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Abstract

Background and objectives

Parkinson’s disease (PD) is the second most common neurodegenerative disorder in
the world, but the accuracy of clinical diagnosis is still limited, mainly in early stages when
the cardinal motor symptoms are not present. This work aims to contribute to the early
diagnosis of PD based on non-motor data from 490 patients with idiopathic PD and 197
control subjects. In addition, the most relevant biomarkers will be identi�ed and the gender
bias will be measured.

Methods

A database from an international repository (PPMI) was used, from which non-motor
variables were selected. Four versions of the database with increasing granularity were
generated, to which the Correlation Feature Selection method was applied to identify
the most relevant variables for di�erentiating PD patients from controls. Then, eight
classi�ers were trained with machine learning algorithms (K-Nearest Neighbors, Support
Vector Machine, Decision Tree, Consolidated Tree Construction, Naive Bayes, Multi-Layer
Perceptron and Random Forest) and were statistically compared.

Results

Through these algorithms, a set of variables was detected that allowed di�erentiating
patients from controls, suggesting that early detection of PD could be performed using a
reduced version of the tests and questionnaires. The most relevant variables are related to
impairments in the olfactory system. The algorithms with the best metrics were Support
Vector Machine, Multi-Layer Perceptron and Random Forest, although only the second
one achieved a balance between gender preconditions. In addition, using the explanatory
algorithms, a set of simple rules capable of di�erentiating the two classes is proposed.

Conclusion

In this project, we explored the e�ciency of several algorithms to di�erentiate between
PD patients and healthy control subjects, using only non-motor characteristics. Olfactory
impairment has been identi�ed as the most relevant biomarker for this task and we propose
a simple set of rules. Multi-Layer Perceptron algorithm, besides achieving good metrics,
was barely a�ected by gender bias.
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CHAPTER 1
Introduction

Neurodegenerative diseases are chronic and progressive disorders that a�ect the central
nervous system, resulting motor and cognitive impairment. Neurodegenerative diseases
can be broadly classi�ed according to their clinical presentation and are typically de�ned
by speci�c protein accumulations in vulnerable brain areas or cells.

1.1 Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease after
Alzheimer’s disease [1] and it is characterised by the loss of dopaminergic (dopamine-
producing) neurons in the substantia nigra [2, 3, 4]. The substantia nigra is a structure of
the basal ganglia located in the midbrain. The disease was �rst described in 1817 by James
Parkinson [5], and its prevalence is increasing: from 1990 to 2015, the number of patients
with PD has duplicated in the world [6]. It is a disease that a�ects 1% of people over 60
years [7] and 15% of patients are diagnosed before the age of 40.

According to data from various epidemiological studies, there are between 80,000 and
100,000 PD patients in Spain and 8,000 new cases are diagnosed every year, i.e. there are 20
new cases per 100,000 inhabitants. Therefore, in Gipuzkoa there are around 1,000-1,400
people with PD and 140 new cases are diagnosed every year.

The origin of PD is unknown [8]. According to studies, it may be caused by two
types of factors: genetic and environmental triggers. Inherited cases constitute a small
percentage of PD, and the E46K point autosomal-dominant mutations in SNCA gene is
restricted to a family in Biscay. They present a clinical phenotype that is characterized
by early-onset and rapidly progressive parkinsonism followed by dementia. This family
supervised by Biocruces Bizkaia Health Research Institute. Intriguingly, some carriers of
E46K-SNCA mutation are asymptomatic or mild symptomatic, which poses questions about
the precises epigenetic and environmental factors interacting with genetic risk factors to
clinically develop the disease. Some known environmental risk factors for PD are exposure
to chemical substances throught life or head trauma. Scientists have therefore determined
that the reason for this disease is due to the interaction of both genetic and environmental
factors.
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1. Introduction

The pathological hallmark of PD is a loss of dopaminergic neurons in mesencephalic
areas. Loss of dopamine causes motor symptoms in PD patients, such as an involuntary
resting tremor, slow movements, balance problems and rigidity [4, 1]. These cardinal symp-
toms appear after 50 to 70% of dopaminergic neurons are degenerated (called motor phase
[9]), making early diagnosis di�cult [1]. The diagnosis of PD is clinical and the presence of
motor symptoms is essential for it. PD patients also present non-motor manifestations such
as mood and sleep disorders, loss of smell, speech problems and nervous system dysfunction
[7, 1]. These symptoms are known to develop years before PD diagnosis is made (called the
prodromal phase [9]). It has been claimed that loss of smell might be present up to 20 years
before diagnosis. Therefore, some non-motor symptoms might be helpful in detecting PD
in prodromal stages, when neuronal loss is thought to be less pronounced [4].

Currently, the only available treatments for PD are for symptom relief, as there is no
cure for this disease. One of the most commonly used drugs for this purpose is Levodopa
(L-dopa) [5], which is a precursor of dopamine, and improves the motor status of the
patients, reducing the slowness of movement and rigidity. For more advanced patients,
when motor symptoms cannot be successfully controlled with pharmacological drugs,
another treatment option is deep brain stimulation (DBS) therapy, which involves the
implantation of a device to electrically stimulate certain regions of the brain [10]. However,
there is an urge to develop therapeutic treatments that halt or slow down the progression
of neuronal loss, that is, drugs that have a modifying e�ect on the course of the disease.
For the success of such treatments, an early diagnosis is important.

In this regard, there is no speci�c analysis to diagnose PD. Neurologits experts in
movement disorders rely on medical history, symptom analysis, and physical and neuro-
logical examination. Symptoms and signs of PD are detected using questionnaires and
tests speci�c to the disease or speci�c to the symptoms. Physical examination is performed
by disease-speci�c tests. The internationally validated examination for PD is the Uni�ed
Parkinson’s disease Rating Scale or the UPDRS. The UPDRS evaluates various aspects
of PD including non-motor symptoms, activities of daily living, motor impairment, and
drug-induced complications. It includes a motor evaluation that characterizes the extent
and burden of disease. The neurological examination is complemented with neuroimaging.
Usually, single photon emission computed tomography (SPECT) technique is used as a
con�rmatory imaging test for PD diagnosis. This technique uses a radiotracer to identify
the presence of dopaminergic de�ciency in presynaptic terminals of basal ganglia.

Types of Parkinsonism

Parkinsonisms are a group of di�erent clinical entities that share common symptoms
reminiscent of PD, like slowness of movement, rigidity or tremor. Although the presentation
of clinical symptoms is similar across parkinsonisms, the underlying cause varies and
each diagnostic entity presents some characteristics that help to discriminate between
conditions. These clinical entities that share common motor symptoms with PD are usually
called atypical parkinsonisms, like Multiple System Atrophy, Corticobasal degeneration or
Dementia with Lewy bodies. On the other hand, the di�erential diagnosis of Parkinson’s
disease should also include the following:

• Parkinson’s disease (PD). The most common type of PD is the idiopathic PD (IPD),
which accounts for 60-75% of cases [11]. Idiopathic means that the cause is unknown
[12]. On the other hand, there is genetic PD, which are patients that are known to
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1.2. Symptoms and diagnosis

have genetic mutations that are risk factors for developing PD. In both cases, the
characteristic symptoms are tremor, rigidity and slowness of movement [12], as well
as a range of cognitive disorders, such as frontal lobe de�cits [13, 14] or profound
dementia [15].

• Vascular parkinsonism (VP) are produced by one or more small strokes, rather than
by gradual loss of nerve cells as seen in the more typical neurodegenerative PD
[16, 17, 18, 19]. The diagnosis is suggested by predominant involvement of the legs
(“lower-body parkinsonism") with gait and balance problems, lack of tremor, poor
response to Levodopa (as opposed to PD), and brain scans showing multiple minute
or more extensive strokes [20].

• Drug-induced parkinsonism (DIP) is the most common movement disorder induced
by drugs that a�ect dopamine receptors and is often misdiagnosed as IPD, as the
symptoms are similar. Causative agents can be any medication that interferes with
dopamine transmission, and mainly include olanzapine, risperidone, and aripiprazole.
In addition, it can a�ect daily activities and can persist for long periods of time even
after having stopped taking the drug that caused it [21].

• SWEED (Scans without evidence of dopaminergic de�cit) patients are those with a
diagnosis of Parkinson’s but no evidence of dopaminergic de�cits. These patients have
symptoms such as asymmetric rest tremor and absence of nigrostriatal dopaminergic
pathway dysfunction.

1.2 Symptoms and diagnosis

1.2.1 Motor symptoms

The primary motor symptoms, considered cardinal symptoms of the disease, include akine-
sia, bradykinesia, rigidity, tremor y gait disturbances [22]. Akinesia is the loss of the ability
to move muscles voluntarily. On the other hand, bradykinesia is slowness of movement, i.e.
movements become slower and slower and, over time, the muscles may “freeze”. Rigidity, as
the name suggests, is the muscle sti�ness or in�exible muscles of the arms or legs beyond
what would result from normal aging or arthritis.

Regarding tremor, the manifestations are di�erentiated between resting, postural and
kinetic. Resting tremor is the most common of the three, while the other two, i.e. kinetic
tremor (occurring during voluntary movements) and postural tremor, are more common in
essential tremor [23]. Nevertheless, it is di�cult to di�erentiate PD from essential tremor
[24]. The tremor mainly a�ects the hands and feet, although other parts of the body may
also be involved like jaw tremor, but to a lesser extent. 70% of PD patients experience
tremor during the disease [25]. This tremor in hands has a characteristic presentation,
named “pill rolling tremor", like if the patient was trying to roll a pill or another small
object between their thumb and index �nger.

Patients with PD are usually classi�ed in studies into three categories: tremor-dominant,
akinesia-dominant (also called akineto-rigid) or mixed phenotype category [26, 27]. There-
fore, this subclassi�cation of PD patients di�erentiates endophenotypes of PD. It is known
that the likelihood of disease development might di�er among PD patients and, for example,
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1. Introduction

those with akinetic-rigid subtype might be more prone to su�er severe motor impairment
compared to tremor-dominant subtype, which barely progress over time.

Gait disturbance is a common symptom. This a�ects PD patients who have di�culty
lifting their feet o� the ground, experiencing a shu�ing gait.

In addition to the above symptoms, there are also some secondary symptoms such as
impaired handwriting, speech and precision grip [22]. A large proportion of PD patients
tend to have mycography, i.e. a form of tiny handwriting [28]. In addition, speech and voice
disorders develop at some point in the disease in most PD patients [29]. Speech production
is correlated with other motor symptoms, such as akinesia [30]. Finally, the precision grip
is the grip formed by the index �nger and thumb. It is used to evaluate loss of function in
several disorders, such as PD [31].

1.2.2 Non-motor symptoms

The prevalence of sleep disorder ranges from 66% to 98% [32] and some of the abnormalities
appear in the prodromal phase of the disease [33, 34, 35]. Sleep disorders such as insomnia
[36], sleep fragmentation [37] or excessive daytime sleepiness [38] are common non-motor
manifestations of PD. In addition, some patients might also present with restless legs
syndrome [39] or rapid eye movement (REM) sleep behaviour disorder (RBD) [40].

Anxiety and depression are another two non-motor manifestations that are commonly
present in PD, with a prevalence rate of 20-40% [41] and 50% [42], respectively. These
symptoms are more prevalent in PD patients with REM sleep behaviour disorder [40], as
they tend to score worse on anxiety and depression scales compared to healthy control
subjects or even other PD patients [43]. These symptoms precede motor symptoms, as well
as sleep disturbances [44].

Olfactory dysfunction also precedes motor symptoms and a�ects more than 90% of
patients [45]. Some magnetic resonance imaging studies ([46, 47, 48]) have found that
olfactory bulb volumes are signi�cantly smaller in PD patients than in healthy control
subjects. Myelin and axonal damage of the olfactory tracts has also been detected [49, 50],
as well as pathological changes in the basolateral nucleus of the amygdala or in the anterior
olfactory nucleus [51, 52]. Alterations in olfactory perception may also be due to changes
in the connectivity of olfactory-related neural networks [53, 54, 55].

Visual functions are often a�ected in Parkinson’s disease, such as decreased contrast
sensitivity [56, 57]. In addition, colour discrimination is also impaired from early stages, but
this does not occur in all PD patients, so it may represent a PD phenotype [58]. Color vision
impairment has also been linked to dementia and cognitive impairment [59]. Moreover,
some PD patients also su�er from visuoconstructive and visuoperceptual disturbances
[60, 61, 62, 57, 63, 64, 65].

Regarding cognitive manifestations, PD patients are estimated to have a higher risk
of developing dementia than healthy controls [66]. The manifestations precede the motor
symptoms, with a prevalence of 20-25% for cognitive impairment level and 30% for de-
mentia [7]. Symptoms include impaired decision-making, delayed verbal memory, slower
processing speed and poorer attention [63, 67, 68, 69].

Finally, in addition to those mentioned above, gastrointestinal disorders are also mani-
festations of PD patients. The following symptoms are mentioned in [7]: hypersalivation
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1.2. Symptoms and diagnosis

[70], dysphagia [71], nausea [72], gastroparesis [73], small intestinal dysfunction [74],
slow transit constipation [75] and defecatory dysfunction [76]. As the other non-motor
symptoms, gastrointestinal symptoms precede the onset of motor symptoms.

1.2.3 PD diagnosis

There is no speci�c test to diagnose PD. The physician trained in nervous system disorders
(neurologist) will diagnose Parkinson’s disease based on a medical history, a review of signs
and symptoms, and a physical and neurological examination.

Neurological imaging examination

A nuclear medicine technique for imaging the dopamine transporter (DAT) is SPECT.
This technique is often used to aid clinicians to con�rm the diagnosis of PD [77]. Another
technique is positron emission tomography (PET), although this technique is expensive
and therefore may not be popular in clinical diagnosis [77]. However, both of these
methodologies are based on detecting losses of dopaminergic neurons, so they are used to
verify a diagnosis in the motor phase, but also to monitor the progression of the disease. It
should be noted that patients can lose up to 80% of dopamine before symptoms appear, so
these techniques might not be ideal for early detection of the disease [9]. On the other hand,
magnetic resonance imaging (MRI) has been used to analyse structural changes in the brain
and for the di�erential diagnosis of PD syndromes [77, 9]. Di�erent MRI modalities are
gaining attention in the last years for PD diagnosis, like neuromelanin-sensitive sequence
or nigrosome 1 imaging, but these neuroimaging techniques have currently scarce clinical
application.

Non-motor symptom questionnaires and tests

There are several types of questionnaires and tests that focus on detecting one or more
non-motor symptoms. A questionnaire is a document in which a set of written questions
are formulated and it is generally answered by choosing one of the options o�ered. The
subject has to answer all the questions, sometimes assisted by the caregiver. A test refers
to exercises designed to assess knowledge, skills or functions. The following are some of
the questionnaires and tests that are often used to assess di�erent aspects of PD:

• Epworth Sleepiness Scale (ESS) [78] is a questionnaire with 8 questions, in which the
subject quali�es the habitual possibilities of falling asleep while performing eight
daily activities. It is measured on a 4-point scale, where 0 is never and 3 is a high
probability. An example of one of the activities is watching TV or talking to someone.

• Geriatric Depression Scale (GDS) [79] represents a screening scale for depression
on 15 yes or no questions, such as “Do you feel that your life is empty?". If the
score is greater than 5, it suggests depression. The way of scoring is determined by
the question, in other words, sometimes the answer “yes" indicates a symptom of
depression and other times the answer “no".

• SCOPA-AUT [80] is a questionnaire about problems that have occurred in various
bodily functions during the last month related to the autonomic nervous system;
speci�cally, it consists of the following domains: gastrointestinal, urinary, cardio-
vascular, thermoregulatory, pupillomotor and sexual. 25 questions with 4 options
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1. Introduction

are asked. The options are: “never",“sometimes", “regularly", “often" and in some
questions there is an option of “not applicable".

• University of Pennsylvania Smell Identi�cation Test (UPSIT) [81] is a test to evaluate
the functioning of a person’s olfactory system. The evaluation consists of 4 di�erent
10-page booklets, therefore it has a total of 40 questions. On each page, there is a
strip of di�erent microencapsulated scents. The subject has to scratch, sni� and
identify the smell, choosing between 4 options. The results are the number of correct
answers from each booklet.

• Symbol Digit Modalities Test (SDMT) [82] is a test for assessing neurological functions.
This test consists of matching, in a limited time, 120 symbols with their corresponding
numbers from 1 to 9, given as a reference a table that associates each digit with a
di�erent symbol, as shown in Figure 1.1. The result is the total of correct answers
made before the time runs out.

Figure 1.1: Example of SDMT.

• Benton Judgment of Line Orientation Test (BJLOT) [83] is a neuropsychological test
that evaluates visuospatial judgment, through the task of discriminating the direction
of lines. The test consists of two possible versions of 30 items. In each item there is a
set of 11 lines with di�erent angles that draw a fan which is open 180º. In addition,
two lines of this set appear separated from the fan. Two examples can be seen in
Figure 1.2. The goal is to match the two independent lines with their respective pair
on the fan. The answer is considered correct only if the two lines have been paired
correctly.

• Montreal Cognitive Assessment (MoCA) [84] is a screening test used to detect cogni-
tive impairment. It assesses several cognitive domains: short-term memory, spatio-
temporal reasoning skills, executive functions, attention, concentration and working
memory, language, abstraction, reasoning and orientation to time and place. In total,
all the tests add up to a maximum of 30 points. If the subject has 12 years of education
or less, an extra point is added. A score of 26 or more is considered not to have any
cognitive impairment. For example, spatio-temporal reasoning abilities are assessed
using a clock-drawing task, which adds up to a maximum of 3 points.

• Hopkins Verbal Learning Test - Revised (HVLTR) [85] is a evaluation of verbal
learning and memory. Each test has four nouns for each category, for a total of three
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1.2. Symptoms and diagnosis

Figure 1.2: Example of BJLOT.

categories. Therefore, each test contains 12 words. An example of categories could
be: temporary, instruments and bladed weapons. There will be three learning trials to
learn the words, where the words learned in each trial will be veri�ed. Approximately
20-25 minutes later, a deferred recovery test and a recognition test are completed. The
�rst test requires free recall of any remembered words. The recognition test consists
of 24 words, including 12 target words (from the initial list) and 12 false positives (6
semantically related and 6 semantically unrelated). In this test the identi�ed words
are recorded, but also the number of words that are not identi�ed in the initial list,
but are in the same category and also those that are semantically unrelated.

• Trail Making Test (TMT) [86] is a test used to assess attention, cognitive �exibility
and visuospatial ability. It consists of two parts: in the �rst, the subject has to quickly
join the numbers with lines, these being randomly placed in numerical order and in
the second, the subject has to join the numbers and letters with lines, these being
placed randomly, for example by joining the 1 with the A, the 2 with the B and so
on. The result of both parts corresponds to the time (in seconds) that the subject has
taken to complete the task. A short version of TMT is included in the MoCA test.

Motor symptoms questionnaires and test

A speci�c scale for PD is available for motor symptoms: Uni�ed Parkinson’s Disease
Rating Scale (UPDRS). The UPDRS [87] is a combination of a questionnaire and a test that
evaluates various aspects of PD. Among this aspects are the non-motor symptoms, activities
of daily living, motor impairment and drug-induced complications. The questionnaire is
divided into 4 parts:

1. Non-motor symptoms

2. Activities of daily living (related to motor impairment)

3. Motor examination

4. Levodopa-induced complications

7
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The �rst two parts are questions related to everyday experiences, such as “Over the past
week, have you had trouble with urine control?" or “Over the past week, do you usually have
trouble turning over in bed?". In the third part, the examiner observes and evaluates some
aspects of the patient, such as language problems or loss of facial expression. In addition, the
examiner assesses motor activity through exercises, such as tapping the �ngers as quickly
as possible, walking 10 meters or extending the arms to observe the trembling of the hands.
In the last part, three types of complications are evaluated: dyskinesias (unpredictable
involuntary movements), motor �uctuations (changes in response to medication) and
digestion related complications. This part only applies to patients with medicated PD.

The scale used for this questionnaire is the following: “Normal", “Slight", “Mild", “Mod-
erate" and “Severe" and each level is scored as 0,1,2,3,4, respectively. Therefore, the higher
the score, the higher disease severity.

1.3 Parkinson’s Progression Marker Initiative Data

The Parkinson’s Progression Markers Initiative (PPMI) is a study that aims to identify
biomarkers for the progression of PD to improve therapeutic and etiological research. The
identi�cation of successful biomarkers will enable the improvement of therapeutic trials
that could potentially modify the course of the disease [88]. The study is a public-private
partnership funded by The Michael J. Fox Foundation for Parkinson’s Research (MJFF). The
collected biomarkers are di�erent in nature like imaging, genetic, biospecimen, or clinical
data biomakers. Biomakers can be prognostic biomakers (those that can allow to track the
progression of the disease) or diagnosis biomarkers (those that can help to di�erentiate PD
patients from healthy subjects).

Two types of subjects from 24 study sites were selected for the current Master’s Thesis
work: patients with PD and healthy control subjects (HC). Both types of subjects were
of similar age and sex. At the time of enrollment, subjects with PD had to be at least 30
years old and had not received pharmacological treatment for the disease, among other
requirements [89]. In addition, these subjects underwent dopamine transporter (DAT)
imaging to check if there was a lack of dopamine (a characteristic symptom of the disease).
Regarding healthy control subjects, at the time of enrollment they required an age of 30
years or more without an active neurological disorder.

All subjects gave written consent for clinical testing and neuroimaging prior to partici-
pation, approved by the Institutional Review Boards (IRB) of all participating institutions.
After that, they underwent various tests: clinical, imaging evaluations, collection of biolog-
ical samples from blood, urine, and cerebrospinal �uid. These evaluations were performed
at the baseline (when the subjects were recruited) and every 3 months during the �rst year
and every 6 months thereafter [88].

This database is free for researchers, with 400 subjects with recently diagnosed PD and
200 healthy subjects. Both types of subjects in PPMI will undergo a full longitudinal program
of clinical assessments and imaging, as well as biospecimen collection, and non-motor
testing.
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1.4 Current data mining approaches for PD detection

The use of data mining techniques has increased in a number of areas over the last two
decades [90]. In the medical �eld, speci�cally, the World Health Organisation (WHO)
identi�ed in 1997 the potential of using these techniques to improve medical diagnosis and
prediction using medical data repositories [91]. More recently, psychiatry has also started
to use these techniques in the area of mental disease, with the aim of better understanding
the genetic composition [90].

Data mining is a process that works with a database in an attempt to discover patterns
and knowledge. To do this, it uses machine learning algorithms and creates models that
interpret the data in a useful way [92]. Machine learning algorithms are divided into
2 classes: supervised learning and unsupervised learning. Supervised learning infers
prediction rules from data and applies them to new data, while unsupervised learning,
groups data according to similarity and discovers patterns in the data [90]. There is a third
class called semi-supervised learning which is a mixture of the two previous classes [93].
These algorithms have been used in the literature in the context of PD.

Papers using machine learning techniques are varied and can be classi�ed by the type
of task, the nature of the data, the techniques or the databases. For example, if we focus on
the type of task, some of the projects focus on classifying between PD patients and HC
subjects, while others try to �nd subtypes within PD or try to detect stages of the disease.
In this section we divide the research according to the nature of the data, di�erentiating
projects that use neural imaging-related data, articles that only use motor symptom features
and publications that use data related to voice and speech signals.

Regarding the type of techniques, some of the algorithms are repeated independently
of the data they use, such as Support Vector Machines (SVM), but other algorithms are
data-speci�c, for example Convolutional Neural Network (CNN) for images. As for the
preprocessing of neural images, each paper presents a di�erent proposal, as well as the
preprocessing of voice recordings. In addition, some of the papers present feature selection
techniques together with the machine learning algorithms.

Finally, the articles mentioned below use di�erent databases, although the most common
one is PPMI1. On the other hand, many of the articles in the voice and speech signals section
use Parkinson’s Data Set2, which contains several voice signals.

Neuroimaging-based classi�cations

Many of the works focus on discriminating PD patients from HC subjects by performing
an imaging-based neurological examination. For this purpose, some researchers use MRI
imaging ([77, 6]), while others use DAT SPECT imaging ([3, 94, 95]). As far MRI imaging
is concerned, Adeli et al. [77] use a joint feature-sample selection (JFSS) together with a
Robust Linear Discriminant Analysis (RLDA) classi�er, although Yasaka et al. [6] propose to
apply a CNN classi�er to di�erent areas under the receiver operating characteristics curve.
As for the DAT SPECT imaging, Oliveira et al. [3] used three classi�ers: SVM, K-Nearest
Neighbors (KNN) and Logistic Regression (LR). The authors reported that with SVM they
have had better results. Wenzel et al. [94] propose to use a CNN, but Llera et al. [95] apply
a probabilistic normalisation based on a mixture of Gamma distributions.

1https://www.ppmi-info.org/
2https://archive.ics.uci.edu/ml/datasets/parkinsons
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Other studies combine imaging data with clinical data. For example, Singh et al. [96]
use MRI images together with the UPDRS, MoCA, BJLOT and GDS tests to di�erentiate
between PD patients, HC subjects and SWEED patients. To do so, they use Principal
Component Analysis (PCA) for feature extraction, Fisher Discriminant Ratio (FDR) for
feature selection and SVM for classi�cation. In Amoroso et al. [9], MRI images are combined
with clinical features (Age, ESS, GDS, MDS-UPDRS, MoCA and RBD tests) to make the
binary classi�cation between PD and HC. For this purpose, they use Random Forest (RF) as
a feature selector and SVM as a classi�er.

In addition to the above, Rahmim et al. [2] combine MRI and DAT SPECT imaging
features with other clinical features to predict motor severity in PD patients in four years.
They use the MDS-UPDRS - part III scale in year 4 and the clinical features are demographics,
disease duration, UPDRS-III motor measures and MoCA. To analyse the images, they
performed automatic region-of-interest (ROI) extraction on the MRI images, registered the
SPECT images onto the corresponding MRI images and extracted the radiomic features.
Once they had all the features, they applied RF. Castillo-Barnes et al. [8] use DAT SPECT
imaging with biospecimen analysis results to di�erentiate HC subjects from PD or SWEED
patients. For this purpose, they present an Ensemble Classi�cation model with Performance
Weighting, in which they use several SVM classi�ers with linear kernel in di�erent groups
of biomedical tests, such as Cerebrospinal Fluid, RNA or Serum.

In addition to using neural imaging and other features to di�erentiate PD patients
from HC subjects, other approaches have also been tried. On the one hand, Si-Chun et al.
[97] attempts to predict depression in PD patients by combining demographic parameters,
clinical parameters, cerebrospinal �uid levels and DAT SPECT images. To do so, they used
the extreme gradient boosting (XGBoost) algorithm and logistic regression technique to
predict the scale of GDS.

On the other hand, motor and non-motor tests, biospecimen examinations and neu-
roimaging results have also been combined to detect Parkinson’s subtypes. Zhang et al.
[98] use this data collected over 6 years and, using Long Short-Term Memory (LSTM),
create a multidimensional time series for each patient with Idiopathic PD. This results in 3
subtypes of PD: the �rst subtype is characterised by stable cognitive ability but moderate
motor impairment; the second subtype is characterised by moderate motor and non-motor
impairment; the third subtype is characterised by rapid progression of motor and non-motor
symptoms.

Movement-based classi�cations

As mentioned in the introduction, PD patients su�er from motor symptoms and these
symptoms are also used in Parkinson related machine learning tasks. One of the most
common ways of measuring the severity of these symptoms is using the third part of the
MDS-UPDRS test. For example, Cavallo et al. [99] acquire data on upper limb movement
by performing six MDS-UPDRS III tasks. Then, they apply and compare three classi�ers
(SVM, RF and Naive Bayes (NB)) on di�erent datasets. The best result is obtained with the
RF classi�er. There are also other ways of measuring movement, such as gait analysis as
proposed by Abdulhay et al [100]. In this article they extract gait characteristics to which
a SVM classi�cation is applied. The characteristics are the following: stride time, stance
time, swing time and foot strike pro�le.

Other researchers propose to di�erentiate PD patients from HC subjects by drawing
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movement tests. In Kotsavasiloglou et al. [101] article, subjects are asked to draw horizontal
lines on a tablet. In this test, characteristics such as velocity variability, deviation from the
horizontal plane and trajectory entropy are collected. Once the features are obtained, they
combine various feature selection methods with di�erent machine learning techniques.
Gupta et al. [102] proposed a di�erent way: to follow the line of a spiral and a meander.
With such handwritten tests, the di�erence between the tracing and the template can be
obtained. Then, they apply an optimised crow search algorithm combined with KNN, RF
and DT.

On the other hand, Kuhner et al. [103] try to identify movement characteristics that
di�erentiate HC subjects from PD patients. To do this, they use deep brain stimulation
(DBS) of the subthalamic nucleus (STN) turned o� and on. A 10-metre walk is evaluated
by monitoring values of position, velocity, acceleration and jerk vectors of segments and
joints. To �nd the most discriminating features they use AdaBoost.

Voice and speech signals

Another common way to perform the binary classi�cation task is by using voice signals.
The voice signals are usually vowel phonations ([4, 104, 105, 106, 107, 108, 109]), although
in some works other recordings are also used, such as speech with the pronunciation of
a short phrase in Lithuanian language ([104]). From these signals, characteristics related
to frequency, amplitude and pitch, i.e. acoustic characteristics, are extracted. The best
performing classi�ers are SVM ([4, 107]), KNN ([104, 105]) and Neural Networks ([110]).
In Wang et al. [106], a method for classi�cation called AABC-KWELM is proposed, which
deals with class imbalance. Naranjo et al. [108] developed a two-stage Bayesian selection
and classi�cation approach. Finally, Wodzinski et al. [109] calculate the spectrum of the
audio recordings to convert them to images and use them as input for the pre-trained
ResNet architecture.

Another approach to the use of speech signals is given by Nilashi et al. [93]: they try
to relate the properties of the speech signal and the UPDRS scores. Some of the properties
are measures of frequency variation, measures of amplitude variation or measures of the
relationship between the noise and the tonal components of the voice. In this article
four di�erent classi�cation schemes are used and compared: Neural Networks, DMneural,
Regression and Decision Tree.

Non-motor symptoms for PD detection

No studies or articles related to machine learning using only non-motor features have
been found. In some of the articles mentioned above these data have been used together
with other data, such as MRI images [96]. Therefore, given that non-motor symptoms are
present in early stages of PD, there is an urgent need to explore the potential usefulness of
non-motor symptoms in early PD diagnosis.
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CHAPTER 2
Objectives

Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the
world. Characteristic symptoms of PD are motor symptoms, such as involuntary resting
tremor, slow movements or balance problems appear after neurodegeneration of mes-
encephalic neurons has undergone for years. However, PD patients develop non-motor
manifestations during disease development, even preceding the onset of motor symptoms.
Therefore, non-motor symptoms could be useful for early PD diagnosis. This work has
the hypothesis that machine learning models for supervised classi�cation, created from
non-motor features, are able to e�ciently discriminate healthy control (HC) subjects from
patients with PD.

In order to test this hypothesis, medical and data mining knowledge is required. This
knowledge is provided by the two research groups that support this project and co-direct
the master’s thesis. Both parts have de�ned a series of objectives:

1. Create machine learning classi�ers to di�erentiate between HC and PD.

2. Identify the most relevant biomarkers.

3. Examine the gender e�ect.

To achieve these objectives, the following tasks have been de�ned to be ful�lled:

• Technology watch. Make an exhaustive and continuous bibliographic review and
follow-up of the main conferences in the area.

• Data obtention and pre-process. The main source of data for this project will be
the PPMI database, where a lot of data related to PD patients and HC subjects can be
found. This database will be analyzed to obtain a statistical description and di�erent
versions of the database will be created in order to analyze which level of abstraction
is the most suitable to achieve the proposed objectives.

• Detection of Parkinson’s disease. The objective is to build classi�ers that ef-
�ciently discriminate between PD patients and HC subjects based on non-motor
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symptoms and on the identi�cation of the most relevant features in the process. First
of all, feature selection algorithms will be used to identify the most relevant features
to discriminate PD patients from HC subjects and, then, several classi�ers will be
trained with the available data and multiple quality metrics (accuracy, precision,
recall...) will be measured. Finally, a statistical comparison of the models obtained
will be performed.

• Biomarker detection. Using the results of feature selection algorithms, together
with explanatory models such as decision trees or rule-based algorithms, the most
relevant non-motor biomarkers for di�erentiating patients with PD will be detected.

• Adapt the experiments to the gender perspective. It is scienti�cally proven that
gender in�uences on PD symptoms and signs, but very few of the studies take this
into account, as they do not carry out any studies separating the data according to
gender. Therefore, it will be analyzed whether the classi�ers constructed are adequate
to deal with each gender or whether separate databases and classi�ers should be
created.
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CHAPTER 3
Methodology

In this chapter, the methodology used in the project is presented. First of all, the data
used in the project is described. In addition, the preprocessing and statistical description
performed are explained. Finally, the data mining process is explained.

3.1 Data obtention and pre-process

PPMI database is the main source of data for this project. In addition, the Biocruces Bizkaia
Health Research Institute has also provided its own data collected in previous studies.

The data obtained from PPMI were analysed and pre-processed by Andoni Angulo
Celada, in his master’s thesis [111]. In the preprocessing, he created a database from the
public PPMI data, by selecting the non-motor questionnaires and clinical test that coincided
with the ones collected in the clinical studies performed in Biocruces Bizkaia HRI, so that
both are compatible. Errors were also eliminated and the problem of missing values was
solved.

A tabular database has been constructed using the previously preprocessed data. These
data contain non-motor feature information along with the diagnosis (PD or HC) or class.
This supervised database uses data on the �rst patient visit, which is why we have called it
the baseline database. To build this database, several decisions have been made during the
work, although only the �nal one is presented in this document.

Learning algorithms can be fed with individual data obtained from questionnaires and
tests performed by experimental subjects, but this approach can lead to suboptimal results,
because the data might be highly correlated and the feature space could be very high. On the
other hand, by summarising each test and questionnaire to a single score, many distinctive
attributes of the subjects can be hidden, rendering totals scores also suboptimal. In an
attempt to examine which levels of information gathering would be ideal to di�erentiate
PD patients from controls, four di�erent versions of the database have been created, with
the aim of �nding if a middle ground between the two extremes.

Finally, the dataset has been analysed with statistical methods to get a clear picture of
the nature and structure of the available data. In addition, this analysis will uncover poor
quality data (outliers, redundant variables and so on) that need to be corrected or removed.
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3.1.1 Baseline database

A total of 687 subjects were drawn from the PPMI database: 490 (71%) with idiopathic PD
and 197 (29%) were HC. 34% were female and the remaining 66% were male. The attributes
used in this work are divided into three groups: demographic and clinical, questionnaire
results and clinical test results. The results obtained at each subject’s initial visit were
selected.

General and clinical attributes include: gender (GENDER), years of education (EDUCYRS),
dominant hand (HANDED), age (AGE) and the class itself (PD or HC). The questionnaires
and tests are as described in Section 1.2.3.

Table 1 in Appendix A summarises the variables of the di�erent versions of the database.
The �rst version of the database (called Individual version) contains the results of each item
comprising the all questionnaire and clinical test questions, in addition to the general and
clinical attributes mentioned above. The variables of Individual are grouped semantically
in the intermediate versions, creating two di�erent combinations of them. Finally, all
intermediate variables from each test or questionnaire are grouped together to create a
single variable. The operation used to group these individual items has been the sum. The
number of features in each version can be seen in the Table 3.1.

Total Intermediate 2 Intermediate 1 Individual
15 29 53 107

Table 3.1: Number of variables in each version of the supervised database.

3.1.2 Pre-processing

In this section, the pre-processing of the data will be explained. Data is often not clean,
it contains missing values, outliers that add noise and correlation between variables. As
mentioned above, missing values from both databases have already been identi�ed and
treated.

In addition to this, outliers have been identi�ed and processed in this project. For
example, in the questions related to sex in the SCOPA_AUT questionnaire, there is an
alternative option “not applicable". All the other questions are scaled from 0 (“never") to 3
(“often"), so it has been considered more convenient for this alternative to take a value of
4. Therefore, it is a pseudo ordinal variable, because on the one hand it has a frequency
scale and on the other hand the question is not applicable in a speci�c case. The same
criteria was used to assign a value to the option “use catheter" in the same test. A detailed
explanation of the values taken by each variable is given in Appendix A. In addition, the
semantic groupings made are also explained.

Finally, when analysing the univariate descriptive variables, it was observed that they
do not have the same range. Therefore, it has been decided to apply two preprocessing
techniques when it has been required: One-hot encoding has been applied to categorical
variables, while qualitative variables have been normalised by min-max normalisation. In
this way, all variables take a value in the range [0,1].

One-hot encoding
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One-hot encoding is the transformation of categorical variables into binary vectors. For
each category, a new variable is created and indicates by 1 whether that sample belongs to
that category.

For example, from the variable GENDER the variables GENDER0 (woman with repro-
ductive capacity), GENDER1 (woman without reproductive capacity) and GENDER2 (man)
are created. GENDER0 will take a value of 1 if GENDER takes a value of 0 and the other
two variables will take a value of 0, but, if GENDER takes a value of 1 then the one that
will take a value of 1 will be GENDER1.

Rescaling (min-max normalization)

Min-max normalization rescales the range of values of the features to scale them to the
range [0,1]. For these, the following formula is applied:

x′ =
x−min(x)

max(x)−min(x)
(3.1)

where x is the original value, x′ is the rescaled value.

3.1.3 Data analysis

In this section the methods used for the analysis of the variables are explained, including
univariate and bivariate descriptive statistics. In addition, several graphs will be added to
be able to observe the behaviour of the variables.

In general, there are two types of variables, depending on the nature of the observation
space:

• Quantitative. The observation space is a magnitude which is expressed by numbers
(which have an algebraic structure by which they can be operated).

• Qualitative. The observation space is not a magnitude, but a category (it cannot
operate between them). Categories can be coded by numbers, which is the usual way,
but numbers do not express magnitudes, they express codes.

3.1.3.1 Univariate descriptive statistics

Univariate descriptive statistics have been analysed for the predictor variables. To do this,
di�erent types of graphs have been added: on the one hand, a bar chart and pie chart have
been used to visualise qualitative variable; on the other hand, a box plot and a density
histogram have been used to visualise the quantitative variables.

In addition, the means and standard deviations of all variables in the total version,
divided by classes, as well as their p-values for the di�erence between classes have been
analysed. Welch’s t-test is used to calculate the p-value.

Box plot outlier

The outliers, i.e. the observations that are numerically distant from the rest of the data,
are represented by a dot, as shown in Figure 3.1.

Welch’s t-test
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Figure 3.1: Box plot representation.

This test is an adaptation of the Student’s test, in which it is assumed that the two
samples do not have the same variance, but the assumption of normality is maintained. It is
used to test the hypothesis of two populations having equal means. Mathematically, given
two samples of size n1 and n2, one having mean x̄1 and standard deviation σ1, the second
having mean x̄2 and standard deviation σ2, Welch’s t-test de�nes the statistic t according
to the following formula:

t =
x̄1 − x̄2√
σ2
1
n1

+
σ2
2
n2

(3.2)

3.1.3.2 Bivariate descriptive statistics

As for the bivariate descriptive statistics, we wanted to analyze the correlation of the
variables between the di�erent tests and questionnaires, as well as their correlation with
the general and clinical attributes. For this reason, only the Intermediate 2 and Total versions
have been analyzed, since they have fewer variables and the groupings provide a higher
level of complexity. Furthermore, it has been taken for granted that test or questionnaire
questions are correlated with each other, since these types of items are speci�c to detect
certain symptom.

In order to calculate the correlation coe�cient, the work of Harry Khamis [112] has been
taken into account. In this article he di�erentiates variables into three scales of measurement:
continuous, ordinal and nominal. Continuous variables express a numerical quantity,
ordinal variables an ordered category and nominal variables an unordered category.

Looking at the variables in Intermediate 2 version, the nominal variables would be
the following: GENDER, HANDED and Class. There is no ordinal variable, therefore
continuous variables would be all other variables. For the total version, they would be the
same variable classi�cation. Taking into account the characteristics of the variables, the
correlations indicated in Table 3.2 are applied.

In order to be able to apply the rank-biserial correlation coe�cient and the point-biserial
correlation coe�cient, the nominal variables have been transformed into one-hot. In order
to know the correlation between the new binary variables, the phi coe�cient method will
be applied to them. On the other hand, Goodman’s and Kruskal’s lambda correlation has
been applied to the non-transformed nominal variables in order to see the real correlation
between them. All these measures are explained below.

Pearson correlation coe�cient

Pearson’s correlation coe�cient is a measure of linear dependence between two vari-

18



3.1. Data obtention and pre-process

Nominal Ordinal Continuous
Nominal ϕ or λ Rank biserial Point biserial
Ordinal Rank biserial Kendall’s τb Kendall’s τb
Continuous Point biserial Kendall’s τb Pearson

Table 3.2: Correlation coe�cient to be applied for each type of variable. ϕ = phi coe�cient. λ =
Goodman and Kruskal’s lambda.

ables. Moreover, this measure is independent of the scale of measurement of the variables.
Mathematically, Pearson’s correlation coe�cient (rho) of two random variables (X and Y )
is de�ned as

ρX,Y =
σXY
σXσY

=
Cov(X,Y )√
V ar(X)V ar(Y )

, (3.3)

where Cov is the covariance of (X,Y ) and V ar the standard deviation of the variables.
The coe�cient returns a value in the interval [−1, 1], where the sign indicates the direction
of the relationship:

• ρX,Y = 1: there is a positive correlation in which the two variables have a direct
relationship (if one increases, the other increases in constant proportion).

• ρX,Y = 0: there is no linear relationship.

• ρX,Y = −1: there is a negative correlation in which the two variables have an inverse
relationship (if one increases, the other decreases in constant proportion).

Kendall’s coe�cient of rank correlation τb
Kendall’s rank correlation coe�cient, also known as Kendall’s coe�cient, is a measure

of rank correlation. This coe�cient is used when one or both measurement scales of the
variables are ordinal. Therefore, it measures the ordinal association between two quantities.
Mathematically, given two variables (X and Y ), the Kendall τb coe�cient is de�ned as

τb =
(P −Q)√

(P +Q+ T ) ∗ (P +Q+ U)
, (3.4)

where P is the number of concordant pairs, Q the number of discordant pairs, T the
number of ties only in X , and U the number of ties only in Y . If a tie occurs for the same
pair in both X and Y , it is not added to either T or U .

The interpretation of the τb values is the same as for the Pearson values, i.e. −1 means
a negative association, 1 a positive association and 0 no association.

Point-biserial correlation coe�cient

Point biserial correlation coe�cient (rpb) is a correlation coe�cient used when one
variable is dichotomous. The point biserial correlation is mathematically equivalent to
the Pearson correlation, i.e. if we have a continuous measurement variable X and a
dichotomous variable Y (ρX,Y = rpb).
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Mathematically, having a dichotomous variable Y (with values of 0 and 1) and a
continuous variable X , the point biserial correlation coe�cient is de�ned as

rpb =
M1 −M0

sn

√
n1n0
n2

, (3.5)

where sn is the standard deviation used when data are available for every member of
the population:

sn =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2, (3.6)

M1 is the mean value of the continuous variable X when Y is 1, and M0 is the mean
value of the continuous variable X when Y is 0. In addition, n1 is the number of data
points when Y is 1, n0 is the number of data points when Y is 0 and n is the total sample
size.

Rank-Biserial correlation

Rank-Biserial correlation coe�cient (rrb) is a correlation coe�cient used when one
variable is dichotomous and the other ordinal. Mathematically, given a dichotomous variable
Y and an ordinal variable X , the rank-biserial correlation coe�cient is de�ned as

rbp =
2 ∗ (M1 −M0)

n
, (3.7)

where M1 is the mean value of the ordinal variable X when Y is 1, M0 is the mean
value of the ordinal variableX when Y is 0 and n is the total sample size. The interpretation
of the results is still the same.

Phi coe�cient ϕ

Phi coe�cient ϕ (rϕ) is a measure of the association between two binary variables. This
measure is a special case of Pearson’s correlation for two binary variables. Mathematically,
the phi coe�cient is calculated as

ϕ =

√
χ2

n
, (3.8)

where n is the total number of observations. Unlike the other correlation coe�cients,
the values of the ϕ coe�cient are between 0 and 1, as neither variable indicates order. Even
so, the interpretation remains the same.

Goodman and Kruskal’s lambda

Goodman and Kruskal’s lambda is a measure of association for the contingency table of
nominal variables. This measure is based on modal probabilities: it measures the percentage
improvement in the probability of the dependent variable X (row variable) given the value
of the independent variable Y (column variable). It is calculated as follows:

• S: the sum of the highest number in each row.
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3.2. Supervised classi�cation

• R: the total of the highest row.

• N: the sum of all cells.

• lamda: (S – R) / (N – R)

3.2 Supervised classi�cation

This section will explain the methods used to construct classi�ers that discriminate between
PD patients and HC subjects based on non-motor symptoms and the identi�cation of the
most relevant features in the process.

First, feature selection algorithms have been used to identify the most relevant features
to discriminate PD patients from HC subjects and, subsequently, several classi�ers have
been trained with the available data, multiple quality indicators have been measured and
the results have been compared statistically.

3.2.1 Feature selection

Feature selection is the process of selecting a subset of features when developing a predictive
model. This technique is used to simplify models and make them easier to interpret. It also
reduces training time and reduces over�tting.

Feature selection algorithms can be considered as search techniques to create subsets
of features. Depending on the evaluation metric, three groups can be distinguished:

• Filter: Filter methods use proxy measures instead of error rate. These measures
include mutual information [113], pointwise mutual information [114], and relief-
based algorithms [115], among others.

• Wrapper: Wrapper methods use predictive models: for each subset the model is
trained and the error rate of the model is obtained. They have a high computational
cost, as a model has to be trained for each subset.

• Embedded: Embedded methods are techniques that are performed as part of the model
building process. They can be prediction algorithms that have variable selection
implemented, such as Random Forest, or LASSO methods with the L1 penalty to
build a linear model.

Filter methods have a lower computational cost, although they are not tuned to a
speci�c type of prediction model [116], so they tend to give worse prediction performance.
However, as the subset of features are not bound to a prediction model, it is more useful
for establishing the relationship between features. On the other hand, embedded methods
are between �lter and wrapper methods in terms of computational complexity, although
they are also model-dependent. As several classi�cation models are used in the project,
�lter methods have been selected.

Within the �lter methods there are two subtypes: univariate and multivariate. The uni-
variate method treats each variable independently, i.e. they evaluate the features according
to certain criteria (e.g. euclidean distance to the class) and then select the best classi�ed
features. Whereas the methods in second subtype take groups of features into account
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3. Methodology

when evaluating the performance. It has been decided to use multivariate methods, as they
are able to deal with redundant, duplicated and correlated features.

Correlated Feature Selection

Correlated Feature Selection (CFS) is a correlation-based heuristic evaluation function
that classi�es features. This method was developed by Hall and Smith [117]. This function
searches for subsets that are correlated with the class but independent of each other. The
algorithm assumes that features that are irrelevant have a low correlation with the class, so
they do not have to be included in the subsets. In addition, they examine excessive features,
as these are often correlated with one of the other attributes. In this project we apply a
forward best �rst search as a search heuristic with a stopping criterion of �ve consecutive
fully expanded non-improving subsets.

In order to evaluate the subset S of k features, the following formula is used:

Merits =
k · rcf√

k + k(k − 1)rff
(3.9)

where rcf is the average correlation value between the class and the features, and rff
is the average correlation value between all pair of features.

3.2.2 Classi�ers

In order to classify between PD patients and HC subjects we have used various machine
learning techniques. The aim of machine learning (ML) is to develop techniques that allow
computers to learn. Learning is considered to be the skill or knowledge that is acquired from
experience [118]. Mitchell [119] provided a formal de�nition for the term: “A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E”. In this case, the task is to make a binary classi�cation. On the other hand,
several performance measures are used in this project, which are explained in Section 3.2.4.

The baseline database has several predictor variables and a single class variable, so
that supervised learning can be performed: the machine learning model learns to make
predictions through a training process, correcting itself when the prediction is wrong. To
be able to do this process, the data has to be divided into two parts, on the one hand the
training data, with which the model is trained and corrected and, on the other hand, the
test data, to be able to measure the level of accuracy achieved with the training data. This
division is explained in Section 3.2.3.

The machine learning algorithms selected correspond to di�erent types of groups.
Algorithm groupings are made according to the similarity of their functions, which is why
some of the algorithms can belong to more than one group. This section will explain the
groups and algorithms used in the project:

• Instance-based Algorithms. These algorithms are based on the training data, pre-
dicting the new data using a similarity measure. Therefore, they are memory-based
learning methods. The algorithms used in the project are K-Nearest Neighbors and
Support Vector Machine.
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3.2. Supervised classi�cation

• Decision Tree Algorithms. Using training data, these types of algorithms build a tree
structure to make a prediction. The Decision Tree and Consolidated Tree Construc-
tion algorithms have been used in the project.

• Bayesian Algorithms. These algorithms apply Bayes theorem to perform the classi�-
cation, e.g. Naive Bayes.

• Arti�cial Neural Network Algorithms. These algorithms are inspired by biological
neural networks. The Multi-Layer Perceptron algorithm has been used in this project.

• Ensemble Algorithms. In these algorithms, multiple weaker models are trained in-
dependently and then combined to make a single prediction. For example, Random
Forest combines several Decision Trees.

• Rule-based algorithm. These algorithms extract IF-THEN rules from the training
data. The algorithm used is called RIPPER.

K-Nearest Neighbors (KNN)

KNN [120] is a non-parametric classi�cation method, i.e. it assumes nothing about the
underlying data. The algorithm calculates the distance of a new observation to the training
observations, selects the K closest observations and assigns the new observation to the
class to which most of the K observations belong.

Support Vector Machine (SVM)

SVM [121] are a set of supervised learning algorithms that construct a hyperplane or
set of hyperplanes in a very high dimensional space to separate classes. In order to do this,
the algorithm uses an optimisation process in which it �nds the samples in the training
data that are closest to the hyperplane that best separates the classes. These samples are
called support vectors, therefore the name of the algorithm. In most cases it is impossible
to separate the data correctly by a straight line, so the algorithm projects the data into
a higher dimensional space. In order to solve this non-linear problem, kernels are used,
which control the projection and the degree of �exibility in the separation of the classes
[121].

Decision Tree (DT)

DT creates diagrams of logical constructs, which represent and categorize a series of
conditions that occur in succession. In these tree structures, the leaves represent class
labels and the branches represent the conjunctions of features leading to those class labels.

In this project the C4.5 algorithm [122], normally used for classi�cation, has been used.
This algorithm creates the decision trees from the training data. At each node (division) it
chooses the attribute that most e�ectively divides the set of samples into subsets enriched
in one class or another. Its criterion is the normalized one for information gain.

Consolidated Tree Construction (CTC)

CTC [123] is an algorithm designed to solve a class imbalance problem. It is based on
the C4.5 algorithm, but uses a set of samples to build a single tree. To decide which feature
to use in the partitioning, agreement is reached between the di�erent sets of samples using
a voting procedure. This procedure can be a standard voting, weighted voting or other
strategies.
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Naive Bayes (NB)

NB [124] is a probabilistic classi�er based on applying Bayes theorem [125]. It is called
naive because it assumes that a feature is independent of any other feature given the class
variable. If we have n independent variables (F1, · · · , Fn) and a class variable C , the
probability using Bayes’ theorem is the following:

p(C|F1, · · · , Fn) =
p(C)p(F1, · · · , Fn|C)

p(F1, · · · , Fn)
. (3.10)

Multi-Layer Perceptron (MLP)

MLP [126] is an arti�cial neural network consisting of 3 types of layers: input layer,
hidden layer and output layer. The layers are linked together and are composed of a set of
nodes. Except for the nodes in the input layer, each node is a neuron using a non-linear
activation function [127]. This network is trained using the backpropagation technique
[128] and can distinguish data that is not linearly separable [129].

Random Forest (RF)

RF [130] builds a set of decision trees [131] in a parallel fashion, each trained on a slightly
di�erent sample generated by bootstrapping [132] and limiting randomly the features to
be used in each tree and split. To predict a new observation, all decision trees are used
independently and the new observation is assigned to the most common class.

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

RIPPER [133] algorithm induces a series of rules based on the training data. It uses the
“separate and conquer" method, which adds conditions to a rule until it correctly classi�es
a subset of the data. Like decision trees, this algorithm also uses the information gain
criterion to identify the best separation feature. The rule set is optimized using a series of
heuristics.

3.2.3 Model validation

To make a better estimation, the models are validated using the 10-Fold cross-validation
technique (10-Fold CV) [134]. The 10-Fold CV randomly divides the original sample into
10 sub-samples. One of the nine subsamples is used to test the model, while the remaining
nine subsamples are used to train the model. This process is repeated 10 times for each
of the 10 subsamples. Thus, 10 results are obtained and then averaged to evaluate the
performance of the classi�er. The same seed will be used in all classi�ers, i.e. all classi�ers
will use the same 10 subsamples.

3.2.4 Performance measures

The performance of the models is calculated using evaluation metrics. These metrics are
based on a confusion matrix, which captures the association between predictions and actual
classes. The values of the confusion matrix can be seen in Table 3.3.

The metrics that will be calculated from this table are the following ones:

• Accuracy [135] shows how many of the samples have been correctly predicted. It is
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3.2. Supervised classi�cation

Predicted class
Real class Positive Negative
Positive TP FN
Negative FP TN

Table 3.3: Confusion matrix for a two-class problem. TP is the number of correct predictions
of positive instances (true positive), FN is the number of incorrect predictions of negative instances
(false negative), FP is the number of incorrect predictions of positive instances (false positive) and
TN is the number of correct predictions of negative instances (true negative).

calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision [135] indicates the proportion of positive identi�cations that are correct. It
is calculated as follows:

Precision =
TP

TP + FP

• Recall [135] tells us the proportion of real positives correctly identi�ed. It is calculated
as follows:

Recall =
TP

TP + FN

• F-Score [135] is a measure of the �delity of a model, calculated from the harmonic
mean between Precision and Recall. It is calculated as follows:

F1 = 2 · Precision ·Recall
Precision+Recall

=
TP

TP + 1
2(FP + FN)

• Area Under ROC curve [135] is a graphical representation of Sensitivity versus Speci-
�city for every possible cut-o�. Sensitivity is another name for the Recall metric and
Speci�city is calculated as follows:

Specifity =
TN

TN + FP

Area Under ROC curve is interpreted as follows:

– [0.5]: Equitable to a random model.
– [0.5, 0.6): Bad model.
– [0.6, 0.75): Regular model.
– [0.75, 0.9): Good model.
– [0.9, 0.97): Very good model.
– [0.97, 1): Excellent model.
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3.2.5 Statistical tests

In machine learning, several algorithms are often trained and compared in order to decide
which one is more adequate for our objective. In order to compare them, it is not enough
to observe the means of the di�erent folds, since there are variations between them. One
possibility is to use null hypothesis signi�cance tests, although these are not very appro-
priate, since they do not calculate that one classi�er is more accurate than another, but
rather calculate the probability of obtaining the observed di�erence between the classi�ers,
assuming that the null hypothesis of equivalence is true.

Another way is to use a Bayesian analysis based on Bayesian estimation ([136, 137]).
The Bayesian approach is based on the subjective interpretation of probability, which
considers probability as a degree of belief with respect to uncertainty.

A parameter is seen as a random variable to which, prior to sampling evidence, an
a prior probability distribution is assigned, based on a certain degree of belief regarding
random behaviour. When the sampling evidence is obtained, the a prior distribution is
modi�ed and then an a posterior probability distribution emerges.

In this project the accuracies of all pairs of classi�ers will be compared, taking into
account the cross-validation of 10 folds with 10 repetitions. The same seed has been
maintained in these 100 samples, i.e. the partitions used for every algorithm are identical.
In order to make this comparison, we will perform the correlated Bayesian test proposed
by Corani and Benavoli [138].

Bayesian correlated t-test

The test takes into account that cross-validation on a single database has correlations
between training sets, based on the following generative model of the data:

xnx1 = 1nx1µ+ vnx1, (3.11)

where xnx1 is the vector of accuracy di�erences„ 1nx1 is a vector of ones, µ is the
parameter of interest and v ∼MVN(0,

∑
nxn) is a multivariate normal noise with zero

mean and covariance matrix
∑

nxn. More details can be found in the article [139], Section
3.

The posterior distribution can be used to evaluate the probability of one of the algorithms
being better than the other or of the two algorithms being “practically equivalent". To do
this, we �rst have to de�ne that two classi�ers are practically equivalent if their mean
di�erence of accuracies is less than a certain value (1% in our case), creating a region of
practical equivalence (rope) [140] with the interval [−0.01, 0.01]. Once the rope is de�ned,
the probabilities can be calculated from the posterior:

• P(left): the integral of the posterior in the interval (−∞,−0.01), namely the posterior
probability that the mean di�erence in accuracies is practically negative.

• P(rope): the integral of the posterior in the interval [−0.01, 0.01], namely the poste-
rior probability that the two classi�ers are practically equivalent.

• P(right): the integral of the posterior in the interval (0.01,∞), namely the posterior
probability that the mean di�erence of the accuracies is practically positive.
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CHAPTER 4
Implementation

This chapter presents the software and the procedure that has been carried out in the
project. The work has been implemented using two main tools: on the one hand, Weka has
been used for the execution of the algorithms together with the obtention of the metrics,
since this tool allows the implementation of these algorithms in a simple and fast way; on
the other hand, for everything else, such as for the analysis of the data or the statistical
tests, the Python language has been used through the application of Jupyter Notebook.

Weka is a machine learning software implemented in Java language. It contains tools
to perform data preparation, classi�cation, regression, clustering, association rule mining
and visualization. The interfaces that have been used are Weka Experimenter and Weka
Explorer.

Jupyter Notebook is a web application that allows to create documents containing
code, equations, visualizations and narrative text. Its uses include: data cleaning and
transformation, numerical simulation, statistical modeling, data visualization and machine
learning, among others.

4.1 Database versions

The realization of the database versions has not been a trivial work. First of all, the versions
of Andoni Angulo Celada’s work were obtained, which were created based on clinical
data that was available from PD patients and controls from the studies of our colleagues
from Biocruces Bizkaia HRI. Subsequently, some variables were added, such as the medical
questions of the SCOPA-AUT test (variables SCAU26A, SCAU26B and SCAU26C) and the
variable related to the subject’s status in the study was eliminated. Subsequently, some of
the variables, such as SCAU_total, were updated.

The variable MoCA_total was also removed from the Individual and intermediates
databases. This variable comes from the PPMI database, called MCATOT. This is why this
variable was initially found in all the databases, but in order to have a concordance in the
data set, it was only included in the Total version of the database. Nevertheless, before
doing this process, it was veri�ed that it did not a�ect the results of the data very much.
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Finally, some names were changed, such as the one mentioned above, i.e. MoCA_total
instead of MCATOT. We also modi�ed some intermediate variables that only had a single
individual variable, such as MCAABSTR. Therefore, the names of all the databases were
uni�ed.

4.2 Data description and preprocess

First of all, the Python language has been used to analyze and visualize the variables of
Intermediate 2 and Total versions. pandas and numpy libraries have been used to work
with the data. For visualization, seaborn and matplotlib libraries have been used. The �rst
one for box plots and histograms, the second for pie charts and bar charts.

Then, ttest_ind function from scipy library has been used to calculate the p-value of the
di�erence between classes. For this purpose, the examples in the Total database have been
divided into two groups: a subset of subjects with PD and another subset of subjects with
HC.

The code to compute the correlations has been implemented in Python as well. The
variables used correspond to the Intermediate 2 and Total versions. In addition, the ordinal
variables have been transformed using one-hot encoding: GENDER is transformed into
GENDER0, GENDER1 and GENDER2, where the number indicates the corresponding
category. The same happens with the HANDED variable, which has become HANDED1,
HANDED2 and HANDED3. As for the Class variable, it has taken a value of 0 if the subject
is HC and a value of 1 if the subject is PD. All other variables are continuous and no
transformation has been applied to them.

On the one hand, the one-hot encoding has been implemented using get_dummies
function of pandas. On the other hand, to calculate the Pearson coe�cient correlation
between the variables, the corr function of pandas package has been used. For Kendall’s τb
and Point-biserial, the stats library has been used and, for Rank-biserial and Goodman and
Kruskal’s lambda, a function has been created. The crosstab function of the pandas package
has been used to create the contingency table for Goodman and Kruskal’s lambda. As the
ϕ coe�cient has the same value as Pearson coe�cient, it has been calculated using the corr
function as well. Finally, for the visualisation, the heatmap function of the seasborn library
has been used.

4.3 Feature selection

In this document, the �nal version of the feature selection is explained, although a more
in-depth study was carried out. First, the CFS algorithm was run in Python and Weka.
Di�erent results were obtained through these algorithms, since they use di�erent search
heuristics to �nd the most optimal subsets. We also used the Fast Correlation Based Filter
(FCBF) algorithm in Weka. FCBC [141] is a method based on information theory for feature
selection. These methods were run on the entire database and it was found that depending
on the algorithm or heuristic, di�erent results were obtained.

In order to understand which of the algorithms provided a better subset of data, a
10-Fold CV was run, which provided in percentage which variables are more relevant. In
this way it has been possible to quantify the relevance of the variables. The percentages
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of the algorithms in Weka were smaller, so the CFS algorithm implemented in Python
obtained more stable subsets. For this reason this method has been used in the project.

CFS has been performed on all four versions of the database. Once the groups created
for each fold are saved, the number of times each variable has been selected by CFS has
been counted. For example, in the Individual version, the AGE variable is present in 7 of
the 10 groups, i.e. 70 percent. In this way, the variables have been considerably reduced,
since many of the variables do not appear in any subgroup.

Once the feature selection variables are obtained, it has been observed that some of
them have appeared in all the folds, while others only in one. Therefore, a threshold
has been set in order to further reduce the number of characteristics and only use those
most relevant to the class. For this purpose, the threshold has been set at 50%, i.e. those
characteristics that have appeared in at least half of the folds have been selected.

To implement the CFS in Python an implementation in github1 has been used. To
make the division of 10-Folds the function KFold of the library sklearn has been used. The
implementation of CFS in Weka has been done using the function CfsSubsetEval and FCBF
using the function FCBFSearch.

Multivariate feature selection showed that the AGE variable was always present. Ac-
cording to the PPMI study, subjects were selected taking into account age, so it should
not be an important characteristic by itself. This is why it was decided to perform a
ranking of the variables using two univariate feature selection techniques: Information
Gain and Chi-Square Test. The implementation of both univariate �lters was performed
in Weka. The InfoGainAttributeEval function was used for the Information Gain and the
ChiSquaredAttributeEval function for the Chi-Square Test.

4.4 Classi�cation

After obtaining the 8 versions of the databases, i.e. 4 complete and 4 after applying CFS,
it was decided which validation method to use. A cross validation was chosen, since
this method allows to have an overview of the database. In addition, leave-one-out was
discarded, since its computational cost was very high, especially in the MLP algorithm.
Therefore, 10 repetitions of 10-Fold CV have been performed for the training. In order to
compare the algorithms, several metrics of the 100 repetitions have been obtained. These
metrics are the following: Accuracy, F-Score, Recall, Precision and Area Under the ROC
curve.

On the other hand, when choosing the algorithms, we tried to cover all known types
of groups. We also wanted to add a comprehensible algorithms that took into account
the class imbalance, such as the CTC. As all the algorithms were implemented in Weka,
it was decided to use this tool, as it was simple, e�cient and especially fast. The Weka
Experimenter interface has been used to train eleven di�erent algorithms, using default
parameters.

For KNN, the IBk algorithm has been used. When constructing a KNN classi�er, it is
necessary to choose the value of K. In order to �nd the best value for our task, it is proposed
to be either 3 or 5. The distance used between the samples has been the Euclidean distance,

1https://github.com/ZixiaoShen/Correlation-based-Feature-Selection
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which is calculated by measuring the straight line between two points. That is why it is
necessary to use the normalized data.

The SVM algorithm has been interpreted using SMO. The complexity constant C value
is 1. In this project we have used the polynomial kernel, which represents over polynomials
of the original variables the similarity of training samples in a feature space, allowing the
learning of nonlinear models. This algorithm assumes that the data are in a standard range,
usually from 0 to 1. Therefore, in this project we have used the normalized data to train
the SVM.

The C4.5 algorithm has been implemented using J48. This implementation has the
con�dence threshold for pruning set at 0.25 and the minimum number of instances per
leaf at 2. On the other hand, the CTC algorithm implemented by J48Consolidate uses the
same parameters. In addition, the coverage value that the user wants to achieve with the
generated set of samples is 99.

The NaiveBayes algorithm has been used to implement NB. This implementation uses
the Gaussian Naive Bayes algorithm [142], which assumes that the probability of the
features is Gaussian.

The algorithm used to implement MLP is MultilayerPerceptron. We have implemented
three architectures with 50, 100 and 200 neurons in the hidden layer and we have trained
them through 500 epochs. The data used in this algorithm are normalized, as non-scaled
input variables may result in a slow or unstable learning process. The activation function
used in all nodes has been sigmoid and it is trained using the technique of ADAM [143].

Finally, RF has been implemented using RandomForest. The number of DT used is 100,
which have a number of instances per leaf of 1, with no maximum depth.

4.5 Statistical tests

In order to compare the algorithms with each other, the one with the best Accuracy has
been chosen among all the versions of the databases. In addition, in the case of the MLP
and KNN algorithms, the parameter that obtained the best Accuracy has been selected.

Once the database versions for each algorithm to be compared were selected, their accu-
racy was compared by the Bayesian correlated t-test. Therefore, we statistically quanti�ed
which algorithm was better between pairs or whether their accuracy was similar. For this
purpose, the 100 accuracy values obtained in the 10-Fold CV of 10 repetitions were taken
into account. These values are comparable because the same seed has been used, i.e. the
same data partition has been used for training and testing for all models. The implemen-
tation of the Bayesian correlated t-test has been also done through a implementation on
github2 in the Python language.

4.6 Rule obtention

Three of the algorithms used are not black box algorithms, i.e., they give a series of
explanations such as rules or decision trees regarding their classi�cation. These algorithms
are RIPPER, DT and CTC.

2https://github.com/BayesianTestsML/tutorial/
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To simplify the explanation of the models, the minimum number of instances per leaves
(parameter M in the algorithm) or rules (parameter N in the algorithm), which by default
in the algorithms is a value of 2, has been modi�ed. Three values have been tested: 10,
40 and 50 and the models have been trained with a single repetition of Leave-one-out.
Leave-one-out is a particular case of cross-validation, where a single sample is left for
testing while all the others are left for training. This technique has been used because the
trees or rules used are built with the whole set of rules, i.e., using almost the whole set of
samples, identical or very similar trees have been built and therefore the real performance
can be better approximated.

Only the two extremes of the database versions have been used, i.e. the Individual
and Total databases. This is because these are the databases that are used in clinical
analysis today and, as one of the objectives is to obtain biomarkers, it has been found more
convenient to extract the relevant rules using the questions or the complete groupings of
the tests.

This implementation has been done with the Weka Explorer interface. Through this
interface it is possible to get the tree and the rules generated with the whole database.

4.7 Gender analysis

The aim was to see if there is any bias in the metrics depending on the subjects’ gender, that
is, if there is a gender that is better classi�ed or if both genders are equally well classi�ed.
Remind that one third of the subjects are female and the rest are male.

In order to perform this analysis, the algorithms that best discriminated between PD
and HC patients have been selected. These algorithms are SVM trained with the Individual
+ CFS database, RF trained with the Total database and MLP200 trained with the Total +
CFS database.

The Weka Explorer interface has been used for the implementation. Through this
interface, besides getting the desired metrics, it is possible to see the classi�cation of each
sample, i.e., which is the real class, which is the predicted class and some other attribute of
the sample, in this case the gender.

Once this information is obtained, using the Python language, the data has been divided
according to gender and then the desired metrics were obtained. To do this we have used
the libraries of pandas, numpy and sklearn.
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CHAPTER 5
Results

This section explains the obtained results. First, a brief analysis of the data will be shown,
which includes the most relevant information. The details of the data and their correspond-
ing graphs are included in the appendices. Subsequently, the selection of characteristics
made and the results obtained will be explained. Finally, the results of the classi�ers, their
statistical comparison, the rules obtained from some of the algorithms and the gender
analysis will be explained.

5.1 Data

5.1.1 Description

This section shows a brief description of the data, although a more detailed description
of each variable, together with its corresponding graphs, can be found in Appendix B.
As mentioned above, the analysis has been applied only to the Intermediate 2 and Total
versions of the database.

Table 5.1 shows the mean and standard deviation of the quantitative variables in the
Total version, divided by classes, as well as their p-values for the di�erence between
the classes. Some variables have signi�cant di�erences between the classes (< 0.001):
GDS_total, SCAU_total, SDMTOTAL, UPSIT_total, MoCA_total, HVLTRT_total, HVL-
TRDLY and HVLTREC.

33



5. Results

Variables HC PD p-value
EDUCYRS 16.02± 2.89 15.51± 3.09 0.04

AGE 61.29± 11.17 62.03± 9.75 0.42

ESS_total 5.62± 3.40 6.09± 3.74 0.12

GDS_total 1.30± 2.09 2.46± 2.64 < 0.001

SCAU_total 7.44± 5.03 11.97± 7.51 < 0.001

SDMTOTAL 46.75± 10.50 41.16± 10.05 < 0.001

Benton_total 13.13± 1.97 12.78± 2.16 0.04

UPSIT_total 34.01± 4.84 23.43± 8.59 < 0.001

MoCA_total 28.22± 1.11 27.12± 2.34 < 0.001

HVLTRT_total 26.01± 4.48 24.44± 4.90 < 0.001

HVLTRDLY 9.26± 2.32 8.33± 2.57 < 0.001

HVLTREC 11.47± 0.83 11.13± 1.34 < 0.001

Table 5.1: Mean and standard deviation of the variables by class, and the p-value of the di�erence
between classes. These variables are from the Total version.

5.1.2 Correlation

This section discusses the variables that are most correlated with each other. This test was
performed taking into account all subjects, but also dividing the subjects among the classes.
Appendix C shows all correlations using a heat map, as well as a more detailed analysis.

The analysis shows that for the SCOPA-AUT questionnaire, the variables are more
related to each other than to the others. In the case of the MoCA test, on the other hand,
the relationship is not so clear, the results of the questions are more heterogeneous. As
for the Total version, there is no high correlation of these questionnaires with the other
variables. In all cases there is a high correlation between HVLTRT_total and HVLTRDLY.

In relation to the class the most correlated variable in the Intermediate 2 version is
UPSIT_total, with a negative correlation of−0.53, therefore the class is highly related to the
smell. In addition, the variable SCAU_gastroint also stands out, with a positive correlation
of 0.35. It seems that the information from a single variable does not provide enough
information to be able to discriminate classes. In the Total version, it is repeated that the
most correlated variable with the class is UPSIT_total. Focusing on positive values, the most
correlated variable is SCAU_total (0.28), most likely due to the in�uence of SCAU_gastroint.

If we take into account the correlations using only HC subjects, there is a correlation
between the AGE and SDMTOTAL variables, in addition to those mentioned above. In the
case of only taking into account the PD subjects, no new correlations stand out.

5.2 Detection of Parkinson’s disease

5.2.1 Feature Selection

This section explains the results obtained in the feature selection process. The aim is to �nd
the most relevant features to discriminate between both classes, but that are not correlated
between them, to avoid redundancy in the information. Thus, thanks to this process, not
only will we be able to train the algorithms more e�ciently, but we will also �nd out which
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5.2. Detection of Parkinson’s disease

subset of features is the most suitable for di�erentiating PD patients.
In Table 5.2 the features selected in each version of the database are shown. In addition,

the last row shows the number of features in each version and and how much it has been
reduced after applying the feature selection. For example, in the Individual database there
are 106 independent variables and once CFS was applied it was reduced to 15 variables.

Total (7) Inter. 2 (7) Inter. 1 (10) Individual (15)
HANDED
AGE AGE AGE AGE
GDS_total – – GDSAFRAD, GDSENRGY

SCAU_total

SCAU_gas-
troint

SCAU_gas-
troint SCAU1, SCAU2, SCAU5, SCAU6

SCAU9
SCAU_car-
diovascular

SCAU_car-
diovascular SCAU15

SCAU26B SCAU26B
UPSIT_total UPSIT_total UPSITBK1..4 UPSITBK1..4

MoCA_total
moca_naming MCARHINO

MCAABSTR MCAABSTR
moca_recall MCAREC2

HVLTREC
14 -> 7 28 -> 7 52 -> 10 106 -> 15

Table 5.2: Summary of the independent variables used in each of the databases after feature
selection. The last row shows the number of independent variables in the original database and
after reduction by CFS.

The variable AGE appears in all versions, it seems that this variable provides additional
information to another variable. It is noteworthy that the variables HANDED and HVLTREC
only appear in the Total version, this may be due to the fact that CFS has less variables to
select in this database. As for the GDS questionnaire, it can be observed that it is selected
in both the Total and Individual versions, but not in the intermediate versions. In addition,
the Individual variables do not correspond to the items in the GDS_6 variable, so it seems
that the intermediate variable of GDS that we created based on previous publications is
missing some important information.

The SCOPA-AUT questionnaire appears in all versions. Some of the questions on
gastrointestinal problems and one question on cardiovascular problems are selected. As for
variable SCAU26B, which asks about medication for urinary problems, it appears in the
intermediate versions, while question SCAU9 (“In the past month, have you had involuntary
loss of urine?") appears in the Individual version. These two variables are not correlated
(0.00069), although both provide information related to urinary problems.

With regard to the UPSIT questionnaire, all variables appear in all databases. The
correlation analysis shows that this questionnaire is correlated with the Class variable, so
it is logical that the CFS method always chooses these variables.

Finally, the MoCA questionnaire is also present in all versions. It is noteworthy how
the heuristic has chosen the variable MCAABSTR in the intermediate versions but not in
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the Individual one. It is also surprising that moca_recall is in the Intermediate 2 version
and moca_naming in Intermediate 1, while both have an item variable that are comprised
of variable in the Individual version.

The rankings generated by the Information Gain and Chi-Square Test methods show
that most of the variables that appeared are at the top of the lists, although the AGE variable
is not among them.

5.2.2 Classi�cation

This section explains the classi�cation results obtained. In order to get a general idea of
the performance of the algorithms, the averages of the 10 repetitions of the 10-Fold CVs of
the metrics have been calculated.

In the metrics, it has been taken into account that it is better to decrease the FN as
much as possible. This is because patients with suspected PD are monitored for an average
of two years before they are diagnosed. This is why a high Recall value is preferred to
Precision.

Table 5.3 shows the results of the Individual database version with the complete database
and after applying the CFS (Individual+CFS). It seems that feature reduction improves the
performance of all algorithms except RF. If we look to the Accuracy, F-Score and Recall
metrics the best classi�er with the Individual database is RF, while after applying CFS it
is SVM. RF algorithm has its own internal feature selection, so it works optimally even if
there are many independent variables, 106 in this case. If we look at the Precision metric,
in both cases the best algorithm is NB. Finally, in terms of AUC, the best classi�er with the
Individual database is again RF, but after applying CFS it is NB.

It is noteworthy that the NB presents good AUC, with a comparably small Accuracy.
This is because the AUC analysis shows how well the positive class samples can be separated
from the other class, i.e., how well the algorithm classi�es PD samples, while the Accuracy
indicates the actual performance of the algorithm.

Other algorithms that perform well on this database, in addition to the three mentioned
above, are RIPPER, DT (when CFS is applied) and MLPs, especially with 200 neurons in the
hidden layer. These algorithms have an Accuracy greater than 80%, F-Score greater than
0.85 and an AUC in the range of [0.75, 0.9).

Table 5.4 shows the results obtained in the Intermediate 1 version of the database
with the complete database and after applying the CFS (Intermediate 1+CFS). Some of the
algorithms improved the results compared to the Individual database, especially the NB
(with a di�erence in Accuracy of 3.13). However, after applying CFS worse Accuracies were
obtained than with the Individual+CFS (except MLPs and KNNs).

On the same database, better results were achieves after applying CFS, except for
RF. Therefore, feature selection improved the performance of the algorithms. Regarding
which algorithms obtain the best results, the same classi�ers are repeated again: the best
classi�er in all metrics except Recall is RF, although after applying the CFS method it is
SVM. Nevertheless, if we take into account the Precision metric (and AUC in the case of
Intermediate 1+CFS), the best performing algorithm is NB. In addition to this, MLPs are
also highlighted, being the best MLP100 in the Intermediate 1 and MLP200 after applying
CFS. Finally, in Intermediate 1+CFS, RIPPER and KNNs also stand out, with KNN5 being
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Complete CFS
Acc. F1 Rec. Prec. AUC Acc. F1 Rec. Prec. AUC

CTC 77,95 0,83 0,78 0,90 0,77 79,39 0,84 0,78 0,92 0,81
RIPPER 81,34 0,87 0,87 0,87 0,78 81,79 0,87 0,88 0,87 0,78
DT 78,26 0,85 0,85 0,85 0,71 80,69 0,86 0,87 0,87 0,78
NB 76,94 0,82 0,74 0,92 0,87 81,47 0,86 0,78 0,95 0,91
SVM 82,61 0,88 0,88 0,88 0,79 85,23 0,90 0,90 0,90 0,82
RF 83,41 0,89 0,92 0,86 0,90 82,67 0,88 0,88 0,88 0,89
MLP50 80,51 0,86 0,85 0,87 0,88 81,68 0,87 0,86 0,88 0,88
MLP100 80,68 0,86 0,86 0,87 0,88 81,47 0,87 0,86 0,88 0,87
MLP200 80,74 0,86 0,86 0,87 0,88 82,11 0,87 0,87 0,88 0,88
KNN3 70,44 0,79 0,80 0,79 0,70 79,00 0,85 0,83 0,87 0,84
KNN5 72,61 0,81 0,82 0,80 0,73 79,89 0,86 0,83 0,88 0,86

Table 5.3: Metrics of the algorithms trained on the Individual database with the complete database
and after applying the CFS. The best values for each metric are bolded in both cases.

the best.

Complete CFS
Acc. F1 Rec. Prec. AUC Acc. F1 Rec. Prec. AUC

CTC 77,41 0,83 0,77 0,89 0,77 77,51 0,83 0,76 0,91 0,80
RIPPER 79,74 0,86 0,86 0,86 0,75 80,25 0,86 0,87 0,86 0,76
DT 77,83 0,84 0,84 0,85 0,72 79,45 0,85 0,85 0,86 0,77
NB 80,07 0,85 0,79 0,92 0,87 81,05 0,85 0,79 0,94 0,89
SVM 83,00 0,88 0,88 0,88 0,79 83,92 0,89 0,88 0,89 0,81
RF 83,90 0,89 0,92 0,87 0,89 81,77 0,87 0,88 0,87 0,87
MLP50 80,83 0,87 0,87 0,87 0,87 82,70 0,88 0,87 0,89 0,88
MLP100 80,80 0,87 0,87 0,87 0,87 82,58 0,88 0,87 0,89 0,88
MLP200 80,74 0,86 0,87 0,87 0,87 82,79 0,88 0,87 0,89 0,88
KNN3 69,73 0,79 0,80 0,78 0,70 80,22 0,86 0,85 0,87 0,81
KNN5 73,57 0,82 0,84 0,80 0,75 80,34 0,86 0,86 0,87 0,84

Table 5.4: Metrics of the algorithms trained on the Intermediate 1 database with the complete
database and after applying the CFS. The best values for each metric are bolded in both cases.

Table 5.5 shows the results obtained in the Intermediate 2 database with the complete
database and after applying the CFS (Intermediate 2+CFS). In general, this combination
of features obtains better Accuracy than the combination created from the Intermediate
1 and Individual database, except for the NB algorithm and KNN5 algorithm. Regarding
the comparison of the improvement with the CFS methods, as in the previous cases,
the Accuracy improves in all algorithms except RF and in the case of KNN it improves
considerably.

In the Intermediate 2 database the best performing algorithms were found to be SVM
(if we look to the Accuracy and F-Score metrics) and RF (if we look to the Recall and AUC
metrics). On the other hand, if we look to the Precision metric, the best classi�er is CTC.
Other notable algorithms are MLP and RIPPER, which although they are not the ones with

37



5. Results

the best average, in general they do not have bad values in their metrics. In the Intermediate
2 version the MLP50 works a little better, while in the Intermediate 2+CFS version the
MLP100 is the best. If we look only at the CFS part in the table, other algorithms stand out
in addition to those mentioned. These algorithms are RIPPER, DT and KNN, especially
KNN5.

Complete CFS
Acc. F1 Rec. Prec. AUC Acc. F1 Rec. Prec. AUC

CTC 79,68 0,85 0,79 0,92 0,80 80,31 0,85 0,78 0,93 0,83
RIPPER 81,38 0,87 0,88 0,86 0,77 82,23 0,87 0,88 0,88 0,79
DT 79,97 0,86 0,86 0,86 0,75 82,51 0,87 0,86 0,89 0,84
NB 79,69 0,82 0,76 0,90 0,84 79,59 0,84 0,79 0,92 0,87
SVM 84,05 0,89 0,88 0,89 0,81 84,33 0,89 0,88 0,90 0,82
RF 83,99 0,89 0,92 0,87 0,89 82,81 0,88 0,89 0,87 0,89
MLP50 81,63 0,87 0,88 0,87 0,87 83,13 0,88 0,89 0,88 0,88
MLP100 81,56 0,87 0,88 0,87 0,87 83,17 0,88 0,89 0,88 0,88
MLP200 81,60 0,87 0,88 0,87 0,87 82,98 0,88 0,88 0,88 0,88
KNN3 71,14 0,79 0,78 0,81 0,71 81,85 0,87 0,87 0,88 0,84
KNN5 71,79 0,80 0,80 0,8 0,74 82,05 0,87 0,87 0,88 0,86

Table 5.5: Metrics of the algorithms trained on the Intermediate 2 database with the complete
database and after applying the CFS. The best values for each metric are bolded in both cases.

Table 5.6 shows the values of the algorithms trained with the Total version with the
complete database and after applying the CFS (Total+CFS). If we compare it with the other
versions, there is no clear improvement or worsening of the metrics, it always depends on
which algorithm is taken into account. Most algorithms improve after applying CFS, but
this di�erence is not as notorious as in previous versions of the databases.

Regarding the metrics in this table, it can be seen that the algorithm achieved with RF
obtains very good results, followed by SVM. Once again, the Precision metric di�ers from
the others, being the best classi�er CTC in the Total version and NB y Total+CFS version.
Other algorithms to be highlighted are RIPPER, DT and in the case of Total+CFS the MLPs,
being MLP200 the best.

It has been observed that in most cases the Accuracy and F-Score metrics agree. More-
over, it is known that F-Score includes Precision and Recall. For this reason, from this point
on, we have focused mainly on Accuracy, without forgetting the other metrics.

To have a more general overview of all databases together with the di�erent algorithms,
a bar chart has been created, which can be seen in Figure 5.1. It shows that SVM and RF
have the best Accuracy and that feature selection helps in most cases, especially in KNN.

5.3 Statistical tests

In the previous section we have seen how, depending on the metric, some algorithms were
found to be better than others. However, the Accuracy, F-Score and Recall results were
in agreement. Therefore, this section has chosen the best models and compared them
statistically using the Accuracy metric.

38



5.3. Statistical tests

Complete CFS
Acc. F1 Rec. Prec. AUC Acc. F1 Rec. Prec. AUC

CTC 80,24 0,85 0,81 0,90 0,80 81,04 0,86 0,82 0,91 0,82
RIPPER 81,66 0,87 0,88 0,87 0,78 81,30 0,87 0,87 0,87 0,77
DT 80,68 0,87 0,88 0,85 0,75 82,67 0,88 0,89 0,87 0,81
NB 77,58 0,83 0,78 0,89 0,85 79,47 0,84 0,79 0,92 0,87
SVM 83,29 0,88 0,88 0,89 0,80 83,7 0,88 0,87 0,90 0,81
RF 84,65 0,89 0,91 0,88 0,90 84,31 0,89 0,91 0,88 0,90
MLP50 80,42 0,86 0,88 0,85 0,86 83,19 0,88 0,88 0,88 0,88
MLP100 79,48 0,86 0,87 0,85 0,85 83,51 0,88 0,89 0,89 0,88
MLP200 79,33 0,86 0,87 0,85 0,85 83,58 0,89 0,89 0,88 0,88
KNN3 76,71 0,84 0,85 0,83 0,78 78,70 0,85 0,84 0,86 0,83
KNN5 77,44 0,84 0,86 0,83 0,81 80,69 0,86 0,85 0,88 0,86

Table 5.6: Metrics of the algorithms trained on the Total database with the complete database and
after applying the CFS. The best values for each metric are bolded in both cases.

Figure 5.1: Bar chart of the Accuracy in the di�erent versions of the database and the di�erent
algorithms.

The databases with the best Accuracy in each model were selected. For CTC and DT
the Total+CFS version was selected, for RF the Total version, for RIPPER the Intermediate
2+CFS version and for NB and SVM the Individual+CFS version. In addition, among the
MLP models, the highest Accuracy has been selected taking into account the combination of
database version and hyperparameter. In this case the MLP200 with the Total+CFS version
was selected. The same criterion was used to select the KNN with the best Accuracy, being
KNN5 with the Intermediate 2+CFS version.

In Table 5.7 these probabilities can be seen. In general, there is no single algorithm that
is better than all the others. It can be said that with a high probability SVM and RF are better
than CTC (P(CTC�SVM)=0.961, P(CTC�RF)=0.952). In addition, SVM is probably also
better than NB (P(NB�SVM)=0.956), although with RF it is not so clear (P(NB�RF)=0.882).
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P(left) P(rope) P(right)
CTC-RIPPER 0.122 0.344 0.536

CTC-DT 0.023 0.295 0.682
CTC-NB 0.192 0.445 0.363

CTC-SVM 0.002 0.036 0.961
CTC-RF 0.001 0.045 0.952

CTC-MLP200 0.011 0.146 0.843
CTC-KNN5 0.141 0.369 0.490
RIPPER-DT 0.184 0.448 0.368
RIPPER-NB 0.434 0.427 0.139

RIPPER-SVM 0.004 0.083 0.913
RIPPER-RF 0.024 0.177 0.799

RIPPER-MLP200 0.059 0.344 0.597
RIPPER-KNN5 0.315 0.452 0.232

DT-NB 0.545 0.356 0.099
DT-SVM 0.012 0.147 0.841
DT-RF 0.008 0.201 0.791

DT-MLP200 0.064 0.464 0.472
DT-KNN5 0.419 0.424 0.157
NB-SVM 0.002 0.043 0.956
NB-RF 0.012 0.106 0.882

NB-MLP200 0.033 0.222 0.745
NB-KNN5 0.174 0.44 0.386
SVM-RF 0.392 0.451 0.157

SVM-MLP200 0.692 0.287 0.021
SVM-KNN5 0.947 0.052 0.001
RF-MLP200 0.525 0.43 0.042
RF-KNN5 0.855 0.135 0.010

MLP200-KNN5 0.653 0.307 0.040

Table 5.7: Probability that the algorithm on the left is better or both equal or the one on the right
is better. Probabilities above 95% are bolded.

Another algorithm that is probably better than CTC is MLP200 (P(CTC�MLP200)=0.843).
If we compare these three algorithms with the rest we see that with high probability
SVM is better than RIPPER (P(RIPPER�SVM)=0.913), DT (P(DT�SVM=0.841) and KNN5
(P(SVM�KNN5)=0.947). On the other hand, RF also has a high probability of being better
than KNN5 (P(RF�KNN5)=0.855). If we compare these three algorithms, i.e. SVM, RF
and MLP200, we cannot say statistically which one is better, nor that they are practically
equivalent. In Figure 5.2 the distribution plots between all the selected pairs of algorithms
can be seen.
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(1) CTC-RIPPER (2) CTC-DT (3) CTC-NB (4) CTC-SVM

(5) CTC-RF (6) CTC-MLP200 (7) CTC-KNN5 (8) RIPPER-DT

(9) RIPPER-NB (10) RIPPER-SVM (11) RIPPER-RF (12) RIPPER-MLP200

(13) RIPPER-KNN5 (14) DT-NB (15) DT-SVM (16) DT-RF

(17) DT-MLP200 (18) DT-KNN5 (19) NB-SVM (20) NB-RF

(21) NB-MLP200 (22) NB-KNN5 (23) SVM-RF (24) SVM-MLP200

(25) SVM-KNN5 (26) RF-MLP200 (27) RF-KNN5 (28) MLP200-KNN5

Figure 5.2: Probability distribution graphics.
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5.4 Rule obtention

This section explains the rules found using the CTC, DT and RIPPER algorithms. The aim
is to �nd simple rules with good Accuracy.

Figure 5.3 shows the performance obtained by RIPPER changing the minimum number
of instances covered by each rule. As it was expected, the more simple the created rules
are, the worse the performance is, although it does not get much worse. We have used the
Individual+CFS rules with M40, Total with M40 and Total+CFS with M40, because these
have a good Accuracy and are simple rules.

Figure 5.3: Accuracy of RIPPER by changing the minimum number of instances per rule (N).

Figure 5.4 shows how the Individual case improves considerably when it creates shal-
lower trees. This is because deep trees do over�t the data, namely, they create trees that are
able to classify all the training data, even the most speci�c samples, but do not generalize
well to unseen instances.

Figure 5.4: Accuracy of DT by changing the minimum number of instances per leaf (M).

When CFS is applied to the Individual database, less over�tting is achieved, although
it continues to increase with parameter M. In the case of Total database it seems that the
best �t are the parameters M=2 and M=50, although all have a performance from 77.87% to
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82.24% (83.70% in the case of CFS). The trees converted to rules of Individual database with
M40 and M50 were used along with Individual+CFS with M40 and M50, since all four gave
the same tree, and Total with M50 and Total+CFS with M50, since they also gave the same
tree.

Figure 5.5 shows the Accuracy of CTC when the minimum number of instances per leaf
is changed. In this case the performance is much worse when M=40 or M=50. Moreover,
the trees created with M=2 or M=10 are too complex to obtain simple rules. This is why no
rules have been obtained from this algorithm.

Figure 5.5: Accuracy of CTC by changing the minimum number of instances per leaf (M).

The rules in the Individual database are the following:

• UPSITBK1 < 7 or GDSENRGY 6= 0→ PD

• UPSITBK1 < 7 or UPSITBK3 ≤ 7 or SCAU2 6= 0→ PD

The rules in the Total database are the following:

• UPSIT_total < 31 or SCAU_total > 11→ PD

• UPSIT_total < 30 or SCAU_total > 10→ PD

• UPSIT_total < 30 or SCAU_total > 11→ PD

The individual rules have the same �rst element, but di�er in everything else. The �rst
one corresponds to the RIPPER algorithm, with an Accuracy of 82.24%, while the second
one to the DT with a very similar accuracy of 82.97%. As for the total rules, it seems clear
that UPSIT_total and SCAU_total are the most relevant features although the rules slightly
disagree in the particular thresholds. The �rst two rules correspond to RIPPER, with an
Accuracy of 80.93% and 81.08% and the third to DT with an Accuracy of 82.24%.
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5.5 Gender Study

Finally, it has been studied whether the best classi�ers, i.e. SVM, ML200 and RF, achieve
the same results for both men and women. For this purpose, Accuracy, Recall and Precision
metrics have been obtained for each gender.

Table 5.8 shows the results of the metrics for each classi�er. The MLP algorithm per-
forms in a similar way for male and female samples. However, the SVM and RF algorithms
achieve better Accuracy in the case of males (especially the RF algorithm). It should be
noted that the improvement that RF achieves with males is through a better Precision,
while SVM achieves a better Recall.

Accuracy Recall Precision

SVM Men 0.866 0.919 0.896
Women 0.841 0.863 0.906

MLP200 Men 0.844 0.910 0.877
Women 0.833 0.917 0.856

RF Men 0.846 0.873 0.909
Women 0.816 0.893 0.852

Table 5.8: Metrics by gender.
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CHAPTER 6
Discussion

Although further studies are needed to re�ne the outcome of the work, considering the
results of the feature selection process and classi�cation, we believe that the result of this
work is a promising step towards early and rapid detection of PD.

First, the descriptive study of the data suggests that some of the tests have a signi�cant
di�erence between the classes and that this information is not correlated with each other.
However, the test that stands out the most, i.e., the one with the highest correlation with
the class is the UPSIT test.

On the other hand, the results of the feature selection process suggest that GDS, SCOPA-
AUT, UPSIT, MoCA and HVLTR are the most informative tests for discriminating PDs from
HCs, while ESS, SDMT and BJLOT tests are probably more informative for other qualities
of PDs. Also clinical variables such as age or dominant hand provide information to these
tests to discriminate patients with Parkinson’s disease.

On the other hand, by means of feature selection, better results are achieved in some of
the algorithms. This is especially seen in the case of KNN, since the improvement is higher,
although it also in�uences the other algorithms except RF. RF has its own internal feature
selection.

There is no one version of the database that stands out from the others, the metric and
the classi�er must always be taken into account. Nevertheless, none of the best results
have been obtained with the Intermediate 1 database, neither before nor after applying the
CFS method, which suggests that the combination of features in Intermediate 2 is more
appropriate. On the other hand, all the best algorithms, except RF, have got their best
results with a feature reduced database version.

In addition, obtaining information from the di�erent versions of the databases, it could
be said that these tests do not have to be performed completely, but only some of their parts
or some of the questions. In the case of the UPSIT test, it is always suggested to perform it
completely. This reinforces the belief that a combination of clinical tests could be created,
with a selected items from each tests, in order to detect PD.

All the classi�ers selected for statistical comparison are good models, or very good
models in the case of RF and NB, according to the AUC metric. However, according to the
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Accuracy metric, which can be equated to the F-Score and Recall results, the best classi�ers
are RF, SVM and MLP200. There is no statistical evidence that any of these classi�ers is
better than the other, nor that they are equivalent. However, statistical comparison with
other classi�ers shows that SVM is better than all the others with high probability.

Previous studies have used Machine Learning techniques to discriminate PD patients
from controls using PPMI data, combine imaging data with clinical data. These works have
used SVM algorithm together some feature selection technique, such as Fisher discriminant
ratio [96] or Random Forest [9]. However, Singh et al. [96] do not study early detection of
the disease. Regarding Amoroso et al. [9], they show the brain regions mostly a�ected by
the disease but they did not compare the classi�cation performance of di�erent algorithms
as we did in the current work.

If we take into account the gender perspective, we �nd a mismatch in the case of SVM
and RF. The �rst model has a higher percentage of false negatives in women, as opposed to
the second, which has a higher percentage in men. Among the three mentioned classi�ers,
MLP200 is the one with the smallest gender bias, and the one with the smallest di�erence in
false negatives. It is believed that by adjusting the hyperparameters of the MLP algorithm
to our objective in a deeper way we could obtain an even better classi�er to di�erentiate
PD subjects from HC subjects, since this algorithm is the one that o�ers the greatest tuning
opportunities.

Finally, we wanted to use classi�ers with explaining capacity to obtain comprehensible
rules applicable to the database. The rules obtained have an Accuracy higher than 80%,
moreover, they are simple rules that just use the UPSIT, SCAU and GDS tests, further
reducing the tests that would have to be applied. The rules obtained using the individual
version of the database suggest that the UPSITBK1 test should be taken into account. As
for the total database, a very good PD detection capacity was seen for the complete UPSIT
and SCOPA-AUT tests.
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CHAPTER 7
Conclusion and future work

In this work the problem of early detection of Parkinson’s disease is studied, based on non-
motor symptoms and exploring the best combination of items from clinical questionnaires
and tests by means of Machine Learning techniques. The selection of variables using the
CFS method has proven to be adequate because it considerably reduces the number of items,
keeping or even increasing the discriminating capacity to di�erentiate PD patients from
controls. It has been seen that the most important variables are related to the UPSIT test,
which measures olfactory capacity. In addition, a way to group these items semantically
is proposed. To test the e�ectiveness of the proposal, several algorithms are evaluated.
The best results were obtained with the RF, SVM and MLP algorithms, with an Accuracy
around 85%. The result was not only satisfactory because of the metrics achieved, but
also because the number of variables could be reduced considerably, selecting the most
relevant elements or grouping some of them semantically. It has also been seen that MLP
algorithm had little bias regarding to the gender attribute. Finally, a simple rule capable of
di�erentiating HC subjects from PD patients is proposed.

As future work, we plan to carry out a more in-depth study, on the one hand using the
data provided by the Biocruces Bizkaia Health Research Institute and, on the other hand,
to improve the classi�ers to obtain better results. To this end, a search for the parameters
that best �t the objective of di�erentiating between PD and HC patients is proposed. Also,
future works require to test another series of machine learning algorithms or to use some
deep learning models.

As for the gender bias, there are two ways of dealing with it. The �rst is to use speci�c
techniques for training, while the second is to train two di�erent algorithms, one with the
men’s data and the other with the women’s data.

In the same way that gender is taken into account, it has been proposed to divide the
database according to age, since it has been seen that age in�uences on symptoms. In
other words, it is proposed to divide the database by age range, to extract the most relevant
characteristics of each age range, and to train the algorithms with these data

Finally, it would also be interesting to perform a longitudinal study using non-motor
variables to assess whether early motor symptoms can serve as a biomarker to predict
disease progression.
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Appendix A

This appendix explains the variables used in the supervised database, as well as their
semantic grouping.

In total, four versions of the database are created, in which the variables are grouped
(or ungrouped) semantically, depending on the test or questionnaire to which they belong.
In addition, there are also four variables containing general and clinical patient information.
Table 1 summarises the variables used.

Gender

The Gender attribute has only one variable: GENDER. This variable can take the
following values: 0 (woman with reproductive capacity), 1 (woman without reproductive
capacity) and 2 (man).

Years of education

The variable that indicates the age of education is EDUCYRS. This can have values
from 5 years to 26, always using discrete numbers.

Dominant hand

Only one variable is used to identify the dominant hand: HANDED. This variable can
take a value of 1 if it is right-handed, a value of 2 if it is left-handed and a value of 3 if it is
ambidextrous.

Age

A variable with the same name is used to indicate age. This variable has a range of
54.09, starting at 31.2 and ending at 85.29. Therefore, the criterion in PPMI of being older
than 30 years is satis�ed.

Class

The attribute class is the variable we want to classify in the supervised analysis. This
variable matches with the attribute name and with the possible values. Therefore, the
values that this target variable can have are: IDIOPATHIC PD (subjects with Idiopathic
Parkinson’s disease) and HC (healthy control subjects).

Epworth Sleepiness Scale (ESS)

The variables of the ESS questionnaire are the answers to each question. In total there
are 8 questions that are recorded from variable ESS1 to variable ESS8, with the variable
number corresponding to the question. The values of the variables range from 0 to 3, these
being the subject’s answers. In the second grouping (Intermediate 2), all responses are
added together to create the variable ESS_total.
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Geriatric Depression Scale (GDS)

The variables used in the GDS questionnaire are the scores of the answers from the 15
questions asked to the subjects. Therefore, the value is 1 if the response denotes a symptom
of depression and 0 otherwise. The variable name always starts with “GDS" and ends with
a word indicating the topic of the question. When the variables are grouped, the article
by Wongpakaran et al. [144] was taken into account, where it mentions that 6 of the 15
questions are enough to predict a person’s depression. For this reason, the �rst grouping is
done with these questions and the variable GDS_6 has been created. To create this variable,
the scores of the responses have been summed. Finally, in the last version, all response
scores are added up, i.e. how many depressive symptoms the subject has.

SCOPA-AUT

As happens with the other two questionnaires, there is one variable for each SCOPA_AUT
question. The name of these variables always starts with “SCAU" and is followed by the
question number. The variables “SCAUSEX1" and “SCAUSEX2" are the answers of the
questions about sex, i.e. the �rst variable corresponds to questions 22 and 24, while the
second variable corresponds to the combination of questions 23 and 25. These questions
are asked according to gender, men are asked questions 22 and 23, while women are asked
questions 24 and 25. The possible values for these variables are the following: 0 (“never"), 1
(“sometimes"), 2 (“regularly"), 3 (“often") and 4 (“use catheter" or “not applicable"). Ques-
tions SCAU23A, SCAU26A, SCAU26B and SCAU26C are about medicines. These take a
value of 0 if the patient does not take the respective medicine and a value of 1 otherwise.
In the case of SCAU23A it asks only for men, so the value for women is always 0. Finally,
the variable PTCBOTH indicates who has �lled in the test and takes the following values:
1 (Patient), 2 (Caregiver) and 3 (Patient and Caregiver).

In the �rst grouping, the values are added up depending on the domain and the
following variables are created: SCAU_gastroint, SCAU_urinary, SCAU_cardiovascular,
SCAU_thermoreg and SCAU_sexual. In the �nal version, all variables are added together.
The variable PTCBOTH is only used in the individual version, because the medical experts
indicated so.

Symbol Digit Modalities Test (SDMT)

The SDMT test has a single variable: SDMTOTAL. The value of this variable corresponds
to the number of symbols that have been correctly identi�ed.

Benton Judgment of Line Orientation Test (BJLOT)

In the BJLOT test, one variable is used for each item. These variables have two values:
1 if the two lines with the fan have been identi�ed correctly and 0 otherwise. The variable
names have the pre�x “BJLOTPAR" followed by the item number. They have been grouped
in the Intermediate 2, adding the values of the items and the BJLOT_total variable has been
created.

University of Pennsylvania Smell Identi�cation Test (UPSIT)

The UPSIT test contains 4 variables, one for each booklet. These variables take the
value of the score (how many smells have been identi�ed), so it can have values from 0
to 10. The variable name is formed by “UPSITBK" + the number of the booklet. In the
second grouping, a variable called UPSIT_total is created by adding up the scores of all the
booklets.
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Montreal Cognitive Assessment (MoCA)

In the MoCA test, variables are created for each possible point, with a total of 27
variables. All variable names start with “MCA" and are followed by a code that identi�es
the item and what is being tested in that item. For example, “MCACLCKN" is one of the
variables of the clock-drawing task (“CLCK") and indicates whether they have correctly
drawn the numbers (“N") on the clock. MoCA_total is the sum of all items. If the patient
has less than 12 years of education, an extra point is added. The maximum possible is 30
points.

First, the variables are grouped by the cognitive domain that each section assesses,
adding up the scores, and the following variables are created: moca_visuo, moca_naming,
moca_attention, moca_verbal, moca_recall and moca_orientation.

The language part is divided into two tests: the �rst consists of repeating two sentences
said by the examiner and the score obtained is stored in the variable MCASNTNC; the
second test consists of saying the highest number of words beginning with ‘P’ during one
minute. This second test creates two variables: MCAVFNUM indicates how many words
the subject has said, while MCAVF scores 0 if the subject says less than 11 words or 1
otherwise. The latter (MCAVF) will be used to calculate moca_verbal and MCATOT, but
will not be included in the individual version of the database, to avoid redundancy with
MCAVFNUM.

Hopkins Verbal Learning Test - Revised (HVLTR)

The variables used for the HVLTR test correspond to the di�erent assessments:

• The variables HVLTRT1, HVLTRT2 and HVLTRT3 are the amount of correctly
recalled words in the three learning trials. They have a value between 0 (no words
correct) and 12 (all words remembered).

• The variable HVLTRDLY contains the sum of the remembered words in the retrieval
test. The values are the same as above.

• The variable HVLTREC corresponds to the words recognized in the recognition test.
It has values from 0 to 12.

A single grouping is made by adding together the correct words in the learning trials
(HVLTRT_total). From a clinical point of view, it has been considered appropriate to leave
the HVLTRDLY and HVLTREC variables separate, as these items on the same neuropsy-
chological test represent a cognitive ability that does not overlap with HVLTRT_total.
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Total (15) Inter. 2 (19) Inter. 1 (53) Individual (107)
GENDER GENDER GENDER GENDER
EDUCYRS EDUCYRS EDUCYRS EDUCYRS
HANDED HANDED HANDED HANDED
AGE AGE AGE AGE
ESS_total ESS_total ESS1..8 ESS1..8

GDS_total GDS_6 GDS_6 GDSSATIS, GDSBORED, GDSGSPIR,
GDSHLPLS, GDSWRTLS, GDSHOPLS

– –

GDSDROPD, GDSEMPTY, GDS-
AFRAD, GDSHAPPY, GDSHOME,
GDSMEMRY, GDSALIVE, GDSENRGY,
GDSBETER

SCAU_total

SCAU_gas-
troint

SCAU_gas-
troint SCAU1..7

SCAU_urinary SCAU_urinary SCAU8..13
SCAU_car-
diovascular

SCAU_car-
diovascular SCAU14..16

SCAU_ther-
moreg

SCAU_ther-
moreg SCAU17..18, SCAU20..21

SCAU19 SCAU19 SCAU19
SCAU_sexual SCAU_sexual SCAUSEX1..2, SCAU23A
SCAU26A SCAU26A SCAU26A
SCAU26B SCAU26B SCAU26B
SCAU26C SCAU26C SCAU26C

– – – PTCGBOTH
SDMTOTAL SDMTOTAL SDMTOTAL SDMTOTAL

BJLOT_total BJLOT_total BJLOT-
PAR1..15 BJLOTPAR1..15

UPSIT_total UPSIT_total UPSITBK1..4 UPSITBK1..4

MoCA_total

moca_visuo moca_visuo MCAALTTM, MCACUBE, MCA-
CLCKC, MCACLCKN, MCACLCKH

moca_naming moca_naming MCALION, MCARHINO, MCACAMEL
moca_atten-
tion

moca_atten-
tion

MCAFDS, MCABDS, MCAVIGIL,
MCASER7

moca_verbal moca_verbal MCASNTNC, MCAVF
MCAABSTR MCAABSTR MCAABSTR
moca_recall moca_recall MCAREC1..5
moca_orien-
tation

moca_orien-
tation

MCADATE, MCAMONTH, MCAYR,
MCADAY, MCAPLACE, MCACITY

– – – MCAVFNUM
HVLTRT_total HVLTRT_total HVLTRT_total HVLTRT1..3
HVLTRDLY HVLTRDLY HVLTRDLY HVLTRDLY
HVLTREC HVLTREC HVLTREC HVLTREC
Class Class Class Class

Table 1: Summary of the variables used in each version of the supervised databases.
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This appendix presents the descriptions and graphs of the variables. In the case of qualitative
variables, i.e., CLASS, GENDER and HANDED variables, they are represented by pie charts,
while quantitative variables are represented by box plots and histograms.

Class

The distribution of the Class can be seen in Figure 1, represented by a char pie. In blue
colour are the HC subjects, in total there are 197 subjects. The pink part belongs to the
IDIOPATHIC PD subjects, exactly 490 patients.

Figure 1: Class pie chart

Gender

In Figure 2 we can see the distribution of the GENDER variable. The majority of the
subjects are men, exactly 448 subjects. It is followed by women without reproductive
capacity, 201 subjects. Finally, there are 38 subjects who are women with reproductive
capacity. In all categories the class distribution is similar, where the majority of subjects
are IDIOPATHIC PD.
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Figure 2: GENDER pie chart

Years of education

In Figure 3, the EDUCYRS variable is represented by a box plot and a histogram. In the
Total box plot (the one that includes IDIOPATHIC PD and HC subjects), it can be seen that
most of the subjects have studied between 14 and 18 years, with a median of 16 years. The
lowest age is 5 years and the highest age is 26 years, but these two subjects are outliers.
Looking at the distribution of the classes (the HC and IDIOPATHIC PD charts), the ages
are evenly distributed, without taking into account outliers.

(1) EDUCYRS box plot (2) EDUCYRS histogram

Figure 3: Graphics of Years of education variable

Dominant hand

A pie chart has been used to represent the variable HANDED, as can be seen in Figure
4. The majority of the subjects are right-handed (591 subjects), followed by left-handed (72
subjects) and �nally ambidextrous (24 subjects). The distribution of classes is similar in
each of them.
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Figure 4: HANDED pie chart

Age

The graphs representing the variable AGE can be seen in Figure 5. In the Total box
plot there are outliers, each with a value below 34.12. These outliers correspond to the HC
subjects, as can be seen in the box plot. It can also be seen in the histogram how these data
(in orange) are separated from the general group. In relation to the general distribution,
both classes have a similar distribution.

(1) AGE box plot (2) AGE histogram

Figure 5: Graphics of age variable

Epworth Sleepiness Scale (ESS)

In Figure 6 we can see the box plot and the histogram corresponding to the ESS_total
(the sum of all the questions). On the one hand, in the �rst graph, the interquartile range
of both classes is the same, although the median of IDIOPATHIC PD is higher. On the
other hand, there are more outliers that are IDIOPATHIC PD. Therefore, there are more
subjects who tend to fall asleep during daily activities while having Parkinson’s disease.
This di�erence can also be seen in the histogram, with the blue tail being longer than the
orange tail.
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(1) ESS_total box plot (2) ESS_total histogram

Figure 6: Graphics of Epworth Sleepiness Scale variable

Geriatric Depression Scale (GDS)

The variables of the Geriatric Depression Scale are di�erent in the Intermediate 2 and
the Total versions. The �rst one uses the variable GDS_6 and the second one uses the
variable GDS_total. These variables indicate how many depressive symptoms the patient
has.

Figure 7 shows the representation of the variable. Most of the HC subjects present no
symptoms of depression (GDS_6 = 0), although there are 5 atypical patients. As for the
IDIOPATHIC PD subjects, although most of these have no symptoms, it is normal for them
to have 1 or 2, although above this value they are also considered outliers.

(1) GDS_6 box plot (2) GDS_6 histogram

Figure 7: Graphics of Geriatric Depression Scale variable in Intermediate 2

Figure 8 is the representation of GDS_total. Compared to the previous one, the medians
are higher: for IDIOPATHIC PD it is 2 and for HC it is 1. Comparing the outliers, in this
case we have more than in the previous case. Although, for both GDS_6 and GDS_total, it
seems that HC subjects have fewer symptoms than IDIOPATHIC PD subjects, as we can
see in the histograms.
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(1) GDS_total box plot (2) GDS_total histogram

Figure 8: Graphics of Geriatric Depression Scale variable in Total

SCOPA-AUT

The SCOPA-AUT questionnaire is �rst grouped by sections and then a general grouping
is made. The �rst grouping is found in Intermediate 2 (Figure 9) and the �nal grouping in
the total version (Figure 10).

In most sections it can be observed that HC has a lower median than IDIOPATHIC
PD (in the case of the box plots) or the right tail of the histogram is longer. For the case
of SCAU_cardiovascular, the median is the same, but the interquartile range is greater in
IDIOPATHIC PD than in HC. There are special cases (SCAU19, SCAU_26A, SCAU26_B,
SCAU26_C) where there is no di�erence between classes.
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(1) SCAU_gastroint
box plot

(2) SCAU_gastroint
histogram

(3) SCAU_urinary
box plot

(4) SCAU_urinary
histogram

(5) SCAU_cardiovascular
box plot

(6) SCAU_cardiovascular
histogram

(7) SCAU_thermoreg
box plot

(8) SCAU_thermoreg
histogram

(9) SCAU19
box plot

(10) SCAU19
histogram

(11) SCAU_sexual
box plot

(12) SCAU_sexual
histogram

(13) SCAU_26A
box plot

(14) SCAU_26A
histogram

(15) SCAU_26B
box plot

(16) SCAU_26B
histogram

(17) SCAU_26C
box plot

(18) SCAU_26C
histogram

Figure 9: Graphics of SCOPA-AUT variables in Intermediate 2

Figure 10 gives us a more general idea of the questionnaire. As mentioned before,
HC has a lower median than IDIOPATHIC PD. If we look at the outliers, there is a clear
clustering between 5 and 12 (if we look at the Total boxplot), but from 22.5 above are
outliers.
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(1) SCAU_total box plot (2) SCAU_total histogram

Figure 10: Graphics of SCOPA-AUT in Total

Symbol Digit Modalities Test (SDMT)

The representation of the SDMTOTAL variable can be found in Figure 11. In the box
plot and in the histogram it can be seen that the HC class has a higher score than the
IDIOPATHIC PD class. Therefore, in general, control patients tend to get more symbols
right. The lowest score is 7 points and the highest score is 83, i.e. no participant has
correctly identi�ed all 120 symbols.

(1) SDMTOTAL box plot (2) SDMTOTAL histogram

Figure 11: Graphics of Symbol Digit Modalities Test variable

69



Bibliography

Benton Judgment of Line Orientation Test (BJLOT)

The scores of the di�erent subjects in the Benton Judgment of Line Orientation Test
are shown in Figure 12. We can see how the subjects have a median of 13 and the average
HC subjects 14. Most of the subjects were able to do more than 8 items correctly (see Total
box plot), although there are 4 subjects who obtained a lower score.

(1) BJLOT_total box plot (2) BJLOT_total histogram

Figure 12: Graphics of Benton Judgment of Line Orientation Test variable

University of Pennsylvania Smell Identi�cation Test (UPSIT)

The graphs corresponding to the UPSIT variable are shown in Figure 13. In the box plot
we see that the IDIOPATHIC PD subjects have a median of 24, i.e. they correctly perform a
little more than half of the questions. The HC subjects, however, have a median of 35. In
the histogram these subjects are mostly on the right side.

(1) UPSIT_total box plot (2) UPSIT_total histogram

Figure 13: Graphics of University of Pennsylvania Smell Identi�cation Test variable

Montreal Cognitive Assessment (MoCA)

The variables of the Intermediate 2 version are visualised in Figure 14. There are also
the graphs of MoCA_total (variable of the total and Intermedia 2 versions), in which we
can see that the variance of the HCs is smaller than that of IDIOPATHIC PD, although they
have the same median. In the case of moca_verbal, the interquartile range is greater in
IDIOPATHIC PD than in HC, although the median is the same. In the other graphs we have
identical box plots for both classes. However, for moca_recall, there is no HC subject who
scored 0.
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(1) moca_visuo
box plot

(2) moca_visuo
histogram

(3) moca_naming
box plot

(4) moca_naming
histogram

(5) moca_attention
box plot

(6) moca_attention
histogram

(7) moca_verbal
box plot

(8) moca_verbal
histogram

(9) MCAABSTR
box plot

(10) MCAABSTR
histogram

(11) moca_recall
box plot

(12) moca_recall
histogram

(13) moca_orientation
box plot

(14) moca_orientation
histogram

(15) MoCA_total
box plot

(16) MoCA_total
histogram

Figure 14: Graphics of Montreal Cognitive Assessment variables in Intermediate 2

Hopkins Verbal Learning Test - Revised (HVLTR)

Figure 15 shows the variables of the Intermediate 2 version. There is no �gure for the
variables of the Total version, since they are the same variables as in the previous version
but with a di�erent name. In HVLTRT_total and HVLTRDLY variables we found more
correct words for the HC subjects than for the IDIOPATHIC PD subjects, obtaining a higher
value in the variables. In the HVLTREC graph, the classes are only di�erentiated by the
outliers.
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(1) HVLTRT_total
box plot

(2) HVLTRT_total
histogram

(3) HVLTRDLY
box plot

(4) HVLTRT_delayed
histogram

(5) HVLTREC
box plot

(6) HVLTREC
histogram

Figure 15: Graphics of Hopkins Verbal Learning Test - Revised variables
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Appendix C

This subsection shows the correlations between the variables using a heat map. Three
tables have been created: the �rst one for all the subjects, the second one for HC subjects
and the last one taking into account all the IDIOPATHIC PD subjects. On the other hand,
correlations greater than 0.5 or less than -0.5 will be explained.

As expected, variables created due to one-hot encoding are negatively correlated. These
correlations are ignored in the following description.

Intermediate 2 version

Figure 16 shows the correlations of all subjects in the Intermediate 2 version. First of all,
the variables HVLTRT_total and HVLTRDLY are positively correlated, with a correlation
of 0.75. The Class variable correlates mainly with the UPSIT_total variable, with a negative
correlation of −0.53.

In Figure 17, only HC subjects are taken into account. Regarding HVLTRT_total with
HVLTRDLY, the correlation is maintained with the same value and the correlation between
HVLTRDLY and HVLTREC is increased (0.5). Finally, the correlation between AGE and
SDMTOTAL becomes more noticeable, with a value of −0.51.

Finally, the correlations between the variables were evaluated using only subjects with
PD, as can be seen in the graph in Figure 18. This time no new correlations stand out, the
correlation between HVLTRT_total and HVLTRDLY the value decreases a little to 0.74.

Total version

The correlations between the variables in the Total version of the database can be seen
in Figure 19. Apart from the correlations highlighted in Intermediate 2, no other variables
are highlighted. Therefore, there is not a high correlation between the tests.

Figure 20 shows the correlation between the variables in the Total version only taking
into account the HC subjects. On the other hand, the Figure 21 shows what happens with
PD subjects only. In both cases, no correlation di�erent from the one highlighted in the
Intermediate 2 version was found.

Nominal variables

In Figure 22 we �nd the correlations between the nominal variables, calculated using
Goodman and Kruskal’s lambda. They have no relationship with each other or with the
class.

73



Bibliography

Figure 16: Heat map of correlations between the variables in the Intermediate 2 version.
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Figure 17: Heat map of correlations between variables in the Intermediate 2 version using only
HC subjects.
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Figure 18: Heat map of correlations between variables in the Intermediate 2 version using only PD
subjects.

76



Bibliography

Figure 19: Heat map of correlations between the variables in the Total version.

Figure 20: Heat map of correlations between variables in the Total version using only HC subjects.
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Figure 21: Heat map of correlations between variables in the Total version using only PD subjects.

(1) IDIOPATHIC PD (2) HC (3) Total

Figure 22: Heat map of correlations between the nominal variables.
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