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Abstract

In recent years, the interest in time series has increased considerably due to the vast amount of such
data collected in a variety of fields. Time series are a particular type of data: they are sets of ordered
observations. The analysis of databases composed of time series requires the consideration of the nature
of the instances, where there exist a temporal correlation among the observations. A considerable variety
of algorithms that take heed of such characteristic of the instances have been developed to represent,
index, cluster and classify time series. Particularly, this work focuses on the classification task. Firstly,
a review is performed about the specific time series classifiers, to give an insight of their workflow as
well as how they capture the temporal information. The different procedures of those classifiers endow
them with different abilities to catch the intrinsic temporal information of the instances for classification.
Moreover, this work carries out an experiment based on empirical distributions to estimate the sensitivity
of specific time series classifiers to the temporal order of the observations. Besides, although in general
specific classifiers have been used to classify time series, in some time series classification problems, non-
specific classification algorithms have shown to be competitive with the specific ones. Thus the relevance
of the temporal order for classification varies for different time series classification problems. The present
work aims to develop an analysis based on empirical distributions for estimating the relevance of the
temporal ordering in a given time series classification problem, as well as studying the sensitivity of the
specific time series classifiers to the temporal correlation of the observations.
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1 Introduction
Time series (TS) are very present in our every day life, starting from the media to the different scientific,
technological and financial research areas [1]. They are widely used in statistics, signal processing, economet-
rics, finances, weather forecasting, medical studies, control engineering etc [2]. When certain data describe
the evolution of one or several attributes (variables) in a certain time range, or other ordered dimension, it
is said to form a time series. Thus, a time series is a sequence of ordered observations.

There exist a huge variety of algorithms to represent [3], index [4], cluster [5] and classify [6]–[8] time
series [9]. Particularly, this work studies the time series classification (TSC) task: given a database where
each time series has associated a particular class, the aim is to predict the class of a newly given series.

When dealing with TSC problems for the first time, the first intuitive approach would be to consider the
values at each time stamp as belonging to a single attribute and perform the classification in the conventional
way. Nonetheless, such approach has shown to fail in several problems, as relevant signals are not necessarily
aligned and the information about the temporal correlation of the observations is not considered. Thus
considering the temporal order of the instances seems to be crucial in the classification of some problems
related to time series. Henceforth, the classification of time series differs from the classical classification
learning problems, where the instances are described by attributes without an specific natural ordering.

The particularity regarding the instances represented by a time series, has lead to the assumption that
they must be studied by specific methods that take into account the temporal correlation of the attributes.
Those methods base the classification process on the intrinsic temporal information of the observations.
There exist a huge variety of such specific methods [6]–[8]: algorithms where the classification is based on
the distance between complete raw time series, classifiers that transform the original series to a symbolic
feature space then train the classifier on the transformed instances, ensembles of simple classifiers, classifiers
with decision tree architectures, deep learning approaches, etc. Those specific methods, use different work-
flows to read the temporal information given by the order of the observations, that will later be used for
classification. Depending on their procedure, their ability to learn the intrinsic temporal structures of the
instances varies.

As TS classifiers base their predictions on the temporal information given by the instances of the datasets,
if the timestamps of the observations are ordered at random and the original temporal information of the
instances is lost, the performance of the classifiers should deteriorate. Consequently, when specific TS clas-
sifiers are applied to such altered problems, as they base the classification in an artificial temporal order,
their performance is expected to vary negatively. That is, even if the recorded values of the observations are
the same, when the order in which they are recorded has been changed, the ability of the classifier to assign
a class label to an unlabeled time series will not longer be the same.

When the temporal order of the observations is shuffled in a TSC problem, significant shapes, subse-
quences, structures, patterns etc. are lost. That is, the intrinsic temporal information of the problem is
lost. Nevertheless, the alteration of the order of the observations will not have the same repercussion on the
performances of all the classifiers, as they consider different procedures to capture the temporal information
for classification. Therefore, depending on their internal strategy, the performances of some algorithms might
be more robust than that of the others against the loss of the original temporal information of the instances.

On the other hand, the performance of the conventional non specific classifiers will not vary in front of an
alteration of the temporal order, as they do not take into account the order in which the values are recorded.

Therefore, it is assumed that as the non-specific methods do not take into account the so mentioned
temporal information, cannot outperform, or at least be competitive with the specific methods whenever
they are applied to TSC problems.
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When the temporal order of the observations is shuffled, losing a considerable part of the intrinsic tempo-
ral information should deteriorate the performance of specific algorithms, as such information is considered
to be discriminatory for classification. Nonetheless, if in a given TSC classification problem, creating new
artificial temporal orderings by randomly altering the order of the series leads to better performances of such
algorithms, the temporal order of the instances will not be considered as discriminatory for the classification.

Estimating the relevance of the temporal information for a given TSC problem is of great interest, as in
the cases where the order of the instances is not discriminatory for classification conventional non-specific
classifiers could also be considered.

One of the principal objectives of this work is to study the sensitivity that the different specific TS clas-
sifiers show related to the alteration of the temporal order of the instances; as well as their ability to detect
the intrinsic temporal information of the instances. Moreover, this work also aims to examine the relevance
of the order of the observations on a TS classification process; that is, to conclude how discriminatory the
temporal information is for a given TSC problem. The initial idea was to define a statistical analysis by
means of a mathematical expression to estimate the relevance of the temporal order in the classification,
using terms such as entropy gain or mutual information. Nonetheless, because of the lack of a definition of
the probability distribution regarding the attribute representing the temporal information, the study of this
work is based on empirical experiments.

The rest of the work is organized as follows: Section 2 provides a summary of the existing specific time
series classification algorithms, and their procedures to capture the temporal information. In Section 3 the
sensitivity that specific TS classifiers have in relation to the temporal order of the instances is studied.
Section 4 examines the relevance of the intrinsic temporal information for different TSC problems. Section
5 analyses the correlations between different characteristics regarding the TSC problems and specific TS
classifiers. Finally, Section 6 sums up the main ideas concluded from this work.
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2 Review on Specific Time Series Classifiers
A time series is a sequence of ordered observations represented by the value of the measurement and the
timestamp it has been observed in [10]:

TS = {(ti, xi), i = 1, ..., N}

where N is the length of the time series. The measured values (xi) can be univariate or multivariate, de-
pending on the number of attributes measured, taking either discrete or real values.

An unordered collection of such time series forms a time series database. The time series that compose
a database can have varying lengths.

There is a wide research area dedicated to time series, where diverse analysis are carried out to extract
useful information from the temporal data. The most popular objective has been forecasting future values
of time series [1]. Nonetheless, considerable work has been done regarding the classification, representation,
clustering, segmentation, etc. of time series [9], [11]. In particular, this dissertation addresses the time series
classification task.

Time series classification is a supervised data mining task where, given a training time series dataset
TS = {TS1, TS2, ..., TSn} and the set of class labels associated to each of them C = {C1, C2, ..., Cn}, a
time series classifier is built. The latter aims to predict the class of a newly given time series (see Figure
1), from a set of predefined classes characterized by the set of observations for training. The classification
of time series differs from the classical classification learning problems: time series classifiers must consider
the temporal correlation of attributes, while in classical supervised problems the instances are described by
attributes without an specific natural ordering.

Figure 1: Schematic representation of the time series classification process taken from [10].

There exists a huge variety of specific TS classification algorithms which reckon with the particular nature
of the observations, where the attributes are temporally correlated. Some classifiers compute the similar-
ity between raw time series and perform the classification with a distance based machine learning (ML)
algorithm. Other approaches extract feature vectors from the real-values time series, then map the original
series to the new feature space and perform the classification based on such new space by a conventional
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ML classifier. There are also classifiers that follow tree-based structures, ensembles of base classifiers whose
individual outcomes are combined to perform a single classification and deep-learning approaches.

In fact, this section divides the classifiers in 5 principal groups (see Figure 2). In the first one, the
algorithms compute a (dis)similarity matrix using a given TS distance measure, and then perform the clas-
sification with a distance-based classifier. The workflow of the algorithms in the second group, is to extract
features from real-valued time series, and then perform the classification by a distance-based or a feature-
based algorithm. Several approaches of this group also perform an internal feature selection process. The
third group, presents the so called ensemble algorithms, which as its name suggests, are ensembles of base
algorithms, whose outputs are combined for a final single prediction. In the fourth group, those algorithms
that follow decision tree architectures are found. Some approaches use the distance between complete real-
values time series (as those in the first group) as a splitting criteria, while in other approaches, extracted
features are used to branch the data (features extracted by techniques explained in the section related to
the second group of algorithms). Lastly, deep learning architectures designed to deal with temporal data are
explained.

Note that an algorithm can belong to different groups, as their characteristics may match with several
workflows at the same time.

The different existing time series classifiers, follow very distinct procedures to construct models that are
able to assign a class label to a query time series. That is, they focus on very different characteristics when
performing the classification, learning the intrinsic temporal information of the instances in different ways.
In consequence, the alteration of the temporal order of the observations will have different repercussions in
the algorithms. In some cases, the performance of the classifier will be very robust against re-ordering of
the time stamps of the observations, while other algorithms may show significant variations in their perfor-
mances when the order is randomly altered, meaning they have high sensitivity to the order in which the
observations are recorded.

In all the cases except deep learning approaches, the sensitivity of the algorithm to the temporal infor-
mation it is not subject to the classifier itself, as they are conventional ML classifiers, but to the information
given to such classifier instead. That is, the temporal information is saved in the specific distance measures
or extracted attributes. Therefore, the ability of a given algorithm to detect the temporal information of
a TSC problem or the performance variation of such algorithm when the original temporal order of the
instances is lost, depends on the specific TS distance measures or extracted features.

The review of this section does not cover every existing specific algorithm to perform the classification of
TS, but it explains the most basic approaches (those in which more complex classifiers are based) and some
compounded algorithms that are considered in the empirical study later in this work.
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(a)

(b)

(c)
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(d)

(e)

Figure 2: The general workflows of the different specific TS classifiers.

2.1 Similarity Between Whole Series: Shape-Based Similarities
The classifiers grouped in this section, consider shape-based similarities between complete time series, con-
cluded from the individual point values. The particular nature of time series require specific similarity
measures. By this time, there exists a considerable variety of distance measures to compute the similarity
between two whole series. Those distance measures are used to construct the (dis)similarity matrix by con-
sidering all the pair combinations between the series on the training set. Then a distance based classifier is
trained based on such matrix. The classification of unlabeled instances relies on the distance of the query
to all the time series of the training set. The classification is almost exclusively performed by the nearest
neighbour (1-NN) classifier. Nonetheless, other approaches can be used; such as, k-Nearest Neighbour (k-
NN) classifier or support vector machines (SVM) [12]. The following lines of this section present some of the
existing similarity measures to calculate the similarity of two whole time series, in which the (dis)similarity
matrix is based.

The Euclidean Distance (ED) is a shape based distance measure that computes the pointwise distance
between two time series. Given two time series X = {x0, x1, ...xN−1} and Y = {y0, y1, ...yN−1} the ED
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between them is computed as follows:

ED(X,Y ) =

√√√√N−1∑
i=0

(xi − yi)2 (1)

Even if the ED is one of the most used measures in data mining, several researchers have outlined it might not
be an adequate measure for time series [3], as it is only applicable to series of same length and is considerably
susceptible to noise and outliers. Moreover, as it compares the point placed on the same timestamp, it does
not represent correctly the distance between two time series in the case of warped or shifted series (see Figure
3), and the alteration of the order of the instances will not affect its performance, as the sum of the distance
of the points recorded at the same timestamp remains the same. Even if the order or the points is permuted,
the sum will converge to the same value, thus it does not consider the temporal correlation of the observations.

(a) (b)

Figure 3: Two time series (a) with different local warpings and (b) shifted from each other.

To overcome the problems derived from the ED rigid measure, several elastic distance measures have been
proposed. The most simple and popular benchmark elastic distance measure is the Dynamic Time Warp-
ing (DTW) [13]. Its main purpose is to find the optimal alignment between two series X = {x0, x1, ...xN−1}
and Y = {y0, y1, ...yM−1} (see Figure 4), by searching the minimal path in a pointwise distance matrix (D)
that defines a mapping between them. Each of the elements of the matrix D is the ED between two points
(xi, yj). The search for the optimal path has several constraints [14]: the path must start in position D(0, 0)
and end in D(N − 1,M − 1), the path is forced to continue through adjacent cells and it cannot move back-
wards in the position of the matrix. Moreover, in some cases an extra temporal restriction is added to limit
the number of vertical or horizontal steps that the path can take consecutively, reducing the computational
cost by avoiding the match of points that are far from each other [3]. The DTW distance measure allows
the calculation of the distance of two time series with different lengths.

The DTW distance measure is sensitive to the temporal order of the instances. Therefore, when the
temporal information of a given TSC problem is altered, the alignment between two time series will change,
and consequently, so will the distance between them. Therefore, the distance value will no longer be repre-
sentative of their closeness.
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Figure 4: Example of the computation of the DTW distance.

Based on the DTW elastic distance measure, Jong et al. [15] describe the Weighted DTW (WDTW)
measure, which adds a multiplicative weight penalty that depends on the distance between points on the
warping path. That is, the elements of the pointwise distance matrix D are multiplied by a weight that
depends on their distance on the time domain, applying a bigger penalization to those pairs that are far
from each other.

Moreover, Górecki and Luczak [16], [17] proposed the Derivative DTW (DDDTW ), which refers to a
weighting combination between the raw series and the first order differences. That is, they find the DTW
distance between two series and their corresponding two difference series, and combine them with a weighting
parameter α:

DDDTW = α ·DTW (X,Y ) + (1− α) ·DTW (diff(X), diff(Y )) (2)

where the first order differences of the time series (diff ) are defined as:

x′i = xi − xi+1 i = 1, ...,m− 1 (3)

The Move-Split-Merge (MSM) distance was proposed by Stefan et al. [18], where the similarity is
calculated using a set of operations that transform a series into a target series. In the move operation, a
value is substituted by another; the split operation inserts an identical copy of a value after itself and the
merge operation deletes a value if it is followed by an identical value (see figure 5). This algorithm is based
on the edit distance, that was originally proposed to calculate the similarity between two sequences of strings
based on the minimum edit operations (delete, insert and replace) required to transform one sequence into
the other, and adapted to work with sequences of real numbers. Thus, the MSM distance between two time
series X = {x0, x1, ...xN−1} and Y = {y0, y1, ...yM−1} is the cost of the lowest-cost transformation to convert
the series X into the series Y . When working with real numbers, the distance between the points in a time
series is either 0 or 1. If two points (xi, yj) are closer to each other than a specified threshold value (ε), they
are considered equal, and their distance is considered to be 0. In the opposite case, where their distance in
absolute sense is bigger than ε they are considered different and their distance 1.
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Figure 5: Examples of the move, split and merge operations, image taken from [18].

In the case of this adapted edit distance, when the temporal order of the instances is altered, converting
one series into another target series will require from different transformations. Thus the value of the dis-
tance between two time series will change. Because of that, time series that were originally similar to each
other might not longer be, and vice versa.

Another time domain distance measure is the Longest Common Subsequence (LCSS) [19], [20].
There are several approaches to calculate this non-metric based distance measure [19], which is based on the
solution of the LCSS problem in pattern matching. This method uses pointwise similarity and it has a great
ability to ignore noise and distortion values. Although, it was originally designed to measure the similarity
of two sequences of characters (see Figure 6), it has been extended to consider real-valued time series, by
using a distance threshold (ε). The latter will determine the maximum difference allowed between a pair of
values for them to be considered a match.

(a) (b)

Figure 6: An example of the common subsequences of two sequences of character, (a) without inserting gaps
between the characters (non-elastic) and (b) inserting gaps (elastic). When the gaps are inserted allowing
elasticity, the number of common subsequences grows, as well as the size of some of such subsequences.
Image taken from [21].

The LCSS distance between two series X = {x0, x1, ...xN−1} and Y = {y0, y1, ...yN−1} is calculated as
follows:

dLCSS(X,Y ) = 1− LCSS(X,Y )

N
(4)

where, LCSS(X,Y ) is the length of the LCSS between the two series, and N the length of those series.
Moreover, several methods have been proposed to improve the conventional method to compute the LCSS
[20] distance. One of those improvements consists on considering an elastic method to compute the LCSS by
inserting gaps between the characters (i.e. pointwise values of the time series), as explained in Figure 6(b),
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to find the greatest number of matching pairs for an optimal alignment. The latter, provides elasticity to
the measure and allows the search for the optimal alignment between two series. In this case, the distance
between two time series of different length can be computed.

In the case of the LCSS distance, depending on whether elasticity is considered or not, the value of the
distance between two time series will be affected differently when the temporal order of the instances is al-
tered. In the case where no gaps are inserted, the pointwise values that in the original dataset were aligned,
will continue to be aligned, but in another timestamp value. Whether they were considered similar, will also
remain unchanged. Nonetheless, the number of consecutive matching points will vary as the order of the
observations is altered. In the case of the elastic approximation, first gaps are inserted to find the optimal
alignment, thus the values that were in the same timestamps in the original dataset might not coincide.
Then, as in the non-elastic case, the number of consecutive matching points may vary, changing the value
of the distance between two time series.

Table 1 sums up the main characteristics of the presented algorithms as well as their advantages and
drawbacks.

In the distance-based classifiers where a rigid distance measure, such as ED, is used, the value of the
distance between two TS is independent of the temporal order of the instances. Thus its performance will not
vary whenever the timestamps are re-ordered randomly. Moreover, in all the distance-based classifiers where
the used distance measure is elastic, shuffling the timestamps of the observations does affect the performance
of the classifier. The values of the distances between two time series will change, as there will exist a new
optimal alignment which will no longer be representative of the original intrinsic temporal information of
the dataset. The situation is similar when the edit distance is used in combination with the distance based
classifier.
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distance
measure

type different
length

sens. to
temporal
order

advantages drawbacks

Euclidean rigid no no wrong distance calcu-
lation for disaligned
TS

DTW elastic yes yes alignment of time se-
ries

only considers the
Y-axis value of data-
points, does not ac-
count for the relative
importance regarding
the phase difference
between a reference
point and a testing
point, unintuitive
alignments in presence
of singularities, large
requirements of time
and memory

WDTW elastic yes yes penalizes points
with higher phase
difference, prevent
minimum distance
distortion caused by
outliers

large requirements of
time and memory

DDTW elastic yes yes more intuitive align-
ments in presence of
singularities, superior
alignments (infor-
mation about the
shape given by the
derivatives)

large requirements of
time and memory

MSM edit yes yes efficient, invariant to
the choice of origin

LCSS rigid / elas-
tic (gaps)

no / yes yes ignores noise and dis-
tortion

Table 1: Summary of the described distance measures for time series. For each measure it is specified
the measure type, whether it accepts datasets composed by instances with varying lengths, whether its
performance is changes when the temporal order of the instances is altered and their main advantages and
drawbacks.
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2.2 Learning Features: Structural (dis)similarities
The algorithms explained in this section, create discriminatory features that are representative of time series
and then, they base the classification on them. That is, these algorithms construct abstractions of the time
series in the dataset by learning features that best represent the classes and discriminate between them,
and mapping the real valued time series to the new feature space. Thus the classification relies on those
representative features. There are several strategies to create such representative variables (see figure 7):

• Dictionary based classifiers discretize subsequences of real-valued TS by a symbolic representation to
create representative words, which will become the new representative variables. Then, histograms
are constructed from those word counts. In some approaches, every TS has an associated histogram,
which represents its corresponding word count; in some others, the histograms are associated to each
of the classes. In conclusion, pattern frequency features are created, as the words counts are the values
for the variables. Some dictionary-based approaches use feature selection methods to select the most
discriminative words.

• In shapelet based classifiers, a set of subsequences of TS that are highly representative of a class is
defined. Those subsequences are called shapelets, and they form the new set of attributes. The values of
such attributes for each TS are the distances between the shapelet and the subsequence that represents
its best position on the TS. One of the main differences among the shapelet-based algorithms is the
procedure they use to find such set of discriminatory shapelets.

• With an idea similar to shapelet based classifiers, some algorithms use convolutional kernels as vari-
ables. Those kernels will be representative of different substructural shapes. The real-valued time
series will be represented by attributes whose valued will be based on the results of the convolution
between the kernel and the TS.

• In interval based classifiers, the instances are divided in intervals and summary statistic features are
extracted from those intervals (e.g. the mean and the standard deviation of the interval).

Once the real-values time series are mapped to the new feature space, any distance-based or feature-
based classifier can be used for classification. Moreover, those features can be used as a splitting criteria
for classifiers based on decision tree structures. The algorithms presented in this section use very distinct
classifiers, thus the latter will be specified in the case of each of the algorithms.
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(a) Dictionary (b) Shapelet

(c) Convolutional kernel

(d) Interval

Figure 7: Graphical summary of the different feature extraction methods.
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Figure 8: The general workflow of the specific TS classifiers based on feature extraction.

Compared to the algorithms of the previous section, the extracted features provide to base the classifi-
cation in higher-level structures, rather than point-to-point local comparisons.

It must be outlined, that in the algorithms where the classification is based on extracted features, the
classifiers themselves are not sensitive to the temporal order of the instances. The temporal information
is recorded on the attributes selected to represent the instances. Therefore, when the temporal order of
the instances is altered, the performance will not vary because the classifier is reading the wrong temporal
correlation; but because the attributes in which the classification is based do not represents the real temporal
correlation of the observations, as they will not longer be representative of the original shapes of the instances.

2.2.1 Dictionary Based Classifiers: Pattern Frequency Features

Dictionary based classifiers use frequency of words as the basis for finding discriminatory features. They
transform the series into representative words, reducing its dimensionality. To transform the real valued
series, a sliding window of size w goes through the series, producing l values for each window, and discretis-
ing those values by assigning a symbol from an alphabet α. The classification is performed calculating the
similarity based on the distribution of words. Some approaches, base the classification on the histograms
resulting from the word counts, which are representative of particular instances or a given class, depending
on the approach. In those cases, a distance-based classifier is used for classification (see Figure 9). Other
algorithms, execute a feature selection process and classify the unlabelled instances by feature-based classi-
fiers (see Figure 9).
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Figure 9: A general overview of the workflow of different dictionary based classifiers.

The Bag Of Patterns (BOP) [22], is a dictionary based classifier that bases the conversion of the series
to strings on the Symbolic Aggregate Approximation (SAX) [23] method. The SAX method produces a
lower dimensional representation of a time series by transforming the original series into symbolic words (see
Figure 10). Once the time series is discretized, the algorithms extracts subsequences of fixed length (speci-
fied by the user) by the sliding window technique [24], obtaining a set of strings, each of which corresponds
to a subsequence in the time series. In some cases multiple consecutive subsequences are mapped to the
same string. To avoid over-counting those trivial matches as true patterns, the numerosity reduction [23]
technique is applied: only the first occurrence is recorded, and the rest is ignored until a different string is
encountered. Once the set of strings regarding each of the time series is defined, the word-sequence matrix
M is constructed, which is the “bag of patterns” matrix. The Mij elements of such matrix denote the fre-
quency of the word i in the time series j (see Figure 11). The distribution of words of a series obtained in
the M matrix forms a count histogram. To perform the classification, the 1-NN algorithm is used, based
on a histogram-based similarity measure. In most cases, the Euclidean distance between the histograms is
calculated and then classified by the 1-NN algorithm.

Figure 10: A time series discretized into SAX symbols, image taken from [23].
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Figure 11: A visual example of the BOP representation for a time series, image taken from [22]. Each row
refers to a SAX word and each column denotes one time series from the database.

There is another classifier that combines the SAX representation with the Vector Space Model, called
Symbolic Aggregate Approximation - Vector Space Model (SAXVSM) [25]. As in the case of the
BOP algorithm, using a sliding window subsequence extraction and the SAX method, the labeled time se-
ries are transformed into collections of SAX words. This algorithm, builds bags of SAX-generated words
representing each of the training classes assembles them into a corpus. The latter, is a sparse term frequency
matrix. The rows of the matrix represent the set of all the SAX words, and the columns each of the classes
of the training set (and not each of the time series of the dataset as in the case of the BOP algorithm). The
elements of the matrix represent the observed frequency of a word in a class; thus in this case, the distribution
of words is formed over the classes rather than series. In the next step, each of the elements of the matrix
undergoes a weighting by the term frequency and inverse document frequency (tf · idf), transforming the
frequency values into weight coefficients:

tf · idf(tf, df) =

{
log(1 + tf) · log

(
c
df

)
, if df > 0,

0, otherwise

where c is the number of classes, the term frequency (tf) is the number of appearance of a word in a class,
and the inverse document frequency (idf) refers to the number of classes a word appears in. The result-
ing weight vectors are retained for classification. To perform the classification, the unlabeled time series is
transformed into a terms frequency vector by the same sliding window technique and SAX parameters as in
the training phase. Then, the cosine similarity between the terms frequency vector and the weight vectors
of the training classes are performed. The unlabeled time series is assigned to the class whose vector has
obtained the highest similarity value, using the 1-NN classifier. The procedure is summarized in Figure 12.

Another dictionary based algorithm is the Bag of SFA Symbols (BOSS) [26], a combination of the noise
tolerance of the Symbolic Fourier Approximation (SFA) [27] with the structure based representation of the
bag-of-words model (see Figure 13). In this algorithm, firstly, sliding windows of fixed length are extracted
for each time series. Then, the SFA transformation is applied to each of the real valued sliding window. The
SFA is a symbolic representation of a time series by means of a sequence of symbols, known as SFA words.
The SFA is composed of two operations. First, the Discrete Fourier Transform (DFT) decomposes a signal
into a sum of sinusoidal waves. Each wave is represented by a complex number called a Fourier coefficient:

DFT (X) = {x0, ..., xn−1} = (real0, imag0, ..., realn−1, imagn−1) (5)
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Figure 12: A graphical summary of the SAX-VSM algorithm, image taken from [25].

The first Fourier coefficients correlate to lower frequency ranges, and are commonly used to describe the
signal, thereby low pass filtering the signal and smoothing it. Once the series is truncated, it is discretized
by Multiple Coefficient Binning (MCB) instead of using fixed intervals as in the previous cases. The latter,
chooses the discretizing points estimating the distribution of the Fourier coefficients. For estimating those
coefficients, the series is divided in several segments, a DFT is performed, and breakpoints for coefficients
are chosen so that there is the same number of elements on each bin. Thus from the train data the labelled
MCB intervals are obtained, and based on it, the SFA words are created. As in the previous algorithm,
numerosity reduction [23] is applied. From the resulting SFA words a histogram is constructed. To perform
the classification, they propose to use the 1-NN algorithm calculating the distances between the transformed
time series by the BOSS distance. The latter is a non-isometric function, and only includes the distances
between frequencies of words that occur on the first histogram passed as an argument.

Figure 13: A summary of the procedure of the BOSS algorithm.

The BOSS algorithm uses a sliding window of fixed length. Nevertheless, the same authors proposed
the BOSS Ensemble classifier [26], which uses multiple window lengths to allow for different structural
sizes. The different length sliding windows are applied to the train data and are given a score. Then the
classifier, classifies a query time series using the best window sizes, and those that present an accuracy above
a given threshold are used for prediction. The latter are used to perform 1-NN classifications with the query,
assigning for each of the window lengths a class label to it. Finally, the most frequent class label is chosen
to be the output of the classification algorithm.
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Later, the contractable Bag of SFA Symbols (cBOSS) [28] was proposed to overcome the consider-
able amount of build time and space the BOSS Ensemble algorithm needed on larger datasets. It fixes a
number of different BOSS classifiers to construct (k), and selects the parameters of each of them by a fil-
tered random selection. Moreover, they assess an alternative voting scheme based on weighted probabilities
instead of using the majority vote method. Leave-one-out cross-validation is used to generate probabilities
for the weightings and to estimate accuracy. Furthermore, for the classification of the base classifiers, it uses
decision tree classifiers instead of using the 1-NN classifier, which requires higher amounts of memory. In
some applications, the maximum ensemble size is replaced by an amount of time, continually building new
classifiers until it runs out of time.

Middlehust et al. [29] proposed the Temporal Dictionary Ensemble (TDE), which is also an enseble
of BOSS classifiers. It follows the general structure and weighting scheme of the cBOSS algorithm. Neverthe-
less, TDE uses a guided parameter selection for ensemble members based on a Gaussian process. Moreover,
instead of using the BOSS distance, it uses the histogram intersection distance measure [30]. The BOSS
distance ignores the location of words in a series, and the locations of certain discriminatory subsequences
may happen to be important. The histogram intersection distance measure based on spatial pyramids [31]
overcomes such issue. In this case, the height defines the importance of localisation for the transform. His-
tograms are weighted to give more importance to similarities in the same locations than global similarity,
and are concatenated to form an elongated feature vector per instance (figure 14).

Figure 14: An example of the transformation of a time series using spatial pyramids. Image taken from [29].

Le Nguyen et al. [32] designed the Multiple Representation Sequence Learner (MrSEQL). This
algorithm uses multiple domain representations, as it combines symbolic representations in time domain
(SAX [23]) with frequency domain representations (SFA [27]). Moreover, it performs multiple resolutions of
those symbolic representations by using different parameter settings. Each of the symbolic representations is
trained by the SEQL classifier [33], which uses a greedy feature selection. The latter was originally designed
as a binary classifier for sequence data such as biological sequences (e.g. DNA) or text. It explores the
space of all subsequences employing a tree based approach with a branch-and-bound strategy, selecting a
set of discriminative subsequences. As in the previous algorithms, the dataset is transformed according the
new feature space. The instances represented in the new symbolic space are used to train a linear model
composed by the set of the discriminative subsequences and their corresponding coefficients. The latter
can be interpreted as the discriminative power of the subsequence. The general workflow of the MrSEQL
algorithm can be seen in Figure 15.
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Figure 15: The workflow of the MrSEQL classifier. Image from [32].

Shcäfer et al. [34] proposed an algorithm known as Word Extraction for Time Series Classification
(WEASEL). First, the SFA [27] symbolic representation is used to transform the real valued series into a
set of words by using the sliding window technique. Nevertheless, instead of using the classical procedure,
the choice of the most discriminative Fourier coefficients is performed by using ANOVA f-test [35] and ap-
pliying an information gain binning to find the most appropriate discretization boundaries (discriminative
quantization). Moreover, it extracts multiple-length windows, and builds a single model from the concate-
nation of feature vectors instead of considering each fixed-length window as independent feature. With the
counts of words derived from the discretization of TS, histograms are built. Then, WEASEL applies the
Chi-squared (χ2) test [36] feature selection aiming to remove irrelevant features from the classes, obtain-
ing a highly discriminative feature set. Then, the time series are mapped to the new feature space using
sparse vectors, and with that, a logistic regression method is trained. To classify unlabeled query time
series, they are transformed according the model’s feature space, then the trained logistic regression model
predicts a class label for the query. Figure 16 is a graphical representation of the procedure of this algorithm.

Figure 16: The workflow of the WEASEL algorithm.

Later, they extended the version developing the Word Extraction for Time Series Classification
plus Multivariate Unsupervised Symbols and Derivatives (WEASEL+MUSE) [37], for multivariate
time series classification (MTSC), charachterized by the interplay of features in different dimensions. First,
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each of the dimensions is considered a univaried TSC problem and undergoes the transformation proposed
in the WEASEL [34] algorithm. The same procedure is applied to the derivatives of those univariate time
series. The resulting words are concatenated with an identifier (name of the dimension and window size) to
form multivariate words. To avoid irrelevant features and dimensions a Chi-squared (χ2) test [36] is applied
to the histogram of discrete features extracted from all dimensions, to obtain a highly discriminative feature
vector. The instances are mapped into the new feature space, then a logistic regression classifier is trained
based on the transformed dataset. As the weight vector is trained over all the dimensions, this algorithm
takes into account the interplay of the multiple dimensions. The procedure of the WEASEL+MUSE algo-
rithm is summarized in Figure 17.

Figure 17: The workflow of the WEASEL+MUSE algorithm. Image from [37].

Table 2 sums up the main characteristics of the presented dictionary-based classifiers, such as, which
symbolic representation(s) they use, whether they use fixed window length or multiple sliding windows are
considered, whether they use a feature selection method and which is the classifier they use.
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algorithm symbolic
representa-
tion

window
length

phase inde-
pendent

feature selec-
tion

classifier

BOP SAX fixed yes no 1-NN (euclidean distance
between histograms)

SAXVSM SAX fixed yes no 1-NN with cosine similar-
ity

BOSS SFA fixed yes no 1-NN with BOSS distance
between histograms

BOSS En-
semble

SFA multiple yes no multiple 1-NN with BOSS
distance between his-
tograms and majority
vote

Contractable
BOSS

SFA multiple yes no multiple decision trees and
weighted vote

TDE SFA multiple no no multiple 1-NN with his-
togram intersection dis-
tance and weighted vote

MrSEQL SAX and
SFA

multiple yes yes, branch-
and-bound

linear model

WEASEL SFA multiple no yes, Chi-
squared
test

logistic regression

WEASEL +
MUSE

SFA multiple yes yes, Chi-
squared
test

logistic regression

Table 2: Summary of the main characteristics of the presented dictionary-based algorithms.

In dictionary based classifiers, when the natural order of the instances is changed, the subsequences de-
fined by the sliding window procedure will be different. Therefore, when they are discretized by a symbolic
representation, the words that are formed are different. Consequently, the word count histograms related
to the instances will be different, and the words and the distributions of the histograms will not longer be
representative of the original temporal information of the dataset. Henceforth, in those cases where the
classification is based on the distance between histograms (e.g. BOP, BOSS), that distance will not longer
define in a correct way the real closeness between instances, thus the prediction may come out wrong. The
classifier itself, is not sensitive to the alteration of the order; but as the given histograms represent incorrect
temporal information, their predictions will lose accuracy.

For example, in the particular case of a BOP algorithm that uses an alphabet of size 2, a word length of
3 and a window size of 9, Figure 18(a) shows the resulting histograms of the first instance of class 1 and the
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first instance of class 2. If the temporal order of the observations is altered, the histograms related to those
instances are the ones shown in Figure 18(b). Henceforth, Figure 18 shows that altering the temporal order
of the instances changes the representation of the latter, and thus the histogram related to it. Therefore,
when the 1-NN classifier is used to calculate the distance of the histograms, the results will vary, as the
distance will no longer represent a true closeness between two instances. The effect of the variation on the
temporal order is similar in the case of the BOSS algorithm (see Figure 19).

(a) Original (b) Altered

Figure 18: The histograms of the first instance of class 1 and the first instance of class 2 in for the (a)
original dataset and (b) the datasets with the temporal order of the instances randomly altered, using the
BOP algorithm with an alphabet of size 2, a word length of 3 and a window length of 9 to classify the
instances of the Plane dataset [38].

(a) Original (b) Altered

Figure 19: The histograms of the first instance of class 1 and the first instance of class 2 in for the (a) original
dataset and (b) the datasets with the temporal order of the instances altered, after the BOSS algorithm with
an alphabet of size 4, a word length of 2 and a window size of 12 is applied to the Plane dataset [38].

Moreover, in the cases where the most discriminative words are selected (e.g. WEASEL), as the instances
are represented by other representative words that do not belong to the original discriminative shapes (see
Figure 20), the words of the altered dataset may not be as discriminant as the words derived from the original
instances, as they have not been derived from original patterns. Therefore, the classification based on those
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words might not be as accurate as that based on the discriminative words of the original dataset.

(a) Original (b) Altered

Figure 20: The histograms of the first instance of class 1 and the first instance of class 2 in for the (a) original
dataset and (b) the datasets with the temporal order of the instances altered, for the Plane dataset [38],
when applying the transformation corresponding to the WEASEL algorithm. In this example, the words are
of size 2, the alphabet has a size of 2 and two different window lengths (12 and 36) are considered.

Besides, in the algorithms where the sliding window technique [24] is used, when a single fixed-size slid-
ing window is used, only those temporal substructures that match with the window size can be extracted.
Instead, when multiple window lengths are used, a wide variety of temporal substructures are considered for
classification. Henceforth, the latter are expected to better catch the intrinsic temporal information of the
observations.

To sum up the information of this section, Table 3 collects the main advantages and drawbacks of the
algorithms considered in this section.
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algorithm advantages drawbacks

BOP good performance in long instances,
anomaly detection, interpretable pattern
distribution

single window size, minimum length re-
quired to capture the high-level structures

SAXVSM interpretable class generalization, fast clas-
sification, robust to noise

computationally expensive learning phase

BOSS noise reduction cross validation to find the optimal set of
parameters, single window size, memory
and time inefficient

BOSS En-
semble

multiple resolutions of symbolic represen-
tations, noise reduction

large memory requirements

Contractable
BOSS

efficiency, multiple resolutions of symbolic
representations, noise reduction

large memory requirements

TDE multiple resolutions of symbolic represen-
tations, noise reduction, temporal location
of patterns

memory intensive, slow for classifying

MrSEQL time and frequency domain representa-
tions, multiple resolutions of symbolic rep-
resentations, interpretable patterns, fea-
ture selection, efficient time and space
complexity

WEASEL fast classification, multiple resolutions of
symbolic representations, feature selection,
temporal order of windows

high build time, large memory require-
ments

WEASEL +
MUSE

multiple resolutions of symbolic represen-
tations, robust against noise, capture gen-
eral shapes, considers the interplay of fea-
tures in multivariate time series

high build time, large memory require-
ments

Table 3: The main advantages and drawbacks of the dictionary-based algorithms.
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2.2.2 Shapelets

Shapelets are time series subsequences which are in some sense highly representative of a class [39]. They
provide the detection of phase-independent localized similarity between series that belong to the same class.
Shapelet based algorithms perform the classification based on the distance to the shapelet, rather than
the distance to the nearest neighbour. That is, they use the similarity between a shapelet and a series
as a discriminatory feature. For that purpose, the principal aim of such algorithms is to find the set of
best subseries that can help discriminate between classes. Each of the learned shapelets is placed at the
best position in the time series (see Figure 21), under some distance measure (usually Euclidean), and the
‘matching’ of the shapelet to the time series refer to its distance at that position. Once the instances are
represented by the new features, any feature-based classifier could be used for classification, although the
original shapelet-based algorithms used them as a splitting criterion for decision trees. The main difference
between the algorithms explained in this section is the method used in the shapelet search process, which
will determine the computational cost of the algorithms.

Figure 21: A graphical example of the best matching location. Image taken from [39].

In the original algorithm that made use of shapelets for classification [39], they are used as the splitting
criterion for a decision tree. At each step of the decision tree induction, a shapelet and its corresponding split
point is determined (see Figure 22). Therefore, each internal node of the decision tree contains information
about a single shapelet classifier, and the left and right subtrees. To determine de quality of candidates,
information gain is used. Moreover, the leaf nodes embody the information about the class labels. To predict
the class labels of new instances, starting from the root of a shapelet classifier, the distance between the
instance to classify and the shapelet in that node is calculated. If the distance is smaller than the splitting
point, the left subtree is used; and the right subtree otherwise. The procedure is repeated until the leaf node
is reached, and the corresponding class label returned. This algorithm has a high training complexity due
to the large number of candidate shapelets and the repeated scanning of the data, as brute force algorithm
is used for finding the candidate shapelets. Nevertheless, they implemented several techniques to speed up
the algorithm, such as, early abandonding of distance computations or admissible entropy pruning of the
information gain metric. In the last years, more algorithms based on shapelets have been developed, focused
on optimising the original algorithm.
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Figure 22: An example of the shapelet-based decision tree classifier for the ArrowHead TSC problem. The
image shows the resulting shapelet dictionary with the corresponding threshold values. Image taken from
[39].

Rakthanmanon and Keogh [40] described an extension of the original shapelet based approach [39], that
provided a faster shapelet discovery, called Fast Shapelets (FS). Instead of performing a full enumerative
search at each node, it solves the shapelet discovery problem with a change of representation, which is dis-
crete and low-dimensional. For each object in the dataset, a transformation is performed in the time series
using SAX. Multiple SAX words will be created for each time series provided the sliding window technique
[24]. The dimensionality of the SAX dictionary is then reduced by masking randomly selected letters (see
Figure 23); that is, performing a random projection. After multiple random projections are performed, a
frequency count histogram is built for each class. Each SAX word will have a score that expresses how well
the frequency table discriminates between classes. Then, the k-best words are selected and mapped back
to the original shapelets. These shapelets are used as splitting criterion of a decision tree as in the original
shapelet based algorithm.

Figure 23: An illustration of the masking technique. Image taken from [40].

Shapelet Transform (ST) is a shapelet based algorithm proposed by Hills et al. [41], [42], that identifies
the best k shapelets in a single scan of the data. Shapelet quality stands on how well they can discrimi-
nate between class labels. As quality measures they propose three alternatives: Kruskall Wallis, analysis
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of variance F-statistic and Mood's median. Moreover, the number of shapelets can be reduced either by
ignoring the shapelets below a cut-off point, or by means of a clustering process. Once the top k shapelets
are assessed, the transformed dataset is computed. The latter is composed of k attributes, and their value
refers to the distance between each of the k shapelets and the best position in the time series. It is possible to
reduce the number of shapelets afterwards in order to remove self-similar shapelets by a clustering process.
Once the dataset is transformed according to the new set of attributes, any feature-based classifier can be
used. Thus, in this algorithm, the shapelet discovery is separated from the classification. In the latest version
of ST [42], the number of shapelets per class are balanced.

Grabocka et al. [43] proposed the so called Learning Shapelets (LS), where the search of shapelets
is performed by a heuristic gradient descent procedure. The method learns the optimal shapelets instead
of performing a search among all possible candidates. The algorithm starts with a rough initial guess for
shapelets. Then the shapelets are optimized iteratively by minimizing a classification loss function, by means
of a stochastic gradient descent optimization process. With that, the k best shapelets are found not restricted
to being subseries of the original instances. (Those shapelets are initialised through a k-means clustering of
candidates from the training data. A logistic loss function is used for the optimisation process, based on a
logistic regression model for each class.) The LS algorithm jointly learns the weights for regression and the
shapelets.

Table 4 summarizes the most general characteristics of the presented shapelet based algorithms, such
as their shapelet search method, the quality measure of the shapelets and the classifier they use once the
features are extracted.

algorithm shapelet search quality measure classifier

original algorithm brute force information gain originally decision tree,
but any feature-based
classifier could be used

Fast Shapelets SAX + random
projection

discriminative capacity of
the frequency table

originally decision tree,
but any feature-based
classifier could be used

Shapelet Transform exhaustive search Kruskal Wallis, variance
F-statistic and Mood's
median + clustering
to remove self-similar
shapelets

any feature-based classi-
fier

Learning Shapelets heuristic gradient
descent

loss function feature-based regression
algorithm

Table 4: Summary of the main characteristics of the presented shapelet-based algorithms: the shapelet
search technique, the quality measure for shapelets and the final classifier.

When the order of the observations is altered, the shape of the time series changes, and so does the set of
shapelets that will discriminate well between classes (see Figure 24). As they represent non original pattern,
their ability to discriminate between classes should be worse than that of the discriminative shapelets of the
original datasets. Consequently, the performance of the classifier is expected to be worse, as they are based
on non real patterns. Moreover, the original instances are smoother that the altered, which present more
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abrupt changes and seem more noisy. That issue is reflected on the set of resulting discriminant shapelets:
the shapelets of the original dataset are smoother and present clear patterns, while those of the altered
problem reflect more noisy and chaotic patterns.

(a) Original (b) Altered

Figure 24: The resultant set of shapelet in which the classification will be based for the (a) original dataset
and (b) the datasets with the temporal order of the instances altered, for the Plane dataset [38].

2.2.3 Convolutional Kernels

Closely related to shapelet based classifiers, several time series classifiers use convolutional kernels to detect
patterns on the input. Those approaches perform the convolution between a kernel and a query time series
producing a feature map in which the classification is based. The resulting feature maps represent the degree
of presence of the patterns represented by the kernels on the time series.

Dempster et al. [44] developed the Random Convolutional Kernel Transform (ROCKET), which
combines a large number of random convolutional kernels with a linear classifier (ridge regression or logistic
regression). Each one of the 10.000 kernels is applied to every instance. The convolution of an instance
and a kernel is performed through a sliding dot product, producing a feature map. For each convolution
two features are created: the maximum value and the proportion of positive values (ppv). The ppv feature
expresses the proportion of the series correlated to the kernel. Thus, each of the time series is represented as
an instance of 20.000 attributes, and the transformed dataset is used to train a linear classifier. In principle,
the classification can be performed by any classifier, but they found it performs best when a linear classifier
is used. They propose the logistic regression for large datasets and the ridge regression for the rest.

As in the case of the previous algorithms, the alteration of the temporal order will have an effect on the
workflow of the algorithms based on convolutional kernels. Altering the temporal order changes the shape
of the instances, thus although the considered kernels remain the same, the result of the convolution of
such instance with a given kernel will change. Therefore, for each of the kernels, the ability to discriminate
between classes will change (see Figure 25). Consequently, when performing the classification based on the
results of such convolutions, as the original shapes are lost, they will no longer be highly representative and
may lead to wrong predictions.
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(a) Original (b) Altered

Figure 25: The four most discriminative kernels for (a) original dataset and (b) the datasets with the
temporal order of the instances altered, in the case of the Plane dataset [38].

2.2.4 Interval Based Classifiers

Interval based classifiers create features from intervals of the original instances. There exists a wide possi-
bility for interval features, but in most cases the most simple and interpretable features are used, such as
the mean and the standard deviation of the interval. There are loads of possibilities in which a time series
can be split, thus there exist a huge amount of possible intervals. Therefore, there are two crucial aspects to
determine for interval based classifiers: how to deal with the increase in the dimension of the feature space
and what to do with each interval. Rodriguez et al. [45] were the first to develop a interval based algorithm
and addressed the first issue by using intervals whose lengths were powers of two, and the second, by calcu-
lating binary features on each interval based on threshold rules on the interval mean and standard deviation.
The resulting feature set is used to train a support vector machine. As the latter considers several divisions
by means of intervals of different size, the temporal substructures of different length can be extracted from
the time series. That is, the algorithm is not based on a single-length temporal information. Moreover, once
the dataset has been mapped to the new feature space defined by the interval features, any conventional
classifier can be used for classification.

To overcome the problem of the immense feature space, Deng et al. [46] proposed the Time Series
Forest (TSF), a random forest approach that uses the summary statistics of each interval as features. In
this approach three interval features are selected: mean, standard deviation and slope. Time series trees
are created by a recursive top-down method, similar to standard decision tree algorithms. They use the
random sampling strategy employed in the random forest, but it uses Entrance (entropy + distance) gain
as the splitting criterion. In each of the nodes of a time series tree, O(

√
m) (being m the length of the

series) interval sizes are considered randomly, as well as O(
√
m) starting points, and the interval feature

with the highest Entrance gain as is used for splitting. Thus the size of the resulting feature space is O(m).
Moreover, a node is considered a leaf when all the features have the same value or all instances belong to the
same class, as it is impossible to get any entropy gain. A time series forest is composed by such time series
trees. To classify unlabeled instances, it considers the votes of all the trees and selects the majority class.
Instead of evaluating all the possible split points aiming to find the best information gain, a fixed number
of evaluation points is pre-defined to speed up the classifier. Secondly, a refined splitting criteria is used to
choose between features with equal information gain. According to this criteria, if two splittings have the
same entropy gain, the one that is furthest from the nearest case is preferred.

If the order of the observations of the time series is changed, the values of the summary statistics of
the intervals will change. Therefore, although the variables will remain unchanged, their respective values
will. When those values are used as an splitting criteria for the trees of a time series forest, as they do
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not represent the shape of the original instances, the predictions of the forest will not be as accurate as in
the case of the original dataset, as the split based on the values of the summary statistics might not be
as representative. Nevertheless, as in the forest architectures the majority vote technique is used, it may
happen that considering so many trees the considerable alterations that may happen in one tree may be
neutralized by the others. The variation in the performance may therefore be softened.

2.3 Decision Tree Architectures
Several decision tree architecture based classifiers have been developed for time series classification; for ex-
ample, the newly presented TSF [46] or the structure of the original algorithm that used shapelets as the
splitting criteria [39].

Lucas et al. [47] proposed the Proximity Forest (PF), composed of highly randomized Proximity Trees
(PT). Proximity Trees branch on the proximity of a query time series to a set of reference series (see Figure
26), instead of branching according to attribute values, as in the case of the TSF. Proximity is defined by
a given time series similarity measure. As traditional decision trees, the construction process is recursive.
At each node, as much branches as classes are represented on the data it receives are created. For that,
r (user-defined parameter) different splittings are considered, by choosing an exemplar for each class and
parametrized similarity measure in which the proximity is based both uniformly at random. The data is
passed through those branches, by finding the corresponding closest exemplar, according to the given sim-
ilarity measure. Once all the split candidates are created, the chosen split is the one that maximizes the
difference between the Gini impurity of the parent node and the weighted sum of Gini impurities of children
nodes. As in the TSF, if in a node all the series belong to the same class, it is considered a leaf node. To
perform the classification of unlabelled time series, at each node, the distance from the query to each of the
exemplars of the node is calculated using the distance measure of that node, passing down the branch to which
exemplar is nearest to. The process is repeated until it reaches a leaf node, assigning the class of such leaf. In
the Proximity Forest, the classification is performed by majority votes of the Proximity Trees is composed of.

Moreovoer, the PT with level 1 of depth is known as a Proximity Stump (PS) [48].

2.4 Ensemble Classifiers
There is a group of algorithms that provide high performances that have become very popular on TSC prob-
lems, which are based on ensembles of algorithms. Ensemble approaches are combinations of multiple base
classifiers, whose individual outcomes are combined through a certain method in order to classify unlabeled
instances. The base classifiers are given a weight aiming to maximize classification accuracy of the ensemble.
Their corresponding complexity is that of the slowest base classifier. For example, TSF, TSBF and BOSS
are homogeneous ensembles based on the same core classifier. Nevertheless, heterogeneous ensembles also
exist.

The Elastic Ensemble (EE) [21] is an example of an heterogeneous ensemble, which is a combination
of 1-NN classifiers that use elastic distance measures; such as, ED, DTW, DDTW, WDTW, LCSS, MSM etc.

Moreover, Bagnall et al. [49] proposed the meta ensemble Collective of Transformation-based En-
sembles (COTE), which is a combination of classifiers in time, autocorrelation, power spectrum and shapelet
domain. It is composed by 35 classifiers and, as in the previous method, the final response is created by
weighted votes. Later, they proposed an improved version of COTE, called the Hierarchical Vote Col-
lective of Transformation-based Ensembles (HIVE-COTE) [50]. The latter encapsulated the classifiers
according to their domain, and a single probabilistic prediction is performed for each of those domains.
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Figure 26: A graphical representation of a node for a proximity tree constructed for the Trace dataset.
Image from [47].

Ensemble based approaches are computationally intensive and their use becomes unfeasible for big TSC
problems. Therefore, although they have been found the be very accurate, they are impractical for real world
problems.

In this algorithms, when the timestamps of the observations are randomly re-ordered, the performance
of each of the constituent base classifiers will change as described in the previous sections, and therefore,
the overall performance of the ensemble is expected to change also. It may happen, that as the constituents
change in different way, and the final output depends on the vote of the majority, the change on the perfor-
mance is softened by the compensation of the different biasing of the algorithms.

2.5 Deep Learning Approaches
Several deep learning architectures have been proposed for the classification problem of time series. Those
networks are designed to learn hierarchical representations of the input data. A deep network is composed of
layers (parametric functions), where each of them is considered a representation of the input domain. Each
of the layers is formed by neurons, elementary units that compute one element of the layer’s output. These
architectures are trained efficiently to learn hidden discriminative features from raw time series data.

The Multi Layer Perceptron (MLP) was proposed by Wang et al. [51] as a baseline architecture for
TSC. The network is composed by 4 layers, where each of them is fully connected (FC) to the output of
the previous layer (see Figure 27). The final layer is a softmax layer, fully connected to the previous layer
and having a number of neurons equal to the number of classes of the dataset. The other three layers are
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FC layers formed by 500 neurons with the ReLU function as the activation function. Moreover each layer is
preceded by a dropout operation to prevent overfitting.

Figure 27: The architecture of the MLP. The dashed lines indicate the operation of dropout. Image from
[51].

One of the drawbacks of the MLP is that the elements located in different time stamps are treated in-
dependently, assigning a weight to each of the time stamps. Therefore, it does not consider the temporal
information, and altering the order of the instances will not affect its performance.

Figure 28: The architecture of the FCN. Image from [51].

The use of Fully Convolutional Neural Networks (FCNs) for time series classification was first pro-
posed by Wang et al. [51]. FCNs are convolutional networks that do not contain pooling layers, and the
traditional FC layer is replaced by a Global Average Pooling (GAP) layer (see Figure 28), which reduces
drastically the number of parameters. The network is composed of three convolutional blocks. Each of
them has a convolution, a batch normalization and a ReLU activation function. The result of the third
convolutional block is averaged over the whole time dimension which corresponds to the GAP layer. Finally,
a traditional softmax layer is fully connected to the output of the GAP layer. This approach performs sev-
eral convolutions in the input series, which enables to learn discriminative features for classification. Those
features depend on the temporal information, thus randomly altering the order of the instances will change
the performance of this deep learning structure. The convolutions are dependant of the number located on
a given timestamp and its adjacent values. Therefore, when the temporal order of the instances is shuffled,
the results of those convolutions change. Therefore, the learning information will no longer be representative
of the original temporal information. Moreover, the GAP layer creates an activation map, which provides
the interpretation of class-specific regions and highlights the most discriminative subsequences.

The third model proposed by Wang et al. [51] is a deep Residual Network (ResNet). The network has
3 residual blocks followed by a GAP layer that averages the time series across the time dimension, and a
final softmax classifier, whose number of neurons is equal to the number of classes in the problem (see Figure
29). Each residual block is composed by 3 convolutions, a batch normalization operation and the ReLU
activation function. Moreover, it has short residual connections between consecutive convolutional layers.
As in the previous architecture, convolutional layers are used, endowing the network with sensitivity to the
temporal information and the GAP layer 's activation map provides information discriminative regions and
subsequences. The performance of the ResNet architecture is better for longer and more complex data, while
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in easy databases is outperformed by the FCN.

Figure 29: The architecture of the Residual Network. Image from [51].

Both FCN and ResNet architectures use batch normalization, providing great generalization capability
and time efficiency to the networks.

Serrà et al. [52] developed a hybrid deep CNN called the Encoder. This network converts a variable-
length time series to fixed length low-dimensional representations, which are learned to generalize the clas-
sification of unseen instances. It was inspired in the FCN, but replacing the GAP layer with an attention
layer. The first three layers of the network are convolutional. Each convolution is followed by an instance
normalization operation, whose output is fed to the PReLU activation function. The output of PReLU is
followed by a dropout operation and a final max pooling. The third convolutional layer is fed to an attention
mechanism that identifies which parts of the time series (in the time domain) are important for classifica-
tion. Finally, a traditional softmax classifier is fully connected to the latter layer, having as many neurons
as classes are in the dataset. This architecture requires from few training iterations. As in the previous two
architectures, the convolutional layers capture the temporal correlation of the observations and the attention
layer highlights the most discriminative regions of time series.

Cui et al. [53] proposed the Multi-scale Convolutional Neural Network (MCNN), which extracts
features in different time scale and frequencies, resulting on a superior feature representation. This archi-
tecture is formed by two convolutions and max poolings, a FC layer and a final softmax layer. Nevertheless,
the preprocessing is very complex (see Figure 30). Firstly, in the transformation stage, subsequences are ex-
tracted (data augmentation) by a Window Slicing method, and they undergo three transformations: identity
mapping, down-sampling in the time domain to generate sketches of time series in different time scales and
spectral transformations in frequency domain using low frequency filters with multiple degrees of smoothness
to lower the effect of the noise (see Figure 30). Thus the univariate time series is transformed to a mul-
tivariate time series. Those transformations are followed by local convolutional stages to extracts features
from each branch, using the sigmoid function as activation function. The convolutions for each branch are
independent. Finally, there is a full convolutional stage, in which all the extracted features and convolutional
layers are concatenated for the final output. This architecture requires from data augmentation to avoid
overfitting whenever it is used in small datasets.

As stated before, the convolutional layers learn complex feature representations in which the intrinsic
temporal information of the instances is reflected. Moreover, this particular architecture extracts features
in frequency and time domains at different scales, expanding the temporal information considered for clas-
sification. A convolutional layer of a fixed scale can only detect local patterns of a given substructure.
Nonetheless, using multi-scale convolutions the layers can learn more complex structures, equivalent to those
cases where multiple window lengths were used to extract the representative features.

Time Le-Net (t-LeNet) was proposed by Le Guennec et al. [54], which contains two convolutions fol-
lowed by a FC layer and a softmax classifier. For both convolutions the ReLU activation function is used.
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Figure 30: Architecture of the MCNN. Image from [53].

The convolutional blocks are followed by a non-linear FC layer of 500 neurons, each one using the ReLU
activation function. Finally, it has a softmax classifier with a number of neurons equal to the number of
classes of the problem. To avoid overfitting, this approach combines two data augmentation techniques:
Window Slicing and Window Warping, which squeezes or dilates the time series. That is, it warps a ran-
domly selected slice of a time series by speeding it up or down (see Figure 31). After that, all the slices are
made equal length by a slicing window. This data augmentation technique is more time specific. Moreover,
they proposed dataset mixing to learn the convolutional part of the network in an unsupervised manner.
Therefore, the complete network is learned on a semi-supervised way. As in the previous cases, the presence
of convolutional layers implies the network is sensitive to the temporal order of the instances.

Figure 31: An example of the data augmentation technique used in the t-leNet network. Image taken from
[54].

Time Convolutional Neural Network (Time-CNN) was proposed by Zhao et al. [55]. This approach
has some special characteristics: it uses the mean square error (MSE) instead of the categorical loss-entropy
function, as a final layer it has a traditional FC layer with sigmoid as activation function instead of the soft-
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max classifier, and it uses a local average pooling operation instead of local max pooling. The network has
two convolutional layers, with sigmoid as activation function, followed by a local average pooling operation
(see Figure 32). The output layer is a FC layer with a number of neurons equal to the number of classes
of the dataset. As the final classifier is fully connected to the output of the second convolution, it removes
the GAP layer without replacing it with a FC non-linear layer. In this architectures, the input instances
must be of the same length. Moreover, the convolutional layers endow the network with sensitivity to the
temporal order of the instances.

Figure 32: Architecture of the time-CNN network, in the case of a three-variate time series classification,
via [55].

Tanisaro and Heidemann [56] proposed the Time Warping Invariant Echo State Network, which
is a non-convolutional recurrent architecture. For each time stamp of a time series, the reservoir space is
used to project the element to a higher dimensional space. Then for each element, a Ridge Classifier [57] is
trained to predict the class of each time series element. With that, the trained Ridge Classifier, will output a
probability distribution over the classes in the dataset for each of the elements of the time series. After that,
a posteriori probability of each class is averaged over all the elements of a time series, to which the label of
the class having the maximum average probability is assigned. This network has the capability to capture
linear and non-linear patterns of the instances without any data transformation and dimension reduction
processes. As this architecture is based on a recurrent procedure, the order in which the values of the time
stamps are inserted affects the learning process of the algorithm. This network is highly dependant of the
initial values. Thus as changing the temporal order will affect on which information is inserted first, it will
have an impact in the performance of the network.

In convolutional neural network (CNN) architectures, the convolutional filters represent the local at-
tributes of an input time series or feature map. The size of the filters determines the size of the temporal
substructures captured by the extracted features. If the filter size is too small, it cannot well represent the
representative features or waveforms. Contrarily, if the filter is too large, the local patterns will not be clearly
represented on the extracted features.

Moreover, the number of the convolutional filters determines the number of extracted features for classifi-
cation. Therefore, the higher the number of filters, the more features are extracted. Nevertheless, increasing
the number of filters makes the network computationally more expensive to train. Therefore, once the most
discriminative features are considered in the network architecture, adding more filters is helpless.

Regarding the pooling method, the larger the pooling size, the better performance it is obtained in the
dimension reduction. Nonetheless, more information is lost in the transformation.

In general, CNN architectures tend to overfit less that FCN, because they tend to have much fewer weights
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to optimize than FC models. Nevertheless, they require from a huge amount of training data to be efficient.
Henceforth, they tend to use data augmentation techniques, specially with small datasets. Those techniques
build synthetic data by transforming existing labelled samples. Table 5 sums up all the advantages and
drawbacks of the presented architectures. Moreover, Table 6 groups the deep learning architectures of this
section depending on whether variable-length instances can be considered as input.

algorithm advantages drawbacks

MLP generalization non sensitive to temporal information

FCN generalization, efficiency, interpretability more overfitting than CNN

ResNet generalization, efficiency, interpretability,
better for long and complex datasets

worse than FCN in small datasets

Encoder adaptation facility, efficient, few training
iterations, interpretability

data augmentation to avoid overfitting in
small datasets

MCNN computational efficiency, noise reduction,
different time scales and frequencies

data augmentation to avoid overfitting in
small datasets

t-leNet great efficiency in long and complex
datasets, more time-specific data augmen-
tation technique

data augmentation and datasets mixing to
avoid overfitting in small datasets

time CNN noise tolerance time consuming training process

Echo computationally cheap, simple learning
mechanism, fast testing

Table 5: The main advantages and drawbacks of the specific deep learning architectures for TS.

same length variable length
MLP Encoder
FCN MCNN
ResNet Echo
t-leNet
time-CNN

Table 6: The grouping of the deep learning architectures presented in this section depending on whether
they classify variable length instances.

CNN architectures can also be used to extract representative features, and perform the classification with
a conventional ML classifier, such as, SVM.

Regarding the sensitivity of the networks to the intrinsic temporal information of the TSC problems,
all the architectures presented in this section are sensitive to the temporal information of the observations
except for the MLP. The presence of convolutional layers endow the networks with temporal sensitivity, as
the result of those convolutional layers depend on temporal substructures of the observations. Furthermore,
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multi-scale convolutional layers enable the network to capture and learn more complex temporal structures.
Additionaly, the GAP layer or the attention layer that some of those CNN architectures have, provide in-
formation about the most discriminant regions and subsequences of TS. Moreover, the learning processes
of networks with recurrent structures strongly depend on the initial values of the observations, thus their
performance will be affected by the alteration of the temporal order of the instances.
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3 Temporal Sensitivity of Specific Time Series Classifiers
Time series are a particular type of data where the observations are temporally correlated. In general,
conventional ML classifiers happened to be insufficient to classify time series, thus specific classifiers were
developed, which consider the particularity of TS data for the classification. The empirical study of this
section analyses the sensitivity of several specific TS classifiers to the temporal order of the instances. That
is, how much their performances vary when the time stamps of the instances are re-ordered randomly.

3.1 Methodological Setup
To examine how sensitive a classifier is to the temporal order of the instances, the classifier will be applied to
several TSC problems and variants of those databases. Those variants will be created by randomly altering
the temporal order of the instances of the original database. If a database is sensitive to the order of the
observations, re-ordering the time stamps randomly will have a considerable effect on the performance of
the algorithm. Contrarily, if the performance of a specific TS classifier appears to be robust against the
random alteration of the order of the observations, its sensitivity to the temporal correlation of the instances
is considered to be low.

Each of the databases considered in this study will be randomized 1000 times according to a certain set
of randomizing operators, and each of the randomized variants will undergo a classification process with
all of the distinct classifiers. The randomizing operators are permutations of size N , created uniformly at
random, being N the length of the instances. Therefore the subset of randomizing operators (R) is defined
as follows:

R = {r1, ..., r1000}

where:
ri = (π1π2 ... πn) πi ∈ {0, 1, ..., N − 1} and πi 6= πj ∀i 6= j

where N is the length of the instances of the database under study. The permutation ri describes the new
order of the observations. When a random permutation is applied to the time stamps, the resulting instances
will contain the same pointwise information as the originals, but with a different temporal order (see Figure
33). Therefore, the original shape of the instances, as well as the temporal correlation they represented, will
be lost.

(a) Original (b) Altered

Figure 33: One of the instances of the Plane dataset [38] (a) without any temporal alteration and (b) with
the order of the observations randomly shuffled.
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The databases considered in this experiment need to have instances of the same length, so that the ran-
dom re-ordering of the timestamps is the same on every instance of the dataset.

In the case where a classification algorithm considers the temporal information as a discriminant factor
for classification, randomly altering the temporal order of the observations will affect its performance, which
in this case is measured by the accuracy obtained on the classification of the instances of the test set. Thus
when a certain classifier is applied to a given dataset and all of its randomized variants, the resulting accuracy
values can be considered as an empirical probability distribution (see Figure 34). If the resulting distribution
is wide, the performance of the classifier has varied considerably when the order of the instances is randomly
altered, thus the classifier has a high sensitivity to the order. On the other hand, sharp distributions indicate
robust performances against the alteration of temporal order of the observations; thus, in those cases, the
sensitivity to the temporal order of the instances is considered to be low. The sharpness of the empirical
accuracy distribution will be quantified by the standard deviation.

Figure 34: An example of the distribution of the accuracy values obtained when the MrSEQL classifier is
applied to the Lightning2 dataset and its 1000 randomized variants.

Let Ci be the different TS classifiers under analysis (i = 1, ...,K) and σi the standard deviations of the
distributions of the obtained accuracy values. If σi > σj , then the algorithm Ci will be considered to be
more sensitive to the temporal order of the instances than the Cj algorithm.

For each of the considered TSC problems, a ranking will be performed subject to the standard devia-
tions of the empirical distributions (see Figure 34) obtained with the classifiers under study. That is, the
classifier with the highest value of the standard deviation will be in the first position of the ranking re-
lated to that dataset, and that with the lowest in the last. The rankings obtained for each of the datasets
will be combined to perform a joint ranking. This ranking will offer a general overview about how much
does a classifier's performance vary when the temporal information of a TSC problem is re-ordered randomly.

Moreover, pairs of classifiers will be considered, and the standard deviations of their corresponding dis-
tributions will be compared, aiming to study whether statistically significant differences exist between them,
using the Wilcoxon signed-rank test [58]. The latter is a non-parametric statistical hypothesis test that
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compares a pair of dependent samples to examine whether their corresponding populations belong to the
same distribution. In this particular case, it will indicate whether two sets of standard deviation values
related to two different classifiers present statistically significant differences. Each of the values of those sets
represents the standard deviation value of the empirical distribution obtained when that classifier is applied
to a TSC problem and its randomized variants (see Figure 34). As multiple classifiers are considered in
the analysis, the likelihood of incorrectly rejecting a null hypothesis increases. To hinder such issue, the
Bonferroni correction [59] has been applied in combination with the Wilcoxon signed-rank test.

Regarding the results of the statistical test, in the cases where the p-value is above 0.05, it is considered
there is not enough evidence to reject the null hypothesis. In that case, the difference between the samples
is believed to follow a symmetric distribution around zero. That is, the standard deviations recorded on the
empirical distributions of the corresponding classifiers do not present statistically significant differences. On
the other hand, for the combinations where p-values below 0.05 are obtained, the null hypothesis is discarded.

3.2 Databases
In the analysis of the temporal sensitivity regarding the specific time series classifiers, 31 datasets have been
used. Those datasets, which represent labeled univariate time series, have been obtained from the UCR
time series database archive [38]. The latter contains the vast majority of publicly available synthetic and
real time series databases, and it is the most common benchmark used for performing evaluations in studies
about time series analysis.

The TS databases of the UCR archive belong to a wide variety of information domains, such as, image,
sensorial information, motion, ECG, etc. The ideal procedure would be to take a considerable variety of
datasets and to keep balance among the different domains of time series classification problems. Nevertheless,
the computational cost required for the experiment is considerable, as for each dataset 1000 classification
tasks have to be performed in the case of every classifier considered in the experiment. Henceforth, the
range of possible datasets for which the analysis is feasible happens to be narrow. Despite the mentioned
drawback, among the resulting 31 datasets, a variety of domains are represented (see Table 7).

As mentioned in the previous section, among the chosen TSC problems, the instances that belong to the
same dataset have the same length. Moreover, it must be outlined that in this case only univariate time
series have been considered, as not all the specific classifiers are designed to deal with multiple dimensions.
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domain num. of
datasets

datasets

Image 5 ArrowHead, DistalPhalanxOutlineAge-
Group, DistalPhalanxTW, FaceFour,
Herring,

Simulated 4 BME, CBF, ShapeletSim, UMD

Sensor 7 Car, ItalyPowerDemand, Lightning2,
Plane, SonyAIBORobotSurface1,
SonyAIBORobotSurface2, Trace

Traffic 1 Chinatown

Spectro 4 Coffee, Ham, Meat, Wine

Motion 6 GunPoint, GunPointAgeSpan, Gun-
PointMaleVersusFemale, GunPointOld-
VersusYoung, ToeSegmentation1, Toe-
Segmentation2

ECG 3 ECG200, ECGFiveDays, TwoLead-
ECG

Device 1 PowerCons

Table 7: Information concerning the chosen set of TSC problems for the experimentation: domain, number
of datasets and name.

3.3 Specific Time Series Classifiers
The purpose of this work was to analyse as many TS specific classifiers as possible, but the computational
cost required for the designed experiment made the study of some of them unfeasible. Each classifier needs
to perform 1001 classification tasks for each of the considered datasets. Henceforth, only those 16 classifiers
that required less than three weeks to perform the 1001 classifications related to a dataset on the cluster
were considered.

The specific TS classifiers for which the temporal sensitivity have been studied are the ones grouped in
the Table 8.

In those classifiers where parameters needed to be defined, specially in dictionary-based algorithms where
the window length, the alphabet size and the words length needed to be specified, those parameters have
taken the default values given by the software. Table 9 shows the parameter settings for each of the classifiers.
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raw time series distance based feature extraction
(dis)similarity matrix
+ 1-NN

decision tree architectures dictionary based interval based

1-NN-DTW (C1) Proximity Tree (C6) Individual BOSS (C8) TSF (C16)
1-NN-DDTW (C2) Proximity Stump (C7) BOSSEnsemble (C9)
1-NN-WDTW (C3) cBOSS (C10)
1-NN-MSM (C4) WEASEL (C11)
1-NN-LCSS (C5) WEASEL + MUSE (C12)

Individual TDE (C13)
TDE (C14)
MrSEQL (C15)

Table 8: The studied specific TS classifiers grouped according their procedure to perform the classification.

algorithm parameters

Individual window_size = 10
BOSS words_length = 8

alphabet_size = 4

BOSS max_ensemble_size = 500
Ensemble max_window_length = length of the observations

min_window_length = 10

Contractable n_parameters_sample = 250
BOSS max_ensemble_size = 500

max_window_length = length of the observations
min_window_length = 10

Individual window_size = 10
TDE words_length = 8

alphabet_size = 4

TDE n_parameters_sample = 250
max_ensemble_size = 500
max_window_length = length of the observations
min_window_length = 10

TSF n_estimators = 500

Table 9: The default settings of those classifiers under study for which parameters need to be defined.

3.4 Performance Measures
As mentioned before, the performance of a classifier in a certain TSC problem (or any of the corresponding
randomized variants) will be evaluated by the accuracy metric; in fact, the accuracy value obtained when
performing the classification of the test set will be considered. The datasets of the UCR web archive regard-
ing TSC problems are already split in two sets: one for training, and one for testing. The former will be
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used to fit the given TS classifier, and the latter for the performance evaluation. It is important to outline
that the testing set must undergo the same randomizing operation as the training set of instances, so that
the instances belonging to the test set have the same order of timestamps as those instances in the training set.

3.5 Software
All the empirical analysis has been carried out using python. The specific TS classifiers and the TSC problems
datasets were provided by the sktime package [60]. To perform the basic mathematical operations, such as
calculating the standard deviation of the distributions, the numpy package [61] has been used.

3.6 Results
For each TSC problem considered, a ranking has been performed regarding the standard deviation values
obtained with each of the classifiers (Table 10).

According to the rankings of classifiers obtained for each of the datasets (Table 10), a joint ranking
has been performed where the classifiers are listed subject to their sensitivity to the temporal order of the
instances, being the first the most sensitive:

1. Proximity stump (C7)

2. Proximity tree (C6)

3. MrSEQL (C15)

4. BOSSEnsemble (C9)

5. IndividualBOSS (C8)

6. TDE (C14)

7. Individual TDE (C13)

8. 1-NN-LCSS (C5)

9. cBOSS and WEASEL (C10 and C11)

10. WEASEL + MUSE (C12)

11. TSF (C16)

12. 1-NN-DDTW (C2)

13. 1-NN-DTW (C1)

14. 1-NN-WDTW (C3)

15. 1-NN-MSM (C4)

The most sensitive classifier has been Proximity stump (C7), which has produced the empirical distribu-
tions with the highest standard deviation values for 26 datasets of the 31 considered. The second has been
the Proximity tree (C6) which has been in the top6 for all the datasets.

The classifier with the lowest sensitivity to the temporal ordering has been 1-NN-MSM (C4), having the
distribution with the lowest standard deviation for 25 datasets among the 31 considered.
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Dataset C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

AH 13 12 13 16 15 1 2 6 8 5 10 10 6 4 3 9
BME 3 13 4 16 15 1 2 11 5 7 12 7 10 7 5 14
Car 15 13 15 14 10 2 1 8 8 3 6 12 10 5 3 6
CBF 10 13 13 16 4 2 1 12 3 6 9 8 11 5 7 15
CT 14 12 15 13 2 3 1 4 6 10 8 7 5 11 9 16

Coffee 10 9 10 15 15 2 1 3 5 6 13 14 4 7 8 10
DPAG 14 10 14 16 5 2 1 4 6 9 10 12 3 8 6 13
DPTW 14 10 14 16 5 2 1 3 5 8 12 13 3 8 5 10
ECG200 13 13 15 16 7 2 1 7 3 11 4 12 9 9 4 6
ECG5D 14 13 15 16 3 2 1 8 8 11 10 5 6 6 4 12
Face4 4 3 6 16 5 2 1 10 10 9 12 14 12 7 14 7
GP 11 4 11 16 2 3 1 7 7 7 6 14 7 4 11 15

GPAS 10 6 10 10 2 3 1 6 6 10 10 15 9 15 4 4
GPMVF 13 15 13 10 2 6 1 6 5 10 6 3 6 10 4 16
GPOVY 14 13 14 14 12 2 1 4 9 7 4 9 6 7 3 11
Ham 13 12 14 15 16 2 1 7 3 5 6 11 7 4 7 10

Herring 7 3 7 16 2 4 1 5 10 10 13 13 6 12 7 15
ItalyPD 13 15 13 16 2 3 1 4 11 12 6 6 6 9 4 10
Light2 12 10 10 16 15 1 1 12 3 4 7 7 14 6 4 7
Meat 12 12 12 12 12 2 1 3 6 8 10 11 4 7 5 9
Plane 13 13 13 13 3 2 1 11 6 6 9 9 11 6 5 4
PCons 13 7 14 16 2 4 1 4 3 9 11 11 6 8 9 15
SSim 4 6 11 4 16 6 11 6 15 11 1 6 6 11 1 1

SonyAI1 11 9 12 16 2 4 1 13 8 15 6 5 13 10 3 7
SonyAI2 14 9 15 16 2 3 1 9 7 5 6 11 11 4 8 13
ToeSeg1 12 11 15 16 14 2 1 9 5 10 3 4 7 7 5 13
ToeSeg2 14 13 15 16 9 5 1 10 4 6 8 2 12 3 7 11
Trace 14 12 13 16 3 2 1 6 8 8 5 11 10 7 4 15

TLECG 14 13 14 16 8 2 1 11 5 7 8 11 10 5 4 3
UMD 10 13 9 16 15 1 2 8 3 3 12 11 6 5 7 14
Wine 13 12 13 15 15 1 7 4 8 11 6 2 3 8 4 8

Table 10: Ranking of the standard deviation values regarding each of the classifiers for the considered
databases, obtained by the randomizing operators applied to it.

The most sensitive classifiers have decision tree structures. The intermediate positions of the ranking are
occupied by dictionary based classifiers and the 1-NN-LCSS. The next classifier having the highest sensitivity
is the TSF. Finally, the least sensitive algorithms have happened to be those that perform a (dis)similarity
matrix based on distance measures between the whole raw time series, and perform the classification by the
1-NN classifier (except for the 1-NN-LCSS algorithm).

The obtained results have been studied more in detail by considering a statistical test based on the pop-
ulations of standard deviation values related to each of the classifiers. In fact, there is a set of 31 standard
deviation values related to each of the classifiers, where the values are obtained when the classifier is applied
to each of the 31 TSC problems (and its corresponding randomized variants).

Applying the Wilcoxon signed-rank test with the Bonferroni correction to pairs of populations of standard
deviation values of distributions related to the classifiers, the resulting p-values are shown in Figure 35. The
p-values above 0.05 are colored in pink, while those below 0.05 are colored in green.
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Figure 35: The p-values obtained when the Wilcoxon signed-rank test [58] with the Bonferroni correction
[59] is applied to pairs of samples of standard deviation values related to each of the considered classifier.
The light pink color refer to comparisons with p-values above 0.05; that is, the null hypothesis is not rejected.
On the other hand, the green colors denote p-values below 0.05, getting darker for lower values. In these
cases, the null hypothesis is rejected.

When comparing the standard deviation sets of the empirical accuracy distributions of the classifiers that
belong to the same group, that is, if comparisons between those algorithms belonging to the same columns
of Table 8 are considered, among the classifiers that calculate the similarity of the whole raw time series then
classify them using the Nearest Neighbour classifier (C1-C5), the empirical distributions obtained with the
1-NN-MSM classifier presents statistically significant differences with the rest of such algorithms. Moreover,
1-NN-DDTW and 1-NN-WDTW have also significant differences regarding the empirical distributions. The
decision tree structures based on the proximity (C6 and C7), obtain significantly distinct empirical distribu-
tions. Furthermore, regarding the dictionary based classifiers (C8-C15), the null hypothesis is not rejected
in any case, when they are compared to each other.

If the empirical distributions obtained with classifiers belonging to different groups are compared, in
general terms, almost all the classifiers that calculate the similarity of the whole raw time series then classify
them using the 1-NN classifier present statistically significant differences with almost all the algorithms of
the rest of the groups except for the 1-NN-DDTW (C2) and 1-NN-LCSS (C5) algorithms. The decision tree
structures based on the proximity, obtained significantly different standard deviations on the empirical accu-
racy distributions when compared to the rest of the algorithms, except for the case where the proximity tree
(C6) algorithm is compared to the 1-NN-LCSS (C5). In general, dictionary based algorithms have empirical
distributions with standard deviations that are significantly different from the proximity based algorithms,
1-NN-MSM, 1-NN-DTW and 1-NN-DTW. Moreover, some dictionary based algorithms present also sig-
nificant differences when compared to the TSF (C16). This last classifier also provides empirical accuracy
distributions with standard deviations different from 1-NN-MSM and both of the proximity based algorithms.

The classifiers that calculate a (dis)similarity matrix and then classify the instances by the 1-NN, are
the least sensitive to the temporal order of the instances (except for the 1-NN-LCSS which is in the inter-
mediate positions of the ranking). The latter is a consequence of the differences they have in their internal
procedures compared to the rest of algorithms considered in this experiment: the feature based algorithms
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consider higher-level structures, and do not restrict themselves to local similarities. Therefore, the sensitivity
is lower in the case where only local similarities are considered. The 1-NN-MSM is the least sensitive among
them, differing significantly in sensitivity with the rest. Moreover, when it comes to the DTW distance,
adding derivatives makes the classifier more sensitive, while adding weights decreases that sensitivity; being
the standard deviations of the empirical distributions obtained with the 1-NN-DDTW and 1-NN-WDTW
significantly different. Furthermore, the 1-NN-LCSS is the most sensitive classifier of this group of algorithms.

Among the dictionary based algorithms, MrSEQL have resulted the most sensitive. This classifier uses
two different symbolic representations, one in time domain (SAX) and the other in frequency domain (SFA).
Moreover, for each of the symbolic representations, it uses multiple resolutions. Therefore, it captures a
wide amount of different temporal structures, and the classification is based on a more complete temporal
information of the instances. Furthermore, regarding the classifiers based on the BOSS algorithm, BOSS
Ensemble is the most sensitive among them, followed by the individual BOSS. The least sensitive among
them is the contractable BOSS, and in between, the TDE and individual TDE algorithms are found. Even
if the contractable BOSS, BOSS Ensemble and TDE are ensembles of BOSS algorithm, they use different
procedures to create the ensemble and distinct classifiers, resulting in different behaviours of their perfor-
mances when the temporal order of the instances is shuffled. The conventional BOSS Ensemble is more
sensitive than the individual BOSS algorithm, but the contractable BOSS and TDE algorithms, which have
a similar structure and weighting scheme, are less sensitive. Furthermore, the individual TDE algorithm,
which consider a single BOSS classifier but choosing the parameters by a Gaussian process, is less sensitive
to the individual BOSS. Besides, the algorithms WEASEL and WEASEL + MUSE are the least sensi-
tive dictionary based algorithms. These algorithms, perform a feature selection before the classification, to
choose the most discriminative temporal substructures. Thus, when selecting only the most discriminative
features, the accuracy of the classifier varies less when the temporal order of the instances is altered randomly.

Single decision tree structures have been shown to be the most sensitive. That is, their performance have
varied the most when the temporal order of the instances has changed. Moreover, according to these results,
the deeper the decision tree, the less sensitive is the classifier to the random alteration of the observations.
Furthermore, when multiple decision trees are combined in a forest, the performance of the classifier does
not vary as much when the the time stamps of the instances are re-ordered randomly. As the TSF is a group
of decision trees whose individual outputs are combined for the final prediction, the effect of the random
alteration of the time stamps is softened as the biasing of the individual trees can be compensated.

In conclusion, considering higher-level structures instead of only restricting to local similarities, increases
the sensitivity of a specific TS classifier. In dictionary based algorithms, considering symbolic representa-
tions in both time domain and frequency domain, and multiple resolutions for each, makes the classifier
highly sensitive to the temporal order of the observations. On the other hand, creating ensembles of BOSS
algorithms in the conventional way, increases the sensitivity of the classifier. Nonetheless, when the ensemble
is created based on a random process, the sensitivity is decreased. Furthermore, when the parameters of
the BOSS algorithm are chosen by a Gaussian process, the sensitivity of the algorithm is also decreased. In
the case where a single multiple resolution symbolic representation is used, performing a feature selection,
considering only the most discriminative substructures, decreases the sensitivity of the algorithm. Besides,
for decision tree structures, considering deeper structures decreases the sensitivity of the algorithm, as well
as combining multiple decision trees in a forest.

In order to see the different empirical accuracy distributions obtained with the most sensitive and the
least sensitive classifiers, Figure 37 shows the obtained empirical accuracy distributions for some of the con-
sidered datasets, for the case of the three most and three least sensitive classifiers.
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(a) ArrowHead (b) CBF

(c) FaceFour (d) Lightning2

(e) Meat (f) SonyAIBORobotSurface1
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(g) SonyAIBORobotSurface2 (h) ToeSegmentation1

(i) ToeSegmentation2 (j) UMD

Figure 36: The accuracy distributions obtained with the three most sensitive and three least sensitive
classifiers when they are applied to different TSC problems.
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4 The Relevance of the Temporal Information in the Classification
TS is a special type of data where the observations are temporally correlated (or correlated in another or-
dered dimension), in contrast to the conventional classification problems, where the attributes do not follow
any specific order. The nature of TS instances has lead to the assumption that TSC problems need to be
studied by specific classifiers, which take heed of the intrinsic temporal information of the observations for
the classification. Therefore, in principle, non-specific methods should not outperform or at least be com-
petitive with specific methods, as they do not consider any temporal information for classification.

Nonetheless, for different TSC problems, the temporal order does not have the same relevance for clas-
sification. In those cases where the temporal order of the instances is discriminatory for classification,
non-specific methods should be outperformed by specific methods. On the other hand, in the cases where
the temporal order of the instances is not relevant for classification, non-specific classifiers could also be
considered, as the problem would read as a conventional supervised classification problem. This section
holds an empirical study to identify the relevance of the temporal order in different TSC problems.

Abanda et al. [62] performed a preliminary examination to study to which extent different TSC problems
required from specific classifiers. They assumed that in the cases where the 1-NN-DTW is outperformed
by 1-NN-EUC, the order of the observations is not discriminatory for the classification, as the latter is a
non-specific classifier without any sensitivity to the temporal correlation of the observations. They also con-
sidered three additional non-specific conventional classifiers: Support Vector Machine (SVM), Naive Bayes
(NB) and Random Forest (RF). They demonstrated that in most of the cases where the 1-NN-EUC clas-
sifier outperformed 1-NN-DTW, the standard classifiers were able to perform better than the 1-NN-EUC
and 1-NN-DTW classifiers. However, in the opposite case, there were little cases where 1-NN-DTW was
outperformed by any of the standard ML classifiers. That is, whenever they supposed the temporal order
of the observations was not discriminatory for classifications, non-specific classifiers were found to outper-
form 1-NN-DTW, while in the opposite case, they were not found to be competitive in most of such problems.

The experiment of this section studies the relevance of the temporal order in a given TSC problem from
a different perspective. In fact, it is based on the empirical accuracy distributions obtained in the previous
section. Actually, this empirical study is based on the comparison between the accuracy obtained in the
original dataset and the accuracy distribution obtained when the randomly altered variants are classified. If
the accuracy of the original dataset is good enough compared to its randomized variants, the temporal order
of the instances is considered to be relevant for the classification. Nonetheless, if there is a considerable
number of randomized variants that offer better performances, the temporal information has low relevance
for classification.

4.1 Metodological Setup
The relevance of the temporal order of the instances in a given TSC problem will be measured based on
the distributions obtained in the previous section. In fact, the relevance of the temporal order of the in-
stances will be estimated by calculating the percentile of the accuracy obtained with the original dataset
in relation to the empirical accuracy distribution obtained with all its randomized variants (see Figure 37).
When the temporal order of the instances is randomly shuffled and the temporal correlation of the origi-
nal problem is completely lost, if the classifiers perform better or similar to when they are applied to the
original dataset, the temporal order of the instances will be considered irrelevant, as loosing the temporal
information has not have a negative impact on the performance of the classifier. Therefore, the higher the
percentile of the accuracy value of the original dataset related to the empirical accuracy distribution obtained
with all the variants, the more relevant the temporal order of the instances is in that particular TSC problem.

Each dataset has associated 16 accuracy distributions, each of them obtained with a different specific
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TS classifier. For those empirical distributions, the position of the accuracy of the original datasets will be
examined, by calculating the percentile of such value in relation to the distribution. The percentiles obtained
for each of the datasets, will be averaged over the 16 classifiers. Therefore, each of the datasets will have
associated a single value of the percentile, which will be the mean value of all the recorded percentile values
for that dataset. In those dataset where the recorded mean value of the percentile is high, the temporal infor-
mation is considered to be discriminant for the classification. Contrarily, if the mean value of the percentile
is low, the temporal correlation of the instances will be considered to have low relevance for the classification.

Additionally, for the set of 16 percentile values related to a dataset (each of them obtained with a different
specific TS classifier), the standard deviation value will be calculated. If in the case of a particular dataset
the standard deviation value of the set is low, similar percentile values are obtained with the different clas-
sifiers. On the contrary, if the value of the standard deviation is high, there are considerable discrepancies
between the percentiles obtained with the distinct specific classifiers.

(a) (b)

Figure 37: An example of an accuracy distribution obtained when the temporal order of the instances
is altered in a dataset. In (a) changing the temporal order of the observations has negatively affected
the performance of the classifier, while in the case shown in (b) the alteration of the temporal order has
improved the performance of the classifier in some cases. That is, in (b) the performance obtained with the
original dataset is not good enough compared to the randomized variants, which do not contain the original
temporal information. Both distributions have been obtained using the MrSEQL classifier. The disribution
in (a) corresponds to the Plane dataset, and the one in (b) to the Herring dataset.

As the experiment hold in this section is based on the study carried out in the previous section, the
datasets, classifiers and software used are those of the previous section (see Sections 3.2-3.5).
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4.2 Results
In this experiment, for each dataset, we have calculated the percentile corresponding to the accuracy value
of the original dataset in comparison with the empirical accuracy distribution obtained considering that
dataset and its randomized variants. This procedure has been repeated for all the considered specific clas-
sifiers. Therefore, each of the datasets has a set of 16 percentile values, each of them related to a different
specific TS classifier. The mean value and standard deviation of the sets recorded for each of the datasets
are shown in Table 11.

Dataset Mean Standard deviation
Plane 99.24 2.17
Trace 98.28 3.81

ShapeletSim 96.22 12.13
GunPoint 95.63 12.63
ToeSeg2 89.54 27.78

Lightning2 89.22 22.51
ToeSeg1 89.14 29.68
SonyAI1 87.39 15.36

TwoLeadECG 86.73 31.45
DistPhalAG 85.84 30.87
SonyAI2 82.50 32.82
CBF 82.35 34.72

GunPointOVY 82.04 20.69
FaceFour 78.20 33.44

GunPointAS 78.10 35.88
Car 77.22 35.62
Wine 75.16 32.49
UMD 74.90 36.53

DistPhalTW 71.08 29.38
ECG200 70.40 36.48

GunPointMVF 67.89 38.40
PowerCons 64.09 35.83

ECGFiveDays 62.52 43.31
Ham 60.24 30.27
Coffee 57.87 34.40

ArrowHead 54.02 36.41
Meat 48.38 47.37
BME 43.66 38.32

ItalyPD 40.49 35.58
Chinatown 38.93 26.33
Herring 34.05 35.64

Table 11: The mean and standard deviation of the percentiles of the accuracy values of the original datasets
regarding the empirical accuracy distribution obtained considering itself and its randomized variants. The
top of the table shows the datasets with the highest average percentiles, and the bottom, those with the
lowest mean percentile values.

As it can be seen from Table 11, there are 4 datasets that have significantly higher mean percentile val-
ues: Plane, Trace, ShapeletSim and GunPoint, all of them having mean percentile values over 90.
Moreover, they have the lowest standard deviation values, meaning that the agreement between the different
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classifier is high. On the other hand, the datasets Herring, Chinatown, ItalyPD, BME and Meat
have the lowest mean values for the percentiles, which are below 50. This datasets have higher standard
deviation values, thus there are bigger discrepancies between the percentile values obtained with the different
classifiers.

Table 11 shows a trend between the mean percentile value obtained for a dataset and the discrepancies
between the different classifiers on the percentile value: in the case of the datasets with high mean percentile
values, the classifiers are in high agreement, while for datasets with lower mean percentile values, the dis-
crepancies between the classifiers tend to increase. This issue has been studied more in detail by means of a
boxplot (see Figure 38). Each of the positions of the X axis refers to a dataset considered in the experiment,
and they are ordered according to their mean percentile values: the datasets with the highest mean percentile
values are located on the left. For each of the positions of the X axis, the values recorded along the Y axis
correspond to the percentile values recorded for that dataset with the 16 specific classifiers considered. That
is, the percentile corresponding to the accuracy value of the original dataset in comparison with the empirical
accuracy distribution obtained with itself and its 1000 randomized variants, when a particular classifier is
used for classification.

Figure 38: The distribution of the percentile values obtained with the different classifiers in the case of each
of the TSC problems considered. The datasets are ordered in the X axis according to the relevance of the
temporal order in the classification. That is, those classifiers with the highest associated mean percentile
values are on the left, and those with the lowest mean percentile values on the right.

According to Figure 38, those datasets that recorded the highest mean percentile values (when averaged
over the results of the different specific TS classifiers) have narrower distributions than the ones that had
the lowest mean percentile values. That is, in the datasets where the recorded mean percentile value is high,
the agreement between the classifiers on the value of the percentile of the accuracy of the original dataset in
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relation to the empirical accuracy distribution is higher. Besides, the lower the mean percentile value related
to the TSC problem, the wider its distribution about the recorded percentile value gets. That is, there are
greater discrepancies among the results obtained with the distinct classifiers.

In short, in the case where the temporal order seems to be discriminatory, all the classifiers seem to
agree; while discrepancies appear in those cases where the relevance of the temporal order seems to be low
for classification.

4.3 Comparison With the Experiment of Abanda et al. [62]
In this section, a comparison is performed between the empirical study about the relevance of the temporal
order on the classification of the previous section and the results obtained in [62], considering the datasets
that are in common in both experiments. Those common datasets have been divided in two tables: on
the one hand, those datasets where 1-NN-DTW outperformed 1-NN-EUC, and on the other, the datasets
where 1-NN-EUC performed better than the 1-NN-DTW. For those datasets, it has been specified the mean
percentile value obtained in the previous section, and the particular percentile value that it is obtained with
the 1-NN-DTW classifier.

For those cases where 1-NN-DTW outperformed 1-NN-EUC, their corresponding mean and particular
percentile values are shown in Table 12. Most of the datasets present high percentile values; nonetheless,
there are datasets such as the Coffee dataset, where the value of the percentile is low. Moreover, the per-
centile values obtained with the 1-NN-DTW classifier are very high for all the datasets of this table except
for the Coffee dataset.

Dataset Mean Percentile Percentile 1-NN-DTW
Trace 98.28 100.0

Lightning2 89.22 99.90
TwoLeadECG 86.73 100.0

CBF 82.35 100.0
FaceFour 78.20 100.0
Coffee 57.87 2.90

Table 12: The percentiles of the datasets where 1-NN-DTW outperformed 1-NN-EUC [62].

Moreover, the respective percentile values of those datasets where 1-NN-EUC outperformed 1-NN-DTW
can be found in table 13. For these datasets, in most of the cases, neither the mean values of the percentiles,
nor the particular percentile values obtained with the 1-NN-DTW classifier are low.

Dataset Mean Percentile Percentile 1-NN-DTW
GunPoint 95.63 100.0
SonyAI1 87.39 76.20
SonyAI2 82.50 99.50
ECG200 70.40 61.80

ECGFiveDays 62.52 100.0

Table 13: The percentiles of the datasets where 1-NN-EUC outperformed 1-NN-DTW [62].

Therefore, it does not hold that in those datasets where 1-NN-DTW outperformed 1-NN-EUC, the high-
est percentile values are obtained, neither with the 1-NN-DTW nor when averaging the percentile values over
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the 16 specific classifiers considered. Additionally, in the cases where 1-NN-EUC outperformed 1-NN-DTW,
the recorded mean percentile values and the percentiles regarding the 1-NN-DTW classifier are not the lowest.

Besides, the results from the previous section (see Section 3.6), demonstrated that the 1-NN-DTW algo-
rithm was one of the least sensitive specific classifiers. Thus it might not be the most adequate algorithm
to study the relevance of the temporal order of the instances by making comparisons with non-specific clas-
sifiers. Instead, a classifier with high sensitivity to the alteration of the temporal order of the observations
should be considered.

A similar study to that in [62] has been performed, but in this case, considering the three classifiers with
the highest sensitivity to the temporal information (Proximity Stump, Proximity Tree and MrSEQL), as well
as 1-NN-EUC and three conventional non-specific classifiers (SVM, NB and RF). Furthermore, the 5 datasets
with the highest percentile value and the 5 with lowest have been considered. Each of them has been classified
by every one of those 7 classifiers. The accuracy values obtained in each of the cases are recorded in Table 14.

Note that when computing the euclidean distance between two time series, it is invariant to the temporal
order of the observations. Thus the 1-NN-EUC classifier is considered non-specific.

Specific TS classifiers Non-specific TS classifiers
Dataset Prox. Stump Prox. Tree MrSEQL 1-NN-EUC SVM NB RF
Plane 1.00 0.99 1.00 0.96 0.96 0.95 0.99
Trace 0.78 0.53 1.00 0.76 0.52 0.79 0.85

ShapeletSim 0.57 0.58 1.00 0.54 0.53 0.49 0.5
GunPoint 0.48 0.86 0.99 0.91 0.77 0.79 0.93
ToeSeg2 0.19 0.75 0.91 0.81 0.74 0.65 0.75
Herring 0.59 0.50 0.59 0.52 0.59 0.58 0.58

Chinatown 0.86 0.91 0.95 0.94 0.89 0.96 0.98
ItalyPD 0.51 0.93 0.91 0.96 0.96 0.90 0.97
BME 0.58 0.49 0.90 0.83 0.64 0.97 0.98
Meat 0.67 0.88 0.92 0.93 0.88 0.95 0.93

Table 14: The accuracy values obtained with the specific and non-specific classifiers, for the databases with
the highest (first 5 databases) and lowest (last 5 databases) percentiles. The values in bold refer to the
highest accuracy obtained for the dataset with the specific and non-specific classifiers considered in this
table.

According to Table 14, in the TSC problems where the recorded mean percentile is high, the specific TS
classifiers outperform those that are not sensitive to the temporal correlation of the observations. Conversely,
in those datasets where the resulting mean percentile value is low, the non-specific classifiers obtain better
or at least competitive performaces in comaprison to the specific TS classifiers. Therefore, as expected in
the initial hypothesis, in TSC problems where the relevance of the temporal information is high for the
classification, the specific time series classifiers outperform the rest, as they are able to learn the information
given by the temporal ordering. On the other hand, in the cases where the temporal order of the instances
is not discriminatory for the classification, conventional non-specific classifiers record better or competitive
performances than the specific time series classifiers. Thus, in the case of TSC problems where the temporal
order of the observations is not relevant, conventional non-specific classifiers could also be considered, as
there is no need to read the information given by the temporal correlation of the observations.

Henceforth, when considering high sensitivity classifiers, the results seem to have higher coherence. That
is, in the case of the TSC problem where the percentile is high, it is supposed that the temporal order of the
observations is of high relevance for the classification, thus specific classifiers outperform the ones that are
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not sensitive to the temporal information. Moreover, in the opposite cases, where the temporal order seems
to be of little relevance for the classification, as the recorded percentiles are low, specific TS classifiers are
outperformed by conventional ML classifiers.

Actually, the MrSEQL classifier has presented the most informative results regarding the specific TS
classifiers. When considering the cases with the highest percentile values, it outperforms the conventional
ML classifiers. Furthermore, when it comes to the datasets that recorded low percentile values, it is out-
performed by at least 2 of the conventional ML classifiers (SVM, NB or RF), except for the case of one dataset.

Figure 39 shows the best accuracy obtained among the conventional ML classifiers (SVM, NB and RF) in
comparison with the accuracy obtained with the MrSEQL specific TS classifier, with the datasets positioned
in the X axis according to their corresponding mean percentile value (averaged over the results of the 16
specific TS classifiers). In classifiers with high mean values of the percentile, MrSEQL outperforms the con-
ventional ML classifiers; but its performance is upper-bounded by the best performance of the non-specific
classifiers when applied to the datasets with the lowest average percentile values.

Figure 39: The acuraccy of the datasets using the MrSEQL classifier and the best accuracy obtained with
the non-specific classifiers.
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5 Correlations Between Different Characteristics
As the main motivation to develop specific TS classifiers was to design algorithms that could outperform the
conventional ML algorithms by considering the temporal correlation of the instances on the classification,
one would expect that the higher the sensitivity of the classifier to the temporal information, the better
its performance would be. Moreover, it could be also expected that the most sensitive classifiers are the
ones obtaining the highest mean percentiles, whenever they are applied to the original datasets and their
randomized variants, particularly in those problems where the temporal order is of high relevance for the
classification.

This section studies the correlations between the different characteristics of the classifiers and the datasets,
based on the results attained in the empirical studies of the previous sections.

5.1 Sensitivity vs. Performance of the Classifiers
As mentioned in the introductory section, in some TSC problems conventional ML classifier were found
to be insufficient, and specific classifiers that take into account the temporal correlation of the instances
were proposed. Moreover, in the previous section, the empirical results showed that in the cases where the
temporal order is relevant for classification (that is, when the TSC problems recorded high mean percentile
values), the specific TS classifiers outperformed the conventional non-specific classifiers. Nonetheless, it is
still unknown how does the performance vary among the considered specific TS classifiers; in other words,
whether the classifiers with the highest sensitivity to the temporal information are the ones performing the
best, that is, obtaining the highest accuracy values.

If the performance (accuracy values) of the classifiers are averaged over the 31 datasets, the mean ac-
curacy values are those shown in Figure 40. There is no apparent correlation between the sensitivity of a
classifier and its performance; that is, being more sensitive does not directly imply a better average per-
formance. In fact, the classifiers that have performed best over the considered datasets are positioned in
intermediate positions of the temporal sensitivity ranking: WEASEL + MUSE (10th position), WEASEL
(9th position), MrSEQL (3rd position) and TDE (6th position). Therefore, although the main purpose of
developing specific TS classifiers was to define classifiers that were able to use the information given by
the temporal correlation of the instances to improve the accuracy, it is not a direct consequence that those
classifiers that are more sensitive to the temporal order perform the best.

The best average performance is given by the WEASEL + MUSE algorithm, very closely followed by
the WEASEL algorithm. The other two algorithms that recorded the best performances are MrSEQL and
TDE. These two last approaches use multiple window lengths to capture different temporal substructures
combined, but unless other algorithms using multiple window lengths, they consider the order of the win-
dows, instead of considering each window as an independent feature. That is, the information about the
location of the substructures is also relevant for classification.

Furthermore, among the dictionary-based classifiers, all the classifiers that are ensembles of individual
BOSS classifiers (BOSS ensemble, contractable BOSS and TDE), perform better than the former. That is,
considering multiple window lengths, in order to extract the information of the different substructures of the
series, improves the results of the algorithm that considers a single size of the sliding window. Moreover, the
individual TDE outperforms the individual BOSS, showing that even if both consider a single combination
of parameters, selecting those parameters by means of a Gaussian process improves the accuracy. Moreover,
inside the TDE classifiers, the individual TDE classifier is outperformed by the TDE, showing again that
considering different parameter combinations the overall performance of the classifier is improved. To sum
up, in these dictionary-based algorithms, considering multiple window lengths to extract features that are
representative of different temporal substructures, endows the classifier with a higher capability to capture
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Figure 40: The mean accuracy values for the different classifiers, ordered on the X axis according to their
position in the joint ranking.

the particular temporal information regarding the different TSC problems.

That is, in those classifiers based on the BOSS algorithm, the sliding window technique is used to extract
temporal information from subsequences. In the cases where a single fixed-size sliding window is used, only
the temporal substructures that match with the window size can be studied. Nonetheless, when multiple
window lengths are considered, a wide variety of different sized substructures are analysed, and thus more
temporal information is extracted for classification. Consequently, the latter perform best than those using
a single window length.

In the case of the algorithms with decision tree architectures, the TSF performs better in average that
the proximity tree and the proximity stump. That is, considering multiple tree structures, and having an
output that is a combination of their individual predictions, improves the average performance. Moreover,
the proximity tree outperforms the proximity stump, which is a proximity tree of level 1.

The effect of considering a forest instead of a single decision tree, is similar to that when multiple window
lengths are used instead of a single window. Each of the trees of the forest may detect different temporal
structures, thus when combining their predictions, the final results is be based on all the temporal infor-
mation caught by the individual trees. Thus the forest has a greater ability to read the intrinsic temporal
information of the instances as it considers multiple temporal substructures at the same time.

Moreover, Figure 40 shows that 1-NN-DTW, 1-NN-WDTW, 1-NN-DDTW and 1-NN-MSM have iden-
tical performances, outperforming the 1-NN-LCSS classifier. The latter has recorded the worst average
performance, while the rest of the algorithms that perform a similarity matrix in which the 1-NN classifier
is based, are found in the intermediate positions regarding their performance.

5.2 Sensitivity vs. Mean Percentile of the Classifiers
In a previous section, the sensitivity of a classifier to the temporal order of the instances has been estimated
by observing how the performance of the classifier vary when the original temporal information is lost, when
the timestamps of the instances are re-ordered randomly. The ones that have shown the highest sensitivies
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to the alteration of the temporal order of the instances could be expected to better catch the temporal
information of the TSC problems (particularly in those cases where such information is discriminatory for
the classification), as when such order has been lost by creating alternative temporal orderings, their perfor-
mance has varied considerably.

Nonetheless, by averaging the percentile values obtained with each of the classifiers over the 31 datasets
(see Figure 41), actually, the two most sensitive classifiers (Proximity Stump and Proximity Tree) are two of
the classifiers with the lowest mean percentiles. That means, that even if their performance varies when the
temporal order of the observations changes randomly, and in conclusion are sensitive to such order, they fail
to read the correct temporal information of particular TSC problems. That is, their high sensitivity makes
them be too general, losing their ability to detect the particular temporal correlation of a given TSC problem.

Figure 41: The mean percentile values of the classifiers, when averaged over the 31 datasets considered in
this work. That is, the percentile of the accuracy obtained with the original dataset in comparison to the
empirical accuracy distribution resulting from the classification of its randomized variants. Each classifier
obtains a percentile value for each TSC problem considered, and this figure shows the average of those values
for each of the specific TS classifier studied in this work.

Therefore, although it is important for the classifiers to be sensitive to the temporal order of the instances,
particularly in those cases where the temporal information is discriminatory for the classification, they need
to be able to correctly read the information given by the temporal correlation of particular TSC problems.

For example, even if the TSF is not a forest of proximity trees, but rather a forest of decision trees based
on interval attributes, it gives an idea of what happens when different decision trees are combined creating
more complex structures: although the overall sensitivity of the classifier decreases, it becomes better in
reading the correct temporal information of the given dataset.

Moreover, when the parameters of a BOSS classifier are chosen by a Gaussian process (individual TDE),
the ability of the classifier to better detect the temporal information for classification improves (see Figure
41), as well as when ensembles of individual BOSS algorithms are considered, defining different parameter
settings. In the cases where multiple sliding windows are used to extract features, multiple different length
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temporal substructures are considered in the attributes, expanding the diversity of the temporal information
considered for classification. According to this empirical study, they have a higher capacity to capture the
particular temporal information of different TSC problems.

Furthermore, the MrSEQL algorithm, which consider both time domain and frequency domain symbolic
representations, has also a great ability to detect the temporal information.

Thus according to the results obtained in this section, creating ensembles of base algorithms or forests of
single decision trees, upgrades the ability of the classifier to detect the specific temporal information regard-
ing a particular TSC problem, and use it on the classification of the instances. That aptitude is also improved
when symbolic representations of different domains are combined. Nonetheless, in some of those cases, their
capacity for detecting the correct temporal information is similar to the one that simpler algorithms such as
1-NN-DTW, 1-NN-WDTW, 1-NN-DDTW and 1-NN-MSM have (see Figure 41). This result explains why
these benchmark classifiers have happened to be so hard to beat.

5.3 Mean Percentile vs. Performance of the Classifiers
The main conclusion of the previous section has been that those classifiers that are more sensitive against
the temporal alteration of the instances are not necessarily the best in detecting the correct temporal infor-
mation of a given TSC problem. Nonetheless, it is true that those classifiers that have the greatest ability to
correctly detect the particular temporal information of TSC problems (that is, those that have the highest
average percentile value) are the ones performing the best in average (see Figure 42).

Figure 42: The relation between the mean accuracy and percentile values (averaged over the 31 datasets)
recorded in the studied specific TS classifiers.

In conclusion, when more accurate classifiers are designed, their performance is improved not directly
because they are more sensitive, but because they have a greater ability to detect and learn the particular
temporal information given by a specific dataset for its classification.
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Therefore, according to this study, the ability of a classifier to correctly read the particular temporal in-
formation of a given TSC problem is related to the temporal information it captures: the higher the diversity
of the temporal structures it considers, the greater skills it develops to read the correct temporal information
of specific TSC problems.

Among the dictionary based classifiers, considering multiple window lengths in the window sliding
method, discretizing the TS by means of symbolic representations of different domains (e.g. time and
frequency domain) or capturing the temporal location of the patterns, expands the temporal information
captured by the classifier as well as the diversity of such information. Consequently, the classifiers can better
read the correct temporal information of each particular TSC problem, improving their performance.

Similarly, when single decision trees are combined forming forests, the ability for the classifier to read
the correct temporal information is increased. Each of the decision trees may capture a distinct temporal
information. Thus when their individual outcomes are combined, the final prediction is based on a wider
range of different temporal structures, making the classifier more accurate.

Coming back to the results of the experiment of Abanda et al. [62], 1-NN-DTW is not among those spe-
cific TS classifiers that best read the temporal information. Therefore, it would be interesting to replicate
their analysis using a classifier that has a greater capacity to better read the particular temporal information
of TSC problems. That is, using a specific TS classifier with a higher mean percentile value. For example,
as it has been proposed in a previous section, using the MrSEQL algorithm would be a good choice as it is
among those classifiers that catches best the temporal information of particular TSC problems, better than
the 1-NN-DTW algorithm.

5.4 The Effect of the Relevance of the Temporal Information on the Accuracy
Distribution

The sensitivity of a specific TS classifier to the temporal information is independent of the TSC problem,
as it is a characteristic of the classifier itself. Therefore, ideally those classifiers that are significantly more
sensitive, that is those that recorded statistically significant wider distributions, should maintain their lead
position whenever their are applied to different datasets and their corresponding randomized variants.

To verify whether that statement is true, we have considered the 5 datasets with the highest average
percentile value and the 5 datasets with the lowest. For those TSC problems, we have represented graphically
the standard deviations of the their empirical accuracy distributions obtained with the different specific TS
classifiers considered in this study (see Figure 43). Figure 43(a) shows the values of the standard deviations
of the empirical accuracy distributions obtained from the different specific classifiers for the datasets in which
the relevance of the temporal information has been high (highest mean percentile values), and Figure 43(b)
for those datasets in which the relevance of the temporal information was low (low mean percentile value).
In both graphics, each of the curves represents a different dataset and the classifiers are ordered in the X
axis according to the sensitivity ranking. Figure 43 shows that the observed general trends are equivalent in
both groups: the classifiers with the highest sensitivity record the widest empirical distributions, and they
get narrower for classifiers with lower sensitivity. Therefore, independently of the relevance of the temporal
information for a given TSC problem, the most sensitive classifiers obtain empirical accuracy distributions
with significantly higher standard deviations.

Moreover, Figure 44 shows that the change on the performance of a classifier may vary from one dataset
to another, as the same classifier has obtained distributions with different standard deviation values when
applying to different TSC problems. Some classifiers have recorded greater variations than others. Nonethe-
less, those classifiers with higher average standard deviation values vary in ranges limited by higher values.
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(a) (b)

Figure 43: The standard deviation values recorded for the distributions related to each of the classifiers for
those datasets (a) with the highest mean percentile values and (b) those with the lowest percentile values.
The classifiers are ranked in the X axis according to their sensitivity to the temporal order of the instances.

That is, even if the variation of their performance (the standard deviation of the empirical accuracy distri-
bution) changes when they are applied to different TSC problems, the specific TS classifiers that have been
shown to be the most sensitive, always record the empirical distributions with the highest standard deviations.

Therefore, although the width of the empirical accuracy distribution obtained with a classifier varies
from one dataset to the other, in general, the most sensitive specific classifiers have recorded the widest
distributions and the least sensitive classifiers the narrowest.
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Figure 44: The values of the standard deviation values of the empirical accuracy distributions obtained with
the different classifiers when they are applied to different TSC problems and their randomized variants, in
which the temporal order is altered. Each point on the X axis refers to a specific classifier, ordered according
to their position in the sensitivity ranking. On the other hand, the Y axis holds the standard deviation values
of the empirical accuracy distributions obtained when the classifier is applied to each of the considered TSC
problems and its randomized variants.

5.5 Accuracy vs. Relevance of Temporal Information
In Section 4 we have proven empirically that in those TSC problems where the relevance of the temporal
information for the classification is low, the conventional ML classifiers outperform or are at least competitive
with the specific TS classifiers. With that, one could expect that the higher the relevance of the temporal
information on the classification, the better the performance of the specific TS classifiers would be. Nonethe-
less, Figure 45 shows there is no clear correlation between such two attributes. The X axis represents the
percentile values related to the different datasets when the accuracy of the original dataset in compared to
the accuracy distribution obtained with its 1000 randomly altered variants. Actually, it represents the mean
percentile values averaged over the considered 16 classifiers. Moreover, the Y axis accounts for the mean
accuracy values of each of the datasets, calculated by averaging the performance of the different classifiers
on that specific TSC problem.
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Figure 45: The mean percentile values and mean accuracy values of the different TSC problems averaged
over the 16 specific classifiers.

This result is not surprising as the accuracy of a TSC problem depends on numerous factors, such as,
the class balance among the instances of the dataset, the number of instances used for training the classifier,
etc. Nonetheless, it is true, that if the temporal information of a given database is discriminatory for clas-
sification, those classifiers with the greatest ability to capture the intrinsic temporal information of a given
TSC problem will perform the best (see Figure 46). This figure shows the performances of the different
classifiers, ordered in the X axis according to their ability to capture temporal information. The ones that
best capture the particular temporal information of different TSC problems (that is, the ones that recorded
the highest mean percentile values in Figure 41) are located on the left. Moreover, the TSC problems for
which the accuracy is accounted in the graphic are the top 5 TSC problems where the relevance of the tem-
poral information has been found to be the highest. This figure shows that there is a difference between the
performances of the classifiers that better capture the temporal information to those that have less ability
to do so.
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Figure 46: The mean accuracy values of the 5 TSC problems where the temporal information had the highest
relevance for classification averaged over the 16 specific classifiers.

Moreover, if the same analysis is carried out in those datasets where the temporal information has been
found to have low relevance for classification (see Figure 47), the difference between the performances of
the algorithms, each of them having a different capacity to capture the temporal information, is smaller.
Nonetheless, it is true that in general, those algorithms that have a greater ability to capture the temporal
information of the problem perform the best: as little as it might be the intrinsic temporal information that
is relevant for the classification, they are able to capture it better.
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Figure 47: The mean accuracy values of the 5 TSC problems where the temporal information had the lowest
relevance for classification averaged over the 16 specific classifiers.
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6 Conclusions
The first part of this work has been an overview of some of the existing specific TS classifiers, which have
been grouped according to their classification procedure. Some approaches use a time series distance measure
to calculate the (dis)similarity matrix, and then use a distance-based classifier. Other approaches extract
discriminative features, and then map the dataset to the new feature space in which the classification is based
by means of conventional distance-based or feature-based classifiers. Depending on the algorithm, those fea-
tures are created by extracting words from real-valued TS using a symbolic representation, by calculating the
distance of a TS to discriminative patterns, performing convolutions with kernels or by means of summary
statistics of intervals. In addition, ensembles of base classifiers have also been proposed in literature, which
combine the individual outcomes of the base classifiers for a final prediction. Furthermore, TS distance
measures and features that capture structural information can be used as a splitting criteria in decision tree
structures. Finally, several recently proposed deep learning structures have been presented. Moreover, it has
been outlined how each classifier is affected when the timestamps of the observations are re-ordered randomly.

In those algorithms where conventional classifiers are used for classification (after computing the similar-
ity matrix or once the features have been extracted), the temporal information is intrinsically transmitted
by the distance measures used and the features that are extracted from the real valued TS. The final clas-
sifier will change its performance depending on the given distance values and the set of attributes and
their values; not because it is sensitive to the temporal information, but because depending on the ordering
of the timestamps the temporal information defined by the distance values and the set of attributes and
their values is different. Therefore when the temporal order of the instances is randomly altered the dis-
tance matrix and feature based descriptions will not longer be representative of real temporal information,
thus the final classifier will have erroneous information to base the classification on, affecting its performance.

In deep learning architectures, it is not easy task to identify how will the alteration of the temporal order
of the instances affect its performance as the internal behaviour if hidden layers is not easily interpretable,
because of the non-linear transformations that are performed in the input data. Nonetheless, the effect of
the random re-ordering of the timestamps has been estimated in the case of the presented approaches. All
the presented architectures except MLP were found to be sensitive to the intrinsic temporal information of
the observations. The architectures that contain convolutional layers happen to be sensitive to the temporal
information, as the result of those convolutional layers depend on temporal substructures of the observa-
tions. Furthermore, considering multi-scale convolutional layers allows the network to capture and learn
more complex temporal structures. Additionally, the GAP layers and attention layers that are present in
some of the presented CNN architectures, highlight the most discriminant regions and subsequences of the
TS. Moreover, in recurrent architectures, the learning processes of networks strongly depend on the initial
values of the observations, thus their performance will be affected by the random alteration of the temporal
order of the instances.

Besides, this work has analysed the sensitivity of different specific TS classifiers to the random alteration
of the temporal order of the instances, based on empirical accuracy distributions. For each TSC problem
considered, the performance variations of the different classifiers have been estimated subject to the standard
deviation values of the empirical accuracy distributions obtained when the original TSC dataset and 1000
of its randomized variants were classified. The process has been repeated for 31 different TSC problems
developing a joint ranking, from which a general ranking of sensitivity has been concluded.

This study has concluded that when considering higher-level structures instead of only restricting to local
similarities, the sensitivity of a classifier increases. Regarding dictionary based algorithms, discretizing the
real-valued time series by symbolic representations in both time domain and frequency domain, and con-
sidering multiple resolutions for each, increases the sensitivity of the classifier to the temporal order of the
observations. On the other hand, creating ensembles of BOSS algorithms in the conventional way, increases
the sensitivity of the classifier. Nonetheless, when the ensemble is created based on a random process, the
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sensitivity is decreased. Furthermore, when the parameters of the BOSS algorithm are chosen by a Gaussian
process, the sensitivity of the algorithm is also decreased. In the case where a single multiple resolution
symbolic representation is used, when a feature selection is perform to consider only the most discrimina-
tive substructures for classification, the sensitivity of the algorithm decreases. Besides, among decision tree
structures, considering deeper structures decreases the sensitivity of the algorithm, as well as combining
multiple decision trees forming a forest.

Furthermore, we have found out that the temporal information is not always discriminatory for clas-
sification. That is, there are TSC problems where the temporal order of the instances has low relevance
for classification. To study such issue, we have compared the performance of the original dataset to those
obtained when the timestamps of the observations were randomly shuffled. If the performance obtained with
the original dataset is not good enough in comparison to its randomized variants, the temporal order of
the instances has low relevance for classification. On the other hand, if losing the original temporal infor-
mation makes the performances of the specific TS classifiers deteriorate, then the temporal information is
considered to be discriminant for classification. In the cases where the temporal information was not found
to be relevant, conventional non-specific classifier outperformed or at least were competitive with specific
TS classifiers. Therefore, conventional ML classifiers could be used to classify TSC problems in which the
temporal correlation of the attributes has low relevance for classification.

Moreover, the results of this empirical study have shown that, while specific TS classifiers were needed
to classify at least those TSC problems where the temporal information was discriminant for classification,
being more sensitive to the temporal order of the instances does not directly imply a better performance.
That is, although the classifiers need to be sensitive to capture the temporal information in the classification
process, their ability to correctly read the particular temporal information of a given TSC problem is what
ensures a better performance.

The ability of a classifier to correctly read the particular temporal information of a given TSC problem
is related to the temporal information it captures: the higher the diversity of the temporal structures it
considers, the better its potential to read the temporal information of a specific TSC problem. Therefore,
among the dictionary based classifiers, considering multiple window lengths in the window sliding method,
discretizing the TS by means of symbolic representations of different domains (e.g. time and frequency
domain) or capturing the temporal location of the patterns, expands the temporal information captured by
the classifier as well as the diversity of such information, which endows the classifier with a higher ability to
read the correct temporal information from each particular TSC problem, improving its performance.

Equivalently, when single decision trees are combined forming forests, the ability for the classifier to read
the correct temporal information is increased. Each of the decision trees may capture a distinct temporal
information. Therefore, when their individual outcomes are combined, the final prediction is based on a
more diverse set of temporal structures, which makes the classifier become more accurate.

Besides, the average accuracy of TSC problems have been demonstrated to be independent of the rele-
vance of the temporal information for classification. Nonetheless, in those TSC problems where the temporal
information has higher relevance for classification, the differences in performances between the specific clas-
sifiers that better captured the temporal information and those that do it worse, is greater. Furthermore,
this work showed, that even when the temporal information that is relevant for classification is little, and
non-specific classifiers are competitive with the specific ones, among the latter, those that have the greatest
ability to capture the temporal information still perform better. That is, as little as it might be the temporal
information that is relevant for classification, the specific TS classifiers that better read such information, still
capture it better and record better performances. Nonetheless, in this case, the differences in performances
among the specific TS classifiers are smaller.
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Moreover, the results of this study have shown that although the width of the empirical accuracy dis-
tribution obtained with a classifier varies from one TSC problem to other, in general, the most sensitive
classifiers have recorded the widest distributions in all the TSC problems.

The number of datasets and classifiers considered in this empirical study, has been limited by the tem-
poral cost of the experiment. For each combination of dataset and classifier 1001 classification processes had
to be carried out. Therefore, only those needing a reasonable time to perform a single classification were
feasible to use for this work. Moreover, only those classifiers which had their implementations in python
were used. Therefore, it would be interesting to widen the set of considered specific classifiers, when new
algorithms requiring reasonable computational times to perform a single classification are added to python.
For example, adding deep learning architectures to this study would be one of the foremost objectives of
future works.

In further work, it would be also riveting to mature this analysis by defining an statistical analysis to
estimate the relevance of the temporal information of a given TSC problem by means of a mathematical
formalization. Nonetheless, for doing so, the probability distribution of the temporal information would be
needed to define.

72



References
[1] P. J. Brockwell, P. J. Brockwell, R. A. Davis, and R. A. Davis, Introduction to time series and fore-

casting. Springer, 2016.

[2] E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks: A survey and empirical
demonstration,” Data Mining and knowledge discovery, vol. 7, no. 4, pp. 349–371, 2003.

[3] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, “Experimental comparison
of representation methods and distance measures for time series data,” Data Mining and Knowledge
Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[4] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh, “Indexing multidimensional time-series,”
The VLDB Journal, vol. 15, no. 1, pp. 1–20, 2006.

[5] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series clusteringâa decade review,” Infor-
mation Systems, vol. 53, pp. 16–38, 2015.

[6] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series classification bake
off: A review and experimental evaluation of recent algorithmic advances,” Data mining and knowledge
discovery, vol. 31, no. 3, pp. 606–660, 2017.

[7] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great multivariate time series
classification bake off: A review and experimental evaluation of recent algorithmic advances,” Data
Mining and Knowledge Discovery, pp. 1–49, 2020.

[8] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for time series
classification: A review,” Data mining and knowledge discovery, vol. 33, no. 4, pp. 917–963, 2019.

[9] P. Esling and C. Agon, “Time-series data mining,” ACM Computing Surveys (CSUR), vol. 45, no. 1,
pp. 1–34, 2012.

[10] U. M. Carrascal, “Contributions to time series data mining departing from the problem of road travel
time modeling,” Ph.D. dissertation, Universidad del País Vasco-Euskal Herriko Unibertsitatea, 2015.

[11] T.-c. Fu, “A review on time series data mining,” Engineering Applications of Artificial Intelligence,
vol. 24, no. 1, pp. 164–181, 2011.

[12] A. Jalalian and S. K. Chalup, “Gdtw-p-svms: Variable-length time series analysis using support vector
machines,” Neurocomputing, vol. 99, pp. 270–282, 2013.

[13] M. Müller, “Dynamic time warping,” Information retrieval for music and motion, pp. 69–84, 2007.

[14] T. W. Liao, “Clustering of time series dataâa survey,” Pattern Recognition, vol. 38, no. 11, pp. 1857–
1874, 2005.

[15] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic time warping for time series
classification,” Pattern Recognition, vol. 44, no. 9, pp. 2231–2240, 2011.

[16] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proceedings of the 2001 SIAM
international conference on data mining, SIAM, 2001, pp. 1–11.

[17] T. GÃ3recki and M. Åuczak, “Using derivatives in time series classification,” Data Mining and Knowl-
edge Discovery, vol. 26, no. 2, pp. 310–331, 2013.

[18] A. Stefan, V. Athitsos, and G. Das, “The move-split-merge metric for time series,” IEEE Transactions
on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1425–1438, 2012.

[19] M. A. R. Khan and M. Zakarya, “Longest common subsequence based algorithm for measuring simi-
larity between time series: A new approach,” World Applied Sciences Journal, vol. 24, no. 9, pp. 1192–
1198, 2013.

[20] G. Soleimani and M. Abessi, “Dlcss: A new similarity measure for time series data mining,” Engineering
Applications of Artificial Intelligence, vol. 92, p. 103 664, 2020.

73



[21] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance measures,” Data
Mining and Knowledge Discovery, vol. 29, no. 3, pp. 565–592, 2015.

[22] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series using bag-of-patterns repre-
sentation,” Journal of Intelligent Information Systems, vol. 39, no. 2, pp. 287–315, 2012.

[23] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: A novel symbolic representation of time
series,” Data Mining and knowledge discovery, vol. 15, no. 2, pp. 107–144, 2007.

[24] P. Geurts, “Pattern extraction for time series classification,” in European conference on principles of
data mining and knowledge discovery, Springer, 2001, pp. 115–127.

[25] P. Senin and S. Malinchik, “Sax-vsm: Interpretable time series classification using sax and vector space
model,” in 2013 IEEE 13th international conference on data mining, IEEE, 2013, pp. 1175–1180.

[26] P. SchÃ¤fer, “The boss is concerned with time series classification in the presence of noise,” Data
Mining and Knowledge Discovery, vol. 29, no. 6, pp. 1505–1530, 2015.

[27] P. Schäfer and M. Högqvist, “Sfa: A symbolic fourier approximation and index for similarity search in
high dimensional datasets,” in Proceedings of the 15th international conference on extending database
technology, 2012, pp. 516–527.

[28] M. Middlehurst, W. Vickers, and A. Bagnall, “Scalable dictionary classifiers for time series classifica-
tion,” in International Conference on Intelligent Data Engineering and Automated Learning, Springer,
2019, pp. 11–19.

[29] M. Middlehurst, J. Large, G. Cawley, and A. Bagnall, “The temporal dictionary ensemble (tde) classifier
for time series classification,” arXiv preprint arXiv:2105.03841, 2021.

[30] J. Large, A. Bagnall, S. Malinowski, and R. Tavenard, “On time series classification with dictionary-
based classifiers,” Intelligent Data Analysis, vol. 23, no. 5, pp. 1073–1089, 2019.

[31] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recog-
nizing natural scene categories,” in 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), vol. 2, IEEE, 2006, pp. 2169–2178.

[32] T. L. Nguyen, S. Gsponer, I. Ilie, M. OâReilly, and G. Ifrim, “Interpretable time series classification
using linear models and multi-resolution multi-domain symbolic representations,” Data mining and
knowledge discovery, vol. 33, no. 4, pp. 1183–1222, 2019.

[33] T. L. Nguyen, S. Gsponer, and G. Ifrim, “Time series classification by sequence learning in all-
subsequence space,” in 2017 IEEE 33rd international conference on data engineering (ICDE), IEEE,
2017, pp. 947–958.

[34] P. Schäfer and U. Leser, “Fast and accurate time series classification with weasel,” in Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 637–646.

[35] D. A. Freedman, Statistical models: theory and practice. cambridge university press, 2009.
[36] M. F. Zibran, “Chi-squared test of independence,” Department of Computer Science, University of

Calgary, Alberta, Canada, pp. 1–7, 2007.
[37] P. SchÃ¤fer and U. Leser, “Multivariate time series classification with weasel muse,” arXiv preprint

arXiv:1711.11343, 2017.
[38] [Online]. Available: http://timeseriesclassification.com/dataset.php.
[39] L. Ye and E. Keogh, “Time series shapelets: A novel technique that allows accurate, interpretable and

fast classification,” Data mining and knowledge discovery, vol. 22, no. 1, pp. 149–182, 2011.
[40] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm for discovering time series

shapelets,” in proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, 2013,
pp. 668–676.

[41] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classification of time series by shapelet
transformation,” Data mining and knowledge discovery, vol. 28, no. 4, pp. 851–881, 2014.

74

http://timeseriesclassification.com/dataset.php


[42] A. Bostrom and A. Bagnall, “Binary shapelet transform for multiclass time series classification,” in
International conference on big data analytics and knowledge discovery, Springer, 2015, pp. 257–269.

[43] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learning time-series shapelets,” in
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 392–401.

[44] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: Exceptionally fast and accurate time series
classification using random convolutional kernels,” Data Mining and Knowledge Discovery, vol. 34,
no. 5, pp. 1454–1495, 2020.

[45] J. J. Rodríguez and C. J. Alonso, “Support vector machines of interval-based features for time series
classification,” in International Conference on Innovative Techniques and Applications of Artificial
Intelligence, Springer, 2004, pp. 244–257.

[46] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for classification and feature
extraction,” Information Sciences, vol. 239, pp. 142–153, 2013.

[47] B. Lucas, A. Shifaz, C. Pelletier, L. OâNeill, N. Zaidi, B. Goethals, F. Petitjean, and G. I. Webb,
“Proximity forest: An effective and scalable distance-based classifier for time series,” Data Mining and
Knowledge Discovery, vol. 33, no. 3, pp. 607–635, 2019.

[48] A. Bagnall, F. Király, M. Löning, M. Middlehurst, and G. Oastler, “A tale of two toolkits, report the
first: Benchmarking time series classification algorithms for correctness and efficiency,” arXiv preprint
arXiv:1909.05738, 2019.

[49] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification with cote: The collective of
transformation-based ensembles,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 9, pp. 2522–2535, 2015.

[50] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-cote: The hierarchical vote
collective of transformation-based ensembles,” ACM Transactions on Knowledge Discovery from Data,
vol. 12, no. 5, 2018.

[51] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep neural networks:
A strong baseline,” in 2017 International joint conference on neural networks (IJCNN), IEEE, 2017,
pp. 1578–1585.

[52] J. Serrà, S. Pascual, and A. Karatzoglou, “Towards a universal neural network encoder for time series.,”
in CCIA, 2018, pp. 120–129.

[53] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks for time series classification,”
arXiv preprint arXiv:1603.06995, 2016.

[54] A. L. Guennec, S. Malinowski, and R. Tavenard, “Data augmentation for time series classification
using convolutional neural networks,” in ECML/PKDD workshop on advanced analytics and learning
on temporal data, 2016.

[55] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time series classifica-
tion,” Journal of Systems Engineering and Electronics, vol. 28, no. 1, pp. 162–169, 2017.

[56] P. Tanisaro and G. Heidemann, “Time series classification using time warping invariant echo state net-
works,” in 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA),
IEEE, 2016, pp. 831–836.

[57] A. E. Hoerl and R. W. Kennard, “Ridge regression: Applications to nonorthogonal problems,” Tech-
nometrics, vol. 12, no. 1, pp. 69–82, 1970.

[58] S. Siegel, “Nonparametric statistics for the behavioral sciences.,” 1956.

[59] C. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilita,” Pubblicazioni del R Istituto
Superiore di Scienze Economiche e Commericiali di Firenze, vol. 8, pp. 3–62, 1936.

75



[60] M. Löning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines, and F. J. Király, “Sktime: A unified interface
for machine learning with time series,” arXiv preprint arXiv:1909.07872, 2019.

[61] T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.

[62] A. Abanda, U. Mori, and J. A. Lozano, “¿requiere la clasificación de series temporales métodos es-
pecíficos?” In XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA
2018) 23-26 de octubre de 2018 Granada, España, Asociación Española para la Inteligencia Artificial
(AEPIA), 2018, pp. 790–795.

76


	Introduction
	Review on Specific Time Series Classifiers
	Similarity Between Whole Series: Shape-Based Similarities
	Learning Features: Structural (dis)similarities
	Dictionary Based Classifiers: Pattern Frequency Features
	Shapelets
	Convolutional Kernels
	Interval Based Classifiers

	Decision Tree Architectures
	Ensemble Classifiers
	Deep Learning Approaches

	Temporal Sensitivity of Specific Time Series Classifiers
	Methodological Setup
	Databases
	Specific Time Series Classifiers
	Performance Measures
	Software
	Results

	The Relevance of the Temporal Information in the Classification
	Metodological Setup
	Results
	Comparison With the Experiment of Abanda et al. amaia

	Correlations Between Different Characteristics
	Sensitivity vs. Performance of the Classifiers
	Sensitivity vs. Mean Percentile of the Classifiers
	Mean Percentile vs. Performance of the Classifiers
	The Effect of the Relevance of the Temporal Information on the Accuracy Distribution
	Accuracy vs. Relevance of Temporal Information 

	Conclusions
	References

