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Abstract: Traditional crosslinked aero grade epoxy resins have excellent thermal-mechanical prop-
erties and solvent resistance, but they cannot be remolded, recycled, or repaired. Vitrimers can be
topologically rearranged via an associative exchange mechanism, endowing them with thermoplas-
ticity. Introducing dynamic bonds into crosslinked networks to obtain more sustainable thermosets
is currently an interesting research topic. While recent research into vitrimers has indicated many
advantages over traditional thermosets, an important shortcoming has been identified: susceptibility
to creep at service temperature due to the dynamic bonds present in the network. In addition,
designing aero grade epoxy vitrimers (similar to RTM6 resin) still remains a challenge. Herein, low
creep aero grade epoxy vitrimer with thermal and mechanical properties similar to those of aero
grade epoxy resins and with the ability to be recyclable, repairable, and reprocessable, has been
prepared. In this manuscript, we demonstrate that aero grade epoxy vitrimer with reduced creep can
be easily designed by the introduction of a certain fraction of permanent crosslinks, without having a
negative effect on the stress relaxation of the material. Subsequently, the mechanical and relaxation
properties were investigated and compared with those of classical aero grade epoxy resin. A high Tg
(175 °C) epoxy vitrimer was obtained which fulfilled all mechanical and thermal specifications of
the aero sector. This work provides a simple network design to obtain aero grade epoxy resins with
excellent creep resistance at elevated temperatures while being sustainable.

Keywords: vitrimer; dynamic covalent chemistry; epoxy resin; disulfide; associative exchange

1. Introduction

Epoxy resins are one of the most widely used thermoset resins for structural applica-
tions due to their high mechanical properties, chemical resistance to many solvents, high
glass transition temperature (Tg) and resistance to creep at elevated temperatures [1,2].
However, due to their thermoset nature, epoxy resins cannot be recycled, reprocessed, or
dissolved after cure, making them less environmentally friendly than thermoplastics and
generating a lot of waste when parts reach their end of life. At the same time, thermosets
present long-curing times, limiting their production to low-medium volume series, in
sectors where there is an increasing demand for such materials. The most common disposal
solutions for thermoset resin and composites are pyrolysis and landfilling, carrying serious
environmental and economic issues [3-9].

In this sense, in the last 10 years, new approaches aim to convert thermoset resins
into dynamic materials by introducing dynamic covalent bonds [10] in the network The
introduction of such dynamic covalent bonds permits the obtention of materials with func-
tional characteristics such as self-healing, recyclability, repairability, reprocessability, shape
memory, and adaptability [10-17]. The introduction of dynamic covalent bonds in each
crosslinking point of the network leads to the obtention of the covalent adaptable network
(CAN), a new concept introduced in polymer chemistry by Bowman and others [18-26].
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CANs contain an exchangeable covalent bond at each crosslinking point that can be rear-
ranged thermally (or under another stimulus) via a dissociative or associative mechanism.
Dissociative bonds rely on a triggered displacement of the association equilibrium towards
the endothermic dissociated state, decreasing the crosslinking density and thus, obtaining
a thermoplastic-like material. This decrease in crosslink density leads to a sudden viscosity
drop that allows rapid reprocessing but also uncontrolled deformation at high temperatures
and worse solvent resistance. On the other hand, associative networks maintain a constant
crosslink density even at high temperatures because a new covalent bond is formed simulta-
neously or before breaking an existing covalent bond. The first reworkable epoxy network
was developed by Leibler and coworkers [27]. They discovered that crosslinked epoxy
networks can undergo transesterification exchange with the addition of a zinc catalyst.

Despite the good properties associated with vitrimers, these materials have an Achilles’
heel: the possible creep at use conditions. Creep is the continuous, time-dependent defor-
mation of a material under a certain load and temperature [28]. While stress relaxation
of vitrimers at high temperatures allows them to be malleable and reprocessable, creep
at high temperatures is highly undesirable as it prevents the use of these reprocessable
networks for many applications where high performance is required. This creep behavior
of some vitrimer materials could be one of the main drawbacks to replacing the tradi-
tional thermoset for high-performance applications such as in the aerospace industry. In
our previous study, we demonstrated that the careful selection of dynamic bonds and
dynamic bond exchange kinetics could suppress the creep of aromatic disulfide-containing
vitrimers below their glass transition (Tg) or vitrimer temperature (Tv) [29]. However,
some groups have demonstrated that substantial creep can occur in some systems below
the Tg or Tv [30,31]. Thus, there is still the need to design vitrimer materials with reduced
creep at high temperatures. Traditional thermosets exhibit nearly zero creep above their
elastic limit at temperatures below the Tg and they show limited creep at temperatures
above the Tg in contrary to thermoplastic materials. In this sense, some groups [32,33]
have demonstrated that the introduction of some permanent crosslinks in the network
is a good approach to reduce the creep in vitrimers while maintaining the capacity to be
reprocessed, repaired, and recycled. In order to find a balance between permanent and
dynamic crosslinks, the maximum permanent crosslink density to maintain vitrimer prop-
erties has been related to the incipient percolation of permanent crosslinks in the network.
This incipient percolation of permanent crosslinks is related to the gelation point defined
by Flory and Stockmayer [34,35]. Torkelson et al. [32] developed a quantitative theory
describing the relationship between the presence of permanent crosslinks in vitrimers
and reprocessing behavior. According to Torkelson et al. theory, the critical condition to
obtain a reprocessable network, regardless of dynamic chemistry, is to have insufficient
permanent crosslinks to create a percolated network. Another approach with the potential
to avoid the creep of vitrimers at high temperatures is to design a dynamic network with
high activation energy (Ea) [17,29,36,37]. The design of a vitrimer with high Ea offers high
creep resistance a few tens of degrees below the reprocessing temperature, due to the high-
temperature dependence of bond exchange. In this sense our group has designed a bunch
of disulfide-containing epoxy vitrimers with tailor-made Eg, ranging up to 340 kJ/mol [29].
However, this high Ea was only achieved in 2-amino phenyldisulfide containing epoxy
vitrimers which offer lower Tg and thermal stability than vitrimers containing 4-amino
phenyl disulfide.

In the aerospace industry, epoxy resins are difficult to be replaced due to their good
thermal and mechanical properties. The qualification process for new aerospace materials
can take many years and is extremely expensive. Since Hexcel HexFlow® RTM6 is a widely
utilized and aerospace-certified epoxy resin, which has been in service for 20 years, it would
be helpful to obtain an epoxy vitrimer with the same mechanical and thermal properties
in order to replace it. Everything inside commercial aircraft goes through a process called
“certification”. Based on this background the aim of the research described in this paper was
to obtain an epoxy resin comparable to HexFlow® RTM6 resin while being reprocessable,
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reparable, weldable, and recyclable to be commercially available for the aerospace industry.
Here, for the first time, a simple and commercially available high Tg epoxy vitrimer ready
to be used in the aeronautical sector has been prepared and thoroughly characterized. First,
the curing kinetics, as well as thermal and mechanical properties, have been investigated.
Secondly, the dynamic properties of the resin have been widely studied by stress relaxation
and creep experiments to demonstrate its thermoformability and reprocessability.

2. Materials and Methods
2.1. Materials

N,N,N’,N'-Tetraglycidyl-4,4’-methylenebisbenzenamine (TGMDA) (MY21) and Bisphenol-
F diglycidyl ether (DGBF) (PY306) based epoxy resins were purchased from Huntsman
Advanced Materials. 4-Aminophenyl disulfide 98% (4-AFD), was purchased from Sigma-
Aldrich and was used as received. RTM6 resin was purchased from Hexcel.

2.2. Methods

Differential scanning calorimetry (DSC) measurements were performed using a DSC
from TA Instruments (Discovery DSC25 Auto controlled by TRIOS software) over a temper-
ature range from 25 °C to 200 °C under nitrogen at a scan rate of of 20 °C min~!. The glass
transition temperature (Tg) was obtained as the inflection point of the heat flow step. The
thermogravimetric measurements (TGA) were performed on a TA Instruments Q500 equip-
ment controlled by TA Universal Analysis software under an air atmosphere at a heating
rate of 10 °C min~! from 25 °C to 600 °C. Thermogravimetric isothermal tests were carried
out at 200 °C, 210 °C, 220 °C, and 230 °C under an air atmosphere. Thermomechanical
experiments were performed using TA Instruments DMA Q800 equipment on rectangular
samples (12.5 x 2 x 17.5 mm) on single cantilever beam from 25 to 250 °C. The temperature-
dependent behavior was studied by monitoring changes in force and phase angle, keeping
the amplitude of oscillation (15 um) (within a linear viscoelastic region) and frequency
(1 Hz) constant at a 3 °C min~! heating rate. Tensile stress-relaxation experiments were also
performed on a DMA Q800 instrument controlled by TA Universal Analysis software in
tensile mode (6 x 1 x 38 mm). To maintain straightness, samples were initially preloaded
at a force of 1 x 1073 N and heated to testing temperature. Before starting with the test,
samples were allowed 30 extra minutes to reach the thermal equilibrium. After that, the
specimens were stretched by 1% and the deformation was maintained during the test. The
decrease in stress over time at each temperature was recorded, and the stress relaxation
modulus was calculated.

The relaxation times at each testing temperature were determined from the Maxwell
equation, as the time required to relax 63% of the initial stress. With the relaxation times
obtained at each temperature, the activation energy Ea was calculated, using the Arrhenius
equation (Equation (1)):

Ea

(T) = 1 exp(RT> (1)

From the Arrhenius relation, the topology freezing transition temperature (Tv) was
obtained as the temperature at which the material reaches a viscosity of 10'% Pa [38].

Creep experiments below the Tg were determined by a DMA Q800 instrument in dual
cantilever mode. After soaking for 2 min at the testing temperature, 10 MPa (14% UTS
(Ultimate tensile strength)) constant stress was applied for 25 min. Creep experiments
above the Tg were determined by a DMA Q800 instrument in tensile mode. After soaking
for 2 min at each testing temperature, 1 MPa constant stress was applied. The strain change
was monitored over time. For the creep recovery experiment, the constant stress of 1 MPa
was applied at 210 °C and 215 °C for 120 min, and a recovery step of 90 min was applied.

Rheological characterization was performed using an AR2000ex rheometer controlled
by TA Data Analysis software from TA instruments using a 25 mm plate-plate geometry
and a gap of 1 mm. First, strain sweep experiments were performed to determine the linear
viscoelastic regimen (LVR) of the materials. Time sweep experiments were carried out from
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80 °C to 130 °C,) to determine gel point as the crossover of G’ and G” (1% of strain and
1 Hz).

Mechanical characterization of both epoxy resins was performed using an INSTRON
3365 Long travel Elastomeric Extensometer controlled by Bluehill Lite software. Tensile
strength measurements were carried out according to UNE-EN-ISO 527 standard, using
dumbbell-type test specimens at an elongation rate of 1 mm-min~! and flexural tests were
performed according to ISO 178 standard.

The reprocessing capacity of cured aero grade vitrimer was studied using 120 x 60 x 2 mm
specimens. First, the sample was preheated at 200 °C for 5 min and then the preheated
sample was placed between two Teflon-coated metal plates. The reprocessing of the sample
was carried out on a VOGT hot press LABO PRESS 200T at 200 °C and 20 bar for 5 min.
The demoulding of the sample was performed after cooling down below the Tg of the aero
grade epoxy vitrimer.

2.3. Synthesis and Characterization

The synthesis of the aero grade epoxy vitrimer used in the present study was per-
formed following the previously reported method by our group [17]. Briefly, TGMDA
and DGBEF resins were mixed (MY721, 44 g; PY306, 56 g) and degassed at 80 °C. Once the
resin mixture was degassed, 4-AFD (50 g) was added and mixed by heating at 80 °C and
degassed under vacuum. Then, the resulting viscous liquid was poured between two glass
plates separated with a 4 mm, 2 mm or 1 mm silicon joint and cured in an oven at 130 °C
for 1 h and post-cured at 180 °C for 0,5 h. The curing reaction was followed by FTIR, where
complete curing was confirmed by the disappearance of the epoxide bands at 3056 and
915 cm ™! (Figure S1). Complete curing of the aero grade epoxy vitrimer was confirmed
by differential scanning calorimetry (DSC) where no residual curing exothermic peak was
observed (Figure S2).

3. Results and Discussion

Our group previously demonstrated that repair, reprocessing, and recycling could be
effectively achieved in medium Tg epoxy thermosets (130 °C) [17]. However, these resins
are not useful because of their low Tg for the aeronautics sector due to the high creep at
high temperatures (120 °C). In order to obtain a high Tg epoxy resin for the aero sector with
reduced creep at high temperatures and to minimize the associated detrimental effects, in
this work we have investigated the effect of incorporating irreversible crosslinks. For the
synthesis of high Tg (>170 °C) epoxy resin, we used a mixture of tetrafunctional (TGMDA),
and bifunctional (DGBF) epoxy resins crosslinked with dynamic disulfide containing amine
hardener (4-AFD). The cured epoxy vitrimer showed a Tg of 172 °C measured by DSC. The
cross-linking of the high Tg epoxy resin was proven by monitoring the storage modulus (E')
over temperature. A rubbery plateau of 40 MPa at 200 °C, typically attributed to chemically
crosslinked polymer systems, confirmed the presence of a 3D network (Figure 1). The
obtained aero grade epoxy resin has been compared with reference RTM6 epoxy resin
(Figure S3). The crosslink density (vc) provides an idea of the network structure. According
to the theory of rubber elasticity, vc can be experimentally obtained using Equation (2).

ve=FE/3ART )

where E’; is the rubbery plateau at T g + 30 °C, A is the front factor often assumed to
be unity, R is the gas constant (8.314 J-mol~!-K~!) and T is the absolute temperature in
K. The average molecular weight between crosslinks (Mc) can be also calculated from
Equation (3).

MC =d/ vC (3)

where d is the cured resin density.
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Figure 1. DMA curve obtained for epoxy vitrimer, representing storage modulus (E’), loss modulus
(E"), and tan delta versus temperature. Tg = 176 °C was determined from the maximum of tan delta.

Table 1 shows the crosslinking density and Mc of both aero grade epoxy resin and
references RTM6 resin.

Table 1. Tan §, E/, E”, Density, v, and Mc of aero grade epoxy vitrimer and reference RTM 6 applying
rubber elasticity theory.

E’' (M Pa) at E' (M Pa) at Tan & Peak d ve Mc

Ref. Tan & Max. 25°C 200 °C (o) (g-cm—3) (mol-m—3) (g-mol-1)
Vitrimer 0.6 9000 40 176 1.27 3390 374
RTM6 1.09 7000 30 218 1.14 2310 494

As can be seen in Table 1, reference epoxy resin presents higher Tg than developed
aero grade epoxy resin. However, the obtained Tg value for the epoxy vitrimer is still valid
for the aeronautical sector. The difference in the Mc of both resins could come from the
different molecular weights of both epoxy monomers and hardeners.

3.1. Thermal Stability

In order to study the thermal stability of prepared aero grade epoxy vitrimer, thermo-
gravimetric measurements were carried out.

The thermogravimetric analysis (TGA) of the cured samples was performed on a TA
Instruments Q500 equipment under an air atmosphere at a heating rate of 30 °C-min~!
from 25 °C to isothermal conditions. Isotherms were measured under an air atmosphere
for 20 min (Figure 2). Additionally, the Tg of the aged samples was measured by DSC in
order to study the possible degradation of the resin (Figure S54).

Table 2 shows the results obtained for different temperatures. As can be seen, aero
grade epoxy vitrimer shows a weight loss lower than 1.2% after 20 min at temperatures up
to 230 °C.

Thermogravimetric analysis showed that developed epoxy vitrimer possesses thermal
stability up to 210 °C (weight loss lower than 1% without Tg decrease) when exposed to
20 min under air atmosphere. From these results, it can be concluded that 210-220 °C is the
maximum temperature at which the resin can be exposed under air atmosphere to assure no
degradation of the epoxy vitrimer matrix. Thermal stability together with dynamic stress
relaxation results will permit to the establishment of the time and temperature conditions
for future thermoforming processes.
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Figure 2. Thermal stability of epoxy vitrimer in air.

Table 2. Thermal stability of epoxy vitrimer. The initial Tg of the sample and the Tg after isothermal

conditions are also shown.

Isotherm Test, Air Atmosphere

Sample 200 °C 210 °C 220 °C 230 °C
W (%) 20 99.04 98.93 99.05 98.86
E
“POXy Tg initial 172
vitrimer
Tg final 172 173 165 160

3.2. Fracture Toughness

One of the major drawbacks of the RTM6 resin is its inherent brittleness, ascribed to the
highly crosslinked network and to the high internal stresses produced by volume shrinkage
during curing. With the aim of reducing this brittleness, different approaches have been
studied to increase toughness. In this sense, the introduction of a dynamic hardener
could be a new approach to increasing the resin toughness. It has been demonstrated that
polymer networks formed by transient crosslinks constantly reconfigure and dissipates
energy, increasing the toughness of the resin. In developed aero grade epoxy vitrimer, the
easier cleavage and rearrangement of aromatic disulfide bonds present in the 3D network,
could be beneficial to stimulate the release of internal stresses that occurred in the curing of
the network [39].

Fracture toughness tests were performed by using SENB (Single-Edge Notched Bend-
ing) specimens in a 3-point bending configuration, according to the ISO 13586 test standard.
Pre-notches were machined to a depth of 0.45 times the specimen width using a CEAST
notching machine (Notchvis 6951.000, Turin, Italy). Subsequently, the pre-notches were
sharpened using a femtosecond laser (femtolaser) to a depth of approximately 0.5 times the
width of the specimen. This process allowed the production of SENB specimens for 3-point
bending. The SENB specimens were tested on a universal testing machine (SUN2500,
Galdabini, Italy) with a support spacing of 48 mm and a crosshead displacement speed of
1 mm/min.

As can be seen from the force-displacement graphs in Figure S5, the mechanical
response of all specimens was linear and elastic up to fracture. The non-linearity and the
observed variation in the displacement is due to pin penetration and compression effects.
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Therefore, following the guidelines set out in ISO 13586, the stress intensity factor Kg can
be calculated using Equation (4),
F
Ko=f BWQl/ 2 @)
where Fg is the maximum force, B is the thickness of the specimen, W is the width of the
specimen and f is a geometrical calibration factor. The results of the Kg calculation are
shown in Table S1.

There are two main parameters that describe the fracture toughness of a material:
Kic, the critical stress intensity factor near the edge of a crack, and Gjc, which is the
energy needed to create two surfaces during the fracture propagation. Table 3 reports
the fracture toughness test results for epoxy vitrimer resin and RTM6 neat resin. It is
observed that, for the epoxy vitrimer, the value of K;¢ is improved from 0.62 Mpa-m'/?
to 1.02 MPa-m!/ 2 which corresponds to an increase of 64%. The increase in the fracture
toughness of developed aero grade epoxy vitrimer can be attributable to the presence
of dynamic disulfide bonds in the matrix together with lower Tg of the resin compared
to RTMS6 resin. Figures S6 and S7 show the fracture surfaces of tested specimens where
smooth fracture surfaces can be observed. No difference was seen in the fracture surfaces
of the tested samples.

Table 3. Fracture toughness test results.

Samole Klc Glc
p (MPa -m"2) (J/m?)
Epoxy vitrimer 1.02 + 0.07 330 4= 40
RTM6 [40] 0.62 114

3.3. Rheology and Curing Kinetics

In order to study the processability of the 3R epoxy resin for the RTM process, the
rheology of uncured resin was characterized. Taking into account the specifications for the
RTM process for uncured resin, three different parameters were measured (initial viscosity
at different temperatures, the time needed to reach 200 mPa-s at different temperatures,
and time needed to achieve the gel point. Gel point was defined as the crossover point of
the elastic modulus (G’) and loss modulus (G”)) (Figures S8 and S9).

In Table 4, a summary of the obtained results is shown.

Table 4. Initial viscosity (n0), time to reach 200-mPa-s, and gel time (defined as G’ = G”) at differ-
ent temperatures.

T (°C) o (mPa-s) th00mPpa.s (Min) tg/-g» (Min)
80 80 152 490
110 21 62 122
130 17 29 47

To study the effect of curing time at different temperatures a DSC analysis was carried
out. The degree of cure at each temperature after a temperature ramp of 30 °C/min was
calculated. Dynamic curing of both aero grade epoxy vitrimer and reference RTM6 was
also performed in order to see the differences both in the curing exotherm and curing
temperature (Figure S510). Table S2 shows the curing enthalpy of both systems as well as
exothermic peak temperature. According to the obtained data, both systems present similar
total heat of reaction. However, the exothermic peak temperature is around 40 °C lower for
aero grade epoxy vitrimer which suggested that the chemical reactivity of 4-AFD (dynamic
hardener) is higher than the reference.
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The heat of cure can be used to quantitatively determine the degree of curing of the
resins. In fact, the degree of cure is defined as the ratio of the released heat up to a certain
time by the total heat of the reaction. It ranges from 0, for uncured resin, to 100%, for
completely cured resin. In Figure 3 the extent of curing at each temperature vs. time can
be observed.
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Figure 3. Curing degree of aero grade epoxy vitrimer at different temperatures.

3.4. Mechanical Properties

Tensile and flexural tests were performed to characterize the mechanical properties of
aero grade epoxy vitrimer and to compare it with reference RTM6 epoxy resin (Figure 4).

a) 4 100 —
m Epoxy vitrimer m Epoxy vitrimer

T " RTM6 T % = RTM6
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o =
3 % e
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£ % 40
2 2
FEE 5
.§ E 20
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g =RTM6 g0 mAIMe
e S
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3 B g0 -
<] e
E 7
T T 4
3 i 40
X 2
S ™
0
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Figure 4. (a) Tensile modulus and tensile strength of epoxy vitrimer and RTM6 formulations at
RT, HW2, and HW4. (b) Flexural modulus and flexural strength of epoxy vitrimer and RTM6
formulations at RT, HW2, and HW4.

Considering that developed epoxy vitrimer is focused on the aeronautical sector
it is crucial to validate the mechanical properties in hot/wet conditions. Aircraft com-
ponents manufactured from composite materials are typically exposed to hygrothermal
environments which are well known to alter the physical and mechanical properties of
fiber-reinforced composites. Epoxy resins are hydrophilic, which means that they absorb
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moisture from the environment. This makes epoxy resins susceptible to high water ab-
sorption. It is well known and studied that absorbed moisture lowers the mechanical
properties of the materials. Water absorption into epoxy resins changes both chemical and
physical properties through different mechanisms such as plasticization, crazing, hydrol-
ysis, and swelling. Plasticization is the most important physical change that occurs due
to the interaction of the water molecules with polar groups present in the epoxy resins
and thus, decreasing the Tg. In order to take all these into account, the mechanical and
thermal analysis of water absorbed samples has been also carried out. Both developed
epoxy vitrimer and reference RTM6 were characterized at three different conditions:

1.  Dry/room temperature.
2. HW2: Aged 14 days at 70 °C and 85% RH (relative humidity) and tested at 70 °C.
3.  HW4: Aged 14 days at 70 °C and 85% RH and tested at 120 °C.

Water uptake measurements were carried out according to UNE-EN-ISO 4611. During
the period of the aging study, gravimetric measurements were performed on balance. At
selected times, different samples were removed from the chamber, dried superficially, and
cooled to ambient temperature prior to their characterization. The samples were aged until
a constant weight was obtained (Figure S11). It was observed that the water uptake of
epoxy vitrimer is similar (2,4%) to the commercial RTM6 resin (2%).

As can be seen in Figure 4, both materials showed similar tensile and flexural properties
at RT and HW2 conditions, which means that the mechanical properties of both systems
are similar at temperatures below Tg. However, if we compare both materials at HW4
conditions, epoxy vitrimer performed lower: —30% in tensile strength and —35% in flexural
strength. The observed behavior at 120 °C is related to the Tg decrease of the resins due
to water absorption. The water absorbed due to the aging of the samples until saturation
decreases the Tg [41], reducing the temperature difference between the Tg and the test
temperature and thus, reducing its tensile and flexural strength.

3.5. Stress Relaxation

Due to the presence of dynamic hardener, developed aero grade epoxy resin was
expected to show vitrimer behavior. The time and temperature-dependent relaxation
modulus was tested by DMA to characterize its heat-induced malleability. In the follow-
ing subsections, stress relaxation was studied first, followed by creep tests to end with
thermoforming and reprocessing tests.

During the stress relaxation test, in order to assure the straightness of the specimens,
the samples were preloaded by applying 1073 N.. After reaching the required temperature,
1% strain was applied and the relaxation modulus was monitored over time. In Figure 5
the normalized stress relaxation curves at different temperatures are shown. As can be
seen in Figure 5, at temperatures above Tg, the epoxy vitrimer was able to relax stress and
flow. The relaxation time (7*) at each temperature was determined from Maxwell model for
viscoelastic fluids as the time required to relax 63% of the initial stress [28]. The relaxation
times obtained for the aero grade epoxy vitrimer are similar to previously reported 100%
epoxy vitrimer [17] despite having 18.5% of permanent crosslinks (37% of tetrafunctional
epoxy monomer, where 50% of the total crosslinks are permanent). It is hypothesized that
due to the addition of tetrafunctional epoxy resin, the disulfide concentration increased,
leading to faster exchange kinetics. The activation energy of the bond exchange mechanisms
of the aero grade epoxy vitrimer was also measured. The temperature dependence of T was
fitted to an Arrhenius relation and the activation energy (Ea) was calculated. The Arrhenius
plot presents a linear correlation of In (1) with 1000/T in the measured temperature range
(Figure 5 inset). From Equation (1), activation energy (Ea) of 246 kJ-mol~! was calculated.
Activation energy (Ea) values are characteristic of each system and represent the sensitivity
of the process to the temperature. For structural materials, high Ea is required in order
to have high mechanical properties at working temperature while being reprocessable,
reparable, and recyclable at temperatures above the Tg. In this sense, to reduce the creep



Polymers 2022, 14, 3180

10 of 15

at low temperatures and achieve low reprocessing time at high temperatures, high Ea
is needed.

1,0 -
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Figure 5. Normalized stress relaxation curves at different temperatures for aero grade epoxy vitrimer
(Inset). Calculated activation energy (Ea) from stress relaxation test.

From the Arrhenius relation, the topology freezing temperature (Tv) was also ob-
tained. Tv is defined as the temperature at which the material reaches a viscosity of 10'2
Pa-s [38,42-44]. Topology freezing temperature (Ty) was calculated from the Maxwell equa-
tion: # = Gpt* where 7 is the viscosity, Gp is the plateau modulus and t* is the characteristic
relaxation time. Using the equation above, T* was calculated to be around 10° s. Ty, could be
calculated by the extrapolation of the Arrhenius fitted line (Figure 5 inset) when t* = 10° s.
For the aero grade epoxy vitrimer a Tv of 152 °C was calculated, which is below the Tg
of the resin. For the present system, once the Tg is overpassed, an exchangeable reaction
happens fast and vitrimer can be reprocessed.

3.6. Creep

Another important parameter of vitrimers, besides stress-relaxation, is their resistance
to creep. Compared to classical thermoset polymers, vitrimers are prone to creep at high
temperatures above their Tg or Tv due to the exchange of dynamic bonds, especially if
these exchange reactions are fast [37]. However, it is also known that the introduction of
some irreversible crosslinks could reduce the creep at high temperatures. This vitrimer
contains 37/63% mol ratio of tetrafunctional/bifunctional epoxy monomers which leads to
a network with 18.5% of total crosslinks being permanent. In this section, the coexistence of
dynamic bonds together with irreversible crosslinks was analyzed by creep tests at different
temperatures. In recent studies reported by Torkelson et al. [32] and Du Prez et al. [45]
theoretical formulas were reported to calculate the maximum permanent crosslinks allowed
in a vitrimer before losing the reprocessing capacity. The introduced theory is based on
the reverse Flory- Stockmayer (F-S) gelation theory [35]. This theory was experimentally
validated for crosslinked materials. Torkelson et al. validated the theory for systems
maintaining reprocessability having up to 40% of permanent crosslinks. For the system
validated by Du Prez et al., this value increased up to 70% of permanent crosslinks. The
same approximation was performed in the present paper assuming that both primary and
secondary amines will react with the epoxy groups and having a 1.15 excess of amine groups.
For the assumption, only tetrafunctional epoxy monomer was taken into account because
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the network formed with difunctional epoxy will be fully dynamic and reprocessable
(Figure 6). For the calculation of maximum tetrafunctional epoxy monomer permitted to
obtain a recyclable network, the functionality of the amine hardener will be considered
as two because half of the crosslinks will be dynamic. For the present system, it was
theoretically found that a maximum of 63% of tetrafunctional epoxy resin should be present
to maintain reprocessability.
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Figure 6. These conceptual schemes represent the dynamic and permanent crosslinks present in
aero grade epoxy vitrimer. To simplify, networks with 100% difunctional epoxy monomer (100%
dynamic crosslinks) and with 100% tetrafunctional epoxy monomer (50% dynamic crosslinks) are
shown separately.

To assess good creep resistance of developed aero grade epoxy resin, creep recovery
experiments were carried out at high temperatures and compared with reference RTM6
epoxy resin. The long-term performance of the material was predicted using the time-
temperature superposition (TTS) principle (Figure S12).

In order to compare the obtained results, due to the difference in the Tg of the material
(175 °C for aero grade epoxy vitrimer and 210 °C for RTM 6 resin), the temperature behavior
was normalized to the Tg of each of the materials. As can be seen in Figure 7, it is clearly
noticeable that below the Tg (Tg — 50 °C) no creep was observed in both materials. We
demonstrate that the designed aero grade epoxy vitrimer is capable of arresting creep
at elevated temperatures up to 120 °C. Aero grade epoxy vitrimer exhibited almost no
creep with strain values <1% at 120 °C, after 25 min at 10 MPa stress. This excellent creep
resistance is comparable to the creep response of conventional crosslinked networks such
as RTM6 aero grade epoxy resin.

It is well known that the presence of permanent crosslinks could reduce the creep
behavior of the developed aero grade epoxy vitrimer at T > Tg. With the aim to corroborate
the heat-induced malleability at temperatures above the Tg, creep experiments were also
carried out at 210 °C and 215 °C applying 1 MPa of constant stress. As can be seen in
Figure 8, above the Tg of the material, it starts deforming and this deformation increases
with the temperature. However, due to the presence of permanent crosslinks introduced
into the matrix no complete deformation was achieved. An irreversible deformation of
around 85% was achieved, which is in accordance with the relaxation obtained and the 19%
of permanent crosslinks present in the network. The same experiment was repeated for
RTMS6 resin at Tg +50 °C, but even with low applied stress (0.5 MPa), the resin broke due to
the absence of dynamic bonds.
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Figure 7. Creep experiments of reference RTM6 and aero grade epoxy vitrimer at temperatures below
Tg (from Tg —140 °C to Tg —50 °C) with applied stress of 10 MPa for 25 min.
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Figure 8. Creep recovery experiments of aero grade vitrimer at different temperatures with an applied
stress of 1 MPa.

3.7. Thermoforming and Reprocessing

The dynamic behavior of aero grade epoxy network was exploited to demonstrate the
capability to thermoform high Tg epoxy vitrimers.

To validate the thermoforming capacity of developed aero grade epoxy resin, a fully
cured 2 mm thick resin plate was hot-pressed in a mold with omega shape. First, the epoxy
vitrimer was placed in a pre-heated oven at 200 °C for 5 min together with the mold used
for thermoforming. Once the vitrimer and the mold were at the right temperature, the
sample was gradually deformed at 36 N/s speed at 200 °C. After the desired deformation
was reached, the vitrimer was kept in its new shape to cool down below the Tg to ensure
full stress release due to the reorganization of dynamic disulfide bonds. Figure 9 shows the
result, confirming the reprocessability of the resin. In order to assure no degradation of
the epoxy vitrimer due to the thermoforming process, the Tg of the reprocessed material
was measured by DMA (Figure S13). After the thermoforming process, the reshaped
material showed a Tg (Tan delta Peak) of 175 °C. No decrease in the Tg of the material
was observed after reprocessing confirming no degradation of the vitrimer during the

thermoforming process.
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Figure 9. Validation of thermoforming capacity of aero grade epoxy vitrimer.

This hot-press forming process is very fast compared to actual manufacturing pro-
cesses for aero parts (autoclave, etc.), thus having a tremendous impact on the aeronautics
sector reducing the production time by at least 10 times.

Finally, in order to confirm the reprocessing capabilities, the epoxy vitrimer was
grinded to fine powder, which was then hot pressed into a mold by applying heat and
pressure (20 bar, 210 °C, 20 min). Figure 514 shows the reprocessed sample and its thermal
characterization. The DMA plot of the reprocessed sample was comparable to the initial
epoxy vitrimer as the storage modulus showed no changes after reprocessing. Only a
small decrease in the Tg was observed due to the lack of compaction in some areas and the
possible breakage of non-reversible bonds due to grinding process and high temperature
reprocessing.

4. Conclusions

Here we showed for the first time that an aero grade aromatic disulfide epoxy vitrimer
with reduced creep can be obtained by incorporation of a certain fraction of permanent
crosslinks. The epoxy vitrimer exhibited similar properties to widely used aero grade
RTMS6 aero resin while being reprocessable. The developed aero grade epoxy resin presents
an acute temperature response due to the high activation energy (Ea = 246 kJ/mol) of the
network. This high Ea permits the design of resins and composites with high-temperature
sensitivity, permitting to arrest of the dynamic behavior up to high temperatures and
thus reducing the creep up to the Tg of the material. For the present aromatic disulfide-
containing vitrimers, we have determined that up to 30% of permanent crosslinks can
be introduced in the network while maintaining reprocessability. Our study provides a
promising approach for limiting the non-desirable effects associated with creep in vitrimer
applications, particularly for aerospace industry. In addition, the introduction of permanent
crosslinks also enhanced the thermal and mechanical properties making the developed
aero grade epoxy vitrimer the right candidate for introduction in the aero sector.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /polym14153180/s1, Figure S1: FTIR of uncured (black) and cured
aero grade epoxy resin (red); Figure S2: DSC thermogram for aero grade epoxy vitrimer, from where
a Tg value of 172 °C was determined; Figure S3: DMA curve obtained for RTMS6, representing storage
modulus, loss modulus and tan delta versus temperature. Tg = 218 °C was determined from the
maximum of tan delta; Figure S4: DSC thermograms of aero grade epoxy vitrimer after aging 20 min
in ari atmosphere at 200 °C, 210 °C, 220 °C and 230 °C; Figure S5: Force-displacement graphs of
epoxy vitrimer; Figure S6: Fractured surfaces of tested aero grade epoxy vitrimer; Figure S7: Detailed
fracture surface analysis after failure. Smooth fracture surface; Figure S8: Viscosity evolution of aero
grade epoxy resin at 80 °C, 110 °C and 130 °C; Figure S9: Gel point at 80 °C (a), 110 °C and 130 °C
determined as the crossover point G’ = G”; Figure $10: Dynamic DSC curves obtained at 2.5 °C/min
for aero grade epoxy vitrimer (blue) and reference RTM6 resin (green); Figure S11: Water uptake of
aero grade epoxy vitrimer; Figure S12: Creep strain master curve at 120 °C obtained by horizontal
shifting of creep data at different temperatures; Figure S13: DMA curve obtained for thermoformed
epoxy vitrimer, representing storage modulus, loss modulus and tan delta versus temperature.
Tg =175 °C was determined from the maximum of tan delta; Fgure S14: (Left) reprocessed aero grade
epoxy vitrimer. (Right) DMA plot of reprocessed aero grade epoxy vitrimer; Table S1: Values of the
stress intensity factor Kq for all tested materials; Table S2: Enthalpy of cure, Tg of un-cured resin,
onset curing temperature and exothermic temperature of aero grade epoxy vitrimer and reference
RTMBG resin.
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