the
rest of the resources described in this section.
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Chapter 3

Research Framework

Given the fundamental technologies in this thesis, described in
the previous Chapter, a review of the available literature regarding
them is presented in this one. First of all, the different approaches for
the development of each of the components in pipeline-based task-
oriented dialogue systems are described. Moreover, the state of the
art regarding different aspects of task-oriented dialogue systems is
also overviewed: their design as Lifelong Learning (LL) systems, their
application in industrial contexts and the use of Semantic Technolo-
gies to develop them.

3.1 Pipeline-Based Task-Oriented Dia-

logue Systems

Two main architectures exist for the design of task-oriented di-
alogue systems: the pipeline-based and the end-to-end ones. The
former consist of a series of modules (described in Section 2.1.1.2)
that perform different dialogue-related tasks, which are constructed
in a pipelined structure in which, thus, the output of a module is the
input of the next one. As for the latter, this process is performed in
a single module. These systems are usually based on neural methods
(H. Chen, Liu, Yin, & Tang, 2017) and, thus, require big amounts
of data to be obtained. Although some datasets have been released
for this matter, such as the presented in Budzianowski et al. (2018),
these correspond to a set of limited domains. This thesis will focus on
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pipeline-based task-oriented dialogue systems, as well as this Section.

Traditional approaches for pipeline-based task-oriented dialogue
systems rely on rules and templates for natural language understand-
ing and dialogue management (Goddeau, Meng, Polifroni, Seneff, &
Busayapongchai, 1996; Ward & Issar, 1994; Wei et al., 2018). Nev-
ertheless, recent advances in these fields have allowed the use of
machine-learning-based techniques, both traditional Machine Learn-
ing (ML) (Lee, 2013; Lee & Eskenazi, 2013; Williams, 2013) and,
more recently, Deep Learning (DL) (H. Chen et al., 2017; Hender-
son, Thomson, & Young, 2013; Mrkšić et al., 2015), which need large
amounts of training data to be developed as a counterpart to not
having to manually define rules or templates.

The following lines will describe in more detail the different tech-
nologies used in each module of the typical architecture of a pipeline-
based task-oriented dialogue system. However, since the ASR and
TTS modules are out of the scope of this thesis, related work on
these technologies will not be provided in this section.

3.1.1 Natural Language Understanding Compo-
nent

The objective of the NLU component is to extract the meaning
of a user command and obtain a “semantic representation” (Skantze,
2007). The simplest approach to obtain this semantic representation
is to first extract the key elements from the user command, along
with their semantic meaning (Skantze, 2007), as it can be seen in
Example (4).

(4) a. “I want to go to the Robotics laboratory”.

b. {action: go

destination: Robotics laboratory}

To perform this task, linguistic methods have been widely used in
the literature. Some approaches rely on syntactic information, such
as dependency structure (Scheutz, Cantrell, & Schermerhorn, 2011;
Thomas & Jenkins, 2012), syntactic parsing (Fasola & Mataric, 2013)
or Contextual Knowledge Structures (triples consisting of Subject-
Verb-Object relations) (Javed & Muralidhara, 2018). Also, Sidorov,
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Velasquez, Stamatatos, Gelbukh, and Chanona-Hernández (2012) pre-
sent syntactic features that are suitable for Machine Learning (ML),
obtained from syntactic trees and resembling n-grams : the syntactic
n-grams (sn-grams).

In this context, key element extraction resembles a NERC prob-
lem, in the sense that the key elements have to be identified and clas-
sified. The literature distinguishes two basic approaches to NERC:
rule-based and ML methods (Maynard, Bontcheva, & Augenstein,
2016). For rule-based methods, Context-Free Grammars (CFG) are
usually generated (Skantze, 2007), which can also be enhanced to
achieve robustness (Kasper, Kiefer, Krieger, Rupp, & Worm, 1999;
Van Noord, Bouma, Koeling, & Nederhof, 1999), although patterns,
regular expressions or finite-state machines are also used (Nadeau &
Sekine, 2007). As for ML-based methods, feature-based, supervised
systems based on SVM, CRF, Maximum Entropy and Averaged Per-
ceptrons have traditionally obtained the best results in NERC tasks
(Agerri & Rigau, 2016). In these tasks, the use of linguistic-based
features such as lemma or POS has deemed to be relevant (Agerri &
Rigau, 2016). Nevertheless, more recent approaches make use of DL
techniques, being Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) the most common (Yadav & Bethard,
2019), along with Transformers (Vaswani et al., 2017).

The use of one approach or the other depends on the circum-
stances of the experimentation: machine-learning-based methods are
easier to maintain than rule-based ones, but require enough training
data to train the models. However, despite the fact that manually
generating rules is a time consuming task, rule-based systems are a
more robust starting point in specific domains where there is a lack
of raw or annotated data.

These key elements are to be processed by the NLU to perform
three main functions (J. Liu, Li, & Lin, 2019): to detect the domain
for which a user command has been uttered, to identify the intent of
said command to retrieve the slots to be filled, and to fill the slots
with the information in the user command1.

Usually, task-oriented dialogue systems are limited to single do-
mains (Jurafsky & Martin, 2020). However, some approaches are
compatible with multi-domain settings. In this sense, usually the do-

1vid. Chapter 2.1.1.1.
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main detection task is performed jointly with intent detection. The
assumption is that, once the intent is obtained, the domain is also
retrieved (Z. Wang et al., 2014).

For intent detection, there is a wide range of works in the litera-
ture that deal with this task (Gupta, Hewitt, & Kirchhoff, 2019).
In this sense, three main approaches to perform intent detection
can be distinguished: rule-based methods, ontology-based methods,
and ML-based methods. For machine-learning and ontology-based
methodologies, a fair amount of data is needed and, thus, cannot
cope with scenarios with limited or nonexistent labelled data, which
implies the necessity of performing manual work, which is resource-
consuming (H. Chen et al., 2017). This last scenario is also found in
rule-based methods, which have the advantage of not requiring any
training data to be trained, but have as a counterpart the fact of
requiring manual work to be built.

In rule-based approaches, the most common methodology is to
perform a manual analysis of potential commands that can be di-
rected to the dialogue system in regard to a specific intent, in order
to extract patterns. These patterns are usually word-based –as in
GUS (Bobrow et al., 1977)–, as Example (5) shows. Rule-based ap-
proaches are very useful in contexts in which training data is scarce.
However, rules are costly to maintain when changes need to be made.

(5) Word-based patterns to detect the intent set-alarm, in the
alarm-clock domain (Jurafsky & Martin, 2020).

a. wake me (up) | set (the | an) alarm | get me up

In ontology-based methods, intent detection is performed through
the domain ontology, which needs to be populated with relevant in-
formation to perform this task, which represents the main challenge
in this setting since in most cases it requires manual work to do
so. In this context, ontology-based methods are very similar to rule-
based approaches, as the ontology population process is usually per-
formed according to word-based patterns retrieved from domain data
(Cassier, Sellami, & Lorré, 2019; Quamar et al., 2020). However, in
this case, ontology-based methods can be considered as a step for-
ward from rule-based approaches, since patterns are usually obtained
through automatic or semi-automatic methods –that combine expert
knowledge with automatic methods– and do not require as much
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manual work than the rule-based ones. Furthermore, this approach
allows to obtain a structured representation of intent-relevant data,
which has as advantage that the maintenance of the solution is sim-
pler: if the current instantiation needs to be updated, new examples
would just need to be instantiated, without having to potentially
modify existing rules –and the risk that that may imply.

As a side note, and regarding ontology population at a higher
level, a well-known challenge to the Semantic Web community is how
to reduce the amount of manual work. As noted by Kontopoulos,
Mitzias, Riga, and Kompatsiaris (2017), most approaches for on-
tology population make use of textual input and rely on Natural
Language Processing techniques to obtain the necessary knowledge
to populate the ontology (Corcoglioniti, Rospocher, & Aprosio, 2016;
Makki, 2017), whereas approaches that rely on data that is structured
at some degree are less common (Kontopoulos et al., 2017; Leshcheva,
Blagov, & Pleshkova, 2017). Considering this, the authors in Kon-
topoulos et al. (2017) use structured knowledge in Linked Data for
ontology population.

For machine-learning-based methods for intent detection, several
approaches can be observed in the literature that make use of tra-
ditional ML algorithms such as Support Vector Machines (Cortes &
Vapnik, 1995) or logistic regression (Bishop, 2006). However, mod-
ern approaches employ DL methods, such as word embeddings or
CNNs (Q. Chen, Zhuo, & Wang, 2019; J. Liu et al., 2019; Louvan
& Magnini, 2020). Among these two, DL methods obtain better re-
sults than regular, traditional ML algorithms, but both approaches
require a fair amount of data to perform training tasks, especially DL
models.

Considering the previous remarks, intent detection seems to re-
quire either a large volume of data or manual work, which nowadays
still represents a challenge in the NLP community.

Finally, for slot filling, this task is often characterized in a similar
way as the key element extraction task described above. In this sense,
slot filling is considered a sequence labelling task in which words are
assigned a tag according to the slot they belong to (H. Chen et al.,
2017; Firdaus, Kumar, Ekbal, & Bhattacharyya, 2019). However, in
this thesis, these two problems will be considered as different: key
element extraction will be considered as a preliminary step to support
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the slot filling task.

3.1.2 Dialogue Management Component

For dialogue management, rule-based and statistically-based ap-
proaches are the most predominant methods in the literature to de-
termine the next step to be performed by the dialogue system.

Rule-based dialogue management is widely extended both in tra-
ditional and modern approaches (Bohus & Rudnicky, 2003; Fast et
al., 2018; Koller, Baumann, & Köhn, 2018). In these, the dialogue
flow may be encoded in terms of patterns and their associated re-
sponses or more sophisticated approaches (Brabra et al., 2021), such
as the use of preconditions and associated actions that rely on the
output generated by the NLU component (Bohus & Rudnicky, 2003;
Thorne, 2017). Other dialogue management architectures consider
dialogues as a sequence of steps to be modelled as a finite-state model
(Fast et al., 2018; Koller et al., 2018), in which the dialogue process
transitions from a state to another according to a set of conditions
given the current dialogue state and the information provided by the
user. An example diagram for finite-state dialogue modelling can be
observed in Figure 3.1.

Figure 3.1: Finite-state dialogue modelling diagram (Fast et al.,
2018).
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The main advantage of rule-based approaches is that no training
data is needed and rules are relatively easy to implement. However,
the main disadvantages are that rules require effort to be constructed
and maintenance costs are high, as adaptations to cover new func-
tionalities imply expert manual work. Furthermore, as Brabra et al.
(2021) point out, user profiling is also supported, although not exten-
sively used (Smith et al., 2011). Other rule-based dialogue managers
also enable the exploitation of past interactions to cover missing in-
formation (Bohus & Rudnicky, 2003; Smith et al., 2011).

Statistically-based dialogue managers conceive the dialogue pro-
cess as a probabilistic problem. In this context, to model the di-
alogue as a Markov decision process (MDP) is a popular approach
in many implementations (Levin, Pieraccini, & Eckert, 1998, 2000;
S. J. Young, 2000). This process is based on a representation of the
dialogue as a set of states and the use of a reward system, in which
the transitions to some states give positive or negative rewards, con-
tributing with a Reinforcement Learning setting. The system’s goal
is to obtain the maximum reward when fulfilling a user request. The
use of MDPs has proven to be useful in restricted contexts where the
goal is clear, such as train/plane booking or timetable information
retrieval (Roy, Pineau, & Thrun, 2000). However, in more variable
contexts, such as the ones in which there are several actions to be
performed or noisy environments, it is assumed that the user inten-
tion is not always clear; that is, it is partially observable. To tackle
with this uncertainty, partially observable Markov decision processes
(POMDP) have been widely used in the literature (Lei, Wang, &
Yuan, 2019; Roy et al., 2000; S. Young, 2006; S. Young et al., 2010).
The main difference between POMDPs and MDPs is that MDPs have
a certainty of the current state of the dialogue and decisions are made
according to that state, whereas POMDPs add an uncertainty com-
ponent that determines the current state as a belief obtained from
a series of observations. In this case, the observations would be the
information given by a user interaction, and the dialogue system be-
lieves that the state of the dialogue is the current one based on these
observations.

Although statistical methods allow to model the dialogue process
in a more efficient way than rules and the on-line optimisation of the
model through the use of rewards, dialogue domain data is necessary
for training an initial implementation (S. Young, Gašić, Thomson, &
Williams, 2013).
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Finally, the combination of rule- and statistically-based techniques
has also been observed in the literature in which statistically-based
dialogue managers benefit from the knowledge in rules (Williams,
2008; Yoshino, Watanabe, Le Roux, & Hershey, 2013).

3.1.3 Natural Language Generation Component

Peng et al. (2020) distinguish between two main approaches to
generate the responses to be output by the dialogue system: template-
based methods and statistical language models.

Template-based methods consist on a set of templates that are
generated according to the different outcomes that the interpretation
of a user command may imply (e.g., an argument is missing or the
system has not understood the user command). These may vary in
complexity, which may include from a set of slots to be filled with
the information related to the use case at hand to structures that ac-
count for different variants and realisations (Gatt & Krahmer, 2018).
To illustrate the former, Example (6) shows a simple template struc-
ture to be used in an alarm assistant. In it, the predefined response
includes two slots to be filled: time, to account for the time to be
woken up and recurrent, which refers to the repetition of the alarm
set. The advantage of this approach is that the probability of gen-
erating incorrect or ungrammatical sequences is very low. However,
the naturality of the command may be compromised. According to
Jurafsky and Martin (2020), this approach is widely used in frame-
based task-oriented dialogue systems.

(6) “I will wake you up at $time $recurrent .”
“I will wake you up at half past eight every Friday .”

As for more complex template-based models, Example (7), ex-
tracted from Langkilde and Knight (1998), shows a template based
in abstract meaning representations. In this case, lexical and mor-
phological information, extracted from linguistic resources, is also
included to generate a wider range of possible outputs. In this Ex-
ample, the structure is defined in terms of label / concept (e.g.
m4 / |dog<canid|, that is equivalent to determine that m4 is an in-
stance of dog). Furthermore, it can be restricted to a specific number
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(:quant plural for the plural form). In this case, this template al-
lows only plural variants for dog (e.g. “the dogs”, “dogs”) and all
number variants for bone (“bone”, “bones”, “the bone”, etc.), which
combined with the verbal form eat, may result in the different re-
alizations in Example (7b). This approach allows to obtain a wider
range of expressions.

(7) a. (m3 / |eat,take in|

:agent (m4 / |dog<canid|

:quant plural)

:patient (m5 / |os,bone|))

b. Possible realizations: “The dogs ate the bone”, “Dogs will
eat a bone”, “Dogs eat bones”, among others (Langkilde
& Knight, 1998).

As for statistical language models, modern approaches include DL
techniques. Gao et al. (2019) highlights the strategy in Wen et al.
(2015) and its semantically-controlled LSTM (SC-LSTM), in which
semantic information is used as a feature for NLG. This technique,
as DL-based techniques in general, requires big amounts of training
data. Taking this into account, Peng et al. (2020) propose SC-GPT,
a neural language model based on Transformers for which, according
to the authors, only a small amount of domain labelled data for
fine-tuning is necessary for its adaptation to new domains. This
model shows very positive results compared to other models that
require bigger sets of training data, and it is an interesting asset to
develop DL-based NLG components, even when labelled domain data
is scarce.

Considering the two main approaches for NLG presented, tem-
plate-based techniques are more robust than statistical language mod-
els, and are highly suitable for low-resourced scenarios, but require
manual work for template design. On the contrary, DL techniques
are more prone than errors than the template-based ones, but they do
not require manual work. Furthermore, although these approaches
traditionally require big amounts of data, there is research oriented
towards their use in scenarios that lack training data.
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3.2 Lifelong Learning in Task-Oriented

Dialogue Systems

Lifelong Learning (LL) is a discipline that has been treated in the
literature for a long time (Thrun, 1998). The objective of achiev-
ing LL systems is that these are able “to continually learn over time
by accommodating new knowledge while retaining previously learned
experiences” (Parisi, Kemker, Part, Kanan, & Wermter, 2019). Con-
sidering this, the implementation of LL capabilities has been studied
in the context of several fields, such as Machine Learning (ML) or Ar-
tificial Intelligence (AI) (Z. Chen & Liu, 2018; B. Liu & Mazumder,
2021; Parisi et al., 2019). For each of them, different methods have
been used, as these depend on the knowledge to gather and the learn-
ing strategy (Veron, Ghannay, Ligozat, & Rosset, 2019). In many
cases, the systems developed around these fields are implemented in
real-world settings, in which information is constantly obtained. In
these contexts, LL systems have been deemed as crucial (Parisi et
al., 2019).

In general, LL is achieved through Machine Learning (ML) and
Deep Learning (DL) techniques (B. Liu & Mazumder, 2021; Parisi et
al., 2019). Related to this, one of the main concerns in LL is catas-
trophic forgetting, in which new information interferes with previously
acquired knowledge, which usually occurs when the new knowledge
differs significantly from the one stored (Parisi et al., 2019). This
challenge has been broadly treated in the literature, with a wide
range of proposals (Choy, Srinivasan, & Cheu, 2006; Gepperth &
Karaoguz, 2016; Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013;
Kirkpatrick et al., 2017). However, it is still a current issue to be
considered and prevented when developing LL systems.

In LL dialogue systems, as in LL in general, the system’s perfor-
mance should not be limited by its initially-implemented knowledge
or capabilities. Thus, the objective is that the system is capable
of constantly improving by effortlessly acquiring and accumulating
knowledge through new interactions with the user (Z. Chen & Liu,
2018). For this, Veron et al. (2019) identify two main actions: to
identify when new knowledge appears and to determine when and
what to ask the user to obtain it. The dialogue system in Li, Miller,
Chopra, Ranzato, and Weston (2016) asks questions in three situa-
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tions: when the system does not understand and needs rephrasing
or a validation, when the system needs additional information to in-
fer new knowledge and when the system does not know a specific
answer. In turn, B. Liu and Mazumder (2021), in their Lifelong IN-
teractive learning in Conversation (LINC) paradigm, the system is
able to learn in three areas: factual knowledge, language expressions
and skills. For the first, the objective is to acquire new facts from user
utterances, such as asking for unknown words. However, the authors
identify some challenges, such as co-reference resolution and the as-
sociation of different forms to the same entities (e.g. Obama - Barack
Obama). For language learning, the authors distinguish between nat-
ural dialogues with the user and user demonstrations (in these, if the
system does not understand the user command, the user may per-
form the intended action through a GUI, remote control or similar
tools (Forbes, Rao, Zettlemoyer, & Cakmak, 2015; S. I. Wang, Ginn,
Liang, & Manning, 2017)). Finally, the skills to learn are related with
the emotional state of the user or the environment conditions (Q. Liu
et al., 2020; Zhou, Huang, Zhang, Zhu, & Liu, 2018; Zhou, Young, et
al., 2018).

B. Liu and Mazumder (2021) also highlight one of the major chal-
lenges in LL in dialogue systems: the fact that user information may
be incorrect. To deal with this, the authors propose potential strate-
gies, such as the storage of unverified knowledge in another database,
to be verified through interaction with other users or the detection
of contradictory knowledge.

Taking into account all the considerations above, and the conclu-
sions in Veron et al. (2019), a LL task-oriented dialogue system should
be able to perform the following actions: to identify new knowledge,
determine the right moment to ask questions according to specific
criteria, to have a strategy to store newly acquired knowledge and,
finally, to decide when knowledge is suitable for learning.

3.3 Task-Oriented Dialogue Systems in

Industrial Environments

The lines above have shown that DL-based methods are widely
used for task-oriented dialogue systems, with promising results, as-
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suming that there is enough data to train the models. In industrial
scenarios, however, training data is scarce, and the use of ML ap-
proaches is still very limited. Although there are attempts to combine
rules and machine-learning techniques (Suendermann et al., 2009),
rule-based approaches are generally used in these scenarios due to
their specific characteristics (Goddeau et al., 1996; Jurafsky & Mar-
tin, 2020). As a consequence, most task-oriented dialogue systems for
industrial scenarios are heavily adapted to the task they have been
designed for and cannot be reused in other contexts, and developing
new ones for new use cases is bound to expert work and high time
and costs (Jurafsky & Martin, 2020).

Furthermore, interaction in industrial contexts is usually oriented
to one-way communication, from human to robot, and the system
does not interact with the user in case there are inconsistencies or
missing information (Gustavsson, Syberfeldt, Brewster, &Wang, 2017;
Stenmark & Nugues, 2013). In most cases, this interaction is limited
to specific commands (Gustavsson et al., 2017) and, in general, the
possibility of using natural language is restricted.

Nevertheless, interaction with industrial systems is being oriented
towards a natural communication (Maurtua et al., 2017; Stenmark &
Nugues, 2013). The authors in Stenmark and Nugues (2013) present
a system that makes use of existing predicate-argument resources
(Propbank (P. R. Kingsbury & Palmer, 2002)) to map natural com-
mands to logical representations (e.g., put(piece, box) for “Put the
piece in the box”). The reuse of existing, comprehensive resources
of these characteristics allow a high flexibility in the type of requests
that can be directed towards the system. Furthermore, the domain is
represented by making use of ontologies. However, this proposal has
some limitations in terms of dialogue (it is only unidirectional at the
moment) and the reported implementation does not include variants
(i.e., synonyms) for the different terms involved in the interaction
(e.g., objects).
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3.4 Use of Semantic Technologies in Task-

Oriented Dialogue Systems

In current approaches, Semantic Technologies have been consid-
ered both for the natural language understanding and the dialogue
management components of task-oriented dialogue systems, as they
are a powerful tool that allows to define in detail the domain and
reduce ambiguity between agents (Antonelli & Bruno, 2017).

Most of the task-oriented dialogue systems in the literature that
make use of ontologies are limited to highly specific use cases and
rely on these technologies for domain modelling (Yakoub, Selouani,
& Nkambou, 2015), although the tendency to use them for dialogue
management purposes is increasing. The dialogue system presented
in Altinok (2018) uses ontologies to model the domain, as well as
certain state-related dialogue information (e.g., which is the current
product that is discussed in the conversation) to implement a very
simple dialogue state tracker. In industrial scenarios, the work in
Maurtua et al. (2017) makes use of an ontology to model the domain
in terms of possible actions to be performed by the robot and a
description of the scenario.

The approach in Wessel, Acharya, Carpenter, and Yin (2019),
OntoVPA, aims to obtain a dialogue system that is fully managed by
ontologies, in which there is a distinction between a domain ontol-
ogy and a dialogue ontology, which is used to manage the dialogue,
keep track of the state of the dialogue and to store and control the
responses and requests to be presented to the user. In this approach,
requests and responses are highly dependent on the use case and,
most importantly, the ontologies developed are not publically avail-
able. In the case of Teixeira, Maran, and Dragoni (2021), with a
similar approach to Wessel et al. (2019), the ontology used, Convol-
ogy, is intended for dialogue policy planning to optimize the best path
to complete a dialogue by using AI. However, this approach is limited
to health-related applications and, as in OntoVPA, the ontologies are
not published online.

Taking into account these considerations, Semantic Technologies
are being currently used to develop task-oriented dialogue systems,
although there are not many attempts to totally manage these sys-
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tems through them. Thus, it is a field that it is worth exploring
given the many benefits of using ontologies, such as interoperability
or inference capabilities.
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Chapter 4

The Task-Oriented Dialogue
management Ontology
(TODO)

The Task-Oriented Dialogue management Ontology (TODO) aims
to provide a core and complete base for semantic-based task-oriented
dialogue systems in the context of industrial scenarios in terms of, on
the one hand, domain and dialogue modelling and, on the other hand,
dialogue management and tracing support. Furthermore, its modular
structure, besides grouping specific knowledge in independent com-
ponents, allows to easily extend each of the modules, attending the
necessities of the different use cases. These characteristics and its
generic design allow an easy adaptation of the ontology to different
use cases and languages, with a considerable reduction of time and
costs when developing task-oriented dialogue systems that allow a
natural communication with limited amounts of data –as it will be
seen in Chapter 6–, contributing to overcome the main challenges in
regard to task-oriented dialogue systems for industrial scenarios1.

Towards easily adapting TODO to different use cases and lan-
guages –and considering that ontology instantiation is a task that
requires of a great amount of time and effort–, this Chapter also
describes a strategy that leverages existing lexical, multilingual re-
sources to semi-automatically populate domain ontologies –such as
TODO’s domain module– with a significant part of the knowledge

1vid. Chapter 1.
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required for a specific scenario and language.

4.1 Ontology Development Methodology

In ontology development, two main considerations arise: first, on-
tologies have to be “carefully designed and implemented” (Esnaola-
González, Bermúdez, Fernández, & Arnaiz, 2021), so as to properly
model all the necessary information for their final use. Also, ontology
development is becoming more and more centered in reuse (Suárez-
Figueroa, Gómez-Pérez, & Fernández-López, 2012). Given the above,
it is important to follow a well-defined design methodology to develop
ontologies that are optimal both for their intended function and to be
reused by others. In the development process of TODO, the method-
ology followed is LOT (Linked Open Terms), in its industrial version
(Poveda-Villalón, Fernández-Izquierdo, & Garćıa-Castro, 2019), as it
focuses on design of ontologies oriented to industrial scenarios. This
methodology sets four main steps of development:

• Requirements specification. It defines the motivation and
the requirements to be fulfilled by the ontology, through the On-
tology Requirement Specification Document (ORSD) (Suárez-
Figueroa, Gómez-Pérez, & Villazón-Terrazas, 2009). The ORSD
defines the purpose, scope, intended uses and requirements –
defined as Competency Questions (CQ)– of the ontology.

• Implementation. By considering the requirements set in the
previous step, the ontology is constructed and evaluated.

• Publication. Once the ontology has been created and properly
annotated, its documentation is generated, and both ontology
and documentation are published and made accessible online.

• Maintenance. This step includes periodical revisions with the
aim to solve issues, add improvements, etc.

The following sections will document the TODO design process
in terms of the first three steps defined in LOT, as the last one is un-
derstood as further periodic maintenance work after an initial version
of TODO has been released.
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4.2 Requirements Specification

Towards developing TODO, the ORSD leads to determine the
specifications for its functional requirements; that is, the knowledge
that the ontology must cover. In this sense, it is important to bear
in mind that the main objective of the dialogue is to obtain a com-
mand that is understandable for a target system from a user request
expressed in natural language.

To determine the required knowledge, three experts in collabora-
tive industrial work and dialogue systems were interviewed to gather
information about their necessities, the characteristics they consid-
ered that had to be covered by a task-oriented dialogue system and
which type of interactions were expected. By using the information
obtained, a series of requirements that had to be covered by the on-
tology were identified and codified as Competency Questions (CQs).
In this sense, the necessities identified were related to the modelling
of the elements contained in a specific domain and the mechanisms
to, on the one hand, associate a natural language instruction with a
specific command for the target system to execute and, on the other
hand, to orchestrate and recreate the dialogue process.

Considering this, for TODO, a total of 99 CQs were obtained –
reported in Appendix A–, which can be grouped into the following
11 Basic Competency Questions (BCQs):

• BCQ01. What are the elements that are present in the sce-
nario? (CQ01-02)

• BCQ02. Which is the action to be performed by the target
system given a series of key elements obtained from a user re-
quest? (CQ03-11)

• BCQ03. Which are the arguments of a specific action? (CQ12-
13)

• BCQ04. Given a set of arguments from a specific action, to
what argument can a key element from the user request be
associated to? (CQ14-18)

• BCQ05. Which is the format of the information that has to
be provided to the target system? (CQ19-26)
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• BCQ06. Which is the first/next step of the dialogue? (CQ27-
39)

• BCQ07. What should be told to the user given a specific
situation? (CQ40-80)

• BCQ08. Given some output to the user, it is some input from
the user required or not? (CQ81)

• BCQ09. Which is the type of information required by the
request provided to the user? (CQ82-84)

• BCQ10. Which step is currently being performed in the dia-
logue? (CQ85)

• BCQ11. Which is the trace –and the information that includes–
for an element? (CQ86-99)

These CQs have been used to define the scope of the ontology
and to delimit its different areas of knowledge, along with the classes
and relations to be modelled according to the remarks above. Fur-
thermore, they have also helped to set the criteria to search for rel-
evant ontological resources for reuse. These considerations will be
addressed in the following sections, related to LOT’s implementation
step (Sections 4.3 and 4.4).

4.3 Ontology Modules

Considering the CQs, it has been observed that the areas of knowl-
edge that TODO must address can be clearly separated and, due to
this, TODO has been implemented as a modular ontology. This
modular approach provides many beneficial aspects to ontologies in
terms of maintenance, reasoning-processing2, validation, comprehen-
sion, collaborative effort and reuse (Keet, 2018).

The requirements established in the CQs allow to determine that
TODO’s coverage areas correspond to two main dimensions: do-
main modelling (i.e., knowledge that is strictly related to the sce-
nario in which the dialogue will take place) and dialogue modelling

2Reasoners and processing tools may take more time to work over big ontolo-
gies.



Ontology Modules 55

Figure 4.1: Overview of TODO: modules. Each color stands for
the different module levels in the hierarchy, from less (top) to more
specific (bottom) knowledge.

(i.e., knowledge related to the dialogue process). Furthermore, each
of these dimensions cover specific areas of knowledge that have cer-
tain independence, which will be implemented as submodules: for the
domain dimension, the elements that take part of the scenario (e.g.,
machines, robots) and the actions that apply to the use case’s tar-
get system; for the dialogue dimension, the modelling of the dialogue
process and the storage of dialogue traces to recreate from completed
interactions and ultimately learn from them.

The general overview of TODO and its modules and the main
relations between them can be seen in Figure 4.1. The limited number
of relations between the modules accounts for TODO’s modularity,
as it will be seen in the evaluations in Section 4.4.

The following sections will describe the dialogue- and domain-
related modules, along with each of their submodules.

4.3.1 TODODial - Dialogue Module

The TODODial module covers the knowledge that is necessary for
the task-oriented dialogue system to manage and keep track of the
dialogue process. More specifically, the TODODial module is respon-
sible for the orchestration of the full dialogue process by responding
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to the following BCQs:

• BCQ06. Which is the first/next step of the dialogue? (CQ27-
39)

• BCQ07. What should be told to the user given a specific
situation? (CQ40-80)

• BCQ08. Given some output to the user, it is some input from
the user required or not? (CQ81)

• BCQ09. Which is the type of information required by the
request provided to the user? (CQ82-84)

• BCQ10. Which step is currently being performed in the dia-
logue? (CQ85)

• BCQ11. Which is the trace –and the information that includes–
for an element? (CQ86-99)

On the one hand, this module is in charge of managing the se-
quence of steps to be taken in a given dialogue by the task-oriented
dialogue system. For each step, it also determines whether an output
should be provided to the user and its content depending on the sit-
uation. Furthermore, in case a given dialogue system output requires
an interaction from the user, TODODial also establishes of which
type must be the user response to that output.

On the other hand, TODODial is also responsible of keeping
track of ongoing and finished dialogues through traces that need to
be stored. Considering this, TODODial is divided in two submod-
ules, TODO Dialogue Management (TODODM) and TODO Dia-
logue Tracing (TODODT), which cover the two areas of knowledge
described above respectively, as both are descriptive and independent
enough to be treated separately.

Figure 4.2 shows a simple overview of the main classes and rela-
tions in TODODial, showing the ones corresponding to the Dialogue
Tracing module classes in purple and the Dialogue Management mod-
ule in yellow. The following sections will provide more details on both
modules.
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Figure 4.2: Simple overview of TODODial. Purple classes correspond
to TODODT and yellow classes to TODODM.

4.3.1.1 TODODM - Dialogue Management Module

The TODODM module covers the knowledge related to the se-
quence of steps to be performed by the task-oriented dialogue sys-
tem’s dialogue manager component in order to maintain a dialogue
with the user. Furthermore, it determines the output to be presented
to the user in case the system needs to interact with them. To do so,
this module tackles the following BCQs:

• BCQ06. Which is the first/next step of the dialogue? (CQ27-
39)

• BCQ07. What should be told to the user given a specific
situation? (CQ40-80)
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• BCQ08. Given some output to the user, it is some input from
the user required or not? (CQ81)

• BCQ09. Which is the type of information required by the
request provided to the user? (CQ82-84)

This module distinguishes two types of steps to be performed by
the task-oriented dialogue system’s dialogue manager component: di-
alogue steps (DialogueStep) –which require some input by the user–
and process steps (ProcessStep) –which do not require any user in-
put and are intermediary steps that have the function of processing
the information obtained from the user.

For dialogue steps, TODODM also establishes the output to be
presented to the user (SystemStep), which can be of two types: re-
sponses (SystemResponse), which convey a piece of information, and
requests (SystemRequest), which prompt the user to obtain informa-
tion. For each individual of these response/request classes, the prop-
erty OutputSentence contains a string that determines the output
to be displayed, which is designed parametrically so as to be reused
in different situations and use cases, with the possibility of including
their equivalents in different languages. Examples (8) and (9) provide
instances of responses and requests, respectively.

(8) “I have too many options with the information you provided
me.”

(9) a. “Do you want me to {Action}?” (parametric value)

b. “Do you want me to {show you the list of tools}?”

Furthermore, to correctly interpret a user input given a request, it
is important to determine the type of response required. In this sense,
TODODM distinguishes between two types of requests considering
the required user response type: content requests (ContentRequest),
which require an informative user response, and yes/no requests (Yes
NoRequest), which require a confirmation on the information pro-
vided. Examples 10 and 11 show and example of a content request
and a yes/no request, respectively.

(10) a. “Can you please tell me the cartridge colour?”
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b. Expected response: “yellow”, “magenta”

(11) a. “Is ‘magenta’ the cartridge colour?”

b. Expected response: “yes”, “no”

Finally, given a user input, it is necessary to process its content
and to determine the next step to be performed by the task-oriented
dialogue system. These necessities are covered by step functions
(StepFunction), which are directly linked to specific functions in
the dialogue manager that allow to process the user input (e.g., if
the task-oriented dialogue system has requested the user to provide
a cartridge colour, the corresponding step function will determine if
the user input is suitable for the request performed by the dialogue
system). These step functions are intended to be generic and, thus,
to be reused among use cases.

To model the sequence of steps that take part in the dialogue
process, each process step and system request is bound to a step
function through the object property hasStepFunction. Consider-
ing their output when executed in the dialogue manager, each step
function has a set of implications –modelled through the object prop-
erty implies and its subproperties– that determine the next step to
perform. The possible implications for step functions can be system
steps, process steps, dialogue steps –described above–, or dialogue
control markers (DialogueControlMarker), which are predefined di-
alogue actions that establish whether the dialogue process needs to
continue, finish or restart.

4.3.1.2 TODODT - Dialogue Tracing Module

The TODODT module aims to model the necessary concepts to
keep track of ongoing or finished dialogues. More specifically, this
module has two main functions: to store the dialogue state and to
gather the necessary information to recreate the dialogue, which can
be exploited to detect the source of unsuccessful dialogues or to learn
from completed interactions. For this, this module covers the follow-
ing BCQs:

• BCQ10. Which step is currently being performed in the dia-
logue? (CQ85)
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• BCQ11. Which is the trace –and the information that includes–
for an element? (CQ86-99)

Dialogue processes are traced through the class DialogueProcess
Trace. For each dialogue, which is modelled as a trace (Dialogue
Trace), a set of traces are stored through data properties that allow
to characterize it: the starting time (initDateTime), the current step
of the dialogue (currentStep) and whether the dialogue is currently
ongoing or has finished (status). If the dialogue has come to an end,
the time the dialogue finished is also stored (finishDateTime).

In task-oriented dialogue systems, the dialogue process revolves
around an initial user request (userRequestTrace), which is associ-
ated to a dialogue trace through the object property hasUserRequest.
For each user request, a trace of the transcription obtained for said
request is stored (text).

For example, given a user interaction “Put the magenta cartridges
into container 2”:

1. A dialogue trace is created: dialogueTrace001.

2. For that dialogue trace, the starting time is assigned, along
with the dialogue status and the current step of the dialogue:
:dialogueTrace001 tododt:initDateTime

‘2021-10-26T21:32:52’.

:dialogueTrace001 tododt:dialogueStatus ‘open’.

:dialogueTrace001 tododt:dialogueStep

‘ObtainKeyElements’ .

3. A user request trace is created: userRequestTrace001, associ-
ated with the dialogue trace:
:dialogueTrace001 tododt:hasUserRequest

:userRequestTrace001.

4. For that user request trace, the transcription obtained is stored:
:userRequestTrace001 tododt:text ‘Put the magenta

cartridges into container 2’.

If the task-oriented dialogue system has been able to obtain a full
interpretation of the command, the dialogue will finish and, thus, the
dialogue trace’s status will be updated to reflect so:
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:dialogueTrace001 tododt:finishDateTime

‘2021-10-26T21:35:42’.

:dialogueTrace001 tododt:dialogueStatus ‘close’.

However, if the initial user request does not contain enough infor-
mation or the task-oriented dialogue system is not able to fully inter-
pret the command, an interaction with the user is necessary. These
interactions initiated by the system and directed to the user are sec-
ondary dialogues (SecondaryDialogueTrace), which can be related
to dialogue traces or to other secondary dialogues (hasSecondary
Dialogue), depending on whether the extra user input is required
during a dialogue or a secondary dialogue. In the same way as dia-
logues, for secondary dialogues starting and finishing time and status
traces are stored.

As noted in the description of TODODM, interactions from the
system to the user can be either responses or requests. For each
secondary dialogue, a trace for each of these elements is generated
(SystemResponseTrace and SystemRequestTrace, respectively).

Since the outputs for system responses and requests are designed
parametrically, each trace contains the exact output provided to the
user in the interaction (text), which can be complemented with a
tag that stands for the language (e.g., @en, for English).

Finally, once the user has answered the request performed by the
system, a trace is generated (userResponseTrace), which, in the
same way as user requests, contains the transcription obtained from
the user response through the data property text.

If the user response has provided the information requested, the
secondary dialogue will update its status to ‘close’, in the same way
as dialogues. However, if the information is still not enough, a new
secondary dialogue will be generated.

For instance, given the user request “Put the magenta cartridges”,
which is missing information (the destination), and its dialogue trace
dialogueTrace002:

1. A secondary dialogue trace, secondaryDialogueTrace001, is
created and associated to the dialogue trace:
:dialogueTrace002 tododt:hasSecondaryDialogue

:secondaryDialogueTrace001 .



62 The Task-Oriented Dialogue management Ontology (TODO)

2. For that secondary dialogue trace, the starting time is assigned,
along with its status:
:secondaryDialogueTrace001 tododt:initDateTime

‘2021-10-26T21:37:52’ .

:secondaryDialogueTrace001 tododt:dialogueStatus

‘open’ .

3. A trace for the system response and the system request are cre-
ated: systemResponseTrace001 and systemRequestTrace001.

4. Each system response and request traces include a trace of the
output provided to the user with its corresponding language
tag:
:systemResponseTrace001 tododt:text ‘I am missing

some information’@en .

:systemRequestTrace001 tododt:text ‘Can you please

tell me the destination?’@en .

5. When the user answers the system request, a user response
trace is created: userResponseTrace001.

6. For that user response trace, the transcription obtained is stored,
with its corresponding language tag:
:userRequestTrace001 tododt:text ‘Into container

2’@en .

7. If the information provided by the user covers the information
requested, the secondary dialogue will close:
:secondaryDialogueTrace001 tododt:finishDateTime

‘2021-10-26T21:40:42’.

:secondaryDialogueTrace001 tododt:dialogueStatus

‘close’ .

4.3.1.3 TODODial on Top of TODODM and TODODT

Although the submodules in TODODial can be used indepen-
dently, in the context of their use as part of the core of task-oriented
dialogue systems they are related to each other. In this sense, the
TODODial module is in charge of joining TODODM and TODODT3.

3For an overview of the classes and relations involved, Figure 4.2 may be
consulted in page 57.
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In this case, as described above, TODODT considers traces for
system responses and requests, along with the output presented to
the user. So as to keep track of the system response and/or request
directed to the user, TODODial establishes a relation between sys-
tem response and request traces in TODODT to their corresponding
system responses and requests in TODODM through the object prop-
erty tododial:isTraceOf.

For example, for a given system response trace systemResponse

Trace001 and a system resquest trace systemRequestTrace001:

:systemResponseTrace001 tododial:isTraceOf

tododm:systemResponseMissingInfo.

:systemRequestTrace001 tododial:isTraceOf

tododm:systemRequestMissingInfo.

4.3.2 TODODom - Domain Module

The TODODom module deals with the concepts used for domain
modelling, in terms of the actions that the target system can per-
form and the elements that are present in the scenario. Most impor-
tantly, this module is in charge of supporting the process to obtain
a command that can be executed by the target system from a natu-
ral interaction. To do so, it covers the requirements in the following
BCQs:

• BCQ01. What are the elements that are present in the sce-
nario? (CQ01-02)

• BCQ02. Which is the action to be performed by the target
system given a series of key elements obtained from a user re-
quest? (CQ03-11)

• BCQ03. Which are the arguments of a specific action? (CQ12-
13)

• BCQ04. Given a set of arguments from a specific action, to
what argument can a key element from the user request be
associated to? (CQ14-18)

• BCQ05. Which is the format of the information that has to
be provided to the target system? (CQ19-26)
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Figure 4.3: Simple overview of TODODom. Green classes correspond
to TODODFA, the orange one to TODODW and the blue ones to
TODODom.

Taking into account these considerations, this module has two
submodules: TODODomain Frame-Action (TODODFA), which deals
with target system actions, and TODO Domain World (TODODW),
which deals with scenario elements. The main classes in each module
can be seen in Figure 4.3.

4.3.2.1 TODODFA - Domain Frame-Action Module

The TODODFA module is in charge of, on the one hand, mod-
elling the actions that the target system can execute and the knowl-
edge to obtain them from a user command and, on the other hand,
to represent the necessary information for generating the output for
the target system accordingly, dealing with the following BCQs:
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• BCQ02. Which is the action to be performed by the target
system given a series of key elements obtained from a user re-
quest? (CQ03-11)

• BCQ03. Which are the arguments of a specific action? (CQ12-
13)

TODODFA considers the possible functionalities that the target
system can perform as skills (Skill). For instance, an information
system that can manage maintenance tasks and that also can give
assistance on a maintenance procedure has two skills.

Each skill is related to one or more intents (Intent), which repre-
sent the user objective when directing a request to the task-oriented
dialogue system, through the object property hasIntent. For exam-
ple, for the information system mentioned above and its maintenance
task management skill (InfoSystem ManageMaintenanceTask), the
user may have two intents: to show the blueprints (showBlueprint
Intent) or a exploded view of the components (showExplodedView
Intent) involved in the task:

:InfoSystem ManageMaintenanceTask tododfa:hasIntent

:showBlueprintIntent.

:InfoSystem ManageMaintenanceTask tododfa:hasIntent

:showExplodedViewIntent.

For each intent, an action (Action) is associated (belongsToActi
on). Actions depict the functions that the target system can execute,
which may be executed according to the value of specific parameters.
These parameters are arguments (Argument), which are inspired in
the concept of slot in GUS (Bobrow et al., 1977). Actions are re-
lated to arguments through the object property hasArgument, which
can determine if an argument is strictly necessary for the action to
execute or it is optional through its subproperties hasCoreArgument
and hasOptionalArgument, respectively.

So as to provide support to determine the intent (and, thus, the
action) from a natural command, intents are also related to one or
more frames (Frame). These frames, which are inspired in Frame Se-
mantics (Fillmore et al., 1976), model situations that can be elicited
by specific words, the so-called frame heads (FrameHead). For exam-
ple, the frame Needing, which represents a situation in which some-
body needs something, may be elicited by a frame head need. The
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reason for this modelling is that the situations depicted by frames
represent the circumstances of an intent. For instance, for the in-
tent showBlueprintIntent, the frame Needing may apply since this
intent can be conceptualised as a situation in which a user needs a
blueprint.

Finally, actions and arguments have a set of data properties in
order to fill the corresponding parametric values in TODODM’s sys-
tem steps’ output sentences. Both actions and arguments have a tag
associated that identifies them in an output sentence (actionTag
and argumentTag, respectively). Arguments may have a second data
property, argumentConnector, which is a complementary word –
generally a preposition– to introduce an argument tag so the out-
put sentence constructed is grammatically correct and conveys the
intended message. However, it is not always necessary, and it may
have an empty value. Examples (12) and (13) show a usage instance
of these data properties in an output sentence:

(12) ¿Quieres {ActionTag} {ArgumentConnector}
{ArgumentTag} {ArgumentValue} {ArgumentConnector}
{ArgumentTag} {ArgumentValue}?
Do you want me {ActionTag} {ArgumentConnector}
{ArgumentTag} {ArgumentValue} {ArgumentConnector}
{ArgumentTag} {ArgumentValue}?

(13) ¿Quieres {que coja y ponga} {} {los cartuchos del tipo}
{amarillo} {en} {el contenedor} {1}?
Do you want me {to pick and place} {} {the cartridges that
are} {yellow} {in} {container} {1}?

4.3.2.2 TODODW - Domain World Module

The TODODW module models the set of elements that are avail-
able in the scenario, covering the requirements in BCQ01:

• BCQ01. What are the elements that are present in the sce-
nario? (CQ01-02)

Examples of the scenario elements –or world elements– to model
are spaces, objects or people, depending on the use case. For this,
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the WGS84 Geo Positioning ontology4 has been reused. Given the
strong dependence of this module on the scenario, this module is
practically empty out-of-the-box, with an only class, geo:Spatial
Thing, and the relations dcterms:hasPart and its inverse dcterms:
hasPartOf5, that aim to model the world elements contained by oth-
ers; for instance, a laboratory that has machines in it:

:laboratory1 dcterms:hasPart :machineA .

:machineA dcterms:isPartOf :laboratory1 .

This is a module, thus, that must be customized according to the
characteristics of each adaptation and/or application. To do so, the
LOT methodology (Poveda-Villalón et al., 2019) should be applied.

4.3.2.3 TODODom on Top of TODODFA and TODODW

TODODom’s modules, although they can work independently,
have been designed to interact with each other to comprehensively
characterize the domain of a particular use case. For this, the role of
the TODODom module is to connect these two submodules through
a series of intermediate classes6 that deal with the following BCQs:

• BCQ04. Given a set of arguments from a specific action, to
what argument can a key element from the user request be
associated to? (CQ14-18)

• BCQ05. Which is the format of the information that has to
be provided to the target system? (CQ19-26)

• BCQ11. Which is the trace –and the information that in-
cludes– for an element? (CQ86-99)

In the process of modelling arguments, it is important to deter-
mine which world elements can be values of a given argument. For
this, similar world elements may be grouped (WorldElementGroup),
through the object property hasGroupMember. So as to relate argu-
ments to world element groups, the object property appliesToWorld

4http://www.w3.org/2003/01/geo/wgs84 pos
5http://purl.org/dc/terms/
6For an overview of the classes and relations involved, Figure 4.3 may be

consulted in page 64.

http://www.w3.org/2003/01/geo/wgs84_pos
http://purl.org/dc/terms/
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ElementGroup is used. For instance, considering an action logistics
Robot move, in which a logistics robot has to move an object to
some target destination and has the core arguments object and
destination. In this case, the world elements that can be values
of object have a technical restriction that states that these elements
must be in a box. For this, the elements that are in a box may
be modelled as part of a group, group inBox, to be matched to the
argument:

:logisticsRobot move tododfa:hasCoreArgument :object.

:WorldElementInBox1 a tododw:Object.

:WorldElementInBox2 a tododw:Object.

:WorldElementNotInBox a tododw:Object.

:group inBox tododom:hasGroupMember :WorldElementInBox1.

:group inBox tododom:hasGroupMember :WorldElementInBox2.

:object tododom:appliesToWorldElementGroup :group inBox.

In order for the target system to execute a command obtained
through user interaction, it is necessary to establish the format in
which the information obtained must be sent to the target system
(TargetSystemReadableInformation –or TSRI). In this sense, this
information must be modelled for the action to execute, the param-
eters (arguments) for that execution and the values of these parame-
ters (world elements). For actions, so as to determine the information
necessary for their execution, according to how the action is imple-
mented in the target system –e.g., as a robot command or as a REST
service–, the class ActionTSRI has been modelled. Since in industrial
scenarios the most common implementations are robot commands
and REST services, ActionTSRI has two subclasses: CommandTSRI

and ServiceTSRI. In the case of arguments and world elements, it is
possible that the same world element may be the value of different
arguments of different actions. Even more, each action may require a
different format (a ParameterType) for the same world element. For
example, for actions A and B, that involve a machine as the value
of one of its arguments: action A’s pieceOfInformation argument
may require the machine to be identified through an identifier (e.g.,
“Machine123”) and action B’s destination argument may need its
coordinates (e.g., “XYZ”). So as to provide the target system with
the correct format, the TSRIs for both arguments (ArgumentTSRI)
and world elements (WorldElementTSRI) are related to a member
of the class ParameterType through the object property hasType.
By doing so, the argument can set the parameter type required by
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the action when a given world element is assigned as its value. This
example is illustrated below:

:machineA tododom:hasTargetSystemReadableInfo

:coord machineA .

:coord machineA geo:lat "1" .

:coord machineA geo:long "2" .

:coord machineA geo:alt "1" .

:coord machineA tododom:hasType :coordinate .

:machineA tododom:hasTargetSystemReadableInfo

:ID machineA .

:ID machineA tododom:val "123" .

:ID machineA tododom:hasType :ID .

:actionA tododfa:hasArgument :pieceOfInformation .

:pieceOfInformation tododom:hasType :ID .

:actionB tododfa:hasArgument :destination .

:destination tododom:hasType :coordinate .

Thus:
Action A: pieceOfInformation when the value is machineA→ “123”.
Action B: destination when the value is machineA → “1, 2, 1”.

Another common characteristic shared between specific individ-
uals in TODODFA –more specifically, the ones that belong to the
class FrameHead– and TODODW –world elements– is that both el-
ements are explicitly referred to in the user command. Considering
the fact that TODO has been designed to cope with natural lan-
guage, it is important to take into account that users can refer to the
same actions or elements in different ways –for instance, to refer to
a computer, the words PC and computer may be used. For this, the
different word variants in which a user can refer to them in a natural
command are modelled as individuals of the LexicalUnit class. For
each frame head or world element, there is a set of lexical units as-
sociated through the object property hasLexicalUnit, which cover
the different variants or synonyms to refer to them, considering dif-
ferent languages to support multilingualism. The following example
determines the possible variants for computer (PC, computer and
laptop):



70 The Task-Oriented Dialogue management Ontology (TODO)

:PC.N a tododom:LexicalUnit .

:computer.N a tododom:LexicalUnit .

:laptop.N a tododom:LexicalUnit .

:computer tododom:hasLexicalUnit :PC.N .

:computer tododom:hasLexicalUnit :computer.N .

:computer tododom:hasLexicalUnit :laptop.N .

As a side note, as this modelling implies that a considerable
amount of data needs to be instantiated, Section 4.6 provides a strat-
egy that leverages existing multilingual resources to semi-automatica-
lly instantiate this information.

Finally, TODODom also models the necessary classes and object
properties to store traces for actions, intents, arguments, the key ele-
ments extracted from a user input, frames, skills and world elements.
These traces are related to their corresponding class individuals in
TODODFA and TODODW through the object property isTraceOf.
Furthermore, these traces relate with each other in the same way as
their corresponding classes. For instance:

:logisticsRobot move a tododfa:Action.

:object a tododom:Argument.

:logisticsRobot move tododfa:hasCoreArgument :object.

:logisticsRobot move trace a tododom:ActionTrace.

:logisticsRobot move trace tododom:isTraceOf

:logisticsRobotmove.

:object trace a tododom:ArgumentTrace.

:object trace tododom:isTraceOf :object.

:logisticsRobot move trace tododfa:hasCoreArgument

:object trace.

These traces have the objective of storing the different interpre-
tations that a user command may have. That is, it is possible that,
given a key element (stored as key element trace), it may apply
to more than one action, to more than an argument or more than
an argument value. For example, if the target system is able to,
among other actions, show a list of tools and additional information
for a given manufacturing procedure and the user utters the com-
mand “Show me more”, the possible actions to be performed are to
show the list of tools and to show additional information. To con-
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vey this information, key element traces are related to the different
possible action or argument interpretation options that may be ob-
tained from them through the object property hasPossible and their
subproperties hasPossibleAction, hasPossibleArgument, and ar-
gument traces and their possible values through the subproperty
hasPossibleValue.

4.3.3 TODO on Top of TODODial and TODODom

The previous sections have depicted the modelling of the dia-
logue process through the domain and dialogue dimensions through
the TODODom and TODODial modules and their submodules. Al-
though both dimensions are independent, to obtain a full modelling
of the dialogue process there is knowledge from both modules that
should be related to each other: traces.

As described previously, TODODial, among others, stores traces
for dialogues and secondary dialogues and user requests and responses,
whereas TODODom stores the domain traces obtained from a user
command (both requests and responses). The main objective of
TODO regarding traces is that the domain information generated
in the context of a dialogue is stored so a given dialogue process can
be easily recreated from its traces. In this sense, the knowledge re-
quired is, on the one hand, the key elements obtained from each user
interaction and the domain information obtained from them (e.g.,
arguments, world elements) and, on the other hand, at which point
of the dialogue was this information obtained (e.g., a secondary dia-
logue).

To obtain the intended dialogue recreation, given a dialogue ini-
tiated by a user request:

1. A user request trace is generated:
:userRequest001 a tododial:UserRequestTrace .

2. The user request trace is associated to the key element trace
generated with its key elements by using the object property
hasKeyElement:

:keyElementTrace001 a tododom:KeyElementTrace .
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:userRequest001 tododom:hasKeyElement

:keyElementTrace001 .

3. When an action is obtained, the user request trace is related to
the action trace generated through the object property todo:has
ActionTrace. This action trace will be related to its corre-
sponding argument traces and their values –as world element
traces– as soon as they have been obtained in the dialogue:
:userRequest001 todo:hasActionTrace :actionTrace001 .

:actionTrace001 tododfa:hasCoreArgument

:argumentTrace001 .

:argumentTrace001 tododom:hasValue

:worldElementTrace001 .

[...]

4. If there is information missing in the initial user request and a
secondary dialogue is necessary, the obtained information will
be related to the secondary dialogue used to obtain it though
the object property todo:obtainedThrough:
:worldElementTrace001 todo:obtainedThrough

:secondaryDialogue001.

The relations between TODO’s modules can be seen in Figure
4.1, in page 55.

4.4 Evaluation

According to Poveda-Villalón (2016), there are several metrics in
the literature to perform ontology evaluation and validation. How-
ever, most of these metrics evaluate ontologies from a structural point
of view (e.g., whether there are inconsistencies or ill-formed data) or
subject-related data (e.g., whether the information in the ontology
is correct or the domain is fully covered). In the first case, although
relevant, these metrics may not be descriptive enough to properly
assess the quality of an ontology (Esnaola-González et al., 2021),
whereas in the second case, the metrics must rely on other sources
(e.g., gold standards) in order to perform evaluation (Raad & Cruz,
2015), which in some cases is not viable due to the nature of the
ontology to evaluate.
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Furthermore, and as noted by Poveda-Villalón, Espinoza-Arias,
Garijo, and Corcho (2020), ontologies, as other data resources, should
follow the FAIR –Findable, Accessible, Interoperable, Reusable–
data principles (Wilkinson et al., 2016) to ensure optimal reusability
conditions, which is one of the main objectives of their development
in the context of the Semantic Web.

Following the considerations above and the approach and tools
described in Esnaola-González et al. (2021), the following sections
present an ontology evaluation framework based on four points of
view (structural metrics, design correctness, adherence to
FAIR principles and modularity quality), that aim to provide a
non-biased ontology evaluation. Some discussion is also provided on
the possibility of customising the ontology through module modifica-
tion7.

4.4.1 Structural Metrics

This evaluation approach aims to provide figures describing the
data modelled in the ontology, more than assessing its overall quality
(Esnaola-González et al., 2021).

The source to obtain ontology structural information has been
Protégé, in its version 5.2.0. More specifically, its Ontology Metrics
tab has been used, which includes descriptive data from the ontology
in terms of general metrics –Metrics– (number of classes, objects,
data properties, individuals, etc.) and axioms for classes (e.g., num-
ber of subclasses), object properties (e.g., number of inverse object
properties), data properties (e.g., number of disjoint data properties),
individuals (e.g., number of equivalent individuals) and annotations
(e.g., information related to domains and ranges).

The most relevant information in the Metrics tab is provided in
Table 4.1. Apart from offering quantitative measures (e.g., number
of axioms, classes and properties –object properties (OP) and data
properties (DP)), Table 4.1 also gives information about the expres-
sivity of the ontology at hand. Since TODO’s modules aim to model
complex relationships between concepts, the ontologies show a con-

7The evaluations have been performed in the 2.1 release of TODO: https://
github.com/cristinacm/todo/releases/tag/2.1

https://github.com/cristinacm/todo/releases/tag/2.1
https://github.com/cristinacm/todo/releases/tag/2.1


74 The Task-Oriented Dialogue management Ontology (TODO)

Table 4.1: Structural metrics obtained through Protégé’s Ontology
Metrics tab. Values in parentheses do not consider imported modules.
OP: object properties; DP: data properties; Ann: annotations; DL
Expr: Description Logics expressivity.

Ontology Axioms Class OP DP Ann DL Expr

TODODial 826(31) 73(0) 23(3) 13(0) 19 SHIQ(D)
TODODM 588 59 15 4 19 ALCHI(D)
TODODT 207 14 5 9 19 SHQ(D)
TODODom 695(469) 37(28) 50(30) 20(17) 19 ALCHIQ(D)
TODODFA 208 8 18 3 19 ALCHIQ(D)
TODODW 18 1 2 0 16 ALI

siderably rich expressivity8. However, TODODW is not as rich as
the other modules, which makes sense taking into consideration its
out-of-the-box simplicity.

Regarding size, modules in TODO are relatively small (between
1 and 59 classes). As for the highest number of classes, TODODM
presents 59 classes since, among other elements, it models all types of
interactions –requests and responses– that can be made by the system
(that is, tododm:SystemSteps9). At the other end, TODODW only
presents a single class, again, due to the fact that it is highly depen-
dant on the target use case and that it must be modelled according
to the characteristics of the scenario.

4.4.2 Design Correctness Metrics

So as to assess the design of the ontologies presented in this work,
the tool OOPS! (Poveda-Villalón, Gómez-Pérez, & Suárez-Figueroa,
2014) has been used. This tool checks the ontology to evaluate against
a set of 41 pitfalls, which are considered to be the most common ones
in ontology design. These pitfalls are also classified according to three
levels of importance (Poveda-Villalón et al., 2014):

• Critical (C): It is crucial to correct the pitfall. Otherwise, it
could affect the ontology consistency, reasoning, applicability,

8The meaning of the naming conventions used in description logics for expres-
sivity can be found in Chapter 2.2.2.

9vid. Chapter 4.3.1.1.
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Table 4.2: Results of the evaluation on design correctness performed
by OOPS!

Ontology M I C Notes

TODODial 1 1 0 P11 (I), P13 (M)
TODODM 2 1 0 P11 (I), P13 (M), P22 (M)
TODODT 3 1 0 P04 (M), P11 (I), P13 (M), P22 (M)
TODODom 4 1 0 P04 (M), P08 (M), P11 (I), P13 (M),

P22 (M)
TODODFA 0 1 0 P11 (I)
TODODW 2 1 0 P04 (M), P08 (M), P11 (I)

etc.

• Important (I): Though not critical for the ontology to func-
tion, it is important to correct this type of pitfall.

• Minor (M): It is not really a problem, but by correcting it the
ontology will be nicer.

Table 4.2 shows the results obtained by OOPS! for each of the
modules of TODO in terms of number of pitfalls according to their
importance level. First of all, it is worth noting that no critical pitfalls
have been reported in any of TODO’s modules.

For the important pitfalls, the Table shows that the one that
all modules share is P11, which states that properties lack the
modelling of domain and range . As the function of domain and
range is to make inferences regarding the class of the elements related
by a property, rather than setting restrictions (i.e., raise inconsisten-
cies if domain or range are violated), in the scope of this work this
modelling would be problematic (undesired inferences may occur).
To illustrate this with an example, given the property contains and
its domain Laboratories and range Machines, it will be inferred
that the subject of the triples of the property contains belong to
the class Laboratories and the objects to the class Machines. That
is, given the triple X contains Y, it will be inferred that X is an
instance of Laboratories and Y an instance of Machines. How-
ever, if the individual A belongs to the class Machines and individ-
ual B to Laboratories and the triple A contains B exists, the rea-
soner, instead of raising an inconsistency (according to the ontology
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modelling, Laboratories contain Machines and not the other way
around), would provoke that A would belong to two classes: the class
Machines (its modelled class) and the class Laboratories (by in-
ference), and the same would happen with B (i.e., Laboratories by
modelling and Machines by inference). This is an undesired outcome
and would not be useful for the purpose of the ontologies. Never-
theless, this can be solved by modelling these classes as disjoint, and
in that case the reasoner would raise and inconsistency given this
situation. Since this action is not critical –although desirable–, the
correction of this pitfall has been envisioned for future versions of
TODO.

For the minor pitfalls, the pitfalls reported are P04, P08, P13
and P22. P04 indicates that there are elements that are isolated in
the ontology and, thus, are not connected to other ontology elements.
As it can be observed, this pitfall occurs in modules that are con-
nected to others (e.g., TODODom and TODODial being connected
through action traces). In this sense, these isolated elements are in
fact connected to other elements outside the module. For P08, this
pitfall arises when any class/property lacks some annotation (e.g.,
description, label). In these ontologies, this pitfall refers to imported
classes and properties, the descriptions and labels of which cannot be
detected by the tool and are out of the scope of TODO’s modelling.
On the other hand, P13 points out the lack of inverse object prop-
erties. Considering that in dialogue-oriented scenarios it is crucial to
obtain responses in the lowest time possible and inverse relationships
may increase reasoning time, the number of inverse relationships in
TODO has been reduced to the strictly necessary ones. For that
reason, the object properties detected in this pitfall do not have an
inverse relationship. Finally, P22 states that name conventions are
not correctly followed. Since this pitfall does not indicate the specific
elements to be reviewed, all the affected modules have been manu-
ally reviewed to ensure that all classes and properties follow the same
naming conventions.

All in all, the considerations above prove that, according to OOPS!,
the modules in TODO could be considered as correctly designed.
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4.4.3 Adherence to FAIR Principles

This section analyses whether TODO and its modules comply
with the FAIR principles (Wilkinson et al., 2016). In a nutshell, FAIR
principles establish a set of criteria to, on the one hand, support the
reuse of data and non-data (e.g., formal representations of workflows
(Wilkinson et al., 2016)) resources and, on the other hand, to allow
machines to find and consume these resources. These criteria are
grouped into four dimensions –Findable, Accessible, Interoperable
and Reusable–, and each of them have a series of characteristics to
satisfy, which will be further described in the following lines.

To determine the adherence of TODO and its modules to the
FAIR principles, the tool FOOPS! (Garijo, Corcho, & Poveda-Villalón,
2021), is used. To do so, this tool checks whether the ontology to
analyse complies with the FAIR principles according to 24 items, dis-
tributed across its four dimensions, and their description by Wilkin-
son et al. (2016) (reproduced from Poveda-Villalón et al. (2020)):

• To be Findable (9 items in FOOPS!). Characteristics:

– (Meta)Data are assigned a globally unique and persistent
identifier.

– Data is described with rich metadata.

– Metadata clearly and explicitly include the identifier of
the data it describes.

– (Meta)Data are registered or indexed in a searchable re-
source.

• To be Accessible (3 items in FOOPS!). Characteristics:

– (Meta)Data are retrievable by their identifier using a stan-
dardized communications protocol.

– The protocol is open, free, and universally implementable.

– The protocol allows for an authentication and authoriza-
tion procedure, where necessary.

– Metadata are accessible, even when the data are no longer
available.10

10Not analysed in FOOPS!
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Table 4.3: Results on adherence to FAIR principles, obtained by
FOOPS!

F indable Access. Interoper. Reusable Overall

TODO 6.83/9 3/3 3/3 6.25/9 80%
TODODial 5.83/9 3/3 3/3 7.63/9 81%
TODODT 5.83/9 3/3 2/3 7.63/9 77%
TODODM 5.83/9 3/3 2/3 7.72/9 77%
TODODom 5.83/9 3/3 3/3 7.63/9 81%
TODODFA 5.83/9 3/3 2/3 7.77/9 78%
TODODW 5.83/9 3/3 3/3 5.63/9 73%

• To be Interoperable (3 items in FOOPS!). Characteristics:

– (Meta)Data use a formal, accessible, shared, and broadly
applicable language for knowledge representation.

– (Meta)Data use vocabularies that follow FAIR principles.

– (Meta)Data include qualified references to other (meta)
data.10

• To be Reusable (9 items in FOOPS!). Characteristics:

– (Meta)Data are richly described with a plurality of accu-
rate and relevant attributes.

– (Meta)Data are released with a clear and accessible data
usage license.

– (Meta)Data are associated with detailed provenance.

– (Meta)Data meet domain-relevant community standards.10

For each of the items to analyse, FOOPS! returns the degree of
compliance of an item for the ontology at hand and, considering this,
a score is obtained for each FAIR dimension. This information is
shown in Table 4.3, which also adds the overall score across all di-
mensions for each ontology. These results show that TODO and all
its modules are fully accessible and most of them fully interoperable
–as it will be commented later on in this section–, according to the
criteria established. Overall, and also considering the rest of dimen-
sions, all modules achieve scores of more than 73%, what indicates
that TODO modules are of good quality in terms of their adherence
to FAIR principles.
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Table 4.4: Distribution of pitfalls found by FOOPS!

F indable Access. Interop. Reusable

TODO VER1, VER2,
OM1

N/A N/A OM2, OM3,
VOC3, VOC4,

OM5 2
TODODial VER1, VER2,

OM1, FIND2
N/A N/A OM2, OM3,

OM5 2
TODODT VER1, VER2,

OM1, FIND2
N/A VOC2 OM2, OM3,

OM5 2
TODODM VER1, VER2,

OM1, FIND2
N/A VOC2 OM2, OM3,

OM5 2
TODODom VER1, VER2,

OM1, FIND2
N/A N/A OM2, OM3,

OM5 2
TODODFA VER1, VER2,

OM1, FIND2
N/A VOC2 OM2, OM3,

OM5 2
TODODW VER1, VER2,

OM1, FIND2
N/A N/A OM2, OM3,

VOC3, VOC4,
OM5 2

FOOPS! also reports the FAIR non-compliant items –pitfalls from
now on– detected for each FAIR dimension and analysed ontology,
respectively, which can be seen in Table 4.4. For TODO, it can be
observed that the pitfalls detected are common among modules:

• For the Findable dimension, the VER1, VER2 and OM1 pit-
falls observed in the TODO modules all refer to the lack of
a version IRI for the ontology. In this case, previous versions
of the ontology can be found in the Github repository as re-
leases11. To solve this pitfall, further versions of TODO will
include a version IRI.

• For the Interoperable dimension, TODODT, TODODM and
TODODFA present the VOC2 pitfall, which determines that no
terms or vocabularies were reused. In these cases, the reason
to not reuse this type of resources was that no terms or vocab-
ularies were found to include them as part of their modelling.

• Finally, for the Reusable dimension, all the modules analysed
share the OM2, OM3 and OM5 2 pitfalls. For the OM2 pitfall,
it determines that the modules lack a citation, which is a pitfall
that can be solved in further versions. For the OM3 and OM5 2

11https://github.com/cristinacm/todo/releases

https://github.com/cristinacm/todo/releases
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ones, they establish that a set of optional metadata is missing.
Since the presence of these metadata is not deemed as neces-
sary, their addition will be considered in further versions, but
not as a critical action. Besides the pitfalls mentioned above,
the VOC3 and VOC4 ones (related to the fact of not having
labels and descriptions for classes, respectively) have also been
found in TODODW and TODO. For the former, this pitfall is
triggered since it does not have classes of its own. For the lat-
ter, the classes and object properties involved come from other
imported ontologies which do have labels and definitions for
them, but are not detected by FOOPS!.

Considering the overall results obtained and the remarks above
regarding the pitfalls detected by FOOPS!, it can be determined that
TODO and its modules widely comply with FAIR principles.

4.4.4 Modularity Quality

Considering that TODO is a modular ontology, it is of special rel-
evance to evaluate the quality of each of the ontology modules. For
this, the approach in Khan and Keet (2016) is considered to provide a
set of comprehensive measures that determine the quality of an ontol-
ogy module. This work proposes a set of 14 different module types,
to be used depending on the final usage of the evaluated ontology
module. For each type, the authors provide a set of reference metrics
and values to evaluate if the ontology module is of high quality. In
regard to TODO, all modules belong to the T2 type –Subject domain
modules.

For the T2 modules, reference values for the most relevant metrics
are small cohesion (i.e., “the extent to which entities in a module
are related to each other” (Khan & Keet, 2016)), coupling (i.e., the
degree in which the concepts in a module are related to concepts in
other modules) and redundancy (i.e., “the duplication of axioms
within a set of ontology modules” (Khan & Keet, 2016)) and large
encapsulation (i.e., whether a module can be easily replaced by
another or modified without side effects). Other relevant metrics are
size and number of axioms, among others, which can be seen in
Table 4.5.
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To evaluate the quality of the modules in TODO, the Tool for
Ontology Modularity Metrics (TOMM) (Khan & Keet, 2016) has
been used. For that matter, three evaluations have been performed
considering the modular hierarchy in TODO, and each submodule
has been evaluated in relation to its supermodule, going up one level.
Thus, the evaluations performed are the following:

1. The quality of TODODFA and TODODW in relation to TODO-
Dom.

2. The quality of TODODM and TODODT in relation to TODO-
Dial.

3. The quality of TODODial (including TODODT and TODODM)
and TODODom (including TODODFA and TODODW) in re-
lation to TODO.

The results obtained from TOMM are included in Table 4.5, which
includes the relevant metrics to the T2 module type, separated into
the most relevant ones and the rest Khan and Keet (2016), along with
the score obtained for each of them. For each metric, the reference
value for T2 modules (Ref. value) is also reported.

At a first glance, some anomalies in the results in Table 4.5 can
be seen. On the one hand, there are some values for appropriateness
with an asterisk, the original value of which obtained by TOMM,
in fact, was -1.0. This is due to the fact that the approximation
to obtain appropriateness implemented in TOMM establishes that
modules should contain a number of axioms within the range of 0-
500 (Keet, 2018). If the number is higher, TOMM sets a default
value -1.0. To obtain appropriateness values without considering the
number of axioms restrictions (the values in the table), the following
formula for appropriateness in Keet (2018) has been applied:

Appropriate(x) =
1

2
− 1

2
cos(x

π

250
) (4.1)

The next anomaly can be observed for inheritance richness, in
which the modules in TODODom achieve a NaN score. Since this
metric considers the class structure of the ontology to evaluate and
these modules do not have any subclasses modelled, it is logical to
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Table 4.5: Results of the evaluation on modularity quality. Values
with asterisks refer to values obtained manually. Ref. value corre-
sponds to the reference values for T2-type modules (Khan & Keet,
2016).

Metrics TODODom TODODial TODO Ref. value

Most
Relevant

DFA DW DM DT Dial Dom

Cohesion 0.01 0.00 0.07 0.03 0.04 0.00 0-0.25
Encapsulation 0.97 0.62 0.99 0.96 0.99 0.99 0.75-1
Coupling 0.00 0.00 0.00 0.00 0.00 0.00 0-0.25
Redundancy 0.06 0.06 0.02 0.02 0.10 0.01 0-0.25

Others

Size 29 3 78 28 109 107 10-1103
Number of
axioms

208 17 588 207 796 650 46-3954

Appropriate-
ness

0.93 0.01 0.28* 0.93 0.92* 0.65* 0.51-0.75

Atomic size 3.97 1.67 4.09 4.14 4.04 5.26 3.42-7.66
Intramodule
distance

8 0 4115 74 4189 80 0-340833

Attribute
richness

3.75 0.00 1.14 2.14 1.33 4.41 0-3.44

Inheritance
richness

NaN NaN 6.00 2.20 4.64 2.00 1-6.44

assume that this is the reason that these modules do not have a
numerical score.

For the rest of results in Table 4.5, for TODODom-related metrics,
TODODFA achieves the reference values in general, so it can be
stated that it is a module of high quality. It is worth mentioning
the small cohesion values which, as stated at the beginning of this
chapter, account for the quality of the modularity in TODO, as,
according to this metric, its modules are practically independent from
each other.

In the case of TODODW, size-related metrics (size, number of
actions, appropriateness and atomic size) do not fit the defined ref-
erence values. This is due to the fact that this ontology is intended
to be expanded according to the use case and, thus, it has a reduced
size. In the case of TODODial- and TODO- related metrics, the re-
sults show that in both cases the implicated modules widely satisfy
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the established criteria.

All in all, the results in Table 4.5 show that TODO’s modules
satisfy the most relevant aspects to assess the quality of T2 modules.
Therefore, and also considering the rest of metrics, it can be stated
that TODO’s modules are of high quality.

4.4.5 Ontology Customization by Module Modi-
fication

Among the advantages of the generality and modularity of TODO,
there is the fact that it is possible to easily modify the ontology by
means of specific parts of each module, according to the requirements
of the use case. In general, these modifications may be performed in
TODODom and its submodules, since it is the module that is inher-
ently linked to the use case, leaving the rest of modules practically
the same. The clearest example of this customisation is TODODW,
which, as noted in Section 4.3.2.2, must be extended taking into ac-
count the scenario the dialogue system will be implemented in, which
will define the classes and further relations between them12. However,
any module from TODO can be easily modified.

4.5 Documentation and Publication

One of the main premises on ontology engineering methodolo-
gies (including LOT) is the concept of ontologies as resources to be
reused. For that purpose, the creation of high quality documenta-
tion –that will result in a better understanding by potential users of
the contents of the ontology and, eventually, in its proper reuse–, is
strongly encouraged (Peroni, Shotton, & Vitali, 2012). Due to this,
there are several intents in the literature at developing tools that ease
the process of providing documentation for ontologies (Garijo, 2017).

To generate TODO’s documentation, WIDOCO (a WIzard for
DOCumenting Ontologies) (Garijo, 2017) has been used. This tool
creates enriched documentation for ontologies in HTML format and

12vid. use cases in Chapter 6.
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provides human-readable descriptions of the ontology from its meta-
data. Furthermore, it allows further extension of its contents by
users.

As W3C’s Data on the Web Best Practices (Farias Lóscio, Burle,
& Calegari, 2017) state, use of appropriate metadata is a fundamental
requirement for data that is to be published on the Web to make it
readable and understandable by both humans and machines, along
with providing relevant descriptive data about the resource at hand.

The guidelines for complete vocabulary metadata from Garijo and
Poveda-Villalón13 have been used to define the metadata to annotate
TODO and its modules, as they consider them the most complete
for this matter after reviewing other guidelines. The set of proper-
ties used to annotate TODO, and obtained from the aforementioned
guidelines, are imported from the following vocabularies:

owl <http://www.w3.org/2002/07/owl#>
rdfs <http://www.w3.org/2000/01/rdf-schema#>
skos <http://www.w3.org/2004/02/skos/core#>
vs <http://www.w3.org/2003/06/sw-vocab-status/ns#>
dcterms <http://purl.org/dc/terms/>
vann <http://purl.org/vocab/vann/>

Moreover, Garijo and Poveda-Villalón13 also classify metadata in
terms of whether their use in ontology annotation is strongly advised
(recommended) or encouraged but elective (optional). Consider-
ing this, each of the modules in TODO include most recommended
metadata.

As for overall ontology metadata, the metadata used to annotate
TODO is the following:

13https://w3id.org/widoco/bestPractices

https://w3id.org/widoco/bestPractices
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vann:preferredNamespace
Uri

The ontology’s main URI.

vann:preferredNamespace
Prefix

The ontology’s prefix.

dcterms:title The ontology’s title.
dcterms:description A description of the ontology.
owl:versionInfo Ontology’s version information.
dcterms:created Creation date of the ontology.
dcterms:modified Modification date of the ontology.

(optional)
dcterms:creator People who created the ontology.
dcterms:contributor People who have contributed to

the development of the ontology.
cc:license The ontology’s license.

In addition, the following metadata for classes, properties and
data properties is included in TODO:

rdfs:label The term’s human-readable label
rdfs:comment The term’s definition
rdfs:isDefinedBy The source used to define the

term
skos:example [optional] Usage examples of the term
vs:term status [optional] Usage status of the term (stable,

unstable, testing and archaic)

To provide TODO and its modules with stable and secure URIs,
the re-direction service w3id.org has been used14. The URIs for each
of the modules in TODO are the following:

• TODO: https://w3id.org/todo

• TODODial: https://w3id.org/todo/tododial

• TODODM: https://w3id.org/todo/tododm

• TODODT: https://w3id.org/todo/tododt

• TODODom: https://w3id.org/todo/tododom

• TODODFA: https://w3id.org/todo/tododfa

14https://w3id.org

https://w3id.org/todo
https://w3id.org/todo/tododial
https://w3id.org/todo/tododm
https://w3id.org/todo/tododt
https://w3id.org/todo/tododom
https://w3id.org/todo/tododfa
https://w3id.org
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• TODODW: https://w3id.org/todo/tododw

Furthermore, TODO and its documentation can be accessible
through the Linked Open Vocabularies (LOV) (Vandenbussche, Ate-
mezing, Poveda-Villalón, & Vatant, 2017) vocabulary catalogue.

Finally, TODO’s source files are also available in TODO’s GitHub
repository: https://github.com/cristinacm/todo

4.6 Semi-Automatic Population of Intent-

Relevant Information

To contribute to an easy adaptation of semantic-based task-oriented
dialogue systems, this Section describes a generic strategy that allows
to semi-automatically populate their domain ontology –in the context
of this work it would be TODODom– with the relevant information
to identify user intents from natural language requests.

4.6.1 Strategy for Semi-Automatic Population of
Intent-Relevant Information

Communication based on natural language can use a wide variety
of words and expressions to convey the same meaning. Therefore, a
dialogue system that interacts with users must be able to recognise
different words that evoke the same situation or refer to the same
entity to perform successful intent detection15. In an ontology-based
approach, such as the one proposed in this thesis, it is very impor-
tant that the maximum number of these possibilities is considered to
populate the domain ontology with this information. Doing so man-
ually would be a high time- and resource-consuming task, and the
tendency is to apply semi-automatic or automatic techniques (Ben-
abbas, Hornig, & Nicklas, 2018; Makki, 2017). Motivated by this,
the strategy presented in this Section aims to overcome the challenge
of instantiating the domain ontology with intents and their trigger
words by semi-automatically exploiting existing multilingual lexical

15For instance, the verbs inform and tell may elicit the give information intent.

https://w3id.org/todo/tododw
https://github.com/cristinacm/todo
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resources, without reducing the quality of the results and decreasing
time and costs in the adaptation to different scenarios, applications
and languages.

The core linguistic resource used for collecting the necessary infor-
mation for the ontology population process is Predicate Matrix (PM),
since it integrates and maps, among others, the information contained
in FrameNet, the Suggested Upper Merged Ontology (SUMO) and
the Multilingual Central Repository (MCR)–the resources that in-
clude most of the relevant data for this work16.

The strategy will guide the ontologist through the selection of the
relevant information within PM, and will gather, semi-automatically,
the relevant intents (through frames), the associated trigger words
(through lexical units (LUs)) and their corresponding synonyms for
a specific use case in which the dialogue will take place. Considering
this, the main steps of the strategy are the following:

0. Use Case Characterisation. In this step, the main charac-
teristics of the use case are identified, such as the the different
situations (associated to intents) that surround it or the target
language.

1. Linguistic-Resource-Driven Data Selection. For the given
situations identified for the use case, a data selection from lin-
guistic resources is performed, following three phases: frame
selection, lexical unit selection and semantic extension
and filtering.

2. Automatic Data Gathering for Intents. Considering the
selected data, the relevant knowledge to the intents is auto-
matically gathered and structured in terms of the intents, their
corresponding frames and the words that evoke them that are
relevant to the use case. Up to this point, the gathered informa-
tion is agnostic to the structure of the target domain ontology.

3. Query Generation and Ontology Population. Once the
relevant intent-related information is automatically obtained,
the query for the final population of the target domain ontology
will be generated.

16The description of each of these resources can be found in Chapter 2.3.2.
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The following sections detail the aforementioned steps for a guide
robot use case for interactions in Spanish, in which the situations
involved are to be taken to a given place, to give directions, or just
to present information.

4.6.1.1 Linguistic-Resource-Driven Data Selection

The goal of this first main step is to obtain the necessary informa-
tion that will serve as input for the automatic data gathering step.
This data will be selected according to the situations identified for
the use case.

Frame Selection

The first stage in the process is to select the most suitable frames
for the previously defined events in the use case. For this step, the
ontology engineer will choose the relevant frames for the use case
from the list of available FrameNet frames in PM.

For instance, in a guidance scenario, one frame to be chosen would
be Motion, that represents the movement from one point to another.

Lexical Unit Selection

For each selected frame, a set of LUs in English are automatically
extracted from PM and presented to the ontology engineer, who will
select the relevant LUs according to the use case. This step is nec-
essary because it is not evident that all LUs are suitable to all the
cases the chosen frame may apply to.

To illustrate this with an example, the frame chosen in the previ-
ous section, Motion, applied to the guide robot use case, in which a
robot may be asked to guide the user to some final destination, has the
following LUs associated: fn:blow.v, fn:coast.v, fn:drift.v, fn:float.v,
fn:fly.v, fn:glide.v, fn:go.v, fn:meander.v, fn:move.v, fn:roll.v, fn:slide.v,
fn:snake.v, fn:soar.v, fn:spin.v, fn:swerve.v, fn:swing.v, fn:undulate.v,
fn:weave.v, fn:wind.v, fn:zigzag.v and fn:NULL17,18 associated in PM.
Within the use case, some LUs such as fn:fly.v do not apply, and must
therefore not be selected. Indeed, in this case, the relevant LUs to

17vid. Chapter 2.3.2.5.
18The effect of selecting NULL LUs in the results obtained will be analysed in

Section 4.6.3.
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be selected by the ontology engineer are only two: go.v and move.v.

Semantic Extension and Filtering

The objective of this step is to extend semantically the previously
selected LUs by exploiting MCR synsets and SUMO tags.

For that, firstly, all the synsets related to a given LU are obtained.
To do that, an automatic semantic extension is performed, through
the links from LUs to MCR synsets in PM. Again, not all the synsets
obtained through this method are relevant to the use case due to
polysemy19. Therefore, a manual selection is required.

In PM, synsets are mapped to SUMO tags, which aim to group
different synsets into single concepts. Since SUMO tags are more
human-readable than synsets and the amount of tags is considerably
lower, the selection of synsets is proposed to be performed through
SUMO tags. For that, the associated SUMO tags for the whole synset
list are automatically extracted from PM and presented to the ontol-
ogy engineer for the final selection.

To continue with the previous example, for fn:go.v, themcr:Subjec-
tiveAssessmentAttribute,mcr:OccupationalRole;duration,mcr:Motion
and mcr:Death SUMO tags are presented to the ontology engineer,
from which they will select the most relevant ones for the use case
(all except mcr:Death).

4.6.1.2 Automatic Data Gathering for Intents

In this step, the final words in the target language that evoke the
desired intents are automatically obtained considering the manually
selected data in previous steps.

Taking as input the set of selected frames, LUs and SUMO tags,
the corresponding synsets will be automatically retrieved from PM.
After that, the words in the target language that belong to these
synsets will be obtained from the MCR, also automatically. As a
result of this step, a set of synonyms in the target language(s)
for each LU will be obtained.

19For example, go may imply movement from one place to another or to pass
away.
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Figure 4.4: Diagram representing the ontology population process
presented in this thesis in the context of a guide robot scenario.

In the example used previously, for the frame Motion and the
relevant synsets for the LU go.v, the resulting synonyms in Spanish
are the following: acudir, desplazarse, ir, mover, moverse, viajar and
partir 20.

At this point, all the necessary data to support intent detection
has been obtained. A summary of the steps of the strategy consid-
ering the use case of the example above (with the rest of relevant
frames involved) can be seen in Figure 4.4.

4.6.1.3 Query Generation and Ontology Population

In this last step, the SPARQL query necessary to populate the
ontology with the gathered data is automatically created according
to the modelling of the target ontology. This SPARQL, an excerpt
of which can be seen in Listing 4.1, performs three main operations:

• Creates an individual for each frame, frame head and LU.

• Relates each LU to their corresponding frame head(s).

• Relates each frame head to their corresponding frame(s).

20Attend, move, go, move, move, travel and leave, respectively.
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Listing 4.1: Extract of SPARQL result query for the Motion frame.

1 DEFINE input : i n f e r e n c e ’ urn : RobotGuideInst ’
2 p r e f i x domainOnt : <http ://www. foo . bar/tododom>;
3 p r e f i x domainOntFrame : <http ://www. foo . bar/ tododfa >;
4 p r e f i x domainOntWorld : <http ://www. foo . bar/tododw>;
5 p r e f i x domainOntInst : <http ://www. foo . bar/tododom−i n s t >;
6 insert in <urn : RobotGuideInst>{
7 domainOntInst : Motion a domainOntFrame : Frame .
8 domainOntInst : Motion domainOnt : IDval ”Motion” .
9 domainOntInst : go Motion a domainOntFrame : FrameHead .

10 domainOntInst : go Motion domainOnt : IDval ”go Motion” .
11 domainOntInst : Motion domainOntFrame : hasFrameHead
12 domainOntInst : go Motion .
13 domainOntInst : acud i r a domainOnt : Lex i ca lUn i t .
14 domainOntInst : acud i r domainOnt : IDval ” acud i r ” .
15 domainOntInst : go Motion domainOnt : hasLex ica lUni t
16 domainOntInst : acud i r .
17 domainOntInst : d e sp l a z a r s e a domainOnt : Lex i ca lUn i t .
18 domainOntInst : d e sp l a z a r s e domainOnt : IDval ‘ ‘ d e sp l a z a r s e ” .
19 }

Once the query has been created, the final step is to execute it to
finish the population process.

4.6.2 Strategy in Use

To validate the strategy, it has been used in two interaction use
cases that are of relevance in industrial scenarios: a guide/logistics
robot and a CMMS (Computerized Maintenance Management Sys-
tem). In both of these scenarios, the language for interaction is Span-
ish.

The following lines document the process followed in each use case
to apply the strategy.

4.6.2.1 Guide/Logistics Use Case

For the guide/logistics use case, the robot should be able to
guide the user to their destination of choice and to offer information
from specific elements (a room, a machine, etc.). The situations
that may be identified from this use case, thus, are to move from
one point to another, and to ask for information or details about
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something. After checking the FrameNet frames in PM, the ones
deemed more relevant in this use case are the following: Motion,
Taking and Arriving 21.

The next step is to select the appropriate LUs for each frame in
PM. In this case, the total number of LUs for all the frames selected
in the previous step are 34. Although many of the LUs do cover the
use case, such as move and arrive, there are others, such as fly or
blow, that are too specific and do not apply to the use case and must
not be selected.

After this selection, the number of LUs in English is reduced to
12: go, move (Motion); take (Taking); approach, arrive, come, enter,
get, make, reach, return, visit (Arriving). Also, NULL elements have
been considered for evaluation purposes.

For semantic filtering, in this case, the number of available SUMO
tags is 34. In this use case, the application of semantic filtering is
specially relevant, since from the initial 34 available tags, only two
are applicable to the use case and have been selected: BodyMotion
and Motion. The rest of tags were related to situations that were not
considered in the use case, such as Death or Cooking and, thus, were
not part of the final selection. This considerable reduction of tags
reinforces the importance of this filtering step.

Finally, after having selected the frames, LUs in English and
SUMO tags, this information is used to automatically extract the ap-
plicable synsets and their translation equivalents in Spanish which,
in this case, make a total of 32. The vast majority of the synonyms
are relevant to the use case (e.g., moverse, acudir, desplazarse, re-
gresar 22), although a very small portion of them are not entirely
appropriate (e.g., estar activo – to be active).

The summary of the information gathered during the population
strategy for this use case can be seen in Table 4.6.

21Although the original FrameNet includes the frame Information, which would
suit this use case, it is not included in PM due to the fact that it only has nominal
LUs. In the context of this work, this frame will remain out of the evaluation
experiments carried out in Section 4.6.3.

22move, go, move and return, respectively.
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Table 4.6: Summary of the information obtained through the use of
the population strategy for the guide/logistics use case.

Manual selection Automatic selection

Frames Lexical
Units

SUMO tags Synonyms

Motion
Taking
Arriving

Motion:
go, move
Taking:
take

Arriving:
approach,

arrive, come,
enter, get,

make, reach,
return, visit

Motion,
BodyMotion

(all)

abordar, acercar, acercarse,
acostar, acudir, alcanzar,
aproximar, aproximarse,

arribar, derivar, desplazarse,
devolver, encarar, entrar,

estar activo, ir, llegar, mover,
moverse, partir, provenir,

regresar, reincorporar, resultar,
retornar, salir, salir a escena,
subir, trasladar, venir, viajar,

volver

4.6.2.2 CMMS Use Case

In theCMMS use case, users should be able to ask about problem
solving protocols, request blueprints and similar tasks. Considering
the previous remarks, the identifiable situations in this use case are
showing information and reporting and solving problems. The ap-
plicable frames are, thus, Resolve problem, Evidence, Reporting and
Communication.

Regarding the LUs, a total of 30 results have been picked from
the previously selected frames. After discarding some LUs that were
not applicable to the current use case, such as contradict or deal,
the selected LUs are the following: solve, resolve (Resolve problem);
indicate, reveal, show (Evidence and Communication); inform, report,
tell (Reporting).

In this next step, the number of SUMO tags to choose from is 9
which, after user selection, are reduced to Communication, VisualAt-
tribute and IntentionalPsychologicalProcess. Given this selection, the
total number of automatically obtained word synonyms in Spanish
for this use case is 39, being most of them appropriate to the use case
(e.g., solucionar, informar, presentar 23). However, other results are
not applicable to the use case, such as denunciar (report, in the legal

23solve, inform and show, respectively.
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Table 4.7: Summary of the information obtained through the use of
the population strategy for the CMMS use case.

Manual selection Automatic selection

Frames Lexical
Units

SUMO tags Synonyms

Resolve
problem
Evidence
Reporting

Communica-
tion

Resolve
problem:

solve, resolve
Evidence,

Communica
tion:

indicate,
reveal, show
Reporting:

inform, report,
tell

Communi-
cation,

VisualAt-
tribute,

IntentionalPsy-
chologicalPro-

cess (all)

adjudicar, advertir, afirmar,
anunciar, apuntar, asegurar,
avisar, comunicar, contar,
dar información, dar parte,

decidir, decir, declarar, deducir,
demostrar, denunciar, describir,
descubrir, desvelar, dirimir,
divulgar, evidenciar, explicar,
exponer, indicar, informar,
manifestar, narrar, recontar,
relatar, reportar, resolver,
revelar, señalar, sentenciar,
solucionar, solventar, solver

sense of the word).

The summary of the information gathered during the population
strategy for this use case can be seen in Table 4.7.

As this validation task has shown, this strategy can be used in
different industrial use cases. For this, it has been applied in all the
use cases for which KIDE4I has been implemented and adapted in
the context of this thesis, which are described in Chapters 5 and 6.

4.6.3 Evaluation

To determine the suitability of the strategy, a gold standard has
been created for the two use cases described above, the contents of
which have been compared with the results obtained by applying
the strategy in each use case. For the gold standard construction,
all the possible synonyms in the target language (i.e., Spanish) have
been automatically retrieved by using the methods described in the
strategy (in this case, only with a manual frame selection, without
LU and SUMO filtering), followed by an expert manual selection of
the relevant ones.
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For this evaluation, different configurations of the manual selec-
tion steps described previously have been applied, and their corre-
sponding synonyms have been obtained through the resulting synsets.
Among these, combinations that consider NULL elements and com-
binations that do not are distinguished. The reason for this is that,
as described in Section 2.3.2.5, although NULL elements account for
partial mappings between resources, these act as regular LUs in PM
and, thus, synonyms can be obtained from them. Considering this,
the configurations evaluated are the following:

• Frame selection (F). All LUs for the selected frames and
their associated synonyms.

• Frame + LU selection (F+LU). Selection of LUs for the
selected frames.

• Frame + LU selection + NULL elements (F+LU +
NULL). Selection of LUs for the selected frames, considering
NULL elements.

• Frame selection + SUMO filtering (F+SUMO). All LUs
for the selected frames, plus SUMO filtering.

• Frame + LU selection + SUMO filtering (F+LU+SUMO).
Selection of LUs for the selected frames, plus SUMO filtering.
That is, the strategy’s approach.

• Frame + LU selection + SUMO filtering + NULL el-
ements (F+LU+SUMO+NULL). Selection of LUs for the
selected frames, considering NULL elements, plus SUMO filter-
ing.

Table 4.8 shows the number of synonyms obtained in each com-
bination. For each of the configurations without NULL elements,
precision-recall-F1 evaluations have been performed, the results of
which can be seen in Table 4.9. These evaluations show that the less
filtering, the more recall, as the more synonyms obtained, the more
possibility they will include the gold ones. In terms of F1, on av-
erage, unique filtering configurations (F+LU and F+SUMO) obtain
practically the same results. It is especially relevant that SUMO fil-
tering is able to obtain on average better precision results than LU
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Table 4.8: Number of translation equivalents for each PM data con-
figuration selected and use case.

Guide/Logistics CMMS

Gold 25 17
F 667 137
F+LU 170 69
F+LU+NULL 620 69
F+SUMO 139 70
F+LU+SUMO 32 39
F+LU+SUMO+NULL 113 39

Table 4.9: Precision (P), recall (R) and F1 metrics for all configura-
tions for each use case, and average results.

Guide/Logistics CMMS Average

P R F1 P R F1 P R F1

F 0.04 1 0.07 0.12 1 0.22 0.08 1 0.15
F+LU 0.13 0.88 0.23 0.23 0.94 0.37 0.18 0.91 0.30
F+SUMO 0.14 0.76 0.23 0.21 0.88 0.34 0.25 0.82 0.29
F+LU+SUMO 0.50 0.64 0.56 0.28 0.64 0.39 0.39 0.64 0.48

selection –+7 points; 0.25 for SUMO vs 0.18 for LU–, which empha-
sises the importance of a semantic filtering step in this type of task.
Nevertheless, it is important to point out that both configurations
help improve the results, and that their combination allows to sig-
nificantly better the baseline figures obtained with F (and are, thus,
complementary).

All in all, these results show that manual filtering is necessary in
this type of task, as it has been proved that improves up to 30 points
the F1 measure on average (0.15 for F vs 0.48 for F+LU+SUMO).

Finally, the effect of considering NULL elements in the results
obtained by the strategy has also been explored in the guide/logistics
use case24. As it can be seen in Table 4.8, the addition of these
elements significantly increases the number of translation equivalents
obtained –from 170 to 620 in the F+LU configuration and from 32
to 113 in the F+LU+SUMO one. This may lead to two possible

24The CMMS use case does not have any NULL elements
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Table 4.10: Precision (P), recall (R) and F1 metrics for the F+LU
and F+LU+SUMO configurations, comparing the addition and non-
addition of NULL elements. Results for the guide/logistics use case.

P R F1

F+LU 0.13 0.88 0.23
F+LU+NULL 0.04 0.96 0.07

F+LU+SUMO 0.50 0.64 0.56
F+LU+SUMO+NULL 0.15 0.72 0.26

implications: on the one hand, that these elements may add relevant
equivalents to the list that were not considered, having a positive
effect in the results, and, on the other hand, that NULL elements
add noisy data, which will materialise in a negative impact in the
results.

To determine whether the addition of NULL elements have posi-
tive or negative consequences in the results obtained, the same eval-
uations performed above have been carried out on the configurations
with NULLs, the results of which are gathered in Table 4.10. The
same impact in recall regarding the number of synonyms described
above can be observed, as the NULL configurations have higher re-
call values. For the rest of metrics, the no-NULL configurations show
better results, especially in the F+LU+SUMO one, where the differ-
ence is of 35 points in precision and of 30 points in F1. Thus, it
has been proved that the consideration of NULL elements do provide
noisy data and, due to this, must be discarded from the LU selection
step.

Considering the above, the results obtained allow to determine
that ontology population for intent-relevant information is a complex
task that deserves further investigation.

4.6.4 Other Remarks

The validation of the strategy has shown that the information
gathered in the use cases reported above allows to semi-automatically
instantiate the domain ontology with relevant data for intent detec-
tion, reducing the effort to do so and potential intent identification
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errors caused by the fact that manual instantiations may include lim-
ited amounts of linguistic information. Furthermore, the incremental
filtering through the defined steps allows to drastically reduce op-
tions, and semantic filtering allows to fine-tune the LUs to be asso-
ciated to an intent.

As a side note, manual selection is not always a straight-forward
process: frame names may be ambiguous and it can be difficult to
assess if they are suitable for the use case at hand. For this, the online
version of FrameNet25 –with a description of each frame in human-
friendly terms and a list of its LUs– may be used to distinguish them.

4.7 Conclusions

This Chapter has presented the Task-Oriented Dialogue manage-
ment Ontology (TODO). This ontology has been designed to be the
core element for implementing generic task-oriented dialogue systems
that enable a natural communication between human workers and in-
dustrial systems with reduced amounts of data, while allowing their
easy adaptation to different use cases.

TODO has been developed following a well-defined methodology,
Linked Open Terms (LOT) (Poveda-Villalón et al., 2019), to ensure
an accurate design and proper reuse. As part of this methodology, the
requirements of the ontology have been obtained through interviews
with experts to determine the necessities to be covered. From this
expert knowledge, 99 CQs have been defined, which can be grouped
into 11 BCQs.

Taking into account the analysis of the CQs, in which different ar-
eas of knowledge have been identified, TODO has been implemented
as a modular ontology. This approach also has many benefits in differ-
ent aspects, such as maintenance, reuse and adaptation. Considering
this, TODO consists of the following modules:

• Dialogue (TODODial). Information related to the dialogue
process.

25http://sato.fm.senshu-u.ac.jp/frameSQL/fn2 15/notes/

http://sato.fm.senshu-u.ac.jp/frameSQL/fn2_15/notes/
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– Dialogue Management (TODODM). Modelling of the
dialogue process.

– Dialogue Tracing (TODODT). Necessary knowledge
to store dialogue traces to, for instance, learn from previ-
ous interactions.

• Domain (TODODom). Information related to the domain.

– Domain Frame-Action (TODODFA). Modelling of
the actions that are executable by the target system.

– DomainWorld (TODODW). Modelling of the elements
that are present in the domain scenario.

This Chapter has also proved that TODO is a quality ontology
in terms of design, adherence to FAIR principles and the quality of
its modularity, according to the evaluations performed to obtain an
objective overview of its quality. Furthermore, these evaluations have
also helped to identify minor issues to be solved in future versions of
TODO.

The ontology has been published online with an extensive doc-
umentation that is both machine- and human-readable that allows
its proper reuse, which has been generated by following a series of
guidelines for this matter. Moreover, to be easily found and accessed,
it has also been published in a vocabulary catalogue.

Considering that ontology population in this context is an costly
process, this Chapter also presents a strategy to semi-automatically
populate domain ontologies (in this case, TODODom) with the nec-
essary information to be able to determine which is the user intent
and the action to execute by the target system given a user command.
This strategy combines manual and automatic work to exploit exist-
ing multilingual lexical, syntactic and semantic resources to generate
a SPARQL query to be executed against the domain ontology. As a
result, the time and effort to instantiate the ontology is reduced.

The validation and evaluation task of this strategy has determined
that a manual filtering stage is necessary to obtain quality data for
instantiation, and that the use of lexical and semantic information
is of special relevance. In fact, the best results are obtained when
these two sources of information are combined, which validates the
approach for this strategy. Furthermore, it has been determined that
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PM’s NULL elements provide noise to the results and, thus, should
be discarded from the manual selection stage.

The results obtained regarding the strategy are promising, al-
though it is necessary to keep investigating on its improvement, which
is a task that is devised as future work. In this sense, the results re-
ported in this thesis show that the research in this matter is going in
the right direction.

Moreover, to improve the usability of this strategy, the develop-
ment of a GUI for its use has been identified as a minor action to
consider in the future.
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Chapter 5

KIDE4I: Generic Semantic
Task-Oriented Dialogue
System

KIDE4I (Knowledge-drIven Dialogue framEwork for Industry) is
a generic task-oriented dialogue system that, supported by TODO, is
easy to adapt to different industrial scenarios, allows a natural com-
munication between workers and industrial systems and is capable of
obtaining commands that are executable by the target system given
a user request. When the instructions are not clear, or when key in-
formation required to fulfil the goal is missing, KIDE4I is designed to
engage in a conversation with the user to ask for missing information.

Furthermore, considering that KIDE4I takes as input natural lan-
guage expressions, it is logical to assume that new structures that
have not been considered in the implementation phase may appear.
For this, KIDE4I uses Lifelong Learning (LL) (B. Liu & Mazumder,
2021) methods and techniques to be able to learn over time from
new interactions. More specifically, and in line with the state-of-
the-art regarding this approach applied to dialogue systems (Veron
et al., 2019), LL approaches will be used to enhance domain-related
components.

The architecture of KIDE4I can be seen in Figure 5.1. In it, the
4 main components of the dialogue system can be distinguished: the
key element extraction component, the polarity interpreter,
the semantic repository and, finally, the dialogue manager, the
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Figure 5.1: KIDE4I architecture.

design and implementation process of which will be described in this
Chapter.

In a regular interaction sequence between a user and KIDE4I, the
user will perform a voice command, which will be transcribed and
sent to KIDE4I. At this point, KIDE4I’s dialogue manager will
interpret the command by first extracting its relevant key elements
according to a set of rules or a ML-based model implemented in the
key element extraction component. Once these key elements have
been obtained, the information on the semantic repository –which
is modelled according to TODO– is exploited so as to obtain, from
these, the action to be sent to the target system and the necessary el-
ements needed for that action to execute successfully (arguments) in
a target-system-readable format. After processing all the information
in the command, the dialogue manager checks again with the se-
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Figure 5.2: Teknibot is a guide robot that is able to guide its users
to a given destination.

mantic repository whether all the necessary information has been
obtained. In some cases, there will be information that is missing or
the system will need the user to confirm certain pieces of informa-
tion, and the system will require a response from the user. In those
cases, the semantic repository will provide the dialogue manager
with the request to present to the user and the type of information
expected from that response (i.e., a piece of information or a confir-
mation –in the form of yes/no and equivalents). After receiving the
user response, and depending on the type of information to process,
the dialogue manager makes use of the key element extraction
component, mentioned above, or the polarity interpreter to inter-
pret pieces of information or confirmations, respectively. Once the
dialogue manager checks with the semantic repository that all
the necessary information has been obtained, the command to be
sent to the target system is generated and sent for its execution.

All components have been designed as generically as possible to
be as generic and reusable as possible. These components have also
been developed to be language independent and, thus, no additional
effort to adapt KIDE4I to different languages is necessary.

An initial version of KIDE4I has been implemented to be used
as starting point for further adaptations. This implementation –
KIDE4Guide– has been developed for a guidance use case, which
consists on interaction in Spanish with Teknibot, a guide robot that
can be seen in Figure 5.2. This robot shows similar characteristics
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to logistics robots –which are relevant in industrial scenarios–, and
is able to move from one point to another: given a destination –
obtained from user interactions–, it is able to guide its target users
to their destination of choice in a given environment and, additionally,
it is capable of giving information about specific objects or spaces.
In this case, KIDE4Guide has been implemented for its use in the
research centre Tekniker and its different laboratories, workshops,
people, etc. The implementation process for this use case will be
described through this Chapter.

5.1 Key Element Extraction

The main function of KIDE4I’s Key Element Extraction (KEE)
component is to obtain the relevant key elements from a transcribed
user voice command that conveys a piece of information. These key
elements contain the core information of the command, and to extract
them correctly is key to a successful interpretation.

In the context of this thesis, KEE resembles a NERC problem,
in the sense that key elements have to be identified and classified.
For this, the literature distinguishes between two basic approaches:
rule-based and ML methods (Maynard et al., 2016). The use of one
approach or the other depends on the development process circum-
stances. On the one hand, rule-based systems are a robust starting
point in specific domains where there is a lack of raw or annotated
data, such as industrial scenarios. However, manually-generated rules
are hard to come by and maintain, as they require human interven-
tion. On the other hand, ML-based methods are easier to maintain
and adapt than rule-based ones, since they have the ability to auto-
matically learn from new sequences while preserving previous knowl-
edge, but require training data to build the models. Due to this, LL
settings generally rely on ML-based methods.

To implement a ML-based KEE component, the access to anno-
tated data to train the models is essential. Since one of the main
challenges regarding industrial scenarios is precisely the lack of an-
notated data, which hinders the use of ML methods to perform key
element extraction. One way to alleviate this problem is to leverage
out-of-domain data –obtained from different but similar domains– to
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augment existing domain training data, an approach that has been
proved to obtain positive results (Fromreide & Søgaard, 2014; Pers-
son, 2017).

Considering the remarks above, the methodology in this thesis in
regard to KIDE4I’s KEE component development is to first model
hand-made rules that enable a rule-based key element extraction to
be able to automatically generate annotated data, which can be fol-
lowed by a manual expert correction. This annotated data will be
used to train the models to perform ML-based KEE, with the objec-
tive of developing a KEE component that is able to learn over time
with no human intervention involved. To do so, a LL setting will be
resembled, in which new examples are reused to improve the models
and, thus, domain data is augmented with out-of-domain data.

The following sections describe the generic design of both rule-
based and ML-based approaches to KEE for KIDE4I. Then, to pro-
vide an experimental setting for the validation and evaluation of the
methodology described above, both KEE approaches have been im-
plemented in KIDE4Guide. For each of them, the definitions and
rules modelled and the annotated datasets generated are detailed.
After that, an experimentation task is reported, in which the per-
formance of both approaches according to different domain and out-
of-domain data configurations is evaluated to determine the most
suitable strategy for implementation and future adaptations.

5.1.1 Key Element Types in Industrial Scenarios

In industrial scenarios in which task-oriented dialogue systems
may be involved (e.g., collaborative robotics and exploitation of in-
formation systems), the most usual interaction structures consist of
a verbal sequence and its target. In this sense, the verbal sequence
refers to the action to be executed by the target system and the tar-
get is its complementary information. Example (14) shows instances
of these key elements in a set of samples of potential commands to
be directed to KIDE4I.

(14) a. I want you to pickverb the yellow piecetarget. (collabo-
rative robotics use case)
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b. Please showverb me the next steptarget of the current
procedure. (exploitation of information systems use case)

c. I would like to seeverb the next work ordertarget for the
pallet trucktarget. (exploitation of information systems
use case)

However, the fact that verbs and targets appear in these com-
mands does not imply that among use cases these key elements share
the same characteristics; each of them may have their own partic-
ularities. This can be observed in Example (14c), which has a key
element of the target type for the item the user wants to see –the next
work order– and another one for the restriction for the work order to
show –it has to be for the pallet truck.

Furthermore, key elements tend to follow specific morphosyntactic
structures (for example, actions usually correspond to verbal forms).
In the same way as above, use-case particularities may also be set for
the different morphosyntactic structures followed by a given key ele-
ment. For instance, in Examples (14a) and (14b), the targets consist
of an adjective (yellow and next, respectively), followed by a noun
(piece and step, respectively), but in Example (14c), the targets con-
sist, on the one hand, in an adjective (next) followed by a nominal
construction (work order) and, on the other hand, in a nominal struc-
ture (pallet truck). These observations are of special relevance, as it
can be determined that morphosyntactic information plays a very
important role in the KEE process, as it will be seen in the following
sections.

5.1.2 Design

The process to obtain and classify the key elements contained in
a command is described in the following lines, and the design of the
KEE component to do so can be seen in Figure 5.3.

First of all, when the command arrives to the key element extrac-
tion component, it is pre-processed so as to obtain its morphosyn-
tactic information. For that, the linguistic tool Freeling (Carreras et
al., 2004)1 and its full parsing analysis functionality in the CoNLL

1In its version 4.0.
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Figure 5.3: Architecture of KIDE4I’s key element extraction
component.

output format is used. From this analysis, the syntactic tree repre-
sentation of the user command is extracted.

This syntactic tree corresponding to the user command serves as
input to the next subcomponent, the key element tagger. This
subcomponent delimits and classifies the key elements from the com-
mand according to their syntactic structure by making use of rules or
supervised models, as it will be described in the following sections.
The output of the key element tagger is the command’s keyword-
tagged syntactic tree –in the case of a rule-based approximation– or
a set of tags corresponding to each word in the command –in the case
of a ML-based approximation.

Finally, to retrieve from the key element tagger output the list
of detected and classified keywords, a post-processing step is per-
formed.

The result of this KEE component is the set of key elements
extracted and classified from the user command, according to the
characteristics of the use case (i.e., the different key element classes).

5.1.2.1 Rule-Based Key Element Extraction

Towards implementing the KEE component, the rule-based ap-
proach presented in this Section allows to construct the dialogue sys-
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tem when no data is available to train ML models for key element
tagging. Furthermore, it is also used to obtain annotated domain
data to train these models. This approach solely relies on domain
knowledge for key element tagging and, thus, it does not depend on
external data and its availability, which represents one of the main
challenges when developing such systems in low-resourced scenarios,
such as industrial ones.

The rules are to be implemented in Foma (Hulden, 2009b), which
allows to define the key element structures and the rules for their
identification and classification. These rules are to be manually writ-
ten by an expert by introspection of data for each use case.

So as to create the rules, the first step is to define the structures
that correspond to the elements to detect. Example (15) shows the
definition of an element and the observations that justify it for a
potential industrial scenario, in which the user requests the system
to take or bring something somewhere, which would be of the target
type. The definition of this target determines its structure particu-
larities in this potential use case.

(15) Definition: targets are Nouns + their modifiers (prepositional
phrases, numbers, adjectives, etc.).

a. Quiero lubricante. (Single Noun)
I want lubricant.

b. Llévalo al taller de montaje . (Noun + Prepositional
phrase (‘de montaje’))
Take it to the assembly laboratory.

c. Llévalo al laboratorio 4 . (Noun + Number (‘4’))
Take it to laboratory 4 .

After defining the elements, the rule to tag them is defined. Examples
(16) and (17) show a definition and a rule as they would appear in
the grammar2

(16) Definition: ‘A target can be a single noun (SNDest), or can be
followed by a Number (SNNum), an Adjective Phrase (SAdj),
or a Prepositional Phrase (SPDest)’.

2However, the definition has been simplified for a better understanding.
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a. define Target [SNDest [SNNum | SAdj | SPDest]* ];

(17) Rule: ‘Place a tag at the beginning and at the end of a target.
Also, the longest match has to be selected (@->)’.

a. define TagTarget [Target @-> "<TARGET>" ...

"</TARGET>"];

Therefore, given an input tree obtained from the pre-processing
step and a set of definitions and rules, the rule-based key element tag-
ger returns the same tree with each key element delimited by tags,
at chunk level. These tags are parsed in the post-processing step to
obtain the list of key elements for the user command. For the sen-
tence ‘Quiero lubricante’, the inputs and outputs from the different
processing steps in the rule-based system are shown in Example (18).

(18) a. Input: “Quiero lubricante”.

b. Pre-processing output:
(grup-verb:1(verb:1)(sn:2(grup-nom-ms:2(n-ms:2)

))(F-term:3))

c. Key element tagger output:
(grup-verb:1<VERB>(verb:1)</VERB><TARGET>

(sn:2(grup-nom-ms:2(n-ms:2)))</TARGET>)

d. Post-processing:

• Verb: (verb:1) → quiero

• Dest: (sn:2(grup-nom-ms:2(n-ms:2))) → lubri-
cante

e. Post-processing output:

• Verb: quiero

• Target: lubricante

5.1.2.2 Machine-Learning-Based Key Element Extraction

For machine-learning-based key element extraction, since it is re-
garded as a sequence labelling process, and following usual practice
in NERC tasks, the key element tagger is designed to annotate its in-
put at word level following the BIO schema –which marks each word
as beginning (B), being inside (I) or being outside of a key element
(O), respectively– along with the key element type, as Example (19)
shows.
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(19) [TakeB−ACTION ] itO toO theO [assemblyB−TARGET labora-
toryI−TARGET ].

The features to be considered for each token3 to perform super-
vised analysis are its syntactic features –extracted from the syntactic
tree obtained from Freeling– and its cluster, according to a set of pre-
computed Clark Clusters for Spanish (Agerri & Rigau, 2018). Clark
clusters deal with word variations or synonyms that express similar
meaning, which are usually assigned to the same cluster. Addition-
ally, previous and next token’s features are also used to represent the
current token as the meaning for a word, besides themselves, is also
determined by its context (Firth, 1957). In this approach, thus, the
following 18 features are used to represent each token in a given user
command:

• Syntactic features (15 features): terminal, parent1, parent2, and
parent3. terminal stands for the syntactic element in the lowest
position in the tree. parentN is the N-th parent of a non-
terminal category in the syntactic tree, counting from lower
to higher position.

– For the previous token, the tag previous is added to the
original feature names. Thus, the features to refer to the
previous token are terminal previous, parent1 previous, par-
ent2 previous, and parent3 previous. If the current token
is the first one –and, therefore, no previous token can be
referred to–, the value for each of these features is “top”.

– For the next token, the tag next is added to the original
feature names. Thus, the features to refer to the next
token are terminal next, parent1 next, parent2 next, and
parent3 next. If the current token is the last one –and,
therefore, no following token can be referred to–, the value
for each of these features is “last”.

• Other relevant features (3 features): cluster. The cluster the
token belongs to.

3Although the ML-based KEE component performs at word level, the annota-
tion process is initially made at token level (e.g., given the word ‘can’t’, its tokens
would be ‘can’ and ‘not’). The tag associated to the word in the post-processing
step is the tag obtained for its first token (e.g., the tag for ‘can’t’ would be the
tag obtained for ‘can’).
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Table 5.1: Syntactic features for the sentence ‘Quiero lubricante’. For
extension reasons, only the features for the current word are depicted.

word par3 par2 par1 terminal cluster

Quiero 0 0 grup-verb verb 59
lubricante 0 sn grup-nom n 99
. 0 0 0 F-term 100

– To refer to the previous token, the feature cluster previous
is used. If the current token is the first one, the value for
this feature is “top”.

– To refer to the next token, the feature cluster next is used.
If the current token is the last one, the value for this fea-
ture is “last”.

Tree-structure-related features are ordered from the highest to the
lowest position in the tree, and Number (singular/plural) and Gender
(masculine/feminine) marks have been removed to provide a generic
analysis, as illustrated in the example in Table 5.1.

As for the algorithms to use, the Support Vector Machine (SVM)
(in its linear implementation) and Conditional Random Fields (CRF)
(in which key element extraction is considered a sequence labelling
problem) algorithms have been considered to develop the component,
as they are among the most used algorithms for supervised NERC
tasks in the literature for their good results (Goyal, Gupta, & Kumar,
2018). In both cases, each command is annotated at token level.

Linear SVM is provided by Weka (Hall et al., 2009) and, for the
CRF method, the python-crfsuite library implementation4 is consid-
ered. Default parameters are to be used in both methods, as no
fine-tuning is expected in this setting.

Thus, given a set of syntactic and cluster features for a user com-
mand obtained in the pre-processing step, the ML-based key element
extraction tagger annotates each token in the sentence with the cor-
responding tag. In the post-processing step, these tags are aligned
with their corresponding word from the user command and grouped

4https://python-crfsuite.readthedocs.io/en/latest/

https://python-crfsuite.readthedocs.io/en/latest/


112 KIDE4I: Generic Semantic Task-Oriented Dialogue System

into chunks. The final output, thus, is presented at chunk level. This
process can be observed in Example (20).

(20) a. Input: “Quiero lubricante”.

b. Pre-processing:
(grup-verb:1(verb:1)(sn:2(grup-nom-ms:2(n-ms:2)

))(F-term:3))

c. Pre-processing output:
[[0, 0, grup-verb, verb, 59], [0, sn, grup-nom,

n, 99], [0, 0, 0, F-term, 100]]

d. Key element tagger output:
[["B-ACTION"], ["B-TARGET"], ["O"]]

e. Post-processing:

• Quiero → “B-ACTION”

• lubricante → “B-TARGET”

• . → “O”

f. Post-processing output:

• Verb: quiero

• Target: lubricante

5.1.3 Implementation

The following sections will describe the process to implement the
KEE component for KIDE4Guide. First of all, the process to model
the definitions and rules for the rule-based KEE component will be
reported, along with some examples for each of them.

As for the ML-based KEE component, both domain and out-of-
domain5 corpora have been selected and annotated with the rule-
based KEE component. Several experiments have been carried out
to assess whether domain data augmentation with data from similar
domains is useful in this setting and to determine the best approach
for key element extraction. In them, different configurations of the
annotated datasets have been considered to train different ML-based
models. The results and conclusions of such experiments are also
reported.

5From different but similar domains to the one at hand.
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5.1.3.1 Rule-Based Key Element Extraction

In order to correctly model the rules for KIDE4Guide’s KEE com-
ponent, it is necessary to perform a thorough analysis of the charac-
teristics of the use case, as they must comprehensively consider the
possible command variations that may be found in an interaction
scenario.

In this case, given a user request, the relevant information to ex-
tract from commands by KIDE4Guide are actions and destinations
(which consist of a target, preposition and the target that depends
on the preposition –the complement). The action is the element that
describes the act to perform, associated with the destination (‘drink
water’), whereas the destination is the spatial point where the user
wants the robot to lead them. It can designate a specific point (‘meet-
ing room’) or an element related to the destination point (‘coffee’ for
‘coffee machine’). Additionally, and to provide more level of detail to
the destination, the prepositional phrases inside the expressions that
refer to a destination are also considered (“Quiero una sala con PC”
- “I want a room with a PC”). Example (21) shows an instance of
these key elements.

(21) a. Quiero iraction a una [salatarget conpreposition

PCcomplement]destination

b. I want to goaction to a [meeting roomtarget withpreposition

a PCcomplement]destination

However, there are a few restrictions regarding prepositional phrases,
since the required information depends on the words related to the
preposition:

1. The annotated prepositions are the ones that denote places that
contain something (con, for Spanish; with for English). For
example:

(22) a. Quiero ir a una [sala con PC ]

b. I want to go to a [room with a PC ]

2. The relevant elements to tag are prepositional phrases that are
restricted to common nouns. Thus, prepositional phrases with
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proper nouns as complements are not to be tagged. For in-
stance, in Example 2, John Smith does not belong to the term
meeting :

(23) a. Tengo una [reunión] con [John Smith ]

b. I have a [meeting] with [John Smith ]

Considering this, for KIDE4Guide, a total of 47 definitions and 10
rules have been modelled for Foma. Examples (24) and (25) include
a sample of definitions and rules, respectively6.

(24) a. Definitions for numbers (Number), which are present in
the syntactic tree as word indices:
define Num ["0"|1|2|3|4|5|6|7|8|9];

define Dec [1|2|3|4|5|6|7|8|9];

define Number [Dec* Num];

b. Definitions for prepositions: regular prepositions (Prep)
and prepositions that denote “containing” (e.g., in) (Prep
Content):
define Prep [{(prep:} Number {)}];
define PrepContent [{(prep-cont:} Number {)}];

(25) a. Rule to tag prepositions (Prep/PrepContent) with the
tags <PREP></PREP>:
define TagPrep [[Prep | PrepContent] @->

"<PREP>" ... "</PREP>"];

As for the tag set, KIDE4Guide’s implementation of the rule-
based key element tagger tags the sentence at different syntactic levels
to extract the chunks corresponding to the key elements. This is
reflected in the different tags considered:

• GV . A verb phrase. E.g., I want to go to a meeting room
with a PC. This tag is used to separate complex sentences
(i.e., sentences with more than one verb).

6KIDE4Guide’s complete rule set can be seen in Appendix C.
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• GV-DEST . A verbal form. E.g., I want to go to a meeting
room with a PC. This tag applies to actions.

• DEST . Core target element or element that depends on the
preposition. I want to go to a meeting room with a PC. This
tag applies to targets and complements.

• PREP . Containing preposition in a prepositional phrase. I
want to go to a meeting room with a PC. This tag applies to
prepositions.

• SP . Whole prepositional phrase (PREP + DEST). I want to go
to a meeting room with a PC. This tag is used to determine
the complement that depends on the preposition.

• SP-DEST . Whole target element that includes a prepositional
phrase (DEST + SP) I want to go to a meeting room with a
PC.

As for the post-processed output, this component returns the re-
sulting set of key elements according to the following schema:

• ACTION . I want to go to a meeting room with a PC.

• DEST . Element that conveys all the destination information.
I want to go to a meeting room with a PC.

This element has a series of specialisations:

– TARGET . Core target element. I want to go to a meet-
ing room with a PC.

– PREP . Containing preposition in a prepositional phrase.
I want to go to a meeting room with a PC.

– COMPL. Element that depends on the previous preposi-
tion. It conveys the element that is contained in a target
element. I want to go to a meeting room with a PC.

The following sections present the annotated datasets generated
and used to implement the ML-based key element extraction compo-
nent for KIDE4Guide, which represent either the domain or different
–but similar– domains (which will be considered as out-of-domain
datasets for practical purposes).



116 KIDE4I: Generic Semantic Task-Oriented Dialogue System

5.1.3.2 Machine-Learning-Based Key Element Extraction:
Domain Data

This section describes IMH, the dataset used to train the ML-
based KEE component with domain data. IMH is a dataset in Span-
ish for the guidance scenario. It consists of a set of commands di-
rected to a guide robot, obtained through a experimentation task in
which participants7 were asked to perform requests to a guide robot,
KTBot (Susperregi et al., 2012), by interacting with a mobile device
with an app that serves as a link between the person (through a voice
command) and the robot.

In total, IMH includes 179 sentences, with a total of 1151 words
and 1232 tokens and an average of 6.43 words per sentence. The
dataset includes both simple and compound/complex sentences, mean-
ing that there is only one verb or more than one, respectively. The
complexity of the vast majority of the compound/complex sentences
is reduced to main verbs that have another verb (or verb phrase) as
a direct object, as can be seen in Example (26).

(26) a. Quiero salir .
‘I want to exit.’

b. Quiero beber agua .
I want to drink water.’

The dataset has been semi-automatically annotated using the
rule-based approximation for KEE in KIDE4Guide and manually re-
vised and corrected when necessary by an expert linguist. In total,
IMH includes 368 key elements, annotated with the following tags,
inspired by the rule-based KEE output:

• ACTION . I want to go to a meeting room with a PC.

• DEST-TARGET . Core target element. I want to go to a
meeting room with a PC.

• DEST-PREP . Containing preposition in a prepositional
phrase. I want to go to a meeting room with a PC.

7These participants came from the Instituto de Máquina-Herramienta, in El-
goibar, Spain. The initials from this institution (IMH) were used to name the
corpus.
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Table 5.2: Example of annotated sentence from IMH corpus

word tag

quiero B-ACTION
una O
sala B-DEST-TARGET
de I-DEST-TARGET
reuniones I-DEST-TARGET
con I-DEST-PREP
micrófono I-DEST-COMPL
∗fullstop∗ O

• DEST-COMPL. Element that depends on the previous prepo-
sition. It conveys the element that is contained in a target
element. I want to go to a meeting room with a PC.

The corpus is annotated at word level using the BIO schema, con-
sidering the chunks obtained by the rule-based key element extrac-
tion component. Table 5.2 shows an example of a sentence with its
corresponding tags. As it can be observed, DEST-TARGET, DEST-
PREP and DEST-COMPL are classifications for the same chunk. In
this sense, DEST is the key element class, and TARGET, PREP and
COMPL are specifications of DEST.

In order to train ML models to perform key element extraction
with this data and evaluate their performance, different IMH sets and
subsets have been considered:

• IMH hand-corrected, complete (IMH-HC). This is the
whole IMH corpus, manually corrected.

• IMH hand-corrected, for training (IMH-TR-HC). It cor-
responds to 2

3
of IMH-HC.

• IMH hand-corrected, for testing (IMH-TS-HC). It cor-
responds to the remaining 1

3
of IMH-HC.

The specific details of these sets –such as number of sentences,
words or key elements by type– can be found in Tables 5.3 and 5.4.
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Table 5.3: Size of domain datasets and number of occurrences for
each key element, at chunk level. The average number of words per
chunk (AWC) is also provided.

Data Sentences Words Tokens Chunks

ACTION DEST

IMH-HC 179 1151 1232 190 (AWC 1) 178 (AWC 1.88)
IMH-TR-HC 120 759 819 130 (AWC 1) 115 (AWC 1.82)
IMH-TS-HC 59 392 413 60 (AWC 1) 63 (AWC 1.98)

Table 5.4: Number of word occurrences for each DEST specialisation
in domain datasets.

Data DEST-TARGET DEST-PREP DEST-COMPL

IMH-HC 316 9 9
IMH-TR-HC 203 3 3
IMH-TS-HC 113 6 6

5.1.3.3 Machine-Learning-Based Key Element Extraction:
Out-Of-Domain Data

So as to increase the size of IMH using out-of-domain data, 2 cor-
pora have been used: the Human Robot Interaction Corpus (HuRIC)
(Bastianelli et al., 2014) and the Collaborative Manipulation Corpus
(CMC) (Scalise, Li, Admoni, Rosenthal, & Srinivasa, 2018). These
corpora contain English sentences from a domain close to IMH’s
though different, as it will be described further.

For these corpora to be compatible with IMH, both have been for-
matted accordingly: each sentence has been automatically translated
to Spanish, using Google Translate services8, without any further re-
vision. Following their translation, all sentences have been annotated
using KIDE4Guide’s rule-based KEE component. The following lines
will describe the specific characteristics of each corpus and the pre-
processing tasks performed on them.

8Through the GOOGLETRANSLATE function in Google Sheets, as of July 2019.
More information can be found in https://support.google.com/docs/answer/

3093331?hl=en.

https://support.google.com/docs/answer/3093331?hl=en
https://support.google.com/docs/answer/3093331?hl=en
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Human Robot Interaction Corpus (HuRIC)

HuRIC is a corpus that has been generated from interactions with
house service robots, which are annotated taking into account linguis-
tic information, such as morphosyntactic and semantic information.
This information has been discarded at this work, as the same tagset
as IMH has been used to annotate each command.

The translated version generated and used in this thesis comprises
318 sentences, with 2228 words and 2697 tokens and an average of
7.03 words per sentence. Example (27) includes a sample of the
interactions included in the original version of HuRIC, along with
their automatically-generated translation.

(27) a. “Please get the cushion from the bed”.
“Por favor el coj́ın de la cama”.

b. “Go to the living room”.
“Ir a la sala de estar”.

c. “Please walk slowly to the kitchen”.
“Por favor, caminar lentamente a la cocina”.

As in IMH, the automatically-generated annotations by the rule-
based KEE have been manually corrected by a linguist. However,
to assess the effect of introducing noisy data in the training, the
automatically-generated version has also been preserved. The cor-
rected version includes 810 key elements, whereas the automatically-
generated one includes 811, 632 of which are correct (respect the
manually-corrected version). Thus, the automatically-generated ver-
sion has a 78% of correct key elements.

Considering this, and to test different configurations of data to
train key element extraction models, the following sets and subsets
have been defined:

• HuRIC not-hand-corrected, complete (HURIC-NHC).
It corresponds to the whole HuRIC, automatically tagged using
the rule-based key element extraction system.

• HuRIC not-hand-corrected, for training (HURIC-TR-
NHC). It corresponds to 2

3
of HURIC-NHC.
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• HuRIC hand-corrected, complete (HURIC-HC). It cor-
responds to the whole HuRIC, automatically tagged using the
rule-based key element extraction system and hand-corrected
after.

• HuRIC hand-corrected, for training (HURIC-TR-HC).
It corresponds to 2

3
of HURIC-HC.

• HuRIC hand-corrected, for testing (HURIC-TS-HC).
It corresponds to the remaining 1

3
of HURIC-HC.

Collaborative Manipulation Corpus (CMC)

CMC has been obtained from interactions regarding object spec-
ification in a manipulation scenario. Out-of-the-box, CMC includes
sentences with multiple lengths, from 1 to 54 words. To avoid one-
word and very long sentences (that eventually may pose automatic
translation problems), only the sentences between 2 and 10 words
have been kept for experimentation in this thesis. The maximum
number of words has been defined considering the average sentence
length in the other two datasets, rounded up to consider slightly
longer sets of sentences.

The filtered and translated version of CMC includes 435 sentences,
with 3288 words and 3583 tokens and an average of 7.56 words per
sentence.

Example (28) is a sample of the sentences included in the original
CMC, along with their automatic translation.

(28) a. “Get the yellow block”.
“Obtener el bloque amarillo”.

b. “Pick up the closest green block”.
“Recoger el bloque verde más cercano.”

c. “Pick up the blue block on the right”.
“Recoger el bloque azul a la derecha.”

For the experimentation tasks, the whole CMC, automatically
tagged using the KIDE4Guide’s rule-based key element extraction
component –from now on, CMC-NHC–, has been used, which in-
cludes a total of 760 key elements. In this case, no manual revision
was performed.
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Table 5.5: Size of out-of-domain datasets and number of occurrences
for each key element, at chunk level. The average number of words
per chunk (AWC) is also provided.

Data Sentences Words Tokens Chunks

ACTION DEST

HURIC-NHC 318 2228 2697 283 (AWC 1) 529 (AWC 1.49)
HURIC-TR-NHC 212 1548 1887 177 (AWC 1) 357 (AWC 1.56)

HURIC-HC 318 2228 2697 322 (AWC 1) 488 (AWC 1.87)
HURIC-TR-HC 212 1548 1887 211 (AWC 1) 316 (AWC 2.11)
HURIC-TS-HC 106 680 810 111 (AWC 1) 172 (AWC 1.44)

CMC-NHC 435 3288 3583 140 (AWC 1) 620 (AWC 1.73)

Table 5.6: Number of word occurrences for each DEST specialization
in domain datasets.

Data DEST-
TARGET

DEST-
PREP

DEST-
COMPL

HURIC-NHC 741 20 27
HURIC-TR-NHC 528 11 17

HURIC-HC 859 11 44
HURIC-TR-HC 617 9 41
HURIC-TS-HC 242 2 3

CMC-NHC 1074 0 0

The specific details of out-of-domain datasets –such as number of
sentences, words or key elements by type– can be found in Tables 5.5
and 5.6.

5.1.3.4 Experimentation

So as to evaluate the performance of both rule and supervised
approaches to develop the KEE component and to assess the best
approach for future adaptations, an experimentation task consisting
on three subtasks has been defined. In each experimentation subtask,
different configurations of data and models for training and testing
have been explored. The aim of doing so is to give a wide overview of
what can be expected both from rules and ML-based methods when
domain and/or out-of-domain data is involved. These subtasks are
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motivated by the following premises:

• A ML-based KEE component trained with domain data
can achieve similar results as rules in domain data. As
rules have been created through the analysis of potential do-
main sequences, the rule-based system will obtain good results
to extract key elements from structures considered as from the
domain. For similar reasons, the use of domain data for training
the ML-based KEE will also obtain good results. This premise
is tackled in the first subtask, and partially in the second.

• Out-of-domain data for training the ML-based KEE
component can be used to annotate domain examples.
Using automatically-annotated out-of-domain data from differ-
ent but similar domains to train the ML-based KEE will ob-
tain acceptable results to annotate domain data due to domain
proximity. This premise is tackled in the second subtask.

• When new examples appear, the combination of do-
main and out-of-domain data for training the ML-based
key element extraction component will outperform do-
main-based approaches –especially if out-of-domain da-
ta is corrected. When new examples appear, domain-data-
based approximations will reduce their performance compared
to when domain examples are involved, as neither rules nor
domain-based ML models have been specifically designed for
this type of data. However, the combination of domain and au-
tomatically generated out-of-domain data –assuming that there
may be errors in the training set– will achieve better results, as
more generalisations will be made. In this sense, the best re-
sults will be obtained with revised data. This premise is tackled
in the third subtask.

For evaluation, and following usual practice, the results for each
of the subtasks in this Section will be reported in terms of standard
precision, recall and F1 measures, used on sequence labelling tasks
(He et al., 2020).

Furthermore, these subtasks have been complemented by a quali-
tative evaluation that compares the results obtained by rules and the
ML-based method that performs best among subtasks, in terms of
the structures that both approaches are able –or not– to detect.
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Table 5.7: Results of key element identification and classification
algorithms on IMH-TS-HC at chunk level.

Algorithm Training set Precision Recall F1 Acc

Rules - 83.92 88.89 86.33 95.30
SVM IMH-TR-HC 82.43 90.37 86.22 94.78
CRF IMH-TR-HC 92.42 90.37 91.39 96.34

First subtask

For the first subtask, only domain data has been considered. To
perform the experiments, the rule-based KEE component, as well as
the supervised models trained with IMH-TR-HC, have been used
to annotate the test set, IMH-TS-HC. The results are reported in
Table 5.7. The results have been calculated over whole chunks, using
the evaluation scripts for the CoNLL18’s NER task9. Additionally,
accuracy values at word level are also reported.

As expected, the rule-based method is able to obtain good results
–as rules were designed considering the domain–, but supervised sys-
tems yield better results in general. Overall, the CRF method per-
forms best with an F1 of 91.4% and an accuracy of 96.34%.

Second subtask

Considering the results of the first subtask, it is important to keep
in mind that the size of the test dataset is very small and may not
be fully representative for the evaluation of the supervised methods.
To solve this test set size gap, IMH-HC has been used as test set in
this second subtask.

To assess the performance of domain-based methods over the
whole domain data, two evaluations have been performed, depending
on the approach to implement the KEE component. For the rule-
based approach, IMH-HC has been tagged by using rules, achiev-
ing a 96.79% of accuracy, which is, again, an expected behaviour. As
for the ML-based approach, 10-fold cross validation techniques have
been applied using IMH-HC. The results obtained show a 84.01%
of accuracy for SVM and a 96.66% for CRF. Once more, among ML

9More details on the evaluation task in CoNLL18 and a link to the script can
be found at http://universaldependencies.org/conll18/evaluation.html

http://universaldependencies.org/conll18/evaluation.html
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Table 5.8: Results of key element identification and classification
algorithms on IMH-HC at chunk level.

Algorithm Training set Precision Recall F1 Acc

Rules - 85.68 89.90 87.74 95.74

SVM HURIC-NHC 61.26 65.54 63.33 83.23
CRF HURIC-NHC 76.61 67.88 71.98 87.32

SVM CMC-NHC 55.49 51.04 53.17 78.54
CRF CMC-NHC 50.75 26.42 34.75 68.20

SVM HURIC-NHC
+ CMC-NHC

67.67 69.95 68.79 87.14

CRF HURIC-NHC
+ CMC-NHC

76.32 67.62 71.70 86.79

algorithms, CRF obtains the best results.

As the data for the domain is small, the possibility of augmenting
the domain with examples from different but similar domains is ex-
plored.As a first step, the suitability of out-of-domain data as training
data to tag domain examples is assessed in this second subtask. For
this, the automatically-annotated versions of the out-of-domain cor-
pora (that is, HURIC-NHC and CMC-NHC) have been used as
training sets and evaluated on IMH-HC, assessing the performance
of the models trained with these corpora both individually and in
combination.

In these experiments, as Table 5.8 shows, rules still achieve the
best results, with a 87.74% of F1. As for the training sets with-
out combination of datasets, the models trained with HURIC-NHC
obtain much better results than the ones trained with CMC-NHC
in both algorithms (66.33% vs 53.17% in F1 for SVM and 71.98%
vs 34.75% in F1 for CRF). When combining both datasets, the re-
sults obtained by HURIC-NHC-trained models in isolation present
a slight drop in performance in the CRF algorithm and a slight im-
provement in SVM (63.33% vs 68.79% F1 in SVM and 71.90 vs 71.70
in CRF).

These results hint that CMC may not be an appropriate can-
didate for the guidance domain. The possible reasons for this re-
side in the type of sentences in the corpus, that may not be similar
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enough to the domain, and the quality of the automatic translation
on longer sentences. While both ML-based methods yield worse re-
sults when trained with CMC-NHC instead of HuRIC-NHC, the
performance drop is larger for CRF, with more than 37% in F1. As
for SVM, it seems to be more robust, although the performance drop
in F1 is still around a 10%. For these reasons, further experimenta-
tions have only considered HuRIC for out-of-domain data and CMC
has been discarded.

All in all, the first and second subtasks have shown that, given
domain examples, machine-learning models obtain very good results
when trained with domain data –in the case of CRF, with better
results than hand-made rules– and, when trained with out-of-domain
data, are capable of obtaining very promising results although, in
this case, rules perform better.

Third subtask

The third experimentation subtask is motivated by the fact that,
in a context in which natural expressions are to be interpreted, such
as in KIDE4I, interactions that have not been considered may appear.
This may cause that rules or ML-based methods that work well on
domain data do not perform equally well on out-of-domain data.

In this sense, this subtask has evaluated the performance of rules
and ML-based methods on out-of-domain data. For this, HURIC-
TS-HC has been considered as out-of-domain data –and, thus, as
test set– since it belongs to a similar domain.

On the one hand, evaluation on the methods that exclusively rely
on domain data (that is, rules and ML models trained with domain
data) has been performed to check whether the data generated for
the domain is capable of generalising over out-of-domain data. The
results, which can be observed in Table 5.9, show that rules obtain
acceptable results on out-of-domain data (82.03% for F1 and 90.08%
of accuracy). However, in this case, ML-based methods perform bet-
ter. Among ML algorithms, CRF performs best, with a 91.16% in F1
and a 95.15% in accuracy). Thus, it can be stated that, for out-of-
domain data, ML models generalise better than hand-curated rules
when trained with domain data, favouring an incremental supervised
approach.

Nevertheless, since the objective when developing KIDE4I is to
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Table 5.9: Out-of-domain data evaluation results using methods that
rely on domain data, performed on HURIC-TS-HC. For supervised
methods, all tree-structure features were used for training.

Algorithm Training set Prec Rec F1 Acc

Rules (Baseline) - 79.87 84.32 82.03 90.08
SVM IMH-HC 83.55 90.24 86.77 85.57
CRF IMH-HC 89.04 93.38 91.16 95.15

Table 5.10: New data evaluation results using methods that rely on
domain and out-of-domain data, performed on HURIC-TS-HC.
For supervised methods, all tree-structure features were used for
training.

Algorithm Training set Prec Rec F1 Acc

SVM IMH-HC +
HURIC-TR-NHC

80.80 90.94 85.57 86.21

CRF IMH-HC +
HURIC-TR-NHC

82.08 90.94 86.28 92.34

SVM IMH-HC +
HURIC-TR-HC

90.03 94.43 92.18 97.06

CRF IMH-HC +
HURIC-TR-HC

97.92 98.26 98.09 98.98

follow a LL approach, it is logical to assume that new variants ob-
tained in interactions will be reused to update the existing ML mod-
els. In this regard, out-of-domain data can be directly reused –
assuming that there may be errors–, or can be manually corrected
before adding it to the model. Considering this, given out-of-domain
data, the performance of ML models trained with domain data (IMH-
HC) combined with not-corrected (HURIC-TR-NHC) or corrected
(HURIC-TR-HC) out-of-domain data –and the impact of using one
or the other– for training has also been assessed.

First of all, as it can be seen in Table 5.10, CRF achieves the
best results in both settings, although when out-of-domain data is
not corrected (IMH-HC + HURIC-TR-NHC for training), the
difference between the two algorithms is very small. Also, noisy data
affects negatively the performance of the supervised systems (86.28%
F1 for CRF with the HURIC-TR-NHC subset as out-of-domain
data for training vs 98.09% F1 for the same algorithm, but with
the HURIC-TR-HC subset as out-of-domain data for training). In
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fact, in this setting it seems that it is better to use a smaller –but
correct– training set than to augment it with noisy data (91.16%10

vs 86.28% for CRF). The best results are obtained when adding the
hand-corrected version of HuRIC to domain information (98.09% F1
for CRF).

Comparative Analysis

To qualitatively evaluate the performance of the two approaches
for KEE presented in this thesis, a comparison between the chunks
obtained by the rule-based approach and by the ML-based one (using
a CRF model trained with corrected out-of-domain data, as it is the
best supervised approach in the experimentation tasks) is provided.
The goal is to analyse which structures cannot be resolved by any of
the systems, and the type of structures that the supervised approach
is able to solve that the rule-based one is not, and vice-versa.

In this evaluation task, 34 chunks have not been correctly iden-
tified and classified by one or another approach or neither of them.
By analysing those 34 chunks, it can be observed that, in this case,
the rule-based system only performs better in detecting certain des-
tinations formed by single elements of the category noun (e.g., sofa,
table, bed). On the other hand, CRF is able to solve a certain com-
plex structure that the rules are unable to detect. This structure can
be seen in Example (29).

(29) X ({Adjective}) de {Determiner} Y, being X and Y words
that belong to the category noun.

a. ‘Sofá de la habitación’ - ‘Sofa of the room’11

b. ‘Extremo de esta tabla’ - ‘End of this table’

c. ‘Lado derecho de la cama’ - ‘Right side of the bed’

Although it seems unlikely to be able to justify the effect of one
structure when the difference between the baseline and CRF (hand-
rev) is of an 16% in F1 (82.03% vs 98.09%), it is important to point
out that this structure is fairly common in the dataset, as it represents
a 17.64% (more specifically, 6 cases) of the 34 total chunks revised.
Furthermore, CRF is also able to tag certain verbs that the baseline

10Obtained by using IMH-HC to train a CRF model, in Table 5.9.
11‘The room’s sofa’ is preferable, but this translation is closer to the equivalent

structure in Spanish.
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is not. Again, these verbs represent an important part of the total
chunks: a 50% (17 cases).

The chunks that none of the approaches succeed in identifying
and classifying are 13. These chunks include, for example, sentences
with a complex structure and elements that have not been correctly
tagged by the syntactic parser, as it can be seen in Examples (30)
and (31), respectively. On the one hand, Example (30a) provides a
case of recursive prepositional phrases (a prepositional phrase inside
another) and (30b) a command that contains a relative clause. On
the other hand, Example (31a) shows a case in which estar has been
analyzed as a verb (since isolated it is indeed a verb) and not as a
part of a nominal whole, sala de estar (living room).

(30) Complex structures

a. [caja de la izquierda de la grabadora]
[box at the right of the tape recorder ]

b. [coj́ın negro que se encuentra en la cama]
[black pillow that is on the bed ]

(31) Not correctly parsed

a. [sala de estar ]
[living room]

All in all, and taking into account the results obtained, supervised
methods have been proved to be suitable to implement the KEE
component from a LL perspective. In this sense, ML-based methods
are worth using in this context, although the starting point for all
adaptations when no annotated data is available will be the rule-
based system. The implementation of a rule-based KEE component
will allow to obtain a fully functional initial implementation of the
dialogue system and, when sufficient annotated data is available, to
obtain a LL-inspired KEE component through the use of ML-based
methods.

5.2 Polarity Interpreter

In certain situations, the system needs the user to confirm spe-
cific pieces of information and it requests the user to provide a re-
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sponse that corresponds to an affirmation or a negation. Since one
of KIDE4I’s main characteristics is to process natural language com-
mands, affirmations or negations can be provided in various forms
other than typical yes or no. Thus, a component that determines
the polarity of the response (that is, if the user responds positively
or negatively to a system request), is necessary. This function is
supplied by the polarity interpreter.

As far as the authors are concerned, the resources that deter-
mine if a string is equivalent to yes or no are scarce –even more
in languages other than English– and in a very initial development
stage. Considering this, the polarity interpreter makes use of sen-
timent analysis technologies –which are in a more advanced state–
for the target language. For example, in the case of Spanish, which
is the target language for the use cases reported in this work, this
component implements the library senti-py12, which, given a text,
provides a polarity score. Then, the command is classified as posi-
tive or negative according to a defined threshold. The output of this
module consists on a boolean value that determines if the input has
a positive (i.e., 1) or a negative polarity (i.e., 0).

Since this component is only dependent on the target language,
it can be reused through use cases as long as the target language is
the same.

The next lines will describe the methodology used to define the
thresholds for classification.

5.2.1 Methodology for the Definition of Polarity
Thresholds

So as to define the threshold that will determine whether a com-
mand is of a positive or a negative polarity, a series of tests need to be
performed to reduce possible errors to a minimum. These tests con-
sist on classifying several examples using the library chosen to obtain
the polarity scores. The examples are divided in three categories:

• Positive. Sequences that have a clearly positive polarity. E.g.,
“yes”, “absolutely”, “of course”. For this type, 7 examples were

12https://github.com/aylliote/senti-py

https://github.com/aylliote/senti-py
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Table 5.11: Spanish words and scores for each polarity category ob-
tained with the senti-py library and average scores for each category.
(a) Positive; (b) Neutral-positive; (c) Negative.

Sequence Score

śı 0.54
afirmativo 0.54
vale 0.91
correcto 0.73
bien 0.65
claro 0.33
efectivamente 0.23

Average 0.56

Sequence Score

si tú lo dices 0.54
supongo 0.39
eso creo 0.52
mismamente 0.09
tal vez 0.61

Average 0.43

Sequence Score

no 0.11
negativo 0.65
en absoluto 0.41
de ninguna manera 0.22
pues no 0.16
nunca 0.25
jamás 0.17

Average 0.28

classified to determine the classification thresholds.

• Neutral-positive. Sequences that are positive, but denote a
certain neutrality. E.g., “I guess”, “if you say so”, “I think
so”. For this type, 5 examples were classified to determine the
classification thresholds.

• Negative. Sequences that have a clearly negative polarity.
E.g., “no”, “never”, “absolutely not”. For this type, 7 examples
were classified to determine the classification thresholds.

After defining and classifying each sequence, an average score for
each category is obtained. These average scores will help to deter-
mine, first of all, the overall performance of the system (if, for exam-
ple, the average score for negative sequences is higher than the score
for the members of the positive category, that would mean that the
system is not suitable for this task). Once it has been confirmed that
the system does not provide unexpected results in general, the aver-
age score for the neutral-positive category will be considered to set
the polarity threshold, and the scores for the positive and negative
categories will be used to adjust it.

For example, in the context of this thesis, in which the library
senti-py is used as classifier, three experts were asked to provide se-
quences for each category, and the most common ones among them
were classified using senti-py. Table 5.11 shows the classified se-
quences and their corresponding scores obtained by senti-py, along
with the average scores for each category. First of all, senti-py shows
a congruent performance: the average scores for positive sequences
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are the highest, followed by the neutral-positive ones, having the
negative ones the lowest average score.

By observing the average scores for each category, it can be deter-
mined that the threshold to be used to assign a positive or negative
polarity to a specific sequence must be around 0.43. So as to adjust
this threshold, the results for positive and negative sequences in Ta-
ble 5.11 should be considered, putting special attention in the higher
values for the negative ones. In this case, it can be observed that all
negative constructions get very low scores in general, except negativo
(negative) –0.65– and en absoluto (absolutely not) –0.41–. Since neg-
ativo is an outlier, it has not been considered for adjustment, but en
absoluto has. Considering these remarks, the threshold in this case
has been adjusted to 0.42.

Nevertheless, it is important to note that this module is on an
early stage of implementation and may be improved. In fact, part of
the future work of this thesis is set to obtain a more robust polarity
interpreter that is capable of learning over time.

5.3 Semantic Repository

The semantic repository stores all the information that allows
the dialogue manager to function. It contains both knowledge at
class level –commonly known as terminological box or TBOX –
and the individuals that belong to those classes –assertional box
or ABOX (Keet, 2020).

The core of this semantic repository –and, hence, the dialogue
system– that corresponds to the TBOX in this framework is the
Task-Oriented Dialogue management Ontology (TODO), presented
in Chapter 4.

The ABOX stores, for the dialogue management dimension, the
instances for (i) the requests and responses that the dialogue system
can output to the user, (ii) the processing functions that the dialogue
manager must perform given the key elements obtained from a user
command and (iii) the implications of the different outputs of these
functions. The advantage of this approach is that most instances and
relations of this dimension can be reused through use cases and even
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Figure 5.4: Simple overview of KIDE4I’s semantic repository.

languages, only requiring translations for requests and responses.

Regarding domain-related knowledge, the ABOX contains the in-
stances for (i) the modelling of all the world elements of the domain
and their relations, (ii) the different actions that can be performed
by the target system, along with their arguments, (iii) the world
elements that could belong to those arguments, (iv) the different
variants to refer to both domain elements and actions in the target
language and (v) the target-system-readable equivalents for world el-
ements and actions. Finally, the ABOX is also the destination for
the traces generated in each interaction with the dialogue system.

The TBOX serves as the source for the inferences that can be per-
formed on the ABOX according to the knowledge in the TBOX. For
example, consider a member of the class Action, which is related to
its corresponding Arguments through the properties hasCoreArgument
and hasOptionalArgument. In this scenario, it is possible to obtain
the whole set of arguments of that Action –without making dis-
tinctions on whether that Argument is required by the Action or
not– through the superproperty hasArgument, as it is inferred that
the Actions and Arguments related through hasCoreArgument and
hasOptionalArgument are also related through hasArgument.

To sum up, the semantic repository determines the outputs the
dialogue system will show to the user, the flow of the dialogue and
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allows the dialogue manager to interpret user commands to obtain a
readable input for the target system. This means that the total con-
trol of the dialogue process depends on semantic-technology-based
resources. Figure 5.4 shows a simple overview of the semantic repos-
itory component.

5.3.1 Implementation

Considering the description above, and regarding the implemen-
tation of the semantic repository for KIDE4Guide and further adap-
tations, two main tasks may be devised: domain information must
be modelled and instantiated, as well as dialogue-related information.
In this sense, domain information is strictly related to the use case at
hand and dialogue information is intended to be generic and reused
among use case adaptations.

As for the domain, for the TBOX the corresponding classes for
the spaces, objects and people from Tekniker have been modelled in
TODODW according to a set of CQs defined to comply with the
necessities of the use case. For this, terms from the GEO (Brickley,
n.d.) and FOAF (Brickley & Miller, n.d.) ontologies have been reused.
The resulting modelling of TODODW, with nine classes, can be seen
in Figure 5.5. In total, the domain TBOX for KIDE4Guide includes
43 classes.

Figure 5.5: Classes in TODODW for KIDE4Guide.

Regarding the ABOX, the instances of the classes included in
TODODW have been extracted from existing databases and instan-
tiated automatically through ODBA mapping rules, and the relations
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between them, modelled. To perform the mappings, three different
types of information are necessary: a prefix declaration (in the same
way as in SPARQL queries), the set of parameters of the database
and, finally, the rules. Each rule consists of two elements: the first
one is a parametric triple that accounts for the instance to be cre-
ated from the information in the database. As for the second element,
it contains the SQL command to retrieve the necessary information
from the database, which will be used to fill the parametric values in
the previously defined triple. Examples of these rules can be seen in
Example (32). The rule in Example (32a) has been defined to map
the people in the database as members of the class foaf:Person and
the one in Example (32b) has been defined to generate each person’s
email address and set it as a property of the person’s individual.

(32) a. target :{id} a foaf:Person .

source select id from personas

b. target :{id} foaf:mbox {email} .

source select id, concat(email,"@") as email

from personas

Furthermore, the actions that can be performed by the system
have also been modelled and, for frame-related information (frames,
frame heads and related lexical units), the population strategy in
Chapter 4.6.1 (which will be referred as the population strategy from
now on), which makes use of multilingual existing language resources,
has been used. With this strategy, in total, 29 frames, 62 frame heads
and 258 lexical units have been semi-automatically instantiated. As
for the machine-readable information for each element in the domain,
it has been modelled considering the requirements of the robot and
its components. Finally, the different lexical units corresponding to
the different domain elements that could not be obtained through the
automatic methods mentioned above have been obtained by combin-
ing thesauri and expert knowledge13. In total, the domain ABOX
includes 604 instances, 449 of which have been obtained through au-
tomatic or semi-automatic methods.

For the dialogue, the TBOX has been modelled to include the
expected outcomes of possible interactions (i.e., SystemRequests and
SystemResponses), generically enough to be reused in other use case
adaptations. In total, the dialogue TBOX includes 80 classes.

13E.g., tv or tele for televisión (TV ).
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Table 5.12: Classes and individuals for the KIDE4Guide implemen-
tation.

Classes Individuals

Dialogue 80 110
Domain 43 604 (449)

Total 124 714 (449)

The ABOX includes the instances for each of the potential inter-
actions and the instances corresponding to the tasks to perform by
the dialogue manager (i.e., StepFunctions). In total, the dialogue
ABOX includes 110 individuals.

The information on the modelling and instantiation of the on-
tology for this use case implementation is shown in Table 5.12, in
which the values in parentheses correspond to individuals obtained
through automatic (or semi-automatic) methods. As it can be ob-
served, more than 70% of the instances for the domain have been
obtained automatically or semi-automatically.

5.4 Dialogue Manager

The objective of KIDE4I’s dialogue manager is to manage the
dialogue process and to generate and instantiate the corresponding
dialogue-related traces. To do so, this component consists of two
REST services: init and userInput , the logic of which can be seen
in Figure 5.6. The first one generates a dialogue identifier and re-
trieves from the semantic repository all the necessary information to
initiate a dialogue with the user, such as the first step of the dialogue
process. Usually, this init service fetches the initial system request for
the user (e.g., when the dialogue is modelled to initiate the dialogue
with a greeting or a request for user input).
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Figure 5.6: Overview of the Dialogue Manager component logic.
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The userInput service is the target service for each user interac-
tion. Given a user input, the dialogue manager relies on the knowl-
edge in the semantic repository to determine of which type must be
considering previous system output –either a yes/no response (i.e.,
yes or no) or a content response (i.e., a response that conveys a cer-
tain information). Depending on that knowledge, this component
calls the polarity interpreter or the KEE modules to obtain an in-
terpretation, respectively. Once an interpretation is obtained, the
dialogue manager relies again on the semantic repository to deter-
mine the next function to execute or the action or world elements
the user is referring to, and assert whether the information obtained
is consistent or sufficient to obtain a readable command for the target
system.

When the dialogue manager has checked with the semantic repos-
itory that all the information necessary to obtain a target-system-
readable output is gathered, it generates the command for the target
system in the corresponding format by exploiting, again, the infor-
mation in the semantic repository.

Considering the strong dependency on the semantic repository,
a set of functions have been defined in the dialogue manager to re-
trieve the necessary information from the ontology. These functions
include the SPARQL query to execute according to their objective.
Once more, these queries have been defined so as to be as generic as
possible, leaving changes to be performed only if the particularities of
the use case require so, enhancing the reusability of the component
in different use cases. The defined functions supply the following
actions:

• Functions related to command interpretation:

– Check the compatibility of a given target with the
verbal key element (if present). To do so, a SPARQL is
executed to obtain two pieces of information: (i) whether
a world element can be obtained from the target’s every-
grams14 (through a full-text search with bif:contains)
and to which WorldElementGroup belongs and (ii) whether
a FrameHead can be obtained from the verbal key element’s

14All possible ngrams for a sequence. More information can be found in
https://buildmedia.readthedocs.org/media/pdf/nltk/latest/nltk.pdf.

https://buildmedia.readthedocs.org/media/pdf/nltk/latest/nltk.pdf
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everygrams (through full-text search) and the WorldEle

mentGroups that apply to said FrameHead (through the
property appliesToFrameHead). With this information,
it is checked that both world element and FrameHead have
WorldElementGroups in common. If so, both the verbal
and target key elements are compatible. If the query re-
turns any of the elements but are not compatible, the sys-
tem can continue with one of them and, if the query re-
turns no results, it means that the system cannot continue
because it was not able to resolve any of the two elements.

For example, consider a guiding scenario. In it, there ex-
ists a platform in which screwing and deburring can be
performed and the modelling of the world is the following:

∗ World element groups and world elements:

· Fasteners: screw, nail, bolt.

· Materials: steel, aluminium.

∗ FrameHeads:

· Screw
→ Fasteners appliesToFrameHead Screw .

· Debur
→ Materials appliesToFrameHead Debur .

If, given this modelling, the user wants to go to this plat-
form by asking for a place to screw/debur, four situations
may arise:

∗ Both elements are in the scenario modelling and are
compatible: “I want to screw a nail” / “I need to
debur steel”. The system will continue.

∗ Both elements are in the scenario modelling and are
not compatible: “I need to screw aluminium”. The
system will ask the user which one should it continue
with.

∗ Only one of the elements is in the scenario modelling:
“I need to screw the door”. As only Screw is present
in the scenario modelling, the system will continue
with Screw.

∗ None of the elements is present in the scenario mod-
elling: “I have to paint the door”. As screw nor door
are present in the scenario modelling, the system can-
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not continue and will request the user to reformulate
their command.

– Get the Intent and Action from the key elements
extracted from the user command. Two approaches can
be considered:

∗ Get Intent and Action from verb. In this func-
tion, the SPARQL query performs a full-text search to
obtain a FrameHead through the IDval of its Lexical
Unit. From the FrameHead, the Frame is obtained,
which is used to get the Intent and, from it, the
Action.

∗ Get Intent and Action from target (e.g., the
Intent and Action could not be obtained from the
verb or no verbal key elements have been uttered and/or
detected by the KEE component). In this function,
the everygram for the target (in case it consists of
more than one word) is generated. This everygram
is used in the SPARQL query to get a LexicalUnit

from its IDval through full-text search. From this
LexicalUnit, the corresponding world element(s) and
WorldElementGroup(s) are obtained. Then, the query
checks the Arguments that the WorldElementGroup(s)
applies for and, finally, the Intent and Action are ob-
tained. Depending on the dialogue step, it is possible
to filter the Actions to obtain (e.g., the dialogue sys-
tem has many Action candidates and asks the user
for the target to determine which of the candidates is
the user referring to).

– Obtain the Arguments for an Action. In this func-
tion, the SPARQL query, given the Action URI, gets the
Arguments for that Action.

– Assign a given non-verbal key element (i.e., tar-
get) as the value of an Argument. If this assignation
is successful, the TargetSystemReadableInfo for both
the Argument and the assigned value are obtained. In
this function, a similar procedure than to get the Intent

and Action from the target is followed: the everygram of
the target is generated, and it is used to obtain, through
the SPARQL query, its corresponding world element or
WorldElementGroup and, finally, the Argument. In this
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case, the corresponding Action is filtered to avoid assigna-
tion to Arguments belonging to other Actions. Depending
on the dialogue step, it is possible to filter the Arguments
that apply (e.g., the dialogue system is missing the value
of a specific Argument and asks the user to provide its
value).

• Functions related to dialogue management:

– Get the first action to perform by the dialogue
system (e.g., the first DialogueStep or the first System
Request). In this function, the implications for the differ-
ent outcomes of the first action are also retrieved.

– Get the next action to perform by the dialogue
system (e.g., the next DialogueStep or the next System
Request). In this function, the implications for the dif-
ferent outcomes of the next action (also including System

Responses or SystemRequests) are also retrieved.

– Get the dialogue state from the ontology.

• Functions related to dialogue traces:

– Insert a DialogueTrace, along with the initializa-
tion time.

– Insert a UserRequestTrace, along with its corre-
sponding KeyElementTrace(s). The generated User

RequestTrace is associated to the current DialogueTrace.

– Insert an ActionTrace as a possible action that ap-
plies to a KeyElementTrace. This ActionTrace is re-
lated to its corresponding Action.

– Insert the ActionTrace corresponding to a given
Key ElementTrace and relate both of them. This
ActionTrace is also related to its corresponding Action.

– Insert an ArgumentTrace as possible argument for
an ActionTrace. Additionally, a WorldElementTrace is
created as a possible value of the ArgumentTrace. This
WorldElementTrace is related to its corresponding world
element.
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– Insert a SecondaryDialogueTrace, related to a spe-
cific DialogueTrace and to its corresponding System

Responses and/or SystemRequest. The initialization
time is also modelled.

As the functions related with dialogue management and traces
rely on a stable set of classes and relations in TODODial, these
functions can be reused among use cases. However, the functions re-
lated to command interpretation rely on the modelling of the domain,
which is more variable due to the strong dependence of TODODW
with the domain. For this, the function structure and the SPARQL
queries in these functions are potentially subject to adaptations con-
sidering how the domain is modelled, especially when individuals
instantiated in TODODW are involved.

Additionally, the dialogue manager has been designed to be ca-
pable of gathering user feedback through the generation of dynamic
dialogues. These dynamic dialogues will be triggered when users find
themselves in undesired situations when using the dialogue system
(e.g., the dialogue system has obtained an incorrect interpretation
of a user command). Through these, it is possible to increment the
knowledge stored in the semantic repository (and, more specifically,
in the domain-related section of the ABOX ) to allow an incremental
improvement of the whole dialogue system. When this feedback is
gathered, the new information must be processed and the ABOX up-
dated so that it is exploitable by the dialogue system. In this sense,
the effort in this setting is directed towards obtaining a dialogue sys-
tem that is capable of learning continuously ensuring robustness and
reliability. This functionality will be implemented in KIDE4I’s initial
implementation and adaptations as part of future work.

5.4.1 Implementation

Considering that in most cases the functions for dialogue man-
agement and tracing are common in use cases, these have been im-
plemented in KIDE4Guide as described in the lines above.

However, the command-interpretation-related functions do present
some particularities that are related with the use case. These par-
ticularities are bound to the characteristics of the key elements. For
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this, the information regarding containing and contained elements
(e.g., “a room with a PC”) is considered to obtain the Intent and
Action from the target and to assign a key element as the value of
an Argument. Most modifications in these functions are related to
the structure of the world elements in TODODW and the set of key
element types for the use case.

So as to keep a dialogue with the user, the logic implemented in
KIDE4Guide for the dialogue process is described in the following
lines, as well as in Figure 5.7. First of all, the dialogue is initiated by
the system, which greets the user and requests for their command.
Once the user has provided their command and it has been inter-
preted by the system, the dialogue manager determines whether all
the necessary information for the target system to perform the ac-
tion requested by the user has been obtained. If there is information
missing, the system returns to the user and asks for the specific infor-
mation to provide. If all information has been gathered, the dialogue
manager checks if any information has been inferred from the user
command (i.e., it has not been specifically asked to the user). This
check is motivated by the fact that information that has not been
specifically provided by the user (and thus, inferred by the system) is
more prone to interpretation errors than information asked directly
to the user (e.g., the system asks the user to provide the destination),
as the latter has been designed to limit the results of its interpreta-
tion (in the case of the previous example, the argument to assign a
value to). Due to this, if there is any inferred information, the system
will ask the user for confirmation that the command to send to the
target system is correct. If it is not correct, the system will ask the
user to check the assigned value of each action argument and correct
if necessary. If it is correct –or the values for the action arguments
have been corrected–, the system will send the command to the tar-
get system for execution. Finally, the system will ask the user if they
have any more requests. If the user answers negatively, the dialogue
process will finish. If the user response is positive, the system will
ask the user for their command and the dialogue process will restart.
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Figure 5.7: Dialogue Manager interaction logic in KIDE4Guide.
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5.5 Conclusions

This Chapter describes the Knowledge-drIven Dialogue framE-
work for Industry (KIDE4I), the generic semantics-based task-oriented
dialogue system for industrial scenarios developed in the context of
this thesis. The use of TODO as the core ontology for KIDE4I and
the development of each of its components from a generic perspec-
tive contribute to tackle the main limitations of current approaches
to task-oriented dialogue systems for industry15, namely the lack of
training data to use state-of-the art techniques such as DL, restric-
tions in natural language communication and high specificity, which
limits their capacity to be reused. Furthermore, it does not require
big amounts of data to be implemented, as reuse of existing data has
been encouraged both in this Chapter and throughout this thesis.

KIDE4I consists of four modules: the key element extraction
(KEE) component, the polarity interpreter, the semantic repository
and the dialogue manager. The design process for each of them is
reported in this Chapter. Furthermore, these have also been imple-
mented for a guidance scenario to have an initial implementation of
KIDE4I –KIDE4Guide– with the objective of reusing the resources
generated in future adaptations and to evaluate, in the case of the
KEE component, the approaches explored.

The design of the KEE component has been tackled as a NERC
problem due to the resemblance of both tasks, which can be per-
formed through the use of rules or ML-based methods, taking into
account the limitations of the latter regarding available training data.
In this context, this thesis has also contributed with a strategy to per-
form semi-supervised KEE by augmenting domain training data with
data from different but similar domains, coping with the scarcity of
such resources.

From the validation and evaluation of the rule-based and the ML-
based KEE component in KIDE4Guide, as well as the strategy above,
the following conclusions have been extracted:

• To annotate domain data:

– ML-based KEE performed with models trained with do-

15vid. Chapter 1.
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main data are able to obtain similar results as the rule-
based implementation. In fact, the models trained with
the CRF algorithm obtain better results than rules.

– ML-based KEE performed with models trained with out-
of-domain data obtain promising results. However, they
do not achieve the performance of models trained with
domain data and it is very important to assess the quality
of the out-of-domain training data, as it may considerably
affect the results.

• To annotate out-of-domain data:

– Domain-based methods (rules and MLmodels trained with
domain data) achieve good results.

– The evaluation of augmentation of domain data with out-
of-domain data depends on whether out-of-domain data is
corrected (considering that domain data is always correct):

∗ Best results are obtained when out-of-domain train-
ing data is corrected, better than models trained with
only domain data.

∗ If out-of-domain data is not corrected, the perfor-
mance in comparison to corrected data drops, and,
in that case, domain-based methods obtain better re-
sults.

• Among the supervised algorithms evaluated, CRF performs
better than SVM.

Considering this, the methodology to implement the KEE compo-
nent is to first use Foma rules as starting point which, besides allowing
a full functionality of the component with good results, contribute to
the generation of domain training data towards the development of
a ML-based KEE component.

The polarity interpreter has been implemented by making use of
sentiment analysis technologies given the scarcity of specific resources
for its development, specially for languages other than English. For
this component, a set of thresholds that determine whether a com-
mand has a positive or a negative connotation have been defined
to ensure a correct polarity interpretation of commands. To obtain
these thresholds, a methodology has been presented and used, with
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the advantage that it should only be performed when the target lan-
guage is changed, as the task this component deals with is not related
to the domain per se. Thus, implementations of this component can
be reused as long as the target language stays the same. The task
of revisiting the design of this component to ensure its robustness is
encouraged, considering the technologies used and their development
stage, in line with the fact that this component is out of the scope of
this thesis.

The semantic repository includes both the terms and relations
(TBOX ) and individuals (ABOX ) necessary for the dialogue man-
ager to function. The core of the TBOX is TODO, and the instances
in the ABOX are instantiated according to the use case necessities.
To ease the instantiation process, the following actions are distin-
guished:

• The reuse of instances from the KIDE4Guide (especially for the
dialogue component).

• The automatic instantiation of world elements from existing
databases or other resources, where possible.

• The use of the strategy to semi-automatically populate the
domain ontology with intent-related information from existing
multilingual linguistic repositories presented in Chapter 4.

Finally, the dialogue manager orchestrates the other modules to
obtain, from a user instruction, an executable command to be di-
rected to the target system. This component is fully supported on
the logic in the semantic repository, and the functions necessary to
exploit the knowledge in it have been defined in KIDE4Guide to
be reused in future adaptations. These functions and the SPARQL
queries in them may only require small adjustments to cover the par-
ticularities of the use case.

To wrap up, the generic design of KIDE4I is reflected in each of its
modules, which is reinforced by the fact that, given an initial, generic
implementation, the effort to adapt KIDE4I to other use cases is con-
siderably reduced, mainly motivated by the use and reuse of existing
ontologies and resources. This makes KIDE4I an interesting asset for
the implementation of task-oriented dialogue systems in industrial
scenarios.
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Chapter 6

KIDE4I in Use

To reduce the effort when adapting KIDE4I to different use cases,
a methodology that wraps up all the techniques reported throughout
this thesis for that matter has been designed. Having as starting
point KIDE4Guide –the initial implementation of KIDE4I for the
guidance scenario–, described in the previous Chapter, this adapta-
tion methodology is put in practice through its application in three
different use cases that are relevant to industrial settings for the Span-
ish language: a bin-picking robot, a computerised maintenance
management software (CMMS) and an assistant for mainte-
nance procedure execution. As noted previously, the guide robot
implementation has set some of the bases for these adaptations, such
as the basic rules for the key element extraction component, as it will
be described later on.

The guide implementation and bin-picking and maintenance pro-
cedure assistant adaptations have been validated and evaluated within
three user studies1, the results of which have been reported in terms
of qualitative and quantitative analysis. For qualitative evaluation,
the SASSI questionnaire (Hone & Graham, 2000) has been used to
evaluate the adaptations through different perspectives. Regarding
quantitative evaluation, the dialogue completion rate, the number of
turns to successfully complete a dialogue, the number of errors ac-
cording to an identified set and response time in both user studies
have been considered.

1The CMMS adaptation is at an integration stage with the CMMS software
that is external to the development of this thesis.
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6.1 Use Case Adaptation Methodology

The process of adaptation of KIDE4I to different use cases consists
of four steps, basically based on the different components that are
at play in the architecture of the dialogue system. It is important
to remark that KIDE4I’s components are designed to be language-
independent and, thus, this same process applies to all languages:

1. Characterisation of the use case. This preliminary step
allows the developer to identify the necessities of the use case
in order to be applied to the different modules of the dialogue
system. This necessities include the type of interactions to be
solved, the elements included in the domain, the key elements
that refer to them and their possible syntactic structures, the
target system’s functionalities to be identified and the different
situations (defined through frames2) that apply to each func-
tionality in the use case.

2. Modelling of the key element extraction component.
After having identified the key elements to be extracted, two
main steps can be distinguished to obtain a functional KEE
component:

• Definition of Foma rules to delimit the structures that
correspond to the key elements –defined in the previous
step– from the command’s syntactic tree. The rules de-
fined in KIDE4Guide may serve as a starting point, as
they define basic structures that are common in industrial
scenarios.

• Adaptation of the post-processing subcomponent
to obtain the set of relevant key elements to be used as
input for the dialogue system.

3. Ontology modelling and instantiation. In this step, the
necessary information to model the use case must be identified
–through CQs– and instantiated into the TODO ontology. This
step follows different phases, which are closely related to the
different TODO modules:

2vid. Chapter 4.6.1.
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(a) Modelling and instantiation of the domain (TODO-
Dom). This phase is associated to two main blocks of
knowledge, both related to the domain of the use case:
world elements and action- and frame-related elements.

• World elements (TODODW). Given that the classes
in TODODW are highly dependent on the use case3,
in this phase the domain elements are modelled and
instantiated: objects, people, machines, spaces, etc.,
along with the relations that are relevant for the use
case (e.g., a given workshop contains a given machine).

• Frame- and action-related elements (TODODFA).
The frames and related information required to suc-
cessfully identify and process actions (e.g., arguments)
are instantiated. To obtain a significant part of this
information (frames, frame heads and lexical units),
the strategy described in Section 4.6 may be used.

For each of these blocks, the machine-readable informa-
tion for the target system to perform such actions (i.e.,
TargetSystemReadableInformation) is also instantiated,
along with the different words to refer to them in natural
language when directing a command to the system (lexi-
cal units). These words are mostly obtained through au-
tomatic methods that rely on existing resources from the
natural language processing field or database information
and, when necessary, manually.

(b) Modelling and instantiation of information related
to dialogue management (TODODM). This instantia-
tion phase consists on the definition of the logic implica-
tions of the different outcomes of each interaction between
the system and the user. In this stage, the responses and
requests of the dialogue system are also defined. This in-
formation can be reused from the KIDE4Guide implemen-
tation and, if necessary, new elements must be modelled.

4. Adaptation of the source code of the dialogue manager.
Although the source code is intended to be generic, it still needs
minimal modifications that deal with the particularities of each
use case, which are basically two: key element processing (dif-
ferent use cases may have different configurations of key ele-

3vid. Chapter 4.
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ments) and, if necessary, ontology queries to correctly interpret
the commands directed to the dialogue system. These particu-
larities, as noted in Chapter 5.4, are encapsulated in functions
that have been designed to be easily adaptable to simplify this
task. Further modifications are also needed when additional
functionalities are needed, considering that the most typical
ones are already defined.

The following sections will describe the adaptation process for
each of the use cases previously mentioned.

6.2 Use Case Adaptations

In industrial scenarios, the most typical interactions for workers
are, on the one hand, with information systems that retrieve informa-
tion about maintenance tasks or access specific information such as
blueprints or technical manuals. On the other hand, workers also take
part in collaborative tasks with robots, in which both work together
towards completing an assignment (Romero et al., 2016).

In this thesis, three different KIDE4I adaptations have been car-
ried out for three use cases that are relevant in current industrial se-
tups: a bin-picking robot, a Computerised Maintenance Management
Software (CMMS) and an assistant for maintenance procedure execu-
tion, which are described in the following sections. These adaptations
have been performed by using KIDE4Guide, described in Chapter 5,
as starting point.

6.2.1 KIDE4BinPicking: Bin-Picking Robot

KIDE4BinPicking is the result of adapting KIDE4I for interaction
with a bin-picking robot (in Figure 6.1) that is able to pick different
printer cartridges from a table, identify their brand and colour and
classify them between two different containers according to the crite-
ria established by the operator (that is, whether the cartridges of a
specific colour or brand should be placed in a container or another).
It is also possible to interact with the system through gestures to con-
vey the destination container or cartridge or to make the robot stop
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Figure 6.1: Bin-picking robot the dialogue system has been adapted
for.

or continue. In this sense, gestures can be complementary to voice
commands. As in KIDE4Guide, the target language for interaction
is Spanish.

The key elements to extract are actions and targets –which
may correspond to brands, colours and containers–, as can be
observed in Example (33). Furthermore, the key element tagger is
also expected to detect pointers that may imply the presence of a
gesture referred to a container or cartridge, such as “here” or “this”,
as Examples (34) and (35) show.

(33) Ponaction el azultarget−colour en el contenedor 1target−container

Putaction the bluetarget−colour one in container 1target−container

(34) Ponaction estepointer−cartridge en el contenedor 1target−container

Putaction thispointer−cartridge one in container 1target−container

(35) Ponaction el azultarget−colour aqúıpointer−container

Putaction the bluetarget−colour one herepointer−container

An initial analysis of the data generated for KIDE4Guide showed
that most definitions for its KEE component could be reused, and
only small modifications on some definitions and rules for KEE have
been necessary, especially to include pointers. For the post-processing
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Figure 6.2: Classes in TODODW for KIDE4BinPicking.

step in the KEE component, only minimal adaptations have been
required. This reuse of definitions has drastically reduced the time
to obtain Foma rules which, added to the generality of the interpreter,
has allowed to obtain a functional KEE component in a reasonable
amount of time.

The modelling and instantiation of the world elements from the
domain has been performed in terms of the colours and brands that
can be recognised by the robot (cyan, magenta, black and yellow and
Epson, Canon, HP and Brother, respectively) and the containers in
the scenario (1 and 2 ). For cartridge colours, the Printer Vocabulary
ontology (Rodriguez-Castro, Torok, & Hepp, n.d.) has been reused,
as well as the GEO ontology. The classes in TODODW for this
adaptation can be seen in Figure 6.2. As in the guide robot use case,
actions have also been instantiated and frame-specific information
has been obtained by following the population strategy, with which
a total of 19 frames, 62 frame heads and 141 lexical units have been
semi-automatically instantiated. Machine-readable information has
been modelled according to the robot’s requirements and lexical units
have been obtained from linguistic resources (through thesauri and
the strategy) and expert knowledge.

Tables 6.1 and 6.2 show the number of classes and instances
for each KIDE4I adaptation, respectively, along with the number
of reused or automatically-obtained elements. According to these
Tables, in which BP stands for KIDE4BinPicking, a 96.6% of the
classes for this adaptation have been reused, and a 78.4% of the
instances have been obtained automatically, which means that the
effort to model and instantiate the ontology has been highly reduced.
Interestingly enough, the original dialogue management classes and
instances have also been reused, although minor modifications had
to be performed in the dialogue logic.
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Table 6.1: Classes for each KIDE4I adaptation: total and reused
from other resources (TODO included).

Dialogue Domain All

Total Reused Total Reused Total Reused

BP 80 80 (100%) 40 36 (90%) 120 116 (96.6%)
CMMS 80 80 (100%) 37 37 (100%) 115 115 (100%)
Assistant 82 80 (97.6%) 134 132 (98.5%) 216 212 (98.1%)

Table 6.2: Instances for each KIDE4I adaptation: total and
obtained automatically.

Dialogue Domain All

Total Auto Total Auto Total Auto

BP 80 80 (100%) 278 201 (72.3%) 358 281 (78.4%)
CMMS 80 80 (100%) 11711 11644 (99.6%) 11791 11744 (99.6%)
Assistant 80 80 (100%) 584 516 (88.4%) 664 596 (89.8%)

6.2.2 KIDE4CMMS: Information Systems for
Maintenance Management

The second use case consists on interaction with a Computerized
Maintenance Management System (CMMS). By using this software,
which is typically used to manage maintenance actions, users are
able to access maintenance-related information, such as work orders
or blueprints.

KIDE4I has been adapted so as to track work orders, request for
blueprints, problem solving protocols or exploded views and check
stock for a specific machine or machine component through natural
language commands in Spanish. Furthermore, users can also fill forms
on the system’s request. The result is KIDE4CMMS.

So as to interpret each of the commands directed to the system,
the key elements to extract are actions, targets and items. As
Example (36) shows, targets, along with actions, determine the action
to perform –in this case, to show a work order–, whereas items are
the action arguments –the work order identifier and the machine that
work order is for.
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Figure 6.3: Classes in TODODW for KIDE4CMMS.

(36) a. Muéstrameaction la orden de trabajotarget 85item de la
fresadoraitem

b. Showaction me thework ordertarget 85item for themilling
machineitem

As in the previous cases, KIDE4Guide’s definitions have been
reused, and only six specific rules have been defined for this use case.
To cover the different key element tags, the interpreter has been
modified to include them.

For the domain modelling and instantiation, the available error
codes –for the problem solving protocols–, machines and components
have been modelled and instantiated, along with the IDs for work
orders, which have been defined as numerical patterns to be checked
by the target system. In this case, the classes for machines and com-
ponents have been aligned with the VAR ontology (Fernández, Casla,
Esnaola, Parigot, & Marguglio, n.d.). The classes in TODODW for
this adaptation can be seen in Figure 6.3.

Machines, components and their corresponding lexical units, which
are in total more than 10, 000 instances, have been automatically in-
stantiated from the target system’s database. Examples (37) and
(38) show a sample of the machines and components instantiated in
the ontology, respectively.

(37) a. “Cortadora aluminio 602”

b. “Elevador de personas Manitu”

(38) a. “Ventilador 165232”

b. “Bobina BO-O320”

Each action the system is able to perform has been modelled, and
the lexical units to identify targets and the rest of the elements of
the scenario have been instantiated as in previous cases, both reusing
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existing lexical resources and linguistic knowledge. Following the
CMMS’ requirements, target-system-readable information has also
been modelled. Finally, action- and frame-related data have been
instantiated by following, again, the population strategy, which has
enabled the semi-automatic instantiation of 4 frames, 4 frame heads
and 12 lexical units.

Finally, as Tables 6.1 and 6.2, in page 153, show, all classes for
this use case have been reused, and a 99.6% of the instances have
been obtained through automatic methods. For the dialogue part,
the original modelling and instances have been totally reused.

6.2.3 KIDE4Assistant: Information Systems for
Maintenance Assistance

The third and last KIDE4I adaptation in this thesis, KIDE4-
Assistant, is an assistant for maintenance procedure execution. Given
a set of maintenance procedures, previously extracted from technical
manuals, the system is able to guide the user through the processes
described in them. KIDE4Assistant has been designed for Spanish,
and manuals are also in this language.

In this use case, procedures are structured in methods, tasks and
steps. Methods determine different ways to perform the same pro-
cedure (e.g., in normal conditions or in a clean room); each method
has a set of tasks (e.g., extract a battery, install a battery), and each
task consists of a set of steps (e.g., disconnect the machine, open the
lid). Given a procedure, KIDE4Assistant requests the user to select
the method to follow (in the case the procedure has more than one).
Then, the system gives the description of the current method, task
or step. Users are able to navigate through the different elements of
the procedure by (i) requesting for the next or previous step or task
(given the current step), (ii) to repeat the information that was just
given by the system, (iii) to restart a method or task (i.e., start over
again from the first step of the first task of the current method or to
start over again from the first step of the current task, respectively),
(iv) to obtain other related information such as the list of necessary
tools to perform the procedure or (v) a more extensive description or
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(vi) additional information4, in the form of text and images. Texts
and images are shown in a screen so users can easily follow the infor-
mation provided by the system.

Considering the description above, the key elements to be identi-
fied by the target system are actions and targets, which correspond
to the keyword used to determine the action to perform (Example
(39), for the Show tool list action) or the reference element of the
action (Example (40)).

(39) Muéstrameaction la lista de herramientastarget−determineAction

Showaction me the tooltarget−determineAction list.

(40) Reiniciaaction la tareatarget−reference

Restartaction the tasktarget−reference

In this case, as the key elements to identify are common with the
guide use case ones, both definitions, rules and interpreter scripts are
also common.

For the domain ontology modelling and instantiation phase, 6
procedures –from 2 robotic arms and a controller– have been auto-
matically instantiated into TODODW. To do so, these procedures
have been extracted from their corresponding manuals and format-
ted as JSON files, from which procedure information has been ob-
tained. From this JSON, the relations between procedures, methods,
tasks and steps are instantiated, including sequential relations (e.g.,
Step 2 comes after Step 1 and before Step 3). Furthermore, for each
method, their tool list – with its corresponding tool individuals– has
been instantiated. For each structural element of the procedure (i.e.,
methods, tasks and steps), additional information and/or extended
information has also been automatically included. Finally, the ele-
ments that make reference to procedure parts –procedures, methods,
tasks, steps and tools, which correspond to the key elements labelled
as targets– have also been included. So as to be able to instantiate
this information, the VAR ontology (Fernández et al., n.d.) –which is
intended as a “workplace digital twin” (Fernández et al., n.d.) by rep-
resenting workplaces, processes and workers– has been reused. The
set of classes for KIDE4Assistant can be seen in Figure 6.4.

4To be requested through general questions such as “Can you give me more
information?”.
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Figure 6.4: Classes in TODODW for KIDE4Assistant.

The rest of the domain information has been modelled and instan-
tiated as in the previously described use cases. For the population
strategy, 22 frames, 50 frame heads and 187 lexical units have been
semi-automatically instantiated.

As for the dialogue, two classes have been modelled for this use
case to cover an additional interaction regarding method selection:

• MethodOptionsResponse . The system informs the user that
the selected procedure has more than one method.

• MethodDisambiguationRequest . The system requests the
user to confirm that they want to follow the method in the
request.

Tables 6.1 and 6.2, in page 153, show that nearly all the classes
for this adaptation have been reused (a 98.1%), and an 89.8% of the
instances have been obtained through automatic methods or reused
from other use cases. Although all of the dialogue information has
been reused, minimal modifications on the dialogue manager’s logic
have been needed to cover the necessities of the use case.
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6.3 Evaluation

To evaluate and validate KIDE4I and its adaptations KIDE4-
Guide, KIDE4BinPicking and KIDE4Assistant, three user studies
have been defined and carried out.

The following sections will describe the experimental setup of the
studies and the results obtained will be reported in qualitative and
quantitative terms. For the qualitative analysis, the participants of
each study were provided with the SASSI questionnaire (Hone &
Graham, 2000) and, for the quantitative analysis, results will be pre-
sented from a dialogue perspective (i.e., whether the user intent was
fulfilled in the dialogue, the number of steps required to complete a
dialogue and the errors found according to their frequency) and from
an interaction perspective (i.e., the system’s response times).

6.3.1 Experimental Setup

In each user study, 12 subjects –which were considered as poten-
tial users of these applications– have been recruited. Each user was
expected to perform a number of dialogues5 (a dialogue was consid-
ered a set of interactions in which the user conveys with the system
a specific action to perform) according to a set of instructions given
to them by the study personnel, where a short description of the sce-
nario was provided, along with the type of interactions that could be
addressed to the system. After finishing their dialogues, each user
was requested to fill a questionnaire. The questionnaire chosen to
evaluate the dialogue system was the SASSI questionnaire (Hone &
Graham, 2000), as it provides a comprehensive evaluation on speech-
based dialogue systems and it is considered an standard resource to
evaluate such systems. However, for some of the use cases, some
additional questions were added to evaluate specific areas that are
not covered by SASSI, such as security or productivity 6. For the
guide and bin-picking use cases, users were reminded that the ob-
ject of their evaluation was the dialogue system and not third-party
components such as the app itself, the ASR technology or the robot,

5The conditions regarding the number of dialogues will be specified in each
experimental description.

6vid. Appendix B.
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if present. In the case of the assistant use case, users evaluated the
performance of the system as a whole.

The following sections provide specific details for each of the user
studies carried out in the context of this work.

6.3.1.1 Guide/Logistics Robot

In this study, users were expected to interact with the guide robot
through voice commands in order to be guided to a destination of
their choice.

To provide users with an interface to interact with the robot
through voice commands, an Android application was developed,
which is able to access the dialogue system, deployed in a server ma-
chine. The application consists of a button, SPEAK, used to interact
with the robot, as it can be seen in Figure 6.5. For simplicity, users
were provided with a mobile phone with the application installed, so
it was not necessary for them to install it on their phones.

Figure 6.5: Screenshot from the mobile application used to interact
with KIDE4I.
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Table 6.3: Demographic data for participants in the guide user study.
(a)Gender information. (b) Age information. (c) Frequency of voice
interaction with everyday devices.

Gender

M 33%
F 42%
N/D 25%

Age

24-34 58%
35-44 17%
45-52 17%

N/D 8%

Interaction with everyday
devices

Never 33.3%
Sometimes 58.3%
Frequently 8.3%

In this case, the presence of the robot was emulated (that is, the
robot was not physically present). However, each time a dialogue was
successfully completed, users received a simulation of their command
being sent to the robot to reproduce the use case scenario in the most
precise way possible.

The available destinations were defined in a set of maps that con-
tained a selection of destinations that included laboratories, work-
shops, machines, people, spaces and other objects that corresponded
to the Tekniker facility. These maps were provided to each of the
users so as to perform their commands, along with some instructions
about the experimentation itself7, such as wording restrictions and
the app’s basic controls.

The commands directed to KIDE4Guide had no wording restric-
tions, which meant that destinations could be referred explicitly (e.g.,
“Take me to the vending machine”) or implicitly (e.g., “I want to eat
something”). However, some sequences were not supported (such as
coordination of destinations; e.g., “I want to go to the meeting room
and then to the toilet”), and users were instructed about them. Users
did not receive any further instructions regarding the commands to
direct towards the dialogue system to ensure a natural interaction
and not interfere with their interactions. In this use case, users were
required to perform at least five dialogues.

Table 6.3 shows demographic data for the participants of the
study. All subjects are familiar with technologies in general as they
work in domains that require a knowledge of them.

7vid. Appendix D.
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6.3.1.2 Bin-Picking Robot

In this user study, the objective was to interact with the robot
though voice commands to indicate which cartridges would go to one
of the containers of choice, whereas the rest were to be placed into
the other container.

In this case, the robot, depicted in Figures 6.1 and 6.6, was phys-
ically present in a manufacturing laboratory. Due to this, users were
provided with an industrial headset with microphone, designed to
prevent ambient noise to interfere with the voice captured and to
protect them from said noise. The interfaces provided to interact
with the robot were the same phone and app than in the guide use
case.

Figure 6.6: User interacting with the bin-picking robot according to
the conditions defined for the experimentation.

Before the experimentation, users were instructed8 about the ob-
jectives of the study and minimal interaction restrictions. As in the
previous user study, there were not wording restrictions in general,
except for coordination of targets (e.g., “Put the black ones into con-
tainer 1 and the yellow ones into container 2”). Furthermore, they
were shown which cartridges were available and how they looked like,
so they could see if the robot was correctly performing the action it

8vid. Appendix D.
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Table 6.4: Demographic data for participants in the bin-picking user
study. (a) Gender information. (b) Age information. (c) Frequency
of voice interaction with everyday devices.

Gender

M 50%
F 50%

Age

24-34 42%
35-44 33.3%
45-54 16.6%
55-59 8%

Interaction with everyday
devices

Never 8.3%
Sometimes 83.3%
Frequently 8.3%

was ordered to execute.

During the experimentation, and for each interaction, users were
asked to choose three or four cartridges, which were placed on the
platform in front of the robot by the personnel in charge of the study.
Then, they were asked to perform their commands using the app and
the headset they were provided with from the position they were in-
structed to remain in. As in the previous use case, users were required
to perform at least 5 dialogues. Figure 6.6 shows the conditions of
the experimentation.

Table 6.4 shows demographic information regarding the study
participants. As in the previous user study, all participants were
familiar with technologies in general and were also related to some
degree to industrial processes.

6.3.1.3 Maintenance Procedure Execution Assistant

In this user study, participants had to interact with a maintenance
procedure assistant (an image of which can be seen in Figure 6.7) to
receive instructions about the procedures to perform to resolve cer-
tain maintenance situations. The design of this assistant integrates
two technologies to retrieve maintenance procedures and presenting
them to the user: a Question Answering (QA) module and a
dialogue module, supplied by KIDE4Assistant. In this sense, two
different types of procedures were distinguished, which were provided
by each of the two modules in the assistant’s pipeline:

• General procedures. These procedures were not stored in
a structured way, and were presented to the user as a whole,
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Figure 6.7: Screenshot from the maintenance procedure assistant.

including images. The retrieval of the user manual excerpts was
performed by the QA module.

• Guided procedures. These procedures were stored in the on-
tology, and were presented to the user according to that mod-
elling, in an assisted way. The navigation through the proce-
dures was performed through KIDE4Assistant, and procedure
information was obtained from its ontology instantiation.

To interact with the assistant, users were provided with a tablet
with access to it and a headset with microphone. To initiate their
interactions, users were required to press a button.

Before the experimentation, users were instructed9 about the ob-
jective of the experimentation, along with some instructions regard-
ing how to use the assistant and a video with a usage example. In
this case, there were not wording restrictions at all to interact with
the assistant.

9vid. Appendix D.
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Table 6.5: Demographic data for participants in the maintenance
procedure execution assistant ssistant user study. (a) Gender infor-
mation. (b) Age information. (c) Frequency of voice interaction
with everyday devices.

Gender

M 8%
F 92%

Age

19-23 58.3%
24-34 16.6%
35-44 8.3%
45-54 8.3%
55-59 8.3%

Interaction with everyday
devices

Never 25%
Sometimes 58.3%
Frequently 16.6%

For this study, users had to request maintenance procedure infor-
mation for two arm robots –from now on, RobotA and RobotB. To
run the experimentation smoothly, the participants came in turns. At
each turn, two participants were selected: one of them was assigned
to RobotA and the other to RobotB, and were taken to their re-
spective locations. Once in there, the experimentation staff provided
the user with the situations to resolve for the robot. For the general
procedures, four situations were presented, and for the guided ones,
two. Each user was required to ask about two general procedures of
their choice and to be assisted through one guided procedure. When
each of the participants finished their tasks, they were assigned to
the other robot, with the same experimental conditions. Thus, in
total, each user was required to request procedure information about
six different maintenance situations.

Note that in the context of this thesis qualitative evaluation for
this use case will be performed on the experimental task as a whole,
whereas only the selected guided procedures, which are supplied by
KIDE4Assistant, will be the object of quantitative evaluation.

Table 6.5 shows demographic information about the study par-
ticipants, which were mostly alumni from a dual engineering degree,
along with their professors.

6.3.2 Results

To provide a comprehensive evaluation of the system through the
user studies described previously, results will be reported at qualita-
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tive and quantitative level:

• Qualitative evaluation. At this level, responses from the
SASSI questionnaire will be analyzed.

• Quantitative evaluation. Evaluation at this level will pro-
vide quantitative information on the systems evaluated by con-
sidering different units of analysis:

– Dialogue. From this perspective, the dialogue as a whole
(i.e., a series of interactions between the system and the
user to achieve an executable action) is assessed. To do
so, three aspects are evaluated:

∗ Dialogue completion rate. Whether a dialogue has
been successful or not (Wu et al., 2019).

∗ Dialogue completion steps. How many steps were
necessary to complete a dialogue.

∗ Errors caused by module. Number of cases the
user goal was not fulfilled by the system due to a spe-
cific reason in interpretation.

– Interaction. Here, the interactions performed in each
dialogue turn by the system and the user are evaluated
considering the following information:

∗ Response time. Time needed by the system to pro-
vide a response given a user request.

6.3.2.1 Qualitative Evaluation: SASSI Questionnaire

The SASSI questionnaire allows to comprehensively evaluate dif-
ferent aspects of KIDE4I adaptations. So as to cover other areas
that are relevant for this study regarding the system’s industrial ap-
plication, additional questions have been added to SASSI10. Thus,
the aspects covered by the questionnaires are the following (Hone &
Graham, 2000):

• Response accuracy (SASSI). It refers to whether the system
is able to interpret an user command and generates an appro-
priate response.

10vid. Appendix B.
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• Likeability (SASSI). It refers to the user perception of the
system in terms of usefulness, pleasantness and friendliness.

• Cognitive demand (SASSI). It stands for the mental effort
required by the user to interact with the system. In industrial
scenarios, this aspect is especially relevant, since one of the
main objectives of KIDE4I is to simplify the performance of
specific tasks.

• Annoyance (SASSI). This aspect evaluates how repetitive or
annoying it is to interact with the system.

• Habitability (SASSI). It refers to whether the user knows
what to say to the system.

• Speed (SASSI). It evaluates if the system response given a user
interaction is fast.

• Verbosity. It determines whether the system interactions are
too long. In this sense, the system should give the correct
amount of information so as users can perform their tasks in
the minimum amount of time.

• Productivity. This question aims to determine if the fact of
using this system would increase the user’s productivity, as it
is also one of the main objectives of KIDE4I.

• Security. As user security is of utmost importance in indus-
trial scenarios, this item evaluates if the design of the system
allows users to perform the intended tasks by preserving a se-
cure distance.

Due to the different contexts in which the user studies were per-
formed, different SASSI result reports will be provided. On the one
hand, for the guide and bin-picking user studies, the information on
the questionnaires account exclusively for the KIDE4I adaptations.
On the other hand, for the maintenance procedure assistant user
study, the questionnaires apply to the assistant as a whole and, thus,
modules other than KIDE4Assistant were also evaluated.
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Guide and Bin-Picking User Studies

In these user studies, each question in SASSI consists of a 6-point
Likert scale, where 1 stands for Strongly disagree and 6 to Strongly
agree. As it can be observed, the scales for the questionnaires were
modified from the original 7-point Likert scale to a 6-point Likert
one. This has been done with the objective of removing the neutral
point and obtain more representative scores.

Figures 6.8 and 6.9 provide the results obtained from the ques-
tionnaire for the SASSI questions and for the additional questions.
In general, it can be observed that the results are very positive in
both use cases, with median scores between 5 and 6 for common
questions between use cases and 4 and 6 for additional questions for
the bin-picking use case.

The results in Figure 6.8 show that some aspects had more consen-
sus between participants than others. The aspects that denoted more
variability were annoyance, habitability and speed. For annoyance,
it can be observed that most answers are among the highest ratings,
but also a significant11 amount of answers have obtained the lowest
ratings. This is caused by the results obtained for question num-
ber 24 (“The interaction with the system is repetitive”), which was
rated with an average score of 2.38. Since the tasks to perform in the
user studies were strongly related to industrial scenarios, which in-
herently consist of very specific actions on specific elements, this was
an expected outcome. Regarding habitability, results obtained more
average scores than the rest of the evaluation items. In this case, al-
though they were given instructions about the task and interactions,
participants were not sure about what to say to the system not be-
cause it was not clear, but because they were afraid the system would
fail if they were too natural in their interactions. Finally, scores for
speed were different between use cases. In the guide use case, results
for this aspect were more variate, and for the bin-picking use case
were more constant. Since the complexity of the guide use case was
higher than in the bin-picking use case, in some cases KIDE4I needed
more time to process user commands12. However, users considered
the system to be fast in general terms.

11Significant in the sense that these observations are not outliers.
12A more thorough analysis regarding this aspect and the differences in re-

sponse times between use cases can be found in Section 6.3.2.3.
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Figure 6.8: Results obtained from user questionnaires. (a) Results
obtained for the guide use case. (b) Results obtained for the bin-
picking use case. (c) Results obtained considering both experimen-
tations.

Figure 6.9: Results obtained from user questionnaires: additional
questions for the bin-picking use case.
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Table 6.6: Scores and standard deviation (SD) values over three dif-
ferent age groups for the two user studies reported in this section.

Aspect 24-34 35-44 45-59 Total average SD

Response Accuracy 5.07 4.52 4.68 4.75 0.29
Likeability 5.21 4.94 4.95 5.03 0.15
Cognitive Demand 5.45 5.30 5.43 5.40 0.08
Annoyance 4.59 4.31 4.80 4.57 0.25
Habitability 4.62 4.38 4.35 4.45 0.15
Speed 5.17 4.55 4.63 4.78 0.34
Verbosity 4.75 5.15 5.42 5.11 0.34

On the other hand, the most appreciated aspects among users
were response accuracy, likeability, cognitive demand and verbosity,
with more consensus between participants. The most relevant results
are the ones obtained for cognitive demand, as this aspect refers to
one of the main objectives of KIDE4I and validates the easiness of use
of the system, which makes it highly suitable in industrial scenarios.

All in all, the system has been considered to be accurate, use-
ful, efficient, not demanding, flexible, fast and that, in general, the
amount of information provided is correct.

For additional questions for the bin-picking use case –in Figure
6.9–, they have also been evaluated very positively, and it is specially
relevant that the feeling of security by using this system is very high,
reaching nearly a perfect score among users. Furthermore, these re-
sults show that most users consider that the system would be a plus
in their productivity.

Table 6.6 shows the scores for the different evaluated aspects in
the two user studies, averaged over the three age groups stated in
Tables 6.3 and 6.4 (24-34, 35-44, 45-59). The Table shows that the
scores given by participants of different ages is roughly the same, with
relatively small standard deviation values. However, and despite the
small standard deviation values, these figures show some tendencies
according to age. In general, the 24-34 age group assessed more
positively the evaluated aspects, except for verbosity and annoyance,
in which the results show the opposite, being the 45-59 group the most
satisfied. This can be associated to the fact that older people tend
to appreciate to be provided a good amount of information, whereas
younger people prefer a fast execution rather than information.



170 KIDE4I in Use

Maintenance Procedure Assistant User Study

For the maintenance procedure assistant study, each question in
SASSI consists of a 7-point Likert scale, where 1 stands for Strongly
disagree, 4 for Neutral and 7 for Strongly agree. In this case, the orig-
inal SASSI scores have been kept, as it was a decision that depended
on sources that are external to this thesis. Here, the SASSI ques-
tionnaire evaluates the performance of the assistant as whole, which
includes KIDE4Assistant as one of its modules.

Figure 6.10 shows the results obtained from the questionnaire for
this user study. In general, the results obtained have been positive,
with median scores between 4.5 and 6 in most evaluation items, al-
though a special case, habitability, had a median of 3 points.

Figure 6.10: Questionnaire results obtained for the procedure assis-
tant use case.

Regarding the aspects with more variability between users, re-
sponse accuracy, annoyance and habitability (being the two latter
common with the other two use cases) showed a wider range of re-
sponses than the rest of evaluation items, with standard deviation
values of 1.61, 1.61 and 1.54. In fact, these three aspects have in
common that a significant range of responses have occurred in all
points of the scale.

For response accuracy, users were concerned about whether the
system was doing what they expected or wanted, and, thus, the re-
sponses to questions 4 (“The system didn’t always do what I wanted”)
and 5 (“The system didn’t always do what I expected”) obtained the
lowest scores, with 3.92 and 3.83 points, respectively, which were
basically in the neutral range. In this sense, in some cases users
expected the system to accept a wider range of requests in guided
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procedures besides navigation commands, such as questions regard-
ing a step presented by the system (e.g., if the step involves opening
a lid, some users expected the system to answer questions of the type
of “Where is the lid?”). This originated in a significant volume of
requests that were out of the scope of the system’s functionality, as
it will be seen in Section 6.3.2.2. In some other cases, users expected
images to be shown, which were not always returned by the assistant
as the original manual did not include them. For annoyance and hab-
itability, the same situations as in the other two user studies could
be observed, in which most users found the task repetitive and had
doubts whether they were using the right words to interact with the
system.

On the other hand, the most appreciated aspects were likeability,
cognitive demand and speed.

All things considered, the maintenance procedure assistant, in-
cluding KIDE4Assistant, has been considered as pleasant to use, not
demanding cognitively speaking, fast and competent in the accuracy
of its responses.

Finally, in this experimentation, age groups are clearly unbal-
anced (a 75%13 of the users fall into the youngest category), which is
directly related to the distinction alumni-professors. Due to this, an
analysis of the results according to age groups would not be accurate
and, thus, it has not been performed for this user study.

6.3.2.2 Quantitative Evaluation at Dialogue Level

This level of analysis aims to evaluate the dialogue system adap-
tations involved in the user studies by whether the interaction goal
has been fulfilled (dialogue completion), how many turns did
it take for that interaction goal to be reached (dialogue steps) and
the number and classification of the errors that caused a dialogue
not to be successful or to require some reformulation from the user
(errors caused by module).

To assess dialogue completion, all dialogues have been anal-
ysed by a group of experts, who were expected to determine whether
the user goal was successfully completed or not completed. In

13vid. Table 6.6.
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Table 6.7: Dialogue completion results for the user studies reported
in this work. Values in parentheses stand for dialogues classified as
partially completed. % stands for percentages and # for absolute
numbers.

Guide BinPicking Assistant

% # % # % #

Completed 84.34(8.43) 70(7) 82.67 62 78(7) 230(20)
Not completed 15.66 13 17.33 13 22 64

Total 83 75 294

the case of completed tasks, dialogues were classified between fully
completed or partially completed, depending on whether the user had
to reformulate the query at some point of the dialogue (see Example
(41)).

(41) a. Initial - not resolved: “Tengo sed”
“I am thirsty”

b. System asks for reformulation: “No consigo entender
tu petición. ¿Puedes reformular tu comando para que te
entienda mejor? ¿En qué puedo ayudarte?”
“I cannot understand your command. Can you reformu-
late so I can understand you better? What can I help you
with?”

c. Reformulation - resolved: “Quiero beber”
“I want to drink”

Table 6.7 shows the percentage of the dialogue completion rates
for each use case. As it can be observed, the results are very positive,
where the successful completion rates are within the range between
78% and 84.34%. For KIDE4Guide, an 8.43% of these dialogues were
classified as partially completed, and for KIDE4Assistant, a 7%.

Regarding dialogue steps, Table 6.8 shows the average number
of steps required to complete the dialogue. It is important to keep in
mind that each dialogue includes one or two steps that are included
by default in each adaptation as part of their design: in the guide use
case, the system initiates the dialogue by presenting itself and, in both
the guide and bin-picking use cases, when an action is obtained, the
system asks the user for confirmation. In the maintenance procedure
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Table 6.8: Number of average number of steps to successfully com-
plete a dialogue. Values in parentheses stand for values that exclude
steps implemented by default.

Guide BinPicking Assistant

5.4 (3.4) 4.3 (3.3) 1.5

assistant use case, the user initiates the dialogues in most cases and
the system does not ask for any confirmation. For this use case, it
is also relevant to mention that the complexity of the interactions is
lower regarding the rest of use cases, and that explains the difference
in average dialogue steps with the other adaptations. Come as it
may, the number of dialogues required to achieve the user’s goal is
positive enough to determine that KIDE4I allows an agile interaction
between users and the system.

Finally, as a necessary step to improve the system in future ver-
sions, the dialogues that did not fulfil the goal of the user or required
reformulations have been analysed to identify the source of the er-
rors that led to unsuccessful interpretations. The errors identified
are the following:

• Automatic Speech Recognition (ASR). Not accurate tran-
scriptions (Example (42)).

(42) a. Obtained: “Quiero unas alas con algún ordenador”
“I want a pair of wings with some computer”

b. Correct: “Quiero una sala con algún ordenador”
“I want a room with some computer”

• Syntactic analysis. Structures that are not correctly analysed
–Example (43)– or words with wrong lemmas (usually for words
that are not in the tool’s dictionary) –Example (44).

(43) a. Obtained: “El contenedor 2 es paraverb la marca
Canon”
“Container 2 is stop the Canon brand”

b. Correct: “El contenedor 2 es parapreposition la marca
Canon”
“Container 2 is for the Canon brand”
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(44) a. Obtained: “Pon los cartuchos HPlemma:“h p” en el
contenedor 2”
“Put the HP cartridges in container 2”

b. Correct: “Pon los cartuchos HPlemma:“hp” en el
contenedor 2”
“Put the HP cartridges in container 2”

• Rules. Structures that have not been considered in the defini-
tions and/or rules.

• Polarity interpreter. Classification errors in the polarity in-
terpreter component (Example (45)).

(45) a. Obtained:
SYSTEM: “¿Quieres que te gúıe hacia la cafetera?”
“Do you want me to guide you to the coffee ma-
chine?”
USER: “Efectivamentepolarity:NO”
“Indeed”

b. Correct:
SYSTEM: “¿Quieres que te gúıe hacia la cafetera?”
“Do you want me to guide you to the coffee ma-
chine?”
USER: “Efectivamentepolarity:Y ES”
“Indeed”

• Ontology-related errors. Errors in both the ontology mod-
elling or the way information is retrieved from the ontology.

• Out-of-scope errors. Errors caused by user interactions that
were out of the scope of the functionalities of the adaptation
(Example (46), from the maintenance procedure assistant).

(46) a. SYSTEM: “El paso siguiente, el 3º de 6, es ‘Conecte
el cable de bateŕıa a la tarjeta de interfaz de codifi-
cador’.”
“The next step, the 3th of 6, is ‘Connect the battery
cable to the encoder interface card’.”

b. USER: “¿Dónde está el cable?”
“Where is the cable?”
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– Actions supported by the system: a procedure-
navigation-related interaction, a request for the tool
list or a general petition for additional information.

Table 6.9: Sources of the errors observed in the partially completed
and not completed dialogues performed in the user studies.

Guide BinPicking Assistant

% # % # % #

ASR 20 4 - - 18 15
Syntactic analysis 10 2 92 12 - -
Rules - - 8 1 - -
Polarity interpreter 5 1 - - 4 3
Ontology-related 65 13 - - 14 12
Out-of-scope - - - - 64 54

Total 20 13 84

Table 6.9 shows the number of cases for the identified error sources
that lead to not completed dialogues in the user studies. As it can
be seen, for KIDE4Guide and KIDE4Assistant the typology of errors
is more varied than in KIDE4BinPicking, being the most common
errors for KIDE4Guide the ones related with the modelling of the
ontology. This is due to the higher complexity of the guide sce-
nario, since this adaptation includes a wide variety of spaces, the
elements contained in them, and the fact that it is possible to re-
fer implicitly to spaces (e.g., “I want to eat” → vending machine).
For KIDE4BinPicking, errors predominantly stemmed from incorrect
syntactic analyses of user commands. More specifically, these had to
do with one of the brands involved, HP, the lemma of which was
obtained incorrectly due to the fact that it was not included in the
tool’s dictionary. For KIDE4Assistant, the most common source of
errors were out-of-scope interactions, which also occur in a remark-
able number of occasions, being a 64% of the total interactions in the
user study. This may explain the lower completion rate compared to
the other adaptations.

After observing and analysing these errors, the rules and ontology-
related ones have been solved. For syntactic analysis, required adap-
tations have been performed in Freeling’s dictionaries. Regarding
ASR and the polarity interpreter, although the impact of these er-
rors is not critical, new tools are expected to be explored as part of



176 KIDE4I in Use

future work. As for the out-of-scope ones, these errors are caused by
usage errors more than by system-related issues and, thus, are not
subject to revision.

6.3.2.3 Quantitative Evaluation at Interaction Level: Re-
sponse Time

To perform a qualitative evaluation of the different KIDE4I adap-
tations, the time taken by the system to respond given a user inter-
action has been analysed. For this, the average system response
time has been extracted for each of the adaptations to evaluate
and reported in Table 6.10 (Guide for KIDE4Guide, BinPicking for
KIDE4BinPicking and Assistant for KIDE4Assistant).

Table 6.10: Average time of response for each use case.

Guide BinPicking Assistant

1.25s 0.75s 1.88s

According to Table 6.10, all adaptations have very fast response
times, which is endorsed by the results obtained from the user ques-
tionnaires for the speed aspect, reported in Section 6.3.2.1. However,
it is worth discussing the difference in response times between use
cases. On the one hand, the guide use case is complex in its mod-
elling, which is related to the fact that a single destination can be re-
ferred in different ways, explicitly or implicitly (for example, through
an object contained in said destination or an action that can be per-
formed in it). Due to this variety of interactions, response times may
increase, as more –and more complex– queries may be executed. This
can be seen in Examples (47) and (48), where a television is required,
but it is referred differently: Example (47) sets a restriction on all the
meeting rooms available, whereas (48) just requests for a television.
Between the 2 examples there is a difference of 0.3 seconds, which is
explained by the difference in complexity between requests.

These examples also show that confirmations/negations also re-
quire a very low amount of time to process.

(47) a. User: “Quiero una sala con televisión”
“I want a room with a TV”
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b. System: “Tengo demasiadas opciones que se correspon-
den con sala con televisión. ¿Te parece bien que te gúıe
hacia la puerta de la sala de reunión Sua 2?”
“I have too many options that correspond with room with
a tv. Is it okay if I take you to the entrance of meeting
room Sua 2?” [Time elapsed: 2.17s]

c. User: “śı”
“yes”

d. System: “¡Ya está! ¿Necesitas algo más?”
“Done! Do you need anything else?” [Time elapsed:
0.19s]

(48) a. User: “Quiero ver la televisión”
“I want to watch TV”

b. System: “Tengo demasiadas opciones que se correspon-
den con televisión. ¿Te parece bien que te gúıe hacia la
puerta de la sala de reunión Aura 1?”
”I have too many options that correspond with TV. Is it
okay if I take you to the entrance of meeting room Aura
1?” [Time elapsed: 1.87s]

c. User: “śı”
“yes”

d. System: “¡Ya está! ¿Necesitas algo más?”
“Done! Do you need anything else?” [Time elapsed:
0.16s]

As for the bin-picking use case, the complexity of the scenario
is simpler and, thus, the time required to process user commands is
lower (in fact, the lowest of all three use cases). This can be observed
in Examples (49) and (50). In Example (49), the system only takes
0.87 seconds to process the initial command and to detect that there
is one argument (the destination container) missing and, in Example
(50), if the user command contains all the necessary information, it
takes 1.11 seconds to process the whole command. As in the guide
use case, affirmations/negations take around 0.2 seconds to process.

(49) a. User: “Coge el cartucho Brother”
“Pick the Brother cartridge”
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b. System: “Hay información que me falta. Necesito que
me digas el contenedor donde quieres depositar el cartu-
cho, por favor.”
“I am missing some information. Tell me the container
you want to place the cartridge, please.” [Time elapsed:
0.87s]

c. User: “En el contenedor 2”
“In container 2”

d. System: “Entonces, quieres que coja y ponga los cartu-
chos del tipo Brother en 2, ¿verdad?”
“Then, you want me to pick and place the Brother car-
tridges in 2, isn’t it?” [Time elapsed: 0.21s]

(50) a. User: “Lleva el magenta al 2”
“Take the magenta one to 2”

b. System: “Entonces, quieres que coja y ponga los cartu-
chos del tipo magenta en 2, ¿verdad?”
“Then, you want me to pick and place the magenta car-
tridges in 2, isn’t it?” [Time elapsed: 1.11s]

c. User: “śı”
“yes”

d. System: [Command sent to robot] [Time elapsed: 0.21s]

These examples also show that the initial command is the com-
mand that takes longer to interpret, as it requires more processing
tasks to perform because it usually contains more information to pro-
cess (i.e., it is common that the action and most argument values are
included in the initial command).

Regarding KIDE4Assistant, this adaptation has the highest re-
sponse times, although it is still low and suitable for a smooth inter-
action between users and the dialogue system. It has been observed
that, in a significant amount of cases, longest response times were
obtained due to the system not understanding the user request, as
more processing steps were taken to try to interpret the command.
Considering the amount of out-of-scope requests –noted in Section
6.3.2.2– which are interactions that the system could not interpret,
it is safe to assume that the average response time has been affected
by these interactions. Example (51) shows the time taken for an
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understood command to get a response, and Example (52) for an
out-of-scope command:

(51) a. User: “Terminado”
“Finished”

b. System: “Tengo varias opciones para tu comando. ¿Quie-
res que te muestre el siguiente?”
“I have many options for your command. Do you want
me to show you the next one?” [Time elapsed: 0.93s]

c. User: “śı”
“yes”

d. System: [Retrieve procedure information] [Time elapsed:
1s]

(52) a. System: “El paso siguiente, el 3º de 6, es ’Conecte el
cable de bateŕıa a la tarjeta de interfaz de codificador.”
“The next step, the 3th of 6, is ’Connect the battery cable
to the encoder interface card’.”

b. User: “¿Dónde está el cable?”
“Where is the cable?”

c. System: “No consigo entender tu petición. ¿Puedes re-
formular tu comando para que te entienda mejor? ¿En
qué puedo ayudarte?”
“I cannot understand your command. Can you reformu-
late so I can understand you better? What can I help you
with?” [Time elapsed: 2.15s]

• Action expected by the system: an interaction re-
lated to procedure navigation, a request for the tool list
or a general petition for additional information.

In some other occasions, longer response times were also seen
when the system had to retrieve the procedure information requested
by the user, as it can be seen in Example (53). However, this did not
occur in all cases, as Example (54) shows:

(53) a. User: “Qué herramientas necesito”
“Which tools do I need?”

b. System: [Retrieve tool list] [Time elapsed: 2.12s]
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(54) a. User: “Vale”
“Okay.”

b. System: [Retrieve next step information] [Time elapsed:
1.01s]

In any case, all KIDE4I adaptations have shown good response
times, which reinforces its usability in different use cases.

6.4 Conclusions

This Chapter wraps up all the work performed in this thesis,
which is put into practice by reporting the adaptation process of
KIDE4I to three use cases that are relevant in industrial scenarios:
bin-picking, CMMSs and assistance for maintenance procedure exe-
cution.

To perform each adaptation, a methodology has been defined and
used, which is based on the different resources, techniques and mod-
ules reported throughout this thesis and centred on making the adap-
tation process as simple as possible, basically based on resource reuse.

The characteristics of each of the adaptations –KIDE4BinPicking,
KIDE4CMMS and KIDE4Assistant– have also been reported, along
with their adaptation process. Considering the following, the process
to adapt KIDE4I to these use cases is fairly simple:

• For KEE: reuse of most rules from the KIDE4Guide implemen-
tation.

• Reuse of the polarity interpreter from the KIDE4Guide imple-
mentation.

• For ontology modelling:

– Use of TODO.

– Reuse of vocabularies for TODODW modelling.

• For ontology instantiation:

– Reuse of instances for TODODM from KIDE4Guide.
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– Use of the population strategy in Chapter 4.6.1 for TODO-
DFA and TODODom instantiation.

– Automatic instantiation of domain knowledge from data-
bases.

• Reuse of the dialogue manager functions from the KIDE4Guide
use case.

In this sense, it can be seen that, once an initial implementation
is obtained, the effort to adapt KIDE4I to other use cases is con-
siderably reduced. This validates the work performed in this thesis
for that matter, while consolidating the objective of having a generic
approximation to natural, task-oriented dialogue for industrial sce-
narios.

Moreover, this Chapter also provides a framework to evaluate
task-oriented dialogue systems in industrial scenarios. This frame-
work considers evaluation from a qualitative and a quantitative point
of view. The former is performed by using the SASSI (Hone & Gra-
ham, 2000) questionnaire, whereas the latter evaluates the rate of
completed dialogues, the number of necessary steps to complete a
dialogue, the number of cases in which an error of a specific type has
caused the dialogue not being successful (or partially successful) and
the system’s response time.

This Chapter also reports the three user studies that have been
carried out to evaluate KIDE4Guide and the KIDE4BinPicking and
KIDE4Assistant adaptations through the evaluation framework re-
ported in this thesis. Considering the results obtained, it can be con-
cluded that KIDE4I is user friendly and allows natural, accurate, fast
and secure interactions between workers and industrial systems, trig-
gering human acceptation and enhancing their working conditions.
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Chapter 7

Conclusions and Further
Work

Task-oriented dialogue systems are powerful technologies that al-
low industrial workers to perform multiple tasks at once by delegating
simpler tasks through natural voice commands, with a minimal im-
pact in their cognitive demand and guaranteeing optimal work condi-
tions. However, the design process of such tools in industrial scenarios
is hindered by a lack of labelled data to develop the system compo-
nents using state-of-the-art techniques, such as Deep Learning (DL).
As a consequence, industrial task-oriented dialogue systems usually
restrict their natural language capabilities and are highly specific for
the target application, limiting the possibility of reusing resources.
Furthermore, these systems are often static, and manual, complex
work is required to add new functionalities.

To overcome these challenges, the research in this thesis has been
oriented towards developing a generic task-oriented dialogue system
that allows a natural communication between human workers and
industrial systems. The use of semantic technologies as the system’s
core and its modular, generic design have enabled to develop a quality
system that is easily adaptable to different use cases with minimum
adaptations and without requiring large amounts of data. In this
line, it has been proved that the resources generated for the imple-
mentation of the different modules are partially or totally reusable
among use cases, which significantly reduces the time, cost and re-
sources necessary to adapt the system to new use cases. Moreover,
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this thesis has contributed with different resources, techniques and
methodologies based on the reuse of existing data, which have been
validated and evaluated in experimental industrial settings.

Furthermore, the use of Semantic Web Technologies in combina-
tion with NLP techniques to develop task-oriented dialogue systems
has shown the potential of ontologies to be the core of these ap-
plications, other than just modelling the domain, opening new and
promising insights in this research area.

7.1 Contributions

The following sections summarise the main contributions of this
thesis. Considering the structure of the research in this document,
these contributions will be presented around three basic pillars:
the Task-Oriented Dialogue management Ontology (TODO), the
Knowledge-drIven Dialogue framEwork for Industry (KIDE4I) and
the implementation and adaptation of KIDE4I in industrial use cases.

7.1.1 The Task-Oriented Dialogue management
Ontology (TODO)

TODO has been developed to be the core ontology of semantic-
based task-oriented dialogue systems for industrial scenarios, covering
both the domain- and dialogue-related knowledge to enable a natural
communication between human workers and industrial automatisms,
as described in Chapter 4. The use of TODO in this setting allows
to reduce the effort to obtain, implement and adapt a task-oriented
dialogue system with limited amounts of data.

This ontology has been designed by following a well-known method-
ology, LOT (Poveda-Villalón et al., 2019), in its industrial version,
which makes it highly suitable for the context in this thesis. By
following this methodology, TODO has been implemented through a
set of carefully-specified ontology requirements, obtained from expert
input and codified as Competency Questions (CQs).

To enable the grouping of specific knowledge in independent com-
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Figure 7.1: General overview of TODO.

ponents to ease the modelling process, this ontology has been de-
signed to be modular, as Figure 7.1 shows. Considering this and
the requirements set, TODO consists of the following modules and
submodules:

• Dialogue (TODODial). Information related to the dialogue
process.

– Dialogue Management (TODODM). Modelling of the
dialogue process.

– Dialogue Tracing (TODODT). Necessary knowledge
to store dialogue traces to, for example, learn from previ-
ous interactions.

• Domain (TODODom). Information related to the domain.

– Domain Frame-Action (TODODFA). Modelling of
the actions that are executable by the target system.

– DomainWorld (TODODW). Modelling of the elements
that are present in the domain scenario.

Each of these modules and submodules reuse terms from other
ontologies when possible.

TODO has been published online for its reuse. For that matter,
comprehensive documentation has been generated for all modules
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and submodules in TODO. Furthermore, these have been objectively
evaluated considering different aspects and it has been proved that
TODO is a high-quality ontology.

7.1.2 The Knowledge-drIven Dialogue framEwork
for Industry (KIDE4I)

KIDE4I, presented in Chapter 5, is the generic semantics-based
task-oriented dialogue system for industrial scenarios to enable a
natural human-machine interaction. This dialogue system uses the
TODO ontology as its core, which has been key to enable the system
to be implemented without requiring big amounts of data to do so
and to be easily adapted to different use cases. This is also achieved
by encouraging the reuse of existing information in the adaptation
process of its different modules.

Figure 7.2: KIDE4I architecture.
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KIDE4I’s architecture consists of four modules, and it is inspired
in the typical architecture of task-oriented dialogue systems1: the
key element extraction component, the polarity interpreter, the se-
mantic repository and the dialogue manager, as illustrated in Figure
7.2. Each of these components has been developed from a generic
perspective to be reused in different adaptations with minimum ad-
justments. However, the components that are most related with the
domain (e.g., the ABOX from the semantic repository or the key
element extraction component) usually require domain-specific ad-
justments. To ease this process and reduce the time and costs to
do so, different actions are depicted (and encouraged) in this thesis.
These basically consist on the reuse of resources from an initial im-
plementation or other adaptations of the system (such as ontology
instances or key element extraction rules) and the automatic instan-
tiation of world elements from existing databases or other resources
to populate the ontology. In this context, this thesis also contributes
with two strategies:

• A strategy to leverage multilingual linguistic resources to semi-
automatically instantiate intent-relevant information in the do-
main ontology. This contribution, presented in Section 4.6, is
relevant to reduce the time and effort needed to populate the
ontology when new KIDE4I adaptations are needed.

• A strategy to reuse data from different –but similar– domains
to augment domain data for the training of ML-based models to
perform key element extraction. This contribution, described
in Section 5.1, is relevant to overcome the lack of labelled data
in industrial scenarios.

7.1.3 Implementation and Adaptation of KIDE4I
to Industrial Use Cases

To assess the genericity and easiness of adaptation of KIDE4I
to different industrial applications, four use cases have been consid-
ered: a guidance scenario, a bin-picking robot scenario, a mainte-
nance management software scenario and a maintenance procedure

1vid. Chapter 2.1.1.
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execution assistant scenario. Their adaptation process is described
in Chapter 6.

So as to set a starting point for the rest of adaptations, Chap-
ter 5 describes KIDE4I’s implementation process for the guidance
scenario, obtaining KIDE4Guide. For this implementation, the set
of rules for key element extraction have been created from scratch,
a generic instantiation of TODODial has been obtained and a first
implementation of the dialogue manager has been developed. All of
these resources have been generated to be reused in other use case
adaptations to reduce the adaptation effort.

To easily adapt KIDE4I to other use cases, a methodology to do so
has been designed and reported in Chapter 6.1. By following it, three
KIDE4I adaptations have been obtained for the remaining three use
cases above: KIDE4BinPicking, KIDE4CMMS and KIDE4Assistant,
respectively. The adaptation process of KIDE4I for each use case has
been reported and deemed as a relatively simple process, mainly sup-
ported by the reuse of the resources generated for KIDE4Guide and
the use of the strategy to semi-automatically instantiate the intent-
relevant information in the domain ontology, as well as the use of
information stored in databases or similar repositories.

In this context, this thesis also provides an evaluation frame-
work for task-oriented dialogue systems in industrial scenarios, which
has been performed over KIDE4Guide, KIDE4BinPicking and
KIDE4Assistant through their respective user studies. Within this
framework, each adaptation has been evaluated from a qualitative
and quantitative point of view.

7.2 Main Conclusions

Considering the contributions of this thesis and the work carried
out for each of them, this Section aims to gather the main conclusions
reached from the results obtained.

The process to design and implement an ontology is a complex
task, but the use of a methodology to do so provides the actions
to be performed to ensure that, in the end, a quality ontology is
obtained. The main advantage of developing an ontology for its use in
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task-oriented dialogue systems is that this effort has to be performed
once, and then the result can be reused. This outcome is opposed to
typical industrial task-oriented dialogue systems, in which there is a
lot of work involved in terms of conceptualisation and implementation
and cannot be reutilised as they are highly specific to the target
application, so new applications will require the same process. In
this sense, the use of TODO as core of task-oriented dialogue systems
simplifies this conceptualisation step, as it has been designed to be
common among use cases thanks to the input of experts in the field
in its design phase.

KIDE4I, supported on TODO, allows to develop a generic task-
oriented dialogue system to cope with the limitations of industrial
scenarios. Nevertheless, the use of ontologies in this context requires
the knowledge that is not common between use cases –that is, do-
main knowledge– to be modelled, and ontologies to be instantiated.
Ontology instantiation may be a manual, tedious process, but this
thesis provides several mechanisms to be able to reduce the effort in
this matter by providing a strategy that shows that the reuse of exist-
ing linguistic resources is very useful in this task. The evaluation of
this strategy has shown that the use of such data is a very promising
approach, although information needs to be carefully selected in the
manual selection phase to ensure good results. In this sense, semantic
information is very valuable in this selection phase. As for dialogue
knowledge, it has been proven that it can be reused among use cases,
only requiring adaptations to model the conditions of the use case at
hand if necessary.

Regarding the different modules in KIDE4I, several conclusions
can be extracted. As for the KEE component, the use of rules as
starting point allows to implement the component when no data to
do so is available, and the adaptation of these rules to different use
cases benefits from the set of rules from the initial KIDE4I implemen-
tation. For the ML-based component, the use of out-of-domain data
from different but similar domains to cope with scarce or non-existing
domain training data is a very promising approach. However, mod-
els trained with only out-of-domain data are not able to improve the
results obtained through rules. In this sense, the optimal methodol-
ogy to benefit from this out-of-domain data is (i) to combine it with
domain data and that both sets are hand-corrected and (ii) that the
model is trained with a CRF algorithm. In addition, it is also very
important to keep in mind that not all out-of-domain datasets are
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suitable for this task and, thus, they should be carefully selected.
For the polarity interpreter, the lack of resources for this specific
task has been tackled by the use of a solution for sentiment analysis,
a conceptually similar application, an approach that has proven to
be useful in this context. As for the semantic repository, it is a very
important component in KIDE4I, as it stores the knowledge in the
ontology and its instantiation. In this sense, it is crucial that it has
reasoning capabilities to cover the knowledge in TODO. Finally, the
dialogue manager benefits of the semantic conception of KIDE4I, as
many of its functions rely on SPARQL queries that are generic and
are easy to adapt if necessary, rather than re-programming the whole
function.

The generic conceptualisation of KIDE4I’s modules, in the same
way as the use of ontologies, has the advantage that their design
and implementation is reusable. Considering this, the methodologies
provided in this thesis for adaptation are also generic. The reuse of
existing resources in KIDE4I’s modules is also beneficial and, in com-
bination with the rest of considerations, allows to reduce the effort to
obtain new adaptations, as it has been observed in the ones reported
in this thesis. In these, the adaptation process to different use cases
has proven to be a simple task, mainly motivated by the reuse of
resources to adapt each module, that mostly come from KIDE4I’s
initial implementation.

Finally, the results obtained in each of the user studies to evalu-
ate KIDE4I’s adaptations have concluded that the use of KIDE4I in
different industrial scenarios contributes to a reliable communication
between human workers and industrial systems, enabling accurate,
fast and safe interactions, contributing to human well-being in in-
dustrial settings.

7.3 Future Work

This thesis has contributed with new insights in the development
of task-oriented dialogue systems for industrial settings, especially in
the use of semantic technologies as their core and a generic perspec-
tive. Nevertheless, there are actions that have not been dealt with in
this thesis, which are devised as future work.
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First of all, and to comply with the methodology used for TODO’s
design, ontology maintenance tasks are expected. These also include
solving the pitfalls found in TODO’s evaluation task which, although
not critical, should be checked.

The implementation of a ML-based key element extraction com-
ponent for each of the KIDE4I adaptations in this thesis is also envi-
sioned. This is motivated by the fact that the user studies carried out
have allowed to obtain domain data to be used for training the ML
models. In this sense, effort should also be directed towards finding
datasets from similar domains to augment the existing domain data.

Another area of future work deals with improving KIDE4I’s po-
larity interpreter. The current implementation, although fully func-
tional in the context of KIDE4I, may be enhanced by exploring other
tools and resources to classify the polarity of commands and obtain
a more robust component.

Minor actions identified include an experimentation task to eval-
uate KIDE4CMMS in the same way as the rest of KIDE4I’s adap-
tations. Moreover, the development of a GUI that implements the
intent-related information instantiation strategy is also devised.

In the long run, this thesis has also opened different paths for fur-
ther investigation. As described throughout this work, KIDE4I’s di-
alogue manager has been designed to dynamically generate dialogues
to gather user feedback with the objective of improving the dialogue
system from new interactions. However, this functionality has not
been yet implemented, and this line of future work is oriented towards
its implementation in the existing –and future– KIDE4I adaptations.
To do so, research on the methods to generate these dialogues and
the techniques to gather and exploit the feedback obtained from users
is necessary, while putting special focus on KIDE4I’s robustness and
reliability.

Research on lines other than the ones identified in this section
is also encouraged to contribute to the development of robust task-
oriented dialogue systems that support a natural communication in
industrial settings, which can even be extended to other scenarios of
interest.



192 Conclusions and Further Work



References 193

References

Agerri, R., & Rigau, G. (2016). Robust Multilingual Named Entity
Recognition with Shallow Semi-Supervised Features. Artificial
Intelligence, 238 , 63–82.

Agerri, R., & Rigau, G. (2018). Language Independent Sequence
Labelling for Opinion Target Extraction. Artificial Intelli-
gence(268), 85–95.

Allemang, D., & Hendler, J. (2011). Semantic Web for the Working
Ontologist: Effective Modeling in RDFS and OWL. Elsevier.

Altinok, D. (2018). An Ontology-Based Dialogue Management Sys-
tem for Banking and Finance Dialogue Systems. arXiv preprint
arXiv:1804.04838 .

Alvez, J., Gonzalez-Dios, I., & Rigau, G. (2019). Commonsense
Reasoning Using WordNet and SUMO: a Detailed Analysis.
arXiv preprint arXiv:1909.02314 .

Antonelli, D., & Bruno, G. (2017). Human-Robot Collaboration
Using Industrial Robots. In 2017 2nd International Conference
on Electrical, Automation and Mechanical Engineering (EAME
2017) (pp. 99–102).

Artale, A., Magnini, B., & Strapparava, C. (1997). WordNet for
Italian and its Use for Lexical Discrimination. In Congress of
the Italian Association for Artificial Intelligence (pp. 346–356).

Atserias, J., Villarejo, L., Rigau, G., Agirre, E., Carroll, J., Magnini,
B., & Vossen, P. (2004). The MEANING Multilingual Cen-
tral Repository. In Proceedings of the 2nd International Global
WordNet Conference, Jan 20-23, 2004 (pp. 23–30).

Baader, F., Horrocks, I., Lutz, C., & Sattler, U. (2017). An Intro-
duction to Description Logic. Cambridge University Press.

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley
FrameNet Project. In 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Confer-
ence on Computational Linguistics, Volume 1 (pp. 86–90).



194 References

Bastianelli, E., Castellucci, G., Croce, D., Iocchi, L., Basili, R., &
Nardi, D. (2014, May). HuRIC: a Human Robot Interaction
Corpus. In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14) (pp. 4519–
4526). Reykjavik, Iceland: European Languages Resources
Association (ELRA). Retrieved from http://www.lrec-conf

.org/proceedings/lrec2014/pdf/531 Paper.pdf

Beesley, K., & Karttunen, L. (2003, 01). Finite-State Morphology.
Bibliovault OAI Repository, the University of Chicago Press .

Benabbas, A., Hornig, H., & Nicklas, D. (2018). Semi-Automatic
Ontology Population for Online Quality Assessment of Partic-
ulate Matter Sensors. In Intelligent Environments 2018 (pp.
119–128). IOS Press.

Bentivogli, L., Forner, P., Magnini, B., & Pianta, E. (2004). Re-
vising the WordNet Domains Hierarchy: Semantics, Coverage
and Balancing. In Proceedings of the Workshop on Multilingual
Linguistic Resources (pp. 94–101).

Berners-Lee, T. (2006). Linked Data. Retrieved from https://

www.w3.org/DesignIssues/LinkedData.html (Accessed: 09
March 2022)

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic
Web. Scientific American, 284 (5), 34–43.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A., Thompson,
H., & Winograd, T. (1977). GUS, a Frame-Driven Dialog
System. Artificial Intelligence, 8 (2), 155–173.

Bohus, D., & Rudnicky, A. (2003). Ravenclaw: Dialog Manage-
ment Using Hierarchical Task Decomposition and an Expecta-
tion Agenda.
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Vandyke, D., . . . Young, S. (2015). Multi-Domain Dialog State
Tracking Using Recurrent Neural Networks. arXiv preprint
arXiv:1506.07190 .

Muscetti, M., Rinaldi, A. M., Russo, C., & Tommasino, C. (2022).
Multimedia Ontology Population through Semantic Analysis
and Hierarchical Deep Features Extraction Techniques. Knowl-
edge and Information Systems , 64 (5), 1283–1303.

Nadeau, D., & Sekine, S. (2007). A survey of Named Entity Recog-
nition and Classification. Lingvisticae Investigationes , 30 (1),
3–26.

Nam, S., Park, J., Kim, Y., Hahm, Y., Hwang, D., & Choi, K.-S.
(2014). Korean FrameNet for Semantic Analysis. In Proceedings
of the 13th International Semantic Web Conference.

Niles, I., & Pease, A. (2001). Towards a Standard Upper Ontol-
ogy. In Proceedings of the International Conference on Formal
Ontology in Information Systems (pp. 2–9).

Oborski, P. (2004). Man-Machine Interactions in Advanced Man-
ufacturing Systems. The International Journal of Advanced
Manufacturing Technology , 23 (3-4), 227–232.

Ohara, K., Fujii, S., Ishizaki, S., Ohori, T., Saito, H., & Suzuki, R.
(2004). The Japanese FrameNet Project; An Introduction. In
C. J. Fillmore, M. Pinkal, C. F. Baker, & K. Erk (Eds.), Pro-
ceedings of the Workshop on Building Lexical Resources from
Semantically Annotated Corpora (pp. 9–12). Lisbon: LREC
2004.

Olaso Fernández, J. M. (2017). Spoken Dialogue Systems: Archi-
tectures and Applications (Unpublished doctoral dissertation).
Euskal Herriko Unibertsitatea.

Palmer, M. (2009). Semlink: Linking PropBank, VerbNet and
FrameNet. In Proceedings of the Generative Lexicon Confer-
ence (pp. 9–15).

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S.
(2019). Continual Lifelong Learning with Neural Networks: A

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/


References 203

Review. Neural Networks , 113 , 54–71.
Pease, A., Niles, I., & Li, J. (2002). The Suggested Upper Merged

Ontology: A large Ontology for the Semantic Web and its Ap-
plications. In Working Notes of the AAAI-2002 Workshop on
Ontologies and the Semantic Web (Vol. 28, pp. 7–10).

Peng, B., Zhu, C., Li, C., Li, X., Li, J., Zeng, M., & Gao, J. (2020).
Few-Shot Natural Language Generation for Task-Oriented Di-
alog. arXiv preprint arXiv:2002.12328 .

Peroni, S., Shotton, D., & Vitali, F. (2012). The Live OWL Documen-
tation Environment: A Tool for the Automatic Generation of
Ontology Documentation. In A. ten Teije et al. (Eds.), Knowl-
edge Engineering and Knowledge Management (pp. 398–412).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Persson, A. (2017, May). The Effect of Excluding Out of Domain
Training Data from Supervised Named-Entity Recognition. In
Proceedings of the 21st Nordic Conference on Computational
Linguistics (pp. 289–292). Gothenburg, Sweden: Association
for Computational Linguistics.

Polkosky, M. D. (2005). Toward a Social-Cognitive Psychology of
Speech Technology: Affective Responses to Speech-Based e-
Service.

Poveda-Villalón, M. (2016). Ontology Evaluation: a Pitfall-Based
Approach to Ontology Diagnosis (Unpublished doctoral disser-
tation).

Poveda-Villalón, M., Espinoza-Arias, P., Garijo, D., & Corcho, O.
(2020). Coming to Terms with FAIR Ontologies. In C. M. Keet
& M. Dumontier (Eds.), Knowledge Engineering and Knowl-
edge Management (pp. 255–270). Cham: Springer International
Publishing.
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Appendix A

TODO Competency
Questions

Table A.1: Competency questions for the TODODW module.

BCQID CQID Competency Question Answer

BCQ1 CQ01 What are the world elements that are
present in the scenario?
What are the world elements that are
present in the guidance scenario?

laboratoryA,
laboratoryB,
meetingRoomA

BCQ1 CQ02 What does the world element contain?
(if it contains something)
What does the world element “labora-
tory” contain? (if it contains some-
thing)

machineA,
machineB
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Table A.2: Competency questions for the TODODFA module.

BCQID CQID Competency Question Answer

BCQ2 CQ03 Which is the user intent given a se-
ries of key elements from the user com-
mand?
Which is the user intent if the key el-
ements extracted from the user com-
mand are “show”, “next”?

Next

BCQ2 CQ04 Which is the intended action given a se-
ries of key elements from the user com-
mand?
Which is the intended action if the key
elements extracted from the user com-
mand are “show”, “next”?

Action next

BCQ2 CQ05 To which lexical unit corresponds a key
element from the user command?
To which lexical unit corresponds the
key element “abandons”?

abandon.V

BCQ2 CQ06 Which is the value assigned to the lex-
ical unit that corresponds to the key
element obtained from the user com-
mand?
Which is the value assigned to the lex-
ical unit that corresponds to the key el-
ement “abandons”?

abandon

BCQ2 CQ07 To which lexical unit corresponds a
given value?
To which lexical unit corresponds
“abandon”?

abandon.V

BCQ2 CQ08 To which frame head corresponds the
lexical unit?
To which frame head corresponds
“abandon”?

stop Activity stop,
switch Replacing,
stop Process stop

BCQ2 CQ09 To which frame corresponds the frame
head?
To which frame corresponds the frame
head “stop Activity stop”?

activity stop

BCQ2 CQ10 To which user intent corresponds the
frame?
To which user intent corresponds the
frame “Activity stop”?

next
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BCQ2 CQ11 To which action(s) corresponds the
user intent?
To which action(s) corresponds the
user intent “Next”?

action next

BCQ3 CQ12 Which is the action given an argument?
Which is the action given the argument
“destination”?

action take

BCQ3 CQ13 Which are the arguments of a specific
action?
Which are the arguments of the “ac-
tion take” action?

origin,
destination

BCQ4 CQ14 To which argument does a given key
element correspond?
To which argument does the key ele-
ment “laboratory” correspond?

destination,
origin

BCQ4 CQ15 To which world element corresponds
the lexical unit?
To which world element corresponds
the lexical unit “laboratory.N”?

laboratoryA,
laboratoryB

BCQ4 CQ16 To which world element group corre-
sponds the world element?
To which world element group corre-
sponds the world element “laboratory”?

spaces,
laboratories

BCQ4 CQ17 To which argument corresponds a given
world element or world element group?
To which argument corresponds the
world element group “spaces”?

origin,
destination

BCQ4 CQ18 Which it is the value of the argument
according to its type and a world ele-
ment?
Which it is the value for a coordinate-
type argument if its value is “laborato-
ryA”?

x,y,z
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Table A.3: Competency questions for the TODODom module (be-
sides the CQ for TODODW and TODODFA).

BCQID CQID Competency Question Answer

BCQ5 CQ19 Which is the action’s target system
readable information (TSRI)?
Which is the action’s target system
readable information (TSRI)?

execute next

BCQ5 CQ20 Which is the type of a given target sys-
tem readable information?
Which is the type of the “execute next”
target system readable information?

service

BCQ5 CQ21 Which is the action-related relevant in-
formation according to its TSRI type?
Which is the relevant information for
an action of the type “service”?

implementation

BCQ5 CQ22 Which is the type of the TSRI of a
given argument?
Which is the type of the TSRI of the
argument “destination”?

coordinate

BCQ5 CQ23 Which is the TSRI of a given world el-
ement?
Which is the TSRI of the world element
“laboratoryA”?

coordinates labA,
ID labA

BCQ5 CQ24 Which is the type of the TSRI of a
given world element?
Which is the type of the TSRI of the
world element “laboratoryA”?

coordinate,
ID

BCQ5 CQ25 Which is the TSRI of the world element
taking into account the type of the ar-
gument it corresponds to?
Which is the TSRI of the world element
“laboratoryA” taking into account that
the type of the argument it corresponds
to is “coordinate”?

coordinates labA

BCQ5 CQ26 Which is the TSRI for the argument?
Which is the TSRI for the argument
“destination”?

destination TSRI
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Table A.4: Competency questions for the TODODM module.

BCQID CQID Competency Question Answer

BCQ1 CQ01 What are the world elements that are
present in the scenario?
What are the world elements that are
present in the guidance scenario?

laboratoryA,
laboratoryB,
meetingRoomA

BCQ1 CQ02 What does the world element contain?
(if it contains something)
What does the world element “labora-
tory” contain? (if it contains some-
thing)

machineA,
machineB

Table A.5: Competency questions for the TODODM module.

BCQID CQID Competency Question Answer

BCQ6 CQ27 Which is the first step/next step of the
dialogue?
Which is the first step/next step of the
dialogue?

step greeting

BCQ6 CQ28 The output provides some information
to the user: what does it imply?
The output is a greeting: what does it
imply?

request user-
Command

BCQ6 CQ29 Given a step: which is the step function
associated?
Given a step “processStep getAction”:
which is the step function associated?

stepFunction get-
Action

BCQ6 CQ30 Given a step function: which are the
implications?
Given a step function “stepFunc-
tion obtainAction”: which are the im-
plications?

singleOptionImplies:
processStep get-
ActionArgs

noOptionsImplies:
SResp NoMore-
OptionsRestart

BCQ6 CQ31 Which is the implication if the user re-
sponse type is incorrect given a system
request?
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Which is the implication if the user re-
sponse type is incorrect given a system
request?

SResp Not-
Understood

BCQ6 CQ32 Which is the implication if the step
function returns more than one out-
put?
Which is the implication if the step
function “stepFunction obtainAction”
returns more than one output?

SResp Action-
OptionsAvailable

BCQ6 CQ33 Which is the implication if the step
function returns more than one output
and the length of that output does not
exceed the maximum value of possible
outputs?
Which is the implication if the step
function “stepFunction obtainAction”
returns more than one output and the
length of that output does not exceed the
maximum value of possible outputs?

SResp Action-
OptionsAvailable

BCQ6 CQ34 Which is the implication if the step
function returns more than one out-
put and the length of that output ex-
ceeds the maximum value of possible
outputs?
Which is the implication if the step
function “stepFunction obtainAction”
returns more than one output and the
length of that output exceeds the maxi-
mum value of possible outputs?

SResp TooMany-
ActionOptions

BCQ6 CQ35 Which is the implication if the step
function does not return any output?
Which is the implication if the step
function “stepFunction obtainAction”
does not return any output?

SResp NoMore-
OptionsRestart

BCQ6 CQ36 Which is the implication if the step
function returns a single output?
Which is the implication if the step
function “stepFunction obtainAction”
returns a single output?

processStep get-
ActionArgs

BCQ6 CQ37 Which is the implication if the user re-
sponse for the request that corresponds
to the step function is “No”?
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Which is the implication if the user re-
sponse for the request that corresponds
to the step function “stepFunc-
tion YesNoDetermine NewDialogue”
is “No”?

dialMarker finish-
Dial

BCQ6 CQ38 Which is the implication if the user re-
sponse for the request that corresponds
to the step function is “Yes”?
Which is the implication if the user re-
sponse for the request that corresponds
to the step function “stepFunc-
tion YesNoDetermine NewDialogue”
is “Yes”?

dialMarker restart-
Dial

BCQ6 CQ39 Which is the implication if the user re-
sponse has not been understood?
Which is the implication if the user re-
sponse has not been understood?

SResp NotUnder-
stood

BCQ7 CQ40 The current step involves an inter-
action with the user: which output
should be provided?
The “step greeting” step involves an in-
teraction with the user: which output
should be provided?

“Hello! I am at
your service.”

BCQ7 CQ41 What should be requested to the user?
What should be requested to the user? SResp NotUnder-

stood
BCQ7 CQ42 What should be requested to the user if

the value of the argument is too broad
and the system needs to know a specific
characteristic to determine which is the
intended value?
What should be requested to the user if
the value of the argument is too broad
and the system needs to know a specific
characteristic to determine which is the
intended value?

“Which colour is
the piece?”

BCQ7 CQ43 What should be requested to the user
if the system needs the user to be more
specific with the value of the argument
because it is too broad?
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What should be requested to the user if
the system needs the user to be more
specific with the value of the “destina-
tion” argument because it is too broad?

“Could you please
be more specific
with the destina-
tion you want me
to take you?”

BCQ7 CQ44 What should be requested to the user
if the system needs to know the value
of an argument?
What should be requested to the user if
the system needs to know the value of
the “destination” argument?

“Could you please
tell me the des-
tination you want
me to take you?”

BCQ7 CQ45 What should be requested to the user
if the system needs the user to repeat
the value for an argument?
What should be requested to the user if
the system needs the user to repeat the
value for the “destination” argument?

“Could you please
tell me the des-
tination you want
me to take you?”

BCQ7 CQ46 What should be requested to the user
if the system wants the user to provide
their initial command?
What should be requested to the user if
the system wants them to provide their
initial command?

“Give me your
command.”

BCQ7 CQ47 What should be requested to the user if
the system needs the user to repeat the
value for an argument because the one
they provided is not compatible with
the argument?
What should be requested to the user if
the system needs the user to repeat the
value for an argument because the one
they provided is not compatible with the
argument?

“Can you verify
the information
you just told
me?”

BCQ7 CQ48 What should be requested to the user
if the system needs the user to confirm
that the system-provided option for an
action is correct?
What should be requested to the user
if the system needs the user to con-
firm that “action next” is the desired
action?

“Do you want me
to show you the
next step?”
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BCQ7 CQ49 What should be requested to the user if
the system needs to confirm if the user
agrees with the suggestion made by the
system for a value for an argument?
What should be requested to the user if
the system needs to confirm if the user
agrees with “laboratory A” as the value
of an argument?

“I cannot find
any meeting room
with a machineA,
but I can suggest
laboratory A,
which does have
it.”

BCQ7 CQ50 What should be requested to the user
if the system needs the user to confirm
the value inferred for an argument?
What should be requested to the user
if the system needs the user to confirm
that the inferred value “laboratory A”
is the correct value for the argument?

“The destination
is laboratory A,
isn’t it?”

BCQ7 CQ51 What should be requested to the user
if the system needs the user to confirm
the argument to which corresponds a
given world element?
What should be requested to the user
if the system needs the user to confirm
that “laboratory A” is the destination?

“Is it the destina-
tion?”

BCQ7 CQ52 What should be requested to the user
if the system needs the user to confirm
that the provided value for the argu-
ment for disambiguation is correct?
What should be requested to the user
if the system needs the user to confirm
that the value for the “destination” ar-
gument is “laboratory A”?

“Do you want to
go to laboratory
A?”

BCQ7 CQ53 What should be requested to the user
if the system needs the user to confirm
that the value of a given argument is
incorrect?
What should be requested to the user
if the system needs the user to confirm
that the value of the “destination” ar-
gument is incorrect?

“Did I get the
destination
wrong?”
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BCQ7 CQ54 What should be requested to the user if
the system needs them to confirm that
the provided intent is the intended by
the user with their request?
What should be requested to the user if
the system needs them to confirm that
“Next” is the intended by the user with
their request “show me the next step”?

“So many inter-
pretations! Do
you need the next
one?”

BCQ7 CQ55 What should be requested to the user
if the system needs to know if the user
wants to initiate a new dialogue pro-
cess?
What should be requested to the user
if the system needs to know if the user
wants to initiate a new dialogue pro-
cess?

“Do you need
anything else?”

BCQ7 CQ56 What should be requested to the user
if the system needs the user to confirm
that the action and values for its argu-
ments are correct before sending them
to the target system?
What should be requested to the user
if the system needs the user to con-
firm that the action “action take” and
the value for its “destination” argument
“laboratory A” is correct before sending
them to the target system?

“So, do you want
me to take you
to laboratory A,
isn’t it?”

BCQ7 CQ57 What should be told to the user if a
UserRequest can be associated to more
than one action?
What should be told to the user if
their request “step” can be associated
to more than one action (action next,
action previous)?

“Your command
can be associated
to many actions!”

BCQ7 CQ58 What should be told to the user if the
user needs details about an Argument?
What should be told to the user if the
user needs details about the “Error” ar-
gument?

“The error num-
ber corresponds
to the ID of
the error that
appears in the
machine”
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BCQ7 CQ59 What should be told to the user if the
value provided for the argument is not
compatible with said argument?
What should be told to the user if “lab-
oratory A” is not compatible with the
argument “Error”?

“‘Laboratory’
cannot be the
error”

BCQ7 CQ60 What should be told to the user if the
system has not been able to determine
the argument value through the char-
acteristics provided by the user?
What should be told to the user if the
system has not been able to determine
the piece through the characteristics
provided by the user (colour)?

“I cannot guess
the piece with the
information you
provided”

BCQ7 CQ61 What should be told to the user if the
user input can be associated to more
than one argument?
What should be told to the user if “lab-
oratory” can be associated to more than
one argument (origin, destination)?

“‘Laboratory’
can be assigned
to many argu-
ments!”

BCQ7 CQ62 What should be told to the user if the
system has not been able to associate
the user’s input to one or more actions?
What should be told to the user if the
system has not been able to associate
the user’s input to one or more ac-
tions?

“I could not as-
sociate your com-
mand to an ac-
tion.”

BCQ7 CQ63 What should be told to the user if the
system has not been able to resolve a
command?
What should be told to the user if the
system has not been able to resolve a
command?

“I could not re-
solve your com-
mand.”

BCQ7 CQ64 What should be told to the user when
the dialogue process has finished?
What should be told to the user when
the dialogue process has finished?

“Done!”

BCQ7 CQ65 What should be told to the user to
greet them?
What should be told to the user to greet
them?

“Hello! I am at
your service.”
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BCQ7 CQ66 What should be told to the user if the
user input is not compatible with any
action argument?
What should be told to the user if
the user input “cake” is not compat-
ible with any argument of the action
“take”?

“The item “cake”
is not compati-
ble with any ar-
gument of the ac-
tion”

BCQ7 CQ67 What should be told to the user if the
system is missing some information?
What should be told to the user if the
system is missing some information?

“I still need some
information.”

BCQ7 CQ68 What should be told to the user if the
system does not have any more options
to present to the user to choose from,
but the dialogue will continue?
What should be told to the user if the
system does not have any more options
to present to the user to choose from,
but the dialogue will continue?

“I do not have any
more options to
show you!”

BCQ7 CQ69 What should be told to the user if the
system does not have any more options
to present to the user to choose from,
and the dialogue must be restarted?
What should be told to the user if the
system does not have any more options
to present to the user to choose from,
and the dialogue must be restarted?

“I do not have any
more options to
show you and I
will need you to
start again.”

BCQ7 CQ70 What should be told to the user if, after
asking for clarification for the value of
an argument, the system still cannot
find a value?
What should be told to the user if, af-
ter asking for clarification for the value
of an argument, the system still cannot
find a value?

“I cannot find
anythin that
corresponds to
your demand.”

BCQ7 CQ71 What should be told to the user if the
system has not understood a user in-
put?
What should be told to the user if the
system has not understood a user in-
put?

“I am sorry, but
I have not under-
stood your com-
mand.”
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BCQ7 CQ72 What should be told to the user if a
user response can apply to several pos-
sible options?
What should be told to the user if a user
response can apply to several possible
options?

“I have many op-
tions for your re-
quest.”

BCQ7 CQ73 What should be told to the user if the
system expects a yes/no response and
the user provides a content response?
What should be told to the user if the
system expects a yes/no response and
the user says “show me the next step”?

“I only need you
to answer yes or
no, please.”

BCQ7 CQ74 What should be told to the user if the
system expects a content response and
the user provides a yes/no response?
What should be told to the user if the
system expects a content response and
the user says “no”?

“I have not un-
derstood you. I
need you to pro-
vide a specific re-
sponse.”

BCQ7 CQ75 What should be told to the user if the
system has too many alternatives for
an element to be resolved?
What should be told to the user if the
system has too many alternatives for
an element to be resolved?

“I have too many
options taking
into account the
information you
gave me.”

BCQ7 CQ76 What should be told to the user if the
system has too many alternatives for
an action to be resolved?
What should be told to the user if the
system has too many alternatives for
an action to be resolved?

“Your command
can be associated
to many actions
and I need you to
be more specific.”

BCQ7 CQ77 What should be told to the user if the
system has too many alternatives for
an argument to be resolved?
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What should be told to the user if the
system has too many alternatives for
an argument to be resolved?

“Your command
can be associated
to many argu-
ments and I need
you to be more
specific.”

BCQ7 CQ78 What should be told to the user if the
system has too many alternatives for a
world element to be resolved?
What should be told to the user if the
system has too many alternatives for a
world element to be resolved?

“Your command
can be associated
to many elements
and I need you to
be more specific.”

BCQ7 CQ79 What should be told to the user to re-
port that the system has understood an
user request?
What should be told to the user to re-
port that the system has understood an
user request?

“Understood!”

BCQ7 CQ80 What should be told to the user if,
given that the system has requested the
value of an argument, the user input is
not compatible with said argument?
What should be told to the user if, given
that the system has requested the value
of the argument “error”, the user input
“laboratory” is not compatible?

“It cannot be the
error.”

BCQ8 CQ81 Given some output to the user, it is
some input from the user required or
not?
Given some output to the user, it is
some input from the user required or
not?

Yes

BCQ9 CQ82 Which is the type of information re-
quired by the request provided to the
user?
Which is the type of information re-
quired by a user command request (re-
quest userCommand)?

content

BCQ9 CQ83 Which is the type of response provided
by the user?
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Which is the type of response provided
by the user if their input is “show me
the next step”?

content

BCQ9 CQ84 The type of the user response obtained
fits the information type required by
the request?
The type of the user response obtained
fits the information type required by the
request?

Yes

Table A.6: Competency questions for the TODODT module.

BCQID CQID Competency Question Answer

BCQ10 CQ85 Which is the current step of a given
dialogue?
Which is the current step of a given di-
alogue?

dialStep process-
UserRequest

BCQ11 CQ86 Which is the trace for an action / ar-
gument / frame / intent / skill / key
element / world element?
Which is the trace for a given action? actionTrace 2021-

0302
BCQ11 CQ87 Which are the traces for the dia-

logues/steps/etc. that take part in the
dialogue process?
Which is the trace for the dialogue in
the dialogue process?

dialogueTrace 2021-
0302213252

BCQ11 CQ88 At what time did the dialogue / sec-
ondary dialogue start?
At what time did the dialogue “dia-
logueTrace 20210302213252” start?

2021-03-02-
T21:32:52.12679

BCQ11 CQ89 At what time did the dialogue / sec-
ondary dialogue finish?
At what time did the dialogue “dia-
logueTrace 20210302213252” finish?

2021-03-02-
T21:40:52.12679

BCQ11 CQ90 Which is the user request that initiated
a given dialogue?
Which is the user request that
initiated the dialogue “dialogue-
Trace 20210302213252”?

“Show me the
next”

BCQ11 CQ91 Which is the action associated to a
given initial user request?
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Which is the action associated to the
initial user request “Show me the
next”?

action next

BCQ11 CQ92 Which is the secondary dialogue asso-
ciated to a given dialogue / secondary
dialogue?
Which is the secondary dialogue as-
sociated to the dialogue “dialogue-
Trace 20210302213252”?

“secondaryDia-
logueTrace 2021-
0302213352”

BCQ11 CQ93 Which is the system request that initi-
ates the secondary dialogue?
Which is the system request that initi-
ates the secondary dialogue “secondary-
DialogueTrace 20210302213352”?

“I need you to
tell me the ele-
ment you want to
see next.”

BCQ11 CQ94 Which is the response provided by the
system given a secondary dialogue?
Which is the response provided
by the system given the sec-
ondary dialogue “secondaryDia-
logueTrace 20210302213352”?

“I am still miss-
ing some informa-
tion.”

BCQ11 CQ95 Which is the transcription obtained
from a user input for a given dia-
logue/secondary dialogue?
Which is the transcription obtained
from a user input for the dialogue “di-
alogueTrace 20210302213252”?

“show me the
next”

BCQ11 CQ96 Which key elements were extracted
from a given user input for a given di-
alogue/secondary dialogue?
Which key elements were extracted
from a given user input for the dialogue
“dialogueTrace 20210302213252”?

verb: “show” tar-
get: “next”

BCQ11 CQ97 What has been told/requested to the
user when a given system step was per-
formed?
What has been told/requested
to the user for the system step
“SReq Argument”?

“I need you to tell
me the origin.”

BCQ11 CQ98 What were the possible values to ask
about when a system request was per-
formed?
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What were the possible values to ask
about when the system request “Sys-
ReqTrace 20210302213352” was per-
formed?

origin,
destination

BCQ11 CQ99 Which was the chosen value to ask
about in a given iteration of the sys-
tem request?
Which was the chosen value to ask
about in the system request “SysReq-
Trace 20210302213352”?

origin
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Appendix B

The Subjective Assessment
of Speech System Interfaces
Questionnaire (SASSI)

This appendix –and, more precisely, Figure B.1– shows the ques-
tions for the SASSI questionnaire used in the three user studies in this
paper. The SASSI questionnaire consists of a series of 34 questions,
the answer range of which follow a 7-point Likert scale, meaning that
each question has a neutral point for answers. For this thesis, this
neutral point has been dismissed in some cases1 in order to obtain
more representative evaluations and, thus, each question can be an-
swered in terms of a 6-point Likert scale. In any case, 1 stands for
Strongly disagree and the maximum value (6 or 7) to Strongly agree.

As described in Chapter 6.3.1, extra questions have been added in
the guidance and bin-picking user studies to evaluate some areas that
were not covered by SASSI, which can be seen in Figure B.2. Some of
these questions were extracted from other questionnaires (Verbosity
and Productivity, from the SUISQ questionnaire (Polkosky, 2005))
and others were manually created (Security). So as to be integrated
into the original SASSI questions, these extra questions were also
evaluated by using the same scale as the rest of the SASSI questions.

It is important to note that the statements in SASSI can have
positive (“The system is accurate”) or negative (“I felt tense using

1vid. Chapter 6.3.1.
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Questionnaire (SASSI)

the system”) connotations. So as to obtain consistent evaluations,
it is necessary to rescale negative statements so as to be consid-
ered as positive. For example, if a negative statement has a score
of 1, its rescaled score would be 7 –or 6, depending on the scale
(Olaso Fernández, 2017).

Despite being originally in English, a Spanish version, translated
by an expert, was provided to the study subjects.

Figure B.1: SASSI questions.

Response Accuracy

1. The system is accurate.

2. The system is unreliable.

3. The interaction with the system is unpredictable.

4. The system didn’t always do what I wanted.

5. The system didn’t always do what I expected.

6. The system is dependable.

7. The system makes few errors.

8. The interaction with the system is consistent.

9. The interaction with the system is efficient.

Likeability

10. The system is useful.

11. The system is pleasant.

12. The system is friendly.

13. I was able to recover easily from errors.

14. I enjoyed using the system.

15. It is clear how to speak to the system.
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16. It is easy to learn to use the system.

17. I would use this system.

18. I felt in control of the interaction with the system.

Cognitive Demand

19. I felt confident using the system.

20. I felt tense using the system.

21. I felt calm using the system.

22. A high level of concentration is required when using the system.

23. The system is easy to use.

Annoyance

24. The interaction with the system is repetitive.

25. The interaction with the system is boring.

26. The interaction with the system is irritating.

27. The interaction with the system is frustrating.

28. The system is too inflexible.

Habitability

29. I sometimes wondered if I was using the right word.

30. I always knew what to say to the system.

31. I was not always sure what the system was doing.

32. It is easy to lose track of where you are in an interaction with the
system.
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Questionnaire (SASSI)

Speed

33. The interaction with the system is fast.

34. The system responds too slowly.

Figure B.2: Extra questions added in user questionnaires.

Verbosity—guidance and bin-picking UCs

35. I felt like I had to wait too long for the system to stop talking so I
could respond.

Productivity—bin-picking UC

36. The system would help me be productive.

Security—bin-picking UC

37. This system allows me to interact with the robot from a secure
distance without problems.
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Appendix C

Foma Generic Definitions
and Rules

This Appendix provides the Foma definitions and rules defined for the
initial implementation of KIDE4I, KIDE4Guide, which are intended to be
reused in further KIDE4I adaptations.

C.1 Definitions

set recursive-define ON

define Num ["0"|1|2|3|4|5|6|7|8|9];

define Dec [1|2|3|4|5|6|7|8|9];

define Number [Dec* Num];

define Interj [{(interjeccio:} Number {)}];

define GenNum [{ms} | {mp} | {fs} | {fp}];

define Adv [{(sadv:} Number {)}];

define Espec [{(espec-} GenNum {:} Number [{(j-} | {(indef-}
| {(pos-} | {(dem-}] GenNum {:} Number {))}];

define CommonNom [{(n-} GenNum {:} Number {)}];

define ProperNom [{(w-} GenNum {:} Number {)}];
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define Nom [[{(n-} | {(w-}] GenNum {:} Number {)}];

define PNPersonal [{(psubj-} GenNum {:} Number {)}];

define SPNPersonal [{(pron-} GenNum {:} Number PNPersonal

{)}];

define SNPersonal [{(sn:} Number SPNPersonal {)}];

define SAdj [{(s-adj:} Number {(s-a-} GenNum {:} Number

{(a-} GenNum {:} Number {)))} | {(s-a-} GenNum {:} Number

{(a-} GenNum {:} Number {))}];

define GrupNomCommon [{(grup-nom-} GenNum {:} Number

CommonNom* {)} | {(grup-nom-} GenNum {:} Number CommonNom*

SAdj {)}];

define GrupNom [{(grup-nom-} GenNum {:} Number Nom* {)} |

{(grup-nom-} GenNum {:} Number Nom* SAdj {)}];

define SNCommon [{(sn:} Number [Espec | GrupNomCommon |

SAdj | SPdeNom]+ {)}];

define SPde [{(sp-de:} Number SN {)}];

define SN [{(sn:} Number [Espec | GrupNom | SAdj | SPde]+

{)}];

define SPde [{(sp-de:} Number SN {)}];

define SN [{(sn:} Number [Espec | GrupNom | SAdj | SPde]+

{)}];

define SNDest [{(sn:} Number [Espec | GrupNom | SAdj |

SPdeNom | SNDest]+ {)}];

define SPdeNom [{(sp-de:} Number SNCommon {)}];

define SNCommon [{(sn:} Number [Espec | GrupNomCommon |

SAdj | SPdeNom]+ {)}];

define SPdeNom [{(sp-de:} Number SNCommon {)}];

define SNCommon [{(sn:} Number [Espec | GrupNomCommon |

SAdj | SPdeNom]+ {)}];

define SPdeNom [{(sp-de:} Number SNCommon {)}];
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define SNCommon [{(sn:} Number [Espec | GrupNomCommon |

SAdj | SPdeNom]+ {)}];

define SNCoord [{(coor-n:} Number SNDest* {)}];

define Prep [{(prep:} Number {)}];

define PrepContent [{(prep-cont:} Number {)}];

define FullStop [{(F-term:} Number {)}];

define SNNum [{(sn:} Number {(numero-num:} Number {))}
{)}*];

define GrupSP [{(grup-sp:} Number [Prep | PrepContent |

SPde | SAdj]+ [SN | SNPersonal]+ [PrepContent | Prep |

SPdeNom | SAdj]* {)}];

define GrupSPCommonContent [{(grup-sp:} Number [PrepContent

| SPde | SAdj]+ [SNCommon]+ [PrepContent | SPdeNom | SAdj]*

{)}];

define SNDest [{(sn:} Number [Espec | GrupNom | SAdj |

SPdeNom | SNDest | GrupSPCommonContent]+ {)}];

define PN [{(patons:} Number {(paton-} [GenNum | {s}] {:}
Number {))}];

define Infinitive [{(infinitiu:} Number {(inf:} Number

{(forma-inf:} Number {)))}];

define Verb [{(verb:} Number {)} | {(verb:} Number Infinitive

{)}];

define SAdvInt [{(sadv:} Number {(adv-interrog:} Number {))}];

define MorfPron [{(morf-pron:} Number {)}];

define GVVerb [[{(grup-verb:} | {(grup-verb-inf:}] Number

Verb {)}];

define Dest [SNDest [{)}+ SAdj | {)}+ SNNum | {)}+ SNCoord]*

| SNDest | GrupNom [{)}+ SAdj | {)}+ SNNum]* | SNCoord];

define GrupVerbSingle [[{(grup-verb:} | {(grup-verb-inf:}
| {(relativa:} Number {(relatiu-sn:}] Number [{)} | Interj

| Adv | PN | Verb | MorfPron | SN | Infinitive | GrupSP | SAdj
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| SNNum | SAdvInt | FullStop | GVVerb | SNCoord]+ {)}];

C.2 Rules

define VerbDest [[{(grup-verb:} | {(grup-verb-inf:}]
Number [Verb | Infinitive]+ {)} | Infinitive | Verb];

define SPDest [Dest )* GrupSPCommonContent];

define GrupVerbDest [GrupVerbSingle | Dest | SN |

SPDest];

define TagGrupVerbDest [GrupVerbDest @-> "<GV>" ...

"</GV>"];

define TagSN [SN @-> "<DEST>" ... "</DEST>"];

define TagSP [GrupSPCommonContent @-> "<SP>" ...

"</SP>"];

define TagVerbDest [VerbDest @-> "<GV-DEST>" ...

"</GV-DEST>"];

define TagDest [Dest @-> "<DEST>" ... "</DEST>"];

define RemoveFullStop FullStop -> 0;

define RemoveEspec Espec -> 0;

define Deletions RemoveFullStop .o. RemoveEspec;

define TagPrep [[Prep | PrepContent] @-> "<PREP>" ...

"</PREP>"];

define TagSPDest [SPDest @-> "<SP-DEST>" ...

"</SP-DEST>"];

regex Deletions .o. TagGrupVerbDest .o. TagVerbDest .o.

TagSPDest .o. TagSP .o. TagDest .o. TagPrep;
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Estudio de usuario - Robot Guía

Instrucciones

26 de noviembre de 2021

El escenario
El escenario para esta experimentación es el siguiente:

El usuario accede a las instalaciones de Tekniker, que le son descono-
cidas en parte o en su totalidad. En la entrada, existe un robot guía
con el que puede interactuar para preguntarle dónde está un espa-
cio, persona, etc. concreto o dirigirle a un espacio a partir de una
necesidad que el usuario exponga.

Material proporcionado
Para llevar a cabo la experimentación, se proporcionará una serie de material
y equipamiento por parte de los responsables de la experimentación.

• Teléfono móvil

El medio por el cual se interactuará con el robot será la aplicación móvil
KIDE4I. Para ello, se proporcionará un teléfono móvil con la aplicación in-
stalada, por lo que no es necesario usar dispositivos personales.

• Mapas del edificio

Se adjunta un documento en el que constan los mapas de las distintas plantas
del edificio sobre el cual el robot guía emulará su función. En dicha docu-
mentación figura una selección de los destinos a los cuales el robot puede
guiar.

En cada uno de los mapas, la localización de los lugares está señalada
con un número, cuya descripción está en una lista en la parte inferior del
documento. Esta descripción incluye los elementos que contiene cada destino.

1
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Interactuar con el robot
Como se ha indicado anteriormente, la comunicación con el robot se realizará
a través de KIDE4I, que tiene integrado el sistema de diálogo que permitirá
dicha interacción.

• El sistema de diálogo

El sistema de diálogo es capaz de interpretar comandos expresados en lenguaje
natural hablado y traducirlos a comandos entendibles por el sistema de des-
tino (en este caso, Teknibot).

La interacción con el sistema de diálogo es libre, por lo que es posible, por
ejemplo, referirse al destino de forma indirecta 1. De todas formas, su diseño
actual establece una serie de restricciones a la hora de lanzar un comando de
voz:

1. El sistema de diálogo no soporta coordinación. Es decir, no podría resolver
secuencias del tipo “Llévame a la cafetera y a la sala". El sistema tendrá
en cuenta solo una de las acciones y en la mayoría de los casos será capaz
de obtener una interpretación, aunque no está garantizada la correcta
resolución del comando.

2. El sistema de diálogo no soporta oraciones compuestas (es decir, secuen-
cias con más de un verbo). Por ello, en secuencias del tipo “Tengo una
reunión, necesito una sala", como en el caso anterior, el sistema tendrá
en cuenta solo una de las secuencias y, aunque sea capaz de obtener una
interpretación, no está garantizado que ésta sea correcta.

• Como excepción, secuencias como “Quiero ir al baño" sí están so-
portadas.

1Por ejemplo, ’Quiero beber ’ cuando la intención es dirigirse a un lugar con agua o
cualquier líquido para ingerir.
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• KIDE4I

Para poder interactuar con el robot a través de KIDE4I, es necesario seguir
las siguientes instrucciones.

La interfaz de la aplicación es la que se muestra en la siguiente imagen:

Figura 1: Interfaz de la aplicación

Se aprecian dos botones: SPEAK y RESET, para interactuar con el robot y
reiniciar el diálogo, respectivamente.

3
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Al iniciar la aplicación, es necesario pulsar el botón SPEAK y esperar a que el
sistema de diálogo emita un saludo, que también se mostrará en la pantalla:

Figura 2: Saludo del sistema
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En este momento, el sistema interactuará con el usuario para obtener la
información que necesita. Para comunicarse con el robot es necesario pulsar
una vez el botón SPEAK una vez que el sistema haya reproducido su respuesta.
El mensaje "Start speaking" nos indica que la aplicación está esperando un
comando o respuesta por parte del usuario:

Figura 3: Mensaje “Start speaking"

En cualquier momento se puede presionar el botón RESET para reinicializar el
diálogo, por lo que después de pulsarlo es necesario pulsar de nuevo el botón
SPEAK y esperar al saludo del sistema de diálogo.

5
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Estudio de usuario - Bin-Picking

Información para el participante

Introducción
En TEKNIKER desarrollamos robots que puedan ayudar a las personas,
tanto en entornos de trabajo como en otras actividades. Para ello, desarrol-
lamos también nuevas formas de comunicación con sistemas de información
que sean fáciles de usar para las personas, como por ejemplo el lenguaje
hablado.

Actualmente, estos desarrollos están en el marco de una tesis doctoral que
tiene como finalidad obtener un sistema de diálogo que pueda ser aplicable,
entre otros, a entornos industriales y que, además, sea fácilmente adaptable
a distintos casos de uso.

En la fase final de esta tesis doctoral, una parte esencial de nuestra in-
vestigación es la realización de estudios de usuario para evaluar nuestras tec-
nologías con potenciales usuarios finales. Esto nos permite mejorar nuestros
desarrollos para que resulten útiles a todas las personas.

Objetivos de este estudio
El estudio en el que vas a participar como objetivo principal evaluar un
sistema de diálogo y los distintos módulos que lo componen a través de
un caso de uso potencialmente relevante en entornos industriales.

El objetivo único del estudio es evaluar nuestras tecnologías con un grupo
de personas (posibles usuarios futuros de estas tecnologías). El objetivo no
es en ningún caso evaluarte a ti.

En qué consiste el estudio
El escenario del estudio consiste en comunicarse de forma natural –tal y
como lo hacemos habitualmente entre personas–, a través de voz, con un
brazo robot, diseñado para tareas de bin-picking con cartuchos de tinta.

1
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La finalidad es pedirle que coja una serie de cartuchos y los deposite en un
contenedor específico.

Al disponer del robot en esta evaluación, también se evaluarán otras car-
acterísticas de la interacción, como la sensación de seguridad del usuario.

Para ello, como participante en el estudio:

1. Te comunicarás con el robot a través de comandos de voz.

2. Para interactuar con el robot, harás uso de una aplicación en un teléfono
móvil, el cual tiene integrado el sistema de diálogo a evaluar.

3. Dado un comando de voz que le envíes, el sistema dialogará contigo siem-
pre que lo requiera para obtener la información necesaria para poder man-
dar el destino final al robot, el cual ejecutará la acción obtenida.

4. Responderás una serie de preguntas para describir tu experiencia uti-
lizando estas tecnologías.

Datos que vamos a recoger
Todos los datos que recojamos durante el estudio van a ser anónimos. Esto
significa que tu nombre u otros datos personales identificativos no van a
figurar nunca junto a los datos que recojamos durante tu participación.

Los datos que vamos a recoger son los siguientes:

1. Tu perfil de usuario, generado a partir de tu edad, género y experiencia
previa con tecnologías similares.

2. Tu opinión sobre las tecnologías que has probado (a través de cuestionar-
ios).

3. Datos sobre el funcionamiento de la tecnología en el momento de la inter-
acción en forma de logs y anotaciones recogidas por el personal respons-
able del estudio (por ejemplo, el resultado obtenido por cada uno de los
módulos del sistema de diálogo).

Estos datos serán procesados por el equipo investigador de TEKNIKER in-
volucrado en la tesis doctoral en la que se enmarca este estudio. En ningún
caso figurará ningún dato personal identificativo.

Para participar, y teniendo en cuenta los puntos mencionados anteriormente,
no es necesario firmar ningún documento de consentimiento informado, ya

2
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que no vamos a guardar ningún dato personal que te pueda identificar en el
futuro.

Tu participación en el estudio
Tu participación en este estudio es voluntaria. Durante el transcurso del
estudio, si por cualquier motivo decides retirarte –aunque sea antes de que
termine el estudio–, podrás hacerlo.

–Muchas gracias por tu participación–

3
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Estudio de usuario - Asistente para
Procedimientos de Mantenimiento

Instrucciones

Descripción general
El equipo de mantenimiento de la planta del que formas parte se encarga
de realizar las tareas de mantenimiento programado, así como del manten-
imiento de incidencias de los robots de ABB y de Stäubli. Para resolver
dichas incidencias y consultar dudas disponen de 2 manuales:

• Manual de mantenimiento del brazo robótico IRB 120 de ABB

• Manual de mantenimiento del brazo robótico de Stäubli

En lugar de la tradicional búsqueda de información en los manuales, el
equipo dispone de un asistente que te facilita la búsqueda de la información
en los manuales técnicos asociados a cada robot. Además, el asistente ofrece
la posibilidad de guiarte paso a paso en algunos de los procedimientos de
mantenimiento descritos en los manuales.

Deberás elegir un mínimo de 3 escenarios de incidencia para cada uno
de los robots: uno de los marcados como guiados y al menos otros dos de
búsqueda de información general. Para cada uno de ellos, habla con el asis-
tente de manera natural para preguntarle la información que quieres consul-
tar.

Los escenarios guiados corresponden a procedimientos con subtareas y
pasos. En estos escenarios podrás realizar distintos tipos de interacciones:
utilizar comandos de navegación como “siguiente” o “anterior” para avanzar o
retroceder por los pasos del procedimiento; solicitar la lista de herramientas
para realizar el procedimiento; solicitar información adicional que extienda
la información que te aporta el sistema, como por ejemplo más información
sobre la tarea que se está realizando; también podrás preguntar acerca de
algún dato concreto como el tamaño de los tornillos a usar, o la posición
inicial del robot para llevar a cabo el procedimiento, etc.
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Los escenarios de búsqueda general te mostrarán toda la información
correspondiente al apartado del manual técnico encontrado en relación a tu
pregunta, incluyendo textos e imágenes, de haberlas. Por ejemplo, si en la
incidencia tuvieras que cambiar el arnés de cables en la base del robot podrías
preguntarle “¿Cómo se cambia el arnés de cables de la base?” y el asistente
te mostraría la información correspondiente a ese apartado del manual.

Robot IRB 120 (ABB)
Hay una serie de incidencias con el robot IRB 120. Elige una de las incidencias
de tipo guiado y al menos otras dos de consulta general para este robot y hazle
una pregunta al asistente para que te proporcione la información necesaria.

Procedimientos guiados

• La batería del robot IRB120 se ha estropeado. Hay que poner una
nueva.

• Los ejes del robot IRB120 se han quedado descalibrados tras la última
intervención y hay que calibrarlos.

Consultas generales

• Alguno de los cables del arnés se ha estropeado y es necesario cambiar
el arnés de cables en la base.

• La tarjeta de interfaz de codificador (EIB) está fallando, es necesario
quitarla.

• Estás realizando la tarea de mantenimiento de calibración del robot. Y
has llegado al punto de tener que calibrar los ejes 5 y 6 pero no recuerdas
como hacerlo de forma manual usando la herramienta de calibración.
Pregúntale al sistema para que te muestre la información que necesitas.

• Estás realizando la tarea de mantenimiento de calibración del robot. Y
has llegado al punto de tener que calibrar los ejes 5 y 6 pero no recuerdas
como hacerlo de forma manual usando la herramienta de calibración.
Pregúntale al sistema para que te muestre la información que necesitas.

• Como tarea de mantenimiento te han adjudicado inspeccionar las cu-
biertas de plástico. Consulta al sistema qué debes hacer para realizarla.

2

248 Documentation for User Studies



Robot Brazo Stäubli
Han llegado las siguientes incidencias que requieren de tu intervención. Elige
una incidencia de tipo guiado y al menos otras dos de tipo general y realiza
la pregunta oportuna para que el asistente te proporcione la información
necesaria.

Procedimientos guiados

• El robot está sacando ruido chirriante, todo parece que los niveles de
aceite no son adecuados, hay que comprobarlos.

• Está llegando un error de fallo del electrodistribuidor, que indica que
se ha roto una de sus piezas y por tanto es necesario cambiar el elec-
trodistribuidor completo.

Consultas generales

• Debes realizar el cambio de la junta plana del robot, y para ello lo
primero que debes hacer es quitar la actual. Consulta por los pasos
necesarios para la retirada de esta.

• Una vez el extraída, debes ponerle al robot una junta plana nueva. Si
no sabes cómo montarla consulta al asistente.

• El robot tiene los capós deteriorados y debes cambiarlos.

• El robot ha sufrido un choque y necesita que revises que su funcionamien-
to es correcto tras la colisión.
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