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We present an effective theory to describe the quantization of spherically symmetric vacuum motivated 
by loop quantum gravity. We include anomaly-free holonomy corrections through a canonical trans-
formation and a linear combination of constraints of general relativity, such that the modified constraint 
algebra closes. The system is then provided with a fully covariant and unambiguous geometric 
description, independent of the gauge choice on the phase space. The resulting spacetime corresponds 
to a singularity-free (black-hole/white-hole) interior and two asymptotically flat exterior regions of equal 
mass. The interior region contains a minimal smooth spacelike surface that replaces the Schwarzschild 
singularity. We find the global causal structure and the maximal analytical extension. Both Minkowski 
and Schwarzschild spacetimes are directly recovered as particular limits of the model.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The singularities predicted by general relativity (GR) are ex-
pected to disappear once a complete quantum description of grav-
ity is achieved. Loop quantum gravity predicts a quantized space-
time presumably mending those defects. However, a complete 
quantum description of the regions close to a singularity is not 
at hand and one must consider effective descriptions that imple-
ment the expected corrections. In particular, the accuracy shown 
by effective techniques for homogeneous models [1–4], where the 
initial singularity is replaced by a quantum bounce, has been the 
motivation to extend the so-called holonomy corrections to space-
times with less symmetry.

Concerning non-homogeneous models, the most simple sce-
nario is that of a spherically symmetric black hole. The main ap-
proach in the literature has dealt just with its interior part by using 
the same techniques as for homogeneous models [5–9]. Nonethe-
less, the implementation of the isometry between the homoge-
neous interior and Kantowski-Sachs cosmology is only partially 
satisfactory and a comprehensive geodesic analysis is mandatory. 
In this respect, there are several proposals [10–16] which, how-
ever, present crucial problems that we address in our model. For 
instance, the extension to the exterior static region, the asymptotic 
flatness, the slicing-independence and the confinement of quan-
tum effects to large-curvature regions are open issues present in 
most of the models in the literature. Moreover, none of the men-
tioned studies addresses explicitly the covariance of the theory 
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[17–22]: quantum effects may thus depend on the particular gauge 
choice and not yield conclusive physical predictions.

Here we introduce holonomy corrections through a canonical 
transformation and implement a regularization of the deformed 
Hamiltonian constraint. We then construct the spacetime that 
solves this effective theory and obtain its global causal struc-
ture. In particular, a single chart covers a singularity-free (black-
hole/white-hole) interior region plus two asymptotically flat exte-
rior regions, as depicted in Fig. 1. The main features are listed at 
the end of the manuscript.

In the 3 + 1 setup of a manifold M based on the level hyper-
surfaces of some function t , the diffeomorphism invariance of GR 
is encoded in four constraints: the Hamiltonian constraint H̃, that 
generates deformations of the hypersurfaces (as a set), and the 
diffeomorphism constraint D, which has three components and 
generates deformations within the hypersurfaces. Spherical sym-
metry allows the introduction of another function x, constant on 
the symmetry orbits. In this case the two angular components of 
D trivially vanish and, in terms of the Ashtekar-Barbero variables, 
we have

D = − (̃Ex)′ K̃x + Ẽϕ(K̃ϕ)′,

H̃ = − Ẽϕ

2
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Fig. 1. Penrose diagram of the domain (U , g) (shaded) and its maximal analytical extension (M, g) (outlined). We depict the diffeomorphisms that map the two exterior 
regions Eσ and the interior region I , from the corresponding restrictions of the common chart {τ , z}, to the sets Aσ in the charts {uσ , vσ } and C in the chart {ū, ̄v}, 
respectively.
with prime the derivative with respect to x, Ẽx > 0 and Ẽϕ the 
components of the symmetry-reduced triad, and K̃x and K̃ϕ their 
conjugate momenta. The symplectic structure is {K̃ i(xa), ̃E j(xb)} =
δ

j
i δ(xa − xb) for i, j = x, ϕ . These constraints satisfy the Poisson 

algebra

{D[ f1], D[ f2]} = D[ f1 f ′
2 − f ′

1 f2],
{D[ f1], H̃[ f2]} = H̃[ f1 f ′

2],
{H̃[ f1], H̃[ f2]} = D [̃Ex(̃Eϕ)−2( f1 f ′

2 − f ′
1 f2)],

with H̃[ f ] := ∫
f H̃dx and D[ f ] := ∫

f Ddx. The combination 
H̃[N] + D[Nx], with Lagrange multipliers N and Nx , is the GR 
Hamiltonian for vacuum in spherical symmetry, which we will re-
fer to as the classical theory in the remainder.

In loop quantum gravity only the holonomies of the connec-
tion, and not the connection itself, have a well-defined operator 
counterpart. Hence, effective descriptions usually perform a poly-
merization procedure which, essentially, replaces each K̃ϕ with a 
periodic function such as sin(λK̃ϕ)/λ. The parameter λ encodes 
the discretization of the quantum spacetime. Nonetheless, this sim-
ple polymerization may give rise to anomalies since the deformed 
constraint algebra does not generically close. Although a careful 
choice of the functions allows to define an anomaly-free polymer-
ized Hamiltonian in vacuum, the presence of matter with local 
degrees of freedom rules out that possibility [17,20,21].

In view of the above, the idea introduced in [23,24] is to con-
sider not just modifications of K̃ϕ but also of its conjugate vari-
able ̃Eϕ . For instance, if one performs the canonical transformation 
K̃ϕ = sin(λKϕ)/λ, Ẽϕ = Eϕ/ cos(λKϕ), K̃x = Kx , and Ẽx = Ex , the 
theory remains free of anomalies even when adding matter fields. 
Note that this transformation leaves invariant the diffeomorphism 
constraint D = −Ex′Kx + Eϕ K ′

ϕ . As long as cos(λKϕ) does not van-
ish, the canonical transformation is bijective and, essentially, the 
dynamical content of the theory is the same as that given by GR. 
However, the surfaces (see below) cos(λKϕ) = 0 may contain novel 
physics. Since the Hamiltonian constraint diverges there, we regu-
larize it, and define the linear combination

H :=
(
H̃+ λ sin(λKϕ)

√
Ex Ex′

2(Eϕ)2
D

)
cos(λKϕ)√

1 + λ2
, (1)
2

along with H[ f ] := ∫
f Hdx, so that the canonical algebra

{D[ f1], D[ f2]} = D[ f1 f ′
2 − f ′

1 f2],
{D[ f1], H[ f2]} = H[ f1 f ′

2], (2)

{H[ f1], H[ f2]} = D[F ( f1 f ′
2 − f ′

1 f2)],
follows, with the non-negative structure function

F := cos2(λKϕ)

1 + λ2

(
1 +

(λEx′

2Eϕ

)2
)

Ex

(Eϕ)2
.

Now, let us define

m :=
√

Ex

2

(
1 + sin2(λKϕ)

λ2
−

(
Ex′

2Eϕ

)2

cos2(λKϕ)

)
,

which is a constant of motion. It is important to note now that the 
condition cos(λKϕ) = 0 holds if and only if 

√
Ex = 2mλ2/(1 + λ2), 

which is a gauge-independent statement because Ex is a scalar. 
Therefore, although Kϕ is not a scalar quantity, cos(λKϕ) = 0 co-
variantly defines surfaces on M . For convenience, we introduce 
r0 := 2mλ2/(1 + λ2), so that

F =
(

1 − r0√
Ex

)
Ex

(Eϕ)2
.

From now on we will assume m > 0 and λ �= 0, and thus 0 < r0 <

2m. The classical theory is recovered in the limit λ → 0, which im-
plies r0 → 0. Let us stress that the characteristic scale r2

0 arises 
naturally from the constraint algebra and will show up in the 
model as a minimal area.

To construct a consistent geometric description, we use the 
functions t and x on M , plus the unit sphere metric d�2, to pro-
duce a chart {t, x} (we omit the angular part) in which a spheri-
cally symmetric metric g is given in the general form

ds2 = −L2dt2 + qxx(dx + Sdt)2 + qϕϕd�2. (3)

The lapse L, shift S , qxx and qϕϕ depend on t and x. The unit nor-
mal to the hypersurfaces of constant t is given by n = L−1(−∂t +
S∂x). Our purpose is to define these functions in terms of phase-
space variables in such a way that infinitesimal coordinate trans-
formations coincide with gauge variations. We start by imposing 
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that the Hamiltonian construction is based indeed on t and x, 
that is, the Lagrange multipliers correspond to the lapse and shift, 
hence L = N and S = Nx as functions on M . Now, on the one hand, 
an infinitesimal change of coordinates (t + ξ t , x + ξ x) is given by 
the Lie derivative of the metric along the vector ξ = ξ t∂t + ξ x∂x . 
On the other hand, a gauge transformation of a function G on the 
phase space is given by δε G = {G, H[ε0] + D[εx]}, with gauge pa-
rameters ε0 and εx . Since H and D satisfy the canonical algebra 
(2), these two deformations should coincide if the gauge param-
eters correspond to the components of the normal decomposition 
of the vector ξ [25], that is, ξ = ε0n + εx∂x , which implies the 
relations ε0 = Nξ t and εx = ξ x + ξ t Nx . In particular, the modifica-
tion of the Lagrange multiplier Nx under a gauge transformation is 
given by [18,26]

δε Nx = ε̇x + εxNx′ − Nxεx′ − F (Nε0′ − ε0N ′),

whereas, under infinitesimal coordinate transformations, the shift 
changes as

δξ Nx = ξ̇ x + Ṅxξ t + Nx′ξ x + Nx(ξ̇ t − ξ x′) −
[

N2

qxx
+ (Nx)2

]
ξ t′,

the dot being the time derivative. The equivalence of the two vari-
ations needs qxx = 1/F , which can be consistently imposed since 
δξ qxx = δε(1/F ). Also, we have for the lapse δξ N = δε N . Finally, we 
demand qϕϕ to retain its classical form, qϕϕ = Ex , which has the 
correct transformation properties. The explicit details of the equiv-
alence of gauge variations in phase space and coordinate transfor-
mations of this construction are shown in [27].

We thus end up with the metric, cf. (3),

ds2 = −N2dt2 + (Eϕ)2

Ex

(
dx + Nxdt

)2

1 − r0/
√

Ex
+ Exd�2. (4)

Compared to its classical form, it contains the term (1 − r0/
√

Ex). 
Also, the precise form of Ex , Eϕ , N and Nx as functions of the coor-
dinates will not be generically the same as in GR, since they must 
solve the deformed system of equations Ė i = {Ei, H[N] + D[Nx]}, 
K̇ i = {Ki, H[N] + D[Nx]}, for i = x, ϕ , along with H = 0 and D = 0
[27]. Since our construction is consistent, different gauge choices 
will simply lead to different coordinate charts (with different do-
mains of M in general) and corresponding expressions for the 
same metric. Next we find the solution to that system and obtain 
the corresponding unique geometry for four different gauges.
(a) A static region: Using the labels {t, x} = {t̃, ̃r} for this chart, and 
setting Ex = r̃2 and Kϕ = 0 we get

ds2 = −
(

1 − 2m

r̃

)
dt̃

2 +
(

1 − r0

r̃

)−1(
1 − 2m

r̃

)−1

dr̃2 + r̃2d�2,

(5)

with r̃ ∈ (2m, ∞). This region is asymptotically flat, and will de-
scribe one exterior domain.
(b) A homogeneous region: We name {t, x} = {T , Y } and demand 
Ex′ = Eϕ ′ = 0. Taking Ex = T 2 we obtain

ds2 = −
(

1− r0

T

)−1(2m

T
−1

)−1

dT 2 +
(

2m

T
−1

)
dY 2 + T 2d�2,

(6)

with T ∈ (r0, 2m), that will describe half of a homogeneous 
Kantowski-Sachs type interior.

None of these two coordinate systems crosses the horizon at 
r = 2m, nor the instant T = r0, and their domains on M do not 
3

intersect. The next gauge (c) produces a chart on a domain that 
will cover two regions (b), providing the full interior homogeneous 
region including the hypersurface T = r0; whereas the gauge (d)
yields a chart on a domain U ⊂ M that covers all the above.
(c) The whole homogeneous region: We set {t, x} = {T , Y } and de-
mand Ex′ = Eϕ ′ = 0 as in (b), but now we take Kϕ = T /λ. Naming √

Ex =: r̄, we obtain

ds2 = −2r̄(T )4

mr0
dT

2 +
(

2m

r̄(T )
− 1

)
dY

2 + r̄(T )2d�2, (7)

where r̄(T ) = 2mr0/(2m sin2 T + r0 cos2 T ), so that

2m

r̄(T )
− 1 =

(
2m

r0
− 1

)
sin2 T , (8)

and the range of coordinates is restricted to T ∈ (0, π). This region 
will describe the full homogeneous Kantowski-Sachs type interior, 
and contains the spacelike hypersurface r̄ = r0, located at T = π/2.
(d) The covering domain U : Now {t, x} = {τ , z}, and we impose 
Ėx = 0, (Ex′)2 = 4Ex(1 − r0/

√
Ex) and Eϕ = Ex′/2. Renaming for 

simplicity 
√

Ex =: r,

ds2 = −
(

1 − 2m

r(z)

)
dτ 2 + 2

√
2m

r(z)
dτdz + dz2 + r(z)2d�2, (9)

with (τ , z) ∈R2. The function r in this chart, r(z), is even r(−z) =
r(z) and it is implicitly given by

|z| = r(z)

√
1 − r0

r(z)
+ r0 log

(√
r(z)

r0
+

√
r(z)

r0
− 1

)
.

Observe that r(0) = r0 > 0 is its only minimum and r(z) is analytic 
on R, with image on [r0, ∞).

The chart {τ , z} thus maps some domain U ⊂ M to the whole 
plane R2. In the search for the global structure of (U , g) we will 
produce appropriate coordinate transformations so that (9) takes 
the explicit conformally flat form on the (τ , z)-plane, see (10) and 
(13), that will coincide with (5), (6) and (7) on their corresponding 
domains. This will show that (U , g) covers any such static region 
(a) and homogeneous regions (b) and (c). The procedure will end 
by proving that (U , g) contains exactly one globally hyperbolic in-
terior domain composed of one homogeneous region (c), which 
covers two regions (b), and two exterior regions (a). This whole 
process, along with the resulting spacetime diagram, is sketched 
in Fig. 1 (for further details see [27]).

We first define the sets: E := {r > 2m} ∩ U , I := {r < 2m} ∩ U , 
Z := {r = 2m} ∩ U , and T := {r = r0} ∩ U ⊂ I . Then we use the 
chart {τ , z} to decompose these sets (except T ) by taking their 
restrictions under the sign function sgn(z), and use the notation 
Dσ := D|sgn(z)=σ (with σ = ±1) for any domain D . In particular, 
E = E− ∪ E+ is disconnected and I = I− ∪T ∪ I+ is a connected set. 
To ease the notation we will use the same letter for the domain in 
U and its image on R2 under the chart {τ , z}. For instance, E+
also stands for the half plane z ∈ (zs, ∞) in R2, where zs is the 
positive root of r(zs) = 2m, and I is also the stripe z ∈ (−zs, zs).

With the auxiliary α := 4m(1 − r0
2m )−1/2, ε = ±1 and

Rε(r) := α log

(
√

r0

∣∣√r − r0 + ε
√

2m − r0
∣∣

√
2m

√
r − r0 + √

r
√

2m − r0

)

+
(√

r − ε
√

8m
)√

r − r0 + (4m + r0) log

[√
r

r0
+

√
r

r0
− 1

]
we construct RU (r) := R+(r), R E

V (r) := R−(r)|r>2m and R I
V (r) :=

R−(r)|r<2m . Since RU (r0) = 0, it is easy to check that U (τ , z) :=
τ + sgn(z)RU (r(z)) is analytic on the whole plane.
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Let us first work out the causal structure of the exterior re-
gions Eσ . On each Eσ we define the respective function Vσ (τ , z) =
τ −σ R E

V (r(z)), analytic on its domain, and use Uσ := U |sgn(z)=σ to 
construct the diffeomorphisms �σ : {τ , z}|Eσ → {uσ , vσ } by

uσ = σ arctan exp
[σ

α
Uσ (τ , z)

]
,

vσ = −σ arctan exp
[
−σ

α
Vσ (τ , z)

]
,

that map, respectively, the domains E+ and E− to the re-
gions A+ = {u+ ∈ (0, π/2), v+ ∈ (−π/2, 0)} and A− = {u− ∈
(−π/2, 0), v− ∈ (0, π/2)}. In the charts {uσ , vσ } the metric, cf.
(9), reads

ds2 = �(r(uσ , vσ ))

cos2 uσ cos2 vσ
duσ dvσ + r(uσ , vσ )2d�2, (10)

with

�(r) := −2mα2

r

(√
1 − r0

r
+

√
1 − r0

2m

)2

exp

[
−2r

α

√
1 − r0

r

]

×
(

1 +
√

1 − r0

r

)−
√

1− r0
2m (2+ r0

2m ) ( r0

r

)√
1− r0

2m (1+ r0
4m )−1

, (11)

and r(uσ , vσ ) satisfies

tan uσ tan vσ =
(

1 − 2m

r

)
α2

�(r)
=: ϒ(r). (12)

�(r), as defined, is finite and negative on r ∈ [r0, ∞) and satis-
fies �(r)ϒ′(r) = 2α(1 − r0/r)−1/2. Hence, ϒ is a strictly decreasing 
function of r with ϒ(r0) = 1 and ϒ(2m) = 0. For each Eσ the set 
Aσ thus provides the usual Penrose diagram for the Schwarzschild 
exterior. Moreover, on each Eσ the change {τ , z}|Eσ → {t̃, ̃r}, given 
by r̃ = r(z) and t̃ = τ + σ

2

(
RU (r(z)) − R E

V (r(z))
)
, produces a chart 

in which the metric, cf. (9), reads as (5). This shows U covers two 
exterior regions isometric to (a).

We proceed similarly for the interior region I . First, we define 
V I (τ , z) := −τ + sgn(z)R I

V (r(z)), which is analytic in z ∈ (−zs, zs)

(note that R I
V (r0) = 0), and U I := U |I . It can be checked that 

RU (r) + R I
V (r) < 0 for r ∈ (r0, 2m), and therefore sgn(U I + V I ) =

− sgn(z). The diffeomorphism �I : {τ , z}|I → {ū, ̄v}

ū = tanh

[
1

2α
U I (τ , z)

]
, v̄ = tanh

[
1

2α
V I (τ , z)

]
,

maps I to C = {ū ∈ (−1, 1), ̄v ∈ (−1, 1)}. In this chart the metric, 
cf. (9), reads

ds2 =
(

1 − 2m

r(ū, v̄)

)
α2

(1 − ū2)(1 − v̄2)
dūdv̄ + r(ū, v̄)2d�2, (13)

where r(ū, ̄v) satisfies

−
∣∣∣∣ ū + v̄

1 + ū v̄

∣∣∣∣ = tanh

[
1

2α
(RU (r) + R I

V (r))

]
.

Since RU (r0) = R I
V (r0) = 0 the curve r = r0 is mapped to the hori-

zontal line ū + v̄ = 0. Further, we have sgn(U I + V I ) = sgn(ū + v̄)

and hence sgn(ū + v̄) = − sgn(z). Therefore, each set of constant 
r ∈ (r0, 2m) corresponds to two curves of constant (ū + v̄)/(1 + ū v̄)

that go from (ū, ̄v) = (−1, 1) to (ū, ̄v) = (1, −1) through positive 
(negative) values of ū + v̄ for sgn(z) = −1 (sgn(z) = 1). For fi-
nite τ , as r → 2m, the function RU remains bounded whereas 
R I

V → −∞. Hence points approaching Zσ from I attain v̄ →
− sgn(z), while ū runs over its whole range. The set C provides 

the 
τ =
sgn(

τ =

z =

with
that
Z+ , 
that
{T , Y
ders
the 

F
max
on t
the 
thes
spec
B− :
feom

uσ =

in o
map
This
Seco
regio
be u
usua
[27]

A
r0, c
ues 
part
8
3 (m
Schw
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mum
is ev
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T
radia
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and 
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− sg
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vatu
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T
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mom
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4

Penrose diagram for I . The change {τ , z}|I → {T , Y } defined by 
Y − sgn(z)

2

(
RU (r̄(T )) − R I

V (r̄(T ))
)

and r̄(T ) = r(z), that imply 
z) = sgn(cos T ) and is explicitly given by

Y − α artanh

⎡⎣√
r̄(T )

2m
cos T

⎤⎦ + 16m2

α

√
r̄(T )

2m
cos T ,

r0 artanh

[
4m

α
cos T

]
+ α

8m2
r̄(T ) cos T

(8), is one-to-one and takes (9) to the form (7). This shows 
 I ⊂ U is isometric to the region (c). Observe that z = zs , i.e. 
is recovered for T = 0; z = −zs , i.e. Z− , for T = π ; and z = 0, 
 is T , for T = π/2. Further, on each Iσ , the change {τ , z}|Iσ →
}, given by T = r(z) and Y = τ + σ

2

(
RU (r(z)) − R I

V (r(z))
)
, ren-

 the metric, cf. (9), in the form (6). Therefore I , and thus also 
region (c), cover two regions (b).
inally, we use that ϒ(r) strictly decreases on [r0, ∞) with 
imum ϒ(r0) = 1, ensuring (12) has a solution for r everywhere 
an uσ tan vσ ≤ 1. Therefore each set Aσ can be extended to 
Kruskal-Szekeres-type regions Q σ (see Fig. 1). The purpose of 
e extensions is twofold. Firstly, the sets Cσ can be mapped re-
tively to B+ := {u+, v+ ∈ (0, π/2); u+ + v+ < π/2} ⊂ Q + and 
= {u−, v− ∈ (−π/2, 0); u− + v− > −π/2} ⊂ Q − with the dif-
orphisms �σ : Cσ → Bσ

σ arctan

(
1 + ūσ

1 − ūσ

)σ

, vσ = σ arctan

(
1 + v̄σ

1 − v̄σ

)σ

,

rder to define the extended charts {uσ , vσ }Q σ so that they 
 all p ∈ Iσ by �σ ◦ �I (p) to the respective point on Bσ . 
 ends the contruction of the full Penrose diagram for (U , g). 
ndly, we extend (U , g) to two Kruskal-Szekeres-type analytic 
ns, Q + and Q − , by adding their remaining halfs. These can 
sed to build up the maximal analytic extension of M in the 
l periodic fashion, and show that M is geodesically complete 

.
ll test particles that cross the horizon at r = 2m, arrive to 
ontinue towards negative values of z with increasing val-
of r, and cross again r = 2m after a finite proper time. In 
icular, radial infalling particles at rest at infinity take a time 
 + r0)(1 − r0

2m )1/2 to cross the interior region. The singularity in 
arzschild, at r = r0 = 0, is not present here and the curvature 

ounded. In particular, the curvature scalars take their maxi-
 value at r = r0. For instance, the Ricci scalar R = 3mr0/r4

erywhere positive. Note that even if quantum-gravity effects 
ametrized by r0) are present outside the horizon, they decay 
ne moves to low-curvature regions.
he computation of the expansions of ingoing and outgoing 
l null congruences shows, as expected, that the spheres of 
tant t and x are non-trapped in the exterior region r > 2m, 
that r = 2m is indeed a horizon. Moreover, in the interior re-
 r0 < r < 2m both expansions have the same sign, given by 
n(z), and vanish at r = r0. Therefore, in I+ (I−) those spheres 
trapped (anti-trapped) while in T , they have zero mean cur-
re. In fact, the hypersurface r = r0 itself is minimal, reflecting 
mirror symmetry z → −z.
herefore, as one expects for a singularity resolution, some of 
eigenvalues of the Einstein tensor Ga

b must attain negative 
es on I . Indeed, if one interprets Ga

b as an effective energy-
entum tensor, the eigenvalues on the angular part would 
e an angular pressure (r − m)r0/(2r4). On E one would get 
sitive energy density 2mr0/r4 and a negative radial pressure 
r3, while on I the energy density would be r0/r3 and the ra-
pressure −2mr0/r4. With these values it is easy to check that 
 of the geometric energy conditions are satisfied at any point 
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except at the horizon, where they are all fulfilled. However, let us 
recall that (M, g) solves the vacuum equations, thus satisfying triv-
ially all the physical energy conditions.

Let us finally summarize the main features of this effective 
quantum black-hole model: (i) The brackets between deformed 
constraints vanish on-shell and thus form an anomaly-free alge-
bra. (ii) We provide a consistent, hence covariant, geometric setup 
so we can talk of a metric that solves the system. Different gauge 
choices on the phase space simply provide different charts (and 
domains) of some spacetime (M, g), with corresponding expres-
sions for the same metric tensor. (iii) A convenient choice of gauge 
provides a single chart that covers a domain (U , g) with global 
structure shown in Fig. 1, which represents a globally hyperbolic 
interior (black-hole/white-hole) region and two asymptotically flat 
exteriors of equal mass. (iv) We have produced the maximal an-
alytical extension (M, g). (v) Quantum-gravity effects introduce 
a length scale r0 > 0, that defines a minimum of the area of 
the orbits of the spherical symmetry, and removes the classical 
singularity. More precisely, the surface r = r0 is just a minimal 
hypersurface between a trapped and anti-trapped region, and all 
causal geodesics cross it in finite time. (vi) All curvature scalars 
are bounded everywhere. (vii) Quantum-gravity effects die off as 
we move to low-curvature regions. (viii) Schwarzschild is recov-
ered for r0 = 0 and Minkowki for m = 0.
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