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Resumen

La superconductividad es un fenómeno caracterizado por la pérdida de re-
sistencia dentro de un material. Esta propiedad hace que los materiales

superconductores puedan reducir significativamente la pérdida de energía
eléctrica en las redes de distribución y el uso de energía eléctrica, además de
producir una reducción en el tamaño y peso de los componentes de potencia
y maquinaria. Sin embargo, las temperaturas críticas superconductoras son
bajas. Este hecho por sí solo dificulta su aplicabilidad práctica a gran escala
debido a los desafíos y costes relacionados con el enfriamiento. El objetivo
del campo de la superconductividad es intentar encontrar nuevos materiales
que muestren superconductividad a alta temperatura y presión ambiental,
y los superconductores actuales más útiles son los materiales cerámicos de
cuprato-perovskita que exhiben superconductividad a aproximadamente
100 K.

En los últimos años, se han sintetizado superconductores convencionales
ricos en hidrógeno en pequeñas muestras a alta presión mediante el uso
de celdas de yunque de diamante. Esta configuración es capaz de generar
presiones comparables con la del núcleo de la Tierra. En 2015 esta técnica
permitió sintetizar el superconductor H3S a 150 GPa exhibiendo supercon-
ductividad a 200 K y en 2019 el LaH10 a 170 GPa siendo superconductor a
250 K. Estos materiales representan una alternativa viable con respecto a las
cerámicas de cuprato-perovskita, pero su aplicabilidad se ve obstaculizada
por la alta presión que conduce a la imposibilidad de sintetizar muestras
mayores de unas pocas micras.

Mientras tanto, también se invierte mucho esfuerzo a nivel teórico para
predecir nuevos superconductores ricos en hidrógeno a través de métodos de
predicción estructural basados en la teoría funcional de la densidad (DFT).
A través de estos métodos, ahora hay cientos de superconductores basados
en hidrógeno predichos. Además, la investigación sobre sistemas ricos en
hidrógeno ahora se está desplazando hacia el intento de predecir sistemas
con superconductividad a alta temperatura pero a presión ambiental.
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iv resumen

Sin embargo, a pesar de los avances teóricos y las predicciones actuales,
todavía falta una comprensión físico-química simple de las propiedades que
mejoran las temperaturas críticas en los sistemas basados en hidrógeno. En
otras palabras, aún no es posible confiar en variables simples para estimar
las temperaturas de los superconductores y, en última instancia, diseñar
químicamente mejores superconductores. En este sentido, los cientos de
superconductores compuestos predichos a través de métodos de predicción
estructural constituyen un rico conjunto de datos de trabajo para extraer
conclusiones que podrían guiar el descubrimiento de nuevos superconduc-
tores.

Un problema adicional está relacionado con los métodos actuales em-
pleados para realizar las simulaciones teóricas. En la mayoría de los cálcu-
los basados en la teoría funcional de la densidad para superconductores
basados en hidrógeno a alta presión, los iones del sistema se tratan como
partículas clásicas. Sin embargo, para esta clase de sistemas, compuestos
principalmente por átomos ligeros de hidrógeno, es importante tener en
cuenta que la naturaleza cuántica de los iones no puede despreciarse y
puede alterar significativamente las propiedades estructurales, fonónicas y
superconductoras. La mayoría de los cálculos teóricos relacionados con la
investigación de compuestos ricos en hidrógeno están incompletos sin la in-
troducción de efectos cuánticos iónicos y conducen a predicciones inexactas,
si no completamente erróneas.

En esta tesis, primero se realiza una investigación de las propiedades
químicas, estructurales y electrónicas de un gran conjunto de superconduc-
tores binarios basados en hidrógeno, a través de métodos ab initio basados en
teoría funcional de la densidad. Este análisis tiene como objetivo identificar
correlaciones o huellas que podrían aclarar las características específicas
que dan lugar a buenos superconductores. Como resultado, el análisis
conduce a la identificación de un valor observable, el networking value,
basado únicamente en la combinación de propiedades estructurales y elec-
trónicas que exhibe una sorprendente correlación con la temperatura crítica
superconductora. Los resultados obtenidos de este trabajo abren nuevas
vías para el descubrimiento de nuevos sistemas ricos en hidrógeno. La in-
troducción de códigos automatizados para el cálculo del networking value,
combinados con métodos de predicción estructural, acelerará la predicción
estructural al evitar el cálculo de las propiedades de los fonones de estos
compuestos, y permitirá elegir con previsión para qué compuestos merece
la pena profundizar en los cálculos computacionales.

En una ruta paralela, mediante el uso del método de Aproximación
Armónica Autoconsistente Estocástica, se investiga el comportamiento de
la estabilidad estructural para LaH10 y LaBH8 con la inclusión de fluctua-
ciones iónicas cuánticas. Esto se hace para comprender cómo la estabilidad
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de fase se ve afectada por la naturaleza cuántica de los átomos de hidrógeno
ligero. Para LaH10, los resultados obtenidos muestran que el paisaje de
estabilidad de fase se simplifica y la estructura se sostiene a presiones mu-
cho más bajas. En cambio, para LaBH8, las fluctuaciones iónicas cuánticas
desestabiliza la estructura a presiones mucho más altas. Estos resultados
opuestos despertaron el interés de realizar un análisis adicional sobre el
comportamiento de las fluctuaciones iónicas cuánticas en sistemas ricos
en hidrógeno. En este sentido, se compararon todos los sistemas para los
que se tuvieron en cuenta las fluctuaciones cuánticas con la Aproximación
Armónica Autoconsistente Estocástica. Los resultados revelan que los efec-
tos que tienen las fluctuaciones cuánticas en la estructura dependen en
gran medida de las características específicas de los patrones de enlace
interatómico. Por un lado, las fluctuaciones cuánticas sostienen a los su-
perconductores basados en hidrógeno con patrones de enlace altamente
simétricos, hasta presiones bajas y cercanas a la ambiental. Por otro lado, las
fluctuaciones cuánticas introducen modificaciones estructurales en los sis-
temas a bajas presiones que pueden mejorar su interacción electrón-fonón
y, en consecuencia, aumentar la temperatura crítica predicha a presión baja,
si no ambiental. Los resultados arrojan esperanzas de encontrar supercon-
ductividad a alta temperatura y presión ambiental para sistemas ricos en
hidrógeno.
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chapter 1

Introduction

As the modern world becomes more dependent on electricity, the ne-
cessity of electrical power sources and efficient distribution becomes

increasingly important. The loss of electrical energy, due to resistance to
flowing currents, translates into wasted energy and wasted economic re-
sources, with a consequential negative impact on the environment. The
phenomenon of superconductivity may offer a solution to such challenging
issues. Superconductivity is characterised by the loss of resistance inside a
material. Thus, the use of superconducting materials may significantly re-
duce the electrical energy loss in distribution networks and electrical power
use, as well as producing a reduction in size and weight of power compo-
nents and machinery. Additionally, the application for superconductivity
are not limited to energy transmission. Superconductors may have relevant
impact in plasma control on fusion energy production through the genera-
tion of strong magnetic fields [1]. They might have applications in energy
storage due to the persistent currents enclosed superconducting loops [2],
applications in low consumption transportation through levitating vehicles
[3], as well as in quantum computing [4, 5].

Superconductors, however, come with many associated challenges. To
start, a material has to satisfy a set of physical properties in order to be
classified as superconductor. First, unlike ordinary conductors, whose resis-
tance decreases gradually as its temperature is lowered, a superconductor
has a characteristic critical temperature (Tc) below which the resistance
drops abruptly to zero [6, 7]. Second, below the same critical temperature,
there is a complete ejection of magnetic field from the interior of the super-
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2 chapter 1 . introduction

conductor. Such phenomenon is called the Meissner effect [8]. The first ever
superconductor, found by the dutch physicist Heike Kamerlingh Onnes in
1911, was mercury (Hg) and exhibited a critical temperature of just about
4.2 K [9]. Such a small value for the critical temperature was foreshadow-
ing the core issue related to practical applicability for superconductivity.
Superconducting critical temperatures are low. This fact alone hinders their
large scale practical applicability due to the challenges and costs related to
cooling.

Since 1911, the goal of the field of superconductivity has been to attempt
finding new materials in order to increase the superconducting critical
temperatures. For about 65 years such values did not change much until,
in 1986, it was discovered that some cuprate-perovskite ceramic materials
exhibit critical temperatures above 90 K [10]. This represented a major
breakthrough in the field due to the availability of cheap liquid nitrogen
with a boiling temperature of 77 K. Thus, the existence of superconductivity
at higher temperatures than liquid nitrogen facilitated its applicability
in many experiments and applications that were less practical at lower
temperatures.

On parallel routes, attempts were made to formulate a theory of super-
conductivity. The first theory of its microscopic behavior was developed
in 1957 by John Bardeen, Leon Cooper and John Robert Schrieffer (BCS
theory) [6]. However, even if the theory was able to justify the results for
the low temperature superconductors, it was not able to justify the critical
temperatures for the cuprate-perovskite ceramics, which, for this reason,
became classified as "unconventional" superconductors. The BCS theory
assumes the existence of an attractive force between pairs of electrons that
is able to overcome the repulsive Coulomb interaction. This interaction
becomes stable enough to bind the electrons together below the critical
temperature, leading to the formation of a condensed state [11]. In this
condition, the pair of electrons are free to move in the material without
scattering and consequently without generating energy loss. In most of the
cases for conventional superconductors, this attractive force is due to the
interactions between electrons and ions [12]. However, accurate predic-
tions for the appearance of the superconducting transition became possible
only with the later appearance and refinement of the Migdal-Eliashberg
theory [13]. Although based on the BCS theory, the advantage of the Migdal-
Eliashberg formalism lies in the ability of describing the appearance of the
superconducting state just through the properties of the normal electronic
state.

Based on the specifics of the BCS theory, in 1968 Neil Ashcroft first
suggested that pressurized hydrogen could exhibit superconductivity at
high temperature due to the strong electron-ion interactions arising from
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its high Debye temperature [14]. Later on, he expanded on his first proposal
suggesting that the pressures required to achieve high superconductivity
in hydrogen could be reduced by using other more heavy atoms as sort of
chemical precompressors [15]. These suggestions did not have imminent
implications considering the difficulty of performing experiments at high
pressures and, exception made in 2001 for a the discovery of MgB2 with
Tc of 39 K [16], the critical temperature for conventional superconductors
remained more or less the same for the coming few decades.

The ulterior breakthrough came when, with the advancement of high
pressure experimental techniques, it became possible to synthesize mate-
rials at extremely high pressures through the use of diamond anvil cells
(DAC) [17–21]. In this technique, a ceramic or metal gasket able to contain
the sample is placed in between two opposing diamonds. By compressing
the diamonds, it is then possible to generate pressures up to thousands
of gigapascals in an area of several microns. Considering the diamond is
optically transparent, X-ray scattering methods can be employed to study
the structural properties of the sample and, with the addition of an elec-
trode system in the diamond, it is also possible to measure the behavior of
electrical signals.

In 2015 this technique allowed to synthesize the superconducting H3S
at 150 GPa exhibiting a critical temperature of 200 K [22]. For comparison,
the pressure of the core of the Earth is about 300 GPa. This result ignited
hope in the possibility of room temperature superconductivity and, soon
enough, additional experiments in 2019 were able to synthesize the LaH10
compound at 170 GPa with Tc of 250 K [23, 24]. These results ignited faith
in this class of hydrogen rich superconductors and confirmed the suspects
first brought forward by Neil Ashcroft about the potential of pressurized
hydrogen. Room temperature superconductivity is now almost at hand. The
issue, however, is that the extremely high pressures needed for the stability
of these systems lead to the impossibility of synthesizing samples bigger
than few microns. Still then, the practical applicability of superconductivity
on large scale remains elusive.

In the meanwhile, the experimental advancements where accompanied
by a strong development of theoretical tools. The refinement of the density
functional theory (DFT) [25], co-occurring with the exponential increment
of the available computational resources, led to the development of struc-
tural prediction methods [26–29]. These tools brought the possibility of
accurate investigations of atomic composition phase diagrams and made
so that theoretical works assumed a more active role. At this point in time,
simulations are not only able to correctly reproduce results for conventional
BCS superconductors, but they are also able to make accurate predictions
for new superconductors to better orient experimental efforts. This was
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indeed the case for H3S [30, 31], LaH10[32, 33] and YH6[32, 34], where
theoretical works where able to suggest and predict the stability of the
superconducting phases and the value of the Tc’s. Currently in fact, the
phase diagrams for almost all binary hydrogen rich H-X compositions,
where H stands for hydrogen and X represents any element in the periodic
table, have been explored in search for new superconductors. Among these
predictions, the highest Tc values are 300 K for pure metallic hydrogen
[35] and 326 K for the YH10 binary compound [36]. The combination of
all the experimental and theoretical developments place hydrogen rich
systems as the most promising candidates for the pursuit of commercial
superconductivity despite their current drawbacks.

The research on hydrogen rich systems is now shifting towards reducing
their pressure of stability. In recent years, attempts have been made to
explore the energy landscape of ternary and quaternary hydrides [37–41]
to further expand the list of predicted compounds. The most prominent
result is for the possible metastability of LaBH8 with a remarkable Tc of
approximately 120 K [42, 43]. This compound was found to be stable
against decomposition above 115 GPa and maintained dynamical stability
down to 40 GPa. The same structural motifs of LaBH8, with similar critical
temperatures, have also been recently predicted for BaSiH8 and SrSiH8 [41].
This latter result brings hope that, with the right ternary or quaternary
combination of atoms, it is possible to synthesize phases at high pressures
that could remain metastable down to room pressure.

Despite the current theoretical advancements however, a simple physical-
chemical understanding of the properties enhancing the critical tempera-
tures in hydrogen based systems is still lacking. This creates an obstacle
toward the discovery of new compounds with high Tc at low pressures.
Contrarily to what was proposed by Neil Ashcroft in fact, having a high
Debye temperature was shown not to be a guarantee by itself of high-
temperature superconductivity. The results observed throughout the years
have shown that critical temperatures in hydrogen rich systems can vary
from few Kelvin, as for example for Th4H15 [44], PdH [45], PrH9[46], and
AlH3 [47], to almost room temperature as in the case for H3S [22], YH9 [48],
YH6 [49], and LaH10 [23, 24]. In this regard, the hundreds of compounds
predicted to be superconductors through structural prediction methods
constitute a rich working dataset to extract conclusions going beyond the
idea of the high Debye temperature as a marker for high Tc [19, 50, 51].
Aiming at extracting useful information from this dataset, machine learning
methods [52–55] are starting to be employed to further increase the list
of predicted systems, while also attempting to classify these superconduc-
tors using simple footprints based on structural, chemical, and electronic
properties [19, 53, 56]. These studies suggest hydrogen rich systems with
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highly symmetrical structures and high density of states (DOS) at the Fermi
level are the best candidates for high-temperature superconductivity. Even
if these properties are able to suggest good trends, they serve necessary
but not sufficient conditions. This ultimately means there are not yet good
known optimizers: improving these parameters will not necessarily lead
to an improvement of the superconducting critical temperatures. In other
words, it is not yet possible to rely on simple variables to estimate the
superconducting temperatures, and, ultimately, chemically engineer better
superconductors.

An additional issue is related to the current methods employed to per-
form the theoretical simulations. In most of the DFT-based calculations for
hydrogen-based superconductors at high pressure, the ions in the system
are treated as classical particles. For this class of systems however, com-
posed mainly of light hydrogen atoms, it is important to have in mind that
the quantum nature of the ions cannot be neglected and can significantly
alter the structural, phononic, and superconducting properties. For exam-
ple, in the high pressure phases of H2O [57, 58], quantum ionic fluctuations
symmetrise the hydrogen bond and reduce the boundary between asymmet-
ric and symmetric structures in the phase diagram by 30 gigapascals [59].
Another example is the strong renormalization in the phonon spectra of
PdH [60] introduced by the quantum treatment of the atoms. These results
suggest that most of the theoretical calculations related to the investigation
of hydrogen rich compounds might be incomplete without the introduction
of ionic quantum effects and might lead to inaccurate, if not completely
wrong, predictions.

This thesis reports a theoretical-computational work on hydrogen rich
systems performed in an attempt to tackle the issues mentioned in the
previous paragraphs. First, an investigation of the chemical, structural, and
electronic properties for large set of hydrogen-based binary H-X supercon-
ductors, previously predicted in the literature [50], is performed through ab
initio methods based on DFT. This analysis aims at identifying correlations
or footprints that could clarify the specific features giving rise to good
superconductors. As a result the analysis leads to the identification of an
observable based solely on the combination of structural and electronic
properties that exhibits an astonishing correlation with the superconducting
critical temperature. On a parallel route, through the use of the Stochastic
Self Consistent Harmonic Approximation (SSCHA) method [61–64], the
behavior of the structural stability for LaH10 and LaBH8 is investigated
with the inclusion of quantum ionic fluctuations. This is done in order to
understand how the phase stability is affected by the quantum nature of
the light hydrogen atoms. For LaH10, the obtained results show that the
landscape of phase stability is simplified and the structure is sustained
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to much lower pressures. For LaBH8 instead, quantum ionic fluctuations
destabilize the structure to much higher pressures. These opposite results
sparked the interest to perform an additional analysis regarding the behav-
ior of quantum ionic fluctuations on hydrogen rich systems. In this regard,
all systems for which quantum fluctuations were taken into account with
the SSCHA were compared. The results reveal the effects that quantum
fluctuations have on the structure are strongly dependent on the specifics
of the interatomic bonding patterns.

The thesis is organized in three parts as follows. In Part I the theory
required to perform the analysis listed above is exposed. The part includes
the basic of condensed matter physics, the density functional theory, the
methods for the calculation of phonons and the electron-phonon interac-
tion, the stochastic self consistent harmonic approximation, and the BCS
and Migdal-Eliashberg theories of superconductivity. Part II exposes the
analysis regarding the chemical, structural, and electronic properties for
the large set of theoretically predicted superconductors. Here, a classifi-
cation based on chemical bonding markers is introduced and is then used
in conjunction with the electronic properties of these systems to identify
relevant correlations with the superconducting critical temperature. Finally
Part III exposes the results for the phase stability in presence of quantum
ionic fluctuations for LaH10 and LaBH8, and reports the analysis related to
the behavior of quantum fluctuations for all systems investigated through
the SSCHA.
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chapter 2

Basics of condensed

matter physics

The chapter discusses the basic concepts and approximations of condensed matter
physics used throughout this work. The chapter starts from the basics of the many
body Hamiltonian and the Born-Oppenheimer approximation, and continues
with the discussion of the methods to treat the electronic problem through density
functional theory. Furthermore, the chapter discusses the Hartree-Fock approx-
imation in preparation for the derivation of the electron localization function.
This latter tool proved to be instrumental for the analysis of the results that will
follow in the next chapters.

2 .1 the many body hamiltonian

The building blocks of the systems described in condensed matter physics
are nuclei a, with mass Ma, atomic number Za and charge eZa, and the

electrons i, with mass me, charge −e, and spin ŝ = ℏ

2 σ̂ , where σ̂ expresses
the Pauli matrices. Both nuclei and electrons are moving objects and,
considering their quantum mechanical properties, their respective position
Ra and ri are to be intended as canonical position operators, while their
momentum can be described as Pa = −iℏ∇Ra and pi = −iℏ∇ri , respectively.
In this specific notation, the bold symbols and letters represent vectors.

An accurate description for a general system and its properties, such
as the absorption spectra of a molecule or superconductivity in a crystal,

9
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can then be obtained by accounting for all its basic building blocks and
their interactions through Coulomb forces. Such forces include the elec-
tronic interaction (Ve,e), the nuclear interaction (Vn,n), and the interaction
between electrons and nuclei (Ve,n). The combination of these quantities
with the nuclei and electron kinetic energies (Tn and Te) generates a re-
sulting Hamiltonian that is able to describe a system in its most general
form:

H = Te +Ve,n +Ve,e +Vn,n + Tn. (2.1)

In a less compact expression, the Hamiltonian can be rewritten as

H = −
∑
i

1
2
ℏ

2∇2
i

me
−
∑
i,a

1
4πϵ0

e2Za
| ri −Ra |

+
1
2

∑
i,j
i,j

1
4πϵ0

e2

| ri − rj |

+
1
2

∑
a,b
a,b

1
4πϵ0

e2ZaZb
| Ra −Rb |

−
∑
a

1
2
ℏ

2∇2
a

Ma
, (2.2)

where ϵ0 is the permittivity of vacuum. To obtain a concrete solution
to the Hamiltonian problem of equation (2.2) it is necessary to solve the
Schrödinger equation with the introduction of a wave function (|χ⟩) con-
taining the probability amplitude for each configuration of the constituent
particles. This wave function must account for all the nuclei (Nn) and the
associated electrons (Ne)

⟨r,R|χ⟩ = χ(r1,r2, ...rNe ,R1,R2, ...RNn), (2.3)

so that the Schrödinger problem can be formulated as

H |χ⟩ = E |χ⟩ . (2.4)

In this notation R and r denote the ensemble of all nuclear and electronic
coordinates so that R ≡ {R1,R2, ...RNn} and r ≡ {r1,r2, ...rNe }.

Even if it appears conceptually simple, an exact "ab-initio" solution
of the Schrödinger equation for the Hamiltonian (2.2) is far from being
possible. The presence of the electron-electron, electron-nuclei, and nuclei-
nuclei interactions makes impossible to split the Hamiltonian into different
single particle sub Hamiltonians. For example, to describe a small sample
of 1 mm3 of solid matter, it is in theory necessary to compute all the
interactions for each of the basic constituents present in the system and,
in this case, one is expected to find a number of constituents of the order
of 1020. It is clear at this point that in the current state of the art there
is no brain or machine able to tackle the size of this problem, and that
simplifications are necessary in order to advance in the quest for a solution
to the many body problem.
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2 .2 the born-oppenheimer approximation

The first big step toward an actual solution for the Hamiltonian (2.2) can
be made by considering the scale of the nuclei dynamics with respect to the
one of electrons. For instance, the mass of an electron is just about 0.0005%
the mass of a hydrogen nucleus. It is therefore reasonable to expect that the
timescale for phenomena and interactions for electrons and nuclei are very
far apart. In practical terms, for an insulating system the electronic energy
gap is of the order of 1 eV suggesting that the timescale for an electronic
excitation is of the order of 10−14 s. Instead, the frequency of an average
phonon vibration is of the order of 10 meV and therefore on a timescale
of 10−12 s. On such a different scale, the nuclei can, for all purposes of
description, be treated as interacting only with the average electronic cloud,
while the electrons see the nuclei as frozen particles in space during their
dynamics [65, 66].

A similar concept holds for metallic systems as well. For these systems
no electronic band gap is present. This means that the electronic excitations
can be small in energy and comparable with the nuclei dynamics in time.
However, in metals non-adiabaticity is governed by the ratio between the
characteristic phonon frequency and the energy of the highest energetic
electron, the Fermi energy (ϵF). Considering an electron gas model, at low
temperature the thermal energy is usually lower than the Fermi energy and
therefore the resulting excitations are small and still close to the Fermi en-
ergy. Most of the properties of a metal are then little affected by neglecting
these kind of contributions due to the motion of the metal electrons [67].

With these considerations in mind, it is reasonable to consider that
equation (2.2) can be split so to have a part of the Hamiltonian related
solely to the dynamics of the electrons obtained by neglecting the nuclear
kinetic energy (Tn). After finding a reasonable solution for the latter, it is
possible to reintroduce the nuclear kinetic term and solve the remaining
dynamics for the nuclei. To practically derive this concept, it is useful to
start by separating equation (2.2) as

H =He + Tn, (2.5)

whereHe is the electronic Hamiltonian containing the terms Te, Vee, Ven and
Vnn. Supposing that He has K number of electronic wave functions ψk(r;R)
as solution, it is possible to write its associated Schrödinger equation as

He
∣∣∣ψk(R)

〉
= Ek(R)

∣∣∣ψk(R)
〉
. (2.6)

In this equation, the general nuclei positions R enters just as a paramet-
ric dependence. By expressing the general wave function of the system
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χ(r,R) through an expansion in terms of ψk(r;R) and a set of nuclear wave
functions φkα(R) as

|χkα⟩ =
∣∣∣ψk(R)

〉 ∣∣∣φkα〉 , (2.7)

it is possible to write both the electronic Hamiltonian (He) and the nuclear
kinetic term (Tn) as

He(R)k′k =
〈
ψk′ (R)

∣∣∣He ∣∣∣ψk(R)
〉
e

= δk′kEk(R), (2.8)

and

Tn(R)k′k = δk′kTn −
∑
a,γ

1
Ma

〈
ψk′ (R)

∣∣∣Paγ ∣∣∣ψk(R)
〉
e
Paγ+

〈
ψk′ (R)

∣∣∣Tn ∣∣∣ψk(R)
〉
e
. (2.9)

In the second equation, the index γ refers to the Cartesian components
of the nuclear momentum operator Pa, while the notation ⟨|⟩e denotes an
integral performed only on the electronic degrees of freedom.

In this form, while the application of ψk(r;R) over He is diagonal, its
application over Tn is not. This shows why the electronic and nuclear
degrees of freedom cannot generally be separated and in this case one is
tasked to solve a system ofK×K coupled equations. However, by expanding
the second term of the right side of the second equation as

⟨ψk′ (R) | Paγ | ψk(R)⟩ =
⟨ψk′ (R) |

[
Paγ ,He

]
| ψk(R)⟩

Ek(R)−Ek′ (R)
, (2.10)

it can be seen that whenever Ek(R)−Ek′ (R) is large, or, more precisely, when
the electronic bands are not degenerate and far apart, the second and third
terms in the right side of equation (2.9) are small and, therefore, negligible.
When this is possible, the operator Tn(R) can be consider diagonal and it is
reasonable to first solve the electronic problem as in equation (2.6). This
means that once a solution for the electronic energies Ek(R) is obtained, the
nuclei equation can be solved as[

Tn +Ek(R)
] ∣∣∣φkα〉 = Ekα

∣∣∣φkα〉 . (2.11)

Here Ekα represents the α eigenvalue for the energy curve with excited
electrons k. Usually, equation (2.11) is solved considering the electronic
problem to be in its ground state ψ0(r;R), associated to the eigenenergy
E0(R) = V (R), that minimises equation (2.8). In this case, the equation for
the ground state has the form[

Tn +V (R)
] ∣∣∣φα〉 = Eα

∣∣∣φα〉 , (2.12)
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For metals, however, as it was mentioned before, this approximation
holds when the characteristic phonon frequencies are small compared to the
Fermi energy. For some systems this might not be the case and the average
phonon frequencies can become quite high. In this case the approximation
made here does not hold and additional interactions between electrons and
nuclei become relevant. This situation will be studied in the next chapters.

2 .3 the hartree-fock approximation

In the previous section the conditions for which it is possible to properly
disentangle the nuclear wave function φkα(R) from the electronic wave
function ψk(r;R) were shown. In this section, further approximations used
for the electronic wave function alone discussed are instead. Generally
speaking, solving the electronic problem is far from being simple. The wave
function ψk(r;R) contains all the information for the Ne electrons inside the
system and takes into account all their interactions through the Coulomb
electron-electron potential. This latter term adds an incredible complexity
to the structure of the wave function, and makes each electron depend on
all the others. As before, some approximations are needed in order to reach
a practical solution. Usually, the state which is of most interest among all
the electronic states is the one related to the lowest energy level (V (R)), the
ground state. In order calculate the ground state, the main idea behind
the approximations that will follow is to find a solution to the electronic
problem by first neglecting the Coulomb electron-electron interaction. The
latter can then be reintroduced with the hope it will not alter significantly
the behavior of the system.

To work toward this approximation, it is worth considering that the
general electronic HamiltonianHe can be separated in a part containing only
single electron terms (H1e

i ), and a part containing the two-body electronic
interaction (H2e

ij ) as

He =
∑
i

H
(1e)
i +

∑
i,j
i,j

H
(2e)
ij . (2.13)

More in detail the two terms of He can be written as

H
(1e)
i = −

ℏ
2∇2

i

2me
−
∑
a

1
4πϵ0

e2Za
| ri −Ra |

+
1
2

∑
a,b
a,b

1
4πϵ0

e2ZaZb
| Ra −Rb |

, (2.14)

and

H
(2e)
ij =

1
8πϵ0

e2

| ri − rj |
. (2.15)



14 chapter 2 . basics of condensed matter physics

In the equation for H1e
i , the nuclei-nuclei interaction can be neglected as

it contributes just as a constant. Furthermore, to obtain a solution for this
one electron Hamiltonian it is necessary to define a basis for single particle
states

{∣∣∣b〉}
b

for both spacial wave functions and spin. The presence of the
spin is denoted by the bar on top of the b state. With this basis, it results
that the one electron Hamiltonian obeys the following Schrödinger equation

Ĥ1e
i

∣∣∣b̄a〉i = Ebai
∣∣∣b̄a〉i , (2.16)

where Ebi is the energy E of particle ith related to the state b̄a. It is also
important to remember that, in order to describe the complete electronic
state, it is necessary to first of all include the indistinguishable nature
of the electronic particles. This can be done by combining the single-
particle states through a tensorial product containing all the one electron

states
{∣∣∣b̄1

〉
1
⊗
∣∣∣b̄2

〉
2
. . .⊗

∣∣∣b̄Ne〉Ne}b1...bNe

. Furthermore, the states need to be

combined so that the resulting function respects the fermionic nature of the
electronic states. The best way to achieve this is through the introduction of
the Slater determinant. This is a linear combination of general states built
on top of permutations of single particle states of the form

∣∣∣SD(b̄1, b̄2, . . . b̄Ne )
〉

=
1
√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣b̄1

〉
1

. . .
∣∣∣b̄Ne〉1∣∣∣b̄1

〉
2

. . .
∣∣∣b̄Ne〉2

...
. . .

...∣∣∣b̄1

〉
Ne

. . .
∣∣∣b̄Ne〉Ne

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.17)

By applying the Slater determinant over the sum of all the single particle
Hamiltonians one obtains∑

i

H
(1e)
i | SD(b̄1, b̄2, . . . b̄Ne )⟩ = E(1e)

{b̄1,b̄2,...b̄Ne }
| SD(b̄1, b̄2, . . . b̄Ne )⟩, (2.18)

where E(1e)
{b̄1,b̄2,...b̄Ne }

is expressed as the sum of all the single particle energies∑
i E

ba
i .

To continue towards a solution for the electronic problem, it is then
possible to reintroduce the two electron Hamiltonian (H2e

ij ) and look for a
specific Slater determinant that minimizes the total electronic energy (ESD )
in this form:

ESD = min
⟨b̄a|b̄b⟩=δab

⟨SD |
(∑

i

H1e
i +

∑
i,j
i,j

H2e
ij

)
| SD⟩

 . (2.19)
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Considering general the validity of the variational principle, the energy
coming from choosing as ground state of the system the Slater determinant
will always be greater than the energy obtained through the real ground
state associated to ψk(r,R). In this approximation, the aim is to then intro-
duce the right combination of single particle states into the determinant
that minimizes the ground state energy.

It is also insightful to find an explicit form for the application of the
Slater determinant on the two electron Hamiltonian. To achieve this it is
useful to introduce a single particle projector operator P respecting the
following properties:

P =
Ne∑
i

∣∣∣b̄i〉〈b̄i ∣∣∣ ; P 2 = P ; T r [P ] =Ne; E(1e) = T r

P∑
i

H
(1e)
i

 , (2.20)

which when expressed in the Schrödinger space with the inclusion of the
spin (σ ) it takes the form

ρ(r,r′ ,σ ,σ ′) = ⟨r,σ |P
∣∣∣r′ ,σ ′〉 . (2.21)

The effect of the Slather determinant over the two particle Hamiltonian can
then be written as

⟨SD |
∑
i,j,i,j

Ĥ
(2e)
i,j |SD⟩ = E(2e) =

1
2

∫
drdr′

1
4πϵ0

e2

| r− r′ |

∑
i,j
σ ,σ ′[〈

b̄i
∣∣∣r,σ〉〈r,σ ∣∣∣b̄i〉〈b̄j ∣∣∣r′ ,σ ′〉〈r′ ,σ ′∣∣∣b̄j〉− 〈

b̄i
∣∣∣r, s〉〈r, s∣∣∣b̄j〉〈b̄j ∣∣∣r′ , s′〉〈r′ , s′∣∣∣b̄i〉],

(2.22)

and, taking advantage of the density operator, it can be expressed in the
more compact form

E(2e) =
1
2

∫
drdr′

1
4πϵ0

e2

| r− r′ |

∑
σ,σ ′[

ρ(r,r,σ ,σ )ρ(r′ ,r′ ,σ ′ ,σ ′)− ρ(r,r′ ,σ ,σ ′)ρ(r′ ,r,σ ′ ,σ )
]
. (2.23)

In this last equation, the term coming from the integral of the first term
in the square brakets is called the Hartree term and takes in consideration
the energy coming from the Coulomb interaction between the probability
density of two electrons. The remaining term, is called the exchange term,
and it energetically describes the effect coming from the antisymmetric
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nature of the general electronic state, the Fermi repulsion. Furthermore,
the combination of the two terms into the square brackets defines the two
electron density probability. In the next sections, it will be shown the
possibility of using such quantity to investigate the localization properties
of electrons.

One limit of this approximation is clear: the electronic interaction
between the electrons is based upon their unperturbed single particle states.
It is reasonable to expect that, if two electrons are correlated, the probability
of finding the first electron at a certain position in space depends on the
position of the second electron and vice versa. In other words, the product
of their independent density functions does not adequately describe the
real state. At small distances, the uncorrelated pair density is too large as
electrons are expected to repel each other, while, at large distances, the
uncorrelated pair density is too small for somewhat the same reason. These
kind of effects are called correlation effects. Most of the time they cannot
be neglected while looking for an accurate solution of the ground state of
the system.

2 .4 density functional theory

Density functional theory (DFT) is an exact theory proposing that any prop-
erty of a many interacting particle system can be described as a functional
of the ground state density ρ(r), since the latter is able to determine all
the information for the general ground state wave function and all excited
states. Although DFT alone is of no practical use without approximations,
it has proven to be a key concept that has made possible the development of
many computational methods now at the core of theoretical condensed mat-
ter science. In the framework of DFT, the general electronic Hamiltonian
(He) is expressed in the form

H = −
∑
i

1
2
ℏ

2∇2
i

me
+

1
2

∑
i,j,i,j

1
4πϵ0

e2

| ri − rj |
+Vext , (2.24)

where Vext represents a generic external potential in the electronic system,
but in most cases it is interpreted as the electron-nuclei interaction. The
ground state density ρ(r) is then determined as

ρ(r) =
〈
ψGS

∣∣∣∑
i,σ

|ri ,σ⟩⟨ri ,σ | | ψGS⟩, (2.25)

where ψGS is the ground state wave function for the DFT Hamiltonian.
The basic theorems of DFT [68] state that, for any system of interacting

particles in an external potential Vext, its potential is uniquely defined,
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except for a constant, by the ground state particle density ρ(r). Since the
Hamiltonian is fully determined, except for a constant shift in energy, it
follows that the many-body wave functions for all states are determined.
This leads to the statement that all properties of the system are completely
determined given only the ground state density ρ(r). In addition, it is
possible to define a universal functional for the ground state energy E [ρ(r)]
in terms of the ground state density ρ(r) of the form

E [ρ(r)] = F [ρ(r)] +
∫
drVext(r)ρ(r), (2.26)

where F [ρ] is referred to the application of the ground state over the kinetic
and electron-electron Coulomb interaction operator as

F [ρ(r)] =
〈
ψ

[ρ]
GS

∣∣∣∣ T̂e + V̂ee
∣∣∣∣ψ[ρ]
GS

〉
. (2.27)

For any particular Vext, the exact ground state energy corresponds to the
minimum of the functional E [ρ(r)] for the given system and the density
that minimizes it is the exact ground state density ρ(r).

DFT is, however, just a reframing of the many-body problem and it
is not able to reduce the complexity of the electronic states. Ultimately,
the electronic ground state density is still dependent on the ground state
wave fuction, which most often cannot be derived. A clever solution to
this problem is obtained through the Kohn-Sham mapping, which transfers
the many body system into a non interacting particles system similar to
the Hartree-Fock method. With the right approximations, the Kohn-Sham
mapping can then lead to remarkable results.

2.4.1 The Kohn-Sham mapping

Effectively, the theorems of DFT state a relationship between the external
potential Vext and the density ρ(r), but do not make assumptions on the
specific of the electronic system itself. In the Kohn-Sham approach, the
many-body interacting system defined by the electronic Hamiltonian is
therefore replaced with an auxiliary system composed by non interacting
electrons which are described by a set of single particle wave functions
{ψ̄KSi }i=1,...Ne2

. In this case, the index i spans only on half the number of
electron as the spin is assumed to be isotropic in the system. This auxiliary
system has the advantage of being much easier to solve numerically. The
main goal is then to map the general many-body system through this non
interacting system. To achieve this, all the many-body terms related to
the particle interactions are incorporated into an exchange and correlation
functional of the density.
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To work toward this procedure, it is possible to start by representing
the ground state density for the auxiliary single particle system as

ρ(r) =
∑
i,σ

〈
ψ̄KSi

∣∣∣ri ,σ〉〈ri ,σ ∣∣∣ψ̄KSi 〉
. (2.28)

The auxiliary single particle Hamiltonian is then chosen so to have the usual
kinetic operator and an effective local potential V KS acting on an electron
with certain spin located at position ri . This auxiliary Hamiltonian has the
form:

HKS = −ℏ
2∇2

2me
+V KS(r), (2.29)

and satisfies the following shrödinger equation:

HKS
∣∣∣ψ̄KSi 〉

= Ei
∣∣∣ψ̄KSi 〉

. (2.30)

As mentioned before, the Kohn-Sham approach to the full interacting
many-body problem is to rewrite the universal functional previously de-
fined in equation (2.26) for the many body interacting system trough the
auxiliary system in the form

E [ρ] = T0 [ρ] +EH [ρ] +EXC [ρ] +
∫
drVext(r)ρ(r). (2.31)

Here T0 [ρ] represents the total kinetic energy for the non interacting parti-
cles system:

T0 [ρ] = −2
Ne/2∑
i

〈
ψKSi

∣∣∣ ℏ2∇2
r

2me

∣∣∣ψKSi 〉
, (2.32)

where the 2 in front of the right side of the equation takes into account
the two possible spin state for the wavefunctions ψKSi . Furthermore, EH [ρ]
represents the Hartree term for the non interacting system:

EH [ρ] =
1
2

∫
drdr′

e2

4πϵ0

ρ(r)ρ(r′)
| r− r′ |

. (2.33)

EXC [ρ] is instead an energetic terms that includes all the corrections coming
from the exchange properties and the correlation effects of the many-body
system. This quantity is implicitly defined through the real solution of the
functional F [ρ] for the many-body system of equation (2.27) as

EXC [ρ] = F [ρ]−EH [ρ]− T0 [ρ] . (2.34)

Finally, the external potential Vext is the same external potential of the
many-body problem. The mapping from the universal energy functional
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E [ρ] to the Kohn-Sham system is done considering that it is possible to
write the Kohn-Sham energy as

EKS [ρ] = EH [ρ] +EXC [ρ] +
∫
drVext(r)ρ(r), (2.35)

so that
E [ρ] = T0 [ρ] +EKS [ρ] . (2.36)

With these definitions, the energy of the ground state for the single particle
system can be obtained by choosing the right set of Kohn-Sham wave
functions that minimize the energy functional:

EGS = min
ρ(r)

E [ρ] = min
{|ψ̄KSi ⟩}i=1,... Ne2〈
ψ̄KSi

∣∣∣∣∣ψ̄KSj 〉
=δij δσσ ′

[
T0 [ρ] +EKS [ρ]

]
. (2.37)

In theory, the ground state energy EGS given by the Kohn-Sham mapping
corresponds to the real ground state energy for the many body interacting
system. However, although this expression appears simple to solve, it
still contains inside the complexity of the many-body electronic states.
In this formalism, such complexity is transferred to the exact exchange
correlation energy (EXC [ρ]) used in the single particle auxiliary system.
Finding the exact exchange-correlation energy is far from being possible
and it is necessary to rely on some approximations. Regardless of this issue,
a solution to the Kohn-Sham problem can be obtained by explicitly deriving
the form of the Kohn-Sham potential (V KS ). To do so it is possible to use
the Lagrange multipliers imposing the normalization of the density as

∂
∂ρ

[
E[ρ]−λ

(
Ne −

∫
drρ(r)

)]
= 0, (2.38)

or better expressed through the set of Kohn-Sham single particle wave
functions as

∂

∂
〈
ψKSk

∣∣∣
[
E[{ψKSi }]− 2

∑
i,j

λi,j

(〈
ψKSi

∣∣∣∣ψKSj 〉
− δij

)]
= 0. (2.39)

In these equations λ represents a set of Lagrange multipliers. Considering
the form of E[ρ] shown in equation (2.31), it is possible to derive each term
with the respective forms:

∂

∂
〈
ψKSk

∣∣∣T0[ρ] = −4
ℏ∇2

2me

∣∣∣ψKSk 〉
(2.40)
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for the kinetic term,

∂

∂
〈
ψKSk

∣∣∣EH [ρ] = 4
∫
dr′

e2

4πϵ0

ρ(r′)
| r− r′ | |

r⟩⟨r |
∣∣∣ψKSk 〉

= 4VH
∣∣∣ψKSk 〉

(2.41)

for the Hartree potential term, and

∂

∂
〈
ψKSk

∣∣∣EXC[ρ] = 4
∂EXC
∂ρ

(r) |r⟩⟨r |
∣∣∣ψKSk 〉

= 4VXC
∣∣∣ψKSk 〉

, (2.42)

for the exchange correlation potential. Combining all the pieces together it
is possible to construct the explicit Kohn-Sham Schrödinger equation as[

− ℏ∇2
r

2me
+VH (r) +VXC(r) +Vext(r)

] ∣∣∣ψKSk 〉
=

∑
i

λi,k
∣∣∣ψKSi 〉

. (2.43)

With a proper unitary rotation of the single particle wave function ψKSk →
ψ̃KSk , the previous equation can be rewritten in a diagonal form as[

− ℏ∇2
r

2me
+VH (r) +VXC(r) +Vext(r)

] ∣∣∣ψ̃KSk 〉
= ϵk

∣∣∣ψ̃KSk 〉
. (2.44)

Finally the Kohn-Sham potential is expressed as the sum of all the individ-
ual potentials

V KS(r) = VH (r) +VXC(r) +Vext(r). (2.45)

Assuming that the exchange correlation potential is known, equation
(2.44) is solved through a self-consistent loop. An initial guess for the
density is used to determine the Kohn-Sham potential of equation (2.45),
which is a functional of the density. With the guessed density and potential,
equation (2.44) is solved. The resulting new Kohn-Sham states, obtained
through the solution of equation (2.44), are then used to compute a new
density which is then used again to solve equation (2.45). This cycle repeats
until the density is well converged. It is also important to mention that the
eigenvalues (ϵk) of equation (2.44) are to be treated only as the auxiliary
energy states for the single particle wave functions. However, they are
generally interpreted as being the many-body system energy states.

2.4.2 Generalities for the exchange correlation functional

As anticipated in the previous section, the bigger and only roadblock for the
electronic problem practical resolution is related to the inscrutable nature
of the exchange-correlation term and the impossibility to derive its exact
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expression. However, some reasonable approximations leading to good
results can be made. One option is to consider that the behavior of the
valence electrons in a solid is quite similar to the one of the free electron
gas. In this case, the idea is to substitute the general exact exchange-
correlation energy with the one for the free electron gas. At each point in
space for this system, the exchange energy can be obtained exactly, while
the correlation term has been extensively studied and derived through
Monte-Carlo methods [69]. This approximation takes the name of the local
density approximation (LDA).

In the LDA the exchange-correlation energy is defined as

EXC(r) ≃ ELDAXC (r) =
∫
drρ(r)ϵXC(ρ(r)), (2.46)

where ϵXC(ρ(r)) is the exchange-correlation energy density for the free
electron gas. From this expression, the exchange-correlation potential can
be derived as

VXC(r) = ϵXC(ρ(r)) + ρ(r)
∂ϵXC(ρ(r))
∂ρ(r)

. (2.47)

Another approximation for the exchange correlation energy is derived
by expressing the exchange correlation energy as a function of the density
and its gradient [70]. This approximation takes the name of the generalized
gradient approximation (GGA) and has the form

EXC(r) ≃ EGGAXC (r) =
∫
drρ(r)ϵhomX (ρ(r))FXC(ρ(r),∇ρ(r)). (2.48)

In this expression FXC is a dimentionless function while ϵhomX (ρ(r)) is the
exchange energy of the free electron gas.

These approximations generally yield good results but with limitations.
Usually the LDA is more accurate for describing solids behaving as free
electron gasses while the GGA performs better when the electronic density
is more localized or exhibits strong variations in space. The general short-
comings for both LDA and GGA are related to the underestimation of the
electronic band gap [71–73]. Ultimately however, there is no general rule to
determine which functional is better to describe the exchange-correlation
energy and, often, the functional of choice is the one that best describes the
experimental measurements.

2.4.3 Generalities for the pseudopotentials

For a solid system to exist, its basic constituents, the atoms, need to form
bonds that are able to keep the structure together. For this to happen,
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the electrons orbiting the nuclei need to be able to pass from a nucleus to
another. However, not all electrons take part in this exchange process and,
usually, just the few highest energy ones, the valence electrons, are able
to hop to another adjacent nucleus. These same electrons are those that
give rise to the properties of a system, such as conductivity, charge density
waves or even superconductivity. Practically, the lower energetic electrons,
the core electrons, are locked in close to their respective nuclei and can be
neglected when describing the bonding interactions.

While performing a simulation, it is important to consider that being
able to neglect the unnecessary constituents of a system comes to great
computational advantage both in terms of memory storage and time. For
this reason, there are all the incentives to neglect the description of the core
electrons while attempting to model the properties of a system. To achieve
this, pseudopotentials are often used instead of the real atomic potential.
The main goal of the pseudopotentials is to cut out from the computations
all the electronic degrees of freedom which are unnecessary to describe
the valence properties of the system. Usually, this description is achieved
by giving the pseudopotential a specific core radius rc, above which the
potential resembles exactly the atomic one, and below which, it differs from
the real atomic potential and is approximated with a much smoother curve.

There are different types of pseudopotential approximations and each
of them comes with advantages and disadvantages. The most used are
the norm conserving pseudopotentials [74]. These pseudopotentials are
normalized and are solutions of a model potential chosen to reproduce the
valence properties of an all electron calculation. They are built so that the
Kohn-Shan states satisfy an orthonormal relationship between each other.
An extension to the norm conserving pseudopotentials are the ultrasoft ones
[75, 76]. These pseudopotentials aim to create an ultra smooth function
faster to converge than norm conserving pseudopotentials. To achieve
this it is necessary to relax the condition of orthonormality between the
Kohn-Shan states. Another method to describe pseudo interactions are
given by the projector augmented-wave method (PAW) [77–79]. This is a
general approach to the solution of the electronic structure problem that
keeps the full-electron wave function of a system. Since the wave function
varies rapidly near the nucleus of an atom, the integrals are described as
combinations of smooth functions extending through space and a set of
localized contributions evaluated by radial integration over muffin-thin
spheres located at the center of the nuclei.
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2.4.4 Periodicity and Bloch wave function

As previously mentioned, the problem of electrons in a solid is a complex
many-body problem. The full Hamiltonian contains both the one electron
potential, describing the interactions between ions and nuclei, and the two-
body term describing the electron-electron interactions. In the Kohn-Sham
approach to DFT, it was shown that the complete many particle system can
be mapped into a single particle problem represented by an effective one-
electron potential VKS . Whatever detail the one electron effective potential
might have, if the crystal is perfectly lattice periodic, the effective potential
must satisfy the same periodicity of the crystal:

VKS(r+T) = VKS(r). (2.49)

Here T is a generic lattice vector [14]. From this, the independent electrons,
described by the one particle Hamiltoninan

HKS
∣∣∣ψnk′〉 =

[
− ℏ

2∇2

2me
+VKS(r)

] ∣∣∣ψnk′〉 = ϵnk′
∣∣∣ψnk′〉 , (2.50)

follow the rule for the Bloch electrons [15], and obey the following impor-
tant property:

ψnk′ (r+T) = eik
′ ·Tψnk′ (r). (2.51)

Here k′ is a generic plane wave vector and an additional index n, usually
referred as the band index, is introduced to signify that the Hamiltonian
HKS admits more than one solution for each k′.

In order to properly describe the system, a set of boundary conditions
are introduced for the wavefunction ψnk′ (r) in the lattice of volume Ω. The
application of such boundary conditions imposes that eiG·T = 1, where G is
called a reciprocal lattice vector. The set of all plane wave vectors k smaller
then the smallest reciprocal lattice vectors G0, defines the first Brillouin
zone. Any generic vector k′ inside or outside the Brillouin zone can then
be defined as a vector inside the Brillouin zone k, plus a reciprocal lattice
vector as

k′ = k+G. (2.52)

This allows to expand the wave function ψnk as∣∣∣ψnk〉 =
∑
G

cnk+G |k+G⟩ , (2.53)

where |k+G⟩ has the form

⟨r|k+G⟩ =
1
√
Ω
ei(k+G)·r. (2.54)
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Whenever attempting to solve equation (2.50) for a volume Ω, it is then
necessary to consider an infinite amount of reciprocal lattice vectors G. This
is of course computationally unpractical. Often a cutoff Ecut is taken so that
the G vectors taken in the sum of equation (2.53) can be truncated as

1
2
| k+G |2< Ecut . (2.55)

The value of Ecut is chosen big enough so to include enough vectors G to be
able to accurately converge the wave function ψnk.

Following the Bloch theorem, the wave function ψnk(r) can be decom-
posed in a plane wave times a periodic function in the unit cell as

ψnk′ (r) = eik
′ ·runk′ (r), (2.56)

where unk′ (r) respects the following properties:

unk′ (r+T) = unk′ (r),
〈
ψnk′ (r)

∣∣∣ψn′k′′ (r)〉 = ⟨unk′ (r)|un′k′′ (r)⟩ = δ nn′
k′k′′

. (2.57)

With this set of wave functions it is also possible to calculate the electronic
density through the sum of vectors k inside the Brillouin zone as

ρ(r) =
∑
nk

fnk ⟨unk|unk⟩ , (2.58)

where fnk is the occupation function

fnk =
2

eβ(ϵnk−ϵF ) + 1
. (2.59)

Here β = 1/kBT , with kB the Boltzmann’s constant and T the temperature,
and ϵF is the Fermi energy, the highest occupied energy. The factor 2 comes
from the spin degeneracy of the Kohn-Sham states. Additionally, it is also
possible to introduce the density of states (DOS). This quantity represents
the amount of available k states for a generic energy ϵ and is calculated as

N (ϵ) =
2
Ω

∑
nk

δ(ϵ − ϵnk). (2.60)

It is important to mention that in order to get an accurate result in
equations (2.60) and (2.58), one would have to sum over an infinite amount
of states k. On a computational level, this choice is far from being practical
and the sums over k are kept finite. In this case, specific grids for the
states k, such as the Monkhorst-Pack grid [80], can be chosen to increase
the accuracy. Additionally, for the same reasons, smearing functions such
as the Methfessel-Paxton smearing [81] are introduced for the occupation
function fnk.
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2 .5 electron localization function

A question that one might ask is related to the position of pairs of electrons
in a certain zone of space inside the material. Although this question might
appear ill defined, it is often considered in a chemical sense in order to
identify the chemical bonds holding the structure together. The ill definition
of the question comes from the quantum nature of electrons, which obey the
Heisenberg principle. In a strict sense, it is meaningless to speak about the
position of an electron, as such particles are delocalized in their quantum
description, and is not easy to derive the positional information of pairs
through the Schrödinger equation. There are, however, better ways to
approach the problem. To start, it is useful to remember that the general
wave function of the system contains all the information related to the
asymmetric state of the electrons imposed by the Pauli principle. This gives
rise to the concept of Fermi hole [82] that, for a given electron with a certain
spin in a given position, measures the probability of finding another electron
with the same spin in another point in space. It is of course expected that
such probability goes to zero whenever the two electrons find themselves in
the same position as to respect the Pauli principle. In a way, the Fermi hole
describes the spacial delocalization of the charge of a reference electron.
If the Fermi hole of a reference electron with certain spin is extremely
localized in a certain region of space, then all other electrons with same
spin are excluded from that region. Furthermore, the Fermi hole acts only
between electrons with the same spin. This means that the existence of
a localized electron implies that there exists a high probability of finding
two electrons of opposite spin in a given region of space, simply because of
the absence of Pauli repulsion. For these localized pair of electrons, there
will be a small probability of exchange with other electrons outside of this
region.

To work towards a simple expression that could help better define this
concept, it is necessary to recall the expression (2.23) for the two particle
energy in the Hartree-Fock approximation and consider the two electron
probability. The latter is expressed as

ρ2e(r,r′ ,σ ,σ ′) = ρ(r,r,σ ,σ )ρ(r′ ,r′ ,σ ′ ,σ ′)− ρ(r,r′ ,σ ,σ ′)ρ(r′ ,r,σ ′ ,σ ). (2.61)

This quantity expresses the probability of finding an electron with spin σ
in position r and another electron with spin σ ′ in position r′. Furthermore,
it was shown that it respects the anti-symmetric constrains for the wave
function related to the fermionic nature of the electrons. It is then useful
to look to the same spin two electron probability, and define a conditioned
probability of finding an electron at position r′ knowing there is already an
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electron at position r:

P 2e
cond(r,r′ ,σ ) =

ρ2e(r,r′ ,σ ,σ )
ρ(r,r,σ ,σ )

= ρ(r′ ,r′ ,σ ,σ )−
| ρ(r,r′ ,σ ,σ ) |2

ρ(r,r,σ ,σ )
. (2.62)

By looking for the probability of finding r close to r′ and expanding the
expression through the spherical average of the Taylor expansion [83, 84]
with r′ = r+ δ one obtains:

⟨P 2e
cond(r,r′ ,σ )⟩r′=r =

1
3

[
κ(r,σ )− 1

4
(∇ρ(r,r,σ ,σ ))2

ρ(r,r,σ ,σ )

]
δ2 + . . . , (2.63)

where κ(r,σ ) is the kinetic energy density of the form

κ(r,σ ) =
∑
i

| ∇
〈
r,σ

∣∣∣b̄i〉 |2 . (2.64)

In this expression the states b̄i(r) represent a set of single particle orbitals.
The main interest lies on the quantity in the brackets in equation (2.63):

D(r,σ ) = κ(r,σ )− 1
4

(∇ρ(r,r,σ ,σ ))2

ρ(r,r,σ ,σ )
. (2.65)

D(r,σ ) is by definition positive and contains all the information related to
the Pauli exclusion principle and the electron localization.

It is reasonable to expect that D(r,σ ) will be small in the regions of the
space where the probability of finding a localized electron, or a localized
pair of electrons with opposite spin, is high. However this function is not
bound and can have arbitrarily high values, it is therefore an arbitrary
decision how close to zero the value of D(r,σ ) has to be in order to consider
an electron localized. For this reason two scaling rules are introduced. First,
D(r,σ ) is tested against the free electron gas kinetic energy density:

χ(r,σ ) =
D(r,σ )
D0(r,σ )

, (2.66)

where the free electron gas kinetic energy has the form:

D0(r,σ ) =
3
5

(6π2)2/3ρ(r,r,σ ,σ )5/3. (2.67)

Here ρ(r,r,σ ,σ ) is the electronic density of the system under study. Second,
the value of χ(r,σ ) is renormalized to unity as

ELF(r,σ ) =
1

1 +χ(r,σ )2 . (2.68)
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This last formula defines the electron localization function [85] and it is a
measure to describe zones of space where localized pairs of electrons with
opposite spins sit with small probability of hopping to other areas. The
electron localization function is not to be interpreted at every single value of
r, but instead through zones around the ELF maximum points. Such points
are defined as attractors and one should look at zones of space surrounding
the attractors and separated by the minimum values of ELF(r,σ ).





chapter 3

Phonons and the

electron-phonon

interaction

This chapter discusses the treatment of the nuclear part of the Born-Oppenheimer
Hamiltonian. Starting from the harmonic approximation, the density functional
perturbation theory for the solution of the phonon spectra is then described. The
chapter expands on the electron-phonon interaction, the role of anharmonicity
and the treatment of the quantum nuclear fluctuations described through the
stochastic self consistent harmonic approximation.

3 .1 the dynamical matrix

In this chapter, the interest lies on finding a solution for the ground state
of the nuclear part of the Hamiltonian obeying equation (2.12). In order

to study the dynamic of the ions, the usual first step is to assume the
validity of the harmonic approximation [86], where it is assumed that the
motion of the nuclei can be described through small vibrations around their
equilibrium position R0. The equilibrium positions R0 are identified by the
minimum of the potential V (R) obtained by equation (2.12).

Considering this assumption, it is reasonable to expand the nuclear
energy surface to second order with respect to the ion displacement τpaγ :

τpaγ = Rpaγ −R0,paγ , (3.1)

29
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where Rpaγ represents the γth Cartesian coordinate for the position of the
ath ion in the pth cell and R0,paγ represents the equilibrium position of the
same ion. In this approximation the potential energy surface V (R) can be
written as

V (R) ≈ V0 +
1
2

∑
paγ
p′a′γ ′

∂2V (R)
∂τp′a′γ ′∂τpaγ

∣∣∣∣∣
R0

τp′a′γ ′τpaγ , (3.2)

where V0 represent the equilibrium energy where all the nuclei are in their
equilibrium positions. In this last equation, the second derivatives of the
potential with respect to the ion displacements are called the "interatomic
force constants"

C paγ
p′a′γ ′

=
∂2E(R)

∂τp′a′γ ′∂τpaγ
, (3.3)

and are usually expressed through their reciprocal space form as "dynamical
matrices". The dynamical matrices can be obtained through a Fourier
transform of the interatomic force constants as

D aγ
a′γ ′

(q) =
1

√
MaMa′

∑
p

C paγ
0a′γ ′

ei(q·Tp). (3.4)

It is important to mention that for crystals the interatomic force con-
stants are transnational invariant. For this reason, the Fourier transform
is reduced just to the sum over a cell index p instead of both p and p′.
Furthermore, the dynamical matrix is Hermitian and therefore admits 3Nn
real eigenvalues ω2

ν(q), where Nn is the number of nuclei in the unit cell.
With this in mind, equation (3.4) can be diagonalized in the following way:∑

a′γ ′
D aγ
a′γ ′

(q)ea′γ ′ ,ν(q) = ω2
ν(q)eaγ,ν(q). (3.5)

Here eaγ,ν(q) represents the γ coordinate of the eigenvector of the ath atom
at vector q and with mode ν. Additionally, it is possible to impose the
condition of orthonormailty between the vectors through the following
transformation:∑

ν

e∗a′γ ′ ,ν(q)eaγ,ν(q) = δaa′δγγ ′
∑
aγ

e∗aγ,ν′ (q)eaγ,ν(q) = δνν′ . (3.6)

The harmonic approximation made in equation (3.2) can be solved ex-
actly in a simple manner by expressing the nuclear vibrational modes trough
a series of 3Nn normal modes. To achieve this, the atomic displacements
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and the momentum need to be rewritten in terms of the ladder operators
aqν and a+

−qν as

τpaγ =
1√
Np

∑
q,ν

ei(q·Tp)eaγ,ν(q)

√
ℏ

2Maων(q)
(aqν + a+

−qν), (3.7)

and

Ppaγ =
i√
Np

∑
q,ν

ei(q·Tp)eaγ,ν(q)

√
ℏMaων(q)

2
(a+
−qν − aqν), (3.8)

where Np represent the number of unit cells and where the ladder operators
respect the following commutation rules:[

aqν , a
+
q′ν′

]
= δqq′δνν′ ,

[
aqν , aq′ν′

]
= 0,

[
a+
qν , a

+
q′ν′

]
= 0. (3.9)

In this case, the nuclear Hamiltonian for the independent oscillators can
then be written by considering together equations (3.2), (3.5) and (3.7):

H = V0 +
∑
qν

ℏων(q)
(
a+
qνaqν +

1
2

)
. (3.10)

This final Hamiltonian describes the behavior of quasi particles of energy
ων(q) composed by a quantum of vibration (aqν + a+

−qν) in the crystal lattice
called phonon.

3 .2 dynamical matrix through linear response

The previous section showed how to solve the nuclear Hamiltonian in the
harmonic approximation and how to derive its diagonal expression. Al-
though the solution appears simple in principle, all the complexity of the
problem lies on determining the force constants of equation (3.3). Effec-
tively, this means that the second derivatives of the potential V (R) with
respect to the nuclear displacements need to be calculated for all the atoms
in the crystal.

One approach to solve the problem is called the finite displacement
method. In this method, there is the need to create a supercell commen-
surate to each monochromatic perturbation of size 2π/q, and to have the
atoms displaced accordingly with the given perturbation in order to sample
the variation in the energy V (R) with respect to the displacement. This
approach, although generically straightforward and even if there are sophis-
ticated methods to optimize the calculations [87], has obvious drawbacks
associated with expressing phonon energies ων(q) through periodic dis-
placements. Whenever there is the need to investigate the behavior of the
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phononic spectra for q→ 0, the size of the supercell for the system goes to
infinity and the calculations become computationally unfeasible.

Another approach takes advantage of the functional for DFT [88] of
equation (2.26) in order to obtain the dynamical matrices. Furthermore,
this approach takes advantage of the possibility of expressing the force
constants through the derivative of the functional with respect to the atomic
displacements. The latter can be written as

∂2V (R)
∂τpa∂τp′b

=
∫
∂ρR(r)
∂τp′b

∂Vext(r)
∂τpa

dr+
∫
ρR(r)

∂2Vext(r)
∂τpa∂τp′b

dr+
∂2Enn(R)
∂τpa∂τp′b

. (3.11)

This equation shows that the calculation of the Born-Oppenheimer energy
surface requires the calculation of the ground-state electron charge den-
sity ρ(r) as well as of its response to a distortion of the nuclear geometry
∂ρ(r)/∂τ . It is reasonable to expect that the response of the density can be
treated linearly whenever this distortion is small.

The real advantage of this procedure appears in conjunction of the
specific form of the Bloch states. Attempting to solve the system by treating
the ionic displacement as monochromatic perturbations will lead to have
the responses to different wavelengths decoupled. This feature makes so
phonon frequencies can be calculated at arbitrary wave vectors q without
the need of introducing supercells. This will be shown throughout this
and the next section. Ultimately this leads to the electronic calculations
becoming completely independent from the wavelength. To achieve this, it
is convenient to work with a reciprocal lattice version of the force constant:

C aγ
a′γ ′

(q) =
√
MaD aγ

a′γ ′
(q)

√
Ma′ , (3.12)

and it is useful to express the external potential Vext(r) as a sum of individ-
ual nuclear contributions in the following form:

Vext(r) =
∑
pa

Va(r−Ra +Tp). (3.13)

Here a sums over all the atoms in the unit cell and p sums over all the
lattice vectors in the chosen supercell Np. It is then convenient to calcu-
late the derivative of the external potential with respect to the nuclear
displacements in the reciprocal space as

V
′qaγ
ext (r) =

∑
p

eiq(Tp+Ra)
∂Va(r−Ra +Tp)

∂τpaγ (r)
. (3.14)

Furthermore, it is possible to express the derivative of the external potential
in a manner similar to the Bloch states by having a plane wave times a
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periodic function of the form

V
′qaγ
ext (r) = eiq·rv′qaγext (r), (3.15)

where

v
′qaγ
ext (r) =

∑
p

e−iq(r−Tp−Ra)
∂Va(r−Ra +Tp)

∂τpaγ (r)
. (3.16)

These same considerations apply to the variation of the general Kohn-
Sham potential in response to a density perturbation ∆VKS(r). The latter
can be expressed as well in a similar form to equation (3.15) as

∆V
qaγ
KS (r) = eiq·r∆vqaγKS (r). (3.17)

At this point in the derivation, the form of ∆v
qaγ
KS (r) will not be defined

and will be treated in the next section. This quantity, as shown before,
is functional of the density ρ(r) and is expected to depend on the linear
response of the density to the atomic displacement. The latter can be
obtained through perturbation theory by expressing the variation of the
Kohn-Sham states as∣∣∣∆ψqaγ

ik

〉
=

∑
jk′

∣∣∣ψjk′〉
〈
ψjk′

∣∣∣eiq·r∆vqaγKS (r)
∣∣∣ψik〉

ϵik − ϵjk′
, (3.18)

where the sum over k and j extends over both occupied and empty states.
Considering the form of the Bloch states, the perturbation can be expressed
through the periodic part in the unit cell. This leads to a simplification in
the sum over the k states as∣∣∣∆uqaγik

〉
=

∑
j

∣∣∣ujk+q

〉 〈ujk+q

∣∣∣∆vqaγKS (r) |uik⟩
ϵik − ϵjk+q

. (3.19)

With this expression, it is possible to define the induced charge density
arising in response of the perturbation as

∆ρqaγ (r) =
eiq·r

Np

∑
ik

[
⟨uik|r⟩

〈
r
∣∣∣∆uqaγik

〉
+
〈
∆u
−qaγ
ik

∣∣∣r〉⟨r|uik⟩]. (3.20)

Finally, the reciprocal space form of the dynamical matrix in equation (3.11)
can be obtained by substituting all the terms as

C aγ
a′γ ′

(q) =
∑
ik

[〈
∆u
−qaγ
ik

∣∣∣v′qaγext (r) |uik⟩+ ⟨uik|v
′−qaγ
ext (r)

∣∣∣∆uqaγik

〉]
+
∫
drρ(r)V ′′qaγ,−qa

′γ ′

ext (r) +
∑
p

∂2Enn
τ0a′γ ′τpaγ

eiq·Tp . (3.21)
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In this last equation, V ′′qaγ,−qa
′γ ′

ext (r) is the second derivative of the external
potential with respect to the atomic displacement

V
′′qaγ,−qa′γ ′
ext (r) =

∑
p

eiq(Tp+Ra)e−iq(Tp+Ra′ )δaa′
∂2Va(r−Ra +Tp)

∂τpaγ∂τpaγ
. (3.22)

3 .3 phonons in density functional perturbation the-

ory

One problem arising from the solution of the dynamical matrix of equation
(3.21) is related to the form of the perturbed states of equation (3.19). Here
the sum over the index j is performed over all occupied and unoccupied
states. In theory, it is then necessary to calculate enough empty states
to ensure the convergence of the linear response. This turns out to be an
inconvenient process, since one would hope to be able to neglect calculations
related to unoccupied states that, being unoccupied, do not carry knowledge
in regard to the properties of the ground state of the material.

To work around this issue it is enough to consider the explicit form of
first order perturbation theory expressed through the periodic part of the
Bloch states as(
H

k+q
KS +α

∑
v′

∣∣∣uv′k+q

〉〈
uv′k+q

∣∣∣− ϵvk) ∣∣∣∆uqaγvk

〉
=

−
[
1−

∑
v′

∣∣∣uv′k+q

〉〈
uv′k+q

∣∣∣ ]∆vqaγKS |uvk(r)⟩ . (3.23)

Here α is an arbitrary real parameter and the term α
∑
v′
∣∣∣uv′k+q

〉〈
uv′k+q

∣∣∣ is
introduced to avoid singularities in the left side of the equation. Addition-
ally, the sum over v′ is performed only over all the occupied states and the
Hamiltonian operator Hk+q

KS has its coordinate representation [89] defined
by the relation

H
k+q
KS (r,r′) = e−i(k+q)·rHKS(r,r′)ei(k+q)·r′ . (3.24)

Furthermore, the Fourier components of the self consistent Kohn-Sham
potential can be expressed as

∆v
qaγ
KS (r) = v′qaγext (r)τaγ (q) +

e2

4πϵ0

∫
∆ρqaγ (r′)

| r− r′ |
eiq·(r−r

′)dr′ +
dv

[ρ]
xc (r)
dρ(r)

∆ρqaγ (r).

(3.25)
The form of the self consistent potential response from equation (3.25),

the equation for the induced charge density (3.20), and the form of the
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linear response of equation (3.23), are all in a self consistent relationship
between each other. In theory, it is possible to self consistently solve this
set of equation in the same way as the normal Kohn-Sham system. This
procedure comes with two major advantages. First, there is no need to
perform summations over empty states and, second, considering that all
equations depend on the periodic part of the Bloch states uk,v(r), there is no
need to create supercells for the calculations. Therefore, the computational
cost of every perturbation q is always of the same order.

3 .4 the electron-phonon interaction

The previous chapter mentioned the limits of the Born-Oppenheimer ap-
proximation. Recalling equation (2.9), it was shown that the second and
third terms on the right side can be neglected under the condition for which
the energies of the states involved in the braket of equation (2.10) (Ek and
E′k) are far apart. Although this condition is well fulfilled in insulators,
it clearly breaks down for metals, where, since the electronic bands are
not filled, it is possible to have transitions with vanishingly small energy
differences. In this case, the terms mentioned above become relevant giving
rise to interactions between electrons and phonons that, for instance, alter
the nuclear dynamics, produce variations in the particle lifetime, and give
rise to the phenomenon of superconductivity [86]. In particular, specific
interest is given to the second term of the right side of equation (2.9), as
it adds contributions to linear order in the displacement and, between the
two, it is the most dominant term.

To work toward a specific form for this electron-phonon interaction term,
it is first useful to work in second quantization by defining an electronic
field operator Ψ (r) =

∑
ikψik(r)cik, defining the creation and destruction

of an electron at position r. Considering also the DFT formalism in the
Kohn-Sham framework, the second term of the right side of equation (2.9)
can be written as

Hel−ph = −
∑

aγ,ik,jk′

1
Ma

c+
jk′cik⟨ψjk′ (r) | Paγ | ψik(r)⟩Paγ . (3.26)

This equation can be rewritten considering the form of equation (2.10)
and expressing the nuclear momentum operator Pa through its normal
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coordinate form of equation (3.8). This gives

Hel−ph =∑
paγ

ik,jk′ ,νq

1
Ma

c+
jk′cik

〈
ψjk′

∣∣∣ ∂VKS
∂τpaγ

∣∣∣ψik〉
ϵjk′ − ϵik

√
ℏMaων(q)

2Np
eaγν(q)ei(q·T)(a+

ν−q − aνq).

(3.27)

Taking advantage of the form of the Kohn-Sham Bloch states, the equation
can be rewritten through just the periodic part of the wave functions. Impos-
ing the conservation of momentum (k′ = k+q) and energy (ϵjk′−ϵik =ων(q))
leads to express the electron-phonon Hamiltonian as

Hel−ph = − 1√
Np

∑
ik,νq,j

c+
jk+qcikgik,j,qν(a+

ν−q + aνq), (3.28)

where gik,j,qν is the electron phonon coupling parameter of the form

gik,j,qν =
〈
ujk+q

∣∣∣∆νqvKS |uik⟩ , (3.29)

and where the term in the bracket has the form

∆νqvKS =
∑
aγ

√
ℏ

2ων(q)Ma
eaγν(q)

∑
p

e−iq·(r−Tp)∂VKS
∂τaγ

∣∣∣∣∣
r−Tp

. (3.30)

Equation (3.28) describes the processes of interactions between electrons
and phonons in which a phonon (a) with momentum q scatters with an
electron (c) with momentum k, generating electron (c+) in the final state
with momentum k+q. Alternatively, it describes the equivalent process in
which an electron (c) of momentum k emits a phonon (a+) with momentum
−q, generating an electron in the final state (c+) with momentum k + q.
Finally, on a practical sense, the value of gik,j,qν can be obtained through
the density functional perturbation theory exposed in the previous sections.

3 .5 anharmonicity and quantum effects

The previous sections discussed why the harmonic approximation of the
Born-Oppenheimer energy surface is a reasonable first step toward an
accurate description of the atomic vibrations. To recall it, the harmonic
approximation introduces a second order expansion of V (R). This expan-
sion holds, in principle, in the limit in which the atomic oscillations around
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their equilibrium positions R0, which arise from quantum and thermal
fluctuations, are small. However, there are many circumstances in which
this approximation does not produce accurate results. For instance, the har-
monic approximation is not able to reproduce the phonons finite lifetime,
cannot account for finite thermal conductivity nor the thermal expansion
and, at times, it cannot even reproduce the real equilibrium positions of the
nuclei.

There is the need to go beyond the harmonic approximation in order
to describe these phenomena and introduce an anharmonic description of
the system. This is often done through the inclusion of higher order terms
of the Taylor expansion of the Born-Oppenheimer energy surface. Usually,
these additional terms can be treated trough perturbation theory, but under
the assumption that atomic oscillations are small and that high order terms
are small compared to the second order one.

These last assumptions do not always hold. Looking at the form of the
nuclei displacement equation (3.7), it can be seen that the nuclei displace-
ment depends on the inverse of the nuclei mass and the phonon frequency.
In fact, one expects that either in presence of weak interatomic bonds, light
atoms or high temperatures, the atomic displacements could lie in highly
anharmonic zones of the Born-Oppenheimer energy surfaces. Even at low
temperatures, there is always a residual vibrational amplitude due to the
zero point motion, arising from the quantum nature of the atoms, and, for
light atoms, the harmonic approximation might also break down in this
limit.

One possibility to treat strong anharmonicities is to make use of molec-
ular dynamics simulations above Debye temperature [90] or make use of
path integral molecular dynamics simulations [91], which however comes
at a great computational cost. The latter is also valid in the low tempera-
ture quantum limit. Another approach to include both anharmonicity and
the quantum nature of the atoms is through the Stochastic Self Consistent
Harmonic Approximation (SSCHA) [61–64, 92], which, although being com-
putationally expensive, it is still much more convenient than path integral
methods, and is able to offer an (almost) exact description of the vibrational
properties of a system for any degree of anharmonicity.

3 .6 the stochastic self consistent harmonic approxi-

mation

The Stochastic Self Consistent Harmonic Approximation (SSCHA) [62] is
a variational approach based on the minimization of the Helmholtz free
energy aiming at including the effect of quantum ionic fluctuations and



38 chapter 3 . phonons and the electron-phonon interaction

anharmonicity in the dynamics of the nuclear degrees of freedom. Gener-
ally speaking, the nuclear kinetic term of equation (2.12) is neglected in the
framework of standard DFT calculations in the harmonic approximation,
because the structural and phonon spectra properties are obtained trough
the local curvature around the minimum value of the Born-Oppenheimer
potential V (R). In contrast, the SSCHA aims to keep the nuclear kinetic
contribution of the Hamiltonian and describes the nuclei as quantum par-
ticles interacting with the complete form of V (R). This is done under the
approximation that the ground state nuclear wave function is Gaussian.
Although one could expect that the real ground state wave function differs
from the assumption made in the SSCHA, it has been shown that a Gaussian
ground state nuclear wave function is a reasonable enough approximation
yielding good results even in the most anharmonic cases [62].

The first step toward the SSCHA description is the definition of a har-
monic trial Hamiltonian of the form

H̃R,φ =
∑
a

−ℏ
2∇2

a

2Ma
+

1
2

∑
ab

(R−R)aϕab(R−R)b, (3.31)

whereR represents the most probable ionic positions, the centroid positions,
ϕab are trial force constants, and where the indexes a and b represents both
atoms and Cartesian coordinates. Furthermore, a trial density matrix,
restricted to equilibrium density matrices, is defined using the auxiliary
Hamiltonian as

ρ̃R,φ = e−βH̃R,φ/tr[e−βH̃R,φ]. (3.32)

In this equation β = 1/(kBT ) where T is the temperature, and kB is Boltz-
mann’s constant. The SSCHA free energy is then defined by sampling the
"real" Hamiltonian of the system in the Born-Oppenheimer approximation
(H = Tn+V (R)) defined in equation (2.12) through the auxiliary trial density
matrix

F [ρ̃R,φ] = tr[ρ̃R,φH] +
1
β
tr[ρ̃R,φln(ρ̃R,φ)]. (3.33)

Due to the validity of the Gibbs-Bogoliubov variational principle, the
SSCHA free energy F [ρ̃R,φ] will always be greater or equal to the real free
energy of the system. The goal would then be to chose the appropriate set
of the parameters R and φ that minimize F [ρ̃R,φ]. The SSCHA performs
a minimization procedure where, at each step, the free energy is sampled
by generating a set of random ionic configurations according to a Gaussian
nuclear probability distribution

ρ̃R,φ(R) =

√
det

(
Ψ −1

2π

)
e−[

1
2
∑
a,b(R−R)aΨ −1

ab (R−R)b], (3.34)
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where Ψ is the displacement-displacement correlation matrix of the form:

Ψa,b = ⟨uaub⟩ρ̃R,φ
=

1
√
MaMb

∑
ν

ℏ(2nν + 1)
2ων

ea,νeb,ν . (3.35)

In this last equation, the notation ⟨·⟩ρ̃R,φ
stands for the quantum average of

the operator · taken with ρ̃R,φ, ων and eν are respectively eigenvalues and
eigenvectors for the mass scaled auxiliary force constants

D(2)
a,b =

φab√
MaMb

, (3.36)

nν represents the Bose-Einstein occupation number for ων and where ua =
Ra −Ra is the displacement from the average centroid position. Here ua is
different from the ion displacement τpaγ defined in (3.1). The former is the
difference between the atomic position and the centroid position, while the
latter is the difference between the atomic position and the local minimum
of the Born-Oppenheimer potential.

The minimization strategy implemented in the SSCHA code for the
free energy is based on a preconditioned gradient descent. At each step of
the minimization both auxiliary force constants (φ) and auxiliary centroid
positions (R) are updated as

ϕ
(n+1)
a,b = ϕ(n)

a,b −λφ
〈(
f

(BO)
b (R)− f H̃R,φ

b (R)
)∑

c

Ψ −1
a,c (Rc −Rc)

〉
ρ̃R,φ

, (3.37)

and

R(n+1)
a =R(n)

a,b +λR
∑
b

ϕ−1
a,b

〈
f

(BO)
b (R)− f H̃R,φ

b (R)
〉
ρ̃R,φ

. (3.38)

In these equations λφ and λR are two arbitrary parameters normalized to

unity introduced to ensure a safe convergence, f (BO)
a are the forces for the

ath atom in the Born-Oppenheimer approximation and where f
H̃R,φ

b are
the forces for the bth atom related to the auxiliary Hamiltonan

f
H̃R,φ
a (R) = −

∑
b

ϕa,b(Rb −Rb). (3.39)

The procedure is then repeated until both ϕ(n+1)
a,b and R(n+1)

a reach conver-
gence.

After the minimization, the phonon spectra can be calculated through
the second derivative of the free energy as

D(F)
ab =

1
√
MaMb

∂2F
∂Ra∂Rb

∣∣∣∣∣
Req

. (3.40)
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Here Req represents the final ionic equilibrium positions after the SSCHA

relaxation, and D(F)
ab is the dynamical matrix of the free energy. The latter is

associated to the "free energy phonons" quasi particles, with energies ℏΩµ,
and polarization vectors ϵaµ, obtained by diagonalization as∑

b

D(F)
ab ϵ

b
µ = Ω2

µϵ
a
µ. (3.41)

It has been shown that the free energy Hessian can be expressed through an
analytic form involving the order equilibrium SSCHA force constants [63]

D(n)
a1,a2,...an =

1√
Ma1

Ma2
...Man

〈
∂nV (R)

∂Ra1
∂Ra2

...∂Ran

〉
ρ̃R,φ

. (3.42)

Through this quantity, the SSCHA free energy can be written in a compact
form as

∂2F
∂R∂R

= D(2) +D(3)Λ

[
1

1−D(4)Λ

]
D(3). (3.43)

In this equation, Λ represents a negative defined tensor [63].
Overall, each term appearing in equation (3.43) is a complex object that

contains a dependence from the complete features of the Born-Oppenheimer
potential V (R) averaged over the density of equation (3.34). This expres-
sion is able to specify much about the properties of the SSCHA free energy
Hessian matrix. In particular, it is useful to notice that, although D(2) is
positive defined, D(3) and D(4) do not necessarily need to be so. This implies
that, recalling that the tensor Λ is a negative defined quantity, the second
term on the right side of equation (3.43) can be negative and can allow for
the free energy hessian to have negative eigenvalues. This feature allows
the SSCHA to describe the appearance of second order structural phase
transitions, even if the auxiliary SSCHA Hamiltonian is harmonic and D(2)

is positive.
As a final note, it is important to mention that, at the end of the SSCHA

relaxation, it is also possible to obtain the anharmonic stress tensor P calcu-
lated with the inclusion of both quantum and thermal nuclear fluctuations.
This is done by calculating the derivatives of the free energy with respect to
a strain tensor ϵ

Pαβ = − 1
2Ω

∂F
∂ϵαβ

∣∣∣∣∣
ϵ=0

=
〈
P

(BO)
αβ (R)

〉
ρ̄R,ϕ

− 1
2Ω

Na∑
s=1

〈
uαs f

(BO)β
s +uβs f

(BO)α
s

〉
ρ̄R,ϕ

. (3.44)
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In this equation Ω is the simulation box volume, and α and β represent
the Cartesian coordinates. Additionally, it is possible to perform a lattice
relaxation through the use of the stress tensor P. This is done through the
generation of a strain for the lattice as

ϵαβ = Ω(Pαβ − P ∗δαβ), (3.45)

where P ∗ is the target pressure of the relaxation, and δαβ is the delta func-
tion. Through this strain, the lattice parameters ai can be updated as

a′iα = aiα +λai
∑
β

ϵαβaiβ , (3.46)

where λai is an updating step.





chapter 4

Conventional

Superconductivity

This chapter is dedicated to the theory of superconductivity. Here the appearance
of the attractive interaction between electrons and the collapse of the normal
state in favor of a bound electronic state are briefly discussed. Furthermore,
the BCS theory for superconductivity and the more complete Migdal-Eliashberg
theory for determining the critical temperature are also introduced. The chapter
closes with the discussion of the the McMillan and Allen-Dynes equations for
the estimate of the superconducting critical temperature.

4 .1 attractive potential

The electronic and nuclear problems faced in the previous chapters repre-
sent the basic building blocks for problems in condensed matter physics.

The two are often considered separately, but it is important to remember
they are just a separation of the general Hamiltonian problem. They often
result in more than the sum of their single parts and are able to give rise
to much more complex and at times counter intuitive phenomena. Few
examples are the renormalization of the electronic and phonon spectra,
finite particle lifetimes, the appearance of electronic satellite states, or
superconductivity [86]. This section will focus on the latter phenomena.
Generally speaking, superconductivity is still a not completely understood
problem, and, in some cases, cannot be described through a combination

43
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of nuclear and electronic processes. This section however, focuses on high-
lighting the theory valid whenever superconductivity is well described by
electron-phonon interactions.

Regardless of the type of description, the appearance of superconduc-
tivity in a material is defined by the appearance of two universal markers
below a certain critical temperature: the vanishing electrical resistance and,
in case in which the material is in a magnetic field, the expulsion of the
latter from its bulk.

In the current state of the art, the most developed theory able to de-
scribe the appearance of the superconducting state is the Bardeen-Cooper-
Schrieffer theory or often called BCS theory [6]. The main assumption of
BCS is the existence of a form of attractive interaction between pairs of
electrons able to overcome their reciprocal Coulomb repulsion. Through
this interaction, two electrons bind together to form a bosonic unit, named
as the Cooper pair.

Considering the jellium model, where the nuclei positive charges are
assumed to be uniformly distributed in space [93] allowing to neglect
the band index n, a qualitative description for the attractive interaction
binding the electrons together can be given considering the Hamiltonian for
the system in presence of electron-electron (He−e) and, retarded electron-
phonon (He−ph) interactions

H =H0 +He−e +He−ph. (4.1)

In this equation, H0 is the general non interacting Hamiltonian for both
phonons and electrons with spin σ

H0 =
∑
q

ℏω(q)
(
a+
qaq +

1
2

)
+
∑
k,σ

ϵk(k)c+
kσ ckσ , (4.2)

and the electron-electron and the retarded electron-phonon interactions
have the forms

He−e =
1

2Ωcell

∑
q,kσ,k′σ ′

V (q)c+
k+qσ c

+
k′−qσ ′ck′σ ′ckσ , (4.3)

and

He−ph =
1

2Ω

∫ β

0
dt̃2

∑
q,kσ,k′σ ′

| gq |2

Ω
G(0)(q, t̃i − t̃j )×

× c+
k+qσ (t̃2)c+

k′−qσ ′ (t̃1)ck′σ ′ (t̃1)ckσ (t̃2). (4.4)
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Here Ω is the volume of the system, V (q) represents the Fourier transform
of the Coulomb potential, t̃ defines imaginary time, G(0)(q, t̃i − t̃j ) is the free
phonon propagator and gq is the electron-phonon matrix element.

An effective interaction can be defined on the unperturbed system after
Fourier transforming He−ph into the time space. Considering the form for
the electron-electron and the electron-phonon interactions together, it is
possible to write the effective interaction as

Vef f (q, iqn) = V (q) +
| gq |2

Ω
G(0)(q, iqn), (4.5)

where iqn represents a Matsubara frequency. Considering that in the jellium
model the electron-phonon matrix elements [94, 95] can be expressed in
terms of the Coulomb potential and a characteristic phonon frequency ωc
as

| gq |2

Ω
=

1
2
V (q)ωc, (4.6)

it is possible to expand the form of G(0)(q, iqn) and transform the imaginary
frequencies iqn into real frequencies ω and rewrite the effective interaction
as

Vef f (q,ω) = V (q)
ω2

ω2 −ω2
c
. (4.7)

This final expression highlights that, for frequenciesω < ωc, the effective
interaction Vef f between electrons is negative and therefore it is possible
for two electrons to experience an attractive interaction.

4 .2 the cooper problem

To understand the consequence of the attractive interaction, it is helpful to
consider the problem of a pair of electrons above the Fermi sea interacting
with each other through an non retarded attractive potential V [11]. In
this model, all but the two electrons are considered to be interacting while
the rest of the electrons below the Fermi sea interact with the pair only
through Pauli repulsion by preventing it from sinking below the Fermi
energy. Under this assumption the orbital wave function of the electronic
pair can be written as

Ψ (r1,r2) = φq(ρ)eiq·R, (4.8)

where ρ = r2 − r1 represents the relative coordinates between the electrons,
and the position of the center of mass is described by the coordinate R =
(r2 + r1)/2. The relative coordinate wave function φq(ρ) is symmetric in the
singlet spin state and asymmetric for the triplet state. To study the lowest
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energy state of the wave function it is necessary to consider the case in
which q = 0 for the singlet spin state. In this case, the wave function can be
expanded through plane waves with coefficients ak as

Ψ (r1,r2) = φ(ρ) =
∑
k

ake
ik·r1e−ik·r2 . (4.9)

This pair wave function is composed by a combination of single particle
states with momentum k and −k. This means it can be interpreted as if the
general wave function is composed by a superposition of configurations in
which a pair of states (k,−k) are occupied. The eigenvalues of Ψ (r1,r2) can
then be found through the associated Shrödinger equation for the potential
V as

(E −H0)Ψ = VΨ . (4.10)

Here H0 is the free particle Hamiltonian. Considering a plane wave expan-
sion, the previous Shrödinger equation can be rewritten as

(E − 2ϵk)ak =
∑
k′
Vk,k′ak′ , (4.11)

where Vk,k′ can be expressed through a factorized form

Vk,k′ = ⟨k,−k|V
∣∣∣k′ ,−k′〉 = λωk′ω

∗
k (4.12)

with the assumption that ωk has the form

ωk =

1 0 < ϵk < ωc
0 otherwise

. (4.13)

Equation (4.11) can be solved self consistently by substituting in it the form
of the potential (4.12) obtaining

(E − 2ϵk)ak = λωk

∑
k′
ω∗k′ak′ (4.14)

and under the assumption that the density of states N (ϵk) is slowly varying
in the interval 0 < ϵk < ωc so that it can be approximated as N (0) close to
the Fermi energy. As a result the bound state for the electronic pair becomes

| E |= 2ωc
exp( 2

N (0)|λ| )− 1
. (4.15)

This result shows that a bound state exists for any arbitrary weak cou-
pling as long as the potential is attractive near the Fermi surface. This



4 .3 . reduced hamiltonian 47

results suggests that whenever two electrons enter this bound state they
produce an instability of the normal phase which is associated with the
occurrence of superconductivity. The same analysis can be repeated with
q , 0 or in the case in which the wave function of the system is in the triplet
state. What will result is that for q , 0 the energy of the bound state will be
smaller. This suggests that the pair non zero net momentum will tend to
disrupt the bound state. Furthermore, it is possible to have a bound state
for the triplet state where the electrons have the same spin and asymmetric
wave function. For this to happen however, it is necessary for the potential
V to carry momentum [7]. Often however, one can count on the ground
state for the pair to be associated with a stationary state (q = 0) and the
singlet state wave function with opposite spins.

4 .3 reduced hamiltonian

In the previous section it was shown the existence of a bound state for a pair
of electrons in the presence of an attractive potential, and it was mentioned
how the lowest energy state for the bound pair is achieved in the singlet
state with center of mass momentum q = 0. In this section instead, a more
general description for a system of more than just two electrons is shown.
In this case, the general behavior of all particles can be described through
an effective reduced Hamiltonian considering only interactions between
pairs of electrons with opposite momentum k and −k and opposite spin.
This reduced Hamiltonian can be expressed in the form

ĤRed =
∑
ik

ξi(k)c+
ikcik +

∑
ik,jk′

Vik,jk′c
+
ik↑c

+
i−k↓cj−k′↓cjk′↑. (4.16)

In this equation, ξi(k) represents the energy of the single particle from the
chemical potential:

ξi(k) = ϵi(k)−µ. (4.17)

A simple way to obtain a solution for the reduced Hamiltonian is to
assume the validity of the mean field approximation that allows to rewrite
the interacting term as∑
ik,jk′

Vik,jk′c
+
ik↑c

+
i−k↓cj−k′↓cjk′↑ =

∑
ik,jk′

Vik,jk′[
⟨c+
ik↑c

+
i−k↓⟩cj−k′↓cjk′↑ + ⟨cj−k′↓cjk′↑⟩c+

ik↑c
+
i−k↓ − ⟨c

+
ik↑c

+
i−k↓⟩⟨cj−k′↓cjk′↑⟩

]
,

(4.18)

where in this equation the bracket ⟨⟩ represents the grand-canonical ther-
modynamic average. The reduced Hamiltonian can then be diagonalized
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by introducing a transformation in the electronic creation and destruction
operators of the form

cik↑ = u∗ikγik↑ + vikγ
+
i−k↓, (4.19)

c+
i−k↓ = uikγ

+
i−k↓ − v

∗
ikγi−k↓. (4.20)

Here, uik and vik are two normalization constants such that | uik |2 + | vik |2=
1. With this transformation, the diagonalized Hamiltonian takes the form

H =
∑
ik,σ

Ei(k)γ+
ik,σγik,σ +

∑
ik

(
ξi(k)−Ei(k) +∆ik⟨c+

ik↑ci−k↓⟩
)
, (4.21)

where ∆ik is defined as the gap function

∆ik =
∑
jk′
Vik,jk′⟨cj−k′↓cjk′↑⟩, (4.22)

and Ei(k) represents the eigenstates of the diagonalized effective Hamilto-
nian

Ei(k) =
√
ξi(k)2 +∆2

ik. (4.23)

The gap function ∆ik is called as such because even at the Fermi level,
where ξi(k) = 0, the energy spectrum of the superconductor has a gap of
size | ∆ik |. Thus, the minimum energy of 2 | ∆ik | needs to be transmitted
to the system in order excite its quasi-particles, which are described by
the operators γik,σ , and are usually called Bogoliubons. These latter excita-
tions are defined as the inverse transformation of the operators defined in
equations (4.19) and (4.20):

γik↑ = uikcik↑ − vikc+
i−k↓ (4.24)

γ+
i−k↓ = u∗ikc

+
i−k↓ − v

∗
ikcik↑. (4.25)

The destruction of a Bogoliubons through the application of the operator
γik,σ is to be interpreted as the destruction of a single particle electronic
state cik↑ with probability | uik |2 and a creation of a single particle state
c+
i−k↓ with probability | vik |2. Additionally, through the diagonalized Hamil-

tonian of equation (4.21), it is then possible to give an explicit expression
for the parameters uik and vik in the form

| uik |2=
1
2

(
1
2

+
ξi(k)√

ξi(k)2 +∆2
ik

)
(4.26)
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| vik |2=
1
2

(
1
2
− ξi(k)√

ξi(k)2 +∆2
ik

)
. (4.27)

A last note is dedicated to the determination of the BCS ground state
wave function (ΨBCS ) in terms of the vacuum state. Considering that the
main excitation of the BCS theory are the Bogoliubons, the application of
the operator γik↑ on the ground state ΨBCS will result in the void state

γik↑ |ΨBCS⟩ = 0. (4.28)

It is then possible to write the BCS wave function as an arbitrary combina-
tion of Cooper pairs

|ΨBCS⟩ =NΠiqe
aiqc

+
iq↑c

+
i−q↓ |0⟩ , (4.29)

where N represents a normalization constant, and, upon ensuring the
proper normalization of the state, one finally obtains

|ΨBCS⟩ = Πik(uik + vikc
+
ik↑c

+
i−k↓) |0⟩ . (4.30)

4 .4 migdal-eliashberg formalism

Until now the general features of the BCS theory have been described.
However, on a practical sense, one is most interested in the ability to predict
the appearance of the superconducting state and, most importantly, the
critical temperature (Tc) at which the material becomes superconductor.
Currently, one of the most developed methods to obtain such predictions
is the first principle self consistent Green’s function method based on the
Migdal-Eliashberg formalism [13].

The Migdal-Eliashberg theory is formulated within the framework of
the Nambu-Gor’kov formalism. In this formalism, one introduces a two-
component field operator of the form

Ψ ik =
[
cik↑
c+
i−k↓

]
, (4.31)

and with this operator a generalized matrix Green’s function can be intro-
duced

Ĝik(t̃) = −⟨Tt̃Ψik(t̃)Ψ +
ik(0)⟩. (4.32)

Here, Tt̃ represents the time ordering operator for the imaginary time t̃ and
the braces ⟨⟩ indicate the average over the grand-canonical thermodynamic
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ensemble. The form of Ĝik(t̃) can be expanded explicitly to reveal the
various components

Ĝik(t̃) = −ℏ
[
⟨Tt̃cik↑(t̃)c+

ik↑(0)⟩ ⟨Tt̃cik↑(t̃)ci−k↓(0)⟩
⟨Tt̃c+

i−k↓(t̃)c
+
ik↑(0)⟩ ⟨Tt̃c+

i−k↓(t̃)c
+
i−k↓(0)⟩

]
. (4.33)

In this equation, the diagonal elements correspond to the normal Green’s
functions for electrons while the off-diagonal elements describe the Gor’kov’s
anomalous green’s functions. These functions are related with the dynamics
of the Cooper pairs seen in the previous sections and to the superconducting
energy gap. Furthermore, the general Green’s function is periodic in the
imaginary time and can, therefore, be expanded through Fourier series

Ĝik(t̃) = kBT
∑
iωn

eiωn t̃Ĝik(iωn), (4.34)

where iωn reprenents the Matsubara freequencies for fermions, T is the
absolute temperature and kB is Boltzmann’s constant. In Fourier space, the
general Green function can be expressed as

Ĝik(iωn) = −
[
Gik(iωn) Fik(iωn)

F∗ik(iωn) −Gi−k(iωn)

]
. (4.35)

In the Migdal-Eliashberg formalism, one aims to study the behavior
of the self-energy of the general Green’s function with the temperature.
To practically achieve this, one is to remember that the general Green’s
function can be expressed in term of the self energy as

Ĝ−1
ik (iωn) = (Ĝ(0)

ik (iωn))−1 − Σ̂ik(iωn). (4.36)

As shown before, in order to describe the appearance of the superconducting
state it is sufficient to consider in the self energy just the interactions coming
from the the electron-phonon pairing (Σ̂el−phik (iωn)), called Fan-Migdal self
energy, and the Coulomb interaction (Σ̂e−eik (iωn)) in the GW approximation
[86]. The general self energy can then be rewritten as the sum of the two
terms

Σ̂ik(iωn) = Σ̂e−eik (iωn) + Σ̂
el−ph
ik (iωn), (4.37)

where each term has the form

Σ̂
el−ph
ik (iωn) = −kBT

∑
jk′ ,n′

σ̂3Ĝjk′ (iωn′ )σ̂3

∑
ν

|gik,jk′ ,ν |2Dνk−k′ (iωn − iωn′ ),

(4.38)
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and
Σ̂e−eik (iωn) = −kBT

∑
jk′n′

σ̂3Ĝ
od
jk′ (iωn′ )σ̂3Vik,jk′ . (4.39)

In the equation for Σ̂
el−ph
ik (iωn) the quantity Dνk−k′ (iωn − iωn′ ) represents

the phonon propagator of the form

Dνq(iωn − iωn′ ) =
2ων(q)

(iωn − iωn′ )2 −ω2
ν(q)

, (4.40)

while, in the equation for Σ̂el−elik (iωn), Ĝodjk′ (iωn′ ) represents the off diagonal
components of the green function and Vik,jk′ represents the matrix elements
of the screened Coulomb interaction.

To properly obtain a practical solution to the Green’s function, it is
useful to consider that the self energy can commonly be rewritten in terms
of the mass enhancement parameter (Zik(iωn)), the electronic energy shift
(χik(iωn)), and the superconducting gap (∆ik(iωn)) as

Σ̂ik(iωn) = iωn

[
1−Zik(iωn)

]
σ̂0 +χik(iωn)σ̂3 +∆ik(iωn)Zik(iωn)σ̂1. (4.41)

Two different definitions for the electronic self energy have been considered
at this point. The latter equation for the self energy can be substituted in
the form of the Green’s function so to obtain

Ĝik(iωn) =

−
{
iωnZik(iωn)σ̂0+

[
ϵik−ϵF+χik(iωn)

]
σ̂3+∆ik(iωn)Zik(iωn)σ̂1

}
/Θik(iωn),

(4.42)

where Θik(iωn) has the form

Θik(iωn) =
[
ωnZik(iωn)

]2

+
[
ϵik − ϵF +χik(iωn)

]2

+
[
∆ik(iωn)Zik(iωn)

]2

.

(4.43)
Finally equation (4.42) can be substituted into the form of the self energy
of equation (4.37) and equated to (4.41). The resulting equality can be then
separated in a set of three anisotropic equations by equating the scalar
coefficients

Zik(iωn) = 1 +
πkBT
ωnNF

∑
jk′n′

ωn′Zjk′ (iωn′ )

Θjk′ (iωn′ )
λik,jk′ (n−n′), (4.44)
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χik(iωn) = −πkBT
NF

∑
jk′n′

ϵjk′ − ϵF +χjk′ (iωn′ )

Θjk′ (iωn′ )
λik,jk′ (n−n′), (4.45)

∆ik(iωn)Zik(iωn) =
πkBT
NF

∑
jk′n′

∆jk′ (iωn′ )Zjk′ (iωn′ )

Θjk′ (iωn′ )

[
λik,jk′ (n−n′)−NFVik,jk′

]
.

(4.46)
In this set of equations NF is the electronic density of states per spin at the
Fermi energy and λik,jk′ (n−n′) is the anisotropic electron phonon coupling

λik,jk′ (n−n′) =
∫ ∞

0
dω

2ω
(ωn −ωn′ )2 +ω2α

2Fik,jk′ (ω), (4.47)

where α2Fik,jk′ (ω) is the electron-phonon spectral function

α2Fik,jk′ (ω) =NF
∑
ν

|gik,jk′ ,ν |2δ(ω −ωk−k′ ,ν). (4.48)

The set of three equations (4.44), (4.45) and (4.46) can then be solved
through a self consistent loop for each temperature T .

4.4.1 Approximations

Looking at equations (4.44) and (4.46) one can see that a trivial solution is
∆ik(iωn) = 0 for every T . In order to define the superconducting critical
temperature one is however interested in the highest value of T for which
the two equations admit solutions with ∆ik(iωn) , 0. To properly obtain
this solution, it is necessary to introduce some simplifications in the set
of equations (4.44),(4.45) and (4.46). To start, it is useful to consider that
the superconducting pairing occurs in a small window of energy around
the Fermi level (ϵF) of the size of the characteristic phonon frequency of
the system ωc. The first simplification is then to restrict the description
of the Eliashberg equations near the Fermi energy. This is achieved by
arbitrarily introducing the term

∫∞
−∞dϵ

′δ(ϵjk′ − ϵ′) = 1 on the right side of
equations (4.44),(4.45),(4.46). This approximation leads to the energy shift
χik(iωn) = 0 and simplifies the form of the two remaining equations as

Zik(iωn) = 1 +
πkBT
ωnNF

∑
jk′n′

ωn′√
ω2
n′ +∆2

jk′ (iωn′ )
λik,jk′ (n−n′)δ(ϵjk′ − ϵF), (4.49)
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and

∆ik(iωn)Zik(iωn) =
πkBT
NF

∑
jk′n′

∆jk′ (iωn′ )√
ω2
n′ +∆2

jk′ (iωn′ )

×
[
λik,jk′ (n−n′)−NFVik,jk′

]
δ(ϵjk′ − ϵF). (4.50)

Two additional approximations lie on the introduction of a cutoff for
the Matsubara frequencies ωc which is usually of the order of 1 eV, and the
introduction of a dimensionless Coulomb interaction parameter µc defined
as

µc =NF⟨⟨Vik,jk′⟩⟩. (4.51)

Here the double bracket ⟨⟨·⟩⟩ stands for the average on the Fermi surface.
One can then rewrite the Coulomb interaction by performing the sum over
the Matsubara frequencies as

µ∗ =
µc

1 +µcln(ϵF/ωc)
. (4.52)

This parameter is usually assumed in a range between 0.1 and 0.15.
For conventional bulk materials, where the anisotropy is weak, it is

possible to further simplify the form of equations (4.44) and (4.46) by
assuming the presence of a single isotropic band at the Fermi surface, so
that both ∆ik and Zik loose the dependence from the band index i and the
quasimomentum k. Under these conditions, the formulation for Migdal-
Eliashberg equations is described by a set of simplified isotropic equations
as

Z(iωn) = 1 +
πkBT
ωn

∑
n′

ωn′√
ω2
n′ +∆2(iωn′ )

λ(n−n′), (4.53)

Z(iωn)∆(iωn) = πkBT
∑
n′

∆(iωn′ )√
ω2
n′ +∆2(iωn′ )

[
λ(n−n′)−µ∗c

]
, (4.54)

λ(n−n′) =
∫ ∞

0
dω

2ω
(ωn −ωn′ )2 +ω2α

2F(ω), (4.55)

α2F(ω) =
1
NF

∑
k,k′

δ(ϵk − ϵF)δ(ϵk′ − ϵF)α2Fk,k′ (ω). (4.56)
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4 .5 mcmillan type equations

Another simple way to estimate the value of the superconducting critical
temperature is through the simple analytic McMillan equation. The latter
was obtained by solving the Eliashberg equations by fitting a large set of
results obtained using the spectral function of lead [96]. The most modern
version of this equation [97] has the form

Tc =
ωlog
1.2

e
− 1.04(1+λ)
λ−µ∗c (1+0.62λ) , (4.57)

where ωlog is a logarithmic average phonon frequency that aims to describe
more generally the characteristic phonon frequency of the system with the
form

ωlog = e
2
λ

∫ ∞
0
dω α2F(ω)

ω ln(ω), (4.58)

and where λ = λ(0) is the zero frequency electron-phonon coupling with
the form

λ = 2
∫ ∞

0
dω

α2F(ω)
ω

. (4.59)

This equation has proven to be accurate for low values of λ, but deviates
from the Migdal-Eliashberg results whenever λ > 1. Above this value it
tends to underestimate the value of the superconducting critical tempera-
ture. In this regime, a more accurate estimation for the value of the critical
temperature was introduced by Allen and Dynes [98], who modified the
McMillan equation as

Tc =
f1f2ωlog

1.2
e
− 1.04(1+λ)
λ−µ∗(1+0.62λ) , (4.60)

where f1 and f2 are two prefactors

f1 =
[
1 +

(
λ

2.46(1 + 3.8µ∗)

) 3
2
] 1

3

, (4.61)

f2 = 1 +
(ω̄2/ωlog − 1)λ2

λ2 +
[
1.82(1 + 6.3µ∗)(ω̄2/ωlog )

]2 , (4.62)

and where ω̄2 is an additional parameter calculated as

ω̄2 =
[

2
λ

∫
dωα2F(ω)ω

] 1
2

. (4.63)

Equation (4.60) results much more accurate with respect to the McMillan
form and the results it obtains are close to the isotropic Migdal-Eliashberg
values for λ < 2.
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chapter 5

Classification and

correlations for

hydrogen based

superconductors

This chapter exposes the results obtained for an analysis of the electronical
properties of a large set of hydrogen based superconductors. Here, a classification
based on interatomic bonding properties is introduced and correlations with the
critical temperature are tested against variables such as density of state, atomic
composition, effective atomic charge and interatomic distances.

5 .1 overview

In recent years, the proliferation of computational resources and the de-
velopment of ab initio methods based on density functional theory have

drastically boosted the possibility of performing theoretical predictions
from first principles. In regard to the field of hydrogen based supercon-
ductivity, some experimental discoveries have been anticipated by DFT
calculations [19, 51], proving the predictive power of the current computa-
tional methods. Furthermore, with the appearance of structural prediction
methods, it now exists a rich data set of predicted superconductors in the
order of the hundreds. With this growing set of structures, it now becomes
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possible to attempt identifying general trends that could possibly suggest
the specific features giving rise to a good superconductor. This opens the
possibly to pave a path for more accurate predictions and discoveries for
the future. The set of available structures also allows for the application
of machine learning algorithms [52–54], which could ulteriorly boost the
possibility for further predictions. It is clear at this stage that with all
these available tools, it starts to become possible to perform general broad
analysis aiming at defining relevant features that could narrow down the
search for better superconductors.

This chapter reports a broad analysis performed through ab initio meth-
ods based on density functional theory over a set of 178 binary hydrogen
based superconductors previously predicted in the literature. Here, the
main focus lies on taking advantage of the previous predictions for hy-
drogen superconductors and prove a simple understanding of the origin
of the high Tc for this class of compounds. The analysis focuses mainly
on the electronic and structural properties by means of chemical bonding
descriptors, hydrogen–hydrogen distance, electronic charge, and density of
states at the Fermi level.

5 .2 methods for the calculations

To perform the analysis, a sample of 178 hydrogen based superconductors
previously predicted in the literature was selected. Most of the chosen com-
pounds are those summarized in reference [99], which had been analyzed
before in the literature [30, 32, 35, 45, 47, 60, 100–179]. The references and
data used in this study of each compound are reported in Appendix A.1.
Throughout this and the next chapter, each compound is labeled by an
index going from 0 to 178 accordingly with the tables reported in the ap-
pendix. For each compound a classical relaxation of the structure was
performed minimizing the forces at the reported pressure in the literature
through DFT. All the calculations were performed through the plane wave
Quantum ESPRESSO package [180, 181] using the Perdew-Burke-Ernzerhof
parametrization [182] of the exchange-correlation potential. The PAW pseu-
dopotentials used where selected by making sure the cutoff radius would
allow to include at least the first upper core orbitals for each atom in the
materials. Such choice was necessary due to the extreme pressures, in the
order of hundreds of GPa, at which the compounds where predicted to
be stable. Furthermore, an energy cutoff of 70 Ry was chosen for the set
of Kohn-Shan wave functions and a cutoff of 700 Ry was chosen for the
electronic density. The energy cutoff for the wave functions is related to
the square of the wavevector k for the set of Kohn-Shan states of equation
(2.56). The integrations over the reciprocal lattice cell were performed
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through Methfessel-Paxton smearing technique [81], with an integration
broadening of 0.02 Ry and with a reciprocal space grid where each point
occupied a volume of 0.0002 Å−3 for the self consistent calculations, and
0.0001 Å−3 for the non self consistent calculations. The electronic prop-
erties such as the electron localization function, the density of states, and
the charge distribution were calculated for each system using the Quan-
tum ESPRESSO post-processing tools through the results obtained for the
non self-consistent calculations. To determine the charge associated to the
atoms, the method proposed by Bader [183] and coworkers was used. The
Bader method makes use of density surfaces of the system and identifies
zones of maximum value separated by zero gradient surfaces. This allows to
determine the charge around the atoms by mere integration of the electron
density within their associated region of space. Since these regions are non
overlapping, the charges have the advantageous property of being additive.
Finally, the values of the superconducting critical temperatures where taken
from the literature and were not recalculated due to the high computational
cost.

Among the 178 compounds, a subset 43 had to be discarded due to issues
related to lack of information about the atomic structure or impossibility to
achieve convergence in the self consistent calculations, making impossible
to perform their electronical analysis.

5 .3 chemical composition and bonding categories

This section reports the categorization based on the chemical bonding
properties for the set of chosen compounds. Such categorization is based
on the bonding patterns of the hydrogen atoms in the system, and is guided
by the study of the electron localization function and the atomic charge
distribution obtained through the Bader method.

After the analysis of the electron localization function for all the com-
pounds, the categorization was organized into six different families related
to the different behavior of the hydrogen atoms in the systems. Such fami-
lies are for molecular systems, covalent systems, systems driven by weak
covalent hydrogen-hydrogen interactions, systems with electride behavior,
ionic systems, and isolated systems. In each case, the nature of the bonds is
identified through the analysis of the electron localization function saddle
points separating the attractors between different atoms. It is important
to stress out that the bonds between atoms are mainly a local property
as their features appear on the scale of the interatomic distances. It is
therefore possible that each system belongs to more than just one family
and that intricate transition patterns can appear for systems classifiable at
the boundary between two different families. Although these effects have
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Figure 5.1 – The upper panel of the figure shows a representative system for
each of the different categories and its charatteristic electron localization function
isosurface. Respectively the systems are: TeH4 for molecular systems (magenta),
PH2 for covalent systems (purple), ScH4 for weak covalent hydrogen-hydrogen
interactions (dark green), CrH for electrides (yellow), PdH for isolated systems
(orange), and ScH2 for ionic systems (light green). The lower panel shows instead
the critical temperature as a function of the host atom periodic group (left) and
the hydrogen fraction in the compounds (right).

been considered and will be briefly discussed in this section, in order to
simplify the analysis, the focus goes on the most dominant family for each
compound. A representative for each family, together with the distribution
of the families through the groups of the periodic table and the amount of
hydrogen fraction in each case, is shown in figure 5.1. In this framework,
the hydrogen fraction is defined as the number of hydrogen atoms (NH )
divided by the total number of atoms (NX +NH ) in the unit cell of the
material, where NX is the number of non hydrogen atoms:

Hf =
NH

NH +NX
. (5.1)

The system being part of the molecular family are all systems having
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at least one pair of hydrogen atoms forming a molecule. The latter can be
identified through the electron localization function analysis by locating
an isosurface surrounding an isolated molecule at very high values of the
electron localization function. An example of a molecular system is shown
in figure 5.1 and is TeH4(150), where the electron localization function
isosurfaces are reported in magenta. A system is chosen to be molecular
if an isolated pair of hydrogen atoms appears connected at a value of the
electron localization function higher than 0.85, i.e., if the minimum electron
localization function value in between the hydrogen atoms is above 0.85.
The threshold for the appearance of a molecular unit has been chosen
arbitrarily after looking at the general behavior of the electron localization
function for two closest neighboring hydrogen atoms. It was noticed that
the value of the electron localization function at the middle point between
two bonded hydrogen atoms decreases linearly with the bonding distance.
Systems with molecular behavior appear between groups 1 to 4 and 13 to 17
of the periodic table, and for high values of Hf , thus, in most cases, several
molecules exist per host atom as can be seen from figure 5.1. The highest
critical temperatures for molecular compounds have been predicted for
ScH12(33) and TeH4(150), with Tc values around 150 K. Overall the critical
temperatures in presence of molecular units span from few Kelvin to high
values of the order of 100 K.

In the covalent family, all systems where covalent bonds between hy-
drogen and host atoms are dominant are included. Considering that in the
set of chosen compounds only binary systems are included, by host atom
here is intended the non hydrogen atom of the binary composition. In the
framework of this discussion, the host atom will be labeled as X, with X,H.
For H-X bonds, the covalent character can be identified by an elongation
towards the host atom of the electron localization function isosurfaces sur-
rounding the hydrogen as in polarized covalent bonds. This is exemplified
by the purple surfaces pointing from the H (small spheres) to the P atoms
(big spheres) in PH2 in figure 5.1. Covalent systems appear for groups 13
to 17 of the periodic table as shown in figure 5.1, and are mostly related
to the p type orbital character of host atoms. Some of the highest critical
temperature for these systems have been predicted for H3S(138) at 200 K,
BH3(77) at 125 K, and H3Se(148) at 110 K.

Another family is for the weak covalent hydrogen-hydrogen interac-
tion compounds. It is dominated by compounds with predominant weak
H-H covalent interactions. In contrast to the molecular family, here the
hydrogen molecules or hydrogen clusters appear elongated or quasi disso-
ciated. This is illustrated with the dark green surfaces in ScH4 in figure
5.1, where bonds between hydrogen atoms appear at much lower values of
the electron localization function. From a quantitative point of view, we
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assume that a group of hydrogen atoms is weakly bonded if the electron
localization function at the bond point is within the range [0.4 - 0.85]. As
for the molecular family, this range of values has been chosen arbitrarily.
These systems mostly appear between groups 1 to 5. In this bonding type,
interactions seem to be purely related to hydrogen atoms whilst the host
atoms appear as inert, or acting as a chemical pre-compressor, or electron
donor. Recent literature pointed out that in this kind of compounds the
hydrogen atoms tend be located on the host atom sub lattice interstitial
bonding sites, or, otherwise, on the valence cloud of electrons as for the
the case of transition metals and lanthanides sublattices [184, 185]. The
compounds of this family tend to contain many hydrogen atoms per host,
as it happens for the molecular compounds. For compounds with the host
atom in a low group of the periodic table, the host atoms valence electrons
are donated to the hydrogen atoms resulting in a weakening of the H-H
bonds. This eventually translates into an increment of the H-H distance.
This family shows the highest predicted critical temperatures, the highest
being 326 K for YH10(27) and 300 K for metallic hydrogen H(76).

The next family is for the ionic compounds. It includes those systems
whose hydrogen atoms show a strong ionic character. The latter is identified
by an isolated proto-spherical electron localization function isosurface
surrounding the hydrogen. In addition, for a system to be hereby considered
as ionic the mean extra charge per hydrogen atom must be more than
0.5 electrons. Once again this threshold was chosen arbitrarily. This is
illustrated by the spherical light green surfaces around hydrogen in ScH2
in figure 5.1, where the extra charge on H is 0.67 electrons. Ionic behavior
was observed between groups 2 to 5 of the periodic table, in all cases with
low values of Hf . The ionic bonding originates from the strong difference
in electronegativity between host and hydrogen atoms, which is always
increased under pressure [186]. Critical temperatures for these systems are
low, with the highest being 45 K for BeH2(4).

The electride family contains systems featuring electride behavior, i.e.
compounds with electrons localized in the voids or interstitial sites between
atoms. The latter can be identified by isolated pockets of localized electrons
in empty space of the crystal as the ones shown for CrH in figure 5.1. From
a quantitative viewpoint, electride behavior is characterized in terms of
isolated isosurfaces not surrounding any nuclei with electron localization
function maximum values in between 0.35 to 0.7. Note that metallic com-
pounds are also included in this family. Metallic cases also show isolated
bubbles of electron localization function occupying the voids, but their
profile is flatter. Given the difficulties to set a quantitative barrier, the two
type of compounds have been merged in this unique family. Electrides and
metals appear mainly between groups 5 and 10, and are among the systems
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with the lowest value of Hf , reaching a maximum of 3 hydrogen atoms per
host (Hf = 0.75). Critical temperatures for this family are low, not reaching
above 50 K, exception made for Si2H6(94) with a Tc of 153 K which also
shows covalent features.

The last family includes all materials featuring extremely weak bonds
between hydrogen and host atoms. These systems have been named as iso-
lated and are identified by the lack of any kind of connection of the electron
localization function isosurfaces above 0.25. These systems feature low
critical temperatures not reaching above 40 K and appear mainly between
groups 5 and 12 of the periodic table. They also show a weak capacity of
hosting a large number of H atoms per X atom.

Overall, the results of this investigation highlight that characterizing
the bonding type of a solid thanks to these families enables to discard a
great number of compounds as potential high-Tc compounds. Covalent
interactions, where electrons are strongly localized, be it weak H-H or X-H,
are the most favorable for high-temperature superconductivity. This allows
to identify the potential interesting combination of elements, especially
with respect to the increasing search among ternary compounds. The lowest
Tc values appear for electrides and isolated compounds, mostly present
between groups 5 and 12, which do not show lots of potential as high-Tc
compounds. These families also show the lowest values of Hf . The highest
critical temperatures appear between groups 1 and 5 of the periodic table,
where bonds are mainly driven by covalent hydrogen-hydrogen interactions,
and 13 and 16, where covalent bonds are predominantly between hydro-
gen and host atoms. From this work emerges that the molecular family
transitions towards the weak covalent hydrogen-hydrogen interaction one,
with an associated increase in Tc. The transition is smooth, starting from
low Tc systems with only hydrogen molecules, such as H4I(164), going then
through a mixed phase where molecules expand and inter molecular H-H
interactions start to be present, as for ScH9(31) and ScH7(34), to finally tran-
sition towards a full weak interacting behavior with no molecules, as found
for YH10(27) and LaH10(30), having the largest Tc. A similar transition pat-
tern appears for the ionic compounds. With the increment of Hf the ionic
class transitions towards the weak hydrogen-hydrogen interaction one due
to the less doping of electrons per hydrogen atom. Similarly, the covalent
family as well transitions towards the weak hydrogen-hydrogen interaction
one with the increment of Hf . This behavior is due to the limited amount
of X-H covalent bonds that the elements between groups 13 to 17 can form.
With the increment of Hf the X-H bonds saturate and consequently H-H
interactions start to emerge.

From this (de)localization analysis, it appears that systems with high
Tc show localized electrons, defined by high electron localization function
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maxima, but with a high probability of being coupled, observed through
high values of electron localization function saddle points. This suggests
that stretching hydrogen molecules is beneficial for superconductivity. The
same conclusion is reached looking at the two pure hydrogen phases studied
here (systems 176 and 177). The hydrogen phase ascribed to the weak
covalent hydrogen-hydrogen interaction behavior (176) shows a far higher
Tc of around 300 K compared to the purely molecular phase (177), with Tc =
109 K. Therefore, stretching hydrogen molecules by chemical or mechanical
means in systems containing many H2 units seems a very promising path
to discovering new high-Tc compounds. This seems to put in context the
extraordinary prediction of a critical temperature of 473K in Li2MgH16 [39],
where doping a molecular MgH16 compound with Li brakes the molecular
units, transforming the system into one with weak covalent hydrogen-
hydrogen interactions.

5 .4 hydrogen-hydrogen distance and electronic prop-

erties

This section proposes an analysis of the the trends of the predicted Tc with
respect to the structural and electronic properties for the set of hydrogen
based superconductors. This analysis focuses on the shortest hydrogen-
hydrogen distance for each compound, the charge distribution on hydrogen
atoms, and the density of states at the Fermi level. The ultimate goal is
to find correlations between such descriptors and the critical temperature.
The results are summarized in figure 5.2 and, even if no strong correlation
has been found between the chosen descriptors and the critical temperature,
several conclusions can be drawn.

The structural analysis related to the shortest hydrogen-hydrogen dis-
tance highlights an increment of the superconducting critical temperature
with the increment of the distance for those systems where the bonding is
driven by pure hydrogen interactions, i.e. the molecular and weak covalent
hydrogen-hydrogen interaction families. For these two families the H-H
distance spans from 0.74 Å for systems with Tc below 1 K to a maximum
of around 1.35 Å for compounds with the highest critical temperatures. In
the region between 0.9 and 1.35 Å lie the currently predicted compounds
with the highest superconducting temperatures reaching values as high as
300 K. In other words, elongated H-H interactions promote Tc. However,
above distances of 1.35 Å the bonds between the hydrogen atoms become
too weak to be considered covalent. In this zone, no value higher than 0.4
has been found for the value of the electron localization function at the mid
point of the H-H bond. This suggests that effectively above 1.35 Å the H-H
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Figure 5.2 – Panel a) shows Tc as a function of the shortest hydrogen-hydrogen
distance. Panel b) shows Tc as a function of the mean extra electrons per hydrogen
atom. Panels c), d), and e), respectively, show Tc as a function of the total density
of states at the Fermi level, the density of states at the Fermi level projected on the
hydrogen s orbitals per hydrogen, and the fraction of the total density of states at
the Fermi level coming from the hydrogen orbitals.

bond can be considered broken. Interestingly, this analysis highlights that
such H-H distance variation is not related to a variation of pressure. On
a broad level, increasing the pressure does not necessarily yield an incre-
ment of the bonding distance, so composition rather than pressure appears
to be a more relevant variable to tune. The shortest hydrogen-hydrogen
distance for the covalent family spans between 1 to 2.5 Å. Low symmetry
covalent systems appear between 1 to 1.45 Å where the short H-H distance
is due to H-H bonds appearing beside the dominant hydrogen-host bonds.
This zone is for the covalent family a zone of transition towards the weak
hydrogen-hydrogen interactions family. As mentioned in the previous sec-
tion, whenever for the covalent compounds the value of Hf becomes high,
the number of covalent H-X bonds saturates and H-H bonds start to ap-
pear. The highest reported superconducting temperature for these systems
is about 135 K for BH3(77). Interestingly, at around 1.55 Å the covalent
family exhibits a sharp spike in the predicted Tc through systems sharing
linear X =H = X bonds originating through the host p orbitals, a 3̄m point
group, a value of Hf equal to 0.75, and a lack of direct hydrogen-hydrogen
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Figure 5.3 – This figure shows five compounds related to the Tc spike around a
hydrogen-hydrogen distance of 1.55 Å . The pink spheres refer to hydrogen atoms,
while the rest refer to the respective host atoms. An electron localization function
isosurface is depicted in each case. Also the shortest H-H (DHH) and H-X (DHX)
distances are noted. Most of these compounds belong to the covalent family and
show a purple electron localization function isosurface. The Si2H6 compound is
an electride (note the small electron localization function bubbles in empty sites)
and its electron localization function isosurface is shown in orange.

bonds. Here lay systems as H3S(138), H3Se(148), GaH3(80), and GeH3(106).
Interestingly, the Si2H6(94) electride also shares these features even if the
bonding nature is slightly different. All these compounds are shown in
figure 5.3 with a representative electron localization function isosurface.
For H-H distances above approximately 1.55 Å a sharp drop in Tc appears
with systems not reaching above 50 K. This zone lacks direct hydrogen-
hydrogen bonds and features systems with a low percentage of hydrogen,
with mostly isolated, electride and ionic behavior. Hence, systems with
covalent elongated bonds, being H-H with high Hf or H-X with Hf =0.75,
seem to be the best candidates to increase Tc.

Panel b of figure 5.2 shows the mean extra electrons per hydrogen atom
obtained analysing the charge though the Bader method. The mean extra
electrons per hydrogen atom (ρ̄) is estimated as:

ρ̄ =

∑NH
i=1Qi −NH
NH

, (5.2)

where Qi is the number of electrons assigned to the ith hydrogen atom by



5 .4 . hydrogen-hydrogen distance and electronic properties 67

the Bader method and NH is the total number of hydrogen atoms in the
cell. The covalent family has been excluded from this panel due to the
difficulty to associating the charges to the atoms. Such issue arises from the
difficulties in assigning shared electrons in the H-X bonds to each atom due
to the complex representations of the charge regions.

Overall hydrogen atoms tend to gain electrons due to their higher elec-
tronegativity with respect to other atoms in the cell. We observe that the
highest Tc values are associated with small charge transfers, i.e. from 0
to 0.25 extra electrons per hydrogen atom. As the extra charge increases,
Tc drops sharply below 50 K, exception made for the BeH2(5), compound
belonging to the ionic family with Tc = 97 K, and Si2H6(94), with Tc = 153
K and part of the electride family but also showing covalent characteristics.

It is often mentioned in the literature that an increment of electron dop-
ing on the hydrogen atom leads to a weakening of the hydrogen-hydrogen
bonds [34, 39, 104, 187]. The obtained results show that both molecular
and weak covalent hydrogen-hydrogen interaction families exhibit non-
negligible extra electrons on the hydrogen atoms. It was also observed that
the extra charge on the hydrogen is responsible for a slight increment of the
H-H distance for the weak covalent hydrogen-hydrogen interaction family.
In fact, compounds within this family with a shorter H-H distance tend to
have less extra electrons per hydrogen atom. The maximum extra electron
per hydrogen among this family is around 0.5, albeit imposed by ionic
family definition, increasing up to 1 extra electron per hydrogen atom in
the molecular systems.

Panels c, d, and e in figure 5.2 report the results for the density of
states analysis. The total density of states per electron at the Fermi level
shown in panel c features a sharp increment in the highest superconducting
temperatures for a density of states value of around 0.015 eV −1. However,
for such values, compounds with very low Tc can still be found suggesting
that the total density of states at the Fermi level is not a good general
descriptor for the trends of Tc, as already been suggested in the literature
[188]. This feature is not completely unexpected. The main parameter
currently used to determine if a compound has a high value of Tc is the
electron-phonon coupling constant (λ) shown in equation (4.59). Although
it is true that the latter exhibits a proportional dependence from the total
density of states at the Fermi level, it also has a dependence from the
phononic density of states and the electron-phonon coupling parameter
g of equation (3.29). For this reason, it is possible for a material to posses
a high density of states at the Fermi level but reduced electron-phonon
coupling which, consequently reduces the value of Tc. However, a recent
study performed on different phases of solid hydrogen [189] showed the
density of states per atom at the Fermi level exhibits a good correlation with
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Tc. This might suggest that the density of states at the Fermi level could be
a good descriptor for the value of Tc for chemically equivalent systems.

Considering that H atoms, due to their light mass, are responsible for
the large values of Tc in these compounds, the projection of the density of
states at the Fermi level onto hydrogen atoms was investigated. The results
are reported in panel d of figure 5.2). The resulting trends are similar to
those obtained for the total density of states. This quantity suggest again
that the key for high superconductivity is not strictly related to the value
of the density of states. What seems to be more relevant is the fraction of
active hydrogen atoms at the Fermi energy HDOS reported in panel e. This
quantity is obtained dividing the contribution to the density of states at
the Fermi energy coming from the hydrogen orbitals by the total density of
states at the Fermi level. In agreement with the previous observations, only
molecular and weak covalent hydrogen-hydrogen interaction families are
able to reach high amounts of density of states coming from the hydrogen
active atoms. Nevertheless, false positives exist, specially among molecular
compounds, where Tc appears very low despite the large contribution of
hydrogen states to the Fermi surface. Furthremore, again for high level
of Hf , there is a clear separation between the value of Tc for the molecu-
lar and weak hydrogen-hydrogen interactions families. This suggests that
the density of states alone is not a good indicator for the Tc and that sto-
ichiometry and atomic arrangement plays as well a relevant role. In fact,
as mentioned before, the density of states misses the information on how
electrons are coupled with the lattice vibrations, feature that is enhanced
by the weakening of interatomic bonds as highlighted by variations in Tc in
the transition between molecular and weak hydrogen-hydrogen interaction
compounds. Systems with very high values of the density of states at the
Fermi energy but with very low electron-phonon coupling will not exhibit
high superconducting critical temperatures.



chapter 6

The Networking Value

This chapter is dedicated to the introduction of the networking value. The
latter is an observable based on the identification of crystal networks of electron
localization function isosurfaces. The networking value is found to exhibit
correlations with the superconducting critical temperature for all hydrogen based
superconductors.

6 .1 overview

The analysis of the set of hydrogen based superconductors exposed in
the previous section was able to reveal insightful correlations of the

electronic and structural properties with the superconducting critical tem-
perature. Quantities such as high density of states at the Fermi energy, high
fraction of hydrogen atoms, weakened covalent bonds, low or high group in
the periodic table for the host atoms or specific structural patterns are all
able to enhance the value of Tc. However, this same analysis reveals that
even if such quantities indeed exhibit trends related to the Tc, they are in a
way quantities serving as necessary but not sufficient conditions. A clear
example is for the value of the density of states at the Fermi level. Maximiz-
ing the latter will indeed give a chance to have a better superconductor, but
for high values of density of states there is still the chance to find poor su-
perconductors. The reason for this issue lies on the fact that all the studied
quantities are electronic properties and, to have a good superconductor, is
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not only necessary to know its electronic behavior but also how strongly
the latter couple with the phonons.

This chapter proposes an attempt to devise a new universal descriptor
for the superconducting quality of a system based on the identification of
electronic delocalization networks, identified by means of the electron lo-
calization function. Here a simple magnitude, the networking value, which
is easily obtained from the calculation of electron localization function iso-
surfaces, is defined. Such quantity reveals useful by suggesting insights on
the chemistry and patterns for good superconductors, and it is able to give
a reasonable first estimate of the Tc for hydrogen based superconductors
without the need of performing electron-phonon coupling calculations.

6 .2 networking through the electron localization

function

The electron localization function is a quantity suited to analyze the degree
of electronic localization. Its isosurfaces at high values reveal regions in
space where electrons localize. In fact, for isosurfaces with values close
to unity the electrons are localized generally on atomic sites and start to
delocalize towards neighbors as the value decreases, eventually revealing
the interatomic bonding patterns. Considering these properties, it is then
possible to take advantage of the electron localization function in order
to analyze the degree of delocalization on a crystal size scale. For systems
composed by atoms where the electrons are localized around the nuclei,
as in the case for hydrogen rich systems, one could consider to attempt
modelling the interaction between phonons and electrons looking at the
localization of the electrons. Phonon properties ultimately depend on the
forces holding the lattice together, which, in the case of covalent systems,
ultimately arise by the localization of the electrons in the interstitial sites
in the lattice. What one would want is strongly localized electrons on sites,
but also a non zero probability for these electrons to hop from an atomic
site to another, leading to a net between strongly localized sites bridged by
localized overlapping regions between sites.

In a rough attempt to define an observable that could capture the fea-
tures previously described, a quantity called networking value (φ), defined
as the highest value of the electron localization function that creates an isosur-
face spanning through the whole crystal in all three Cartesian directions, was
introduced. The φ value can thus be easily extracted by calculating the elec-
tron localization function and determining at which value a crystal sized
isosurface is created when lowering the value of the electron localization
function from 1. Generally speaking, the isosurface that will result encloses
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Figure 6.1 – The upper panel shows the electron localization function isosurface
and the three dimensional network spanning through all the crystal, which is
formed by the electron localization function saddle points and the atoms, associ-
ated with the φ value for PdH(70), YH4(15), and H3S(138). The networking value
is given for each case. The bottom panels show the critical temperature Tc as a
function of the networking value φ (left), the networking value multiplied by Hf
(center), Φ = φHf , and the networking value multiplied by Hf and the cubic root
of the fraction of the DOS at the Fermi energy coming from the hydrogen atoms
HDOS, ΦDOS = φHf 3

√
HDOS (right). The dotted line in the last panel represents a

fit for which Tc = (750ΦDOS − 85) K which is able to estimate Tc within 60 K.

most of the atoms in the crystal, but not necessarily all. In this description
the saddle points of the electron localization function surfaces reveal cru-
cial for the determination of the networking value, especially for hydrogen
based compounds. For these systems, where hydrogen-hydrogen bonds
are dominant, the saddle points identify the weak or strong interatomic
bonds that pave the crystal sized electronic localization network. Thus, for
the determination of the networking value, it is sufficient to identify the
ensemble of electron localization function saddle points at the highest value
of electron localization function able to bridge the gap between different
atoms and create the 3D network.
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Figure 6.2 – The figure shows respectively λ and ωlog as a function of the net-
working value (φ), the reduced networking value (Φ), and the reduced networking
value corrected by the hydrogen contribution to the DOS at the Fermi energy
(ΦDOS).

Figure 6.1 reports the electron localization function isosurfaces related
to the φ value as well as the networks created by the saddle points for this
electron localization function value for PdH(70), YH4(15), and H3S(138).
These three cases are related to the most common types of networks iden-
tified during the analysis: isolated, weak covalent hydrogen-hydrogen
interaction, and covalent families, respectively. In PdH(70) the network
includes both Pd and H atoms. The isolated behavior of the atoms makes
the electron localization function bubbles around the atoms network at
very low values of the ELF, 0.19. For YH4(15) the highest 3D connecting
network appears at ELF=0.43, and is constructed only by hydrogen atoms
showing a weak covalent interaction. This is one of the cases in which the
3D network subsisting at the highest value of electron localization function
does not include all the atoms in the unit cell. For the case of H3S(138), two
interlaced networks appear at ELF=0.68 due to its high symmetry, which is
supported by the H = S covalent bonds. Another type of network is the one
arising from the electride systems, where the connection appears through
the isolated pockets of charge in the empty zones of the unit cell. Additional



6 .2 . networking through the electron localization function 73

example of networks are reported in Appendix A.2.
Interestingly, the networking value correlates rather well with Tc as

shown in figure 6.1, clearly much better than any other descriptor based
on the structure or the electronic properties presented until now in figures
5.1 and 5.2. These quantities are also the quantities most studied in the
current literature. The positive correlation between the networking value
and Tc is universal as it was observed to hold for all bonding families
for hydrogen based superconductors. This is not surprising as bonding
families are determined by localized electrons around atomic cores, while
the networking value is related instead to delocalized electrons that bridge
the space between locally bonded units.

Further analysis have been performed by applying additional condi-
tions over the definition of the networking value; adding requirements such
as having all hydrogen atoms taking part to the network, or connecting
the atoms up to a certain distance through direct channels of electron lo-
calization function, has shown to increase the accuracy of the correlation.
This result is not unexpected. Considering that the networking value is an
attempt to try to reproduce the coupling between electrons and phonons,
one would have to consider in the network as many channels of interactions
as possible and not just limit to the strongest interactions as obtained by
considering the highest 3D network. However, the addition of the extra
restriction introduced a substantial complication and ambiguity related
to the procedure for the determination of the networking value. For this
reason the definition of the networking value was restricted to the bare
minimum requirement necessary to have a good correlation. Such mini-
mum requirement corresponds to the 3D nature of the network as, while
performing the analysis, it was observed that the relaxation of this latter
restriction produced a complete loss of correlation.

There are however different ways to improve the correlation between φ
and Tc. As seen in figure 6.1, an improvement in the correlation is obtained
by multiplying φ by the hydrogen fraction Hf of the compound:

Φ = φHf . (6.1)

A explanation for such improvement is related to the fact that the hydro-
gen fraction is a rough estimation of the multiplicity of hydrogen bonds.
Systems with few H atoms will tend to form less bonds in which H atoms
participate. This is in contrast with hydrogen rich systems with an incredi-
ble number of bonds in which H atoms participate. A further improvement
can be obtained by adding a correction coming from the density of states
by defining

ΦDOS = φHf
3
√
HDOS, (6.2)
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Figure 6.3 – The figure shows the total DOS per electron at the Fermi energy, the
hydrogen contribution at the DOS at the Fermi energy per hydrogen atom, and the
fraction of DOS at the Fermi level coming from the hydrogen orbitals as a function
of the networking value (φ), the reduced networking value (Φ), and the reduced
networking value weighted by the fraction of DOS at the Fermi level coming from
the Hydrogen atoms (ΦDOS) (See main text for the definitions) .

where HDOS is the hydrogen fraction of the total density of states at the
Fermi energy. The introduction of this quantity is able to screen out all
those systems that have a high value of Φ but a low contribution of H
atoms to the density of states, i.e., all systems that present good bonding
properties for superconductivity but lack active electrons coming from
hydrogen at the Fermi level to host it. In fact, the networking value does not
correlate at all with the density of states at the Fermi level, not even with
the density of states coming from H atoms as can be seen from figure 6.3,
underlining that these two descriptors are measuring different quantities.
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The networking value offers for the first time an adimensional magnitude
that shows a striking correlation with Tc, which is valid to estimate the
superconducting critical temperature in hydrogen-based superconductors.
In fact, the obtained results show that the superconducting critical temper-
ature of these systems can be predicted, within roughly 60 K, following the
Tc = (750ΦDOS − 85) K equation.

It is illustrative to look at the simple McMillan equation of the critical
temperature (4.60) in order to understand if the correlation found with
the networking value is assigned to the electron-phonon coupling constant
λ or to the logarithmic average phonon frequency ωlog. As shown in Fig.
6.2 both λ and ωlog correlate with φ, Φ , and ΦDOS. This confirms that the
networking value is able to capture how prone electrons are to couple to
phonons. Also, the average strength of the bonds, which affects phonon
frequencies. However, the correlation found for both λ and ωlog is worse
than the one found for Tc. The reason is that many of the predictions in our
dataset are obtained in materials with rather low phonon frequencies, close
to structural instabilities. In this regime, while λ soars, ωlog is suppressed.
This balancing is eventually able to preserve the correlation with Tc also in
these cases.

In conclusion, the networking value φ defined here has shown to be able
to capture effectively how sensitive the electronic cloud is on average to
lattice vibrations, and, consequently, correlates well with Tc. As extracting
φ simply requires the analysis of electron localization function isosurfaces,
which can be easily obtained post-processing DFT ground state calculations,
it offers a simple way of screening hydrogen-based superconductors, as
well as showing the correct directions to chemically engineering better
hydrogen-based superconductors. Interestingly, although the definition
of φ is completely general, not limited to the presence of hydrogen in the
system, one would expect it to potentially be applied to estimate the Tc of
all phonon-mediated superconductors.

As a final word for this section, it is important to underline that the su-
perconducting critical temperatures used to find correlations are extracted
directly from the literature, without being recalculated. All the Tc values
were obtained by first principles DFT calculations, but at different levels of
theory, for instance, for the estimation of the critical temperature. Indeed,
for the highest critical temperature systems, the value of Tc can vary up to
40 K depending on the choice of µ∗. The wide grey area in Fig. 6.1 could be
the result of such inconsistencies. In addition, most of these Tc values have
been obtained assuming that the ground state structure is the one given
by the minimum of the Born-Oppenheimer energy surface and that lattice
vibrations can be described within the harmonic approximation around
these positions. However, in hydrogen-based superconductors, the crystal



76 chapter 6 . the networking value

structure can be largely modified by ionic quantum effects and anharmonic-
ity strongly renormalizes the obtained harmonic phonon spectra, which can
strongly impact the predicted Tc as it will be shown in the next part of this
thesis. These effects could produce a narrower correlation between Tc and
φ by introducing variations due to corrections on the structure and Tc.

6 .3 density and electron-phonon coupling in real space

The networking value introduced so far is just an heuristic quantity that
aims to describe the appearance of the high superconducting temperature.
The philosophy behind the networking value is that, in some ways, it is
able to capture the coupling between electrons and phonons through the
identification of the electron localization function delocalization networks.
This section exposes an attempt in formulating an a posteriori description
for the validity of the networking value. Since the latter is defined in real
space, in order to find the appearance of a correlation between networking
value and the electron-phonon coupling, it is useful to express the latter in
real space by introducing a transformation of the electronic block states in
a set of real space localized Wannier functions [190]. Such transformation
is of the form

WnT(r) =
Ωcell

(2π)3

∫
BZ
dke−ik·T

∑
m

U
(k)
mnψmk(r). (6.3)

In this equation Ωcell represent the volume of the primitive cell andU (k) rep-
resents a unitary transformation matrix for a given k related to a manifold
of occupied Block states ψ that leaves the trace of such manifold invariant.
Through this transformation, the electronic density can be expressed as

ρ(r) =
∑
ij

∑
TT′

W ∗jT′ (r)Kij(T
′ −T)WiT(r), (6.4)

where K represent the kernel of the density expressed as:

Kij(T
′ −T) =

V

(2π)3

∫
BZ
dke−ik·(T

′−T)
∑
n

[
U (k)+

]
in
fnkU

(k)
nj . (6.5)

In this equitation fnk represents the fermionic occupation function for a
band n at wave number k.

A simple example for the form of the density can be obtained for a linear
chain of hydrogen atoms spaced by a distance L. In this case the system
can be described considering just a single localized orbital per hydrogen
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site WT (r) and the density reduces to the sum of the single square Wannier
functions:

ρ(r) =
∑
T

|WT(r)|2. (6.6)

It is interesting to consider the value of the density at the middle point of the
hydrogen bonds rn = L

2 +nL. The latter can be expressed by symmetrically
summing the onsite Wannier functions with respect to the value of rn:

ρ(rn) =
∑
T

|W−T+Ln(rn)|2 +
∣∣∣WT+L(n+1)(rn)

∣∣∣2. (6.7)

For the hydrogen atoms it is reasonable to expect the Wannier functions to
be exponentially localized around the atomic sites. For this reason, only
the first few values of T are expected to contribute to the values of ρ(rn).
Fundamentally, for this specific case, even if obtained by summing single
site functions, ρ(rn) is able to estimate the overlap between functions on
different sites. If the electronic density is extremely localized on the atoms,
one expects ρ(rn) to be vanishingly small at rn, i.e. both |W−T+Ln(rn)|2 and∣∣∣WT+L(n+1)(rn)

∣∣∣2 will decay exponentially to zero before reaching rn and
will not overlap. The opposite is also true: for the chain of hydrogen
atoms one expects the electronic density between two adjacent atoms to be
different from zero. Consequently, this means that the Wannier functions
are delocalized enough to overlap with each other.

In the same way it is possible to express the electron phonon coupling
parameter of equation (3.29) through its real space form [190] as

gmn,ν(k,q) =
∑
TT′

ei(k·T+q·T′)
∑
m′n′aγ

[
U (k)+

]
nn′

[
gm′n′ ,aγ (T,T′)

]
U

(k+q)
mm′ τaγ,qν ,

(6.8)
where in this equation the quantity gm′n′ ,aγ (T,T′) represents the real space
representation of the electron-phonon coupling parameter

gm′n′ ,aγ (T,T′) =
∫
drW ∗m′0(r)

∂VKS
∂Raγ

(r−T′)Wm′T(r). (6.9)

From this last equation it results clear that the value of gm′n′ ,aγ (T,T′) is
related to the strength of the overlap between different localized functions.
Furthermore it is possible to express an upper limit to gm′n′ ,aγ (T,T′) [190]
as

| gm′n′ ,aγ (T,T′) |≤
∫
dr |W ∗m′0(r)Wn′T(r) |

∫
dr | ∂V

∂Raγ
(r−T′) | (6.10)
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Equation (6.10) evidences that the bigger is the overlap between the dif-
ferent sites Wannier functions the stronger will be the electron phonon
coupling parameter.

It is reasonable to expect that, when far from a structural instability, ∂V
∂Raγ

will be similar for hydrogen rich systems, especially due to the presence
of normal displacements τaγ,qν in equation (6.9), which tend to dampen
the contributions arising from heavier host atoms leaving the hydrogen
contributions dominant. Therefore, the strength of the overlap between
the localized functions, which can be estimated through the lowest value
of the density between localized electron pockets along the bonding paths,
it is possibly a good way to estimate the variations of gm′n′ ,aγ (T,T′). One
issue however lies on the fact that the electronic density is dependent on
the specific exchange correlation functional and the specifics of the pseudo
potentials used. A solution to this problem comes by instead using the
electron localization function which not only is able to determine the areas
of localization of electrons, but, although being dependent on the electronic
density, is better normalized and much more resistant to variations of func-
tionals and potentials. The idea is then that, using the electron localization
function, which constitutes a well normalized quantity, one can estimate
the magnitude of the density at the interstitial sites between atoms. Further-
more, considering equations (6.7), (6.9) and (6.10) it is possible to relate
this value to the magnitude of the electron phonon coupling parameter.
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chapter 7

Phase stability of LaH10

This chapter discusses the phase stability of the C2 and R3̄m phases of LaH10
with the inclusion of quantum ionic fluctuations in comparison with the high
symmetry Fm3̄m phase. Harmonic classical calculation suggest that the C2 and
R3̄m phases have lower entalphy with respect to the high symmetry Fm3̄m phase.
However, the introduction of quantum ionic fluctuations completely change this
behavior. A structural relaxation performed through the SSCHA is able to show
that the C2 and R3̄m phases evolve towards the Fm3̄m phase suggesting that
quantum fluctuations can completely alter the energy landscape.

7 .1 overview

In 2017, a systematic high pressure ab initio structural search performed
by Liu et al. in the La-H and Y-H systems revealed the stability of the

LaH10 composition in a sodalite-like face-centered fcc structure above 200
GPa [32]. Additional more accurate studies performed later placed a more
accurate guess for the stability of the compound at 230 GPa [191]. At this
pressure, the composition was predicted to exhibit a value of the super-
conducting critical temperature of 280 K. Immediately after the prediction
of Liu, a lanthanum hydride structure was synthesized by laser heating a
lanthanum sample in a hydrogen-rich atmosphere inside a diamond anvil
cell [33]. Based on the unit cell volume obtained by x-ray diffraction, the hy-
drogen to lanthanum ratio was estimated to be between 9 and 12 and an fcc
arrangement of the La atoms was determined above 160 GPa, transitioning
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to a rhombohedral R3̄m space group for the La sublattice below. However,
due to the small x-ray cross section of hydrogen, it was not possible to
experimentally resolve directly the hydrogen lattice and the details of the
structure for the compounds remained unknown. Subsequently in 2019,
independent efforts of two experimental groups were able to synthesize a
LaH10 compound and measure a critical temperature of 250 K. Electrical
and x-ray diffraction measurements in one of these studies determined a
weakly pressure-dependent critical temperature for the LaH10 between 137
and 218 GPa in a structure with a face-centered cubic fcc arrangement of
lanthanum atoms [24], but still no information about the hydrogen lattice
was obtained. Additionally, no transition toward other structures was ob-
served at the lower pressure of stability. Finally later studies performed by
Sun et al. [192] reported again the stability of LaH10 Fm3̄m till 138 GPa
and, below such pressure, a transition to a C2/m phase with lower Tc was
observed.

Meanwhile on a theoretical level, in order to identify a stable struc-
ture able to reproduce the Tc results in the same pressure range, distorted
versions of the fcc structure with space group C2/m and rhombohedral
lanthanum sublattice were found to be the lowest enthalpy structures [193].
Unfortunately, no predicted LaH10 structure was found to be dynamically
stable below 200 GPa, implying that the LaH10 phase is not a minimum
of the Born-Oppenheimer energy surface in that pressure range. This con-
tradiction between experimental and theoretical results was signaling a
problem related to the computational approaches and specifically, consider-
ing the presence of light hydrogen atoms, regarding the treatment of the
quantum fluctuations of the ions, the behavior of which was already well
documented in the literature in other hydrogen-based systems [92, 161,
194].

This chapter reports an ab-initio investigation of the phase stability
for the LaH10 C2 and R3̄m phases at 160 GPa, which are the two lowest
phases on the enthalpy convex hull for the LaH10 system [191]. The study is
performed in presence of quantum ionic fluctuations included through the
use of the stochastic self consistent harmonic approximation. The obtained
results show that the presence of quantum effects simplify the landscape of
phase stability and are able to justify the stability of the fcc LaH10 phase
below 230 GPa. Furthermore, the obtained results are also able to explain
the different lowest pressure of stability of the LaH10 fcc phase obtained
by the experimental groups through the presence of light anisotropy in the
diamond anvil cell.
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7 .2 methods for the calculations

The first-principles calculations in this study were performed within den-
sity functional theory and the generalized gradient approximation (GGA)
as parametrized by Perdew, Burke, and Ernzerhof (PBE) [70]. Harmonic
phonon frequencies were calculated within density functional perturba-
tion theory making use of the Quantum ESPRESSO code [180, 181]. A
rhombohedral lattice was used in the harmonic phonon calculations for
the R3̄m phase, respectively with one LaH10 formula unit in the unit cell
and a 20×20×20 Monkhorst-Pack shifted grid with a Methfessel-Paxton
smearing of 0.02 Ry for the self consistent calculations. A base centered
monoclinic lattice was used for the harmonic phonon calculations for the
C2 phase instead, with 2 LaH10 formula units per cell and a 19×19×11
Monkhorst-Pack shifted grid with a Methfessel-Paxton smearing of 0.02 Ry
again in the self consistent calculations.

The SSCHA calculations were performed at T = 0 K on a 2×2×2 supercell
in the R3̄m phase and in the 2×2×1 supercell for the C2 phase. The SSCHA
calculations for both phases contained 88 atoms. The phonon spectra are
obtained by Fourier interpolating directly the SSCHA energy Hessian force
constants obtained in a 2×2×2 supercell for the R3̄m phase. The phonon
spectra was not calculated for the C2 phase.

The DFT calculations for the SSCHA supercells were performed on
a coarser electron-momentum grid, which would correspond to a 6×6×6
grid in the R3̄m and C2 supercells. It was explicitly verified that this
coarser mesh yields a fully converged SSCHA gradient with respect to the
electron-momentum grid, therefore not affecting the SSCHA minimization.
These were calculated as well within DFT at the PBE level with Quantum
ESPRESSO. For the final SSCHA populations, about 1000 configurations
were used to reduce the stochastic noise. In all these calculations we used
ultrasoft pseudopotentials including 11 electrons for the La atoms, a plane-
wave cut-off energy of 50 Ry for the kinetic energy and 500 Ry for the charge
density.

For the R3̄m phase, the electron-phonon matrix elements were calcu-
lated in a 6×6×6 q point grid and a 40×40×40 k point grid. These were
combined with the SSCHA phonons and polarization vectors obtained by
Fourier interpolation to the 6×6×6 q point grid from the real space force
constants coming from the Hessian of E(R) in a 2×2×2 supercell R3̄m. The
Dirac deltas on the band energies are estimated by substituting them with
a Gaussian of 0.004 Ry width.
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Figure 7.1 – The figure shows the enthalpy per LaH10 unit as a function of pressure
for different structures of LaH10 and the various associated structures. The values
for the pressures are obtained through the Born-Oppenheimer energy without the
inclusion of quantum corrections.

7 .3 phase stability for c2 and r 3̄m lah10

To start, DFT methods have been used in order to calculate the lowest-
enthalpy structures for LaH10 as a function of pressure. This was done using
state-of-the-art methods for the prediction of crystal structure through the
minima hopping method [26, 27]. In this case, the results obtained for the
enthalpy are related solely to the Born–Oppenheimer energy and neglect
quantum ionic fluctuations. The analysis of the enthalpy reported in figure
7.1 suggests that other phases of LaH10, such as the R3̄m, C2 and Immm, are
thermodynamically more stable than the fcc phase with Fm3̄m symmetry at
pressures lower than 250 GPa. Instead, at pressures greater than about 250
GPa, all phases merge to the Fm3̄m symmetric phase. The low symmetry
phases feature distortion not only in the position of the hydrogen atoms but
also in the lanthanum sublattice. Effectively, as can be seen in figure 7.1, the
low symmetry phases are distortions of the high symmetry Fm3̄m phase.
Furthermore, the fact that many structures are predicted emphasizes that
the classical Born-Oppenheimer energy surface has a multifunnel structure
that is tractable to many different saddle and local minima. Effectively,
this suggests that the introduction of the quantum ionic fluctuations could
renormalize the energy surface and deeply change the landscape of phase
stability.

To investigate this idea, the behavior of the structural stability for the
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Fm3̄m (C) Fm3̄m (R) R3̄m (R)

1 La 4b
[
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1
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]
1 La 4b
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1
2 ,

1
2

]
1 La 3b

[
1
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1
2 ,

1
2

]
2 H 8c

[
1
2 ,

1
2 ,

1
2

]
2 H 8c

[
1
4 ,

1
4 ,

1
4

]
2 H 6c [ϵa,ϵa,ϵa][

3
4 ,

3
4 ,

3
4

] [
3
4 ,

3
4 ,

3
4

]
[−ϵa,−ϵa,−ϵa]

8 H 32f [ϵ,ϵ,ϵ] 8 H 32f [ϵ,ϵ,ϵ] 2 H 6c [ϵb,ϵb,ϵb]
[−ϵ,−ϵ,−ϵ] [−ϵ,−ϵ,−ϵ] [−ϵb,−ϵb,−ϵb]
[ϵ,ϵ,−ϵ] [−ϵ,−ϵ,3ϵ] 6 H 18h

[
−ϵx,−ϵx,3ϵy

]
[ϵ,−ϵ,ϵ] [−ϵ,3ϵ,−ϵ]

[
−ϵx,3ϵy ,−ϵx

]
[−ϵ,ϵ,ϵ] [3ϵ,−ϵ,−ϵ]

[
3ϵy ,−ϵx,−ϵx

]
[−ϵ,−ϵ,ϵ] [ϵ,ϵ,−3ϵ]

[
ϵx,ϵx,−3ϵy

]
[−ϵ,ϵ,−ϵ] [ϵ,−3ϵ,ϵ]

[
ϵx,−3ϵy ,ϵx

]
[ϵ,−ϵ,−ϵ] [−3ϵ,ϵ,ϵ]

[
−3ϵy ,ϵx,ϵx

]
Table 7.1 – The table summarizes the occupied Wyckoff positions for the LaH10
with Fm3̄m and R3̄m structures. The R3̄m symmetry structure is presented in its
rhombohedral description and the Fm3̄m symmetry structure is presented both in
its standard cubic (C) and rhombohedral (R) descriptions so to be compared with
the lower symmetry phase.

C2 and R3̄m phases of LaH10 has been analysed in the presence of quantum
ionic fluctuations. The latter have been treated through the use of the
stochastic self consistent harmonic approximation. Starting from the R3̄m
structure, to properly understand the effect of quantum fluctuations over
the complex phase stability landscape, it is necessarily to understand how to
model the structure and how to put it in relationship to the high symmetry
fcc phase with Fm3̄m symmetry. Table 7.1 reports the Wyckoff positions
for both Fm3̄m and R3̄m phases. The Wyckoff positions correspond to a
description of the atomic coordinates of the atoms using crystal coordinates
and highlight sites related by specific symmetry operation. Ultimately the
description of a system through Wyckoff positions is able to reduce the
number of degrees of freedom for the description of the system.

Each atomic position is given by a triad of numbers in crystal space as
[x,y,z]. The triad should be understood as an xa+yb+zlater atomic position
with a, b, c the lattice vectors. For the R3̄m phase in the rhombohedral
lattice (R), the three lattice vectors have the same length, and the angle



86 chapter 7 . phase stability of lah10

between them is the same (α = β = γ). The Fm3̄m phase is described both
in this rhombohedral description (R) and, for comparison, in the standard
cubic conventional lattice (C). In the Fm3̄m phase the lanthanum atom
is described by the 4b sites, two hydrogen atoms occupy the 8c sites, and
the remaining eight hydrogen atoms occupy the 32f sites. Most of the
atomic positions are fixed by symmetry, and overall the Fm3̄m structure
can be described by one single free parameter (ϵ) related to the 32f site.
In the R3̄m phase the lanthanum atom is locked in the 3b sites, two pairs
of hydrogen atoms occupy the 6c sites and the remaining six hydrogen
atoms occupy the 18h sites. In this case symmetry allows for more freedom
and overall the structure of the R3̄m phase can be described by four free
parameters (ϵa, ϵb, ϵx and ϵy) with the addition of the lattice vector and
the angle between them. For the C2 structure instead, the symmetry is
much lower and does not properly able to provide simplifications in the
understating of the structure.

To investigate the renormalization of the energy surface and the change
of phase stability. A quantum relaxation of the internal atomic coordinates
for both R3̄m and C2 phases was performed according to symmetry with the
lattice that yields a classical isotropic pressure of 150 GPa and vanishing
classical forces that is calculated from V (R). During the relaxation the
shape and size of the unit cell was maintained fixed. The parameters of the
two phases at the beginning of the relaxation are reported in table 7.2.

The behaviour of the diagonal components of the stress tensor during
the internal relaxation for the R3̄m and the C2 phases is shown in the
right panel of figure 7.3 and the left panel of figure 7.2. At the beginning
of the SSCHA relaxation, between step 0 and 1, the introduction of the
quantum fluctuations generate an increment in pressure of about 10 GPa.
The pressure then develops anisotropy with a relative difference of about
10 GPa between the different components during the relaxation and a
substantial variation of the atomic coordinates is generated during the same
dynamic. This can be observed in the left panel of figure 7.3 reporting the
percentage variation of the free Wycoff sites of the R3̄m phase. The relative
variation of the atomic components is of the order of 5% reaching up to
12% for the ϵb parameter.

The behavior of the R3̄m phonon spectra and the superconducting
properties was then investigated after the internal relaxation and is shown
in figure 7.4. The figure reports the phonons obtained after the SSCHA
relaxation obtained through the free energy phonons and by setting D(4) =
0, the harmonic phonons obtained before the SSCHA relaxation and the
value of the Eliashberg function α2F(ω) together with the electron-phonon
coupling parameter λ. In the SSCHA phonons, D(4) was set to zero since it
was observed it to have a negligible contribution. The analysis of the phonon
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Space group Lattice paramters Wyckoff positions
C2- LaH10 a = 6.154 Å La 4c [0.492,0.001,0.253]

b = 3.606 Å H 4c [0.140,0.246,−0.052]
c = 7.238 Å H 4c [0.098,0.241,0,450]
β = 55.714 ° H 4c [0.360,0.256,0.052]

H 4c [0.402,0.260,0.550]
H 4c [−0.098,0.001,−0.051]
H 4c [0.868,0.001,0.437]
H 4c [0.887,0.001,0.694]
H 4c [0.871,0.000,0.191]
H 4c [0.731,0.000,0.881]
H 4c [0.762,0.001,0.368]

R3̄m - LaH10 a = 3.545 Å La 3b [0.500,0.500,0.500]
γ = 62.342 ° H 6c [0.260,0.260,0.260]

H 6c [0.099,0.099,0.099]
H 18f [−0.107,−0.107,0.361]

Table 7.2 – The table reports the cell parameters and the Wyckoff sites and
parameters for the structures of the LaH10-R3̄m and the LaH10-C2 phases .

spectra reveals that the structure in the presence of quantum fluctuations
is stable in this state, where the pressure is anisotropic. At 160 GPa and
with a fixed rhombohedral angle of 62.3 ° the superconducting critical
temperature Tc is 222 K for the R3̄m phase, about 10% lower then the
reported Tc for the Fm3̄m phase [191]. The Tc was calculated with the
Allen-Dynes formula of equation (4.60) and with µ∗ = 0.1. This value of µ∗

was chosen by using the Allen-Dynes formula to reproduce the Tc of the
Fm3̄m phase calculated with anisotropic Migdal-Eliashberg and in presence
of the non approximated Coulomb interaction of reference [191]. The lower
value of Tc for the R3̄m phase suggests that undesired anisotropic stress
conditions in the diamond anvil cell can induce phase transitions. It is then
probable that Tc measurements with lower values around 200 K correspond
to distorted structures induced by anisotropic conditions of pressure. The
analysis for the phonon spectra for the C2 phase after the SSCHA relaxation
of the internal coordinates was not performed.

The SSCHA relaxation for both R3̄m and C2 phases was then continued
allowing this time both atomic coordinates and the lattice vectors to relax
according to symmetry and maintaining the pressure fixed to 160 GPa. The
behavior of the diagonal components of the stress tensor for the C2 phase
is reported in the right panel of figure 7.2 while the behavior of the lenght
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Figure 7.2 – The left panel reports the evolution of the quantum pressure for the
C2-LaH10 during the SSCHA relaxation of the internal coordinates. The zeroth
step in this panel represents the starting classical pressure before the relaxation.
The right panel reports the evolution of the quantum pressure during the total
SSCHA relaxaion where both cell and atomic position are left free to vary.

ϵb

ϵa

ϵx
ϵy

Figure 7.3 – The figure shows the relative difference in the displacement of the
atomic positions on the left panel and the evolution of the diagonal components of
the quantum stress tensor on the right panel for the R3̄m-LaH10. In the right panel
the pressure at the zeroth step is the classical pressure before of the relaxation.

of the lattice vectors, the angle between them, the pressure and the atomic
coordinates for the R3̄m phase are reported in figure 7.5. The systems
reach again a state with isotropic pressure after the relaxation. Observing
the parameters of the R3̄m phase of figure 7.5 it can be seen that lattice
parameter, cell vectors and atomic position evolve toward those expected
for the Fm3̄m phase. The angle between the lattice vector reaches 60° while
the Wyckoff parameters reported in 7.1 for the R3̄m phase evolve toward
those for the Fm3̄m phase in its rhombohedral representation. Specifically,
the value of ϵa reaches 0.25 while the values of ϵb, ϵx and ϵy converge to
the same value of 0.1205 becoming compatible with the 8c and 32f sites
of the Fm3̄m symmetry group. A final symmetry analysis for both R3̄m
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Figure 7.4 – The figure reports the phonon spectra for the initial structure of
the R3̄m-LaH10 before the SSCHA relaxation and the phonon spectra for the
final structure obtained after the relaxation of the internal atomic coordinates
performed through the SSCHA. On the right side are reported the Eliashberg
function and the electron phonon coupling parameter for the phonons related to
the SSCHA relaxation.

and C2 phases revealed their structures after the SSCHA relaxation were
converged to the Fm3̄m phase with an accuracy of about 0.024 and 0.014 Å
in the atomic positions, respectively.

Ultimately, the results of the relaxation suggest that the quantum energy
landscape is much simpler than the classical V (R) landscape and that the
ground state of LaH10 over the pressure range of interest is the Fm3̄m
phase with sodalite-type symmetry. The quantum effects are substantial,
reshaping the energy landscape and stabilizing structures by more than 60
meV per LaH10.
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a) b)

d)c)

ϵx

ϵb

ϵa

ϵy

Figure 7.5 – The figure shows the evolution of the structural parameters of the
R3̄m-LaH10 during the complete SSCHA relaxation. On the top and bottom left is
shown the evolution of the angle between the vectors and the lenght of the vectors
of the rhombohedral cell, respectively. On the top and bottom right are shown the
different components of the diagonal part of the stress tensor and the variation of
the wyckoff free parameters, respectively.



chapter 8

Structural stability and

superconductivity of

LaBH8

This chapter is dedicated to the study of the effect of quantum ionic fluctuations
over the phase stability of the Fm3̄m-LaBH8. Quantum fluctuations tend to
renormalize the crystal structure increasing the lowest pressure of stability
from 40 GPa to 77 GPa. Additionally the value of the superconducting critical
temperature is strongly enhanced through the structural renormalization induced
by quantum fluctuations.

8 .1 overview

The potential of first-principles calculations based on density-functional
theory (DFT) has shown to be crucial in guiding experimental efforts

[19, 51, 99]. Many of the experimental discoveries in the past years have
been in fact anticipated by DFT calculations [30–32, 34, 195]. Furthermore,
making use of DFT-based structural prediction methods, most of the binary
combinations of hydrogen and host atoms have been theoretically explored.
However, the stability of binary hydrides having a predicted superconduct-
ing critical temperature above 100 K has been limited to pressures above
100 GPa, with the exception of RbH12, calculated to be stable at 50 GPa
with a Tc of about 115 K [52].

91
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The efforts with first-principles calculations are now shifting towards
further expanding the list of predicted compounds attempting to explore
the energy landscape of ternary and quaternary hydrides [37–41]. Two
of the most prominent results are the prediction of a Tc of about 450 K
at 250 GPa for MgLi2H16 [39] and the possible metastability down to 40
GPa of LaBH8 in the Fm3̄m high-symmetry phase. This latter compound
exhibits a remarkable Tc of approximately 120 K [40, 43] at 50 GPa. This
suggests that with the right ternary combination of atoms it is possible to
synthesize phases at high pressures that could remain metastable down to
room pressure. Additionally, the same structural motifs of LaBH8, with a
similar critical temperature, have also been recently predicted for BaSiH8
and SrSiH8 [41]. This further confirms that high-Tc ternary hydrogen-rich
compounds may be (meta)stable at ambient pressure.

In most of the DFT-based calculations for hydrogen-based supercon-
ductors at high pressure, however, the ions in the system are treated as
classical particles. This means they are considered as a fixed point at the
local minima of the V (R) Born-Oppenheimer energy surface and the vibra-
tional phonon frequencies are determined from the second derivatives of
V (R) taken at the minimum. The vector R represents the position of all
atoms in the crystal. As anticipated in the theory part, for this specific class
of systems composed mainly of light hydrogen atoms, it is important to
have in mind that quantum ionic fluctuations cannot be neglected and can
significantly alter the structural, phononic, and superconducting properties.
This was in fact shown in chapter Chapter 7 on the C2 and R3̄m phases
of LaH10, where the landscape of phase stability at the lower pressures is
completely reshaped by quantum fluctuations. It seems that, as illustrated
by the LaH10 case, quantum effects tend to stabilize structures with a large
electron-phonon coupling and keep them stable at much lower pressures
than expected with standard calculations treating the ions classically.

In this chapter we present an investigation of the effect of quantum
ionic fluctuations in LaBH8 through ab initio DFT calculations and the use
of the stochastic self-consistent harmonic approximation (SSCHA) [61–
64]. Here, the thermodynamic stability and superconducting properties
of this compound are studied with the hope that quantum effects could
make LaBH8 metastable even at ambient pressure. The obtained results
show that quantum effects and the consequent anharmonicity enhance the
superconducting critical temperature, but, contrary to the case of LaH10,
tend to destabilize the Fm3̄m crystal structure, making it dynamically
unstable below approximately 77 GPa.
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8 .2 methods for the calculations

The DFT calculations presented in this chapter are performed with the
plane-wave Quantum ESPRESSO [180, 181] package using ultrasoft pseudo-
potentials with the Perdew-Burke-Ernzerhof [182] parametrization of the
exchange-correlation potential including 3 electrons of boron and 11 of
lanthanum in the valence. The cutoff for the wavefunctions and density are
chosen as 90 Ry and 900 Ry, respectively. The integration over the Brillouin
zone in the self-consistent calculations are performed with a first-order
Methfessel-Paxton smearing of 0.02 Ry broadening and a 30×30×30 k-point
grid. The electronic properties such as electron localization function (ELF)
[85, 196, 197] and Bader [183] charge are calculated using the Quantum
ESPRESSO post processing tools.

The harmonic phonon calculations are performed on a 6×6×6 phonon
q-point grid making use of density functional perturbation theory (DFPT)
[89]. The SSCHA calculations are performed on a 2×2×2 supercell con-
taining 80 atoms, which yielded D(F)(q) anharmonic dynamical matrices
in a commensurate 2×2×2 q-point grid. The difference between the har-
monic and anharmonic dynamical matrices are Fourier interpolated to a
finer 6×6×6 grid, and, by adding to the interpolated result the harmonic
dynamical matrices, D(F)(q) are obtained in the 6×6×6 grid. The SSCHA
minimization was converged using a 7×7×7 coarser k-point grid for the
DFT self-consistent calculations in the supercells needed to get the forces
for the stochastic minimization of the free energy. The SSCHA was run at 0
K.

The electron-phonon interaction is calculated both in the classical har-
monic and quantum anharmonic cases. In both cases a 40×40×40 k-point
grid was used to sample the electron-phonon matrix elements of equation
(3.29), with a Gaussian smearing of 0.008 Ry to approximate the Dirac
deltas in the equation, and 6×6×6 q-point grid. For the classical harmonic
case the electron-phonon interaction is calculated having the atoms sit-
ting at the positions R0 that minimize V (R), while in the anharmonic case
the atoms are placed at the positions Req obtained through the SSCHA
minimization.

The superconducting critical temperature is calculated by solving the
isotropic Migdal-Eliashberg equations with values of µ∗ between 0.1 and
0.15, with an energy cutoff of 1.5 eV for the Matsubara frequencies for all
pressures, which is around 5-10 times the maximum phonon frequency
in the material, respecting the validity of the µ∗ approximation for the
Coulomb matrix elements [13]. The Eliashberg function is calculated both at
the harmonic or anharmonic levels, respectively, by plugging into equation
(3.29) the harmonic phonon frequencies and polarization vectors or their
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Table 8.1 – Values of the hydrogen Wyckoff parameter for the classical structure
(xc), the shortest hydrogen-boron distance (dH−Bc ), and the related classical pres-
sure (Pc) at the lattice parameter a. For the same lattice parameters we report the
hydrogen Wyckoff parameter (xq), the shortest hydrogen-boron distance (dH−Bq ),
and the associated pressure obtained through equation (3.44) (Pq) calculated after
the quantum SSCHA structural relaxation.

a(Å) xc dH−Bc (Å) Pc(GPa) xq dH−Bq (Å) Pq(GPa)
5.577 0.1459 1.409 50 0.1489 1.438 58
5.427 0.1474 1.386 75 0.1498 1.408 84
5.311 0.1485 1.366 100 0.1506 1.385 110

anharmonic counterparts obtained diagonalizing D(F).

8 .3 structural and electronic properties of labh8

The face-centered cubic unit cell of the superconducting LaBH8 shown
in figure 8.1 respects a Fm3̄m symmetry, with the boron, lanthanum, and
hydrogen atoms located, respectively, at the 4a, 4b, and 32f Wyckoff sites.
While the La and B 4a and 4b sites are completely fixed by symmetry, the
H 32f site has a free parameter. A representative of the 32f site can be
written as [x,x,x]. Thus, the entire structure can be determined by only two
free parameters: the lattice parameter a and the x parameter related to the
hydrogen 32f sites.

A classical structural relaxation of the system, in which the x and a
parameters are determined from V (R), was performed at 50, 75, and 100
GPa. After the relaxation, the lattice parameter and the hydrogen Wyck-
off parameter were found to be, respectively, 5.577 Å and 0.14592 at 50
GPa, 5.427 Å and 0.1474 at 75 GPa, and 5.311 Å and 0.1485 at 100 GPa.
The boron-hydrogen shortest distance decreases with increasing pressure,
passing from a value of 1.409 Å at 50 GPa to 1.366 Å at 100 GPa. The struc-
tural relaxation was then repeated using the SSCHA for the same lattice
parameters obtained for the classical results. After the SSCHA relaxation,
the x hydrogen coordinates changed from 0.1459 to 0.1489 at a = 5.577 Å
(classical pressure of 50GPa), from 0.1474 to 0.1498 at a = 5.427 Å (classical
pressure of 75 GPa), and from 0.1485 to 0.1506 at a = 5.311 Å (classical
pressure of 100 GPa). Using equation (3.44) to compute the quantum pres-
sure, it was found that quantum effects add respectively 8 GPa, 9 GPa, and
10 GPa on top of the classical 50 GPa, 75 GPa, and 100 GPa pressures,
respectively, which is in line with the pressure exerted by ionic quantum
fluctuations in other hydrogen-rich compounds [161, 191], for instance,
in LaH10 as shown in Chapter 7. Table 8.1 summarizes the differences
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Figure 8.1 – (a) Conventional unit cell of Fm3̄m-LaBH8. (b) Cross section of the
ELF for the BH8 unit between values of 1 and 0.35. (c) The ELF isosurface of the
BH8 unit at a value of 0.69.

between the quantum and classical pressures and the x parameters for the
classical and SSCHA structural relaxations for different lattice parameters.
Overall, the introduction of quantum effects through the SSCHA generates
an increment in pressure and an expansion of the boron-hydrogen distance
for the same lattice parameter of about 2%. This behavior is attributed
to the extra space that the quantum atoms occupy with respect to their
classical counterparts.

An analysis of the electronic band structure is shown in Fig. 8.2. The
calculations were performed for both classical and SSCHA structures corre-
sponding to a lattice parameter of 5.577 Å, which corresponds to a classical
pressure of Pc = 50 GPa and a quantum pressure of Pq = 58 GPa. The results
show that the variation of the atomic Wyckoff parameter introduces just
small variations of the order of 150meV in the band structure around the
Fermi energy. However, these variations are not significant enough to alter
the overall shape of the bands. With respect to the DOS at the Fermi level,
quantum effects produce a slight increment of its value. The highest con-
tribution to the DOS comes from hydrogen and lanthanum atoms, which
contribute respectively a 67.5% and a 26.4% to the total DOS at the Fermi
level in the classical case, values that are slightly adjusted to 65% and 26.4%
with the inclusion of ionic quantum effects.

The analysis of the ELF shows how the LaBH8 system is composed by



96 chapter 8 . structural stability and superconductivity of labh8

    3

1.5

0

-1.5

3

-4.5

E-
ε F (e

V)

L                   Ⲅ                     X            K     W

Harmonic
SSCHA

0   0.5   1    1.5      2

Total
H
La
B

 DOS (eV-1/LaBH8)

Figure 8.2 – (Left panel) Electronic band structure with the atoms at the R0
classical harmonic sites and at the quantum Req sites after the SSCHA relaxation,
in both cases with a = 5.577 Å. (Right panel) Total DOS and its projections onto
different atoms calculated both at the classical harmonic positions (dotted lines)
and quantum SSCHA positions (solid lines).

BH8 units, where the boron atom is covalently bonded with eight hydrogen
atoms as shown in figure 8.1. The appearance of the covalent bonds is
identified by an elongation of the ELF isosurfaces around the hydrogen
atoms towards the boron atom. This specific pattern respects the appearance
of covalent bonds for hydrogen atoms [197]. Furthermore, the analysis of
the Bader charge shows the La atom donates 1.49 electrons to the BH8 unit,
a feature that suggests the existence of an ionic bond between the La atoms
and the BH8 units.

As a test, the behavior of the networking value presented in Chapter 6
(φ) was analyzed for the classical and quantum structures for a = 5.577 Å
(Pc = 50 GPa) and a = 5.311 Å (Pc = 100 GPa). To recall, the networking
value is the highest value of the ELF that creates an isosurface that expands
periodically in all the crystal. For the classical and quantum structures at
a = 5.577 Å, the respective values of φ are 0.28 and 0.30. The network is
constructed by cores of BH8 units, as shown in figure 8.1b, that weakly
bond with each other. According to the ELF classification in Chapter 5, the
bonding between adjacent BH8 units appears at values of ELF too low to
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Figure 8.3 – Phonon spectra calculated for the lattice parameters reported in
Table 8.1 at the harmonic and anharmonic (SSCHA) level. The harmonic phonon
energies are calculated with the hydrogen atoms at the [xc,xc,xc] sites. The SSCHA
anharmonic phonons are calculated from D(F) with the hydrogen atoms at the
[xq,xq,xq] sites. The introduction of quantum effects increases the pressure for the
same lattice parameter.

be considered as a weak covalent hydrogen-hydrogen system, which is the
type of bonding that yields the highest Tc’s. Combined with the fraction
of hydrogen atoms in the stoichiometry (Hf ) and the hydrogen fraction of
the DOS at the Fermi energy (HDOS), the networking value gives rise to an
expected value for the critical temperature of 60 K and 70 K for the classical
and quantum case, respectively, according to the Tc = (750φHfH

1/3
DOS−85) K

formula. At the smaller lattice parameter a = 5.311 Å for the classical and
quantum structure we obtained respectively values ofφ = 0.30 andφ = 0.32,
predicting critical temperatures of 70K and 80K, respectively. These results
fall inside the dark area of figure 6.1 confirming that the networking value
possesses predictive power. The networking value analysis suggests, thus,
that quantum fluctuations will enhance the critical temperature in Fm3̄m-
LaBH8.

8 .4 phonon properties and lattice instabilities of labh8

The phonon spectra calculated at the classical harmonic level with the
atoms at the R0 positions and at the quantum anharmonic level with atoms
at the Req positions are shown in figure 8.3. The calculations at the highest
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Figure 8.4 – Harmonic phonons with a = 5.427 Å with the H atoms at the quantum
positions [xq,xq,xq], together with the different contributions to the SSCHA free
energy Hessian D(F). The figure shows the spectra only at low energies to illustrate
better the effect of the different terms..

pressure with a = 5.311 Å show that the spectrum is characterized by three
distinctive regions separated with energy gaps. The acoustic modes have
a predominant La character. The group of phonon modes in the 50-150
meV energy range have both boron and hydrogen character. The bands
with dominant B behavior show a very weak dispersion, approximately at
57meV. The other modes in this range are dominated by hydrogen bond
bending modes. Higher energy bands, above ∼ 175 meV, mostly involve
hydrogen bond stretching vibrations. At larger lattice parameters, i.e. lower
pressure, the H bond-bending modes soften, and a mode with irreducible
representation Γ +

5 , also labeled as T2g , becomes unstable below Pc = 45 GPa
in the harmonic approximation.

The quantum expansion of the BH8 unit produces dramatic effects on
the phonon energies, mainly introducing a large overall softening of all
hydrogen-character phonon modes. La and B character modes are, on the
contrary, barely affected by quantum anharmonic effects, even if hydrogen
bond-bending modes get mixed with the lanthanum acoustic modes at low
pressures. The main effect of quantum fluctuations is that the structure
becomes unstable at higher pressures than in the classical calculations.
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While the classical structure is stable for a = 5.577 Å (Pc = 50 GPa), D(F)

has large imaginary eigenvalues at different points of the Brillouin zone
for the same lattice parameter (Pq = 58 GPa). As shown in figure 8.4, it is
remarkable that in the calculation of D(F) the D(4) term in equation (3.43)
has a large impact and cannot be neglected, contrary to what happens in
other hydrogen-based superconductors [130, 191, 198]. This is specially
true around the pressures at which the instabilities appear. It is also worth
mentioning that, even if the harmonic phonons with a = 5.427 Å are stable if
the H atoms occupy the classical [xc,xc,xc] sites (see Fig. 8.3), the structure
is moved to a saddle point of the Born-Oppenheimer energy surface when
the H atoms sit instead at the [xq,xq,xq] sites, which is illustrated by the
imaginary frequencies obtained at the harmonic level for this position (see
Fig. 8.4).

In the calculations including quantum anharmonic effects, Fm3̄m-LaBH8
becomes unstable at a pressure of approximately 77 GPa. The instability is
led by an optical phonon mode at the L point with L−2 symmetry, associated
with a bond bending oscillation of the H atoms around the boron atom.
The Γ +

5 mode, which describes a rhomboidal-like distortion of the BH8
unit, becomes unstable soon after at 70 GPa. At lower pressures, the whole
branch becomes unstable pointing towards a clear quantum instability of
the BH8 unit. In the work by Di Cataldo et al. [40] the classical instability of
the Γ +

5 mode was estimated at 35 GPa, which is consistent with the 45 GPa
pressure obtained in this study, and that anharmonic effects only increased
this pressure by 5 GPa. In the calculations of this study, however, quantum
effects increase the destabilization pressure by 32GPa. The difference is that
in the previous calculation anharmonicity was considered neglecting its
effect on the atomic positions and considering exclusively the anharmonic
self-interacting terms of the Γ +

5 mode. Our results show that anharmonicity
cannot be treated in such a simplistic model, as the latter cannot describe
the impact of anharmonicity on the whole phonon spectrum as well as the
ionic positions.

Starting by the structure obtained after the SSCHA relaxation with the
lattice parameter 5.577 Å, the distortion patterns introduced by the Γ +

5 and
L−2 modes were further studied by deforming the atomic structure according
to the corresponding eigenvectors. The deformation was performed without
changing the shape and size of the unit cell and internal atomic coordinates
where deformed until reaching a local energy minimum as shown in figure
8.5. For the case of the triply degenerate Γ +

5 mode, we show the displace-
ment pattern that yields the lowest-energy local minimum. There are four
equivalent L points in the Brillouin zone and each of them has associated
a L−2 mode. The L−2 mode yielding the lowest energy local minimum is the
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one reported in figure 8.5. The deformation of the atomic coordinate obeys
the following form:

Xαi,p = Xα0i,p + δbαµi,p, (8.1)

where Xαi,p is the atomic position of atom i in the unit cell p along Cartesian
direction α, δ is an arbitrary deformation parameter, and bαµi,p is a real space
polarization vector of the form

bαµi,p =

√
M0

NpMi
eiq·Rpϵαµi(q). (8.2)

Here Np is the number of unit cells commensurate with the wave number q,
Rp is a unit cell lattice vector, and M0 is a mass renormalization parameter
obtained by having the vectors bαµi,p satisfy the condition∑

iαp

Mi(b
α
µi,p)∗bαµ′i,p =M0δµµ′ . (8.3)

After reaching the minimum energy given by the deformation, the structure
was further relaxed with a complete classical cell relaxation. The latter
was performed by letting both atoms and cell relax with a fixed pressure of
50 GPa. For both distortions it was found the BH8 unit dissociates into a
BH6 unit. For the distortion pattern that started with the Γ +

5 mode the two
remaining hydrogen atoms sit in an interstitial site, while for the structure
distorted initially with the L−2 mode they merge and form a H2 molecule.
The enthalpy of the starting Fm3̄m classical structure, with a = 5.577 and
the atoms at positions xc = 0.1459 (Pc = 50 GPa), was compared to the
enthalpy of the final relaxed structure. It was found that the structure
obtained after the relaxation following Γ +

5 is 0.8 eV/LaBH8 lower in enthalpy,
while the structure obtained following L−2 is 1.2 eV/LaBH8 lower.

The obtained results suggest that at low pressures the high-symmetry
Fm3̄m classical structure sits in a very shallow local minimum, which
is much higher in energy than other distorted structures. Although the
system possesses a high symmetry, the shape of the potential V (R) related to
deformations of the BH8 unit is not at all symmetric, and the ionic quantum
fluctuations are enough to take the system out of the local minimum and
to destabilize the system towards decomposition. This behavior is quite
interesting when compared with the results of Chapter 7. The results
of the introduction of quantum fluctuations generate complete opposite
effects, even if both structure exhibit the same space group symmetry. The
difference between the two lies in the specific of the bonding patterns of the
structure and will be further investigated in the next chapter. These results
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Figure 8.5 – Born-Oppenheimer energy variation occurring along the distortion
patterns introduced by the Γ +

5 and the L−2 modes starting with the H atoms at the
[xq,xq,xq] Wyckoff positions obtained after the SSCHA structural relaxation at
a = 5.577 Å. The LaBH8 unit cells before the distortion, at the minimum of the
potential energy curve, and after a classical cell relaxation at fixed Pc = 50 GPa are
also shown in each case.

highlight the importance of performing quantum structural relaxations in
superconducting hydrogen-rich compounds, including in the calculations
the kinetic energy of the ions. Generally speaking, it is reasonable to expect
that ionic quantum effects will also tend to destabilize other low pressure
metastable phases composed by isolated covalent bonded units as in BaSiH8
and SrSiH8.

8 .5 superconducting properties of labh8

Despite quantum effects destabilize Fm3̄m at higher pressures than ex-
pected classically, the SSCHA calculations suggest it is metastable above
77 GPa (quantum pressure). Thus, it is reasonable to investigate its super-
conducting properties, monitoring the impact of quantum effects and an-
harmonicity on them. The results for Tc obtained solving isotropic Migdal-
Eliashberg equations are shown in figure 8.6. The isotropic approximation
is justified, as previous results [40] show a good agreement between the
critical temperature obtained with the isotropic and anisotropic Migdal-
Elihasberg equations. Indeed, the results obtained in this study at the
classical harmonic level are in rather good agreement with those reported
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Figure 8.6 – Superconducting critical temperatures obtained solving the isotropic
Migdal-Eliashberg equations with values of µ∗ of 0.1 and 0.15 at the classical
harmonic level and quantum anharmonic level, the latter obtained with the SSCHA
method. The pressure reported in the graph for the classical result is the classical
pressure Pc, while the pressure in the SSCHA results is the quantum pressure Pq.
The results are compared to the previous calculations by Di Cataldo et al. [40] and
Liang et al. [43]. The inset shows the pressure dependence of the electron-phonon
coupling λ and ωlog . The right panels show the α2F(ω) function together with the
integrated electron-phonon coupling constant λ(ω) = 2

∫ ω
0 dω′α2F(ω′)/ω′ .

previously [40, 43]. The critical temperature was also calculated with the
Allen-Dynes equation (4.60), yielding a value in rather good agreement
with the Migdal-Eliashberg result, only 5-15 K lower.

The introduction of the structural and phonon renormalization through
the SSCHA has a strong effect on the superconducting properties, contrary
to previous estimates in which a negligible impact was claimed [40]. Anhar-
monicity increases the electron-phonon coupling and reduces the average
logarithmic frequency ωlog . The increase of λ imposed by quantum anhar-
monic effects is enough to induce a large enhancement of the predicted
Tc. Looking at α2F(ω), it is possible to notice that the high value of λ at
84 GPa in the SSCHA is mostly related to the anharmonic softening of the
lower optical branches, specifically of the phonon branch containing the Γ +

5
and L−2 modes, which make the electron-phonon coupling soar due to the
proximity of the system to a structural instability. In general, the overall
increment of λ, and consequently Tc, is also due to the quantum weakening
of the BH8 bonds and the consequent softening of the hydrogen-character
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phonon modes. This effect is correlated with an overall red-shift of α2F(ω).
The reason why in previous calculations [40] a weak anharmonic renor-

malization of Tc was claimed is because the impact of anharmonicity was
only estimated for the Γ +

5 mode, exclusively considering the interaction
of this mode with itself, and because the method used was not able to
capture the structural expansion due to quantum fluctuations. In fact, the
expansion of the boron-hydrogen bonds pushes the system away from the
local minimum of V (R) toward a zone where the potential is much more
anharmonic.





chapter 9

General trends for

quantum ionic

fluctuations

This chapter discusses the effect related to the introduction of quantum ionic
fluctuations over the classical phase stability. Here all data of the current litera-
ture where quantum fluctuations are treated through the SSCHA are collected.
The results obtained highlight that there are two types of effects related to the
introduction of quantum fluctuations. Whenever the structure is left unaltered,
the systems experiences a reduction in the value of Tc. The contrary is expected
whenever quantum ionic fluctuations introduce structural renormalizations.

9 .1 overview

As shown in the two previous chapters, atomic quantum fluctuations
around the minima of V (R) cannot be neglected in the case of hydrogen

rich compounds, and can significantly alter their structural, phononic,
and superconducting properties. The results greatly differ from standard
"classical" calculations and, without the inclusion of quantum effects, the
computational predictions are not always helpful in guiding experiments.

Through the analysis of the structural stability of theR3̄m andC2 phases
of LaH10, it was shown that the introduction of quantum ionic fluctuations
tend to smoothen the potential surface of the Born-Oppenheimer potential

105
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Figure 9.1 – The figure shows the unit cell of the structures analysed in this
work. The upper panel refers to the structures with highly symmetric bonding
patterns for which the structure is not altered by the introduction of quantum
effects. The lower panel shows the structures mainly composed by molecular
hydrogen, isolated bonded units or distorted phases which are renormalized by
the introduction of quantum fluctuations. The black spheres represent the host
atoms while red spheres are the hydrogen atoms. In the LaBH8 structure the grey
spheres represent the boron atoms.

greatly simplifying the landscape of phase stability. Furthermore, for the
LaH10 system, quantum fluctuations tend to stabilize the structure and
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extend the stability down to lower pressures. All different phases merge
into the high symmetric Fm3̄m phase which remains stable down to at
least 130 GPa in presence of quantum ionic fluctuations, while in the
classical case, the instability appears at 230 GPa. Additionally, comparing
the classical and quantum results available in the literature, quantum effects
reduce the value of Tc for the Fm3̄m phase. The case of the LaBH8 is instead
different. Quantum effects tend to destabilize the system increasing the
lowest pressure of stability from 40 to 77 GPa, and introduce structural
renormalizations resulting in an enhancement of Tc. Although both LaH10
and LaBH8 are part of the same symmetry group, the effects introduced
by the quantum ionic fluctuations are fundamentally opposite. One would
then wonder if there is or not a set of specific trends to be expected when
introducing the effect of quantum fluctuations.

At this point in time, the Stochastic Self Consistent Harmonic Approxi-
mation (SSCHA), introduced in Section 3.6, has become a well developed
method able to treat in a complete manner the effects of quantum ionic fluc-
tuations. Additionally, the set of compounds analyzed with the inclusion of
quantum effects is slowly growing. This allows to attempt deriving general
expected trends related to the addition of quantum ionic fluctuations over
the conventional structural prediction results.

This chapter is dedicated to an analysis of general trends related to all
systems where the quantum ionic fluctuations have been treated through
the SSCHA. Here, the general effect that quantum fluctuations introduce,
with respect to the harmonic "classical" results, are investigated. This in-
vestigation is able to reveal that quantum ionic fluctuations have mainly
two effects: whenever their introduction leaves the structure unaltered,
the system experiences a reduction in the value of Tc and, contrarily, an
increment in Tc is expected whenever the quantum ionic fluctuations in-
troduce structural renormalizations. Furthermore, the analysis suggests
the possibility to discern in advance which of the two scenarios is likely to
occur through the specific features related to the bonding properties of the
systems.

9 .2 data and methods

The analysis performed here consists in comparing the structural and su-
perconducting properties for classical calculations, where the atoms sit
at the local minima of the Born-Oppenheimer energy surface V (R), and
the calculations in presence of quantum fluctuations. The comparison was
performed for all materials for which SSCHA calculations are available in
the literature. One generic pressure per compound was considered. The
materials in the analysis include PdH [60, 61] at room pressure; PtH at 100
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Figure 9.2 – The figure shows the Eliashberg function α2F(ω) as a function of the
energy of the phonon frequency and the value of the electron-phonon coupling
parameter λ. In grey and red are respectively the classical calculations and the
calculations in presence of quantum fluctuations treated through the SSCHA. The
upper panel refers to the systems where quantum fluctuations do not introduce
significant structural renormalizations. The lower panel refers instead to those
systems where quantum fluctuations strongly alter the crystal structure.

GPa [61]; AlH3 at 135 GPa [130]; two hydrogen phases, I41/amd at 500
Gpa [35], and Cmca4̄ at 450 Gpa [179]; YH6 at 150 GPa [49]; LaH10 at 250
GPa [191]; H3S-R3m at 130 GPa, compared with H3S-Im3̄m at 130 GPa;
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Figure 9.3 – The figure shows the value of Tc as a function of the integral of the
Eliashberg function, the electron phonon coupling constant λ, and the logarith-
mic average of the phonon frequency ωlog , in the left, middle and right panels,
respectively. In black and red are reported respectively the results for the classical
calculations and the calculations including quantum fluctuations.

H3S-Im3̄m at 250 GPa [161, 199]; ScH6-Cmcm at 100 GPa, compared with
ScH6-P 63/mmc 100 GPa; and ScH6-P 63/mmc 140 GPa; [198] and the results
of LaBH8 at 100 Gpa from Chapter 8. The unit cell for all the compounds is
reported in figure 9.1. Although for LaH10 the presence of a C2 and a R3̄m
phases was mentioned in Chapter 7, no comparison was performed in here
for these two phases with respect to the quantum Fm3̄m phase, since no
stable harmonic phonons were found for both the C2 and the R3̄m.

First the classical calculations related to the structure at the local minima
of V (R) were performed at the reference pressure. Subsequently, the SSCHA
calculations were performed using as starting point the previously obtained
classical structure. A structural relaxation was performed through the
SSCHA maintaining the cell fixed to the classical results but allowing the
atoms to move freely according to symmetry. Each classical structure was
then compared with the structure obtained through the SSCHA relaxation.
This procedure results valid because most of the structure in the dataset
are highly symmetric and with a cubic cell. Thus the comparison is made
between structures with the same volume. This procedure was performed
for all systems but ScH6-Cmcm.

The data for the ScH6-Cmcm phase at 100 GPa was not retrieved from
the literature but was obtained performing additional calculations for the
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Figure 9.4 – The figure shows the value of Tc as a function of the integral of
Eliashberg function. In black and red are reported respectively the results for
the classical calculations and the calculations including quantum fluctuations.
The left panel reports the results for the systems where quantum fluctuations do
not introduce significant structural renormalizations. The right panel reports the
results for the systems where quantum fluctuations significantly alter the crystal
structure.

purpose of this study. The phonon specta for this structure at 100 GPa
is shown in Appendix A.3. The starting point for the calculation was
obtained considering the phonon spectra of the ScH6-P 63/mmc phase at
100 GPa [198]. At this pressure the system becomes unstable in the classical
approximation due to the imaginary frequency of a degenerate mode in Γ

with symmetry E2g . The structure of the ScH6-P 63/mmc phase at 100 GPa
was first displaced according to the eigenvectors related to the imaginary
Γ mode using equations ((8.1)-(8.3)), with a procedure consistent with the
one used in Chapter 8 for the LaBH8 structure. An additional complete
structural relaxation, where both atoms and cell parameters were allowed
to relax, was later performed starting from the lowest local mimima related
to the Γ degenerate mode. The resulting structure after the relaxation is
shown in the lower panel of figure 9.1. A symmetry analysis revealed the
structure to be part of the Cmcm group with a precision of about 0.004
Å in the atomic coordinates. This structure was then confronted with the
SSCHA calculations for the ScH6-P 63/mmc phase at a classical pressure of
100 GPa. In this case then, the comparison between the two structures is
not performed at the same volume.
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The DFT calculations for the ScH6-Cmcm structure are performed with
the plane-wave Quantum ESPRESSO [180, 181] package using ultrasoft
pseudo-potentials with the Perdew-Burke-Ernzerhof [182] parametriza-
tion of the exchange-correlation potential including 11 electrons of scan-
dium in the valence. The cutoff for the wavefunctions and density are
chosen as 80 Ry and 800 Ry, respectively. The integration over the Brillouin
zone in the self-consistent calculations are performed with a first-order
Methfessel-Paxton smearing of 0.02 Ry broadening and a 30×30×23 k-point
grid. The harmonic phonon calculations are performed on a 6×6×4 phonon
q-point grid making use of density functional perturbation theory [89]. The
electron-phonon interaction is calculated on a 40×40×28 k-point grid, with
a Gaussian smearing of 0.008 Ry to approximate the Dirac deltas in equation
(3.29), and 6×6×4 q-point grid. The superconducting critical temperature is
calculated by solving the Allen-Dynes equations with values of µ∗ between
0.1 and 0.15 consistently with the study performed for the ScH6-P 63/mmc
phase [198]. The Tc for the system is 20 K and 9 K respectively for µ∗ of 0.1
and 0.15 with a value of λ and ωlog of 0.558 and 94.14meV.

9 .3 effects of quantum fluctuations over the com-

pounds

The introduction of quantum fluctuations generates a variety of different
effects on the structural and superconducting properties of the compounds.
For PdH, PtH, AlH3, atomic hydrogen I41/amd, and YH6, due to the high
symmetry of the materials where all atoms are locked in place, quantum
fluctuations do not introduce structural renormalizations. However, the
results show that quantum fluctuations tend to renormalize the phonon
spectra and, for PdH, PtH, AlH3, and YH6, there is a blue shift of the phonon
spectra which is more pronounced for the lower optical branches. The lower
optical branches carrying a substantial part of the electron phonon inter-
action for these compounds. This can be more clearly seen in figure 9.2
reporting the values of the Eliashberg function α2F(ω) and the electron
phonon coupling constant λ. Transitioning from the classical to quantum
results, the value of Tc for these compounds decreases from 47 to 5 K for
PdH, from 14.5 to 0.4 K for PtH, from 13.7 to 3 K for AlH3, and from 251
to 226 for YH6. For the atomic hydrogen I41/amd quantum fluctuations
produce a softening of the acoustic phonon branches but still lift the optical
phonon branches. For this systems there seems not to be substantial varia-
tion in the value of λ, as can be seen from figure 9.2, and the value of the Tc
varies from 320 to 300 K with the introduction of quantum fluctuations.

In the classical case, the H3S structure exhibits an Im3̄m symmetry
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above 175 GPa, transitioning to a distorted R3m phase below that pressure.
Both structures are shown in figure 9.1. The introduction of quantum
fluctuations extend the stability of the Im3̄m phase to 103 GPa [161]. Com-
paring the Im3̄m phase in the classical and quantum cases at 250 GPa, the
introduction of quantum fluctuations does not alter the structure due to
the high symmetry of the system, forcing all atoms to be locked in place.
The transition between the classical R3m, and the quantum Im3̄m phases
at 130 GPa symmetrizes the hydrogen-sulphur bond increasing its distance
from 1.46 to 1.56 Å. For the Im3̄m phase at 250 GPa, the introduction of
quantum fluctuations creates a blue shift of the phonon spectra moving the
contribution of α2F(ω) coming from these frequencies to higher values. In
turn, this reduces the value of λ as can be seen in figure 9.2 and decreases
the value of Tc from 226 K in the classical case to 190 K in the quantum case.
In the transition between the classical R3m phase and the more symmetri-
cal Im3̄m phase at 130 GPa, the structural variations induced by quantum
effects soften the phonon specra, shifting the contributions to α2F(ω) at
lower frequencies. This, in contrast with the high pressure case, produces an
increment in λ which increases the Tc from 175 to 214 K from the classical
to the quantum case.

For LaH10 the introduction of quantum fluctuations is able to alter the
atomic positions. As shown in Chapter 7, the structure of LaH10 is not
completely fixed by symmetry, but it can be described by a single free
parameter related to the 32f Wyckoff site occupied by the hydrogen atoms.
After the SSCHA relaxation however, it was observed that the variation in
the hydrogen atomic positions are negligible. Ultimately, for this structure
quantum fluctuations are not able to introduce significant structural renor-
malizations. Similarly to the compounds previously described, quantum
fluctuations introduce a blue shift of the phonon spectra with consequent
reduction of α2F(ω) and λ, as it can bee seen in figure 9.2. For this com-
pound the value of Tc is reduced from 260 to 220 K with the introduction
of quantum fluctuations.

The ScH6 and molecular hydrogen Cmca4̄ structures shown in figure
9.1 are composed by dislocated molecular hydrogen units which are then
weakly bonded between each other. For the ScH6-P 63/mmc phase at 140
GPa, the length of the hydrogen molecules varies from 1.02 to 1.07 Å with
the introduction of quantum effects, while, for the molecular hydrogen
Cmca4̄ phase, the variation is from 0.78218 to 0.83236 Å. At 100 GPa the
classical ScH6-P 63/mmc phase undergoes a transition toward a distorted
Cmcm phase. The latter can be seen in figure 9.1 and retains many similari-
ties to the ScH6-P 63/mmc. In the ScH6-Cmcm phase there is a breaking of
the symmetry in the length of the various pairs of molecular hydrogen. The
introduction of quantum fluctuations however, restores this symmetry and
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recovers the ScH6-P 63/mmc phase which is sustained till lower pressures.
At 100 GPa, the length of the various pairs of molecular hydrogen for the
classical ScH6-Cmcm phase is 1.28, 0.95 and 0.95 Å, which, with the intro-
duction of quantum fluctuations, merge to 1.08 Å. For all these systems,
the increment in the inter-atomic distances weakens the bonds between
atoms and introduces a red shift of the phonon spectra, as can be seen in
9.2. These variations produce an overall increment of the value of α2F(ω),
and consequently λ, which are particularly substantial for the transition
between the ScH6 Cmcm and P 63/mmc phases, and the molecular hydrogen
Cmca4̄ phase. Consequently, there is an increment in Tc from 20 to 108 K
for the transition from ScH6 Cmcm to P 63/mmc phases, from 88 to 99 K for
the internal structural variations in the ScH6-P 63/mmc phase at 140 GPa,
and from 109 to 258 K for the molecular hydrogen Cmca4̄.

Finally, in the case of LaBH8, which has already been described at length
in Chapter 8, quantum fluctuations produce an increment of the boron-
hydrogen bonding distance. As a result, there is a general red shift of the
phonon spectra which produces an increment of the Tc from 97 to 143
at 100 GPa. However, there is also an increment of the lower pressure of
stability from 40 GPa in the classical case to 77 GPa in presence of quantum
fluctuation.

9 .4 trends for quantum ionic fluctuations

Looking at figure 9.2, it can be noticed that the introduction of quantum
fluctuations does not only produce a variation of the Eliashberg function
α2F(ω) due to the shift of the phonons, but also introduces a variation in
the total magnitude of its value. To better investigate this idea, attention
was invested over the total integral of the Eliashberg function calculated as

α2F =
∫ ∞

0
α2F(ω)dω. (9.1)

This was done in order to understand the various differences introduced by
the quantum ionic fluctuations in the systems. Figure 9.3 shows the value
of Tc as a function of α2F for both classical and quantum calculations of all
the compounds previously presented. Surprisingly, the latter exhibits an
extraordinary correlation with the former, especially when compared with
λ and ωlog presented in the same figure. This suggests α2F to be a good
observable for this analysis, since it does not depend by the choice of µ∗ in
contrast to Tc, and it can capture the effects that the variations of the phonon
spectra, due to quantum fluctuations, induce over the superconducting
critical temperature.
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Through the use of this quantity, the different kind of behaviors pre-
viously described can be divided in two classes. The first class is related
to those systems for which quantum fluctuations do not alter the crystal
structure. This is the case of PdH, PtH, AlH3, H3S-Im3̄m at 250 GPa, YH6,
atomic hydrogen I41/amd and interestingly also LaH10. The left panel of
figure 9.4 shows the variations between the classical and quantum values of
Tc as a function of α2F. The figures suggest that the value of Tc is not only
affected by the variation in energy of the phonon frequency, but that the
changes in Tc come accompanied with a strong renormalization of the total
integral of α2F. Overall, these results show that the renormalization to the
electron phonon coupling due to quantum fluctuations is significant, and
suggest that in the cases in which the crystal structure is not altered by the
"extra" space occupied by the atoms, the value of Tc will always decrease.
For these systems, the "extra" space, arising from the quantum fluctuations,
tends to stabilize the structure, and it leads to a blue shift of the phonon
spectra. This feature is pronounced for the lower optical branches. The
fact that LaH10 at 260 GPa is also part of this class suggests that the ab-
sence of structural renormalizations is not just due to the high symmetry
of the atomic positions, but is more related to the symmetric properties of
the Born-Oppenheimer potential V (R). These highly symmetric states are
achieved through very symmetric bonding patterns, as can be observed in
the upper panel of figure 9.1.

The second class contains all systems for which the atomic structure
is instead modified by the introduction of quantum fluctuations. This is
the case for the molecular hydrogen Cmca4̄, ScH6-P 63/mmc at 140 GPa,
the transition between ScH6-Cmcm and ScH6-P 63/mmc at 100 GPa, the
transition between H3S-R3m and H3S-Im3̄m at 130 GPa, and LaBH8. The
values of Tc as a function of α2F for both classical and quantum structure
of this class are shown in the right panel of figure 9.4. The results show
that the increment in the electron-phonon coupling introduced by quantum
effects is absolutely non negligible. Overall, the value of Tc increases in all
those systems in which quantum fluctuations introduce a renormalization
of the crystal structure. In these cases, the systems move away from the
local minima of V (R) and sit in zones where the anharmonic contributions
are more significant. This justifies the electron-phonon coupling seen in the
right panel of figure 9.4. In addition, the renormalization of the structure
causes a softening of the inter-atomic bonds that lead to an overall red
shift of the phonon spectra. This effect leads to a further increment of the
electron-phonon coupling. Interestingly, all these systems are composed
by hydrogen molecules as in the case of ScH6 or hydrogen Cmca4̄, slight
deformed high symmetry crystals as H3S-R3m, or bonded units which are
isolated from one another as in the case of LaBH8.
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In order to investigate if there is a correlation between the magnitude
of the increment of α2F and the variation of the atomic positions, the
behavior of the percentage variation in α2F as a function of the mean
atomic displacement (∆X) between classical and quantum calculations was
investigated. In this case, ∆X is calculated as

∆X =
NA∑
a

| Xqa −Xca |
NA

, (9.2)

where NA represents the number of atoms in the unit cell, Xca is the position
of the atoms at the local minimum of V (R) and Xqa represent the atomic
positions after the SSCHA relaxation in presence of quantum fluctuations.
The results of this analysis are reported in figure 9.5, and highlight that
even if the variations in ∆X are small, they introduce extreme variations in
the value of α2F. Furthermore, this effect increases with the increment of
∆X. These different behaviour between the two classes allows in foresight
to distinguish which effect will the introduction of quantum fluctuations
have on Tc.

As final note it is important to mention that the current available calcu-
lation suggest that the introduction of quantum fluctuations do not neces-
sarily extend the range of stability for the compounds to lower pressures.
Although the stability of the system is sustained to lower pressures, thanks
to the introduction of quantum fluctuations, for most of the compounds
in this study, the case of LaBH8, where quantum fluctuations destabilize
the system at a pressure 77 GPa, which is higher then the classical case,
disproves the presence of a consistent pattern. The relative metastability of
the compound with respect to other phases may play a crucial role in order
to understand whether or not quantum fluctuations are capable to sustain
the structural stability down to lower pressures. Quantum fluctuations
tend to smoothen the surface of the Born-Oppenheimer potential as seen in
the case of LaH10, and therefore allow the system to escape shallow energy
traps. This suggest that the introduction of quantum effect will destabilize
the system at higher pressures if different close minima of V (R) are too
far apart in energy and separated by shallow energy humps. Contrarily, if
different phases sit close in energy, the introduction of quantum effects will
allow the system to tunnel between the different phases. As a result, this
will create a mixed equilibrium state as in the case of LaH10 [191] and H3S
[161] that will be sustained to lower pressure until the separation between
the two metastable phases becomes too high or the system dissociates. Here
comes an interesting compromise: by choosing isolated molecules inter-
laced by chemical precompressing atoms, one could hope that at moderate
and low pressures the introductions of quantum effects will expand the
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Figure 9.5 – The figure shows the percentage variation of the integral of α2F(ω)
between quantum and classical calculations in function of the mean atomic dis-
placement of equation (9.2). The data reported in the figure is related to all the
system for which crystal symmetry allow the structure to be renormalized by
quantum fluctuations.

length of the bonds increasing Tc. However, this comes at the cost of a pos-
sible decomposition to higher pressures. In contrast, systems with highly
symmetric bonding patterns might have their pressure range extended to
lower values thanks to quantum effects, but as a consequence, the value of
their Tc will be decreased.
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Conclusions

This thesis exposes an extended analysis related to the properties of
hydrogen rich superconductors. The analysis ranges from the general in-

vestigation of their electronic and structural trends to the effect of quantum
ionic fluctuations over the phase stability and superconductivity.

Part II presents a classification of the structural, bonding and electronic
properties for a large set of theoretically predicted hydrogen rich super-
conductors. In this analysis, the systems are divided into different families
based on the specifics of their local bonding properties. The analysis high-
lights with clarity that the highest critical temperatures are achieved by
systems possessing a high number of hydrogen atoms, high density of states,
and dislocated weak covalent bonds. The highest critical temperatures
appear between groups 1 to 5 of the periodic table, where bonds are mainly
driven by covalent hydrogen-hydrogen interactions, and 13 to 16, where
covalent bonds are predominantly between hydrogen and host atoms. A
further analysis of the delocalization properties for the same set of hy-
drogen rich materials, performed with the use of the electron localization
function, revealed that these systems show localized electrons, but with a
high probability of being coupled. This led to the identification of the the
networking value φ. This variable proves to be able to capture effectively
how sensitive the electronic cloud is on average to lattice vibrations, and
exhibits a good correlation with the critical temperature Tc. The networking
value φ offers a simple way of screening hydrogen-based superconductors
since it simply requires the analysis of ELF isosurfaces to be computed. The
latter can be easily obtained post-processing DFT ground state calculations.
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Furthermore, the networking value opens new avenues for the discovery of
new hydrogen rich systems. The introduction of automated codes for the
calculation of the networking value, combined with structural prediction
methods, will speed up structural prediction by avoiding the calculation of
the phonon properties of these compounds, and will allow to chose with
foresight for which compounds it is worth to deepen the computational
effort. Structural prediction methods could also be employed in order to
search for structures that can maximize the ability of networking between
atoms, according to the definition proposed with the networking value. Ad-
ditionally, with the ever growing list of new predictions, linear regression
methods could be used on an expanded dataset in order to sharpen the
accuracy of prediction of the networking value, or perhaps used to identify
more complex type of networking patterns to improve its definition.

Part III presents instead a general investigation of the effects of quantum
ionic fluctuations over the phase stability and superconductivity of hydro-
gen rich compounds at high pressures. The investigation was performed
using the stochastic self consistent harmonic approximation (SSCHA). The
SSCHA allows a complete treatment of the quantum ionic fluctuations with
the inclusion of the full Born-Oppenheimer potential surface, with the only
approximation related to Gaussian ionic wave functions. Particular atten-
tion is invested over the properties of LaH10 and LaBH8. In regard to LaH10,
it is shown how quantum effects are of capital importance in determining
the ground state structure of the compound. They greatly simplify the land-
scape of structural stability, as shown by the natural evolution of the R3̄m
and C2 phases towards the highly symmetric Fm3̄m phase. Furthermore,
the stability of the Fm3̄m phase is sustained to much lower pressures with
respect to the one obtained through classical Born-Oppenheimer results.
For the LaBH8 instead, it is shown that quantum fluctuations renormalize
the distance of the hydrogen-boron bonds critically affecting the phase
stability and superconducting properties. In this case, however, quantum
fluctuations produce the opposite effect when compared with LaH10. They
destabilize the Fm3̄m-LaBH8 structure at much higher pressures while
notably increasing the value of the critical temperature. The differences
between the behavior of quantum effects on the two compounds sparked in-
terest in performing a further generalized analysis on how the introduction
of quantum fluctuations alter the result of the classical Born-Oppenheimer
calculations. This is done by taking into consideration all systems for which
quantum fluctuations have been treated through the SSCHA in the current
state of literature. The obtained results show the presence of two main
effects. On one hand quantum fluctuations introduce a renormalization
of the crystal structure whenever the systems are composed by isolated
bonded units with the possibility of expansion, slightly distorted structures
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close to symmetrizaton, or structures with localized hydrogen-hydrogen
bonds. These structural renormalizations ultimately lead to an increment
in the value of the critical temperature. On the other hand, the critical
temperature is expected to decrease whenever quantum fluctuations do
not introduce structural renormalizations due to the high symmetry of
the crystal, or due to a highly connected network of bonds. On one side,
there is the hope that quantum fluctuations can sustain hydrogen based
superconductors, with highly symmetric bonding patterns, down to low
and close to ambient pressures. On the other side, quantum fluctuations
could introduce structural modifications to systems at low pressures that
can enhance their electron-phonon interaction and consequently boost the
critical temperature predicted at low if not ambient pressure.

In conclusion the work performed in this thesis sheds light over the gen-
eral properties of hydrogen based superconductors and hints at the flaws in
the standard theoretical methods by illustrating how quantum fluctuations
are indispensable to accurately describe the structural and superconducting
properties. The knowledge acquired through this work sets clear guidelines
related to atomic, structural and networking properties for good super-
conductivity in hydrogen rich compounds while provides computational
useful tools to assist the calculations of the next years, contributing to the
journey towards the north start of room temperature and room pressure
superconductivity.
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Appendix

a.1 data tables

Table A.1 – Table reporting item number used in the manuscript, chemical for-
mula, space group, superconducting critical temperature as predicted, pressure
at which it has has been predicted, hydrogen fraction Hf , and the reference from
which the Tc value has been extracted. The empty cells refer to missing values
from the literature or to the impossibility to perform calculations.

Item Chemical Space Tc (K) Pressure Hf Reference
formula group (GPa)

0 LiH2 P 4/mbm 0 150 0.667 [100]
1 LiH6 R3̄m 38.34 150 0.857 [100]
2 LiH8 I422 31.04 100 0.889 [100]
3 KH6 C2/c 69.8 166 0.857 [101]
4 BeH2 Cmcm 44.1 250 0.667 [102]
5 BeH2 P 4/nmm 62 400 0.667 [102]
6 MgH6 Im3̄m 271 400 0.857 [103]
7 CaH6 Im3̄m 235 150 0.857 [104]
8 SrH6 R3̄m 156 250 0.857 [99]
9 BaH2 R3̄m 0 60 0.667 [106]
10 BaH6 P 4/mmm 38 70 0.857 [106]
11 ScH3 − 19.3 18 0.750 [107]
12 LaH3 Cmcm 22.5 11 0.750 [107]
13 YH3 − 40 17 0.750 [107]
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14 ScH2 − 32.9 80 0.667 [108]
15 YH4 I4/mmm 95 120 0.800 [109]
16 YH6 Im3̄m 264 120 0.857 [109]
17 ScH4 I4/mmm 98 200 0.800 [110]
18 ScH6 Im3̄m 169 350 0.857 [111]
19 PrH9 F4̄3m 0 100 0.900 [34]
20 CeH10 Fm3̄m 168 94 0.909 [112]
21 CeH9 P 63/mmc 50 100 0.900 [34]
22 LaH9 Cc 30 50 0.900 [34]
23 LaH6 R3̄c 170 100 0.857 [34]
24 YH9 P 63/mmc 250 150 0.900 [34]
25 ScH9 P 63/mmc 180 400 0.900 [34]
27 YH10 Fm3̄m 326 250 0.909 [32, 34]
28 LaH4 I4/mmm 10 300 0.800 [32]
29 LaH8 C2/m 131 300 0.889 [32]
30 LaH10 Fm3̄m 274 150 0.909 [32]
31 ScH9 I41md 163 300 0.900 [111]
32 ScH10 Cmcm 120 250 0.909 [111]
33 ScH12 Immm 141 350 0.923 [111]
34 ScH7 Cmcm 169 300 0.875 [111]
35 ScH3 P 63/mmc 1 400 0.750 [111]
36 ScH2 P 6/mmm 4 300 0.667 [111]
37 ScH6 P 63/mmc 119 130 0.857 [99]
38 TiD0.74 − 4.43 30 0.425 [113]
39 TiH2 Fm3̄m 7 0 0.667 [114]
40 TiH2 I4/mmm 0 0 0.667 [114]
41 ZrH Cmcm 11 120 0.500 [115]
42 HfH2 I4/mmm 0 0 0.667 [116]
43 HfH2 Cmma 8 180 0.667 [116]
44 HfH2 P 21/m 12 260 0.667 [116]
45 NbH2 P 63mc 0.5 60 0.667 [117]
46 VH2 Fm3̄m 0.5 0 0.667 [117]
47 NbH2 Fm3̄m 1.5 0 0.667 [117]
48 NbH2 P nma 4 60 0.667 [117]
49 NbH4 I4/mmm 47 300 0.800 [118]
50 TaH2 P nma 7.1 200 0.667 [119]
51 TaH4 R3̄m 31 250 0.800 [119]
52 TaH6 Fdd2 135.8 300 0.857 [119]
53 CrH P 63/mmc 10.6 0 0.500 [120]
54 CrH3 P 63/mmc 37.1 81 0.750 [120]
55 TcH2 I4/mmm 10.64 200 0.667 [121]
56 TcH2 Cmcm 8.61 300 0.667 [121]
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57 TcH3 P 42/mmc 9.94 300 0.750 [121]
58 FeH6 Cmmm 42.9 150 0.857 [122]
59 FeH5 I4/mmm 45.8 150 0.833 [122]
60 FeH5 I4/mmm 51 130 0.833 [123]
61 RuH Fm3̄m 0.41 100 0.500 [124]
62 RuH3 Pm3̄m 3.57 100 0.750 [124]
63 RuH3 Pm3̄n 1.25 200 0.750 [124]
64 OsH Fm3̄m 2.1 100 0.500 [125]
65 CoH Fm3̄m 0.11 5 0.500 [126]
66 RhH Fm3̄m 2.5 4 0.500 [99]
67 IrH Fm3̄m 7 80 0.500 [99]
68 PdH − 9 0 0.500 [45]
69 PdD − 11 0 0.500 [45]
70 PdH Fm3̄m 5 0 0.500 [61]
71 PdD Fm3̄m 6.5 0 0.500 [61]
72 PdT Fm3̄m 6.9 0 0.500 [61]
73 PtH Fm3̄m 15 100 0.500 [61]
74 PtH P 63/mmc 25 80 0.500 [61]
75 AuH Fm3̄m 21 220 0.500 [99]
76 BH P 6/mmm 21.4 175 0.500 [127]
77 BH3 P bcn 125 360 0.750 [128]
78 AlH3 Pm3̄n 11.5 73 0.750 [47, 129]
79 AlH3(H2) P 21/m 146 250 0.750 [130]
80 GaH3 Pm3̄n 102 120 0.750 [131]
81 InH5 P 21/m 27.1 150 0.833 [132]
82 InH3 R3̄ 40.5 200 0.750 [132]
83 SiH4 C2/c 55 125 0.800 [133]
84 SiH4 P 6/mmm 74 120 0.800 [134]
85 SiH4 Pmna 166 202 0.800 [135]
86 SiH4 C2/c 30 300 0.800 [136]
87 SiH4 P 21/c 35 400 0.800 [136]
88 SiH4 C2/m 110 610 0.800 [136]
89 SiH4 P 3̄ 35.1 300 0.800 [136]
90 SiH4 Cmca 20 150 0.800 [137]
91 SiH4 P bcn 16.5 190 0.800 [138]
92 SiH4H2 Cmca 107 250 0.857 [139]
93 Si2H6 P 1̄ 80 200 0.750 [140]
94 Si2H6 Pm3̄m 153 275 0.750 [140]
95 Si2H6 C2/c 42 300 0.750 [140]
96 Si2H6 Cmcm 25 100 0.750 [141]
97 GeH4 C2/c 64 220 0.800 [142]
98 GeH4 Cmmm 47 20 0.800 [143]
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99 GeH4 Ama2 57 250 0.800 [144]
100 GeH4 C2/c 84 500 0.800 [144]
101 GeH4(H2)2 P 21/c 90 250 0.889 [145]
102 GeH3 Cccm 80 300 0.857 [146]
103 GeH4 C2/m 67 280 0.800 [147]
104 Ge3H11 I 4̄m2 43 285 0.786 [147]
105 GeH3 P 42/mmc 90 180 0.750 [148]
106 GeH3 Pm3̄m 140 180 0.750 [148]
107 SnH8 I 4̄m2 72 250 0.889 [149]
108 SnH4 Ama2 22 120 0.800 [150]
109 SnH4 P 63/mmc 62 200 0.800 [150]
110 SnH4 P 6/mmm 80 120 0.800 [151]
111 SnH4 C2/m 95 600 0.800 [152]
112 SnH4 I4/mmm 91 220 0.800 [153]
113 SnH12 C2/m 93 250 0.923 [153]
114 SnH14 C2/m 97 300 0.933 [153]
115 PbH4(H2)2 C2/m 107 230 0.889 [153]
116 PH3 0 100 226 0.750 [200]
117 PH I4/mmm 81 250 0.500 [154]
118 PH2 I4/mmm 86 260 0.667 [154, 155]
119 PH4 C2/m 1.9 80 0.800 [156]
120 PH2 Cmmm 29.5 80 0.667 [157]
121 AsH Cmcm 21.2 300 0.500 [158]
122 AsH8 C2/c 151.4 450 0.889 [158]
123 SbH P nma 14.6 175 0.500 [158]
124 SbH3 Pmmn 25.9 300 0.750 [158]
125 SbH4 P 63/mmc 102.2 150 0.800 [158]
126 BiH2 P nma 39 125 0.667 [159]
127 BiH3 I41/amd 65 270 0.750 [159]
128 SbH3 P nma 68 170 0.750 [159]
129 BiH P 63/mmc 30 250 0.500 [201]
130 BiH2 P 21/m 65 300 0.667 [201]
131 BiH4 Pmmm 93 150 0.800 [201]
132 BiH5 C2/m 119 300 0.833 [201]
133 BiH6 P 1̄ 113 300 0.857 [201]
134 H2S Cmca 82 160 0.500 [160]
135 H2S P 1̄ 60 158 0.500 [160]
136 (H2S)2H2 Im3̄m 204 200 0.750 [30]
137 (H2S)2H2 R3̄m 166 130 0.750 [30]
138 H3S Im3̄m 225 150 0.750 [161]
139 H3S R3̄m 214 170 0.750 [162]
140 H4S3 P nma 2.1 140 0.571 [163]
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141 H5S2 P 1̄ 79 130 0.714 [164]
142 D3S Im3̄m 188 200 0.750 [165]
143 H3S0.925P0.075 Im3̄m 280 250 0.750 [166]
144 H3S0.9P0.1 Im3̄m 240 200 0.750 [166]
145 H3S0.96Si0.04 Im3̄m 275 250 0.750 [166]
146 HSe2 C2/m 5 300 0.333 [167]
147 HSe P 4/nmm 42 300 0.500 [167]
148 H3Se Im3̄m 116 200 0.750 [167]
149 HSe P 21/c 23 300 0.500 [167]
150 H4Te P 6/mmm 104 170 0.800 [168]
151 H5Te2 C2/m 58 200 0.714 [168]
152 HTe P 4/nmm 28 150 0.500 [168]
153 H4Te R3̄m 76 270 0.800 [168]
154 HTe P 63/mmc 44.2 300 0.500 [168]
155 PoH4 C2/c 53.6 250 0.800 [169]
156 PoH P 63/mmc 0.65 300 0.500 [169]
157 PoH2 P nma 0 200 0.667 [169]
158 PoH6 C2/m 4.68 200 0.857 [169]
159 HBr P 21/m 51 200 0.500 [170]
160 HCl P 21/m 40 360 0.500 [170]
161 HBr C2/m 27 150 0.500 [171]
162 HCl C2/m 20 250 0.500 [172]
163 H2I Cmcm 8 100 0.667 [173]
164 H4I P 6/mmm 12.5 300 0.800 [174]
165 H2I P nma 5.3 100 0.667 [174]
166 H2I R3̄m 33 240 0.667 [174]
167 XeH Immm 28 100 0.500 [175]
168 XeH2 Cmcm 26 400 0.667 [175]
169 MgH2 P 63/mmc 23 180 0.667 [176]
170 MgH4 Cmcm 37 100 0.800 [176]
171 MgH12 R3̄ 60 140 0.923 [176]
172 PH3 C2/m 71 260 0.750 [177, 178]
173 PH2 C2/m 95 260 0.667 [177, 178]
174 H2Br Cmcm 12.1 240 0.667 [202]
175 H4Br P 63/mmc 2.4 240 0.800 [202]
176 H I41/amd 318 500 1.000 [35]
177 H Cmca4̄ 109 450 1.000 [179]
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Table A.2 – Table reporting the item index, chemical formula, networking value
φ, dominant bonding family assigned, and shortest H-H distance for all the
compounds. The empty cells refer to missing values from the literature or to the
impossibility to perform calculations .

Item Chemical Networking Dominant H-H Distance
formula value φ bonding family (Å)

0 LiH2 0.24 Molecular 0.759
1 LiH6 0.37 Molecular 0.803
2 LiH8 0.15 Molecular 0.8235
3 KH6 0.19 Molecular 0.887
4 BeH2 0.35 Ionic 1.421
5 BeH2 0.4 Ionic 1.345
6 MgH6 0.63 Weak H Interactions 1.093
7 CaH6 0.62 Weak H Interactions 1.237
8 SrH6 0.33 Weak H Interactions 1.033
9 BaH2 - - -
10 BaH6 - - -
11 ScH3 - - -
12 LaH3 - - -
13 YH3 - - -
14 ScH2 0.33 Ionic 2.091
15 YH4 0.43 Weak H Interactions 1.352
16 YH6 0.58 Weak H Interactions 1.301
17 ScH4 0.48 Weak H Interactions 1.198
18 ScH6 0.6 Weak H Interactions 1.112
19 PrH9 0.49 Weak H Interactions 0.944
20 CeH10 0.51 Weak H Interactions 0.963
21 CeH9 0.51 Weak H Interactions 0.909
22 LaH9 0.13 Molecular 0.550
23 LaH6 - - 0.944
24 YH9 0.57 Weak H Interactions 1.045
25 ScH9 0.65 Weak H Interactions 0.983
27 YH10 0.58 Weak H Interactions 1.047
28 LaH4 - - 1.189
29 LaH8 0.52 Weak H Interactions 0.890
30 LaH10 0.52 Weak H Interactions 0.840
31 ScH9 0.59 Molecular 0.848
32 ScH10 0.33 Molecular 0.866
33 ScH12 0.33 Molecular 0.909
34 ScH7 0.49 Molecular 0.960
35 ScH3 - - -
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36 ScH2 - - -
37 ScH6 0.26 Molecular 1.022
38 TiD0.74 - - -
39 TiH2 0.29 Ionic 2.210
40 TiH2 0.38 Ionic 1.628
41 ZrH 0.32 Ionic 2.753
42 HfH2 0.23 Ionic 2.149
43 HfH2 0.23 Molecular 0.765
44 HfH2 0.27 Isolated 1.359
45 NbH2 0.29 Electride 2.009
46 VH2 0.3 Ionic 2.105
47 NbH2 0.27 Ionic 2.277
48 NbH2 0.36 Electride 1.833
49 NbH4 0.27 Weak H Interactions 1.209
50 TaH2 0.41 Electride 1.728
51 TaH4 0.27 Isolated 1.313
52 TaH6 0.38 Weak H Interactions 1.085
53 CrH 0.4 Electride 2.171
54 CrH3 0.35 Isolated 1.615
55 TcH2 - - 1.700
56 TcH2 - - 1.241
57 TcH3 0.31 Isolated 1.299
58 FeH6 0.36 Molecular 0.733
59 FeH5 0.17 Weak H Interactions 1.300
60 FeH5 - - -
61 RuH 0.28 Isolated 2.626
62 RuH3 0.29 Isolated 1.807
63 RuH3 0.29 Isolated 1.542
64 OsH 0.33 Ionic 2.676
65 CoH 0.27 Metallic 2.570
66 RHH - - -
67 IrH - - -
68 PdH 0.19 Isolated 2.911
69 PdD - - -
70 PdH 0.19 Isolated 2.911
71 PdD - - -
72 PdT - - -
73 PtH 0.27 Isolated 2.723
74 PtH 0.27 Ionic 2.563
75 AuH 0.27 Isolated 2.649
76 BH 0.51 Covalent -
77 BH3 0.56 Covalent 1.024
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78 AlH3 0.36 Covalent 1.593
79 AlH3(H2) - - 0.842
80 GaH3 0.37 Covalent 1.531
81 InH5 0.27 Molecular 0.770
82 InH3 0.28 Molecular 0.884
83 SiH4 0.27 Covalent 1.435
84 SiH4 0.51 Covalent 1.081
85 SiH4 - - -
86 SiH4 - - -
87 SiH4 0.45 Covalent 1.043
88 SiH4 0.49 Covalent 1.009
89 SiH4 0.49 Molecular 0.750
90 SiH4 - - -
91 SiH4 0.32 Covalent 1.372
92 SiH4H2 - - -
93 Si2H6 0.48 Covalent 1.247
94 Si2H6 0.58 Electride 1.592
95 Si2H6 0.48 Molecular 0.592
96 Si2H6 - - -
97 GeH4 0.39 Molecular 0.878
98 GeH4 - - -
99 GeH4 0.34 Molecular 0.803
100 GeH4 0.4 Covalent 0.973
101 GeH4(H2)2 0.37 Molecular 0.845
102 GeH3 - - -
103 GeH4 0.33 Covalent 1.057
104 Ge3H11 0.31 Covalent 1.287
105 GeH3 0.31 Covalent 1.360
106 GeH3 0.32 Covalent 1.553
107 SnH8 0.24 Molecular 0.860
108 SnH4 0.22 Molecular 0.792
109 SnH4 0.24 Molecular 0.816
110 SnH4 - - -
111 SnH4 0.29 Molecular 0.807
112 SnH4 - - -
113 SnH12 0.34 Molecular 0.754
114 SnH14 0.37 Molecular 0.783
115 PbH4(H2)2 0.27 Molecular 0.789
116 PH3 - - -
117 PH - - -
118 PH2 - - -
119 PH4 0.19 Molecular 0.740
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120 PH2 0.15 Molecular 0.741
121 AsH 0.45 Covalent 1.580
122 AsH8 0.39 Molecular 0.813
123 SbH 0.35 Covalent 1.905
124 SbH3 0.27 Weak H Interactions 0.882
125 SbH4 0.29 Molecular 0.842
126 BiH2 0.32 Molecular 0.805
127 BiH3 0.31 Weak H Interactions 0.924
128 SbH3 0.35 Molecular 0.878
129 BiH 0.29 Isolated 3.033
130 BiH2 0.31 Molecular 0.812
131 BiH4 0.29 Molecular 0.834
132 BiH5 - - -
133 BiH6 0.37 Molecular 0.905
134 H2S - - -
135 H2S - - -
136 (H2S)2H2 0.69 Covalent 1.493
137 (H2S)2H2 - - -
138 H3S 0.7 Covalent 1.532
139 H3S - - -
140 H4S3 0.44 Covalent 1.554
141 H5S2 0.56 Covalent 1.543
142 D3S - - -
143 H3S0.925P0.075 - - -
144 H3S0.9P0.1 - - -
145 H3S0.96Si0.04 - - -
146 HSe2 0.44 Covalent 1.762
147 HSe 0.52 Covalent 2.133
148 H3Se 0.53 Covalent 1.571
149 HSe 0.52 Covalent 1.277
150 H4Te 0.4 Molecular 0.844
151 H5Te2 0.41 Weak H Interactions 0.916
152 HTe 0.41 Covalent 2.465
153 H4Te 0.35 Molecular 0.832
154 HTe 0.37 Molecular 0.834
155 PoH4 0.34 Molecular 0.813
156 PoH 0.34 Ionic 2.335
157 PoH2 0.35 Molecular 0.792
158 PoH6 0.36 Molecular 0.797
159 HBr 0.37 Covalent 1.411
160 HCl 0.37 Covalent 1.266
161 HBr 0.38 Covalent 1.492
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162 HCl 0.38 Covalent 1.403
163 H2I 0.36 Molecular 0.792
164 H4I 0.45 Molecular 0.799
165 H2I 0.36 Molecular 0.797
166 H2I 0.35 Molecular 0.797
167 XeH - - -
168 XeH2 - - -
169 MgH2 0.33 Ionic 1.763
170 MgH4 0.26 Molecular 0.776
171 MgH12 0.36 Molecular 0.819
172 PH3 - - -
173 PH2 0.39 Covalent 1.4022
174 H2Br - - -
175 H4Br - - -
176 H 0.64 Weak H Interactions 0.985
177 H 0.35 Molecular 0.779
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Table A.3 – Table reporting the item index, chemical formula, total DOS per
electron, hydrogen contribution to the DOS per hydrogen atom, and hydrogen
fraction of the DOS at the Fermi energy. The empty cells refer to missing values
from the literature or to the impossibility to perform calculations.

Item Chemical Total DOS Hydrogen DOS Hydrogen DOS
formula (eV −1) (eV −1) fraction

0 LiH2 0.00298 0.00709 0.94924
1 LiH6 0.02220 0.02933 0.88063
2 LiH8 0.03063 0.039 0.92588
3 KH6 0.05004 0.1429 0.87854
4 BeH2 0.01675 0.02111 0.42005
5 BeH2 0.01743 0.02091 0.39974
6 MgH6 0.02064 0.0408 0.74105
7 CaH6 0.01872 0.0456 0.91338
8 SrH6 0.01656 0.038 0.86045
9 BaH2 - - -
10 BaH6 - - -
11 ScH3 - - -
12 LaH3 - - -
13 YH3 - - -
14 ScH2 0.03600 0.00638 0.02726
15 YH4 0.03105 0.04555 0.39112
16 YH6 0.04132 0.053 0.45269
17 ScH4 0.03179 0.0356 0.29856
18 ScH6 0.03896 0.0356 0.32246
19 PrH9 0.01967 0.01129 0.16150
20 CeH10 0.01466 0.01309 0.27900
21 CeH9 0.02029 0.02036 0.29135
22 LaH9 0.03072 0.01651 0.16123
23 LaH6 - - -
24 YH9 0.02762 0.04033 0.65701
25 ScH9 0.02564 0.03135 0.55013
27 YH10 0.03547 0.04992 0.67017
28 LaH4 - - -
29 LaH8 0.01605 0.02265 0.38922
30 LaH10 0.02601 0.04064 0.50395
31 ScH9 0.02952 0.03491 0.53215
32 ScH10 0.02176 0.02453 0.53668
33 ScH12 0.02376 0.02673 0.58697
34 ScH7 0.02505 0.03605 0.55962
35 ScH3 - - -
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36 ScH2 - - -
37 ScH6 0.02758 0.0336 0.42992
38 TiD0.74 - - -
39 TiH2 0.17927 0.00066 0.00053
40 TiH2 0.05533 0.01472 0.03800
41 ZrH 0.07636 0.01206 0.01214
42 HfH2 0.01242 0.00186 0.00787
43 HfH2 0.01072 0.02352 0.11542
44 HfH2 0.00907 0.01225 0.07105
45 NbH2 0.03424 0.00216 0.00844
46 VH2 0.08699 0.00352 0.00539
47 NbH2 0.06102 0.00306 0.00668
48 NbH2 0.06066 0.00522 0.01147
49 NbH4 0.04581 0.021 0.10784
50 TaH2 0.02064 0.0091 0.03040
51 TaH4 0.01307 0.02355 0.23240
52 TaH6 0.01519 0.0403 0.48226
53 CrH 0.06706 0.0064 0.00636
54 CrH3 0.07060 0.0282 0.07048
55 TcH2 - - -
56 TcH2 - - -
57 TcH3 0.03144 0.0138 0.07314
58 FeH6 0.02460 0.01662 0.18419
59 FeH5 0.02408 0.00616 0.06091
60 FeH5 - - -
61 RuH 0.04832 0.0133 0.01618
62 RuH3 0.04596 0.024 0.08244
63 RuH3 0.02571 0.022 0.13508
64 OsH 0.02037 0.00498 0.00788
65 CoH 0.24733 0.02135 0.00479
66 RHH - - -
67 IrH - - -
68 PdH 0.02481 0.0745 0.15803
69 PdD - - -
70 PdH 0.02481 0.0745 0.15803
71 PdD - - -
72 PdT - - -
73 PtH 0.01163 0.0562 0.14640
74 PtH 0.01735 0.047 0.08208
75 AuH 0.02019 0.01531 0.02230
76 BH 0.02755 0.03 0.27223
77 BH3 0.02614 0.028 0.53550
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78 AlH3 0.03379 0.0458 0.67764
79 AlH3(H2) - - -
80 GaH3 0.01841 0.0208 0.56491
81 InH5 0.02133 0.02644 0.34432
82 InH3 0.02221 0.03366 0.28419
83 SiH4 0.03007 0.0359 0.59684
84 SiH4 0.05725 0.0464 0.40524
85 SiH4 - - -
86 SiH4 - - -
87 SiH4 0.02126 0.02338 0.54972
88 SiH4 0.03087 0.02732 0.44245
89 SiH4 0.03394 0.01705 0.25117
90 SiH4 - - -
91 SiH4 0.0195 0.0243 0.62307
92 SiH4H2 - - -
93 Si2H6 0.03554 0.0297 0.35811
94 Si2H6 0.04522 0.0392 0.37144
95 Si2H6 0.04734 0.03976 0.35998
96 Si2H6 - - -
97 GeH4 0.01901 0.0314 0.36688
98 GeH4 - - -
99 GeH4 0.01805 0.03362 0.41384
100 GeH4 0.01439 0.03255 0.50236
101 GeH4(H2)2 0.01920 0.0279 0.52831
102 GeH3 - - -
103 GeH4 0.01449 0.02803 0.42974
104 Ge3H11 0.01079 0.02473 0.47560
105 GeH3 0.02187 0.03453 0.27853
106 GeH3 0.03444 0.0484 0.24793
107 SnH8 0.01736 0.02607 0.54617
108 SnH4 0.01782 0.0241 0.30038
109 SnH4 0.0223 0.0372 0.37070
110 SnH4 - - -
111 SnH4 0.01920 0.0331 0.38303
112 SnH4 - - -
113 SnH12 0.02066 0.02871 0.64144
114 SnH14 0.02083 0.02999 0.71983
115 PbH4(H2)2 0.02688 0.03232 0.43717
116 PH3 - - -
117 PH - - -
118 PH2 - - -
119 PH4 0.02710 0.01734 0.28436
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120 PH2 0.03010 0.01784 0.16935
121 AsH 0.01920 0.052 0.16926
122 AsH8 0.02111 0.03243 0.53430
123 SbH 0.02155 0.0482 0.13976
124 SbH3 0.01877 0.037 0.62715
125 SbH4 0.03026 0.0465 0.32348
126 BiH2 0.02709 0.0446 0.19364
127 BiH3 0.02584 0.0537 0.34636
128 SbH3 0.02447 0.0408 0.27787
129 BiH 0.02447 0.09 0.22987
130 BiH2 0.02626 0.0485 0.21725
131 BiH4 0.02858 0.0402 0.29603
132 BiH5 - - -
133 BiH6 0.02549 0.04146 0.46471
134 H2S - - -
135 H2S - - -
136 (H2S)2H2 0.06064 0.0867 0.47654
137 (H2S)2H2 - - -
138 H3S 0.05348 0.0782 0.48732
139 H3S - - -
140 H4S3 0.01120 0.01403 0.22762
141 H5S2 0.03182 0.0442 0.40847
142 D3S - - -
143 H3S0.925P0.075 - - -
144 H3S0.9P0.1 - - -
145 H3S0.96Si0.04 - - -
146 HSe2 0.01736 0.0819 0.14294
147 HSe 0.02240 0.0544 0.14283
148 H3Se 0.02796 0.0857 0.48394
149 HSe 0.01874 0.0494 0.15501
150 H4Te 0.03724 0.0464 0.24914
151 H5Te2 0.02416 0.04592 0.25675
152 HTe 0.02680 0.065 0.14264
153 H4Te 0.02674 0.0381 0.28495
154 HTe 0.03070 0.0424 0.27614
155 PoH4 0.02522 0.0359 0.28468
156 PoH 0.02491 0.0864 0.20401
157 PoH2 0.02682 0.0405 0.16772
158 PoH6 0.03239 0.03846 0.32384
159 HBr 0.01632 0.052 0.17697
160 HCl 0.01352 0.0432 0.17748
161 HBr 0.01836 0.0454 0.13735
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162 HCl 0.03575 0.0388 0.13565
163 H2I 0.02955 0.0269 0.09580
164 H4I 0.01606 0.0262 0.31063
165 H2I 0.02681 0.0298 0.11697
166 H2I 0.02684 0.042 0.16466
167 XeH - - -
168 XeH2 - - -
169 MgH2 0.00801 0.01701 0.35378
170 MgH4 0.00576 0.01346 0.66683
171 MgH12 0.01311 0.0221 0.91945
172 PH3 - - -
173 PH2 0.04305 0.061 0.40477
174 H2Br - - -
175 H4Br - - -
176 H 0.03300 0.033 1
177 H 0.01878 0.01878 1
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a.2 examples of networks

  

A) ELF=0.36

B) ELF=0.58

Figure A.1 – The figure shows an example of a network arising from covalent
bonds as in A) for AlH3 (78), with φ = 0.36, and an example of a network arising
from an electride bonding pattern as in B) for Si2H6 (94), with φ = 0.58.
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A) ELF=0.90

B) ELF=0.67

C) ELF=0.52

Figure A.2 – The figure shows the steps for the construction of the network for
LaH10 (30). On the left side the ELF isosurfaces are visualized, while on the
right side the network patterns are shown. The latter are identified through the
selection of the saddle points (small black dots) related to the same and higher
value of ELF with respect to the ELF threshold in the blue box. In step A) no bond
is formed. In step B) few isolated bonding patterns appear. In step C) the highest
3D network spanning through the entire cell is created. The resulting network is
constructed by all the hydrogen atoms.
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D) ELF=0.57

C) ELF=0.72

B) ELF=0.78

A) ELF=0.90

Figure A.3 – Example of construction of Network 2. The figure shows the
steps for the construction of the network for YH9 (24). On the left side the ELF
isosurfaces are visualized, while on the right side the network patterns identified
through the selection of the saddle points (small black dots) are visualizaed. The
latter are related to the same and higher value of ELF with respect to the ELF
threshold in the blue box. In step A) no bond is formed. In step B) and C) few
isolated bonding patterns appear. In step D) the highest 3D network spanning
through the entire cell is created. The resulting network is constructed by a subset
of hydrogen atoms.
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D) ELF=0.76

C) ELF=0.80

B) ELF=0.88

A) ELF=0.95
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G) ELF=0.67

F) ELF=0.69

E) ELF=0.74

H) ELF=0.57
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K) ELF=0.33

J) ELF=0.41

I) ELF=0.50

Figure A.4 – The figure shows the steps for the construction of the network for
ScH10 (32). On the left side the ELF isosurfaces are visualized, while on the right
side the network patterns identified through the selection of the saddle points
(small black dots) are shown. The latter are related to the same and higher value
of ELF with respect to the ELF threshold in the blue box. From steps A) to J) is
shown the progressive formation of the interatomic bonds leading to the creation
of the network. In step J) can be seen that until for ELF>0.41 the formed network
is 2D. In step K) the interplane ELF connection appears creating the 3D structure
necessary for the determination of the networking value (φ). The resulting network
includes all the hydrogen atoms.
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a.3 ScH6 -Cmcm phonons
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Figure A.5 – The figure shows the phonon spectra for the ScH6-Cmcm phase at
100 GPa on the left, and the value of α2F(ω) and the electron phonon coupling
parameter λ(ω) for the same pressure on the right.
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