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Abstract: The nonuniform magnetic vortex gyrotropic oscillations along the cylindrical dot thickness
were calculated. A generalized Thiele equation was used for describing the vortex core motion
including magnetostatic and exchange forces. The magnetostatic interaction was accounted for in
a local form. This allowed reducing the Thiele equation of motion to the Schrödinger differential
equation and analytically determining the spin eigenmode spatial profiles and eigenfrequencies using
the Liouville–Green method for the high-frequency modes. The mapping of the Schrödinger equation
to the Mathieu equation was used for the low-frequency gyrotropic mode. The lowest-frequency
gyrotropic mode transformed to the dot faces localized mode, increasing the dot thickness. The vortex
gyrotropic modes are described for a wide range of the dot thicknesses according to the concept of
the turning points in the magnetostatic potential. This approach allows treating the vortex localized
modes (turning points) and nonlocalized modes within a unified picture.
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1. Introduction

There is a longstanding interest in the topological spin textures in small ferromagnetic
particles and thin films, such as magnetic vortices [1,2], skyrmions [3–5], and hopfions [6,7].
The magnetic vortex is one of the simplest topologically nontrivial and stable spin textures
in condensed matter physics. Since the vortex state of magnetization was discovered as the
ground state of patterned soft magnetic dots [1], the dynamics of magnetic vortices attract
considerable attention.

The vortex gyrotropic frequency and trajectory in circular magnetic dots were pre-
dicted by Guslienko et al. [8]. Being displaced from its equilibrium position in the dot
center, the vortex core reveals sub-GHz frequency oscillations with a narrow linewidth.
Then, existence of the vortex low-frequency gyrotropic mode dominated by the dipolar
interaction was observed experimentally by different experimental techniques [9–11]. The
experimental study of magnetic vortex dynamics was started in 2003 using time-resolved
Kerr microscopy [9] and X-ray imaging [10]. Then, Novosad et al. [11] demonstrated that,
upon being shifted from its equilibrium position by a microwave field, the vortex core
experiences oscillations with the eigenfrequency proportional to the dot thickness/radius
aspect ratio β = L/R. Later, it was shown that similar microwave-frequency oscillations
with extremely narrow linewidth could be excited by DC spin polarized current [12,13].
Lastly, a large microwave generation from the current-driven magnetic vortex oscilla-
tors was observed in magnetic tunnel junctions [14]. These results allow considering the
magnetic vortex gyrotropic motion as an important excitation mode of the spin torque
nano-oscillators (STNO) in layered nanopillars and nanocontacts [15].

The magnetic vortex excitations in patterned films have been studied extensively for
the last decades. However, in all experiments conducted in 2003–2013 the observed vortex
gyrotropic modes had a uniform profile along the dot thickness accounting for the dot
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thickness being relatively small (typically, 20–30 nm). The nonuniform along-thickness
vortex core mode was first simulated micromagnetically by Boust and Vukadinovic for
small-radius circular dots [16]. The mode frequency decreases with dot thickness L in-
creasing approximately as ∼ 1/L2. A model of the vortex core position inhomogeneous
along the dot thickness was developed [17], which principally explained this behavior
as a consequence of the exchange interaction in the out-of-plane z-direction. Then, the
existence of higher-order vortex gyrotropic modes was demonstrated by micromagnetic
simulations for thick (60–80 nm) submicron rectangular prisms [18]. These modes were
described schematically as oscillations of the vortex core line with several nodes along the
dot thickness (or oscillation modes of the asymmetric Bloch wall). Then, it was proven
experimentally and confirmed by simulations and calculations that, in thick circular dots,
these kinds of the vortex dynamical deformations, i.e., flexure oscillations of the vortex
core string with n nodes along the dot thickness, can exist [19,20].

In this paper, a route from 2D to 3D magnetic soliton dynamics is considered conduct-
ing generalization of the 2D magnetic vortex strings to 3D topological spin textures. A
third spatial dimension is added to 2D magnetic vortices, exploring the vortex gyrotropic
modes in thick cylindrical dots and nanowires and considering the 3D vortex strings (tubes)
oscillations. Specifically, the thickness-dependent magnetic vortex gyrotropic dynamics is
calculated in the thick circular dots. A new analytic approach to the problem is developed,
allowing the vortex eigenfrequencies and gyrotropic mode profiles to be calculated. The
proposed analytical theory is based on the Thiele equation of motion of the soliton center
and turning points of the vortex core motion along the dot thickness. The theory describes
the whole vortex gyrotropic spectra in a circular dot, accounting for the exchange and
magnetostatic energies.

2. Theory
2.1. Stability of the Magnetic Vortex State in Cylindrical Geometry

Let us consider a cylindrical dot (wire) of radius R and thickness (wire length) L made
of soft magnetic material like Permalloy (NiFe alloy). Let us also assume that the dot
(wire) radius R > 2Le, where Le =

√
2A/Ms is the material exchange length, to allow

the vortex state energy minimum (A is the exchange stiffness, and Ms is the saturation
magnetization). Then, following Usov et al. [21], the total dot magnetic energy, consisting
of the exchange energy and magnetostatic energy of the face charges, can be minimized
with respect to the vortex core radius, c = Rc/R. The equilibrium vortex core radius at
L > Le is approximately equal to Rc = uLe(L/Le)

1/3, where u =0.685. We are interested
to find a border of the vortex state stability increasing the dot thickness, at L > 2Le, when
the vortex state gradually transforms to a quasi-uniform out-of-plane magnetized state
(quasi-uniform state magnetized along the nanowire length if L � Le, β = L/R � 1).
The simplest estimation of the critical thickness Lc for such a transition is Rc = R, i.e.,
Lc(R)/Le = (R/uLe)

3. However, more careful analysis based on the vortex equilibrium
magnetic energy and the vortex “half-skyrmion” ansatz [21] allows writing down a more
exact value of the critical thickness (wire length) as Lc(R)/Le = (R/uLe)

3/ ln 2. For the
typical material parameters Le = 14 nm and the nanodot (nanowire) radius R = 60 nm, the
critical length is Lc ≈ 2.36 µm. It is assumed here that the dot (wire) static magnetization is
uniform along the thickness (length) coordinate. If any nonuniformity along the thickness is
accounted for, then the critical value of Lc can be smaller. An example of such nonuniformity
is an “end-vortex” state, when the magnetization configuration is vortex-like near the
nanowire ends (dot faces) and almost uniform (along the wire length) in the wire main
part. Nevertheless, for the given dot radius R, there is a wide interval Le < L < Lc(R)
of the dot thickness (wire length) where the vortex state is stable. The minimal value of
Lc(R) for the given dot radius R is several hundred nanometers. The typical dot radius
is 100–300 nm. Therefore, we can safely consider that the dots with the aspect ratio
β = L/R = 0.2 to 2.0 are in the single vortex state and consider excitations over this
ground (metastable) magnetization background. Such large values of the dot thickness
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L = 40 to 400 nm correspond to the extension of the vortex stability region above the value
of L/Le = 3.5 calculated in [22].

2.2. The Generalized Thiele Equation of Motion of the Magnetic Soliton Center

Circular dots (wires) made of soft magnetic material have a vortex state of magnetiza-
tion as the ground state for a certain dot radius R and thickness L. To calculate the vortex
state excitation frequencies, the Landau–Lifshitz–Gilbert (LLG) equation of motion is used,
which describes the evolution of magnetization M(r, t) in a ferromagnet in the presence of
an effective magnetic field H and damping. It is written in the following form:

dM
dt

= −γM×H +
α

Ms
M× dM

dt
, (1)

where γ is the gyromagnetic ratio, α is the dimensionless damping constant, and Ms is the
saturation magnetization. The effective field H = −δE/δM is a combination of the external
magnetic field, exchange field, the demagnetizing field, etc., where E is the total magnetic
energy density. It was shown by Thiele [23] that, for a description of the dynamics of
magnetic domains (solitons), the LLG equation can be rewritten in another form that allows
simplifying the calculations. Thiele’s approach is applicable to describe the dynamics
of stable magnetization configurations (magnetic solitons) that can be characterized by
a position of their center X(t) (a collective coordinate) that can vary with time. Let us
use a cylindrical coordinate system with the cylinder axis directed along the z-axis. To
consider the thickness-dependent vortex excitations, it is assumed that the magnetization
as a function of the coordinates r = (ρ, z), ρ = (ρ, ϕ) and time can be written in the form
M(r, t) = M(ρ, X(z, t)). The two-dimensional vector X(z, t) = (X(z, t), Y(z, t)) represents
oscillations of the vortex core string in the dot xy-plane for a given value of z. Then,
neglecting the damping, we can rewrite the LLG equation as the Thiele equation,

Gαβ

dXβ

dt
= − δW(X)

δXα
, (2)

where W =
∫

dVE is the total magnetic energy of the dot, and α, β = x, y. Introducing
the unit vector of magnetization m = M/Ms, the components of the gyrotensor density
per unit dot thickness ĝ = Ĝ/L related to 2D topological charge of the spin texture can be
defined as follows:

gαβ =
Ms

γ

∫
d2ρ

(
∂m
∂Xα
× ∂m

∂Xβ

)
m. (3)

We can apply Thiele’s approach for the magnetic vortex motion in a circular dot (cylindri-
cal wire). The vortex core position is defined in dimensionless units as s = X/R (s = sx + isy).

The magnetization m has the following components: mx + imy = 2W/
(

1 +WW
)

and

mz = p
(

1−WW
)

/
(

1 +WW
)

, where W = W
(
ζ, ζ
)

is a complex function of the complex

coordinate ζ = x + iy and its complex conjugate ζ, and p = mz(0) is the vortex core
polarization [2]. Inside the vortex core the vortex configuration is described as a 2D topo-
logical soliton, i.e., W

(
ζ, ζ
)
=
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(ζ), where an analytic function
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(ζ) satisfies the condition
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(ζ)| ≤ 1. The vortex core position s in the xy-plane corresponds to a zero of the function
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where 𝑊 = ∫ 𝑑𝑉𝐸 is the total magnetic energy of the dot, and 𝛼, 𝛽 = 𝑥, 𝑦. Introducing 
the unit vector of magnetization 𝒎 = 𝑴 𝑀⁄ , the components of the gyrotensor density 
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be defined as follows: 𝑔 = 𝑀𝛾 ∫ 𝑑 𝝆 𝜕𝒎𝜕𝑋 × 𝜕𝒎𝜕𝑋 𝒎. (3)

We can apply Thiele’s approach for the magnetic vortex motion in a circular dot 
(cylindrical wire). The vortex core position is defined in dimensionless units as 𝒔 = 𝑿 𝑅⁄  
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is the vortex core polarization [2]. Inside the vortex core the vortex configuration is de-
scribed as a 2D topological soliton, i.e., 𝕨(𝜁, 𝜁) = 𝕗(𝜁), where an analytic function 𝕗(𝜁) 
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(ζ)| > 1, the magnetization distribution is
described by the function W

(
ζ, ζ
)
=
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We can apply Thiele’s approach for the magnetic vortex motion in a circular dot 
(cylindrical wire). The vortex core position is defined in dimensionless units as 𝒔 = 𝑿 𝑅⁄  
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given value of z. Then, neglecting the damping, we can rewrite the LLG equation as the 
Thiele equation, 𝐺 𝑑𝑋𝑑𝑡 = − 𝛿𝑊(𝑿)𝛿𝑋 , (2)

where 𝑊 = ∫ 𝑑𝑉𝐸 is the total magnetic energy of the dot, and 𝛼, 𝛽 = 𝑥, 𝑦. Introducing 
the unit vector of magnetization 𝒎 = 𝑴 𝑀⁄ , the components of the gyrotensor density 
per unit dot thickness �̑� = 𝐺 𝐿⁄  related to 2D topological charge of the spin texture can 
be defined as follows: 𝑔 = 𝑀𝛾 ∫ 𝑑 𝝆 𝜕𝒎𝜕𝑋 × 𝜕𝒎𝜕𝑋 𝒎. (3)

We can apply Thiele’s approach for the magnetic vortex motion in a circular dot 
(cylindrical wire). The vortex core position is defined in dimensionless units as 𝒔 = 𝑿 𝑅⁄  
( 𝑠 = 𝑠 + 𝑖𝑠 ). The magnetization 𝒎  has the following components: 𝑚 + 𝑖𝑚 =2𝕨 (1 + 𝕨𝕨)⁄  and 𝑚 = 𝑝 (1 − 𝕨𝕨) (1 + 𝕨𝕨)⁄ , where 𝕨 = 𝕨(𝜁, 𝜁) is a complex func-
tion of the complex coordinate 𝜁 = 𝑥 + 𝑖𝑦 and its complex conjugate 𝜁 ,̅ and 𝑝 = 𝑚 (0) 
is the vortex core polarization [2]. Inside the vortex core the vortex configuration is de-
scribed as a 2D topological soliton, i.e., 𝕨(𝜁, 𝜁) = 𝕗(𝜁), where an analytic function 𝕗(𝜁) 
satisfies the condition |𝕗(𝜁)| ≤ 1. The vortex core position s in the xy-plane corresponds 
to a zero of the function 𝕗(𝜁). Outside the vortex core region, where |𝕗(𝜁)| > 1, the 
magnetization distribution is described by the function 𝕨 𝜁, 𝜁 = 𝕗(𝜁) |𝕗(𝜁)|⁄ . The func-

(ζ)|. The function w
(
ζ, ζ
)

corresponds to the
description of magnetic vortex as a nonlocalized topological soliton. The magnetostatic
energy plays an essential role for the magnetic vortices in restricted geometries. There-
fore, for describing the vortex dynamics, a two-vortex model (no side surface charges
induced in the course of motion) is used with the analytical function
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where 𝑊 = ∫ 𝑑𝑉𝐸 is the total magnetic energy of the dot, and 𝛼, 𝛽 = 𝑥, 𝑦. Introducing 
the unit vector of magnetization 𝒎 = 𝑴 𝑀⁄ , the components of the gyrotensor density 
per unit dot thickness �̑� = 𝐺 𝐿⁄  related to 2D topological charge of the spin texture can 
be defined as follows: 𝑔 = 𝑀𝛾 ∫ 𝑑 𝝆 𝜕𝒎𝜕𝑋 × 𝜕𝒎𝜕𝑋 𝒎. (3)

We can apply Thiele’s approach for the magnetic vortex motion in a circular dot 
(cylindrical wire). The vortex core position is defined in dimensionless units as 𝒔 = 𝑿 𝑅⁄  
( 𝑠 = 𝑠 + 𝑖𝑠 ). The magnetization 𝒎  has the following components: 𝑚 + 𝑖𝑚 =2𝕨 (1 + 𝕨𝕨)⁄  and 𝑚 = 𝑝 (1 − 𝕨𝕨) (1 + 𝕨𝕨)⁄ , where 𝕨 = 𝕨(𝜁, 𝜁) is a complex func-
tion of the complex coordinate 𝜁 = 𝑥 + 𝑖𝑦 and its complex conjugate 𝜁 ,̅ and 𝑝 = 𝑚 (0) 
is the vortex core polarization [2]. Inside the vortex core the vortex configuration is de-
scribed as a 2D topological soliton, i.e., 𝕨(𝜁, 𝜁) = 𝕗(𝜁), where an analytic function 𝕗(𝜁) 
satisfies the condition |𝕗(𝜁)| ≤ 1. The vortex core position s in the xy-plane corresponds 
to a zero of the function 𝕗(𝜁). Outside the vortex core region, where |𝕗(𝜁)| > 1, the 
magnetization distribution is described by the function 𝕨 𝜁, 𝜁 = 𝕗(𝜁) |𝕗(𝜁)|⁄ . The func-

(ζ) being written

as
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( 𝑠 = 𝑠 + 𝑖𝑠 ). The magnetization 𝒎  has the following components: 𝑚 + 𝑖𝑚 =2𝕨 (1 + 𝕨𝕨)⁄  and 𝑚 = 𝑝 (1 − 𝕨𝕨) (1 + 𝕨𝕨)⁄ , where 𝕨 = 𝕨(𝜁, 𝜁) is a complex func-
tion of the complex coordinate 𝜁 = 𝑥 + 𝑖𝑦 and its complex conjugate 𝜁 ,̅ and 𝑝 = 𝑚 (0) 
is the vortex core polarization [2]. Inside the vortex core the vortex configuration is de-
scribed as a 2D topological soliton, i.e., 𝕨(𝜁, 𝜁) = 𝕗(𝜁), where an analytic function 𝕗(𝜁) 
satisfies the condition |𝕗(𝜁)| ≤ 1. The vortex core position s in the xy-plane corresponds 
to a zero of the function 𝕗(𝜁). Outside the vortex core region, where |𝕗(𝜁)| > 1, the 
magnetization distribution is described by the function 𝕨 𝜁, 𝜁 = 𝕗(𝜁) |𝕗(𝜁)|⁄ . The func-

(ζ) = −iC(ζ − s)
(−

s ζ − 1
)

/c
(
1 + |s|2

)
[2,8], where C = ±1 is the vortex chirality, and

c = Rc/R is the reduced vortex core radius. It is assumed that the dependence of magneti-
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zation on the thickness coordinate z is accounted for via the function s(z). The vortex core
with the radius Rc = uLe(L/Le)

1/3 should be accounted for explicitly in the case of dots
(nanowires) with radii R of several tens of nanometers.

The righthand-side term in Equation (2) is the variational derivative of the total
magnetic energy W(X) of the dot with a displaced magnetic vortex centered in a point
s =

(
sx, sy

)
taken with respect to the vortex core coordinate s = X/R. The total magnetic

energy W consists of the magnetostatic, exchange, and Zeeman energies and can be calcu-
lated as a function of s. The magnetostatic energy consists of the energy of volume magnetic
charges ρ(ρ, X) = −Msdivm(ρ, X), energy of the side surface charges, and energy of the
dot face (wire end) charges. The side surface charges are absent for the selected vortex
model. The face charges related to the magnetization component mz contribute only to the
boundary conditions at the dot faces z = ±L/2. Therefore, the magnetostatic energy is
related with the volume magnetic charges and can be written in the following form:

Wm(X) =
1
2

M2
s

∫
dVdV′

divm(ρ, X(z))divm(ρ′ ,X(z′))
|r−r′ | . (4)

The exchange energy is Wex(X) = A
∫

dV ∑
α
(∇mα(ρ, X))2 with A being the exchange

stiffness parameter. Integration over the in-plane dot coordinates and neglecting the vortex
core contribution (c� 1) yields, in the quadratic approximation on the small parameter
|s| � 1, the nonlocal magnetostatic energy,

1
V

Wm[s(z)] =
1
2

∫
dz
∫

dz′κ
(
z, z′

)
s(z) · s

(
z′
)
, (5)

where the magnetostatic kernel is κ(z, z′) = 8πM2
s β
∫

dke−βk|z−z′ | I2(k), I(k) =
∫ 1

c dρρJ1(kρ),
β = L/R, and V = πR2L is the dot volume. The thickness coordinate z is in units of L.

The exchange energy is

1
V

Wex[s(z)] =
1
2

∫
dz

[
η

(
∂s
∂z

)2
− µs2(z)

]
, (6)

where µ = 2M2
s (Le/R)2 is the in-plane and η = M2

s (Le/L)2
[
ln 1

c +
5
4 + c2

]
is the out-of-

plane exchange stiffness coefficient calculated within the model, and c = Rc/R is the
reduced vortex core radius.

The generalized Thiele equation of motion (Equation (2)) is

g× .
s = −∂w

∂s
+

∂

∂z
∂w

∂(∂s/∂z)
, (7)

where g = gxyẑ is the gyrovector per unit dot thickness, g = |g| = 2πMs/γ, W = V
∫

dzw/π,
and W = Wm + Wex.

Assuming circular motion of the vortex core
.
s = ω× s with the frequency ω = |ω| (or

making a Fourier transform s(z, t) = s(z, ω) exp(iωt) with respect to time t for the variable
s = sx + isy), the Thiele equation can be written as a two-component differential–integral
equation containing nonlocal terms,

λs(z) =
[
−η

d2

dz2 − µ

]
s(z) +

∫
dz′κ

(
z, z′

)
s
(
z′
)
, (8a)

for the vector s(z) =
(
sx(z), sy(z)

)
components, where s(z) = s(z, ω), and λ = 2ωMs/γ.

Equation (8a) should be amended by the boundary conditions at the dot faces z = ±1/2.
This equation can be written in the compact form Γ̂s(z) = λs(z), where the linear integral–
differential operator Γ̂ is defined by the righthand side of Equation (8a). Equation (8a)
allows finding eigenmodes of the vortex core string oscillations sn(z) and corresponding
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eigenfrequencies ωn, which are expressed via the eigenvalues λn. It is convenient to write
Equation (8a) in the dimensionless form, dividing both parts of the equation by 8πM2

s .
Then, the eigenvalue λ corresponds to the dimensionless frequency λ = ω/ωM, where
ωM = γ4πMs. The value of ωM/2π is 30 GHz for a typical composition of NixFe1−x alloy
with x ≈ 0.80 (Ms = 800–860 kA/m).

It is convenient to introduce a complex circular variable s(z) = sx(z) + isy(z). The
equation of motion for s(z) has the form

s(z) =
[
−η

d2

dz2 − µ

]
s(z) +

∫
dz′κ

(
z, z′

)
s
(
z′
)
. (8b)

The solution of Equation (8b) yields the complex eigenfunctions sn(z) and eigenfrequen-
cies ωn of the vortex string oscillations. The absolute value un(z) = |sn(z)| and the phase of
the n-th eigenmode as sn(z) = un(z)exp[iΦn(z)] are introduced. It is determined from the sym-
metry of Equation (8b) that the eigenfunctions satisfy the condition sn(−z) = sn(z), which is
equivalent to the conditions un(−z) = un(z) and Φn(−z) = −Φn(z). Then, the time depen-
dence of the vortex displacement vector components sn(z, t) = snx(z, t) + isny(z, t) is given
by the equations snx(z, t) = un(z)cos[ωnt + Φn(z)], sny(z, t) = un(z)sin[ωnt + Φn(z)].
Equation (8b) has pure real (even) solutions or pure imaginary (odd) solutions sn(z),
if the phases Φn(z) = 0 or Φn(z) = ±π/2, respectively.

The aim is to find analytical solutions of Equation (8a), the eigenfrequencies λn and
eigenfunctions sn(z) of the operator Γ̂ numbered by the integer index n = 0, 1, 2, . . . The
problem is that there is no theory of the linear integral–differential equations. Therefore,
we reduce Equation (8a) to a local form, i.e., a differential equation for the function sn(z).
The kernel κ(z, z′) has a sharp maximum at z ≈ z′ if the dot aspect ratio β is large enough.
This allows substituting s(z′) in the magnetostatic term containing the kernel κ(z, z′) to
s(z) and writing the Thiele equation in the form of the differential Schrödinger equation
with an effective potential energy,

λs(z) =
[
−η

d2

dz2 − µ + I(z)
]

s(z), (9)

where I(z) =
∫ 1/2
−1/2 dz′κ(z, z′).

The function I(z) can be calculated explicitly and has the form I(z, β) = 2
∫ ∞

0 dkk−1 I2

(k)[1− exp(−βk/2)cosh(βkz)]. I(z) has a smooth maximum at z = 0, in the dot middle
plane, and minima at the dot faces, z = ±1/2. The potential I(z) ≈ const at a small
dot aspect ratio β ∼ 0.1. However, upon increasing β, the function I(z, β) reveals more
and more pronounced minima at z = ±1/2. Such minima result in the low-frequency
(n = 0) eigenmode localization near the dot faces z = ±1/2 increasing the dot thickness or
the dot aspect ratio β at the fixed dot radius R. The accuracy of the local approximation,
Equation (9), increases with β increasing.

We can rewrite Equation (9) in the standard oscillator-like form for both vortex core
displacement s components, sx, sy.

d2s
dz2 + f (z, λ)s(z) = 0, f (z, λ) =

1
η
[λ− I(z, β)], (10)

where a small thickness-independent coefficient µ is included in the eigenvalue λ.

3. Magnetic Vortex String Gyrotropic Dynamics
3.1. The Lowest Frequency Gyrotropic Mode

Starting from Equation (10), it is possible to satisfy, for a given λ, the condition
f (z, β) = 0, which corresponds to the classical turning points ±z∗ located somewhere near
the dot faces. Other turning points z = ±1/2 appear naturally due to the restricted dot
geometry. More detailed analysis shows that the turning points exist only for the lowest
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eigenvalue λ0. In other words, the lowest frequency eigenmode is localized between the
turning points z∗ and 1

2 (or −z∗ and − 1
2 ) near the dot top/bottom surfaces. The mode

frequency ω0(β) is within the interval I(1/2, β) < ω0(β)/ωM < I(0, β) shown in Figure 1.
This interval is very narrow for small β ∼ 0.1 and rapidly increases with β increasing.
Another estimation of the lowest mode gyrofrequency valid at small β << 1 can be ob-
tained assuming the mode uniformity along the dot thickness, i.e., putting s(z) = const in
Equation (10). This frequency was calculated in [8] as ωG(β)/ωM =

∫ 1/2
−1/2 dzI(z, β) .
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Figure 1. The lowest vortex gyrofrequency (solid line 3) calculated using Equation (12a). The
dashed lines 1 and 4 describe the limiting frequencies corresponding to the frequency window
I(1/2, β) < ω0(β)/ωM < I(0, β) of the mode localization between the turning points. The frequency
(solid line 2) is the gyrotropic frequency calculated in [8] assuming the gyromode uniformity along
the dot thickness extrapolated for large values of β. The reduced dot radius r = R/Le = 10.

We approximate the magnetostatic potential I(z) in Equation (10) as I(z) = I(0)cos(pz).
This allows rewriting Equation (10) in the form of the Mathieu equation [24,25],

d2s
dξ2 + [a− 2qcos(2ξ)] = 0, (11)

where ξ = pz/2, a = 4λ/ηp2, and q = 2I(0)/ηp2. The fitting parameter p is defined as
p = 2arccos(I(1/2)/I(0)) and is a function only of β.

The solutions of the Mathieu equation are known. We are interested to use only
the lowest eigenvalue a0 of Equation (11), which is the increasing function of the pa-
rameter q. q is an increasing function on β (the dot radius R is fixed). For the values
of q > 1, the eigenvalue a0 of the Mathieu equation is defined approximately by the
function a0(q) = 2q− 2

√
q + 1/4− 1/32

√
q [24,25], where q(β, r) = 16πβ2r2I(0, β)/p2(β)[

ln(1/c) + 5
4 + c2], r = R/Le is the reduced dot radius, and c = 0.685β1/3/r2/3 . For in-

stance, if the value of r = 10 is used, then q > 1.82 at β > 0.2, and q(β = 1) = 56.64. The
eigenvalue a0 corresponds to the lowest gyrotropic mode eigenfrequency (see Figure 1),

ω0(β, r) =
ωM
32π

p2(β)
[
ln(1/c) + 5

4 + c2]
β2r2 a0(b, r), (12a)
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and the corresponding eigenfunction is the zero-order Mathieu even function ce0(ξ, q). For
the large values of the parameter q >> 1, such an eigenfunction (not normalized) can be
represented in the following form [24,25]:

s0(ξ) ∼
1

cos(ξ)

[
exp(2

√
qsin(ξ))cos

(
ξ

2
+

π

4

)
+ exp(−2

√
qsin(ξ))sin

(
ξ

2
+

π

4

)]
. (12b)

The even function s0(ξ) for the typical dot sizes is shown in Figure 2, where the
normalized eigenfunctions N−1/2

0 s0(z), N0 =
∫

dzs2
0(z) are plotted for different values

of β. The degree of the lowest gyrotropic mode localization at the dot faces increases
with increasing dot thickness. The lowest mode eigenfrequency given by Equation (12a)
is asymptotically correct at the large values of the parameter q, i.e., for thick enough
dots (q > 12.8 at β > 0.5, r = 10). The frequency ω0(β, r) is lower than the gyrotropic
frequency ωG(β) calculated within uniform along thickness mode approximation in [8]
at intermediate values of β and practically coincides with ωG(β) at large values of β. The
approximation of ω0(β, r) by the Mathieu method (Equation (12a)) is not applicable at
small values of q (small β < 0.2). It leads to underestimation of the lowest mode frequency
in comparison with the homogeneous solution ωG(β).
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Figure 2. The normalized profiles of the lowest vortex gyrotropic mode calculated using the Mathieu
function approximation, Equation (12b). The values of the dot aspect ratio β: 0.3 (1), 0.5 (2), 1.0 (3),
and 2.0 (4). The reduced dot radius r = R/Le = 10.

3.2. High-Frequency Vortex Gyrotropic Modes

Let us consider the equation of motion (Equation (10)) for higher frequencies, when
there are no turning points for the function f (z). If, additionally, we assume that the
function is smooth enough, then the solution of Equation (10) can be written in the Liouville–
Green approximation [26] as

(z) =
1

( f (z))
1
4
[C+exp(iΦ(z)) + C−exp(−iΦ(z))], Φ(z) =

∫
dz f

1
2 (z), (13)
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where C+, C− are some constants, which can be defined by the boundary conditions at the
dot faces, z = ±1/2.

The function u(z) = ( f (z))−1/4 has sense of the amplitude, and Φ(z) =
∫ z

0 dz f
1
2 (z) +

Φ(0) has sense of the phase of the vortex string displacement s(z) =
(
sx(z), sy(z)

)
used in

the complex form s = sx + isy. It is assumed that there is no surface magnetic anisotropy
and no dipolar pining at the dot faces. Therefore, the natural exchange boundary condi-
tions, (∂s/∂z) = 0 at z = ±1/2, are used. Equation (13) combined with these boundary
conditions allows finding the vortex oscillation eigenfrequencies and explicit form of the
eigenfunctions. It can be shown that solving the linear system of the equations for the
coefficients C+, C− and the eigenfrequencies λn can be found from the equation

tan(ψ(λ)) =
2g(λ)

g2(λ)− 1
, g(λ) =

1
4

1
f 3/2(1/2, λ)

∂ f (1/2, λ)

∂z
, (14)

and the corresponding eigenfunctions are

sn(z) =
{+

( f (z))
1
4
[exp(iΦ(z)) + σexp(2iΦ(0))exp(−iΦ(z))], (15)

where ψ(λ) = Φ(1/2, λ)−Φ(−1/2, λ), f (z, λ), and σ = sign(cos(ψ)) are taken at λ = λn.
The function G(λ) = 2g(λ)/

(
g2(λ)− 1

)
rapidly decreases with the frequency

λ = ω/ωM increasing. It is different from zero solely due to the magnetostatic poten-
tial I(z) nonuniformity along the dot thickness. For thin dots (small values of β � 1),
∂ f (1/2, λ)/∂z ≈ 0 and G(λ) ≈ 0, tan(ψ(λ)) ≈ 0, ψ(λ) ≈ nπ for all eigenmode numbers
n = 1, 2, . . . For the large values of β = 0.5− 2, the condition ψ(λ) ≈ nπ is satisfied
with a high degree of accuracy for all eigenmodes except the n = 1 mode. The phase
difference ψ(β)/π for n = 1 mode decreases from 0.998 to 0.849 increasing β from 0.2 to
1.0. Apparently, the condition ψ(λ) ≈ nπ corresponds to the simple exchange eigenfunc-
tions cos(nπz), sin(nπz) and corresponding exchange-dominated eigenfrequencies can be
written in the form of Equation (4) of the paper by Ding et al. [19]. λn = ωn/ωM.

The eigenfunctions sn(z) are even at σ = +1 or odd at σ = −1 with respect to the
dot middle plane z = 0 according to the general approach. The non-normalized eigenfunc-
tions can be written in the form sn(z) = f−1/4(z)exp(iΦ(0))cos

(∫ z
0 dz f

1
2 (z)

)
for the even

modes and sn(z) = f−1/4(z)exp[i(Φ(0) + π/2)]sin
(∫ z

0 dz f
1
2 (z)

)
for the odd modes taken

at λ = λn. The normalized eigenfrequencies λn = ωn/ωM are shown in Figure 3 and the
normalized eigenfunctions are plotted in Figure 4 for typical dot parameters. The following
normalization was used: N−1/2

n sn(z), Nn =
∫

dz|sn(z)|2. The eigenfrequencies ωn(β) with
n = 2, 3, . . . rapidly decrease with the dot thickness L increasing at small β as approximately
∼ 1/L2 and approach some constant values at large β. The thickness dependence of the
n = 1 mode ω1(β) is different. It reveals a smooth minimum at intermediate values of
β. Another important peculiarity of the n = 1 vortex gyrotropic mode is that the mode
frequency λ1 = ω1(β)/ωM becomes close to the magnetostatic integral I(0, β), increasing
the aspect ratio β up to approximately 1.0; therefore, the function f (z, λ) becomes very
small, and the Liouville–Green approximation is no longer applicable. This corresponds to
the regime of the frequency crossing between the lowest n = 0 (ω0(β)) and n = 1 (ω1(β))
vortex gyromodes and will be considered elsewhere.
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Figure 3. The high-order vortex eigenfrequencies ω1(β) (1), ω2(β) (2), and ω3(β) (3) of the
delocalized gyrotropic modes with the numbers n = 1, 2, and 3 calculated by Equation (14). The
reduced dot radius r = R/Le = 10.
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Figure 4. The normalized eigenfunctions of the high-frequency vortex gyrotropic modes with the
numbers n = 1, 2, and 3 calculated using the Liouville–Green approximation, Equation (15). The dot
aspect ratio β = 1, and the reduced dot radius r = R/Le = 10.

3.3. The Role of the Vortex Mass in the Gyrotropic Dynamics

The relationship of the eigenvalue parameter λwith the vortex gyrotropic frequencyω
is more complicated if other high-order time derivatives of the vortex core displacement are
accounted for in the Thiele equation of motion (Equation (7)). Formally, this can be achieved
assuming a velocity-dependent soliton ansatz M(r, t) = M(ρ, X(z, t), dX(z, t)/dt). It was
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shown in [27] that the mass term is, in general, nonlocal. If the vortex mass is accounted in
a local approximation, then the equation of motion of the vortex center position is

Mυ
..
s + g× .

s = −∂w
∂s

+
∂

∂z
∂w

∂(∂s/∂z)
, (16)

where Mυ = mυ/γ2 is the vortex mass per unit dot thickness, and mυ is the dimensionless
vortex mass.

In the case where Equation (16) is valid, the eigenvalue λ is represented by
the function λ(ω) = (ω/ωM) + 2mυ(ω/ωM)2. If the spectrum λn of the operator
Γ̂ Equation (8a) is found, then the eigenfrequency spectrum can be represented as
ωn/ωM =

[√
1 + 8mυλn − 1

]
/4mυ. The reduced eigenfrequencies ωn/ωM < λn for any

finite value of the vortex mass mυ, i.e., accounting for the vortex mass, results in a reduction
in all vortex gyrotropic frequencies ωn. The vortex mass Mυ = mυ/γ2 can be calculated
via the vortex string coupling with the azimuthal spin wave modes having the azimuthal
indices m = ±1 [27] according to the concept of the topological gauge field related to the
vortex motion [28]. The interaction of the moving vortex core with the azimuthal spin
waves was confirmed experimentally [29]. It was recently found that some extra azimuthal
spin-wave modes having a curled structure at the dot top and bottom faces appear in the
spin excitation spectrum when increasing the dot thickness [30]. Therefore, the calculation
of the vortex dynamical mass in thick dots is a complicated problem. The frequency correc-
tion due to the vortex mass is small for thin dots [28]. However, the importance of the mass
term drastically increases with the dot thickness L increasing in the range of 50–100 nm [27].
The Thiele equation of motion of the soliton center position X and the concept of the soliton
mass were recently used to interpret the low-frequency skyrmion excitation modes in CoPt
circular dots [31], where a giant value of the mass order of 10−21 kg was introduced.

4. Discussion and Conclusions

The magnetic vortex gyrotropic modes in thick cylindrical soft magnetic dots were
described for a wide range of the dot thickness according to the concept of the turning
points in the magnetostatic potential. This approach allows treating the vortex localized
modes (turning points) and nonlocalized modes within a unified picture.

The lowest-frequency vortex gyrotropic mode (ω0) was calculated for the dot aspect
ratios β = 0.2 to 2.0 within the approach. The calculated frequency ω0(β, r) was lower
than the gyrotropic frequency ωG(β) calculated within uniform along thickness mode
approximation in [8] at intermediate values of β (<1) and practically coincided with ωG(β)
at large values of β (1 < β < 2) (see Figure 1). The good accuracy of the expression for
ωG(β) at large β is a surprise because the lowest-frequency eigenmode depicted in Figure 1
is strongly inhomogeneous, localized at the dot faces at such values of β. The frequency
ω0(β, r) monotonically increases with β increasing. This is in some contradiction with the
measurements and simulations conducted in [19,27], where a smooth maximum of the
dependence ω0(β) was obtained at β ≈ 0.7. We can speculate that the maximum arises
due to repulsing of the frequency branches ωn(β) of the lowest (n = 0) and the next (n = 1)
vortex gyrotropic modes when the frequencies ω0(β) and ω1(β) are close to their crossing
point [32]. The low-frequency eigenmode localization at the dot faces z = ±1/2 at large
values of β (1 < β < 2) is due to strong nonuniformity of the magnetostatic potential
I(z, β) near the dot top and bottom faces.

The calculated eigenfrequencies of the nonlocalized vortex string modes (n = 1, 2 . . . )
follow the exchange-dominated decrease ∼ 1/L2 only for relatively small dot thicknesses
and approach some constant values at large values of the dot aspect ratio β (see Figure 3).
This effect is beyond the measurements/simulations conducted in [19,21] and should be
verified. The eigenmodes sn(z) are odd for n = 1, 3, . . . and even for n = 2, 4, . . . functions
of the thickness coordinate z with respect to the dot middle plane z = 0 (see Figure 4).
The n = 1 mode profile s1(z) deviates essentially from the simple function sin(πz) used
in [19], and the deviation increases with the dot aspect ratio β increasing. The profiles of
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the high-order vortex gyrotropic modes sn(z), n = 2, 3, . . . are close to the standing plane
waves supported by the dominating exchange interaction [19].

The vortex gyrotropic modes calculated here for thick circular cylinders are not specific
to this dot shape. Similar magnetic vortex excitations should exist also for other dot
shapes such as a dome shape or square/rectangular shape. The point is that the dot
thickness should be large enough to allow 3D magnetization texture excitations. The
inhomogeneous gyrotropic oscillations of the vortex core string can be considered as a step
toward understanding the magnetic topological soliton dynamics increasing the system
dimensionality from 2D to 3D.
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