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Abstract

There have been developed several approaches to a quantale-valued quantitative domain theory. If the quantale Q is integral
and commutative, then Q-valued domains are Q-enriched, and every Q-enriched domain is sober in its Scott Q-valued topology,
where the topological «intersection axiom» is expressed in terms of the binary meet of Q (cf. D. Zhang, G. Zhang, Fuzzy Sets and
Systems (2022)). In this paper, we provide a framework for the development of Q-enriched dcpos and Q-enriched domains in the
general setting of unital quantales (not necessarily commutative or integral). This is achieved by introducing and applying right
subdistributive quasi-magmas on Q in the sense of the category Cat(Q). It is important to point out that our quasi-magmas on Q

are in tune with the «intersection axiom» of Q-enriched topologies. When Q is involutive, each Q-enriched domain becomes sober
in its Q-enriched Scott topology. This paper also offers a perspective to apply Q-enriched dcpos to quantale computation.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Directed sets and ideals of partially ordered sets play a significant role in the abstract theory of computation (cf.
Introduction to [3] reprinted in [4]). Typical situations are given in the semantics of programming languages and
related areas. In this paper we present a theory of quantale-enriched ideals and its relationship to a theory of quantale
computation.

In the past there have been proposed several approaches to a quantale-valued quantitative domain theory. These
include: Vickers [18], Lai and Zhang [8], Yao [19], Yao and Shi [20]. A common feature of these approaches is the
integrality and/or the commutativity of the underlying quantale — e.g. Lemma 5.3 in [8] holds only for commutative
quantales. Even though in a certain special case the definition of quantale-valued ideals are given in the spirit of
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quantale-enriched category theory (cf. Remark 3.10), the commutativity of the underlying quantale is a prevailing
property and continues to be used in even more recent publications (cf. [9]).

Motivated by flat weights in [17], Lai, Zhang, and Zhang extended the well known theory of flat ideals to a theory
of quantale-valued flat ideals (cf. [9,21]) including also its monadic basis. This development has been influenced by
Vickers’ concept of flat left modules with Q being the Lawvere quantale ([0,∞]op,+). The Lawvere quantale is
integral and therefore the binary meet in [0,∞]op is a magma operation on ([0,∞]op,→) in the sense of the category
Cat([0,∞]op) of (generalized) metric spaces (cf. [11]).

If Q is a commutative and unital quantale, then Cat(Q) is a symmetric monoidal closed category, and a property
is Q-enriched, if this property can internally be expressed in Cat(Q). On the other hand, if it cannot be expressed
in Cat(Q) internally but only in the cartesian closed category Preord of preordered sets, then the property is said
to be Q-valued. One important consequence of the previous comments is that the flatness of left modules is a
[0,∞]op-enriched property in Cat([0,∞]op) and consequently flat left modules are [0,∞]op-enriched ideals.

In contrast to Vickers, the authors of [9,21] have omitted the integrality of the underlying quantale Q, one exception
being Theorem 4.10 in [21]. As a result, the flatness property of Q-valued ideals in [9,21] is not Q-enriched, but, in
general, only Q-valued. Indeed, if Q is a commutative, unital and non-integral quantale, then the binary meet ∧ on the
Q-enriched category (Q,←) is not a magma operation, and consequently ((Q,←),∧) is not a magma in the sense
of Cat(Q) (see Remark 2.1 (3) and Remark 3.3 (5)).

The simplest commutative and unital quantale illustrating this situation is the unital and non-integral quantale on
the 3-chain {⊥, e,	} where the multiplication is given by Peirce’s �-operator (cf. [10] and [2, Ex. 2.2.1 (19)]). In
particular, it is worthwhile to note that {⊥, e,	} is a unital subquantale of every unital and non-integral quantale.

To sum up, an essential part of [21] is not written in the framework of quantale-enriched category theory and the
commutativity of the underlying quantale is also an unnecessary restriction.

In this paper we overcome these shortcomings and develop a theory of Q-enriched ideals based on quasi-magmas
operating on unital and not necessarily commutative quantales. It is worthwhile to point out that quasi-magmas on
unital quantales have been already introduced in [7] and can be understood as a special class of operations having
their origin in the «intersection axiom» of Q-enriched topologies.

The paper is organized as follows. Since from the perspective of enriched category theory the binary meet occurring
in the flatness axiom of Q-ideals can only play its role for integral quantales (see Remark 2.1 (3) and Remark 3.3 (5)),
we need alternative operations replacing the binary meet in the context of unital and non-integral quantales. Therefore
we begin with a detailed study of subdistributive quasi-magmas. Based on these results we develop the most significant
properties of Q-enriched ideals including its monadic basis (cf. Sect. 4). The essence of this approach is the category
of Q-enriched dcpos (Q-dcpos for short) and the concept of Q-domains. If Q is involutive, then we also introduce the
Scott Q-topology and establish the following:

(1) If Q has a dualizing element, then the Scott Q-topology is Q-enriched order-consistent. In particular, Q-joins of
Q-ideals are limit points of their Q-enriched section filter (cf. Proposition 5.5).

(2) Every Q-domain with its Scott Q-topology is a sober Q-topological space (cf. Theorem 5.9).

With regard to Computer Science we explain the role of Q-ideals of right Q-modules for quantale computation (cf.
Sect. 6). In this context it is interesting to see that there exist projective right Q-modules, which are not Q-domains.

1. Some preliminaries on non-commutative unital quantales

Let Sup be the monoidal closed category of complete lattices and join-preserving maps. A unital quantale Q =
(Q,∗) is a monoid in Sup. The unit will always be denoted by e. The opposite quantale Qop = (Q,∗op) has the
opposite multiplication α ∗op β = β ∗ α.

Every right Q-module (M,�) in Sup induces a hom-object assignment M × M
p−→ Q given by

p(t, s) = ∨{α ∈ Q | t � α ≤ s }, t, s ∈ M. (1.1)

Then (M,p) is a cocomplete Qop-enriched category (Qop-category for short), and the Qop-enriched unit axiom and
composition law attain the following forms:

e ≤ p(t, t) and p(t, s) ∗ p(s, r) ≤ p(t, r), t, s, r ∈ M. (1.2)
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Further, (M,p) is skeletal — i.e. the property e ≤ p(s, t) ∧ p(t, s) implies s = t . So, Q-joins and Q-meets exist
in (M,p). For more details the reader is referred to [7, Sect. 2] or [2, Sect. 3.3]. In [2], skeletal Qop-categories are
called antisymmetric Q-preordered sets. Finally, a Qop-functor between Qop-categories (X,pX) and (Y,pY ) is a map

X
ϕ−→ Y satisfying the condition pX(x1, x2) ≤ pY (ϕ(x1), ϕ(x2)) for all x1, x2 ∈ X.
Since Q is a right Q-module with � being the right multiplication of ∗, the associated hom-object assignment

p(α,β) is just the right-implication in Q:

α ↘ β = ∨{γ ∈ Q | α ∗ γ ≤ β }, α,β ∈ Q.

Since Q is a left Q-module w.r.t. the left multiplication of ∗, the dual lattice of Q, i.e. Q† = (Q,≤op), is a right
Q-module with � determined by (cf. [2, Prop. 3.1.1 (b)]):

β � α = α ↘ β, α,β ∈Q,

and the associated hom-object assignment now becomes the left-implication in Q:

β ↙ α = ∨{γ ∈ Q | γ ∗ α ≤ β }, α,β ∈ Q.

We need some more notation and terminology. The bottom and top elements of Q are denoted by ⊥ and 	. The
binary meet and binary join in Q are standardly denoted by ∧ and ∨. An α ∈ Q is left-sided (resp. right-sided) if
	 ∗ α ≤ α (resp. α ∗ 	 ≤ α). It is two-sided if it is left-sided and right-sided. A unital quantale Q is integral if e = 	.
It is divisible if for all α,β ∈ Q with β ≤ α there exist γ1, γ2 ∈ Q such that α ∗ γ1 = β = γ2 ∗ α. Every unital and
divisible quantale is integral, and then:

α ∗ (α ↘ β) = α ∧ β = (β ↙ α) ∗ α, α,β ∈ Q.

An element δ ∈Q is dualizing if

δ ↙ (α ↘ δ) = α = (δ ↙ α) ↘ δ

for all α ∈ Q. Every quantale with a dualizing element is unital. In general a unital quantale can have more than one
dualizing element (see Example 2.19 infra). A unital and commutative quantale Q is a complete MV -algebra, if Q is
divisible and has a dualizing element, which necessarily coincides with ⊥.

A quantale Q with an order-preserving involution Q
′−→ Q is an involutive quantale if ′ is an anti-homomorphism

— i.e. (α ∗ β)′ = β ′ ∗ α′ for all α,β ∈Q. For more details on quantales we refer to [2].

2. Quantale-enriched presheaves, magmas, quasi-magmas and subdistributivity

Let (X,p) be a Qop-category. A contravariant Q-presheaf f on (X,p) is a Qop-functor (X,p)
f−→ (Q,↙) — i.e.

a Q-valued map satisfying the condition

p(y, x) ∗ f (x) ≤ f (y)

for all x, y ∈ X. A covariant Q-presheaf g on (X,p) is a Qop-functor (X,p)
g−→ (Q,↘) — i.e. a Q-valued map

satisfying the condition

g(x) ∗ p(x, y) ≤ g(y)

for all x, y ∈ X. We denote by P(X,p) and P†(X,p) the complete lattices of all contravariant and covariant
Q-presheaves on (X,p) under pointwise ordering, respectively. The bottom and top elements are the constant maps
⊥ and 	 (here and elsewhere α ∈QX is the constant map with value α).

If Q is a commutative and unital quantale, then we recall that the category Cat(Q) of Q-categories and Q-functors
is a symmetric monoidal closed category with respect to the tensor product (X,pX) ⊗ (Y,pY ) = (X × Y,pX ⊗ pY ),
where (cf. [2, Ex. 3.3.9]):

(pX ⊗ pY )
(
(x1, y1), (x2, y2)

) = pX(x1, x2) ∗ pY (y1, y2), x1, x2 ∈ X, y1, y2 ∈ Y.
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A magma on a Q-category (X,p) in the sense of Cat(Q) (cf. [2, Sect. 1.1]) is determined by a Q-functor

(X,p) ⊗ (X,p)
�−→ (X,p) — i.e. a binary operation on (X,p) in the sense of Cat(Q). It follows immediately from

the enriched composition law of (X,p) (cf. (1.2)) that a binary operation � on X (in the sense of Set) is a binary
operation on (X,p) (in the sense of Cat(Q), where Q is of course commutative) if and only if � satisfies the following
condition:

p(x1, x2) ≤ p(x1 � x, x2 � x) and p(x1, x2) ≤ p(x � x1, x � x2), x, x1, x2 ∈ X. (2.1)

A magma morphism ((X,pX),�X)
ϕ−→ ((Y,pY ),�Y ) is a Q-functor (X,pX)

ϕ−→ (Y,pY ) making the following dia-
gram commutative (cf. [2, Sect. 1.1]):

(X,pX) ⊗ (X,pX)
ϕ⊗ϕ

�X

(Y,pY ) ⊗ (Y,pY )

�Y

(X,pX)
ϕ

(Y,pY )

We infer from (2.1) that in the context of Cat(Q) a magma morphism ((X,pX),�X)
ϕ−→ ((Y,pY ),�Y ) is a

Q-functor (X,pX)
ϕ−→ (Y,pY ) satisfying the additional property ϕ(x1 �X x2) = ϕ(x1) �Y ϕ(x2) for all x1, x2 ∈ X.

Remark 2.1. Let Q be a commutative unital quantale. Then Q and Qop coincide, the right implication ↘ is simply
denoted by → (and so α ↙ β = β → α = α ← β), and (Q,←) is a Q-category. Referring to (2.1) a magma on
(Q,←) in the sense of Cat(Q) is determined by a binary operation � on Q satisfying the additional condition:

α2 → α1 ≤ (α2 � α) → (α1 � α) and α2 → α1 ≤ (α � α2) → (α � α1), α,α1, α2 ∈ Q. (2.2)

Since Q is commutative, we can apply the relations α ≤ β → (α ∗ β) and γ ≤ β → (β ∗ γ ) and conclude that (2.2) is
equivalent to the requirement that the binary operation � on Q is isotone in each variable separately and the following
property holds

α ∗ (β � γ ) ≤ (α ∗ β) � γ and (α � β) ∗ γ ≤ α � (β ∗ γ ), α,β, γ ∈ Q. (2.3)

As an immediate corollary of the previous observations we obtain:

(1) The quantale multiplication ∗ always determines a magma on (Q,←) in the sense of Cat(Q).

(2) If Q is integral, then the binary meet ∧ also determines a magma on (Q,←).

(3) If Q is a unital and non-integral quantale, then 	 �≤ e and so 	 = 	 → 	 �≤ (	 ∧ e) → (	 ∧ e) = e. Hence we
conclude from (2.2) that the binary meet never determines a magma on (Q,←) in the sense of Cat(Q), but only a
magma in the cartesian closed category Preord of preordered sets.

From the point of view of enriched category theory it is therefore important to realize that in the case of non-integral
quantales the binary meet in Q does not qualify for a binary operation in the sense of Cat(Q).

After this digression on magmas in Cat(Q) for commutative and unital quantales we now return to the general
setting of quantales.

The following notion of a quasi-magma on a unital, not necessarily commutative quantale has been introduced in
[7, Def. 1]. It plays a crucial role in the «intersection axiom» of Q-enriched topologies (as defined in Sect. 5). In this
context the formula (2.3) derived in the case of commutative quantales can be understood as a motivation for the next
definition.

Definition 2.2. Let Q be a unital quantale and � be an isotone binary operation on Q. Then (Q,�) is called a quasi-
magma on Q (sometimes for short: quasi-magma) if � satisfies condition (2.3) — i.e. if

α ∗ (β � γ ) ≤ (α ∗ β) � γ and (α � β) ∗ γ ≤ α � (β ∗ γ )

for all α,β, γ ∈ Q. A quasi-magma (Q,�) is commutative or idempotent if � is commutative or idempotent.
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A sketch of the role of quasi-magmas from the perspective of Q-enriched category theory is given in [7, Sect. 3].

Remark 2.3. (1) It follows immediately from Remark 2.1 that for Q a commutative unital quantale, quasi-magmas
on Q and magmas on (Q,→) in the sense of Cat(Q) are equivalent concepts.

(2) For Q a unital, not necessarily commutative quantale, (Q,∧) is a quasi-magma if and only if Q is integral.
The sufficiency is clear. For the necessity: 	 = 	 ∗ (e ∧ e) ≤ (	 ∗ e) ∧ e = e. An example of an integral and non-
commutative quantale in which ∧ is a quasi-magma operation is the 4-chain {⊥, a, b,	} with ⊥ < a < b < 	 and the
following multiplication table:

∗ ⊥ a b 	
⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥ a

b ⊥ a b b

	 ⊥ a b 	
(3) Quasi-magmas (Q,�) with � �= ∧ play a significant role for unital and non-integral quantales. In particular (Q,∗)

is always a quasi-magma.

The operations ∗ and � extend pointwisely to isotone binary operations on QX : if f,g ∈ QX , then (f ∗ g)(x) =
f (x) ∗ g(x) for all x in X. The same for f � g. We now provide necessary and sufficient conditions under which
contravariant (resp. covariant) Q-presheaves are closed under �. In a certain sense, these conditions are about to what
extent ∗ distributes over � from the left or from the right. We need the following terminology:

Definition 2.4. Let (Q,�) be a quasi-magma and let α,β, γ ∈Q. The quasi-magma is called:

(1) left subdistributive if α ∗ (β � γ ) ≤ (α ∗ β) � (α ∗ γ ),

(2) right subdistributive if (β � γ ) ∗ α ≤ (β ∗ α) � (γ ∗ α),

(3) subdistributive if it is left and right subdistributive.

Proposition 2.5. A quasi-magma (Q,�) on Q is left subdistributive if and only if the complete lattice P(X,p) is
closed under � for any Qop-category (X,p).

Proof. Sufficiency: Choose (Q,↙) as (X,p). For α,β, γ ∈ Q, we define contravariant Q-presheaves fβ and fγ on
(Q,↙) by:

fβ(δ) = δ ∗ β and fγ (δ) = δ ∗ γ, δ ∈Q.

By hypothesis fβ � fγ is a contravariant Q-presheaf on (Q,↙). An evaluation of fβ � fγ at e and α leads to

α ∗ (β � γ ) = (α ↙ e) ∗ (fβ � fγ )(e) ≤ (fβ � fγ )(α) = (α ∗ β) � (α ∗ γ ).

Necessity: If (Q,�) is left subdistributive and f1 and f2 are contravariant Q-presheaves on (X,p), then:

p(y, x) ∗ (f1 � f2)(x) ≤ (
p(y, x) ∗ f1(x)

) � (
p(y, x) ∗ f2(x)

) ≤ (f1 � f2)(y)

for each x, y ∈ X. Hence f1 � f2 is again a contravariant Q-presheaf. �
Another characterization of left subdistributivity allows a semantical understanding within many-valued logics. To

see this, fix α1, α2 ∈Q and consider the contravariant Q-presheaf f(α1,α2) on (Q,↘) defined by:

f(α1,α2)(γ ) = ∨
β∈Q

(γ ↘ β) ∗ (
(β ↘ α1) � (β ↘ α2)

)
, γ ∈Q.

We compute the Q-join of f(α1α2) denoted by α1 �� α2 and obtain

α1 �� α2 = ∨
γ ∗ f(α1,α2)(γ ) = ∨

β ∗ (
(β ↘ α1) � (β ↘ α2)

)
.

γ∈Q β∈Q
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If we think of � as a «vague conjunction», then α1 �� α2 can be viewed as the vague meet of α1 and α2 in (Q,↘). If
Q is integral and � = ∧, then �� = ∧.

Corollary 2.6. A quasi-magma (Q,�) on Q is left distributive if and only if � = �� — i.e. � is the vague meet operation
on (Q,↘) w.r.t. �.

Proof. Left distributivity implies � = ��. If � = ��, then for α,β, γ ∈ Q we have

α ∗ (β � γ ) ≤ α ∗ (
(α ↘ (α ∗ β)) � (α ↘ (α ∗ γ ))

) ≤ (α ∗ β) � (α ∗ γ ). �
Proposition 2.7. A quasi-magma (Q,�) on Q is right subdistributive if and only if, given a Qop-category (X,p), the
lattice P†(X,p) is closed under �.

Proof. If we replace (Q,↙) by (Q,↘) and use

gβ(δ) = β ∗ δ and gγ (δ) = γ ∗ δ, δ ∈Q,

then the proof of Proposition 2.5 carries over. �
For the right subdistributivity we have a semantical characterization too. To see this, let α1, α2 ∈ Q and let g(α1,α2)

be a covariant Q-presheaf on (Q,↙) defined by

g(α1,α2)(γ ) = ∨
β∈Q

(
(α1 ↙ β) � (α2 ↙ β)

) ∗ (β ↙ γ ), γ ∈ Q.

The Q-meet of g(α1α2) is equal to

α1 �r α2 := ∨
γ∈Q

g(α1,α2)(γ ) ∗ γ = ∨
β∈Q

(
(α1 ↙ β) � (α2 ↙ β)

) ∗ β.

Since the underlying order of (Q,↙) is the dual order of Q, we consider α1 �r α2 as the vague join of α1 and α2 in
(Q,↙).

Corollary 2.8. A quasi-magma (Q,�) on Q is right distributive if and only if � = �r — i.e. � is the vague join
operation on (Q,↙) w.r.t. �.

There is another interesting property of quasi-magmas which has its origin in the theory of probabilistic metric
spaces (cf. [13, Def. 12.7.2]). Let us call a quasi-magma (Q,�) dominating if for all α,α1, α2, β1, β2 ∈Q the follow-
ing hold:

(D1) α ≤ (α � e) ∧ (e � α).
(D2) (α1 � α2) ∗ (β1 � β2) ≤ (α1 ∗ β1) � (α2 ∗ β2).

Since (D1) and (D2) imply α ∗ β ≤ α � β for all α,β ∈ Q, the terminology is justified.
Note that a dominating quasi-magma satisfying α ≤ α � α for all α ∈ Q is always subdistributive.

2.1. The quasi-magma (Q,∗)

Recall from Remark 2.3 that with � = ∗, each quantale (Q,∗) becomes a quasi-magma.

Proposition 2.9. Consider (Q,∗) as a quasi-magma. Let α,β ∈Q be arbitrary. Then (Q,∗) is:

(1) left subdistributive if and only if α ∗ β ≤ α ∗ β ∗ α,

(2) right subdistributive if and only if β ∗ α ≤ α ∗ β ∗ α,

(3) subdistributive if and only if (α ∗ β) ∨ (β ∗ α) ≤ α ∗ β ∗ α,

(4) dominating if and only if it is commutative.

Moreover, if (Q,∗) is commutative, then it is subdistributive if and only if α ≤ α ∗ α for all α ∈ Q.
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Remark 2.10. (1) An integral quantale is left (right) subdistributive if and only if it is idempotent. Each integral and
idempotent quantale is commutative (cf. [2, Lem. 2.3.4 (ii)]), and consequently its multiplication is the binary meet
— i.e. it is a frame.

(2) If (Q,∗) is left subdistributive, then α ≤ α ∗ α ≤ α ∗ 	 ≤ 	 ∗ α for all α ∈ Q.

(3) If (Q,∗) is right subdistributive, then α ≤ α ∗ α ≤ 	 ∗ α ≤ α ∗ 	 for all α ∈Q.

(4) If (Q,∗) is subdistributive, then the top element commutes with every element of Q.

In what follows we present a general construction of left (right) subdistributive quasi-magmas (Q,∗).

Remark 2.11. Let Q be a unital quantale such that the subquantale L(Q) of all left-sided elements and the subquantale
R(Q) of all right-sided elements of Q are idempotent. Further, let QL and QR be the unital subquantales generated
by L(Q) and R(Q), — i.e.

QL = L(Q) ∪ {α ∨ e | α ∈ L(Q) } and QR = R(Q) ∪ {α ∨ e | α ∈R(Q) }.
(1) The subquantale (QL,∗) is right subdistributive. In fact, we first note that if α,β ∈ L(Q) then β ∗ α ∈ L(Q) is

idempotent and β ∗ α ≤ 	 ∗ α = α and so

β ∗ α = (β ∗ α) ∗ (β ∗ α) ≤ α ∗ β ∗ α ≤ 	 ∗ β ∗ α = β ∗ α.

Hence the right subdistributivity of (QL,∗) follows from:

β ∗ α = α ∗ β ∗ α,

(β ∨ e) ∗ α = α = α ∗ (β ∨ e) ∗ α,

β ∗ (α ∨ e) = (β ∗ α) ∨ β = (α ∨ e) ∗ β ∗ (α ∨ e),

(β ∨ e) ∗ (α ∨ e) = β ∨ α ∨ e = (α ∨ e) ∗ (β ∨ e) ∗ (α ∨ e).

(2) The left subdistributivity of (QR,∗) follows analogously to (1).

(3) To illustrate (1) and (2), consider the 3-chain C3 = {⊥, a,	}. The unital quantale Q of all join-preserving self-
maps of C3 has the following Hasse diagram and the multiplication table (cf. [2, Ex. 2.6.2]):

	

1

a� ar

b

⊥

�� ��

����

∗ ⊥ b a� ar 1 	
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ b ⊥ b ar

a� ⊥ ⊥ a� ⊥ a� 	
ar ⊥ b b ar ar ar

1 ⊥ b a� ar 1 	
	 ⊥ a� a� 	 	 	

Obviously L(Q) = {⊥, a�,	} and R(Q) = {⊥, ar ,	} are non-commutative and idempotent subquantales. Hence
the 4-chain QL = {⊥, a�,1,	} is right subdistributive and the 4-chain QR = {⊥, ar ,1,	} is left subdistributive.
Both QL and QR are unital and fail to be subdistributive.

It is not difficult to see that left (right) subdistributivity of unital quantales is inherited by the tensor product. In the
next proposition, which will be needed in Sect. 5, we restrict our interest only to subdistributivity.

Proposition 2.12. If (Q1,∗1) and (Q2,∗2) are subdistributive and unital quantales, then so is the tensor product
(Q1 ⊗Q2, 	).
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Proof. The tensor product (Q1 ⊗ Q2, 	) of unital quantales Q1 and Q2 is always a unital quantale (cf. [2, p. 92]).
Further, let f,g ∈Q1 ⊗Q2 be tensors with the following representation:

f = ∨
i∈I

αi
1 ⊗ αi

2, and g = ∨
j∈J

β
j
1 ⊗ β

j
2 .

Then we obtain the following relation from the subdistributivity of Q1 and Q2:(
αi

1 ⊗ αi
2

)
	 g = ∨

j∈J

(
αi

1 ∗1 β
j
1

) ⊗ (
αi

2 ∗2 β
j
2

)
≤ ∨

j∈J

(
αi

1 ∗1 β
j

1 ∗1 αi
1

) ⊗ (
αi

2 ∗2 β
j

2 ∗2 αi
2

)
= (

αi
1 ⊗ αi

2

)
	 g 	

(
αi

1 ⊗ αi
2

)
≤ f 	 g 	 f.

Hence f 	 g ≤ f 	 g 	 f follows. Analogously we verify g 	 f ≤ f 	 g 	 f . �
Corollary 2.13. If (Q,∗) is subdistributive and unital, then so is (Q⊗Qop, 	). It is also involutive with

(α ⊗ β)′ = β ⊗ α, α,β ∈ Q,

on elementary tensors.

Proof. By Proposition 2.9 (3), (Q,∗) is subdistributive if and only if (Q,∗op) is subdistributive. Hence the first
assertion follows from Proposition 2.12. On the other hand, by the universal property of the tensor product there exists
a unique join preserving map Q⊗Qop ι−→ Q⊗Qop such that ι(α ⊗ β) = β ⊗ α for all α,β ∈Q. We show that ι is an
anti-homomorphism and an involution. For this purpose it is sufficient to consider elementary tensors only. Therefore
we choose α,β, γ, δ ∈ Q and observe:

ι
(
(α ⊗ β) 	 (γ ⊗ δ)

) = (β ∗op δ) ⊗ (α ∗ γ ) = (δ ∗ β) ⊗ (γ ∗op α) = ι(γ ⊗ δ) 	 ι(α ⊗ β).

Hence ι is an anti-homomorphism. Since ι ◦ ι = 1Q⊗Qop , (Q⊗Qop, 	, ι) is an involutive quantale. �
An illustration of the previous corollary is given in the next example.

Example 2.14. Let C5 = {⊥, e, a, b,	} be the 5-chain with ⊥ < e < a < b < 	. On C5 there is the following
quantale multiplication:

∗ ⊥ e a b 	
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
e ⊥ e a b 	
a ⊥ a a 	 	
b ⊥ b b 	 	
	 ⊥ 	 	 	 	

Then Q5 = (C5,∗, e) is a non-commutative unital quantale. It follows from Proposition 2.9 (3) that it is also sub-
distributive. By Corollary 2.13, Q5 ⊗Q

op

5 is a non-commutative, involutive, subdistributive and unital quantale — a
quantale structure, which will be needed in the context of the quantale-enriched Scott topology (cf. Sect. 5).

2.2. The semi-dominating quasi-magma

Given a unital quantale Q, the operation

α � β = (α ∗ 	) ∧ (	 ∗ β), α,β ∈ Q,

determines a quasi-magma (Q,�) on Q and is called the semi-dominating quasi-magma associated with Q.
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Remark 2.15. (1) Since α � α = (α � e) ∧ (e � α) = (α ∗ 	) ∧ (	 ∗ α) for all α ∈ Q, it follows that (Q,�) satisfies
the axiom (D1). This justifies the terminology chosen.

(2) If Q is integral, then � = ∧ and observe that (Q,∧) is a commutative and idempotent quasi-magma (see also
Remark 2.3 (2)).

Proposition 2.16. The semi-dominating quasi-magma associated with Q is:

(1) left subdistributive if and only if every left-sided element of Q is two-sided, i.e. α ∗ 	 ≤ 	 ∗ α for all α ∈ Q,

(2) right subdistributive if and only if every right-sided element of Q is two-sided, i.e. 	 ∗ α ≤ α ∗ 	 for all α ∈Q,

(3) subdistributive if and only if the top element commutes with every element of Q,

(4) dominating if and only if it is subdistributive.

Proof. Let (Q,�) be the semi-dominating quasi-magma. If (Q,�) is left subdistributive and α is left-sided, then

α ∗ 	 = α ∗ (e � e) ≤ α � α = (α ∗ 	) ∧ (	 ∗ α) ≤ 	 ∗ α = α.

Hence every left-sided element is two-sided. On the other hand, if every left-sided element is two-sided, then for every
α,β, γ ∈Q the relation

α ∗ (β � γ ) ≤ (α ∗ β ∗ 	) ∧ (α ∗ 	 ∗ γ ) ≤ (α ∗ β ∗ 	) ∧ (	 ∗ α ∗ γ ),

holds. Hence (Q,�) is left subdistributive, and (1) is verified. The proof of (2) is analogous and (3) follows immedi-
ately from (1) and (2). The necessity in (4) is evident, because (D1) and (D2) implies (α ∗ 	) ∨ (	 ∗ α) ≤ α � α. In
order to show that subdistributivity is also sufficient for the dominance of (Q,�), we first recall that (Q,�) satisfies
(D1). Then we conclude from (3)

(α1 � α2) ∗ (β1 � β2) ≤ (α1 ∗ 	 ∗ β1 ∗ 	) ∧ (	 ∗ α2 ∗ 	 ∗ β2) = (α1 ∗ β1) � (α2 ∗ β2).

Hence (D2) is verified. �
Corollary 2.17. The semi-dominating quasi-magma associated with Q is:

(1) commutative if and only if it is subdistributive.
(2) commutative and idempotent if and only if Q is integral, i.e. if and only if � = ∧.

Proof. Since α � e = α ∗ 	 and e � α = 	 ∗ α, (1) follows immediately from Proposition 2.16 (3). Further, (2) is a
corollary of (1). �
Remark 2.18. Here we do not assume that the subquantales L(Q) and R(Q) of Remarks 2.11 are idempotent. Further,
on QL we consider the semi-dominating quasi-magma (QL,�) associated with QL. Since every right-sided element
of QL is two-sided, the quasi-magma (QL,�) is right subdistributive. Analogously, (QR,�) is left subdistributive.

Another source of non-commutative, involutive, unital and non-integral quantales are non-commutative groups. In
this type of unital quantales every element is dualizing (see [6, Sect. 5.2]). We sketch the situation here:

Example 2.19. Let (G, ·) be a non-commutative group viewed as partially ordered group w.r.t. the discrete order on
G. Then · can be extended to a quantale multiplication ∗ on the MacNeille completion QG of G as follows:

α ∗ 	 = 	 ∗ 	 = 	 = 	 ∗ α and α ∗ ⊥ = ⊥ ∗ ⊥ = ⊥ = ⊥ ∗ α

for all α ∈ G. The order-preserving involution ′ on QG is defined by:

⊥′ = ⊥, 	′ = 	, α′ = α−1, α ∈ G.

Finally, every element of G is a dualizing element of QG = (QG,∗, e) where e is the unit of G. The operation � of
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the semi-dominating quasi-magma associated with (QG,∗, e) has the form:

α � β =
{

	, α �= ⊥ and β �= ⊥,

⊥, α = ⊥ or β = ⊥
where α,β ∈ QG. Obviously, (QG,�) is subdistributive and � is join-preserving in each variable separately.

2.3. The monoidal mean operator

Let us consider a complete MV -algebra (Q,∗) with square roots – i.e. the right adjoint map α �−→ α1/2 of the
formation of squares satisfies the property α = α1/2 ∗ α1/2 for all α ∈ Q (cf. [2, p. 189]). Then the monoidal mean
operator � defined by

α � β = α1/2 ∗ β1/2, α,β ∈Q,

induces an idempotent, commutative and dominating (hence subdistributive) quasi-magma (Q,�) on Q.
If the real unit interval [0,1] is viewed as an MV -algebra provided with the Łukasiewicz arithmetic conjunction

α ∗ β = max(α + β − 1,0), α,β ∈ [0,1],
then the monoidal mean operator coincides with the binary arithmetic mean (cf. [7, Ex. 1 (c)]).

It follows immediately from Propositions 2.9 (3) and 2.16 (3) that there exist non-commutative and unital quan-
tales on which we have more than one structure of a left (right) subdistributive quasi-magma — e.g. there exist left
(right) subdistributive quasimagmas (Q,∗), which are different from the semi-dominating quasi-magma of Q (cf.
Example 2.14). A similar situation occurs also in the commutative setting represented by complete MV -algebras
(Q,∗) with square roots. Since a complete MV -algebra Q is an integral quantale, we have here at least two different
quasi-magmas (Q,∧) and (Q,�) on Q, where � is the monoidal mean operator of Q.

3. Flat contravariant Q-presheaves and Q-ideals

Let (X,p) be a Qop-category. Let us recall that P†(X,p) stands for the complete lattice of all covariant
Q-presheaves on (X,p), which is a left Q-module w.r.t. the left quantale multiplication of Q. Hence its dual lat-
tice is a right Q-module w.r.t to the right action � determined by (cf. [2, Prop. 3.1.1 (b)]):

(g � α)(x) = α ↘ g(x), α ∈Q, g ∈P†(X,p).

Thus, the associated hom-object assignment d† has the following form:

d†(g1, g2) = ∧
x∈X

(
g1(x) ↙ g2(x)

)
, g1, g2 ∈ P†(X,p).

We are going now to recall the construction of weighted colimits in the special setting of the Qop-category (Q,↘).
Let f be a contravariant Q-presheaf on (X,p). In order to see how the f -weighted colimit of a covariant Q-presheaf
g ∈ P†(X,p) looks like,1 we first consider the «image of f under g» — i.e. the contravariant Q-presheaf g(f ) on
(Q,↘) determined by

g(f )(α) = ∨
x∈X

(α ↘ g(x)) ∗ f (x), α ∈ Q.

Since (Q,∗) is a right Q-module (with ∗ as the right action), the Qop-category (Q,↘) is cocomplete and has conse-
quently Q-joins. Then

sup(g(f )) ↘ β = ∧
α∈Q

(
g(f )(α) ↘ (α ↘ β)

) = ∧
x∈X

(
f (x) ↘ (g(x) ↘ β)

)
for all β ∈ Q, where sup denotes the formation of Q-joins in (Q,↘).

1 In the case of commutative and unital quantales Q see also [1, Definition 6.6.4]. Also in the non-commutative case we recall that g ∈P†(X,p)

is always a Qop -functor (X,p)
g−→ (Q,↘).
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Hence the f -weighted colimit of g is given by:

sup(g(f )) = ∨
x∈X

(g ∗ f )(x). (3.1)

Obviously, the formation of weighted f -colimits determines a Qop-functor
(
P†(X,p), d†

) �f−−→ (Q,↙). With regard
to (3.1) the action of �f on objects of P†(X,p) has the following explicit form:

�f (g) = ∨
x∈X

(g ∗ f )(x), g ∈ P†(X,p).

Remark 3.1. Let Q be a commutative unital quantale and � be a right subdistributive quasi-magma operation on
Q. Then by right subdistributivity we have that P†(X,p) is closed under � (see Proposition 2.7). Moreover, the
quasi-magma properties guarantee that both ((Q,←),�) and

(
(P†(X,p), d†),�)

are magmas in Cat(Q) (cf. Re-

mark 2.3 (1)). Hence the formation of f -weighted colimits
(
(P†(X,p), d†),�) �f−−→ ((Q,←),�) is a magma mor-

phism in Cat(Q) if and only if

�f (g1) � �f (g2) = ( ∨
x∈X

(g1 ∗ f )(x)
) � ( ∨

x∈X

(g2 ∗ f )(x)
) = ∨

x∈X

((g1 � g2) ∗ f )(x) = �f (g1 � g2)

holds for each g1, g2 ∈ P†(X,p).
Note that the binary meet ∧ is a right subdistributive operation in the sense that it satisfies the condition (2) in

Definition 2.4, and hence P†(X,p) is also closed under � = ∧, but in general
(
(P†(X,p), d†),∧)

is not a magma
in Cat(Q). The details are as follows. With every x ∈ X we can associate a covariant Q-presheaf x̃† defined by
x̃†(z) = p(x, z) for all z ∈ X. If X contains now an element x0 such that p(x0, x0) is not left-sided, then the relation

e ≤ d†(x̃0
†, x̃0

†) �= 	
holds and forces the non-integrality of Q. Hence we conclude 	 = d†

(	,	) �≤ d†
(
(	 ∧ x̃0

†), (	 ∧ x̃0
†)

)
and realize

that the relation (2.1) is violated.
If Q is non-integral and X = {·} is a singleton with p(·, ·) = e, then (P†(X,p), d†) ∼= (Q,←) is a typical example

for this situation (cf. Remark 2.1 (3)). Hence, in general, an unlimited use of the binary meet on Q leads, in general,
outside of Cat(Q).

After these preparations we now extend the concept of flat left modules (cf. [18]) to the setting of arbitrary
unital, not necessarily commutative quantales, where we reserve the adjective «flat» for the related contravariant
Q-presheaves. Since we want to work internally in Cat(Q), we restrict our interest to right subdistributive quasi-
magmas on Q and lay down the following

Standing Assumption. In this section (Q,�) is always a right subdistributive quasi-magma, if not otherwise stated.
Consequently P†(X,p) is closed under � (see Proposition 2.7).

Definition 3.2. Let f be a contravariant Q-presheaf on a Qop-category (X,p). We say that f is inhabited if

(P1)
∨

x∈X 	 ∗ f (x) = 	.

We say that f is �-flat if

(P2)
(∨

x∈X(g1 ∗ f )(x)
) � (∨

x∈X(g2 ∗ f )(x)
) ≤ ∨

x∈X((g1 � g2) ∗ f )(x)

for all covariant Q-presheaves g1 and g2 on (X,p).
If f is both inhabited and �-flat, we say that it is a Q-enriched ideal (Q-ideal for short) on (X,p).

Remark 3.3. (1) If the hom-object assignment p of a Qop-category (X,p) is induced by a right action � of a right
Q-module X (cf. (1.1)), then the relation p(⊥, x) = 	 holds for all x ∈ X. Hence the condition (P1) is equivalent to
f (⊥) = 	 and consequently equivalent to the requirement

∨
x∈X f (x) = 	 expressing the intuitionistic concept of

nonemptiness.
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(2) The right subdistributivity of (Q,�) implies that the inequality in (P2) is in fact an equality.

(3) The property (P1) is a nonemptiness condition (cf. (1)), which can be rewritten as �f (	) = 	, while (P2) is a
special preservation property, which can be rewritten as �f (g1) � �f (g2) = �f (g1 � g2) for all g1, g2 ∈ P†(X,p).

(4) If Q is commutative and (Q,�) is a right subdistributive quasi-magma (cf. Remark 3.1), then a contravari-
ant Q-presheaf f is a Q-ideal if and only if the formation of f -weighted colimits �f is a magma morphism from(
(P†(X,p), d†),�)

to
(
(Q,←),�)

in the sense of Cat(Q) satisfying the additional condition �f (	) = 	. Hence
Q-ideals form a Q-enriched extension of flat left modules in the sense of Vickers to the scope of unital and commuta-
tive quantales. If we now view quasi-magmas as counterpart of Q-enriched magmas in the non-commutative setting
(cf. [7, Section 3]), then Q-ideals form even a Q-enriched extension of flat left modules in the sense of Vickers to the
scope of unital and not necessarily commutative quantales.

(5) If Q is a commutative, unital and non-integral quantale, then the binary meet is not a magma in Cat(Q), but only
a magma in the cartesian closed category Preord of preordered sets. Hence the flatness property with respect to ∧ is
not Q-enriched, but, in general, only Q-valued.

Example 3.4. Let (X,p) be a Qop-category. Then for each x ∈ X the contravariant Q-presheaf x̃ defined by

x̃(y) = p(y, x), y ∈ X,

is a Q-ideal. Further, the relation �x̃(g) = g(x) follows for each covariant Q-presheaf g on (X,p).

Lemma 3.5. Let Q be a unital and divisible quantale and (Q,∧) be the quasi-magma. If Q satisfies the property

α ↘ (α ∗ β) = β ∨ (α ↘ ⊥), α,β ∈Q, (3.2)

then a contravariant Q-presheaf f on (Q,↘) is a Q-ideal of (Q,↘) if and only if there exists an element αf ∈ Q

such that f = α̃f .

Proof. Since Q is divisible, Q is integral. The sufficiency follows immediately from Example 3.4. In order to verify
the necessity we choose a Q-ideal f of (Q,↘) and put αf := f (	). Then for all β ∈Q the property

f (β) ≤ β ↘ αf = α̃f (β)

follows from (	 ↘ β) ∗ f (β) ≤ f (	). Since f is inhabited, ⊥̃ ≤ f holds. Now we apply the ∧-flatness of f and
choose the following covariant Q-presheaves on (Q,↘):

g1 = 	̃† and g2 = αf ∗ ⊥̃† i.e. g1(β) = β, g2(β) = αf = f (	).

We apply the divisibility of Q and obtain:( ∨
β∈Q

g1(β) ∗ f (β)
) ∧ ( ∨

β∈Q
g2(β) ∗ f (β)

) = f (	) = αf = ∨
β∈Q

(
(αf ∧ β) ∗ f (β)

)
= ∨

β∈Q
αf ∗ (αf ↘ β) ∗ f (β) = αf ∗ f (αf ).

Then we infer from (3.2) that 	 = f (αf ) ∨ (αf ↘ ⊥) = f (αf ) holds, where we have also applied ⊥̃ ≤ f . So we
obtain α̃f (β) = β ↘ αf = (β ↘ αf ) ∗ f (αf ) ≤ f (β). �
Comment. It should be noticed that the hypothesis of Lemma 3.5 covers any complete MV -algebra (cf. [2,
Cor. 2.7.4 (ii)]).

The following characterizes �-flatness of contravariant Q-presheaves under the assumption that � preserves arbi-
trary joins in each variable separately (note that this property is satisfied by the quantale multiplication in Subsec-
tion 2.1 and by the semi-dominating quasi-magma provided the underlying lattice of Q is a frame in Subsection 2.2.
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Proposition 3.6. Every �-flat contravariant Q-presheaf f on a Qop-category (X,p) satisfies the condition:(
α1 ∗ f (x1)

) � (
α2 ∗ f (x2) ≤ ∨

x∈X

(
(α1 ∗ p(x1, x)) � (α2 ∗ p(x2, x))

) ∗ f (x) (3.3)

for all α1, α2 ∈ Q and x1, x2 ∈ X. If the operation of the quasi-magma (Q,�) is join-preserving in each variable
separately, then condition (3.3) is also sufficient for the �-flatness of f .

Proof. Let f be a �-flat contravariant Q-presheaf of (X,p). Then (3.3) is an immediate corollary of (P2). In order
to show that (3.3) is also sufficient we choose g1, g2 ∈P†(X,p) and apply the join-preservation of � in each variable
separately. Then we obtain:( ∨

x∈X

(g1 ∗ f )(x)
) � ( ∨

x∈X

(g2 ∗ f )(x)
) = ∨

x1,x2∈X

(
(g1 ∗ f )(x1) � (g2 ∗ f )(x2)

)
≤ ∨

x1,x2∈X

( ∨
x∈X

(
(g1(x1) ∗ p(x1, x)) � (g2(x2) ∗ p(x2, x))

) ∗ f (x)

≤ ∨
x∈X

((g1 � g2) ∗ f )(x).

Hence (P2) is verified. �
Example 3.7. Let G be a non-commutative group and (QG,�) be the semi-dominating quasi-magma associated with
the unital and non-integral quantale QG (cf. Example 2.19). Since � is join preserving in each variable separately, we
conclude from Proposition 3.6 that a contravariant Q-presheaf on a Q

op
G -category (X,p) is a Q-ideal if and only if

there exists x ∈ X such that f (x) �= ⊥ and for each x1, x2 ∈ X with f (x1) �= ⊥ and f (x2) �= ⊥ there exists an x3 ∈ X

such that

p(x1, x3) �= ⊥, p(x2, x3) �= ⊥ and f (x3) �= ⊥.

The next example shows how directed subsets induce Q-ideals in the case of the semi-dominating quasi-magma
associated with Q (cf. Subsection 2.2).

Example 3.8. Let Q be a unital quantale, in which every right-sided element is two-sided and the underlying lattice
of Q is meet-continuous. Then the semi-dominating quasi-magma (Q,�) associated with Q is right subdistributive
(cf. Proposition 2.16 (2)) and directed join-preserving in each variable separately.

Further, let (X,p) be a Qop-category and {xi | i ∈ I } be a directed subset of X w.r.t. the underlying preorder ≤p

of p where x ≤p y iff e ≤ p(x, y). Then the contravariant Q-presheaf f on (X,p) defined by

f (x) = ∨
i∈I

p(x, xi), x ∈ X,

is clearly inhabited. Further, for g1, g2 ∈ P†(X,p) we have:( ∨
x∈X

(g1 ∗ f )(x)
) � ( ∨

x∈X

(g2 ∗ f )(x)
) = (∨

i∈I

g1(xi)
) � (∨

i∈I

g2(xi)
) = ∨

i∈I

(g1 � g2)(xi) = ∨
x∈X

((g1 � g2) ∗ f )(x).

Hence f is a Q-ideal.

As an immediate corollary of Proposition 2.9 and Proposition 3.6 we state a further characterization of ∗-flatness
in the case of commutative quantales (cf. Subsection 2.1).

Corollary 3.9. Let Q be a commutative unital quantale with α ≤ α ∗ α for all α ∈ Q. For (Q,∗) a quasi-magma, a
contravariant Q-presheaf f on a Qop-category (X,p) is ∗-flat if and only if for all x1, x2 ∈ X:

f (x1) ∗ f (x2) ≤ ∨
p(x1, x) ∗ p(x2, x) ∗ f (x). (3.4)
x∈X
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Remark 3.10. If Q is a commutative quantale such that α ≤ α ∗ α for all α ∈ Q, then it follows immediately from
Corollary 3.9 that the Q-valued ideal property (ID2) in [8, Def. 5.1] (see also (FD2) in [19, Def. 5.1]) is given in the
monoidal category Cat(Q) — i.e. this ideal property is Q-enriched.

We finish this section with a sufficient condition for �-flatness of contravariant Q-presheaves in the special case
of completely distributive and integral quantales. In this context we emphasize that the operation � of the semi-
dominating magma associated with an integral quantale always coincides the binary meet (cf. Remark 2.15 (2)).

Following Raney (see [12, Def. 3 and Thm. 1]), we say that ε ∈ Q is totally below α ∈ Q, and we write ε � α,
if for any subset A ⊆ Q with α ≤ ∨

A there is an a ∈ A such that ε ≤ a. Hence a complete lattice Q is com-
pletely distributive iff � is approximating, i.e. α = ∨{ ε ∈ X | ε � α } for all α ∈ Q. The underlying lattice of a
complete MV -algebra Q is completely distributive iff

∨{ ε ∈ Q | ε � 	} = 	. In fact, since { ε ∈ Q | ε � ⊥} = ∅,
let us consider ⊥ �= α ≤ ∨

A. Then A is nonempty and [2, Proposition 2.6.2 and Theorem 2.7.5 (ii)] imply that
	 = ∨

β∈A(α → β) holds. Hence for every δ ∈Q with δ � 	 the element α ∗ δ satisfies the property α ∗ δ � α. Thus
� is approximating.

The following mild distributivity assumptions provide sufficient conditions for ∧-flatness.

Proposition 3.11. Let Q be an integral quantale in which ∗ distributes over the binary meet ∧ and Q is completely
distributive as a lattice. Let (Q,∧) be a quasi-magma. A contravariant Q-presheaf f on (X,p) is ∧-flat if the
following condition holds:

(D) For each ε ∈Q being totally below 	 and for each x1, x2 ∈ X there exists an x ∈ X such that:

f (x1) ∗ ε ≤ p(x1, x) ∗ f (x) and f (x2) ∗ ε ≤ p(x2, x) ∗ f (x).

Proof. Since ∧ is join-preserving in each variable separately, it is sufficient to establish (3.3). We fix α1, α2 ∈ Q and
x1, x2 ∈ X. Further for ε being totally below 	 we choose x ∈ X such that

f (x1) ∗ ε ≤ p(x1, x) ∗ f (x) and f (x2) ∗ ε ≤ p(x2, x) ∗ f (x)

holds. Since ∗ is distributive over binary meets, we obtain:

(α1 ∗ f (x1)) ∧ (α2 ∗ f (x2)) ∗ ε = (
α1 ∗ f (x1) ∗ ε

) ∧ (α2 ∗ f (x2) ∗ ε)

≤ (
α1 ∗ p(x1, x) ∗ f (x)

) ∧ (
α2 ∗ p(x2, x) ∗ f (x)

)
= (

(α1 ∗ p(x1, x)) ∧ (α2 ∗ p(x2, x))
) ∗ f (x).

Since the totally below relation is approximating, the relation (3.3) follows. �
The equivalence of condition (D) with ∧-flatness of contravariant Q-presheaves happens in the real unit interval

provided with the usual multiplication — i.e. in Lawvere’s quantale. Just for the records we note (see [18, Prop. 7.9])

Proposition 3.12. Let Q be Lawvere’s quantale — i.e. Q = ([0,1], ·,1) and ([0,1],∧) be the quasi-magma. Then a
contravariant [0,1]-presheaf f is ∧-flat if and only if f satisfies condition (D).

In the case of complete MV -algebra with square roots (cf. [2, p. 189]) we also show that condition (D) is necessary
for �-flatness of contravariant quantale-enriched presheaves, where � is determined by the monoidal mean operator
(cf. Subsection 2.3).

Proposition 3.13. Let Q be a complete MV -algebra with square roots satisfying the condition ⊥1/2 → ⊥ = ⊥1/2,
and let the quasi-magma (Q,�) on Q be determined by the monoidal mean operator of Q. Further, let the underlying
lattice of Q be completely distributive. Then �-flat contravariant Q-presheaves on (X,p) satisfy condition (D).
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Proof. Let � be the monoidal mean operator on Q — i.e. α �β = α1/2 ∗β1/2. If f is a �-flat contravariant Q-presheaf
on (X,p), then for each pair (x1, x2) ∈ X × X the relation

f (x1)
1/2 ∗ f (x2)

1/2 ≤ ∨
x∈X

p(x1, x)1/2 ∗ p(x2, x)1/2 ∗ f (x)

follows from Proposition 3.6. Now we fix some ε ∈ Q being totally below 	. Since the totally below relation is
approximating, we can choose δ ∈ Q which is totally below 	 and satisfies the property ε ≤ δ ∗ δ. Applying again the
complete distributivity of Q we can find an element x ∈ X such that

δ ∗ f (x1)
1/2 ∗ f (x2)

1/2 ≤ p(x1, x)1/2 ∗ p(x2, x)1/2 ∗ f (x) ≤ p(x1, x)1/2 ∗ f (x)1/2 ∗ f (x2)
1/2. (3.5)

Now we apply the property ⊥1/2 → ⊥ = ⊥1/2 and obtain:

δ ∗ f (x1)
1/2 ≤ (

p(x1, x)1/2 ∗ f (x)1/2) ∨ (
f (x2)

1/2 → ⊥) ≤ (
p(x1, x)1/2 ∗ f (x)1/2) ∨ ⊥1/2,

where we have used [2, Cor. 2.7.4 (ii)]. We take squares on both sides and conclude:

f (x1) ∗ ε ≤ δ ∗ δ ∗ f (x1) ≤ p(x1, x) ∗ f (x).

Analogously we derive f (x2) ∗ ε ≤ p(x2, x) ∗ f (x) from (3.5). Hence (D) is verified. �
In the next remark we explain, in which sense condition (D) describes a kind of directness of contravariant

Q-presheaves. We write α2 for α ∗ α.

Remark 3.14. Let Q be an integral quantale satisfying the additional property

α ∗ β ≤ α2 ∨ β2, α,β ∈ Q. (3.6)

This covers complete MV -algebras (cf. [2, Corollary 2.7.4 (v)]) as well as Lawvere’s quantale. Further, we assume
that Q is completely distributive as a lattice, and denote the totally below relation on Q by �. Then every contravariant
Q-presheaf f on (X,p) can be identified with a binary relation F defined by:

F = { (x,α) ∈ X ×Q | ∃ ε � 	, α ≤ f (x) ∗ ε }.
In particular, f can be recovered from F as follows:

f (x) = ∨{α ∈Q | (x,α) ∈ F }, x ∈ X.

We show that (D) is equivalent to the following property:

(D′) For each ε ∈ Q being totally below 	 and for each (x1, α1), (x2, α2) ∈ F with α1 ≤ f (x1)∗ ε and α2 ≤ f (x2)∗ ε

there exists (x,β) ∈ F such that

α1 ≤ p(x1, x) ∗ β and α2 ≤ p(x2, x) ∗ β.

(a) (D) ⇒ (D′): If ε � 	 and (x1, α1), (x2, α2) ∈ F are such that α1 ≤ f (x1) ∗ ε and α2 ≤ f (x2) ∗ ε, then we apply
(3.6) and choose δ � 	 with ε ≤ δ2. By (D) there exists x ∈ X satisfying the following condition:

f (x1) ∗ δ ≤ p(x1, x) ∗ f (x) and f (x2) ∗ δ ≤ p(x2, x) ∗ f (x).

Now we put β = f (x) ∗ δ and obtain

(x,β) ∈ F, α1 ≤ p(x1, x) ∗ β and α2 ≤ p(x2, x) ∗ β.

Hence (D′) is verified.
(b) (D′) ⇒ (D): If ε � 	 and x1, x2 ∈ X then (x1, f (x1) ∗ ε), (x2, f (x2) ∗ ε) ∈ F . Now (D′) implies that there

exists (x,β) ∈ F with f (x1) ∗ ε ≤ p(x1, x) ∗ β and f (x2) ∗ ε ≤ p(x2, x) ∗ β . Since β ≤ f (x), condition (D) follows.

Finally, (D′) can be understood as a property, which expresses a kind of directedness of the relation F associated with
the given contravariant Q-presheaf f .

We finish this section with two general comments. The concept of Q-ideal relies on unital quantales, but also
essentially on the chosen quasi-magma. Since in general there exist more than one right subdistributive quasi-magma
on a unital quantale, we can have more than one concept of Q-ideal on a fixed quantale.
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4. The monad of Q-ideals

First we recall the monad of contravariant Q-presheaves on Cat(Qop). If (X,p) is a Qop-category, then the com-
plete lattice P(X,p) of all contravariant Q-presheaves on (X,p) is a right Q-module w.r.t. the right action determined
by the right quantale multiplication. Hence the associated hom-object assignment dX has the following form:

dX(f1, f2) = ∧
x∈X

(
f1(x) ↘ f2(x)

)
, f1, f2 ∈P(X,p).

The object function (X,p) �−→ (
P(X,p), dX

)
in Cat(Qop) can be completed to an endofunctor of Cat(Qop) as

follows:

If (X,pX)
ϕ−→ (Y,pY ) is a Qop-functor, then

(
P(X,pX), dX

) P(ϕ)−−−→ (
P(Y,pY ), dY

)
is again a Qop-functor, where(

P(ϕ)(f )
)
(y) = ∨

x∈X

pY (y,ϕ(x)) ∗ f (x), y ∈ Y, f ∈ P(X,pX).

The natural transformation η : idCat(Qop) →P is given by the Qop-Yoneda embedding — i.e.

η(X,p)(x) = x̃, where x̃(y) = p(y, x), x, y ∈ X.

Finally, the components of the multiplication μ : PP →P have the form:(
μ(X,p)(F )

)
(x) = ∨

f ∈P(X,p)

f (x) ∗ F(f ) = F (̃x), x ∈ X, F ∈P
(
P(X,p), dX

)
.

Then (P, η,μ) is a monad on Cat(Qop) and is called the monad of contravariant Q-presheaves (cf. [2, p. 268]).
Since for every contravariant Q-presheaf f on (X,p) the following relation holds:

f (x) = dX(̃x, f ), x ∈ X, (4.1)

the unit axiom of algebras of (P, η,μ) is equivalent to the requirement that (X,p) is skeletal and the Yoneda

embedding (X,p)
η(X,p)−−−→ (

P(X,p), dX

)
has a left adjoint Qop-functor

(
P(X,p), dX

) sup(X,p)−−−−−→ (X,p). Hence the
Eilenberg-Moore category of (P, η,μ) is the category of cocomplete skeletal Qop-categories with cocontinuous
Qop-functors, which is isomorphic to the category of right Q-modules in Sup.

In this context, it is worthwhile to recall that an element (resp. object) x of X is a Q-join of a contravariant
Q-presheaf f on (X,p) if and only if the following relation holds for all y ∈ X (cf. [2, Def. 3.3.7]):

p(x, y) = dX(f, ỹ).

Hence in any skeletal Qop-category the left adjoint Qop-functor of the Yoneda embedding is always the formation of
Q-joins.

After this digression we return to the monad of contravariant Q-presheaves and make the important observation
that P(ϕ) factors through the Q-ideals of (X,p) as the next proposition shows.

Proposition 4.1. Let f be a Q-ideal of (X,pX) and (X,pX)
ϕ−→ (Y,pY ) be a Qop-functor. Then P(ϕ)(f ) is a Q-ideal

of (Y,pY ).

Proof. We first note that if f ∈P(X,pX) and g ∈P†(Y,pY ), then

�P(ϕ)(f )(g) = ∨
x∈X

∨
y∈Y

g(y) ∗ pY (y,ϕ(x)) ∗ f (x) = �f (g ◦ ϕ),

— i.e. the P(ϕ)(f )-weighted colimit of g is precisely the f -weighted colimit of g ◦ ϕ. Since ϕ̃(x) is a Q-ideal
of (Y,pY ) (cf. Example 3.4), we conclude from the previous observation and Remark 3.3 (2) that for all g1, g2 ∈
P†(Y,pY ) the following conditions hold:
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�P(ϕ)(f )(	) = �f (	 ◦ ϕ) = �f (	) = 	,

�P(ϕ)(f )(g1) � �P(ϕ)(f )(g2) = �f (g1 ◦ ϕ) � �f (g2 ◦ ϕ) = �f ((g1 ◦ ϕ) � (g2 ◦ ϕ))

= �f ((g1 � g2) ◦ ϕ)) = �P(ϕ)(f )(g1 � g2). �
Let I(X,p) be the set of all Q-ideals of (X,p). On I(X,p) we consider the hom-object assignment induced by

the Qop-category
(
P(X,p), dX

)
of contravariant Q-presheaves. Then

(
I(X,p), dX

)
is again a Qop-category, and

Proposition 4.1 shows that the object function (X,p) �−→ (
I(X,p), dX

)
can be completed to an endofunctor I of

Cat(Qop) such that the inclusion maps I(X,p)
λ(X,p)

↪−−−→ P(X,p) are components of a natural transformation λ : I→ P.

Proposition 4.2. Let (X,p) be a Qop-category and I be a Q-ideal of
(
I(X,p), dX

)
. Then μI

(X,p)(I ) defined by:

μI
(X,p)(I )(x) = I (̃x) = ∨

f ∈I(X,p)

f (x) ∗ I (f ), x ∈ X,

is a Q-ideal of (X,p).

Proof. For every covariant Q-presheaf g on (X,p) the map I(X,p)
�g−−→ Q given by

�g(f ) = �f (g) = ∨
x∈X

(g ∗ f )(x), f ∈ I(X,p),

is a covariant Q-presheaf on (I(X,p), dX). Then the following relations holds for all f ∈ I(X,p) (cf. Remark 3.3 (2)):

�	(f ) = �f (	) = 	, (4.2)(
�g1 � �g2

)
(f ) = �f (g1) � �f (g2) = �g1�g2(f ). (4.3)

Now let I be a Q-ideal of
(
I(X,p), dX

)
. Since

�μI
(X,p)

(I )(g) = ∨
f ∈I(X,p)

∨
x∈X

(g ∗ f )(x) ∗ I (f ) = �I (�g),

the Q-ideal properties of μI
(X,p)(I ) follow immediately from (4.2) and (4.3) and Remark 3.3 (2). �

We can summarize Propositions 4.1 and 4.2 in the following commutative diagram:

I(X,p)
λ(X,p)

P(X,p)

P
(
I(X,p), dX

) P(λ(X,p))
P

(
P(X,p), dX

)
μ(X,p)

I
(
I(X,p), dX

) I(λ(X,p))

μI
(X,p)

λ(I(X,p),dX)

I
(
P(X,p), dX

)
λ(P(X,p),dX)

Since the Yoneda embedding (X,p)
η(X,p)−−−−→ (

P(X,p), dX

)
factors also through

(
I(X,p), dX

)
(cf. Example 3.4),

the monad of contravariant Q-presheaves induces a submonad on Q-ideals — the so-called Q-ideal monad, whose
components of the corresponding multiplication μI

(X,p) are already defined in Proposition 4.2 (see also the previous
diagram).

Referring again to (4.1), we emphasize that the unit axiom of algebras of the Q-ideal monad (I, ηI,μI) is equivalent

to the requirement that (X,p) is skeletal and the Yoneda embedding (X,p)
ηI
(X,p)−−−→ (

I(X,p), dX

)
has a left adjoint

Qop-functor
(
I(X,p), dX

) sup(X,p)−−−−−→ (X,p). This observation motivates the following terminology.
119



J. Gutiérrez García, U. Höhle and T. Kubiak Fuzzy Sets and Systems 444 (2022) 103–130
Definition 4.3. A skeletal Qop-category (X,p) is called:

(1) a Q-dcpo, if the Yoneda embedding of (X,p) viewed as Qop-functor to I(X,p) has a left adjoint Qop-functor
— i.e. if the Q-join of every Q-ideal of (X,p) exists,
(2) a Q-enriched domain (Q-domain for short), if it is a Q-dcpo and the formation of Q-joins of Q-ideals has a left

adjoint Qop-functor.

A Qop-functor (X,pX)
ϕ−→ (Y,pY ) preserves directed Q-joins if the following diagram is commutative:

I(X,pX)
P(ϕ)

sup(X,pX)

I(Y,pY )

sup(Y,pY )

(X,pX)
ϕ

(Y,pY )

The category of Q-dcpos and directed Q-joins preserving Qop-functors is denoted by Dcpo(Q,�). Hence Dcpo(Q,�)

is the Eilenberg-Moore category of the Q-ideal monad. In particular, every Q-dcpo (X,p) is a quotient of(
I(X,p), dX

)
in the sense of Dcpo(Q,�).

As a immediate corollary from Proposition 4.2 we obtain that
(
I(X,p), dX

)
is an example of a Q-dcpo. Indeed, if

I is a Q-ideal of (I(X,p), dX), then μI
(X,p)(I ) is the Q-join of I , because:

dX

(
μI

(X,p)(I ), g) = ∧
f ∈I(X,p), x∈X

(
I (f ) ↘ (f (x) ↘ g(x))

) = dX(I, g̃), g ∈ I(X,p).

But it should be noted that
(
I(X,p), dX

)
is in general not cocomplete. Moreover, we have the following result.

Theorem 4.4. Let (X,p) be a Qop-category. Then the Qop-category
(
I(X,p), dX

)
is a Q-domain.

Proof. Since
(
P(X,p), dX

)
is a projective right Q-module, for every Q-ideal f of (X,p) we have only to show that

the contravariant Q-presheaf Ff defined by

Ff (k) = ∨
x∈X

dX(k, x̃) ∗ f (x), k ∈ I(X,p),

is a Q-ideal of
(
I(X,p), dX

)
. Obviously Ff is inhabited. For �-flatness, let G1 and G2 be covariant Q-presheaves of(

I(X,p), dX

)
. Then gi (i = 1,2) defined by

gi(x) = ∨
k∈I(X,p)

Gi(k) ∗ dX(k, x̃), x ∈ X, i = 1,2,

is a covariant Q-presheaf on (X,p). Since f is a Q-ideal of (X,p) and dX( , x̃) is a Q-ideal of
(
I(X,p), dX

)
for all

x ∈ X, we obtain:( ∨
k∈I(X,p)

(G1 ∗ Ff )(k)
) � ( ∨

k∈I(X,p)

(G2 ∗ Ff )(k)
) = ( ∨

x∈X

(g1 ∗ f )(x)
)�( ∨

x∈X

(g2 ∗ f )(x)
)

≤ ∨
x∈X

((g1 � g2)) ∗ f )(x)

≤ ∨
x∈X

∨
k∈I(X,p)

(G1 � G2)(k) ∗ dX(k, x̃) ∗ f (x)

= ∨
k∈I(X,p)

((G1 � G2) ∗ Ff )(k).

Hence the assertion is verified. �
Definition 4.5. The Q-valued way below relation X × X

�−→ Q of a Q-dcpo (X,p) is defined by:

�(x, y) = ∧
f ∈I(X,p)

(
f (x) ↙ p(y, sup(f ))

)
, x, y ∈ X,

where sup is the formation of Q-joins in I(X,p).
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The Q-valued way below relation � is said:

(1) to be approximating if every element y ∈ X is the Q-join of the contravariant Q-presheaf �( , y) on (X,p),
(2) to have the interpolation property if

�(x, y) ≤ ∨
z∈X

�(x, z) ∗ �(z, y), x, y ∈ X.

The Q-valued way below relation � of a Q-dcpo (X,p) is a Qop-distributor (see [2, page 281]) of (X,p) and
the relation �(x, y) ≤ p(x, y) holds for all x, y ∈ X. Hence � satisfies the interpolation property if and only if � is
idempotent.

Lemma 4.6. If (X,p) is a Q-domain, then the correspondence y �−→ �( , y) is the left adjoint Qop-functor of the

formation of Q-joins I(X,p)
sup−−→ (X,p).

Proof. Since (X,p) is a Q-domain, there exists a correspondence y �−→ ν( , y) from X to I(X,p), which is the left

adjoint Qop-functor of I(X,p)
sup−−→ (X,p). Then we conclude from

p(y, sup(f )) = dX

(
ν( , y), f

)
, y ∈ X, f ∈ I(X,p) (4.4)

that the relations e ≤ p
(
y, sup(ν( , y))

)
and ν(x, y) ∗ p(y, sup(f )) ≤ f (x) hold for all x, y ∈ X and for all f ∈

I(X,p). Hence the definition of � implies:

ν( , y) ≤ �( , y), y ∈ X.

On the other hand ν( , y) is a Q-ideal of (X,p). Referring again to the definition of � we obtain:

�(x, y) ≤ ν(x, y) ↙ p
(
y, sup(ν( , y))

) ≤ ν(x, y) ↙ e = ν(x, y).

Hence ν( , y) and �( , y) coincide and so y �−→ �( , y) is left adjoint to sup. Since every z ∈ X is the Q-join of z̃

and z̃ is a Q-ideal of (X,p), we conclude from (4.4) that � is also approximating. �
Theorem 4.7. The Q-valued way below relation � of a Q-domain satisfies the interpolation property.

Proof. Let(X,p) be a Q-domain. It follows from Lemma 4.6 that the correspondence y �−→ �( , y) factors through
I(X,p) and � is approximating. To prove the interpolation property, we fix y ∈ X and define a contravariant
Q-presheaf of (X,p) by:

fy(x) = ∨
z∈X

�(x, z) ∗ �(z, y), x ∈ X.

Since ∨
x∈X

	 ∗ fy(x) = ∨
z∈X

∨
x∈X

	 ∗ �(x, z) ∗ �(z, y) = ∨
z∈X

	 ∗ �(z, y) = 	,

fy is inhabited. On the other hand, given g1, g2 ∈ P†(X,p) we have( ∨
x∈X

(g1 ∗ fy)(x)
) � ( ∨

x∈X

(g2 ∗ fy)(x)
)

= ( ∨
z∈X

∨
x∈X

g1(x) ∗ �(x, z) ∗ �(z, y)
) � ( ∨

z∈X

∨
x∈X

g2(x) ∗ �(x, z) ∗ �(z, y)
)

≤ ∨
z∈X

(( ∨
x∈X

g1(x) ∗ �(x, z)
) � ( ∨

x∈X

g2(x) ∗ �(x, z)
)) ∗ �(z, y)

≤ ∨
z∈X

∨
x∈X

(g1 � g2)(x) ∗ �(x, z) ∗ �(z, y)

= ∨
x∈X

((g1 � g2) ∗ fy)(x).
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Hence fy is a Q-ideal. The remaining part of the proof is a repeated application of adjunctions as it also happens in
the proof of [16, Prop. 5.5]. For the convenience of the reader we lay down some details of this approach.

First we apply again the adjunction (cf. Lemma 4.6) and obtain for all z ∈ X:

p(z, sup(fy)) = dX(�( , z), fy) ≥ �(z, y).

Then the following relation holds for all z ∈ X:

p(y, z) = ∧
x∈X

�(x, y) ↘ p(x, z) ≥ ∧
x∈X

p(x, sup(fy)) ↘ p(x, z) = p(sup(fy), z).

Hence the relation e ≤ p(y, sup(fy)) follows, and again the adjunction implies:

e ≤ p(y, sup(fy)) = dX

(�( , y), fy

)
.

So we have �( , y),≤ fy , and the interpolation property is verified. �
5. The Q-enriched Scott topology

In this section we treat the Q-enriched topological consequences of the Q-ideal theory developed in the previous
sections. For this purpose we first recall the concept of a Q-enriched topology or Q-topology for short (cf. [7]).

Let (Q,�) be a quasi-magma. A Q-topology on a set X is a right Q-submodule T of the free right Q-module QX

(Q-power set for short) satisfying additionally the following topological axioms (here and elsewhere α ∈ QX is the
constant map with value α):

(T1) 	 is an element of T .
(T2) If f,g ∈ T , then f � g ∈ T .

The pair (X,T ) is called a Q-topological space and each element of T is said to be an open Q-presheaf on X.
The Q-neighborhood system (νx)x∈X of a Q-topology T on X is given by:

νx(f ) = ∨{g(x) | g ≤ f, g ∈ T }, x ∈ X, f ∈ QX,

and the corresponding Q-interior operator IT has the form

IT (f )(x) = νx(f ), x ∈ X, f ∈QX.

Further, we extend the concept of Q-enriched sober spaces based on the quasi-magma (Q,∗) in [5] to the scope of
general Q-enriched topological spaces.

Definition 5.1. Let (Q,�) be a quasi-magma. A Q-topological space (X,T ) is called:

(1) T0-separated if for all x1, x2 ∈ X with x1 �= x2 there exists g ∈ T such that g(x1) �= g(x2),

(2) sober if it is T0-separated and for every right Q-module homomorphism T ϕ−→ Q satisfying the properties:

(M1) ϕ(	) = 	,
(M2) ϕ(g1 � g2) = ϕ(g1) � ϕ(g2), g1, g2 ∈ T ,

there exists an element x0 ∈ X such that ϕ(g) = g(x0) for all g ∈ T .

Let d be the hom-object assignment associated with the free right Q-module QX — i.e.

d(f,g) = ∨{α ∈ Q | f ∗ α ≤ g } = ∧
x∈X

(
f (x) ↘ g(x)

)
, f, g ∈ QX.

Let (Q,�) be a quasi-magma. A covariant Q-presheaf ω on the Qop-category (QX,d) is called a Q-filter on X, if
for all f,g ∈ QX the following conditions hold (cf. [7]):

(F1) ω(	) = 	,
(F2) ω(f ) � ω(g) ≤ ω(f � g),
(F3) ω(f ) ≤ ∨{f (x) | x ∈ X }.
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Note that the properness axiom (F3) is equivalent to ω(α) ≤ α for all α ∈ Q. Moreover, it follows from (F1) and
the covariance property of Q-filters that the equality sign holds when α is left-sided.

This leads us to introduce the following weakened version of the notion of Q-filter:
A weak Q-filter on X is a covariant Q-presheaf ω on (QX,d) satisfying the following properties for all left-sided

α ∈ L(Q) and f,g ∈ QX:

(F1′) ω(α) = α,
(F2) ω(f ) � ω(g) ≤ ω(f � g).

If Q is integral, then weak Q-filters and Q-filters are equivalent concepts.
Let (X,T ) be a Q-topological space. An element x ∈ X is a limit point in (X,T ) of a weak Q-filter ω if

IT (f )(x) ≤ ω(f ) for all f ∈ QX , which is equivalent to the requirement that g(x) ≤ ω(g) holds for all g ∈ T .
Finally, if Q has a dualizing element δ, then a Q-presheaf g ∈ QX is called closed if g ↘ δ ∈ T . Since dualizing

elements are in general not unique, it is important to note that closedness does not depend on the chosen dualizing
element as the next proposition explains.

Proposition 5.2. Let (X,T ) be a Q-topological space and g be a closed Q-presheaf on X. Then for every dualizing
element δ1 ∈Q the Q-presheaf g ↘ δ1 is open.

Proof. Let δ1 be any dualizing element in Q. We observe:

g = δ ↙ (g ↘ δ) = (δ1 ↙ (δ ↘ δ1)) ↙ (g ↘ δ) = δ1 ↙ (
(g ↘ δ) ∗ (δ ↘ δ1)

)
.

Since g ↘ δ ∈ T and T is a right Q-module, g ↘ δ1 = (g ↘ δ) ∗ (δ ↘ δ1) is an element of T . �
After these preparations we return to Q-dcpos and lay down the following

Standing Assumption. In the rest of this section we assume that Q = (Q, ′) is an unital and involutive quantale, and
the operation � of a subdistributive quasi-magma (Q,�) on Q is involutive — i.e. (α � β)′ = β ′ � α′.

First we recall that the hom-object assignment of the dual Qop-category (X,pop) of (X,p) is given by (cf. [2]):

pop(x, y) = p(y, x)′, x, y ∈ X.

Now let (X,p) be a Q-dcpo. A Q-presheaf g on X (i.e. g ∈QX) is called Scott open if for every Q-ideal f of (X,p)

the following relation holds:

g(sup(f )) = ∨
x∈X

(f ′ ∗ g)(x). (5.1)

Since x̃ is a Q-ideal for all x ∈ X, every Scott open Q-presheaf g on X satisfies the property:

g(x) = g(sup(̃x)) = ∨
y∈X

(
p(y, x)′ ∗ g(y)

) = ∨
y∈X

(
pop(x, y) ∗ g(y)

)
, x ∈ X.

Hence every Scott open Q-presheaf g is a contravariant Q-presheaf on (X,pop), which is equivalent to the require-
ment that g′ is a covariant Q-presheaf on (X,p).

Since the Q-join sup(f ) of every contravariant Q-presheaf f is an upper bound of f — i.e. f (x) ≤ p(x, sup(f ))

for each x ∈ X, we can characterize Scott openness as follows.
A Q-presheaf g on X is Scott open if and only if g is a contravariant Q-presheaf on (X,pop) and the following

relation holds for all Q-ideals f of (X,p):

g(sup(f )) ≤ ∨
x∈X

(f ′ ∗ g)(x). (5.2)

The set σ(X,p) of all Scott open Q-presheaves on X forms obviously a Q-enriched topology on X and is called
the Scott Q-topology of (X,p). In fact, σ(X,p) is a right Q-submodule of QX , and the topological axioms (T1)
and (T2) follow immediately from the respective Q-ideal properties, where we have used the property that (Q,�)

is involutive. In this context it is worthwhile to note that σ(X,p) is also a right Q-submodule of P(X,pop). The
corresponding Q-interior operator will be denoted by Iσ .
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Proposition 5.3. Let (X,p) be a Q-dcpo. If Q has a dualizing element, then for every y ∈ X the map x �−→ pop(y, x)

is a closed Q-presheaf on X w.r.t. the Scott Q-topology on X.

Proof. Let δ be a dualizing element of Q, y ∈ X and gy := pop(y, ) ↘ δ. Further let f be a Q-ideal of (X,p). Since
sup is left adjoint to the Yoneda embedding η(X,p) (cf. Definition 4.3), we obtain:

gy(sup(f )) = p(sup(f ), y)′ ↘ δ

= ( ∧
x∈X

(f (x) ↘ p(y, x))
)′ ↘ δ

= ∨
x∈X

(
p′(x, y) ↙ f ′(x)

) ↘ δ

= ∨
x∈X

(
δ ↙ ((f ′(x) ∗ (p′(x, y) ↘ δ)) ↘ δ)

)
= ∨

x∈X

(
f ′(x) ∗ (p′(x, y) ↘ δ)

)
= ∨

x∈X

(f ′ ∗ gy)(x).

Hence gy = pop(y, ) ↘ δ ∈ σ(X,p). �
If Q has a dualizing element δ, then we conclude from Proposition 5.3 that the Scott Q-topology is finer than the

upper Q-topology ν(X,p) on (X,p), which is generated by {pop(y, ) ↘ δ | y ∈ X }.
In the next remark we show that every Q-ideal of (X,p) induces a weak Q-filter.

Remark 5.4. Since (Q,�) is a subdistributive quasi-magma on Q, we conclude from Proposition 2.5 that P(X,pop)

is always a Q-topology on X for every Qop-category (X,p). The corresponding Q-interior operator is denoted by I0
and every Q-ideal f of a Qop-category (X,p) induces a covariant Q-presheaf on (QX,d) as follows:

ωf (h) = ∨
x∈X

(f ′ ∗ I0(h))(x) h ∈ QX. (5.3)

We show that ωf is a weak Q-filter on X, which we will call the Q-enriched section filter of the Q-ideal f .
If α ∈ L(Q), then (T1) and the right Q-submodule property imply that the constant Q-presheaf α is open — i.e.
I0(α) = α. Since f is inhabited, we now obtain:

ωf (α) = ∨
x∈X

f ′(x) ∗ α = ∨
x∈X

f ′(x) ∗ (	 ∗ α) = ∨
x∈X

(	 ∗ f (x))′ ∗ α = 	 ∗ α = α,

and (F1′) is verified. Further, we choose h1, h2 ∈ QX . Since g ∈P(X,pop) if and only if g′ ∈ P†(X,p), we conclude
from the �-flatness property of f that the following relation holds:

ωf (h1) � ωf (h2) = (( ∨
x∈X

(I0(h2)
′ ∗ f )(x)

) � ( ∨
x∈X

(I0(h1)
′ ∗ f )(x)

))′

≤ ( ∨
x∈X

(
(I0(h2)

′ � I0(h1)
′) ∗ f

)
(x)

)′

= ( ∨
x∈X

(
(I0(h1) � I0(h2))

′ ∗ f
)
(x)

)′

≤ ( ∨
x∈X

(I0(h1 � h2)
′ ∗ f )(x)

)′

= ωf (h1 � h2)

Hence (F2) is also verified.

Proposition 5.5. The Scott Q-topology of a Q-dpco (X,p) is the finest Q-topology on X such that for every Q-ideal
f of (X,p) the Q-join sup(f ) is a limit point of the Q-enriched section filter of f .
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Proof. First we recall σ(X,p) ⊆ P(X,pop). Let f be a Q-ideal of (X,p) and ωf be the corresponding Q-enriched
section filter of f . Then every Scott open Q-presheaf g satisfies the property

g(sup(f )) ≤ ∨
x∈X

(
f ′ ∗ g)(x)

) = ωf (g).

Hence sup(f ) is a limit point of ωf with respect to the Scott Q-topology on X.
Let T now be an arbitrary Q-topology on X such that for every Q-ideal f of (X,p) the Q-join sup(f ) is a limit

point of ωf . Since x̃ is a Q-ideal of (X,p), every g ∈ T satisfies the following property for all x ∈ X:

g(x) = g(sup(̃x)) ≤ ωx̃(g) = ∨
y∈X

(
p(y, x)′ ∗ I0(g)(y)

) = I0(g)(x) ≤ g(x).

Hence g is a contravariant Q-presheaf on (X,pop) — i.e. T ⊆ P(X,pop). Since sup(f ) is a limit point of ωf , we
now obtain for all g ∈ T :

g
(
sup(f )

) ≤ ωf (g) = ∨
y∈X

(f ′ ∗ I0(g))(y) = ∨
y∈X

(f ′ ∗ g)(y).

Hence g is a Scott open Q-presheaf on X — i.e. T ⊆ σ(X,p). �
Motivated by Propositions 5.3 and 5.5 we introduce the following terminology. A Q-topology on a Q-dcpo (X,p)

is Q-enriched order consistent if the following conditions hold:

(1) For all x ∈ X the covariant Q-presheaf pop(x, ) on (X,pop) is a closed Q-presheaf on X.
(2) For every Q-ideal f of (X,p) the Q-join sup(f ) is a limit point of the Q-enriched section filter of f .

Then we can summarize Propositions 5.3 and 5.5 as follows. If Q has a dualizing element, then the upper and the Scott
Q-topology are Q-enriched order consistent, and on the other hand, every Q-enriched order consistent Q-topology T
satisfies the relation ν(X,p) ⊆ T ⊆ σ(X,p).

In the following we investigate the Scott Q-topology on Q-domains.

Lemma 5.6. Let (X,p) be a Q-domain. Then the contravariant Q-presheaf �(x, )′ on (X,pop) is Scott open for
every x ∈ X.

Proof. Let f be a Q-ideal. Then the contravariant Q-presheaf hf determined by

hf (x) = ∨
z∈X

(�(x, z) ∗ f (z)
)
, x ∈ X,

is a Q-ideal of (X,p) (see the argument in the proof of Theorem 4.4). By the adjunction, for every x ∈ X the relation
p(x, sup(hf )) = dX

(�( , x), hf

) ≥ f (x) holds. Hence we obtain:

p(sup(f ), sup(hf )) = ∧
x∈X

f (x) ↘ p(x, sup(hf )) ≥ dX(f,f ) ≥ e.

Now we use again the adjunction and conclude e ≤ p(sup(f ), sup(hf )) = dX

(�( , sup(f )), hf

)
. Then the relation

�(x, sup(f )) ≤ hf (x) = ∨
y∈X

(�(x, y) ∗ f (y)
)

follows for x ∈ X and f ∈ I(X,p) — i.e. �(x, )′ is Scott open
for all x ∈ X. �
Corollary 5.7. Each Q-domain with its Scott Q-topology is T0-separated.

Proof. Since each Q-domain is skeletal, the assertion follows immediately from Lemma 4.6 and Lemma 5.6. �
Corollary 5.8. Let (X,p) be a Q-domain. Every Scott open contravariant Q-presheaf h on (X,pop) has the form:

h(x) = ∨
y∈X

(�(y, x)′ ∗ h(y)
)
, x ∈ X. (5.4)

The family {�(y, )′ ∗ α | α ∈ Q, y ∈ X } is a base of σ(X,p).
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Proof. If h ∈ σ(X,p), then the assertion follows from the relation:

h′(x) = h′(sup(�( , x))) = ∨
y∈X

(
h′(y) ∗ �(y, x)

)
, x ∈ X. �

Let (X,p) be a Q-domain and k be a contravariant Q-presheaf on (X,pop). Then the interior Iσ (k) w.r.t. the Scott
Q-topology can be represented as

Iσ (k)(x) = ∨
y∈X

(�(y, x)′ ∗ k(y)
)
, x ∈ X. (5.5)

Indeed, let h := ∨
y∈X

(�(y, )′ ∗ k(y)
)
. By Lemma 5.6, h is Scott open. Since �(y, x)′ ≤ pop(x, y), the relation

h(x) ≤ ∨
y∈X

(
pop(x, y) ∗ k(y)

) = k(x) follows. Hence h ≤ Iσ (k). On the other hand, we refer to (5.4) and obtain for
all x ∈ X:

Iσ (k)(x) = ∨{h(x) | h ∈ σ(X,p), h ≤ k } ≤ ∨
y∈X

(�(y, x)′ ∗ k(y)
) = h(x).

Theorem 5.9. Each Q-domain with its Scott Q-topology is sober.

Proof. Let (X,p) be a Q-domain. By Lemma 5.7, (X,σ (X,p)) is T0-separated. We now consider a right Q-module

homomorphism σ(X,p)
ϕ−→ Q satisfying (M1) and (M2) and define a Q-ideal fϕ of (X,p) by:

fϕ(x) = ϕ
(�(x, )′

)′
, x ∈ X. (5.6)

Since

p(y, x) ∗ fϕ(x) = (
ϕ
(�(x, )′

) ∗ p(y, x)′
)′ ≤ ϕ

(�(y, )′
)′
,

fϕ is a contravariant Q-presheaf on (X,p). Now we apply (M1):∨
x∈X

(	 ∗ fϕ(x)
) = ϕ

( ∨
x∈X

(	 ∗ �(x, )
)′)′ = ϕ(	)′ = 	,

and conclude that fϕ is inhabited. Further we choose covariant Q-presheaves g1 and g2 on (X,p). Since for every
covariant Q-presheaf g on (X,p) the relation∨

x∈X

(g ∗ fϕ)(x) = ∨
x∈X

(
ϕ
(�(x, )′

) ∗ g(x)′
)′ = ϕ

(( ∨
x∈X

(
g(x) ∗ �(x, )

))′)′

holds, we apply (M2) and obtain:( ∨
x∈X

(g1 ∗ fϕ)(x)
) � ( ∨

x∈X

(g2 ∗ fϕ)(x)
) = (

ϕ
(( ∨

x∈X

g2(x) ∗ �(x, )
)′) � ϕ

(( ∨
x∈X

g1(x) ∗ �(x, )
)′))′

= ϕ
((( ∨

x∈X

g1(x) ∗ �(x, )
) � ( ∨

x∈X

g2(x) ∗ �(x, )
))′)′

= ϕ
(( ∨

x∈X

(g1 � g2)(x) ∗ �(x, )
)′)′

= ∨
x∈X

(
(g1 � g2) ∗ fϕ

)
(x).

Hence fϕ is a Q-ideal. Now we choose h ∈ σ(X,p) and conclude from (5.4) in Corollary 5.8 that

ϕ(h)′ = ∨
x∈X

(
h(x)′ ∗ ϕ

(
(�(x, )′

)′) = ∨
x∈X

(
h′(x) ∗ fϕ(x)

) = h
(
sup(fϕ)

)′
.

So ϕ is induced by x0 = sup(fϕ) — i.e. ϕ(h) = h(x0), and consequently (X,σ (X,p)) is sober. �
For historical reasons we point out that in the special setting given by a commutative, integral quantale Q and a

quasi-magma (Q,∧) Theorem 5.9 appeared for the first time in [21].
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6. Right Q-modules as dcpos and their role in quantale computation

Let (X,�) be a right Q-module. From the abstract perspective of computations we can consider X as a set of
solutions. The partial order ≤ on X provides us with the information of improving solutions — i.e. x ≤ y means that
the solution y is an improvement of the solution x by applying an appropriate algorithm to x (cf. [14, Sect. 3] and
[15]).2 The completeness of X means that for every subset A of X the smallest common improvement of A exists.

Finally, an element α ∈ Q can be identified with the join-preserving map X
hα−→ X given by x � α = hα(x). In this

sense α is a transition map reflecting a kind of dynamic and can be understood as a command being executed to
solutions. Hence x �α is the solution produced by executing α to the solution x. In this context it is important to note
that the composition of commands is again a command — a property which is supported by the quantale multiplication
in Q.

For the completeness we add the information that the right adjoint of hα expresses the left action of α on the dual
lattice of X (cf. [2, Proposition 3.1.1 (a)]).

Now we consider the associated hom-object assignment p of (X,�) (cf. (1.1)). Since (X,p) is cocomplete, the
Qop-category (X,p) is in particular a Q-dcpo, and the formation of Q-joins attains the following form:

sup(f ) = ∨
x∈X

x � f (x), f ∈ P(X,p).

Our aim is to view Q-ideals as dynamic schemes for quantale computation. For this purpose we first recall the role of
directed sets in the theory of computation (cf. [3, Introduction]):

Let P be a partially ordered set. We think of a «computation» of an element x ∈ P as a directed [sub]set [of P] whose supremum
is x. We wish to regard x as the «limit» of the set of approximations.

So we can summarize the situation as follows. Approximations of an element x ∈ P are elements of directed subsets
D of P with

∨
D = x (resp. x ≤ ∨

D).
Since Q-ideals are the Q-enriched version of directed sets, the «quantale computation» of an element x ∈ X can

be thought as a Q-ideal f of (X,p) whose Q-join is x. Since x = ∨
z∈X z � f (z), we consider the pair (z, f (z)) as a

dynamic approximation of x, where x is the smallest common improvement of all z � f (z) with z ∈ X. Moreover, we
wish to regard x as the limit of the Q-ideal f with sup(f ) = x. This holds always in the associated Q-enriched Scott
topology on X provided Q is involutive (see Proposition 5.5).

If (X,�) is a projective right Q-module, then we conclude from [6, Thm. 3.12] that the Q-valued totally below
relation on (X,p) is approximating. Then it follows from the definition of the Q-valued way below relation � on
(X,p) (cf. Sect. 4) that � is also approximating. But it is not clear whether �( , y) is always a Q-ideal for all y ∈ X

— a property being equivalent to the requirement that projective right Q-modules are Q-domains.
We illustrate this problem by two quantale structures on the diamond D:

	

a e

⊥

Example 6.1. Let Q be the unital quantale on the diamond D with a ∗ a = 	. Then e is necessarily the unit, and
a ∗ 	 = 	 = 	 ∗ a holds. Thus Q is commutative, and a is neither left-sided nor right-sided. Since a ≤ a ∗ a, the
quasi-magma (Q,∗) is subdistributive (cf. Proposition 2.9). Therefore we choose � = ∗.

2 From P. Eklund we have learnt the role of partial orders in denotational semantics.
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In order to give an explicit description of I(Q,→) we first identify all inhabited and contravariant Q-presheaves
on (Q,→). The hom-object assignment attains the following form:

→ ⊥ a e 	
⊥ 	 	 	 	
a ⊥ e ⊥ 	
e ⊥ a e 	
	 ⊥ ⊥ ⊥ 	

If α ∈ Q, then the values of α̃ are the respective columns of the previous table. Obviously a is the unique dualizing
element of Q. Further, we notice:

ã ∨ (̃e ∗ 	) = ã ∨ ẽ, ẽ ∗ a ≤ ẽ ∗ 	 ≤ ã ∗ a ≤ ã ∗ 	, ẽ ∗ a ≤ ã ≤ ã ∗ 	, ẽ ≤ ẽ ∗ 	.

Since f ∈P(Q,→) is inhabited, we have ⊥̃ ≤ f and consequently we distinguish the following cases:

Case A. If f (	) �= ⊥, then f = 	̃.
Case B. If f (	) = ⊥ and f (a) �= ⊥, then f ∈ {

ã ∗ a, ã, ã ∨ ẽ, ã ∗ 	}
.

Case C. If f (a) = ⊥, then f ∈ { ⊥̃, ẽ ∗ a, ẽ, ẽ ∗ 	}
.

It is not difficult to show that ã ∗ a, ã ∨ ẽ and ẽ ∗ a fail to be ∗-flat, and consequently they are not Q-ideals. So we
have:

I(Q,→) = { ⊥̃, ã, ẽ, 	̃, ẽ ∗ 	, ã ∗ 	}
,

and the Q-valued way below relation attains the following form:

�( ,	) = ẽ ∗ 	, �( , a) = (̃e ∗ 	) ∧ ã = ẽ ∗ a, �( , e) = ẽ, �( ,⊥) = ⊥̃.

Obviously � is approximating — this is not a surprise, because the right Q-module Q equipped with the right
quantale multiplication as right action is projective. Since ẽ ∗ a is not a Q-ideal, (Q,→) is not a Q-domain.

The situation changes in the next

Example 6.2. Let Q be the unital quantale on the diamond D with a ∗ a = a and e as unit. Then Q is an idempo-
tent, commutative and unital quantale, in which a is two-sided. Again the quasi-magma (Q,∗) is subdistributive (cf.
Proposition 2.9), and consequently we choose � = ∗.

In order to give an explicit description of I(Q,→) we lay down the table of the hom-object assignment

→ ⊥ a e 	
⊥ 	 	 	 	
a ⊥ 	 ⊥ 	
e ⊥ a e 	
	 ⊥ a ⊥ 	

and notice:

ẽ ∗ a ≤ ã ∗ a = 	̃ ∗ a = a ≤ ã ∗ 	 = ã.

Now we choose a contravariant Q-presheaf f and assume that f is inhabited — i.e. ⊥̃ ≤ f . We distinguish the
following cases:

Case A. If f (a) = ⊥, then f (	) = ⊥ and we have f ∈ { ⊥̃, ⊥̃ ∨ (̃e ∗ a), ẽ, ẽ ∗ 	}
.

Case B. If f (a) = a, then f (	) = a ≤ f (e) and f ∈ { ⊥̃ ∨ (̃a ∗ a), (̃a ∗ a) ∨ (̃e ∗ 	)
}
.

Case C. If e ≤ f (a), then ã ≤ f and f (a) = 	, and a ≤ f (e) and a ≤ f (	) follow. Since ã ∨ (̃e ∗ 	) = ã ∨ ẽ, we
obtain: f ∈ {

ã, ã ∨ ẽ, 	̃}
.
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If we choose the covariant Q-presheaves g1 = ẽ† and g2 = ã†, then it is easily seen that ã ∨ ẽ is not ∗-flat. On
the other hand, since a ∈ Q is idempotent and two-sided and every covariant Q-presheaf k on (Q,→) satisfies the
following properties

k(e) ∗ a = k(e) ∗ (e → a) ≤ k(a), k(⊥) ≤ k(a), k(⊥) ≤ k(e),

we conclude from the commutativity of Q that the remaining inhabited, contravariant Q-presheaves are ∗-flat and
consequently Q-ideals of (Q,→). So we have:

I(Q,→) = { ⊥̃, ⊥̃ ∨ (̃e ∗ a), ẽ, ẽ ∗ 	, ⊥̃ ∨ (̃a ∗ a), (̃a ∗ a) ∨ (̃e ∗ 	), ã, 	̃}
,

and the Q-valued way below relation attains the following form:

�( ,	) = ẽ ∗ 	, �( , a) = ⊥̃ ∨ (̃e ∗ a), �( , e) = ẽ, �( ,⊥) = ⊥̃.

Hence the right Q-module Q with the right quantale multiplication as right action is a Q-domain.
Referring to Lemma 5.6 the Scott Q-topology on Q is generated by {	,1Q,⊥}. Hence σ(Q,↘) has the form:

σ(Q,↘) = {1Q,1Q ∗ 	,1Q ∗ a, (1Q ∨ a) } ∪ {⊥, a,	}.

After this digression it is interesting to give a computational interpretation of the Q-valued way below relation �
for right Q-modules. In this context we assume that the given right Q-module (X,�) is a Q-domain. Then it follows
from the definition of � that �( , y) is the smallest Q-ideal f of (X,p) with y ≤ sup(f ), where ≤ is the given order
on X. This means that (x,�(x, y)) is not only a dynamic approximation of y, but a finite dynamic approximation of y

according to the terminology chosen in [3, Introduction]. Therefore in Example 6.2 we underline that (e, a) and (e,	)

are finite dynamic approximations of a and 	, respectively. In which way a and 	 are limit points of the respective
Q-ideals

�( , a) = ⊥̃ ∨ (̃e ∗ a) and �( ,	) = ẽ ∗ 	
we refer to Proposition 5.5 and the Scott Q-topology in Example 6.2.

The list of unital quantales Q such that (Q,↘) is not a Q-domain can easily be continued — e.g. by the unital
quantale Q on the set of 5 elements with the following Hasse diagram and multiplication table:

	

b e

a

⊥

�� ��

�
�
�
��

��

∗ ⊥ a b e 	
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ a a a

b ⊥ ⊥ b b b

e ⊥ a b e 	
	 ⊥ a b 	 	

It is interesting to see that C4 = {⊥, a, b,	} is a non-commutative subquantale of Q which is even integral. It follows
from Proposition 2.16 (3) that the semi-dominating quasi-magma (Q,�) is subdistributive. So we leave the details to
the reader to show that (Q,↘) is not a Q-domain w.r.t. �.

Finally, it follows from Lemma 3.5 that in every unital and divisible quantale Q provided with (3.2) and viewed as
a right Q-module the Q-valued below relation coincides with the right implication and is consequently a Q-domain.
In particular, the real unit interval with the usual product or with Lukasiewicz arithmetic conjunction as quantale
multiplication is always a [0,1]-domain.
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