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Computational Ethology studies focused on human beings is usually referred as Human Activity
Recognition (HAR). Specifically, this paper belongs to a line of work on the identification of broad cogni-
tive activities that users carry out with computers. The keystone of this kind of systems is the noninvasive
detection of the subject’s gaze fixations in selected display areas. Noninvasiveness is ensured by using the
conventional laptop cameras without additional illumination or tracking devices. The gaze ethograms,
composed as sequences of gaze fixations, are the basis to identify the user activities. To determine the
gaze fixation display areas with the highest accuracy, this paper explores the use of a transfer learning
approach applied to several well-known deep learning network (DLN) architectures whose input is the
eye area extracted from the face image,and output is the identification of the gaze fixation area in the
computer screen. Two different datasets are created and used in the validation experiments. We report
encouraging results that may allow the general use of the system.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Computational Ethology [1] has become a hot research field in
the last few years. It integrates the information from several differ-
ent sensors and activity measurement devices in order to charac-
terize the behavior of living beings. Specifically, the computer-
based analysis and recognition of human behavior, referred to as
Human Activity Recognition (HAR) [2], receives plenty of attention
and contributions. Basically, there are two types of sensors used in
HAR research: cameras [3] and inertial sensors [4]. In computa-
tional neuroethology, these sensors are usually combined with
neuronal activity data captured by using, for example, electroen-
cephalography (EEG) equipment [5]. Much effort in HAR research
is currently directed to the monitoring of aging people [14], and
to the performance improvement in some sports [15]. The moni-
toring of elderly people is usually motivated by behavioral decline
due to neurodegenerative diseases and its goals is to detect abnor-
mal situations to raise alarms [6], for example, fall detection [16].
HAR studies are usually oriented to the identification of low level
activities, for instance, the detection of abnormal behavioral situa-
tions in the elderly [6] by the use of 3D skeleton models of body
postures [7], hence they do not deal with higher level behavior rep-
resentations such as provided by ethograms.

An ethogram is a time plot of the low level actions carried out
by the subject under observation that provides a high level behav-
ioral representation. Ethograms have been used for animal pheno-
type characterization [8]. We are currently interested in the
characterization of behavioral states of a laptop computer user
by using the laptop camera and the microphone to determine the
activity performed by the user by noninvasive computational
methods. Previously, we have studied the performance of conven-
tional machine learning approaches on such task [9]. In this paper
we explore the use of deep learning techniques to recognize the
subject’s behavioral activity. Our hypothesis is that the subject’s
gaze fixations information allows to determine the specific activi-
ties in which the subject is engaged [9,61].

A visual fixation is the sustained gaze during a time interval in
a specific direction which falls upon a single location in the visual
stimulus. Its average duration in uncontrolled conditions is about
200 ms [12]. The saccades are quick, simultaneous movements of
both eyes between two or more phases of fixation in the same
direction [13]. Blinking is the semi-automatic rapid closing of
the eyelids. Its rate is generally greater than a dozen blinks per
minute, although it may decrease when the eyes are focused on
an object for an extended period of time, for example, when
reading.
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As the information is retrieved during the fixations, we deter-
mine when they are produced and in which order they are per-
formed. We call gaze ethograms these temporal sequences of
visual fixations which are the atomic actions building up the
behavioral representation. We define areas of the display which
receives the user attention in order to categorize the visual fixa-
tions. The gaze ethogram may be used to recognize the subject’s
behavioral activity. The work in this paper is devoted to the evalu-
ation of deep learning architectures on the task of recognizing the
gaze fixation from unfiltered images of the eye region.

The rest of the paper is organized as follows. First, Section 2 pro-
vides a short view of the state-of-art in both lines of our work: gaze
detection and tracking, and deep learning techniques applied to life
sciences. Section 3 describes the experimental datasets and the
proposed computational methods experimented with. Section 4
provides the experimental results. There, we also offer a critical
discussion on the results. Finally, Section 5 we conclude with some
summarizing remarks on our work and directions for future work.
Fig. 1. (a) Gaze ethogram corresponding to the user activity ‘‘reading a text” in an
experiment of duration 200 s. The targets correspond to nine different display areas
in which the subject’s fixations are detected. (b) Template used for calibration. The
numbers denote the sequence of locations of the target areas for gaze fixations
followed by the user during calibration. The same numbers are used as output
categories of the DLNs.
2. Background

This section provides a short review of the state-of-art in
related research. First, we summarize the works on gaze detection
and tracking with approximate or equivalent goals. Then, we
review some antecedents and current developments in the grow-
ing area of deep learning applied to life sciences.

2.1. Gaze detection and tracking

Gaze information has been used for diagnostic and active inter-
action purposes [10,11,18]. For example, gaze interaction has been
used for communication with people suffering extreme disability
[24] or in patients with Alzheimer’s Disease (AD) [25]. Diagnostic
applications have been widespread in many different areas such
as neuroscience [26,27], influence of students’ visual attention
and school failure [28] or analysis of facial expression exploration
in subjects with social anxiety [29].

Gaze detection has been a research challenge for a long time
[17,18]. Early successful approaches [19] were based on elec-
trooculography (EOG), which is a technique that uses a series of
electrodes situated in the user’s face to measure the eye motion
in an electromagnetic field. Videooculography (VOG) systems
[20] are optical-based systems using specific illumination systems
—often infrared— that enhance the detection of eye features such
as the pupil and the cornea.

There is a need for much less invasive systems that do not
require the subject to wear specific intrusive technology, as is
the case of EOG and VOG. Solutions based on computer vision
use conventional machine learning techniques, some are based
on the localization of the eyebrows [21], others use the estimation
of the 3D face motion from a single camera [22]. Recent approaches
based on deep learning architectures have been tested in neuro-
science studies [23]. The work in this paper goes in this direction
towards minimally invasive reliable gaze detection and tracking
systems.

2.2. Deep learning in the life sciences

Deep Learning (DL) approaches are the protagonist of Artificial
Neural Network (ANN) resurgence in the last decade [31–33]. They
overcome the problem of the vanishing gradient and overfitting by
various approaches. They produce a data driven hierarchy of
abstract representations by stochastic gradient descent training
procedures. Specifically, the convolutional neural network (CNN)
[35] training produces a hierarchy of filters tuned from the data.
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CNNs have been extremely influential in the advance of computer
vision (CV) tasks. This architecture has inspired new generations of
DL networks (DLN) with diverse architectures, which are reporting
superior performance on many different problems in areas such as
image processing [36,37], pattern recognition and object detection
[38–40], classification [41,42], tracking [48], and activity recogni-
tion from data provided by inertial sensors [49].

In the Life Sciences (LS) the number of reported DLN applica-
tions during the last five years have been growing exponentially
[34]. Example applications of DLN in LS areas are the analysis of
medical images in the neurosciences [23,43] and other medical
areas [44,45] including early stage detection of COVID-19 in X-
ray imaging [46,47]. DLNs have been also applied to facial image
processing, which is a rather complex object because of many dif-
ferent factors like the face position and orientation, the mouth and
eyes opening, and the human skin color range. There are reported
DLN approaches for face contour detection [50,51], the facial com-
ponents extraction [52,53], biometric facial recognition [54], and
gender classification [55].
3. Materials and methods

As previously stated, our setup employs the behavioral activity
recognition system to determine the activity carried out by the
subject [9]. This system uses gaze ethograms to describe and iden-
tify such activities. Fig. 1(a) shows an instance of a gaze ethogram
obtained from a subject reading a text on the computer display. For
activity recognition purposes it is enough that the gaze tracking
system identifies the gaze fixation targets corresponding to the
broad areas in Fig. 1(b). The target number order has been arbitrar-



J. de Lope and M. Graña Neurocomputing 500 (2022) 518–527
ily defined in order to reduce the subject fatigue while performing
the system calibration.

We describe the overall cognitive activity recognition based on
gaze ethograms elsewhere [9]. The work in this paper covers a
novel proposal that utilizes deep learning for estimating the gaze
fixation on the visual target areas. The system hardware configura-
tion is a laptop computer endowed with a web camera on top of
the screen upon which a user is working. The distance of the face
to the camera is roughly 50 cm, and the camera view of the face
is frontal, although the subject can move freely and change pose
at will. We are using off the shelf web cameras that are factory
installed in laptops, therefore robustness is a challenge and a lim-
itation. The resolution of these cameras is limited and often the
image quality is quite low. Additional difficulties arise from the
uncontrolled illumination conditions, and the user freedom of
movement in front of the camera.

3.1. Datasets

We have generated two different datasets for these experi-
ments. Both are produced from laptop camera captured videos
with resolutions of 720p, in which the subjects perform fixations
in order on every target of a calibration template for 3 s. Then,
those images are selected to remove examples with too blurred
or very similar images and unclear target destinations and they
are hand-labeled to assign the target to each one.

� The first dataset contains images from 12 subjects with differ-
ent equipment and illumination conditions. The images in this
dataset have been balanced in order to guarantee an equivalent
number of images in each class, trying to anticipate troubles
during the training stage. This dataset contains 450 images.

� The second dataset contains images from a unique subject. The
videos have been recorded under different illumination condi-
tions and varying distance to the camera. The underlying idea
is to compare the performance between ANNs trained with gen-
eral, multi-user data and tailored, single-user data. This dataset
is composed by 700 images.

To localize the face in the images we apply a pre-trained detec-
tor based on histograms of oriented gradients (HOG) [56] as input
features for classification by linear support vector machines (SVM)
[57]. Once the face is localized in the image, the next step consists
of determining the position of face landmarks. This problem is
known as face alignment. We use a previously trained ensemble
of regression trees to estimate the face landmark position directly
from a sparse subset of pixels intensities [60]. The method returns
68 2D points in the image that can be used to localize the eyes, eye-
brows, nose, mouth, and jawline. This approach allows almost real-
time response, although we have found trouble when the user is
wearing some kind of glasses during the data capture. Finally, we
select the eye area in the original images to add them to the vali-
dation datasets. Fig. 2 shows some examples of those images and
the corresponding label. In this case we use the target identifier
method for labeling [61].

3.2. Deep transfer learning

We have retrained six models of DLN. We use a transfer
learning approach, where each DLN has been previously trained
over data from the ImageNet challenge. We keep the weights of
the intermediate layers, retraining the final layers that produce
the actual classification output. In deep transfer learning [30] the
already trained DLN hidden layers are assumed as a general
feature extraction procedure, defining a manifold that can be used
to map the input data for classification or regression tasks that are
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different from the original one. Task specific information is
provided when training the output layers of the DLN.

We use the same output fully connected layer for all the nets. It
contains 10 neurons, each one identifies one of the display target
areas. The tenth neuron is used to detect cases in which the subject
has the eyes closed. We have chose a softmax function for comput-
ing the classes due to it is usually recommended for likelihood
computation in multi-class domains. Unless stated otherwise, we
have used the Adam optimizer with a learning rate of 10�4. We
have validated the retrained models by cross-validation in all the
experiments reported in the next section. We have repeated 30
times a 80% hold out validation, where we by randomly select a
80% of the datasets for training and use the remaining 20% for test.
We report the average accuracy of the test results.
3.2.1. VGG19
The first DLN evaluated was the classical VGG19 [62]. It is a

classical CNN which has 19 convolutional layers followed by
max-pooling layers to reduce the image size. In order to adapt
the model to our data we have removed the last layers of the pre-
trained network, and added and trained two fully connected layers
with 50 and 25 neurons, respectively, with its owns dropout layers
to reduce the overfitting.
3.2.2. Inception-v3
The Inception neural network [63] has several versions, the

fourth is the most recent. We have used the previous version
because of its availability. Its structure is composed of a pattern
of layers that is replicated along the net. There are modules with
multiple convolutional layers in parallel that extract different
image features, which are concatenated at the end of the module.
We have added and trained an additional fully connected layer
to fit it to our datasets.
3.2.3. Xception
The Xception neural network [64] uses the same modular com-

position idea of Inception architectures but there is a modification
in the patterns: it changes the parallel convolutional layers by sep-
arable convolutional layers. These new layers allow to reduce the
computations, being the time required to train much more images,
considerably shorter.

The Xception structure presents three different stages. The ini-
tial stage applies a filter to the image for reducing the image size
while it keeps the convolutional layers. The middle stage are
repeatedmodules, which are duplicated up to eight times. The final
stage has been modified and retrained to adapt it to our datasets.
Here we have used two fully connected layers with 50 and 20 neu-
rons followed by a single dropout layer to avoid overfitting.
3.2.4. ResNet50
ResNet50 [65] is a residual network. This kind of DLN architec-

ture tries to model the residual of the prediction at previous layers.
It has direct propagation of the input along the layers of the net-
work in order to compute this residual. This structural feature alle-
viates the vanishing gradient problem and provides interesting
computational properties, such that the computation at a given
layer is independent from previous layers. Residual networks
may have a very large number of layers, the one that we retrain
on our datasets has 50 layers that are grouped into several blocks.
At the beginning of each block, the computed residual is stored and
it is used at the end of the block with the computed weights. In this
case, we are using the SGD optimizer due to its superior perfor-
mance against other optimizers for this kind of networks. The
learning rate is 10�5 and the decay rate is 10�6 for each iteration.



Fig. 2. Examples of eye region images captured while subjects are performing fixations in each target that compose the datasets. These images are the input to the DLNs
providing the gaze fixation identification.

Fig. 3. Accuracy curves in training and test with the multi-user dataset.
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Fig. 4. Categorical cross-entropy loss curves in training and test with the multi-user dataset.

Table 1
Nets accuracy and error with the multi-user dataset.

Net Best Accuracy Lowest Error

VGG19 89.01% 0.3452
Inception-v3 86.96% 0.5529
Xception 82.61% 0.6023
ResNet50 86.96% 0.6531

Inception-ResNet-v2 84.78% 0.6248
DenseNet 91.30% 0.4281
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3.2.5. Inception-ResNet-v2
The Inception-Resnet net [66,67] combine both ResNet and

Inception approaches to create a model with the advantages
522
provided by them. The structure is composed by several blocks
besides the parallel convolutional layers used to concatenate
blocks. Inside the blocks there are repeated modules of the Incep-
tion flavor. There is also connections from the beginning of blocks
to the end similar to ResNet ones.

3.2.6. DenseNet
DenseNet [68] follows a design idea similar to ResNet although

now authors add the residual to each block globally and not only in
the end of each block. Thus, it appears several connections from the
inputs the convolutional layers in each block to the outputs of
other blocks. Thanks to this modification the net is more compact
and requires lesser layers to extract information from the image
because of each layer can receive information from previous layers.



Table 2
Normalized confusion matrix from DenseNet and the multi-user dataset.

Predicted Target

0 1 2 3 4 5 6 7 8 9

Actual Target 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
2 0 0 .833 0 0 0 0 0 0 .167
3 0 0 .143 .857 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 0 .667 0 0 0 .333
6 0 0 0 0 0 0 .800 .200 0 0
7 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1

Fig. 5. Average accuracy curves in training and test over the single-user dataset.
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Table 3
Best accuracy and error achieved by DLN models over the single-user dataset.

Net Best Accuracy Lowest Error

VGG19 94.62% 0.1788
Inception-v3 93.55% 0.3151
Xception 93.55% 0.2475
ResNet50 91.40% 0.2486

Inception-ResNet-v2 91.24% 0.2982
DenseNet 95.70% 0.2195
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4. Experimental results and discussion

Now we discuss the learning results and general performance
obtained with the DLNs described above. First, we show the
multi-user dataset results. Then, we summarize and compare the
results obtained on the single-user dataset.

4.1. Multi-user dataset

Fig. 3 depicts the average accuracy curves obtained in training
and test phases with the multi-user dataset. All the nets achieve
a high accuracy after a low number of epochs. Moreover, the ten-
dency in both training and test are almost parallel in every case.
Fig. 6. Average categorical cross-entropy loss curves du
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The features extracted by the pretrained hidden layers of the DLNs
appear to provide a good baseline for this problem and our dataset.
With the exception of VGG19, the DLNs stall after roughly 30
ring training and test over the single-user dataset.



Table 4
Normalized confusion matrix from DenseNet over the single-user dataset.

Predicted Target

0 1 2 3 4 5 6 7 8 9

Actual Target 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 .937 0 0 0 .063 0
5 0 .040 0 0 0 .800 .120 0 0 .040
6 0 0 0 0 0 0 1 0 0 0
7 .133 0 0 0 0 0 0 .867 0 0
8 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1
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epochs. It usually comes from the fact that DLNs start to overfit to
the training data. Therefore, probably they would need more data
to keep improving the training.

Training minimizes the categorical cross-entropy loss in order
to compare the real distribution with the predicted one. The lower
the output of this function, the greater the degree of similarity of
both distributions, and the greater the expected accuracy of classi-
fication. Fig. 4 show the average evolution of this error measure in
both training and test datasets. These curves are highly negatively
correlated to the ones in Fig. 3: the higher the accuracy, the lower
the error. Here, we also observe that the best training evolution
results are obtained with the VGG19 net. Other nets tend to overfit
after the first epochs.

Table 1 shows the highest accuracy and the lowest error
achieved by every DLN architecture. The results indicate that we
have been able to get at least an accuracy of 80% with the new data.
DenseNet achieves the best result with more than 90%.

Table 2 shows a typical test confusion matrix obtained by the
retrained DenseNet on the multi-user dataset. Usually the DLNs
tend to output erroneous targets when subjects look at the target
areas located at the bottom of the display. The reason is that the
eyes are often closed in those images so that it is hard to determine
the right target under these conditions.
4.2. Single-user dataset

The proposed transfer learning architectures achieve better
results when they are evaluated on the second dataset, which is
composed of images from a single user. The learning problem
appears easier than in the multi-user case, because we remove
the data variability due to the user. Moreover, the dataset is lar-
ger than in the multi-user case. We can observe in Fig. 5 that all
DLN models achieve an accuracy greater than 80% in just a few
epochs. However, overfitting appears in the initial epochs so that
retraining the DLNs do not improve their performance anymore.
The hypothesized reason is the high similarity between all the
images in the dataset. It might be partially solved by removing
redundant data or by applying additional regularization methods
apart from the dropout layers deployed at design time. Fig. 6
shows the evolution of the loss function on learning and test
datasets. The error rate falls rapidly but it remains stable after
the first epochs.

Table 3 summarizes the highest accuracy and the lowest error
achieved by every DLN architecture after transfer learning. The
results are better than the obtained with the multi-user dataset.
All the DLN architectures achieve accuracies over 90%. DenseNet
provides the best results. Note that here the nets are learning to
classify the gaze corresponding to just one subject. This gives an
idea about how important can be to tailor the classifiers to a final
user.
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Table 4 shows a typical confusion matrix generated from Den-
seNet and the single-user dataset. The confusion error in predicted
targets follows a very similar pattern to the multi-user case.

4.3. Discussion

The models achieve competitive results with both datasets. The
test accuracy achieved over the single-user dataset is greater but
these results must be taken with care. The multi-user case could
offer the better solution for a global system or default mode, while
the single-user case has to be retrained for each particular user.

We expect that the results with the multi-user dataset should
be improved if more images from new users are added to the data-
set because the current number of images is not particularly high
and DLN methods usually require larger datasets for effective
training.

Also we have used the same structure and layers in nets for
both datasets. Probably we could modify some layers in order to
manage the overfitting problems found with the single-user data-
set, as previously commented.

5. Conclusions and further work

We have presented a method for gaze fixation detection based
on deep transfer learning in the context of behavioral activity
recognition systems. This is usually an important part of such sys-
tems. In our case wemust achieve the best performance of the gaze
tracking systems because the goal of our system is to determine
activities that a user carries out in front a computer and the inputs
come from the camera on top of the screen.

In spite of the reduced datasets used in the experiments the use
of available public pre-trained networks for domain transfer learn-
ing allows to achieve good performance with affordable computa-
tional cost. The best results according the recognition accuracy
have been reported by the DenseNet model. Other models require
lower training time or are easier to implement, so it should be con-
sidered as just one item to consider.

Future works will check innovative recent DL. Specifically, the
recommendation of the reviewers concerning the 3D-ResNet35
architecture [69,70] that promises enhanced results due to its abil-
ity to process 3D data. Another alternative for future work is to cre-
ate a new architecture from scratch. We should extend our dataset
for this endeavor, because a basic requirement of DLN training are
large datasets.
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