
Bachelor Degree in Computer Engineering
Computer Science

Bachelor Thesis

Analysis of a RGB-D SLAM system using
Real-Time Appearance-Based Mapping on the

Kbot robot

Author

Jon Ander Ruiz

2022

Bachelor Degree in Computer Engineering
Computer Science

Bachelor Thesis

Analysis of a RGB-D SLAM system using
Real-Time Appearance-Based Mapping on the

Kbot robot

Author

Jon Ander Ruiz

Supervisors
Igor Rodriguez & Elena Lazkano

Abstract

The Simultaneous Localization And Mapping (SLAM) problem has been a matter of
great importance and research in the area of intelligent robotics. The ability to map the
environment and locate itself on the map simultaneously is an essential tool for mobile
robots in an unknown environment. For localization, it is necessary to have maps. To
map the surroundings, localization is needed. Very much like a chicken-and-egg problem.
SLAM technology solves both the problem of localization as well of mapping together.

Looking for answers to this challenge, different approaches have been developed, i.e.
Visual SLAM (vSLAM), which is SLAM using cameras, in the case of this project, a
RGB-D camera.

In this Bachelor Project, the literature about robot navigation and the state of the art of
SLAM approaches have been reviewed in deep. The system has been setup on the one
hand, in simulation using Gazebo, and on the other hand, in a real a environment sys-
tem; more precisely, using RSAIT’s Kbot in the first floor of the Faculty of Informatics
(UPV/EHU). Experiments in both configurations revealed the potential of the tool for
accurately mapping the environment avoiding odometry error, and allowed to learn the
wide set of visualization tools available to ensure map correction and proper adjustment
of some parameters. The obtained maps have been used later on to command navigation
goals to the robot and to prove the usability of the learned maps.

i

Contents

Abstract i

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Robot Navigation 3

2.1 Mapping . 3

2.2 Localization . 5

2.3 Planning . 6

2.4 Simultaneous Localization And Mapping 7

2.4.1 Filter-based SLAM . 8

2.4.2 Optimization-based SLAM . 9

3 Visual SLAM 11

3.1 Monocular SLAM . 12

3.2 RGB-D SLAM . 13

iii

CONTENTS

4 Graph-Based SLAM 15

4.1 Graph Creation and Optimization . 15

4.2 Formulating the Graph . 16

4.3 Graph Optimization . 17

4.3.1 Maximum Likelihood Estimate 17

4.3.2 Nonlinear Pose-Graph Optimization Approaches 19

5 Real-Time Appearance-Based Mapping 23

5.1 Memory Management . 25

5.1.1 Graph Optimization . 26

6 Setup of RTAB-Map on Kbot 29

6.1 ROS and Gazebo . 29

6.2 Kbot . 30

6.3 rtabmap_kbot package . 32

6.3.1 Parameters and topics of the rtabmap node 33

6.4 Additional Tools . 35

6.4.1 rtabmapviz node . 35

6.4.2 rtabmap Database viewer . 35

7 Experiments and Results 37

7.1 Mapping in simulation . 38

7.2 Planning in simulation . 38

7.3 Mapping with Kbot . 39

7.4 Planning with Kbot . 40

7.5 Additional Experiments . 42

7.6 Identified issues in the application of RTAB-Map 44

iv

8 Conclusions and Future Work 47

9 Project Management 49

9.1 Work Breakdown . 49

9.2 Risk Management . 50

9.3 Evaluation . 51

Bibliography 53

v

List of Figures

2.1 Examples of widely used sensors for SLAM 4

2.2 Examples of different types of map representations 5

2.3 Combination of planners for navigation 7

4.1 The tasks can be summarized as feature extraction and data association
for the Front End, and Map estimation and Graph optimization for the
Back End. 16

4.2 A pose-graph representation. The nodes correspond to a robot pose and
the nearby poses are connected by edges that represent spatial constraints. 17

5.1 Block diagram of rtabmap ROS node (image taken from [1]). 25

6.1 First floor of the UPV-EHU’s Computer Science faculty represented as a
Gazebo environment, built by the RSAIT team. 31

6.2 Kbot’s appearance . 31

6.3 Intel Realsense D435 Depth Camera. It is equipped with right and left
imagers, an IR Projector and a RGB module. 32

6.4 Database viewer. To the left the Graph view can be seen, and to the right
the frames can be seen, showing the similarities (blue lines). These fea-
tures are only a few. 35

6.5 Database viewer. Left: Graph view. Right: Image frames and correspon-
dences (blue lines). 36

7.1 Mapping on the simulator. 38

vii

LIST OF FIGURES

7.2 Planning on the simulation. 40

7.3 Robot’s trajectory and 2D occupancy grid of the first floor in the real
environment. 41

7.4 Kbot on the move with a goal set. 42

7.5 Map of the third floor. The mapping was done in one session of 13 minutes
and 13 seconds. The file is 609,2 MB. The graph has 728 poses and 1281
links. 950 of the are normal links, 36 of them are global loop closures and
295 of them a local loop closures (time) 43

7.6 Importance of loop closures and pose corrections. The left image ignores
pose correction, global loop closures and local loop closures. The right
image is the map of the session. 43

7.7 The map of the third floor after being modified by the option to look for
more loop closures. The new white lines represent loop closures added
due to the modification. 44

7.8 Snapshot of the moment when Kbot bends forward. 45

9.1 Tasks involved in the creation of the project 50

9.2 Gantt Diagram showing the time for each of the tasks. 50

viii

List of Tables

6.1 Table of relevant parameters changed on rtabmap.launch file 34

9.1 Time estimated and employed on this project 50

ix

CHAPTER 1

Introduction

In order to fulfill tasks, mobile robots need proper environmental information to be able to
navigate. This information is usually given in form of a map (topological or grid based).
The mapping process is affected by motion and sensor uncertainty and thus, the option
to simultaneously build a map with localization uncertainty has been deeply investigated
in the area of intelligent robotics. Autonomous exploration requires the robot to build a
precise map of its environment, while simultaneously localizing itself relative to that map,
and plan a viable and optimum path from its position to any goal position. For this, not
only the robot must locate itself, but it must also locate the goal position on the map.
The task of enabling mobile robots to operate without any kind of human intervention,
i.e. to autonomously navigate, can be divided on 3 sub-tasks: mapping, localization and
planning. The mission of mapping and estimating the pose of the robot is also known as
Simultaneous Localization And Mapping (SLAM).

The area of SLAM [2], has been an area of great interest in robotics research. The gen-
eration of a precise map allows the creation of systems that are designed to work on a
previously unknown environment for the robot, only using their on-board machinery and
tools like sensors and cameras, without the help of GPS. This ability to generate a map
and find the current position of the robot on said map is very useful, almost fundamental,
for mobile robots, including but not limited to transportation robots, search and rescue
robots and automated vacuum cleaners [3].

The main goal of this Bachelor Project is to acquire basic knowledge about robot naviga-
tion and visual SLAM by using the Real-Time Appearance-Based Mapping (RTAB-Map)

1

2 Introduction

algorithm. As a result, the project is intended to produce an initial setup of the RTAB-Map
ROS package for Kbot, one of the RSAIT’s robot team members.

Given this, first the literature about robot navigation and the state of the art of SLAM
approaches have been reviewed in Chapters 2, 3 and 4. Then, RTAB-Map has been studied
in deep (see Chapter 5) and, an initial setup of this approach has been implemented for
Kbot in simulation using Gazebo and also in the real environment system (see Chapter 6).
In order to test the RTAB-Map tool capabilities, several experiments has been carried out
in both simulated and real environments (see Chapter 7). Finally, the resulting conclusions
are presented in Chapter 8.

CHAPTER 2

Robot Navigation

As previously stated, the robot navigation problem can be divided in 3 different sub-tasks
or phases:

• Mapping

• Localization

• Planning

Mapping and localization are tightly coupled and are the core tasks involved in SLAM.
While the more ambitious goal of autonomous exploration requires to choose and plan
paths to the goals in order to automatically cover the environment to be mapped, SLAM
puts aside the complexity of the planning step during map building and assumes the robot
is guided in prefixed trajectories or by teleoperation. It is important to underline that,
autonomous exploration is out of the scope of this project.

The following sections aims to explain how the robot navigation works, and how the task
can be divided in different sub-tasks to accomplish a precise navigation without any type
of human interaction.

2.1 Mapping

The creation of maps is a very important process in robot navigation, since is also com-
monly used in the localization phase. A map is a spatial reconstruction of the robot’s

3

4 Robot Navigation

surroundings [4]. This reconstruction, also referred as model, is created using the sensors
and cameras of the robot, since the odometry alone can’t be trusted.

These sensors play a significant role in acquiring accurate environmental information for
further processing and mapping. Although this work focuses on a SLAM system that uses
and RGB-D camera, other sensors like sonar, infrared (IR), laser scanner and LiDAR can
be used for mapping the environment. Figure 2.1 shows some examples of widely used
sensors for SLAM.

(a) Ultrasound sensor (b) Infrared sensor (c) Laser scanner

(d) LiDAR (e) RGB-D Camera

Figure 2.1: Examples of widely used sensors for SLAM

There are three major different types of maps [5]: Occupancy Grid Maps, Feature-Based
Maps and Topological maps. The map representation you choose depends on different
factors, such as the sensors involved in the creation of the map, the size and characteristics
of the environment, and the precision needed, among others [3].

Occupancy Grid Maps, originally proposed by A. Elfes [6], were intended to build a
configuration of the environment using a probabilistic representation of spatial informa-
tion. For this kind of map, the best sensors a robot can have are range sensors, but there
is a problem with sensors, they have a certain degree of uncertainty. Their responses are
affected by environmental conditions.

2.2 Localization 5

In Occupancy Grid Maps, the map is divided in a grid. Later, each square of the grid is
given a value (this is known as the grid occupancy), that represents the probability that the
square is occupied [4]. The squares of the grid can have three different states: occupied,
free, or unknown. Each of those states are given a probability margin [5]. Figure 2.2a
shows an example of an Occupancy Grid Map. The probability of a grid to be occupied
(or free) is represented by a color that ranges from white to black; darker the color higher
the occupancy value.

Occupancy Grid Maps usually tend to require a lot of computation power and memory.
An alternative to this type of map is the Feature-Based Map. This type of map is focused
on extracting representative features of the environment. Three commonly used features
are point, lines and planes (see figure 2.2b). With this features we can represent walls with
lines and planes, which reduces the memory and computational cost [5].

Topological maps consist of nodes that are singular places identifiable by concrete fea-
tures (not necessarily unique), and edges, i.e paths between nodes that can contain useful
information like distance between features (see figure 2.2c). Therefore, topological maps
are collections of nodes and edges [5]. To give an example, features could be images col-
lected by a camera (later represented as visual words) and an adjacency list containing the
links or connections between the images [7].

(a) Occupancy Grid Map (b) Feature-based map (c) Topological map

Figure 2.2: Examples of different types of map representations

2.2 Localization

Robot localization is is the process of determining where a mobile robot is located with
respect to its environment, i.e. provides an answer to the question: “Where is the robot
now?”. A mobile robot equipped with sensors to monitor its own motion (e.g., wheel
encoders and inertial sensors) can compute an estimate of its location relative to where

6 Robot Navigation

it started if a mathematical model of the motion is available. This is known as odometry,
and in a planar robot can be summarized as an estimation of the robots position relative
to the worlds coordinate system. The pose of the robot at time step k is defined by the 3D
vector (Xk,Yk,θk), where:

• Xk is the X position of the robot, on a certain k moment.

• Yk is the Y position of the robot, on a certain k moment.

• θk is the direction the robot is facing, on a certain k moment.

This estimation is commonly done by measuring the motion of the robot wheels using
encoders. The process is very dependant on physical parameters. Given v and w, the mea-
sured linear and angular velocities respectively of the robot at time k, and ∆t, is the time
difference between k and k+1, the evolution of the robot pose is given by:

Xk+1 = Xk + v/∆t × cos(θk)

Yk+1 = Yk + v/∆t × sin(θk)

θk+1 = θk +w/∆t

(2.1)

As it can be seen in equations 2.1, the estimation of the pose relies on the estimation on the
previous time step and thus, the error accumulates over time. The robot can be calibrated
in order to reduce the systematic error introduced by incorrect parameter values [8][9],
but non systematic errors produced by environmental factors such as a slippery floor and
excessive accelerations cannot be avoided.

In SLAM, the loop closure procedure is used in order to correct the error of odometry.
Loop closure is the problem of detecting if the robot has already seen the area in which the
robot is currently. This procedure is done in order to avoid adding redundant information
(information of an already seen area) and thus avoiding unnecessary computational cost.

Now we know why we can’t only rely on odometry in order to estimate the robots position.

2.3 Planning

The planning phase consists on finding the optimal path between the current position and
a goal position avoiding any obstacle. Planning can be divided in two categories [10]:

2.4 Simultaneous Localization And Mapping 7

• Off-line path-planning (Global planning): In off-line planning, the environment
should be known before the planning. In short, a map of the environment is needed.
Some algorithms of this type are Dijkstra algorithm and A* algorithm. In on-line
planning, the robot must locate itself [10][11] continuously. To complete this task,
LiDAR technology is commonly used.

• On-line path-planning (Local planning): In on-line path-planning, the robot does
not have a previously generated map, the map is created while the robot is moving
and perceiving the changes of the environment. The on-line path-planning is nec-
essary in order to navigate in dynamic environments in order to avoid obstacles.
Vector Field Histogram [12] and the Dynamic Window Approach (DWA) [13] are
well known local planners.

Global and local planners are combined in navigation architectures as shown in figure 2.3.

Figure 2.3: Combination of planners for navigation

2.4 Simultaneous Localization And Mapping

As mentioned before, in order to achieve robot navigation the robot must map, locate and
plan according to the position of the robot relative to the map. The task of simultaneously

8 Robot Navigation

building a map while estimating the robot’s localization in the map is called SLAM.

To solve the SLAM problem, the robot must have sensors that helps the robot to locate all
near obstacles and measure the trajectory. Widely used devices in SLAM are cameras or
laser range-finders.

In the following sections different approaches on SLAM are going to be analyzed. Ac-
cording to the literature reviewed, these approaches can be distinguished in two cate-
gories: Filter-based approaches and Optimization-based approaches [3][14][15].

2.4.1 Filter-based SLAM

Between the most popular techniques we find Kalman filters and particle filters which
usually are designed as on-line SLAM techniques [14]. This type of approaches represent
the problem as an on-line state estimation. The state of the system is the current robot po-
sition and the map. Then, as new information of the environment becomes available as the
robot moves, the estimate is refined by incorporating this new information [3]. Filtering
approaches are applied in two steps: the prediction step and the update step. In the predic-
tion step, sensors like encoders and Inertial Measurement Units (IMU) are used to predict
the motion of the robot, also known as odometry, and then in the update step, sensors like
cameras are used in order to measure the features on images. This feature measurements
and the estimated camera pose are used to update as a likelihood distribution [14].

The Kalman filter

The Kalman Filter (KF) [16] is an algorithm used to identify the unknown state of a
lineal dynamic system and, optimally, assumes that errors have Gaussian distribution.The
KF assumes that sensor readings and motion information are affected by inaccuracies
and the uncertainty us expressed explicitly by noise covariance matrices in the algorithm.
When either the system state dynamics or the observation dynamics are non-linear, as it
frequently occurs, the conditional probability density functions are no longer Gaussian
and the KF cannot give an optimal solution. In order to solve this problem, the motion
model and the sensor model are linearized using first order Taylor expansion and the
derivatives (Jacobian matrices) of the state transition function and observation function
are needed in order to apply the KF to the linearized model, giving raise to the Extended
Kalman Filter (EKF) [17].

The EKF also requires a Gaussian belief of the robot state and all the measurements taken
by the robot have Gaussian noise. In SLAM, the EKF calculates the position of the robot,

2.4 Simultaneous Localization And Mapping 9

as well as its orientation by verifying its state and uncertainty from the measurements
taken with sensors, i.e. IMU, cameras, etc. Later, the real information taken with the
camera or the sensors is integrated to improve the prediction of the pose. This improved
state, as well as the uncertainty is fed back in order to model a new prediction [14].

Particle filters

Even though the EKF is one of the most used approaches in Filter-based SLAM due to its
efficiency and easy to implement, it is limited to Gaussian processes. Particle filters (PF),
are non-parametric filters able to cope with unknown probability density functions. These
PFs can be used to approximate the posterior distribution over the positions of the robot.
PFs are better handling outliers, but scale worst with respect to the dimensions of the state.
In order to reduce the scale problem, the Rao-Blackwellised Particle Filter (RBPF) [18]
aims to reduce it by factoring the state variables so that by sampling over a subset of them
the remaining ones can be separated.

2.4.2 Optimization-based SLAM

Also known as smoothing based SLAM [3][14], these approaches tend to solve the full
SLAM problem by estimating the full trajectory of the robot taking into account all of
the measures. They are usually based on least-square error minimization techniques like
the Graph SLAM [14]. In terms of accuracy, smoothing or optimization approaches are
chosen over the filtering approaches, but they can be very memory demanding.

Graph Based SLAM

Optimization-based approaches address the full SLAM problem, meaning that it recovers
the entire path and map, instead of just the recent pose and map [19]. A very popular way
to do this is with the Graph SLAM formulation. The idea of Graph SLAM is intuitive,
it consists of creating a graph where the nodes are the robot poses or landmarks and the
edges between nodes are the measure constraints [3][14]. This measures can be either
a measure between the robot and a feature, or a motion constraint between two robot
poses. Then, the graph must be optimized, finding the configuration of the nodes that
best satisfies the constraints. This means solving a large error minimization problem. The
RTAB-Map algorithm used in this project [19] is a graph based SLAM technique and
thus, it will be more deeply covered in chapter 4.

CHAPTER 3

Visual SLAM

As the name suggests, Visual SLAM (or vSLAM) uses images acquired from cameras and
other image sensors such as monocular, stereo vision, omnidirectional or RGB-D cameras
to localize and map the environment. The principle of vSLAM is quite easy to understand.
The objective of such a system is to estimate sequentially the camera motions depending
on the perceived movements of pixels in the image sequence.

It can be implemented at low cost with relatively inexpensive cameras. In addition, since
cameras provide a large volume of information, they can be used to detect landmarks
(previously measured positions). Landmark detection can also be combined with graph-
based optimization, achieving flexibility in SLAM implementation.

Early vSLAM techniques with monocular cameras identified and mapped feature points,
and was named “feature-based approach”. However, vSLAM has evolved to “direct ap-
proaches”, i.e algorithms able to use whole images to track the robot. Furthermore, the
introduction of RGB-D cameras allowed new techniques that use both monocular images
together with depth images [15][20].

Even if vSLAM provides very good results, it is still an emerging technology, and nowa-
days available solutions are prone to errors because of their sensitivity to light changes
or a low textured environment. Moreover, RGB-D based approaches are very sensitive to
daylight because they are based on IR light. As a result, they perform well only for indoor
scenarios. Another important thing to consider is that image analysis still requires high
computational complexity.

11

12 Visual SLAM

Next, Monocular SLAM and RGB-D SLAM will be reviewed.

3.1 Monocular SLAM

Two are the main approaches to monocular SLAM. In the early days, filtering methods
were chosen over optimization methods. The use of perspective-projection cameras pro-
duced new difficulties to the problem. A single camera provided two-dimensional mea-
surements of a three dimensional structure such as the environment, so filtering methods
that allow an indirect observation model were very important [21]. To that we must add
that, at the time, the optimization approach required high computational power, because it
needed a good network of matches and good initial guesses, so it was discarded as it was
unaffordable.

But, as time went on, and seeing that optimization techniques, such as Bundle Adjustment
(BA), a state estimation technique which is used to estimate the 3D location of points in
the environment, were known to provide very precise estimates of camera localization as
well as sparse geometrical reconstruction [22], the search for a graph-based affordable
Monocular SLAM approach began.

As it is explained in [22], such approach must meet certain criteria, which can be summa-
rized as follows:

1. The approach must avoid unnecessary redundancy as the complexity grows.

2. It has to provide observations of scene features also known as map features, corre-
sponding to keyframes1.

3. It must have a strong network configuration of those keyframes and points to pro-
duce accurate results.

4. It has to provide an initial estimation of the keyframe poses and point locations for
non-linear optimization.

5. It has to provide a local map where optimization is focused on scalability and the
approach must have the ability to loop closure.

1A keyframe is a frame selected over other frames

3.2 RGB-D SLAM 13

The first ground-breaking approach that met that criteria was named Parallel Tracking
And Mapping (PTAM), proposed by Georg Klein and David Murray [23], originally pro-
posed for a small Augmented Reality (AR) workspace.

PTAM, is a method of estimating camera pose in an unknown space. The core of this ap-
proach is the division of tracking and mapping into two separate tasks, that are processed
in parallel threads. One thread produces a 3D map of point features and the other deals
with the task of tracking hand-held motion. The result is a system that constructs maps
with thousands of landmarks, which can be tracked at frame-rate [23].

ORB-SLAM is another versatile and accurate feature-based monocular SLAM solution
that operates in real time, in small and large, indoor and outdoor environments [22]. This
method expands the versatility of PTAM to environments that are intractable for that
system, and improves PTAM by incorporating new ideas and algorithms such as a loop
detector, a loop closing procedure and a covisility graph, the optimization framework g2o
(later explained in Section 4.3.2) and ORB features.

3.2 RGB-D SLAM

RGB-D SLAM refers to using RGB-D cameras in SLAM. The use of these cameras,
provides great information to the system: colored image and depth image at the same time.
That depth information has great value, as it can be used to recreate a dense reconstruction
easily.

Since the proposal of PTAM many feature-based methods have been introduced for RGB-
D reconstruction. RGB-D SLAM can be classified into two groups: (i) direct methods
that extract all the geometry or photometric information, such as BAD SLAM [24]; (ii)
feature-based methods that extract and match features from color images, such as RGBD-
SLAM v2 [25], RTAB-Map [1] and ORB-SLAM2 [26]. Focusing on the second group, it
is worth mentioning that these methods, in low textured scenes, they cannot provide reli-
able constraint because few points are extracted, and many of them are wrongly matched.
And in addition, as mentioned before, the result in outdoor scenarios can be poor because
the sensitivity to daylight of this type of sensors based on IR light.

It is also worth mentioning that in this kind of approaches, an Iterative Closest Point (ICP)
algorithm is usually used to estimate the camera motion [15]. ICP is an algorithm that has
the goal to minimize the difference between two point clouds.

CHAPTER 4

Graph-Based SLAM

As previously presented, there are many different ways to formulate the SLAM problem,
and the problem can be solved either by using filter approaches or by optimization ap-
proaches. Among the optimization approaches, a very intuitive way of formulating SLAM
is by creating a graph, hence the name Graph SLAM.

This approach consists of building a simplified estimation problem by reading, interpret-
ing and abstracting the raw measurements of the sensor space [3][19]. Later, after the
graph has been built, still the problem to find the optimal alignment or configuration of
the nodes that is maximally consistent with the constraints presented in the measurements
remains to be solved [14]. There are several techniques [27] to cope with it that will be
reviewed later in this chapter. Whatever the solution is used, the problem can be divided
in two tasks: graph creation and graph optimization. This two tasks are usually called the
"Front End" and the "Back End", respectively.

4.1 Graph Creation and Optimization

The Front End of Graph-Based SLAM has the goal of building a graph using the in-
formation provided by the odometry and the sensors. This task includes collecting and
interpreting the information, creating the graph and adding nodes and edges as the robot
moves and collects more data. The design of the front end changes depending on the sen-
sors involved. The data collected by a camera is not interpreted nor processed the same

15

16 Graph-Based SLAM

way as laser data. Finally, the front end has to solve the data association problem [28],
which is the challenge of identifying if two features observed at different points in time
belong to the same object in the world. i.e, the front end needs to cope with the well
known loop closure problem.

The Back End in Graph SLAM is where the optimization occurs. The input received by
the Back End is the complete graph, and the output is the most probable configuration of
robot poses and map features1. This means that an optimization process must be followed,
finally getting the system configuration that produces the smallest error. The design of the
Back End does not change as much as the Front End between applications [19].

Front and Back ends can be executed either sequentially or iteratively, by feeding the
Back End with the graph to be updated and sent to the Front End at each iteration (see
figure 4.1).

Figure 4.1: The tasks can be summarized as feature extraction and data association for the Front
End, and Map estimation and Graph optimization for the Back End.

4.2 Formulating the Graph

The graph consists of two main elements:

• Nodes: The nodes on the graph can represent either a robot pose (pose-graph) as
can be seen in figure 4.2 or both, robot poses and landmarks, at different points in
time.

1In some cases the landmarks are not used, and thus, are not built in the graph. In that case, the repre-
sentation is often referred as pose-graph [29]. Processing landmarks adds accuracy, but it also increases
computational cost to the graph optimization, so that may be a reason no to process landmarks.

4.3 Graph Optimization 17

Figure 4.2: A pose-graph representation. The nodes correspond to a robot pose and the nearby
poses are connected by edges that represent spatial constraints.

• Edges: The edges of the graph represent constraints among the poses. Those are
obtained from observations of the environment, using for example cameras, or from
movements made by the robot, obtained by sensor measurements. Every edge is
labeled with a probability distribution over the relative locations of the two poses,
conditioned to their mutual measurements.

4.3 Graph Optimization

This section aims to review the Maximum Likelihood Estimate technique and several
nonlinear optimization approaches.

4.3.1 Maximum Likelihood Estimate

Maximum Likelihood Estimate (MLE), is used to estimate the most probable configura-
tion of nodes given the observations of the environment. These observations come from
the odometry and the sensors [19].

The measurement update at a time step t is given by:

zt = xt +m(i)
t (4.1)

Where:

• xt : The robot pose at a specific time step t.

18 Graph-Based SLAM

• m(i)
t : The location of a feature i in the map.

Additionally, the motion update at a time step t is given by:

xt = xt−1 +µt (4.2)

The terms in equation 4.2 correspond to:

• xt−1 : Previous location of the robot..

• µt : A certain transformation regarding the robot status at the time step t. i.e. dis-
tance moved.

The updates are assumed to have Gaussian noise and thus, the corresponding probability
distribution are given by:

Pu(xt) =
1

σm
√

2π
e−(zt−zt)

2/2σ2
m (4.3)

Pm(zt) =
1

σu
√

2π
e−(xt−xt)

2/2σ2
u (4.4)

In some cases it can be useful to convert the target function to the negative log-likelihood
form:

JGraphSLAM = ∑
t

(
zt − zt

σm

)2

+∑
t

(
xt − xt

σu

)2

(4.5)

In real world, most systems are multi-dimensional, hence, the above equations are ex-
pressed in matrix form where state and covariance matrices are involved. The constraints
are given by:

vt = zt/h(xt ,mt)

wt = xt/g(xt−1,µt)
(4.6)

Where:

• h() : Represents the measurement function.

• g() : Represents the motion function.

4.3 Graph Optimization 19

Finally, the multi-dimensional formula for the sum of all constraints is given by:

JGraphSLAM = xT
0 ∗Ω∗ x0 +∑

t

(
wT

t ∗R−1
t ∗wt + vT

t ∗Q−1
t ∗ vt

)
(4.7)

Where the terms correspond to:

• x0 : Initial position of the robot.

• Ω : Information matrix.

• vt : Constraint of measurement of the environment.

• wt : Constraint of movement of the robot.

• Qt : Covariance of the measurement noise.

• Rt : Covariance of the motion noise.

4.3.2 Nonlinear Pose-Graph Optimization Approaches

The goal of pose-graph optimization is to find the configuration of nodes that minimizes
the least squares error over all given constraints.

Normally, a nonlinear least squares optimization problem can be defined as follows:

x∗ = argminF(x)
x

(4.8)

Where F(x) is the sum of errors over all constraints in the graph:

F(x) = ∑
(i, j)∈C

eT
i jΩi jei j (4.9)

The terms in equation 4.9 represent the following:

• C : Represents the set of index pairs between connected nodes.

• Ωi j : Represents the information matrix between nodes i and j.

• ei j : A nonlinear error function that models how well the poses xi and x j satisfy the
constraint imposed by the measurement zi j.

20 Graph-Based SLAM

Note that each constraint is modeled using the information matrix and the error function.

Conventionally, equation 4.8 is solved by iterative optimization techniques such as Gauss-
Newton or Levenberg-Marquardt. The general idea on those approaches is to approximate
the error function with its first-order Taylor expansion around the initial guess.

Graph-based approaches have a sparse structure, making computation faster. They are
robust to inaccurate initial guess problems, but in contrast, they have some disadvantages:
for instance, they are normally not very robust to outliers and do not converge when there
are sundry false loop closures to mention some.

A summary of some optimization frameworks based on the nonlinear least squares tech-
nique [27] are going to be described below:

g2o

g2o is an open-source general framework for (hyper) graph optimization [30]. This frame-
work performs the optimization of Nonlinear Least Squares problems that can be embed-
ded as a graph or a hyper-graph2.
The purposes of the framework are to provide an easy-to-extend and easy-to-use library,
provide an easy-to-read documentation and achieve state of the art performance.
ORB-SLAM uses g2o as a back end.

CERES

Ceres Solver [31] is an open source C++ library for solving large optimization problems,
such as the Nonlinear Least Squares problems with constraints. Implemented solvers in-
clude trust region solvers, such as Levenberg-Marquardt and Powell’s Dogleg and line
search solvers.
It has been used in production at Google for a few years now. It is extensively optimized
and supports GPU acceleration, with CUDA technology.
It is the best performing solver on the NIST problem set.

TORO

Tree-based network optimizer, also known as TORO3 is an optimization approach for
constraint-networks. It provides a gradient descent-based error minimization process. In
2006 Olson, Leonard and Teller presented a, by the time, novel approach [32] to solve
graph-based SLAM by applying stochastic gradient descent to minimize the error in-
troduced by the constraints. TORO is an extension of this algorithm. It applies a tree

2A hyper-graph is given when an edge can join any number of nodes instead of a single pair of nodes.
3https://openslam-org.github.io/toro.html

4.3 Graph Optimization 21

parameterization of the nodes that enables a robot to deal with arbitrary network topolo-
gies, allowing the complexity to be bound to the size of the mapped area instead of the
trajectory.

GTSAM

GTSAM4 is an open source BSD-licensed C++ library that implements sensor fusion
for robotics and computer vision applications. These applications include SLAM, Visual
Odometry (VO) and Structure from Motion (SFM). It uses factor graphs5 to model com-
plex estimation problems.
GTSAM is used coupled with sensors to power many autonomous systems, both in academia
and industry.

It is worth mentioning that the RATB-Map implementation in form of ROS package al-
lows to choose among these different optimizers. An optimizer can better adjust to a
problem, depending on the robotic platform used and the complexity of the environment
it moves in.

4https://gtsam.org/
5A factor graph is a bipartite graph that represents the factorization of a function. They enable efficient

computations such as the computation of marginal distributions using the sum-product algorightm [33].

CHAPTER 5

Real-Time Appearance-Based Mapping

Real-Time Appearance-Based Mapping (RTAB-Map) is a Graph-Based SLAM technique
that uses information provided by RGB-D cameras, stereo cameras and Lidar sensors
including an incremental appearance-based loop closure detector with a memory man-
agement approach. The loop closure1 detector uses a bag-of-words method to determine
whether each newly acquired frame of image (or Lidar scan) corresponds to a new lo-
cation or came from a previous location. A graph optimizer is then applied to minimize
the errors based on the frame. In order to ensure acceptable real-time performance when
dealing with a large-scale environment, a memory management scheme is applied to limit
the number of locations used for the loop closure detection and graph optimization.

Even though in this work we focus precisely on RTAB-Map, it is worth mentioning there
are a great variety of open-source SLAM approaches available in ROS. To mention just
a few examples, GMapping [34] and Hector SLAM [35] are two popular lidar-based ap-
proaches commonly used. Furthermore, ORB-SLAM2 [26] and RGBDSLAMv2 [25] are
two other popular examples, in this case, of visual-based approaches.

Focusing again on RTAB-Map, since its initial release as open source library in 2013,
RTAB-Map has been extended to a complete Graph-Based SLAM approach, and is cur-
rently being used for autonomous vehicles navigation or 3D environment reconstruc-
tion [36][37] among others. Furthermore, RTAB-Map has evolved into a cross-platform

1Loop closure is the process that focuses on determining if the robot has returned to previously seen
location. It is also known as the data association problem.

23

24 Real-Time Appearance-Based Mapping

standalone C++ library and a ROS package, named rtabmap_ros, driven by practical re-
quirements such as:

• Online processing: The ability to set a maximum delay after receiving data in order
to avoid lag and processing problem as the graph grows in size, end therefore the
computational cost of searching for loop closures grows.

• Robust and low-drift odometry: Increase robustness of odometry by using a mix of
proprioceptive2, and exterioceptive3 sensors, such as lidars and cameras.

• Robust localization: Increase robustness of localization, seeking to solve or mini-
mize problems like illumination changes, and cope with dynamic environment.

• Practical map generation and exploitation: Map generation and usage in a practical
way. For example, if the environment is mostly static, it is more practical to map
the environment and then switch to localization mode. RTAB-Map gives the op-
tion to navigate the environment and localize the robot in the map without adding
additional nodes to the graph.

• Multi-session mapping (also known as initial state problem): Solving or mitigating
the initial state problem. The initial state problem, occurs when the robot is turned
on and it does not know its relative position to a previously created map. This may
happen when mapping in more than one session (Multi-session mapping). In order
to solve this problem, the system allows the SLAM approach to initialize a new
map and when a previously visited location is seen, a transformation between the
two maps can take place.

Figure 5.1 describes the main ROS node of the RTAB-Map package, called rtabmap,
the inputs required by the system and the outputs it generates. This node needs as input:
the RGB-D images (or stereo images) of the camera input, odometry from any source
(which can be from the camera or from a robot), and the TF4 that defines the position
of the sensors used in relation to the base of the robot. Optional inputs are either a laser
scan from a 2D lidar (or laser sensor) or a point cloud from a 3D lidar. On the other
hand, the outputs are: the Map Data containing the graph and compressed sensor data,

2Proprioception or kinesthesia is the sense of self-movement. In this case this is done using inertial
measurement units.

3Exterioception relates to the information received from the exterior.
4TF maintains the relationship between coordinate frames in a tree structure buffered in time, and lets

the user transform points, vectors, etc. between any two coordinate frames at any desired point in time.

5.1 Memory Management 25

the Map Graph with only the graph, and the TF with the odometry correction to derive
the robot localization in the map frame. Optionally, an OctoMap, a PointCloud, and a 2D
Occupancy Grid can be obtained.

The main rtabmap node consists of several elements connected that taking aforemen-
tioned input produce the Map Graph. The Synchronization component is in charge of
take the input and output all sensor data synchronized. After sensor synchronization, the
Short Term Memory (STM) module creates a node memorizing the odometry pose, sen-
sor’s raw data and additional information useful for next modules (e.g., visual words for
Loop Closure and Proximity Detection, and local occupancy grid for Global Map Assem-
bling). The structure of the MAP Graph is a graph with nodes an links. Nodes are created
at a fixed rate (“Rtabmap/DetectionRate”) set in milliseconds. Additionally links contain
a rigid transformation between two nodes, which can be of three types:

• Neighbor links, which are added in the STM between consecutive nodes with odom-
etry transformations.

• Loop Closure, added trough the loop closure detection procedure.

• Proximity Links, added by proximity detection process.

Figure 5.1: Block diagram of rtabmap ROS node (image taken from [1]).

These links are used as constraints for graph optimization. With the graph optimized, Oc-
toMaps, Point Clouds and 2D Occupancy Grid outputs can be assembled and published.

5.1 Memory Management

The memory management approach [38], proposed by Labbé and Michaud, is used to
limit the size of the graph. As the size of the map increases, so does the time required to

26 Real-Time Appearance-Based Mapping

compare the current observation with observations stored in memory, in order to compute
loop closures. Without this memory management, the time of processing the observations
can become greater than the time used to acquire new observations.

This approach divides RTAB-Map’s memory in Long Term Memory (LTM) and Working
Memory (WM). RTAB-Map has two parameters used to control the time of processing and
the size of the memory: "Rtabmap/TimeThr" sets a time threshold and "Rtabmap/Memo-

ryThr" sets a memory threshold. Whenever one of the thresholds is exceeded, nodes are
transferred from WM to LTM. In order to decide which nodes are sent to LTM, a weight
value is used. This value determines which nodes are more important compared to others,
and it is calculated using a heuristic that defines that the longer a location is being visual-
ized the more important it is and consequently it should be left on WM. When a node is
sent to LTM, leaves WM and it becomes unavailable for modules on WM.

The process works as follows: first the node is initialized in the STM, with weight 0, as
it is new. Then, this new node is compared with the last node in the graph, looking to the
number of visual words. If they are similar enough (if the percentage of corresponding
visual words is over the parameter "Mem/RehersalSimilarity") the weight of the last node
is added to the new node. It is noteworthy that, whenever the robot is static, in order to
avoid unnecessary graph growth and thus computational cost, the last node of the graph
is discarded and its weight is set to 0. Note that, in order to optimize the process, the
working memory must not surpass either a maximum memory threshold nor a maximum
time threshold. Whenever this happens, the oldest node with less weight of the graph is
sent to the LTM.

We have seen that nodes are sent from WM to LTM, but the system can also recover
back nodes from LTM and send them to WM. This happens whenever a loop closure is
detected in a location in the WM. Whenever this occurs, neighbor nodes of that location
can be brought back to maximize the number of loop closures detected and to search for
proximity detections [11].

5.1.1 Graph Optimization

In order to minimize the errors in the map when a loop closure or a proximity detection
are identified, or some nodes are retrieved or transferred due to a memory management
issue, a graph optimization approach is applied.

The rtabmap_ros package provides several graph optimization approaches: TORO, Ceres,

5.1 Memory Management 27

g2o and GTSAM (previously described in Section 4.3.2). TORO is more robust to multi-
session mapping and less sensitive to poorly estimated odometry covariance than g2o and
GTSAM. On the contrary, the latter converge faster and optimization quality is better than
in TORO. In addition, as GTSAM is is slightly more robust to multi-session than g2o,
the strategy used by default in RTAB-Map is GTSAM. In this project, as multi-session
mapping was not used, g2o has been used.

CHAPTER 6

Setup of RTAB-Map on Kbot

As mentioned before in Chapter 5, rtabmap is the main node of the RTAB-Map imple-
mentation on ROS. This main node is a wrapper of the RTAB-Map Core library, and its
main goal is to create a Graph-Based map which is incrementally built and optimized
when a loop closure is detected. Therefore, the online output of this node is a local graph
with the latest added data to the map, and it is given in a database (.db) format. By default
the database is stored in “∼ /.ros/rtabmap.db" and the workspace is also set to “∼ /.ros".
Once the the database is created, it is possible to get the 3D point cloud or the 2D occu-
pancy grid map by subscribing to the topics cloud_map or grid_map, respectively.

In the following sections, on the one hand, the main tools employed in this project are
described, as well as the real platform used for the experimentation. On the other hand,
the package and files created and the parameters used to configure rtabmap_ros package
in Kbot are enumerated.

6.1 ROS and Gazebo

Robot Operating System (ROS) is an open source set of software libraries and tools that
helps in the development of robot applications. It is a very popular tool within the robotics
research community. Summarising ROS main characteristics, its most useful functional-
ities are: the computation graph, which allows to see the communication between pro-
cesses; the file system, which contains packages like RTAB-Map (core package used in

29

30 Setup of RTAB-Map on Kbot

this work); and the extensive amount of tools and algorithms. The main mechanism used
by ROS nodes to communicate is by sending and receiving messages. The messages are
organized into specific categories called topics. Nodes may publish messages on a partic-
ular topic or subscribe to a topic to receive information.

ROS also provides tools such as Rviz1, that helps to visualize information related to the
robot (e.g. laser scans or images captured from sensors and cameras), or such as rqt2, a
set of Graphical User Interface (GUI) tools in the form of plugins that allow graphical
representations of ROS nodes, topics, messages and other information. to see the process
tree and how they communicate between them.

Gazebo3 is an open-source 3D robotics simulator and a toolbox of libraries and loud ser-
vices that allows simulating real-world physics in high fidelity simulation. It helps robot
developers rapidly test algorithms and design robots in digital environments. Moreover,
Gazebo brings the opportunity to integrate a multitude of sensors, and it provides the
necessary tools to test those sensors and develop own robots to best use them.

In this project, a representation of the first floor of the Faculty of Informatics in San Sebas-
tian (UPV/EHU) together with a simulated model of Kbot, both developed by RSAIT4,
have been used to setup and test the RTAB-Map tool. In figure 6.1, the 3D model of the
first floor can be seen.

6.2 Kbot

Kbot is a differential drive robot built by Neobotix in 2004, originally used as a tour guide
at the Eureka Museum of Science in San Sebastian. In 2006 the robot broke down and kept
in a warehouse until 2014, when it was sent to the University of the Basque Country. The
RSAIT team repaired the robot and renewed some elements as well as supplied Kbot with
an onboard Zotax MiniPC with a NVIDIA graphics card and an Intel Realsense D4355, as
can be seen in figure 6.3. This camera is a stereo solution that consists of a pair of stereo
cameras, a RGB sensor, and an infrared projector. It uses stereo vision to calculate depth.
The rigid arms where a touch monitor rested were removed and instead a smaller Getich
monitor was installed on its back. In the front we can observe several sonars and the laser

1https://wiki.ros.org/rviz
2https://wiki.ros.org/rqt
3https://gazebosim.org/home
4http://www.sc.ehu.es/ccwrobot/
5https://www.intelrealsense.com/depth-camera-d435/

6.2 Kbot 31

Figure 6.1: First floor of the UPV-EHU’s Computer Science faculty represented as a Gazebo
environment, built by the RSAIT team.

(a) Real robot (b) Simulated robot

Figure 6.2: Kbot’s appearance

32 Setup of RTAB-Map on Kbot

Figure 6.3: Intel Realsense D435 Depth Camera. It is equipped with right and left imagers, an IR
Projector and a RGB module.

sensor. For safety reasons, the robot is equiped with two emergency stop buttons on each
side that when pressed cause an electrical stop. Another safety mechanism of Kbot is that
when the laser sensors detects an object dangerously close to the robot it causes to stop
any further movement. However, this safety measures are only active on the real robot,
not on the simulation.

The robot can be operated using the keyboard when key_teleop program is launched both
in reality and in the simulation, and with the gamepad using a similar program.

Figures 6.2a and 6.2b show Kbot’s real and simulated appearances, respectively.

6.3 rtabmap_kbot package

In order to start with RTAB-Map ROS package on Kbot (both in the simulation and in the
real one), a ROS package, rtabmap_kbot was created. This package contains the launch
file rtabmap.launch that contains the modified parameters of rtabmap and the rviz config-
uration file, used to see how the robot builds the environment in real time and to set goals.
In order to start the simulation, a package named gazebo_utils has been provided by the
RSAIT team, as well as the package gazebo_navigation. The former contains the robot
model and the environment while the later contains the ROS Navigation Stack6, config-
ured for the Kbot. Additionally, in order to enable Kbot to cross hallways, the parameter
that controls the minimum distance allowed between the robot and an obstacle, had to be

6https://wiki.ros.org/navigation

6.3 rtabmap_kbot package 33

modified. Finally, in order to move the robot, the package key_teleop package has been
used.

6.3.1 Parameters and topics of the rtabmap node

rtabmap_ros package has a well documented ROS wiki page7 that includes several tu-
torials and demos showing some examples of how to build a map using RTAB-Map. As
described before in Section 6.3, the core of the package is a launch file (rtabmap.launch)
that executes the rtabmap node with specific setup, including RTAB-Map’s parameters
and the required topics. This launch file is based on a template developed by the ROS
community to use rtabmap on a Turtlebot28.

There are two set of parameters: ROS and RTAB-Map’s parameters. The ROS parameters
are for connection stuff to interface the RTAB-Map library with ROS, while the RTAB-
Map’s parameters are those from the RTAB-Map library. Table 6.1 describes in short the
main RTAB-Map’s parameters used in this work. Although in the Turtlebot’s customized
launch file you can find several explanations about those parameters and which values can
they have, all the configurable parameters are better described in the Parameters.h file
of the rtabmap_ros package.

By default, rtabmap is in mapping mode, but this node also provides the option to set
it in localization mode with a previously created map. To do so, the memory parameter
(Mem/IncrementalMemory) should be set as not incremental.

Regarding the topics required by rtabmap node, it is necessary to specify the input data
that will be used by the node to generate the Map Graph.

The topics that are necessary are scan, rgb/image, depth/image and rgb/camera_info. scan

is the topic of the laser sensor, and in the Kbot corresponds to the topic /scan. The topics
rgb/image, depth/image and rgb/camera_info are the topics of the camera and correspond
to the Kbot’s /camera/rgb/image_raw, /camera/depth/image_raw and /camera/rgb/cam-

era_info.

7https://wiki.ros.org/rtabmap_ros#rtabmap
8https://robots.ros.org/turtlebot/

34 Setup of RTAB-Map on Kbot

Parameter Value Explanation
RGBD/ProximityBySpace true Local loop closure detection (using esti-

mated position) with locations in Work-
ing Memory.

RGBD/OptimizeFromGraphEnd false Set to false to generate map correction
between /map and /odom.

Kp/MaxDepth 8.0 Filter extracted keypoints by depth.
Reg/Strategy 2 Loop closure transformation refining

with ICP: 0=Visual, 1=ICP, 2=Vi-
sual+ICP.

Icp/CorrespondenceRatio 0.3 Ratio of matching correspondences to
accept the transform.

Vis/MinInliers 6 3D visual words minimum inliers to ac-
cept loop closure.

Vis/InliersDistance 0.1 3D visual words correspondence dis-
tance.

RGBD/AngularUpdate 0.3 Update map only if the robot is moving.
Minumun rad to update.

RGBD/LinearUpdate 0.3 Update map only if the robot is moving.
Minimun distance moved to update.

Rtabmap/TimeThr 500 Maximum time allowed for map update.
Mem/RehearsalSimillarity 0.30 Rehearsal similarity.
Reg/Force3DoF true Force 3 degrees-of-freedom transform

(3DoF: x, y, and yaw). Parameters z, roll
and pitch will be set to 0.

Optimizer/Strategy 1 Graph optimization strategy. 0=TORO,
1=g2o, 2=GTSAM, 3=Ceres.

Mem/InitWMWithAllNodes false Initialize the Working Memory with all
nodes in Long Term Memory. When
false it is initialized with nodes of the
previous session.

Mem/IncrementalMemory true true for SLAM mode, false for localiza-
tion mode.

Table 6.1: Table of relevant parameters changed on rtabmap.launch file

6.4 Additional Tools 35

6.4 Additional Tools

6.4.1 rtabmapviz node

This is a node that starts the visualization interface of RTAB-Map. It is a wrapper of the
RTAB-Map GUI library, and it has the same purpose as rviz but with specific options
for RTAB-Map. It allows to configure several parameters in real time such as RTAB-
MAP update rate or time limit processing, but also shows information about loop closure
detection and memory management (see Figure 6.4).

Figure 6.4: Database viewer. To the left the Graph view can be seen, and to the right the frames
can be seen, showing the similarities (blue lines). These features are only a few.

6.4.2 rtabmap Database viewer

The Database viewer tool is used to browse the data that is stored in the RTAB-Map
databases. With this tool, 3D maps, graphs and 2D occupancy grid maps (among others)
can be generated and it is also useful to observe the loop closures.
Regarding loop closures, the user can add or remove them, thus changing the graph.
An example of the GUI can be seen on figure 6.5.

36 Setup of RTAB-Map on Kbot

Figure 6.5: Database viewer. Left: Graph view. Right: Image frames and correspondences (blue
lines).

CHAPTER 7

Experiments and Results

The experimentation carried out in this project consists of testing the RTAB-Map tool
capabilities on the Kbot robot to build a map of the environment and navigate in it at the
same time, using visual information captured from an RGB-D camera.

The experiments have been performed both in real and simulated environments. Specif-
ically, the first floor of the Faculty of Informatics have been chosen as testing scenario.
Additionally some experiments have also been carried out on the third floor. For the sim-
ulated part, a Gazebo world representing the Faculty’s first floor developed by RSAIT is
employed.

The objective of the experiments is therefore to analyse the functionalities of rtabmap_ros.
In both simulation and real environment the mapping process has been the same: teleop-
erate the robot through the environment while acquiring the map. During the mapping
process several videos have been recorded to show how the map is built in real time
(through rviz and rtabmapviz tools). After the mapping process a RTAB-Map database (in
.db format) is obtained including the 3D point cloud representation, the Graph-Based map
and the final 2D occupancy grid map. This map is then used for testing the navigation on
Kbot.

37

38 Experiments and Results

7.1 Mapping in simulation

In order to map the environment, the robot has been controlled with the keyboard, using
the teleoperation package. The robot trajectory can be seen in figure 7.1a. The robot starts
the mapping process at the lower part of the map (close to the dean’s office). After going
through that area it was directed to the hallway to finally map the space close to Ada
Lovelace’s room. In figure 7.1b the 3D point cloud can be observed. The process can be
seen in the video1.

The mapping process in the simulated environment was completed resulting a map of
155,2 MB. The graph has 560 links (of which 2 are global loop closures and 126 are
local loop closures by space), and 256 poses. The mapping was done in one session of 5
minutes and 7 seconds. Overall the map of the simulation has showed good results, but it
must be taken into account that in simulations there is no odometry error.

(a) Robot’s trajectory and 2D
occupancy grid of the First floor
in the simulated environment.

(b) 3D point cloud of the en-
vironment. The graph can also
be seen being created, as well
as the laser readings showing
where the wall is.

Figure 7.1: Mapping on the simulator.

7.2 Planning in simulation

The goal of this experiment is to measure the adequateness of the previously created map
to perform navigation. In order to carry this experiment out, rtabmap must be set on lo-

1https://drive.google.com/file/d/1Zud7laq_p0z4-oyFPWb0nOHO0SNYRbLi/view?usp=
sharing

https://drive.google.com/file/d/1Zud7laq_p0z4-oyFPWb0nOHO0SNYRbLi/view?usp=sharing
https://drive.google.com/file/d/1Zud7laq_p0z4-oyFPWb0nOHO0SNYRbLi/view?usp=sharing

7.3 Mapping with Kbot 39

calization mode, changing setting the argument "localization" to "true", the parameter
"initWMWithAllNodes" to "true" and the ROS navigation package move_base is needed.
Changing the localization mode to "true" means that it sets the parameter "Mem/Incre-

mentalMemory" to "false".

The move_base package provides an implementation of an action that, given a goal in the
world, will attempt to reach it with a mobile base. The move_base node links together a
global and a local planner to accomplish its global navigation task. In order to set a goal
in the map, rviz provides an utility named “2d nav goal” that just selecting that option and
clicking on any point in the map, a path from the robot’s location to the goal location is
planned (if any) and sent to the robot in order to achieve the navigation task.

Figure 7.2a shows the global plan calculated by the global planner and to be followed by
the robot in red, creating the shortest possible path between the robots position and the
goal position. This global plan consists of several subgoals that define the path the robot
has to follow. Whenever the robot finds itself unable to reach a subgoal, the local planner
makes a variation in that path (the path between the robots position and the subgoal) and
creates a deviation in the global path in order to reach that checkpoint. Figure 7.2b shows
the local planner modifying the trajectory in order to avoid obstacles.

A video2 has been recorded to show Kbot’s behaviour while navigating. As can be seen
in the video, the robot is able to autonomously navigate to the goal, but sometimes it loses
track of its position momentarily, This is particularly noticeable when the environment is
featureless, i.e. locations looks very similar. However, when the robot reaches a point in
the map where relevant features can be observed, such as a door or a window, the robot
makes a loop closure and relocates itself.

7.3 Mapping with Kbot

The process followed in this experiment is essentially the same as in simulation, using
the real Kbot in the first floor of the faculty, but this time the robot is teleoperated using a
joystick. The process can be seen in the video3.

The map of the first floor was built in one session of 15 minutes and 24 seconds and

2https://drive.google.com/file/d/1Ha3X5T2vB5_IOyHYatYKSUNnVnfJlnX9/view?usp=
sharing

3https://drive.google.com/file/d/1sa44TjQ05BEi2jjChYMnMnNlm6dvj7gi/view?usp=
sharing

https://drive.google.com/file/d/1Ha3X5T2vB5_IOyHYatYKSUNnVnfJlnX9/view?usp=sharing
https://drive.google.com/file/d/1Ha3X5T2vB5_IOyHYatYKSUNnVnfJlnX9/view?usp=sharing
https://drive.google.com/file/d/1sa44TjQ05BEi2jjChYMnMnNlm6dvj7gi/view?usp=sharing
https://drive.google.com/file/d/1sa44TjQ05BEi2jjChYMnMnNlm6dvj7gi/view?usp=sharing

40 Experiments and Results

(a) Kbot planning. The red lines denote the
global planned path. (b) The blue lines mark the local plan.

Figure 7.2: Planning on the simulation.

produced a file of 566 MB. The graph has 627 poses and 603 links divided as 492 links,
111 local loop closures of space and, because of the characteristics of the environment
and the way the robot was controlled, there is no global loop closures.

During the experimentation with the real Kbot, a problem with the map arose. Although
the map is saved correctly, it cannot be visualized due to lack of memory. The robot’s
memory can’t handle the size of the whole map, as a consequence the system only loads
the areas close to the robot pose. Whenever the robot moves, the system loads the corre-
spondent area.

In more featured environments, more global loop closures may be computed. For example,
we built a map of the third floor of the faculty, also in one session, which is larger than
the first floor and more importantly, it’s structure is different, and in that case 36 global
loop closures were computed (see 7.5 for a more detailed explanation). The results of the
mapping can be checked in figure 7.3.

7.4 Planning with Kbot

The procedure followed during this experiment is the same as in simulation, but using the
real Kbot and in the faculty’s first floor. As in simulation, in order to define a goal on the

7.4 Planning with Kbot 41

Figure 7.3: Robot’s trajectory and 2D occupancy grid of the first floor in the real environment.

42 Experiments and Results

map, "2d nav goal" has been used. In the video4, it can be seen how the robot is sent from
its location to the other end of the map, and then back to the initial pose.

A fragment of the global plan can be seen in figure 7.4.

Figure 7.4: Kbot on the move with a goal set.

As it happened with the mapping process, the map was not fully loaded neither during
the planning, but the map corresponding to a new area was loaded while the robot moved.
In the same video it can be seen how the map was updated as the robot approached new
areas of the environment. It must be noted that it was not new mapping, as localization
mode was enabled, neglecting any change in the database, and thus not building any new
map.

7.5 Additional Experiments

In order to explore certain functionalities of rtabmap_ros more experiments have been
done. A mapping session of the third floor of the faculty was conducted, and very in-
teresting results were achieved. As previously introduced, the characteristics of the en-
vironment and the user’s ability to cover the environment while mapping are also very
important for finding loop closures. As it can be appreciated in figure 7.5, the mapped
area is larger than the one mapped in the first floor and it has a square form. Nevertheless,
the results of the session are very good indeed.

4https://drive.google.com/file/d/1dwk8VcCcLT3zN00e91F90lrNOSmeQWbz/view?usp=
sharing

https://drive.google.com/file/d/1dwk8VcCcLT3zN00e91F90lrNOSmeQWbz/view?usp=sharing
https://drive.google.com/file/d/1dwk8VcCcLT3zN00e91F90lrNOSmeQWbz/view?usp=sharing

7.5 Additional Experiments 43

Figure 7.5: Map of the third floor. The mapping was done in one session of 13 minutes and 13
seconds. The file is 609,2 MB. The graph has 728 poses and 1281 links. 950 of the are normal
links, 36 of them are global loop closures and 295 of them a local loop closures (time)

However, the Database viewer let us perform additional loop closures, as well as to ignore
some. Figure 7.6 shows the difference between correcting poses and using loop closures,
and also shows the ever present odometry error.

Figure 7.6: Importance of loop closures and pose corrections. The left image ignores pose correc-
tion, global loop closures and local loop closures. The right image is the map of the session.

In addition to help detecting loop closures, Database viewer allows to modify the loop
closure radius, as well as the number of iterations. In figure 7.7 we can see the results
of increasing the number of loop closures. After setting the number of iterations to 10

44 Experiments and Results

value, the system found 639 new loop closures, improving greatly the precision of the
map. Compared to fig 7.5, we can observe that it is much more precise.

Figure 7.7: The map of the third floor after being modified by the option to look for more loop
closures. The new white lines represent loop closures added due to the modification.

7.6 Identified issues in the application of RTAB-Map

Despite the satisfactory setup of the RTAB-Map in Kbot, there are several issues con-
fronted during the development of this project that are worthwhile mentioning.

Regarding the experimentation conducted on simulation, we found that whenever the
robot approaches some corners (and sometimes even in randomly situations), Kbot bent
forwards leading to obtain false scan readings from the laser sensor. That issue made the
robot to perceive the floor as a downwards slope (see Figure 7.8), and thus the RTAB-Map
database had to be discarded.

In the experiments carried out in the first floor of the Faculty of Informatics, we also suf-
fered from some issues. One of the main problems concerns to the odometry error. Certain
areas of the Faculty’s floor have small flaws that make the robot wheels slip and therefore,
as one of the wheels turns faster than the other, the robot interprets it is turning to one side

7.6 Identified issues in the application of RTAB-Map 45

Figure 7.8: Snapshot of the moment when Kbot bends forward.

when it is really moving forward. Finally, sometimes due to the safety mechanism of the
robot, whenever Kbot approached a wall in order to turn, there where several occasions
where the robot faced the wall and stopped, because it found the wall excessively close.
This can be solved either by modifying the robot’s behavior in those situations, which
of course we discarded because of safety reasons, or by modifying the costmap’s charac-
teristics, and forbidding the robot to get that close to the walls. The robot would have a
much harder time getting through narrow hallways though, or it could simply be unable
to access certain areas. Thereby, no modification was made to the navigation stack.

CHAPTER 8

Conclusions and Future Work

The goal of this Bachelor Project was to acquire basic knowledge about robot navigation
and visual SLAM by using the RTAB-Map ROS package. During its development, the
literature about robot navigation and the state of the art of SLAM approaches have been
reviewed in deep. The system has been setup in simulation using Gazebo and also in the
real robot environment system. Experiments in both configurations revealed the potential
of the tool for accurately mapping the environment avoiding odometry error, and allowed
to learn the wide set of visualization tools available to ensure map correction and proper
adjustment of some parameters. The obtained maps have been used later on to command
navigation goals to the robot and to prove the usability of the learned maps.

rtabmap_ros is a great way to start studying visual and Graph-Based SLAM, as well as
achieving a better understanding of robot navigation in general. The package, rtabmap_ros,
is easy to use and, as is modern and continuously being updated and improved, there is a
lot of literature regarding different experiments carried with the software.

Regarding this work, a comparison of different graph optimization techniques was left out
of the scope of the project. This will allow not only to study how the different algorithms
work in reality, but also to find the best parameter composition for each situation. It also
remains as further work the study of multi-session mapping and trying different kind of
environments, such as, bigger environments.

In regard to the future of robot navigation, we are able to see the growing number of opti-
mization approaches, and generally more computationally expensive approaches. Nowa-

47

48 Conclusions and Future Work

days graph-based methods belong to State of The Art techniques because of their accu-
racy and speed, and they are the center of attention of different research teams that try
to optimize even further graph SLAM methods, using different techniques, as neural net-
works [39].
Neural networks are being used today in order to solve SLAM, as it can be seen in [40],
and new concepts are born, such as neuromorphic SLAM.
Moreover, certain State of The Art investigations are underway in the area of autonomous
navigation while mapping. Certain systems have the ability to map without a human op-
erator. This is called native SLAM [41].

The development of this project has produced an initial setup of the RTAB-Map algorithm
that opens the door for future expansions/development in the real robot-environment sys-
tem.

CHAPTER 9

Project Management

This chapter defines the tasks done in the project, the time spent on those tasks and prob-
lems encountered during the procedure of the project.

9.1 Work Breakdown

The work load has been divided in five different tasks as it can also be seen in figure 9.1 :

1. T1 Preparation: In order to understand the basics of ROS, the tutorials on the ROS
page where completed.

2. T2 Investigation and Study: Deep analysis and research of SLAM, Graph SLAM,
Visual SLAM, graph optimization approaches and techniques, RTAB-Map, and
rtabmap_ros.

3. T3 Implementation: Research of implementations on other robots, as well as re-
search on ROS topics and parameters and adaptation of the package to the Kbot,
both in the simulation and in the real one.

4. T4 Experimentation: Performing the experiments, both in the simulation and in the
real robot, as well as study the results.

5. T5 Documentation: Write this document, the poster and the presentation, as well as
creating the necessary material to present this project.

49

50 Project Management

Figure 9.1: Tasks involved in the creation of the project

In figure 9.2 the Gantt diagram can be seen. Regarding the estimation of time, the table
9.1 shows the comparison between the estimated time and the employed time

Task Estimated time (h) Final time (h)
T1 Preparation 20 15

T2 Investigation 160 185
T3 Implementation 50 40
T4 Experimentation 30 25
T5 Documentation 60 80

Total 320 345

Table 9.1: Time estimated and employed on this project

Figure 9.2: Gantt Diagram showing the time for each of the tasks.

9.2 Risk Management

The following risks have been identified:

• R1: Between October 2021 and June 2022, it is expected the pandemic of COVID-
19 will not disappear, and the possibility of contagion is present. As this project is
individual, the work can be done in lockdown without any further problems, except

9.3 Evaluation 51

to the experimentation in the real robot. In case of suffering serious symptoms or
being infected in just before the experimentation on the real robot phase, the work
could be delayed, and thus, the option to extend the date of delivery to September
could be considered.

• R2: rtabmap_ros is a state of the art package, which is continuously being updated.
In the worst case scenario, an update could go wrong and delay the work. In that
case, extending the date of delivery to September could be considered.

• R3: In case the real Kbot would be unavailable, either by a software problem, or a
hardware problem, the experimentation on the robot could be compromissed. In the
worst case scenario, where the robot is not available indefinitely, the experiments
on that robot would be omitted.

9.3 Evaluation

Regarding the risks, no contemplated risk has occurred. As this work is a work of anal-
ysis, a great investigation work was expected, and that is what has happened. However,
T2 has posed a greater challenge than anticipated, as the student was not familiar with
the proposed subject prior to the start of this project. Regarding T3, at the start of the
project, several errors with the simulation delayed the start of the implementation phase.
However, the implementation and the adaptation of the parameters for the robot, getting
good results, was achieved earlier than expected.

Bibliography

[1] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultane-
ous localization and mapping library for large-scale and long-term online operation,”
Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,”
IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[3] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based
slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43,
2010.

[4] S. Thrun et al., “Robotic mapping: A survey,” Exploring artificial intelligence in the

new millennium, vol. 1, no. 1-35, p. 1, 2002.

[5] S. Yu, C. Fu, A. K. Gostar, and M. Hu, “A review on map-merging methods for
typical map types in multiple-ground-robot slam solutions,” Sensors, vol. 20, no. 23,
p. 6988, 2020.

[6] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Com-

puter, vol. 22, no. 6, pp. 46–57, 1989.

[7] F. Fraundorfer, C. Engels, and D. Nistér, “Topological mapping, localization and
navigation using image collections,” in 2007 IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE, 2007, pp. 3872–3877.

[8] J. Borenstein, “Experimental results from internal odometry error correction with the
omnimate mobile robot,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 6, pp. 963–969, 1998.

53

54 BIBLIOGRAPHY

[9] A. Martinelli, “The odometry error of a mobile robot with a synchronous drive sys-
tem,” IEEE transactions on robotics and automation, vol. 18, no. 3, pp. 399–405,
2002.

[10] F. Gul, W. Rahiman, and S. S. Nazli Alhady, “A comprehensive study for robot
navigation techniques,” Cogent Engineering, vol. 6, no. 1, p. 1632046, 2019.

[11] M. Labbé and F. Michaud, “Long-term online multi-session graph-based splam with
memory management,” Autonomous Robots, vol. 42, no. 6, pp. 1133–1150, 2018.

[12] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for
mobile robots,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp.
278—-288, 1991.

[13] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[14] B. Alsadik and S. Karam, “The simultaneous localization and mapping (slam)-an
overview,” Surv. Geospat. Eng. J, vol. 2, pp. 34–45, 2021.

[15] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A survey from
2010 to 2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9,
no. 1, pp. 1–11, 2017.

[16] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans-

actions of the ASME - Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.

[17] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, derivation and prop-
erties,” Institute for Systems and Robotics, vol. 43, p. 46, 2004.

[18] R. Sim, P. Elinas, M. Griffin, J. J. Little et al., “Vision-based slam using the rao-
blackwellised particle filter,” in IJCAI Workshop on Reasoning with Uncertainty in

Robotics, vol. 14, 2005, pp. 9–16.

[19] S. Das, “Simultaneous localization and mapping (slam) using rtab-map,” arXiv

preprint arXiv:1809.02989, 2018.

[20] B. Tang and S. Cao, “A review of vslam technology applied in augmented reality,”
in IOP Conference Series: Materials Science and Engineering, vol. 782. IOP Pub-
lishing, 2020, p. 042014.

BIBLIOGRAPHY 55

[21] E. Eade and T. Drummond, “Scalable monocular slam,” in 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1.
IEEE, 2006, pp. 469–476.

[22] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate
monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–
1163, 2015.

[23] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in
2007 6th IEEE and ACM international symposium on mixed and augmented reality.
IEEE, 2007, pp. 225–234.

[24] T. Schops, T. Sattler, and M. Pollefeys, “Bad slam: Bundle adjusted direct rgb-d
slam,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2019, pp. 134–144.

[25] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard, “An evalu-
ation of the rgb-d slam system,” in 2012 IEEE international conference on robotics

and automation. IEEE, 2012, pp. 1691–1696.

[26] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monoc-
ular, stereo, and rgb-d cameras,” IEEE transactions on robotics, vol. 33, no. 5, pp.
1255–1262, 2017.

[27] A. Jurić, F. Kendeš, I. Marković, and I. Petrović, “A comparison of graph optimiza-
tion approaches for pose estimation in slam,” in 2021 44th International Convention

on Information, Communication and Electronic Technology (MIPRO). IEEE, 2021,
pp. 1113–1118.

[28] D. Hähnel, S. Thrun, B. Wegbreit, and W. Burgard, “Towards lazy data association
in slam,” in Robotics Research. The Eleventh International Symposium. Springer,
2005, pp. 421–431.

[29] N. Sünderhauf and P. Protzel, “Towards a robust back-end for pose graph slam,” in
2012 IEEE international conference on robotics and automation. IEEE, 2012, pp.
1254–1261.

[30] G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige, “g2o: A general framework
for (hyper) graph optimization,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2011, pp. 9–13.

56 BIBLIOGRAPHY

[31] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 3 2022. [Online].
Available: https://github.com/ceres-solver/ceres-solver

[32] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs with
poor initial estimates,” in Proceedings 2006 IEEE International Conference on

Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 2262–2269.

[33] Wikipedia contributors, “Factor graph — Wikipedia, the free encyclopedia,” 2021,
[Online; accessed 7-June-2022]. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Factor_graph&oldid=1028331726

[34] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid map-
ping with rao-blackwellized particle filters,” IEEE transactions on Robotics, vol. 23,
no. 1, pp. 34–46, 2007.

[35] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable
slam system with full 3d motion estimation,” in 2011 IEEE international symposium

on safety, security, and rescue robotics. IEEE, 2011, pp. 155–160.

[36] Y. Chen, F. Wu, N. Wang, K. Tang, M. Cheng, and X. Chen, “Kejia-lc: a low-
cost mobile robot platform—champion of demo challenge on benchmarking service
robots at robocup 2015,” in Robot Soccer World Cup. Springer, 2015, pp. 60–71.

[37] I. Caminal, J. R. Casas, and S. Royo, “Slam-based 3d outdoor reconstructions from
lidar data,” in 2018 International Conference on 3D Immersion (IC3D). IEEE,
2018, pp. 1–8.

[38] M. Labbe and F. Michaud, “Appearance-based loop closure detection for online
large-scale and long-term operation,” IEEE Transactions on Robotics, vol. 29, no. 3,
pp. 734–745, 2013.

[39] R. Azzam, F. H. Kong, T. Taha, and Y. Zweiri, “Pose-graph neural network classifier
for global optimality prediction in 2d slam,” IEEE Access, vol. 9, pp. 80 466–80 477,
2021.

[40] R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj, “Pose estimation and
map formation with spiking neural networks: towards neuromorphic slam,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 2159–2166.

https://github.com/ceres-solver/ceres-solver
https://en.wikipedia.org/w/index.php?title=Factor_graph&oldid=1028331726
https://en.wikipedia.org/w/index.php?title=Factor_graph&oldid=1028331726

BIBLIOGRAPHY 57

[41] I. Lluvia, E. Lazkano, and A. Ansuategi, “Active mapping and robot exploration: A
survey,” Sensors, vol. 21, no. 7, p. 2445, 2021.

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Robot Navigation
	Mapping
	Localization
	Planning
	Simultaneous Localization And Mapping
	Filter-based SLAM
	Optimization-based SLAM

	Visual SLAM
	Monocular SLAM
	RGB-D SLAM

	Graph-Based SLAM
	Graph Creation and Optimization
	Formulating the Graph
	Graph Optimization
	Maximum Likelihood Estimate
	Nonlinear Pose-Graph Optimization Approaches

	Real-Time Appearance-Based Mapping
	Memory Management
	Graph Optimization

	Setup of RTAB-Map on Kbot
	ROS and Gazebo
	Kbot
	rtabmap_kbot package
	Parameters and topics of the rtabmap node

	Additional Tools
	rtabmapviz node
	rtabmap Database viewer

	Experiments and Results
	Mapping in simulation
	Planning in simulation
	Mapping with Kbot
	Planning with Kbot
	Additional Experiments
	Identified issues in the application of RTAB-Map

	Conclusions and Future Work
	Project Management
	Work Breakdown
	Risk Management
	Evaluation

	Bibliography

