
Master’s Degree in Computer Science
Computational Engineering and Intelligent Systems

Thesis

The “Extended Reach” Method:

Exploring the neighbors of the neighbors

to escape from local optima

Author

Manuel Torralbo Lezana

2022

Abstract

Local search is a widely used meta-heuristic due to its simple yet effective ap-
proach for solving computationally hard optimization problems. Despite their
popularity, hill-climbing algorithms get stuck in local optima, solutions with-
out improving neighbors form where the local search could continue. Trying
to avoid this stagnant behaviour, most modern local search based algorithms
have been designed to escape from local optima. Thanks to recently discovered
properties of the landscapes formed by combinatorial optimization problems and
neighborhood systems, a novel procedure to escape from local optima is pro-
posed. This method, named “Extended Reach”, also considers the neighbors of
the neighbors of the local optima it encounters as candidate solutions to pro-
ceed to and continue the search. The “Extended Reach” method is applied to
well-known permutation based combinatorial optimization problems and neigh-
borhoods, discussing along the way the numerous developments that went into
its design. The conducted experiments show promising results, successfully es-
caping from local optima and notably outperforming the Multi-Start heuristic,
specially with instances containing a reduced number of plateaus.

Acknowledgements

Special thanks to my supervisors Jose A. Lozano and Leticia Hernando for their
guidance and support, whose knowledgeable insights inspired and gave shape to
this project.

Contents

1 Introduction 1

2 Combinatorial Optimization Problems 3
2.1 Linear Ordering Problem . 3
2.2 Traveling Salesman Problem . 4
2.3 Quadratic Assignment Problem 5

3 Permutation based Neighborhood Systems 6
3.1 Operators . 6
3.2 Relations between Neighborhoods 8

3.2.1 Adjacent swap and insert 8
3.2.2 Insert and 2-exchange . 8

3.3 Relations between Neighborhoods and Problems 9
3.3.1 Insert Neighborhood for the LOP 9
3.3.2 2-exchange Neighborhood for the LOP 10
3.3.3 2-exchange Neighborhood for the QAP 12
3.3.4 2-opt Neighborhood for the TSP 13

4 The “Extended Reach” Method 14
4.1 General Scheme . 15
4.2 Sorting the Neighbors . 15
4.3 Stopping Criterion . 17
4.4 Template Pseudocode . 18
4.5 Problem-specific Optimizations 19

4.5.1 Optimizations for the LOP 19
4.5.2 Optimizations for the TSP 21
4.5.3 Optimizations for the QAP 22

5 Experimental Study 23
5.1 Instances and Benchmark Libraries 23
5.2 Evaluation criterion . 24
5.3 Behaviour of the “Extended Reach” Method 24
5.4 Comparing to the Multi-Start Heuristic 27

6 Conclusions and Future Work 30

i

Figures

2.1 Matrix A of the LOP for n = 4, in its original distribution (left)
and rearranged according to solution (3 2 1 4) (right). The coeffi-
cients highlighted in gray add towards the cost of this permutation. 4

3.1 Matrix A of the LOP for n = 4 according to solution σ (top left)
and a visual representation of how the difference matrix Dσ is
built (top right). An example of matrix A is shown (bottom left),
as well as its corresponding difference matrix (bottom right). In
this example, the provided solution is a local optimum, since no
coefficient in the difference matrix is greater than 0. 11

3.2 Layout of a tour of the TSP before (left) and after (right) applying
a 2-opt movement. Edges (u1, v1) and (u2, v2) are removed and
substituted for (u1, u2) and (v1, v2). 13

4.1 Cumulative density of the jumps with respect to the rank of the
neighbors if visited from best to worst. The vertical red line shows
the position in which it has been decided ER will stop evaluating
the neighborhoods of the neighbors of the local optima. 17

4.2 Representation of two consecutive crossing insert movements where
the first insertion has already concluded. 19

4.3 Ordinary 2-opt movement between edges (u1, v1) and (u2, v2)
(left), and the same movement if previously another had reversed
one of the edges (right). The former adds (u1, u2) and (v1, v2),
the latter (u1, v2) and (v1, u2). 22

5.1 Average jumps per start of the MS-ER algorithm in the ran-
domly generated instances regarding their size (left), and in the
benchmark libraries (right). 25

5.2 Consecutive local optima per jump regarding each instance type. 26
5.3 Performance comparison between Multi-Start (MS) and Multi-

Start plus Extended Reach (ER-MS) implementations for the
LOP. The relative percentage error is obtained with respect to
the best known solutions. 27

5.4 Performance comparison between Multi-Start (MS) and Multi-
Start plus Extended Reach (ER-MS) implementations for the
TSP. The relative percentage error is obtained with respect to
the best known solutions. 28

ii

5.5 Performance comparison between Multi-Start (MS) and Multi-
Start plus Extended Reach (ER-MS) implementations for the
QAP. The relative percentage error is obtained with respect to
the best known solutions. 28

5.6 Average local optima found per execution in the randomly gen-
erated instances. 29

Tables

4.1 Performance comparison for the LOP of visiting the neighbors in
the ER method from best to worst, worst to best and in random
order. The upper number in every cell denotes the mean the and
the bottom number the standard deviation. The best results are
shown in bold letters and worst results in italic. 16

4.2 Visual representation regarding the order of the positions and
consequent difference in the cost of the eight different cases of
two crossing insert movements. 20

5.1 Number of evaluations required for each of the formulas used by
the developed implementations. 24

5.2 Number of instances where adding the Extended Reach method
to the Multi-Start implementations performs better on average
than without over 20 executions. 29

Algorithms

1 LOP Insert Neighborhood Difference Matrix 10
2 LOP 2-exchange Neighborhood Evaluation 12
3 The “Extended Reach” Method 18
4 The MS-ER algorithm . 25

iii

Chapter 1

Introduction

Local search algorithms are popular and efficient methods for solving computa-
tionally hard optimization problems. At its core, local search tries to find better
quality solutions in the set of neighbors of the current solution, under the estab-
lished neighborhood system. In doing so, it iteratively improves, transitioning
from the current solution to one of its neighbors, until a local optimum is found,
that is, a solution without neighbors better than itself. Local search algorithms
are considered meta-heuristic methods, as finding the best solution or global
optimum is not guaranteed, and they rather return near optimal solutions: the
local optimum encountered in this case.

A solution could have more than one improving solution in its neighborhood,
leading to multiple paths from where the search could continue from. The most
common deterministic strategies set a specific order in which to visit the neigh-
bors and settle for the first solution with an improved quality, known as first
improvement, or just evaluate the entire neighborhood and ensure that they
transition to the best neighbor, named best improvement. The hill-climbing al-
gorithms that adopt these strategies implicitly divide the search space in disjoint
sets, each composed of all the solutions that lead to the same local optimum,
also known as attraction basins of local optima.

The local optima are the best quality solutions found, however, since given
the imposed conditions no more improvement is possible, it also supposes that
local search methods inherently get stuck in these kind of solutions and their
basins of attraction. As Multi-Start methods [5] suggest, one feasible approach
is to restart the search all over again from a different solution every time a local
optimum is encountered, trying to collect as many distinct local optima as possi-
ble from which to choose the best. Contrarily, a second variant of algorithms try
to escape from the local optima, two of the most notable methods being Vari-
able Neighborhood Search [7] and Iterated Local Search [8, 9]. The Variable
Neighborhood Search switches the neighborhood system every time the search

1

gets stagnated in a local optimum of the currently adopted neighborhood, until
it meets a solution that is a local optimum in all the considered neighborhoods.
On the other hand, Iterated Local Search methods incorporate a perturbation
phase to rearrange the current local optimum, with the aim of generating a
solution in an attraction basin leading to a different local optimum, but also
maintaining as much quality as possible of the original local optimum.

It was believed that the larger the attraction basin of a local optimum, the
more pronounced the perturbation had to be to escape from it. However, recent
developments in the field of combinatorial landscapes [3] have shown that usually
just one step in the neighborhood is enough to find a new attraction basin. Based
on this knowledge, a new method named “Extended Reach” is proposed in this
work. In order to escape from local optima, the “Extended Reach” method also
considers the neighbors of the neighbors of the current local optimum, looking
for a better solution to transition to and continue the search.

Further studies have proven, specifically for the Linear Ordering Problem
and its most commonly used neighborhoods, that some of these second degree
neighboring solutions will never be better than the local optimum they derive
from [4]. The proposed method takes advantage of such proofs to avoid a large
number of non-better solution, increasing its efficiency.

To validate the proposal, it is applied to three widely known permutation
based combinatorial optimization problems: the Linear Ordering Problem, the
Traveling Salesman Problem and the Quadratic Assignment Problem. The re-
sulting implementations include multiple novel optimizations which merge the
structure of the “Extended Reach” method with the specific properties of the
mentioned problems. The subsequently conducted experimental study concludes
that the developed procedure successfully escapes from local optima, and the
comparison against the Multi-Start local search shows that the computational
requirements to do so are worth the effort.

This document is structured as follows. Chapter 2 presents the three combi-
natorial optimization problems, while Chapter 3 defines neighborhood systems
utilized to conduct the local search in these problems. Then, in Chapter 4,
the proposed method is described and then applied to each particular problem,
explaining the optimizations that have been discovered. Chapter 5 gives a de-
tailed account of the computational results obtained in the experimental phase
using the developed implementations. Finally, in Chapter 6, the conclusions
and future work are discussed.

2

Chapter 2

Combinatorial Optimization
Problems

The mathematical field of Combinatorial Optimization aims to solve discrete
optimization problems by finding the best solution from a finite or countably
infinite set of possibilities. The quality of each solution is tied to the value of
the objective function f of the problem, that needs to be either maximized or
minimized.

In this chapter, three particular examples of Combinatorial Optimization
problems are introduced, later used to illustrate and evaluate the algorithmic
developments. These are NP-hard problems, and thus, there are not known
polynomial time exact algorithms to optimally solve all of their instances, and
approximation algorithms that can find near-optimal solutions in acceptable
computational time are usually used to solve them.

2.1 Linear Ordering Problem

The Linear Ordering Problem (LOP) consists in finding a permutation of the
set {1, 2, ..., n} such that when both the rows and the columns of a given matrix
A = [aij]n×n are rearranged according to the order described by the permuta-
tion, the sum of the coefficients above the main diagonal is maximized.

Therefore, the search space of the LOP, Ωlop, is the set of all possible per-
mutations, and its size is |Ωlop| = n!. The objective function is:

f lop(σ) =

n−1∑
i=1

n∑
j=i+1

aσiσj

where σi is the i-th element of permutation σ.

3

The coefficient aσiσj of the matrix A, associated to the elements σi and σj

at positions i and j of the permutation σ, contributes to the objective function
only if i < j. That is to say, if the element σi is positioned before σj in the
solution. Take for example the permutation (3 2 1 4) in the search space of size
n = 4, here the coefficients that fulfill this condition are a32, a31, a34, a21, a24
and a14, as shown in Figure 2.1.

Figure 2.1: Matrix A of the LOP for n = 4, in its original distribution (left) and
rearranged according to solution (3 2 1 4) (right). The coefficients highlighted in
gray add towards the cost of this permutation.

No matter the solution, an element σi will always be positioned before or
after another distinct element σj . Consequently, for every pair of coefficients
aσiσj and aσjσi , one will stand above the main diagonal and the other below,
and thus, the first one will be part of the cost and the latter will not.

2.2 Traveling Salesman Problem

Being one of the most popular and studied problems in combinatorial optimiza-
tion, the Traveling Salesman Problem (TSP) consists in, given a collection of
n cities and the distance between each pair of them, finding the shortest tour
with the same starting and ending point that visits each city once.

Formally, the problem can be stated as follows. Let G = (V,E,A) be a
graph where V = {1, 2, ..., n} is the set of vertices and E = {(u, v) |u, v ∈ V }
is the set of edges. Each edge (u, v) has an associated weight auv contained
in the adjacency matrix An×n. The classical fully connected and symmetric
variant of the TSP is considered, therefore, G is a complete undirected graph
and auv = avu.

The goal of the TSP is to find a sequence of n interconnected edges, visiting
all n vertices once, and starting and ending at the same vertex, also known as
a Hamiltonian cycle, that minimizes the sum of the weights tied to its edges. A
solution σ of the TSP can be also represented as a permutation of V , denoting
the order in which the vertices are visited, ended by going back from the vertex

4

at the final position to that in the initial one. Considering σi is i-th visited
vertex, the objective function to minimize is:

f tsp(σ) =

(
n−1∑
i=1

aσiσi+1

)
+ aσnσ1 .

Defining the solutions in the described manner allows different permutations
to outline exactly the same tour. Namely, two solutions are equivalent if either
one can be transformed into the other by shifting all elements in either direction,
the overflowing elements returning from the opposite end, or reversing the entire
permutation, or a composition of both. Since a solution can be shifted n times
until the original permutation is recovered, if its reverse is considered too, the
number of equivalent solutions is 2n, which in turn makes the size of the search
space:

|Ωtsp| = n!

2n
=

(n− 1)!

2
.

2.3 Quadratic Assignment Problem

Regarded as one of the hardest problems in combinatorial optimization, the
Quadratic Assignment Problem (QAP) tackles the issue of placing n facilities
in n locations. The quality of the arrangement depends on the production flow
between the facilities, as well as the distance separating the locations where
they are established. More specifically, given an adjacency matrix An×n and a
flow matrix Bn×n, where aij is the distance from location i to location j and
bkl is the flow from facility k to facility l, the QAP is the problem of finding the
minimum cost allocation between the n facilities and locations, taking the cost
as the sum of all flow by distance products.

A solution σ of the QAP is a permutation of the set {1, 2, ..., n}, making the
size of the search space |Ωqap| = n!, and expresses to which location each facility
has been assigned, that is, facility i has been placed at location σi. Assuming
that the main diagonals of both A and B are null, then, the objective function
to minimize is:

fqap(σ) =

n∑
i=1

n∑
j=1

bij aσiσj .

5

Chapter 3

Permutation based
Neighborhood Systems

The objective function f and the search space Ω of a combinatorial optimiza-
tion problem, together with a neighborhood system N , form what is known as
a landscape. The neighborhood system provides each solution σ ∈ Ω a non
empty set of neighboring solutions N (σ), which is usually the set of distinct
solutions that can be reached after applying once an operator M to σ. A so-
lution σ∗ is considered a local optimum under N if for every neighbor σ′ in its
neighborhood N (σ∗) the value of the objective function f(σ∗) is better than or
equal to f(σ′), that is to say, if σ∗ has no improving neighboring solutions.

If a local optimum is strictly better than all its neighbors it is considered a
strict local optimum. However, if there are neighboring solutions with the same
objective function value as the local optimum, a plateau is formed, that is, a set
of solutions with the same cost, all connected by the established neighborhood
system modeling a network structure [3].

In this chapter, the utilized permutation based operators that define the
neighborhood systems are presented first. Then, the particular properties of the
neighborhoods that arise from applying these operators to the specific problems
are discussed.

3.1 Operators

Adjacent Swap

The elements of a permutation σ placed at two consecutive positions i and
i + 1 are swapped. Since there are n − 1 pairs of consecutive positions in a
permutation, the size of the neighborhood of σ tied to this operator is |NS(σ)| =
n− 1. Assuming that i < n, an adjacent swap operation can be expressed as:

MS(σ; i) = (σ1, ..., σi−1, σi+1, σi, σi+2, ..., σn).

6

2-exchange

Two elements of a permutation σ at positions i and j, not necessarily consecu-
tive, are swapped. The size of the neighborhood tied to this operator is the num-
ber of possible combinations of two elements without repetition: |NX (σ)| =

(
n
2

)
.

With the condition that i < j, a 2-exchange operation can be written as:

MX (σ; i, j) = (σ1, ..., σi−1, σj , σi+1, ..., σj−1, σi, σj+1, ..., σn).

Insert

The element at position i of the permutation σ, that is, σi, is moved to position
j. As a result, the elements placed from i to j, not including i, are shifted in
the opposite direction of the insertion. Inserting an element in its same position
would not alter the permutation, hence, if i ̸= j, an insert operation is declared
as:

MI(σ; i, j) =

{
(σ1, ..., σi−1, σi+1, ..., σj , σi, σj+1, ..., σn), if i < j,

(σ1, ..., σj−1, σi, σj , ..., σi−1, σi+1, ..., σn), if i > j.

Positions i and j are not interchangeable, meaning that inserting the i -th
element at j, or doing it the other way around, will not produce the same
permutation in most cases. The only case where this happens is when i and j
are consecutive positions. As all n elements could be inserted in the remaining
n − 1 positions, and there are n − 1 pairs of consecutive positions, the size of
the neighborhood tied to this operator is:

|NI(σ)| = n(n− 1)− (n− 1) = (n− 1)2.

2-opt

The segment in the positions [i, j] of a solution σ is reversed. Assuming that
i < j, the size of the neighborhood tied to this operator is the number of
all possible combinations of elements that define both ends of the segment:
|NO(σ)| =

(
n
2

)
. A 2-opt operation can be written as:

MO(σ; i, j) = (σ1, ..., σi−1, σj , σj−1, ..., σi+1, σi, σj+1, ..., σn).

For a permutation σ such as (1 2 3 4 5 6), the reversal of the segment going
from the second position to the fifth isMO(σ; 2, 5) = (1 5 4 3 2 6).

7

3.2 Relations between Neighborhoods

In some cases, two different operators can have the same outcome if one of them
is applied, once or multiple times, in a specific manner. These equivalences
suppose that given an initial solution, after applying the operators or sequences
of operators, the same resulting solution is obtained.

3.2.1 Adjacent swap and insert

Any adjacent swap movement is an insert movement where the element is in-
serted in one of its two contiguous positions. Consequently, the adjacent swap
neighborhood of a solution is a subset of its insert neighborhood,NS(σ) ⊂ NI(σ),
and a local optimum under the insert neighborhood will always be a local op-
timum in the adjacent swap neighborhood.

Moreover, as proposed in [8], an insertion can be explained as a sequence
of intertwined adjacent swaps, that in the process also visits preceding insert
movements. For example, considering the permutation σ = (1 2 3 4), if the
element at the first position is to be inserted at the last one:

σ = (1 2 3 4),

MS(σ; 1) =MI(σ; 1, 2) = (2 1 3 4),

MS (MS(σ; 1); 2) =MI(σ; 1, 3) = (2 3 1 4),

MS (MS (MS(σ; 1); 2) ; 3) =MI(σ; 1, 4) = (2 3 4 1).

3.2.2 Insert and 2-exchange

Any 2-exchange movement can be expressed as two insert operations. If, as
previously noted, i < j:

MX (σ; i, j) =MI (MI(σ; i, j); j − 1, i)

=MI (MI(σ; i, j − 1); j, i)

=MI (MI(σ; j, i); i+ 1, j)

=MI (MI(σ; j, i+ 1); i, j) .

As an example of the first equivalence, the result of swapping the elements
placed at positions 2 and 5 of the permutation σ = (1 2 3 4 5 6) isMX (σ; 2, 5) =
(1 5 3 4 2 6). The same permutation can be obtained if first the element at
position 2 is inserted in position 5, MI(σ; 2, 5) = (1 3 4 5 2 6), and then the
element at position 4, originally the fifth element, is inserted in position 2,
MI (MI(σ; 2, 5); 4, 2) = (1 5 3 4 2 6). The remaining equivalences follow a simi-
lar procedure.

Considering the neighborhood system where up to two insert operations are
allowed, a local optimum under this neighborhood would also be a local optimum
in both the insert and 2-exchange neighborhoods.

8

3.3 Relations between Neighborhoods and Problems

For any combinatorial optimization problem, since an operator maps a solution
to another one, the value of the objective function will, most likely, also change.
The impact on the cost can be expressed as the difference in the value of the
objective function of a solution σ regarding its derived solution σ′, result of an
operation that turns σ into σ′:

d(σ;σ′) = f(σ′)− f(σ)

In most cases, due to the characteristics of the operator and the problem
considered, the difference in the cost can be computed more efficiently than the
objective function itself. Therefore, given the value of the objective function of
a solution σ, the cost of one of its neighbors σ′ can be optimally retrieved as
f(σ′) = f(σ) + d(σ;σ′).

3.3.1 Insert Neighborhood for the LOP

An insertion will take the element σi and place it in a position j previous or
posterior to its original position i. If i < j, then σi is inserted in a poste-
rior position, and every element in the segment (i, j] is now placed before σi.
Accordingly, taking into account the objective function of the LOP, for every
element σk within the segment, the coefficient aσkσi has to be added, and aσiσk

subtracted, to compute the difference in the cost caused by the insertion. If
i > j and σi is inserted in a previous position instead, the entire process is done
in the opposite manner. Therefore, the cost difference is:

d lop
I (σ; i, j) =

{∑j
k=i+1 aσkσi

− aσiσk
, if i < j,∑i−1

k=j aσiσk
− aσkσi

, if i > j.

In any case, the time complexity of the above formula is O(|i − j|) = O(n).
Since the size of the neighborhood is of order O(n2), given the objective function
value of a solution, its entire neighborhood evaluation would require O(n3)
operations. However, if the neighbors are explored in the specific order described
in Section 3.2.1, as proposed in [8], the time complexity can be reduced by an
order of magnitude to O(n2). Namely, the insert neighborhood can be explored
with a series of intertwined adjacent swap operations. An adjacent swap switches
the position of two contiguous elements, just as an insertion where the i-th
element is moved to one of its contiguous positions j = i± 1. In this particular
case |i−j| = 1, and the difference in the cost can be computed in constant time,
hence the improvement in the time complexity.

Based on this principle, the insert difference matrix tied to a solution σ,
denoted as Dσ

I = [dσij]n×n, is introduced. D
σ
I contains the difference in the cost

of all insert movements subject to σ, where dσij = d lop
I (σ; i, j) (see Algorithm 1).

9

Algorithm 1 LOP Insert Neighborhood Difference Matrix

1: function difference matrix(Solution σ, Matrix A)
2: Dσ

I ←Matrix[1 : n, 1 : n]

3: for (i← 1; i ≤ n; i← i+ 1) do
4: dσii ← 0

5: for (j ← i− 1; j ≥ 1; j ← j − 1) do
6: dσij ← dσi j+1 + aσiσj

− aσjσi

7: for (j ← i+ 1; j ≤ n; j ← j + 1) do
8: dσij ← dσi j−1 + aσjσi

− aσiσj

9: return Dσ
I

Some of the significant properties of the difference matrix Dσ
I are:

• The main diagonal is null, dσii = 0, ∀ i ∈ {1, 2, ..., n}, since inserting an
element in its same position is the same as not moving it.

• All cost differences are computed using intertwined adjacent swaps in O(1)
time, requiring O(n2) for the whole matrix.

• The neighborM lop
I (σ; i, j) will only be better than σ if dσij > 0.

• If σ∗ is a local optimum, then dσ
∗

ij ≤ 0, ∀ i, j ∈ {1, 2, .., n}.

Figure 3.1 illustrates how the difference matrix is constructed in O(n2) and
an example is shown.

3.3.2 2-exchange Neighborhood for the LOP

Considering the objective function of the LOP, and that the two exchanged
elements of solution σ are σi and σj , where i < j, then σi is placed in a posterior
position, and for every element σk in the segment (i, j) that is now before σi,
the coefficient aσkσi

needs to be added, and aσiσk
subtracted. Contrarily, σj

is moved to a previous position, and for every element σk now placed after it
aσjσk

has to be added and aσkσj subtracted. The change in position of σi and
σj relative to each other only has to be accounted for once. Therefore, the
difference in the cost is:

d lop
X (σ; i, j) =

(
j−1∑

k=i+1

aσkσi
− aσiσk

+ aσjσk
− aσkσj

)
+ aσjσi

− aσiσj
.

The time complexity of this function is O(j − i) = O(n). The size of the 2-
exchange neighborhood is of order O(n2), and thus, given the objective function
value of a solution, the complete neighborhood evaluation requires O(n3) time.

10

Figure 3.1: Matrix A of the LOP for n = 4 according to solution σ (top left)
and a visual representation of how the difference matrix Dσ is built (top right).
An example of matrix A is shown (bottom left), as well as its corresponding
difference matrix (bottom right). In this example, the provided solution is a
local optimum, since no coefficient in the difference matrix is greater than 0.

Nonetheless, making use of the insert difference matrix described in the previous
section and the observations done about the 2-exchange operator in Section 3.1,
a better procedure of order O(n2) is proposed (see Algorithm 2). Namely, any
2-exchange operation can be expressed as two insert movements, and in the case
of the LOP, the first insertion does not interfere in the change of the value of
the objective function of the second. This supposes an equivalence in the cost
difference functions between the insert and 2-exchange neighborhoods:

d lop
X (σ; i, j) = d lop

I (σ; i, j) + d lop
I (σ; j, i+ 1) = d lop

I (σ; j, i) + d lop
I (σ; i, j − 1)

Following this reasoning, considering a local optimum σ∗ under the insert
neighborhood, it does not exist a 2-exchange movement that improves σ∗, since
d lop
I (σ∗; i, j) ≤ 0, ∀ i, j ∈ {1, 2, ..., n}, then, no sum of two such differences could

be greater than 0. So, necessarily d lop
I (σ∗; i, j)+d lop

I (σ∗; j, i+1) ≤ 0. Therefore,
for the LOP, a local optimum in the insert neighborhood will always be a local
optimum in the 2-exchange neighborhood, and not necessarily the other way
around.

11

Algorithm 2 LOP 2-exchange Neighborhood Evaluation

1: function 2exchange best improvement(Solution σ, Matrix A)
2: Dσ

I ← difference matrix(σ, A) ▷ See Algorithm 1.
3: best difference← 0

4: for (i← 1; i < n; i← i+ 1) do
5: for (j ← i+ 1; j ≤ n; j ← j + 1) do
6: difference← dσij + dσj i+1

7: if difference > best difference then
8: best difference← difference
9: best i← i, best j ← j

10: if best difference > 0 then
11: σ ←MS(σ; best i, best j)

12: return σ

3.3.3 2-exchange Neighborhood for the QAP

Taking into account the objective function of the QAP, the difference in the cost
of σ with respect to its neighborM qap

X (σ; i, j), result of swapping the locations
between facilities i and j, can be expressed as moving facility i to location σj ,
moving facility j to location σi and adjusting the flow by distance products of
i and j relative to each other:

d qap
X (σ; i, j) = m(σ; i, j) +m(σ; j, i) + (bij − bji)(aσjσi

− aσiσj
),

where
m(σ; i, j) =

n∑
k=1

k ̸=i,j

bik(aσjσk
− aσiσk

) + bki(aσkσj
− aσkσi

)

is the change in the cost of moving facility i to location σj . Computing the
difference is, therefore, linear in time and together with the fact that the num-
ber of neighbors is of order quadratic, given the objective function value of a
solution, a complete neighborhood evaluation requires O(n3).

However, as proposed in [2], if the entire neighborhood of a solution has
already been examined, it is possible to explore the neighborhood of one of its
neighbors in O(n2) time. Suppose that a movement exchanging facilities k and
l has been done over solution σ as to obtain its neighbor M qap

X (σ; k, l). If for
the sake of shortening the notation σkl =M qap

X (σ; k, l), then, the variation of
the difference in the cost as a consequence of a second 2-exchange movement
between facilities i and j, δd qap

X (σkl; i, j), where i, j /∈ {k, l}, is:

δd qap
X (σkl; i, j) = d qap

X (σkl; i, j)− d qap
X (σ; i, j)

= m(σkl; i, j) +m(σkl; j, i)−m(σ; i, j)−m(σ; j, i)

= δm(σkl; i, j) + δm(σkl; j, i),

12

where the difference in the change of the cost of moving facility i to location σkl
j ,

δm(σkl; i, j), after simplifying the expression is:

δm(σkl; i, j) = m(σkl; i, j)−m(σ; i, j)

= (bik − bil)(aσkl
j σkl

k
− aσkl

i σkl
k
− aσkl

j σkl
l
+ aσkl

i σkl
l
) +

(bki − bli)(aσkl
k σkl

j
− aσkl

k σkl
i
− aσkl

l σkl
j
+ aσkl

l σkl
i
).

Locations i and j must be distinct to k or l so that the assigned facilities
remain the same in both σ and σkl. Otherwise, the simplification is not possible
and the cost difference has to be computed with the original formula in linear
time. Therefore, provided the difference matrix Dσ

X = [dσij]n×n of solution σ,

where dσij = d qap
X (σ; i, j), the difference matrix of σkl itself is obtained as follows:

dσ
kl

ij =

{
dσij + δd qap

X (σkl; i, j), if i, j /∈ {k, l},
d qap
X (σkl; i, j), otherwise.

computing the k and l columns and rows of the matrix using the standard
difference function, requiring 2n−3 function calls in total. The sum rule dictates
that these calls do not affect the time complexity when it comes to computing
the whole matrix, which remains of order O(n2).

3.3.4 2-opt Neighborhood for the TSP

In the 2-opt neighborhood for the TSP, two edges of a solution σ, (u1, v1) and
(u2, v2), each formed by two consecutive vertices in the positions i− 1, i, j and
j + 1, respectively, are replaced by the edges (u1, u2) and (v1, v2).

As shown in Figure 3.2, the difference in the cost of the neighborM tsp
O (σ; i, j)

with respect to the original solution σ can be obtained in constant time, just
adding the weights of the new edges and subtracting those of the old ones:

d tsp
O (σ; i, j) = aσi−1σj + aσiσj+1 − aσi−1σi − aσjσj+1 ,

hence, given the objective function value of a solution, its complete neighbor-
hood evaluation is of order O(n2).

Figure 3.2: Layout of a tour of the TSP before (left) and after (right) applying
a 2-opt movement. Edges (u1, v1) and (u2, v2) are removed and substituted for
(u1, u2) and (v1, v2).

13

Chapter 4

The “Extended Reach”
Method

A local search algorithm, in essence, starts from an initial solution σ and searches
in its neighborhood N (σ) for a solution with better cost. If such neighbor σ′ is
found, the current solution σ is replaced and the search continues by repeating
this process. Otherwise, the current solution is a local optimum σ∗ by definition,
since it does not have a better neighboring solution.

The deterministic strategies that dictate the path the algorithm will take
are usually either first improvement, in which by exploring the neighborhood
in a fixed order, the current solution is replaced by the first improved neighbor
found, or best improvement, in which the current solution is replaced by its best
neighbor, only if it is better. In the event of a tie, where multiple neighbors have
the best value of the objective function, the solution visited first is kept. Starting
from a given solution σ, the algorithms adopting these strategies will always end
in the same local optimum σ∗, passing trough the same series of intermediate
solutions. The attraction basin of a local optimum σ∗, is composed of all the
solutions that lead to the same local optimum σ∗, after applying one of such
hill-climbing algorithms.

Due to an erroneous intuition, the past understanding was that the larger
the size of an attraction basin, the further away a solution had to be from the
local optimum in order to escape from it, measuring the distance between two
solutions as the number of operations required to get from one the other. For
this reason, some Iterated Local Search algorithms escape from local optima
applying numerous times the same operator, which could be the same operator
as the one used in the local search or a different one.

However, as discovered in [3], checking the neighbors of a local optimum is
usually enough to find a solution belonging to the attraction basin of a different

14

local optimum. Moreover, if the best improvement strategy is used, the new
local optimum will always be better than the current one.

Inspired in these ideas, a novel approach to escape from local optima is
proposed: the “Extended Reach” method (ER). Once a local optimum is found
by means of a regular local search, ER also evaluates the neighborhoods of the
neighboring solutions of the local optimum. If a neighbor of a neighbor better
than the local optimum is found, the method moves to the improved solution,
an event known as a jump, and continues the search.

4.1 General Scheme

The initial structure follows the same path as an standard local search would,
moving from neighbor to neighbor until it arrives to a local optimum, then,
instead of giving up the search, the method also explores the neighbors of the
neighbors of this local optimum, also known as second degree neighbors.

If a neighbor of a neighbor better than the current local optimum is found,
similar to the first improvements and best improvement strategies, two different
approaches are possible. The first is to jump directly to this new improving
solution. The second is to complete the neighborhood evaluation of the current
neighbor and take the best possible jump, if more than one are possible. In the
context of this project, the latter approach is used.

The process starts over from the new solution, proceeds to the basic local
search and explores again the neighborhoods of the neighbors of the resulting
local optimum. This is repeated until none of the evaluated second degree
neighbors overcomes the current local optimum and no jump is done.

4.2 Sorting the Neighbors

The total number of second degree neighbors for a single solution is the size of
the neighborhood in question squared. For example, considering the 2-exchange
neighborhood with a size of order O(n2), there are approximately n4 ways to
rearrange a solution if two operations are allowed. In the worst case scenario,
when a local optimum has no improving second degree neighbors, evaluating all
these possible solutions would be too computationally costly. Therefore, the ER
method requires improvements to narrow the search and increase the odds of
performing a jump. In that regard, a point of interest in the design of the ER
method is to test the impact in the performance caused by the order in which
the neighbors are visited at the time of exploring their neighborhoods.

To that end, a preliminary experiment is conducted strictly for the LOP.
Three different versions of the ER method are considered, each visiting the
neighbors in a different order regarding their objective function value: from
best to worst, from worst to best, and randomly. These ER versions are imple-

15

mented in a Multi-Start structure using the best improvement strategy, repeat-
edly starting from random solutions once a local optimum with no better second
degree neighbor is found. In order to test the implementations, 10 instances of
size n = 50 are created for the LOP, the matrix entries being sampled from
a uniform distribution in the interval [0, 10000] and each instance running 10
different times with a limit of 50002 objective function calls per execution.

The performance metrics used are the relative percentage error with respect
to best known solutions (the best solutions obtained in the experiment in this
case), the number of local optima encountered and the number of jumps per-
formed at each execution, that is, the number of times a second degree neighbor
better than the local optimum is found. The results are shown in Figure 4.1.

(per execution)
Order of neighbors

Best to worst Worst to best At random

Relative % error
0.45 0.98 0.58
0.37 0.53 0.41

Local optima encountered
10.64 2.01 6.17
4.03 0.1 1.9

Jumps performed
8.64 0.97 4.73
4.03 0.22 1.93

Table 4.1: Performance comparison for the LOP of visiting the neighbors in the
ER method from best to worst, worst to best and in random order. The upper
number in every cell denotes the mean the and the bottom number the standard
deviation. The best results are shown in bold letters and worst results in italic.

The experiment concludes that sorting the neighbors of the local optima
regarding their quality, from best to worst, and visiting them in that order gives
the best results. Even if the worst neighbors have more room for improvement,
in absolute terms, the neighbors of the best neighbors are more likely to be of
better quality. Doing the search in this order allows ER to increase the number
of jumps it performs, halting the evaluation of the second degree neighbors and
increasing its efficiency.

This initial experimental study is solely done for the LOP, however, there is
no reason to believe that the ER method would behave differently in the TSP
and QAP. The first operation applied to a local optimum is known to worsen,
or in the best case maintain, the quality of the resulting neighbor. For a second
degree neighbor to be better than the local optimum, the second operation needs
to positively offset and exceed the difference in the cost produced by the first
one. Intuitively, the worse a neighbor of a local optimum is, the more unlikely it
will be for one of its second degree neighbors to compensate the negative impact
and improve over the local optimum.

16

4.3 Stopping Criterion

Even if the neighbors are visited from best to worst, if a local optimum with
no improving second degree neighbors is reached, the ER method would still be
required to evaluate all the neighbors of the neighbors. The simplest approach is
to just consider the neighborhoods of the k best neighbors of each local optimum.

In order to tune parameter k for each combinatorial optimization problem,
an additional preliminary experiment is conducted. In this case, information
regarding the jumps is sampled using the same algorithm as the one described
in the previous section, visiting the neighbors from best to worst. Each time a
jump occurs, the rank of the neighbor currently being visited is stored, that is,
the position of the neighbor once sorted from where the jump takes place. In this
sampling process, the instances used are of size n = 100 and composed of entries
obtained from uniform distributions, in the interval [0, 10000] for the LOP and
TSP, and in the interval [1, 100] for both matrices of the QAP. Instances are
randomly generated and run single time with a limit of 1000n2 objective function
calls until 100000 jumps in total are sampled for each problem.

With this amount of samples it is possible to estimate where most jumps occur
and asses when to stop evaluating the second degree neighbors if an improving
one has not been found yet. To that end, the cumulative density of the jumps
with respect to the rank of the neighbors is shown in Figure 4.1. The plots
reveal that the jumps are really condensed in the QAP instances, most of them
taking place in the first 25 best neighbors, whereas in the TSP instances, the
jumps are a lot more disperse and are still likely to happen even in the 100-th
ranked neighbor. The LOP instances are somewhere in between, most of the
jumps happening in the first 50 neighbors.

Figure 4.1: Cumulative density of the jumps with respect to the rank of the
neighbors if visited from best to worst. The vertical red line shows the position
in which it has been decided ER will stop evaluating the neighborhoods of the
neighbors of the local optima.

17

It has been decided to keep parameter k proportional to the size of the
instance, of order O(n), trying to capture 90% to 95% of all jumps. According
to results observed in Figure 4.1, the selected values of parameter k for each of
the combinatorial optimization problems are: k = n/2 for the LOP, k = n for
the TSP, and k = n/4 for the QAP.

Note that introducing parameter k to the method supposes that ER will not
only stop once a local optimum with all its neighbors of neighbors worse than
itself is found, since a large number of solutions will be overlooked.

4.4 Template Pseudocode

Once the sorting criterion of the neighbors and parameter k are introduced to
ER method, the resulting pseudocode is presented in Algorithm 3.

Algorithm 3 The “Extended Reach” Method

1: procedure extended reach(Solution σ, Integer k)
2: repeat
3: jump← False
4: σ ← local search(σ)
5: neighbors← k best neighbors(σ, k)

6: for all σ′ ∈ neighbors do
7: for all σ′′ ∈ N (σ′) do
8: if σ′′ is better than σ then
9: σ ← σ′′

10: jump← True
11: if jump = True then break
12:
13: until jump = False

14: return σ

At line 4, the function local search(), as the name suggests, performs a
regular local search starting from the solution given as a parameter and returns
the resulting local optimum. At line 5, the function call computes a list with the
k best neighbors of the local optimum and sorts them regarding their quality,
from best to worst.

The time complexity of a single ER iteration is O (k × |N (σ)| ×O(f)), where
|N (σ)| is the size of the neighborhood and O(f) is the computational cost of
evaluating a solution. If a more efficient cost difference function is available it
can be used instead.

18

4.5 Problem-specific Optimizations

Particular properties arise from combining information regarding the structure
of the problems and their landscapes with those of the ER method. Based on
mathematical proofs, the proposed optimizations safely discard second degree
neighbors that will never be better than the local optimum without the need of
evaluating them. Such improvements may also use information regarding the
local optima or already conducted evaluations to further speed up the search.

4.5.1 Optimizations for the LOP

The ER implementation for the LOP utilizes the insert neighborhood to conduct
the local search. The insights elaborately described in [4] allow to identify
solutions necessarily worse than a known local optimum without the need of
computing their value of the objective function. Only the neighbors of the
neighbors of a local optimum whose two consecutive insertions cross each other,
meaning that the first insert movement disturbs the difference in the cost of the
second, could possibly produce a solution that is better.

Suppose that the algorithm has arrived to a local optimum σ∗ and the neigh-
borhood of one of its neighborsM lop

I (σ∗; k, l), obtained after inserting the ele-
ment at position k in l, is being explored. Iterating over the positions i and j
that give way to a second insert movement that crosses the first one, and using
the difference matrix of σ∗, presented in Section 3.3.1, it is possible to obtain
the difference in the cost caused by both insertions in constant time.

Take for example the solution illustrated in Figure 4.2, where the first in-
sertion has already been carried out, moving the element at k to a posterior
position l, shifting in the process the elements in the positions (k, l] one place
towards the start. It is known that the difference in the cost produced by such
movement is dI(σ

∗; k, l).

Figure 4.2: Representation of two consecutive crossing insert movements where
the first insertion has already concluded.

Additionally, a second insert movement is going to take place moving the
element at i, anterior to k, to a position j between k and l. As mentioned,
M lop

I (σ∗; k, l) has been disrupted by the first movement and the element that
is now at j was beforehand at j + 1, which indicates that the difference in the
cost of completing the second insertion is close to dI(σ

∗; i, j+1). However, this

19

difference is taking into account the adjacent swap between the elements placed
at i and k, when the element that was at k is now actually in l, a position
posterior to the insertion point j. If this adjacent swap is corrected the total
cost difference of consecutively applying both insertions is:

dI(σ; k, l) + dI(σ; i, j + 1) + aσiσk
− aσkσi

.

Just like this example there are other seven cases of possible two crossing
insert movements, for a total of eight, each with its particular configuration of
the movements and adjustment to the difference in the cost (see Table 4.2).

Representation Order Cost Difference

i < k ≤ j < l dI(σ; k, l) + dI(σ; i, j + 1) + aσiσk − aσkσi

j < k ≤ i < l dI(σ; k, l)+dI(σ; i+1, j)+aσkσi+1−aσi+1σk

k ≤ i < l ≤ j dI(σ; k, l)+dI(σ; i+1, j)+aσkσi+1−aσi+1σk

k < j ≤ l < i dI(σ; k, l) + dI(σ; i, j + 1) + aσiσk − aσkσi

i < l ≤ j < k dI(σ; k, l) + dI(σ; i, j − 1) + aσkσi − aσiσk

j ≤ l < i ≤ k dI(σ; k, l)+dI(σ; i−1, j)+aσi−1σk−aσkσi−1

l < i ≤ k < j dI(σ; k, l)+dI(σ; i−1, j)+aσi−1σk−aσkσi−1

l < j ≤ k < i dI(σ; k, l) + dI(σ; i, j − 1) + aσkσi − aσiσk

Table 4.2: Visual representation regarding the order of the positions and con-
sequent difference in the cost of the eight different cases of two crossing insert
movements.

20

Using the presented formulas, the insert difference matrix Dσ
I of solution σ

(see Section 3.3.1) is enough to evaluate any of the second degree neighbors of
σ in constant time. Regarding the computational time saved by avoiding the
non-better solutions, in the worst case scenario, when the number of elements
between the positions k and l of the first insertion is n/2, the number of second
degree neighbor to evaluate is of order O(n2/2), still of the same magnitude as
the dimension of the insert neighborhood, but approximately sparing half of
the evaluations, nonetheless.

4.5.2 Optimizations for the TSP

The 2-opt is used to conduct the local search in the ER implementation for the
TSP. Due to the characteristics of the problem and the neighborhood itself, it is
also possible to rule out some neighbors of the neighbors known to be worse than
the current local optimum. The proposed strategy is inspired by the insights
for the LOP described in the previous section and to the best of our knowledge,
the presented properties have never been analyzed before, however, they closely
resemble the 3-opt and 4-opt transformations widely discussed in the literature.

Suppose that σ∗ is a local optimum under the 2-opt neighborhood and that σ′

is one of its neighbors, which has been obtained by replacing the edges (w1, z1)
and (w2, z2), with (w1, w2) and (z1, z2). Considering the cyclic nature of a
tour, two separate segments can be distinguished in σ′ regarding the former
orientation that the edges contained in them had in σ∗. In the segment going
from vertex w2 to z1, the edges have been reversed and are now traversed in the
opposite direction. In the other segment, which goes from z2 to w1, the edges
have kept the same orientation as in the original solution.

If a second 2-opt movement would be done over σ′ with the edges (u1, v1)
and (u2, v2), in the event that both edges belonged to the same segment, mean-
ing that the two were reversed or remained identical after the first movement,
the new edges (u1, u2) and (v1, v2) would be introduced, resulting in the same
exchange as if it had been done over σ∗, already known for not improving the
cost. Contrarily, provided that between (u1, v1) and (u2, v2) one had kept its
orientation and the other had been reversed, the edges to be added would be
(u1, v2) and (v1, u2), since the previously described exchange would no longer
return a valid tour (see Figure 4.3). The impact in the cost would also differ
and needs to be explored in order to know the outcome.

Therefore, the reversed edges of a neighbor σ′, product of a 2-opt movement
applied to a local optimum σ∗, have to be paired with those that have kept their
orientation, or vice versa, as to produce by a second movement a neighbor of
a neighbor possibly better than σ∗. In the worst possible scenario, when the
number of edges between the two exchanged edges in the first movement, not
including (w1, w2) and (z1, z2), is (n−2)/2, the number of possible combinations
is ((n − 2)/2)2. On the other hand, each of the two edges added by the first
movement, being new, could be paired with any other edge with the exception

21

Figure 4.3: Ordinary 2-opt movement between edges (u1, v1) and (u2, v2) (left),
and the same movement if previously another had reversed one of the edges
(right). The former adds (u1, u2) and (v1, v2), the latter (u1, v2) and (v1, u2).

of themselves, their two adjacent and, in addition, the other new edge, since
doing so would revert back to σ∗ otherwise. The number of neighbors to be
explored is decreased to:(

n− 2

2

)2

+ 2(n− 4) =
n2

4
+ n− 7,

still of order O(n2), but nearly reducing the number of evaluations required by
half as the size n tends to infinity.

4.5.3 Optimizations for the QAP

The 2-exchange neighborhood is used in the ER implementation for the QAP.
One of the points of interest regarding this problem is that, unlike the other
implementations discussed, a mathematical basis has not been discovered to
prove that a neighbor of a neighbor has worse or equal cost to the local optimum,
not leaving another option but to explicitly evaluate the whole neighborhood of
each neighbor.

Nevertheless, an improvement in the search is still possible using the con-
cepts proposed in [2], allowing to evaluate the majority of the neighbors of the
neighbors in constant time. Suppose that the ER method during the the local
search has arrived to a local optimum σ∗. Regardless of the strategy used to
evaluate the neighborhood, the objective function value of all the neighboring
solutions have already been computed to prove that σ∗ is indeed a local opti-
mum. These evaluations can be used to fill the 2-exchange difference matrix
Dσ∗

X of σ∗, described in Section 3.3.3, and this matrix in turn can be used to
evaluate any of the second degree neighbors of σ∗ in constant time, required by
the ER method.

Adopting these changes, the complete neighborhood evaluation of the neigh-
bors of a local optimum is reduced to O(n2), again, no matter the strategy used
to scan and exit a neighborhood.

22

Chapter 5

Experimental Study

The goal of this chapter is to evaluate the proposed method using different
randomly generated instances and benchmark libraries, comparing it with the
widely known Multi-Start (MS) method to test whether it escapes from local
optima, and if it does, if the performance increase outweighs the computational
requirements of doing so.

All the results shown in this chapter were achieved running C++ program-
ming language implementations of the developed algorithms in a custom desktop
computer with a Ryzen 7 2700X at 4.3GHz overclocked with Precision Boost
Overdrive and 16GB of RAM under Linux Debian 11.

5.1 Instances and Benchmark Libraries

150 instances were created for each combinatorial optimization problem, 50
instances each of sizes n = 100, 150 and 250:

• LOPGEN: Randomly generated instances for the LOP composed of a
single matrix where each coefficient is an integer extracted from an uniform
distributions between 0 and 1000.

• TSPGEN: Randomly generated fully connected and symmetric graphs
for the TSP whose edges have uniformly distributed integer weights be-
tween 0 and 1000.

• QAPGEN: Randomly generated instances for the QAP in which the
distance and flow matrix entries are integers randomly chosen from the
interval [1,100].

These randomly generated instances have a wide range of values to reduce
the odds of tied solutions and avoid finding a plateaus.

23

On the other hand, to evaluate the performance in more challenging and
realistic instances, the following benchmark libraries are used:

• xLOLIB [8]: Matrices derived from the smaller instances of the LOLIB
library. 39 instances each for size n = 150 and 250 for a total of 78.

• TSPLIB [6]: Instances for the symmetric TSP from various sources and
types. Only the graphs with less than 1000 vertices are used, 78 instances
in total.

• QAPLIB [1]: Problem instances generated by several researchers for their
own testing purposes, 136 instances with sizes up to 256.

5.2 Evaluation criterion

For the sake of a fair comparison, all algorithms run for a limited number of
evaluations per execution. Every time the objective value of a solution is com-
puted, the number of performed evaluations is increased until the maximum
allowed is reached and the stopping criterion is met.

Not all functions require the same computational time to evaluate a solution,
and thus, the number of evaluations required for each formula is proportional
to its asymptotic complexity (see Table 5.1).

Formula Evaluations

Implementations for the LOP
f lop n(n− 1)/2

d lop
I 1

Implementations for the TSP
f tsp n

d tsp
O 1

Implementations for the QAP

fqap n2

d qap
X n

δd qap
X 1

Table 5.1: Number of evaluations required for each of the formulas used by the
developed implementations.

5.3 Behaviour of the “Extended Reach” Method

The key point of this proposal is to evaluate whether the ER method effectively
escapes from local optima. In order to study its behaviour, a Multi-Start al-
gorithm including the ER method is used, named MS-ER (see Algorithm 4).
MS-ER restarts the search from a random solution every time the ER method

24

is unable to escape from a local optimum, until the maximum number of eval-
uations is reached, as discussed in the previous section. The local search uses
the best improvement strategy to evaluate the neighborhood.

Algorithm 4 The MS-ER algorithm

1: function MS-ER(Integer k)
2: σ ← random solution()

3: while n evals < max evals do
4: σ̂ ← random solution()
5: σ̂ ← extended reach(σ̂, k) ▷ See Algorithm 3.
6: if σ̂ is better than σ then σ ← σ̂

7: return σ

With this in mind, MS-ER is implemented for the three combinatorial opti-
mization problems. All implementations, when possible, use the most efficient
formulas to evaluate the explored solutions. In addition, the MS-ER algorithms
also include the optimizations that arise from combining the particular proper-
ties of each problem with the ER method, discussed in Section 4.5, and param-
eter k is set as described in Section 4.3. The implementations ran with a limit
of 1000n2 evaluations and 20 executions were conducted in all instances.

The number of jumps per start is one of the most relevant metrics regarding
the efficacy of the ER method, since it counts how many local optimum have
been successfully avoided since the algorithm started from a random solution
until it found a local optimum it could not escape. A summary of the average
jumps per start is shown in Figure 5.1.

Figure 5.1: Average jumps per start of the MS-ER algorithm in the randomly
generated instances regarding their size (left), and in the benchmark libraries
(right).

25

The results reveal than the ER method escapes from local optima in all
problems and instance types. It is worth to mention, that the number of jumps
increase with the size of the instances, concluding than the larger the instance
the more likely it is to find a second degree neighbor better than the local
optimum.

According to the results observed in Figure 5.1, the number of escaped local
optima in the randomly generated instances and the benchmark libraries, for
the same optimization problem, are significantly different. For example, in the
QAPGEN instances of n = 100, 6 local optima are avoided on average per
start, however, in the QAPLIB, the number is reduced to 1.7. The decrease in
the number of jumps is also apparent in all benchmark libraries, making them
harder instances for the ER method.

The number of consecutive local optima are also counted, that is, the number
of times that after escaping from a local optimum the solution to which the
algorithm has jumped to is also a local optimum. The proportion between
the consecutive local optima and the total number of jumps could give a sense
regarding the closeness between the local optima.

Figure 5.2: Consecutive local optima per jump regarding each instance type.

Figure 5.2 shows that the explored local optima are extremely close between
each other, in the best case scenario, nearly one third of the jumps that occur in
the QAPGEN instances go directly to another local optimum, two thirds in the
case of the TSPLIB benchmark library. This shows that once the ER method
as performed the first jump the next local optima are found rapidly and in a
short amount of steps.

26

5.4 Comparing to the Multi-Start Heuristic

Another critical part of the project is to check if the ER method escapes from
local optima in acceptable computational times. In order to do so MS-ER,
already described in the previous section and Algorithm 4, is compared to a
regular Multi-Start heuristic (MS) using the best improvement strategy. For
the three combinatorial optimization problems both algorithms are tested. All
algorithms ran with a limit of 1000n2 evaluations and 20 executions were con-
ducted per instance.

The performance is measured in terms of the relative percentage error with
respect to the best known solution, the best solutions obtained in this work,
in the case of the randomly generated instances, and the best results listed in
the literature, in the case of the benchmarks libraries. For each combinatorial
optimization problem, LOP, TSP and QAP, the obtained results are shown as
box-plots according to the size of the instances in Figures 5.3, 5.4 and 5.5,
respectively.

Figure 5.3: Performance comparison between Multi-Start (MS) and Multi-Start
plus Extended Reach (ER-MS) implementations for the LOP. The relative per-
centage error is obtained with respect to the best known solutions.

27

Figure 5.4: Performance comparison between Multi-Start (MS) and Multi-Start
plus Extended Reach (ER-MS) implementations for the TSP. The relative per-
centage error is obtained with respect to the best known solutions.

Figure 5.5: Performance comparison between Multi-Start (MS) and Multi-Start
plus Extended Reach (ER-MS) implementations for the QAP. The relative per-
centage error is obtained with respect to the best known solutions.

The conducted experiments reveal that the algorithm adopting the ERmethod
outperforms the Multi-Start heuristic, especially in the randomly generated in-
stances. In the benchmark datasets, particularly in xLOLIB and QAPLIB, due
to large number of plateaus present in the instances, the performance gain is
not so obvious. However, is worth noting, that MS-ER does exceedingly well in
TSPLIB instances, since the adjacency matrices are computed using different
distance functions (Euclidean, Manhattan, ...) and the solutions are not prone
to ties. The ER method can potentially also escape from plateaus, however, the
performance drop in the instances more likely to have them suggests that the
method struggles and gets stuck in these optimal regions.

28

Figure 5.6 also shows the number of local optima encountered on average
in every execution. Note that these local optima could be repeated, since the
algorithms do not keep a list of the local optima already visited. Nevertheless,
MS-ER is able to observe a much larger pool of local optima in every instance.

Figure 5.6: Average local optima found per execution in the randomly generated
instances.

Finally, the results are summarized in Table 5.2 grouped regarding the com-
binatorial optimization problem and benchmark. The counters describe the
number of instances for which MS-ER obtained better mean objective function
value, considering the 20 executions, than the MS algorithm.

LOP TSP QAP
Total

LOPGEN xLOLIB TSPGEN TSPLIB QAPGEN QAPLIB

MS vs. MS-ER 150 69 150 71 150 89 679

Total Instances 150 78 150 78 150 136 742

Table 5.2: Number of instances where adding the Extended Reach method to
the Multi-Start implementations performs better on average than without over
20 executions.

The summary confirms the superior performance of MS-ER, beating the MS
algorithm in all randomly generated instances. Regarding the benchmarks li-
braries, MS-ER obtains better results in 71 out the 78 (∼91%) instances in the
TSPLIB dataset, 69 out of 78 (∼88%) in xLOLIB, and 89 out of 136 (∼65%)
in QAPLIB.

29

Chapter 6

Conclusions and
Future Work

In this project, the “Extended Reach” method is presented, a novel approach to
escape from local optima. Inspired by recently discovered insights in the field
of combinatorial landscapes, this new procedure also considers the neighbors of
neighbors of the local optima it encounters as candidate solutions to proceed
with the search.

The ER method has been adapted and optimized for three widely known
combinatorial optimization problems: the Linear Ordering Problem, the Trav-
eling Salesman Problem and the Quadratic Assignment Problem. To that end,
the structure of the problems and their most popular neighborhood systems
were carefully studied to discover new properties that could improve the effi-
ciency of the developed implementations. In that regard, considering the 2-opt
neighborhood for the TSP, it has been proven that some second degree neigh-
bors will never be better than the local optima they derive from. Furthermore,
in this case for the LOP, a set of formulas based on insert operations have been
developed to efficiently evaluate neighboring solutions.

The research carried out in this work proved, also for the LOP, that a local
optimum of the insert neighborhood will always be a local optimum of the 2-
exchange neighborhood, and not necessarily the other way around. This break-
through could give a theoretical basis concerning why the insert neighborhood
gives better results than the 2-exchange in regards to the LOP. In addition, it
also shows that any Variable Neighborhood Search algorithm for the LOP that
switches from the insert neighborhood to the 2-exchange after finding a local
optimum in the first is needlessly spending some of its computational resources.

30

For the sake of validating the presented approach, an experimental study
was conducted where the implementations adopting the ER method clearly
showed better performance than the famous Multi-Start meta-heuristic. From
the observed results, the ER method successfully escapes from local optima
and presents itself as a promising tool for future state-of-the-art local search
algorithms. Nevertheless, the experimentation also concludes that the proposed
method struggles with instances whose solutions are more likely to have ties and
are prone to the formation of plateaus.

All things considered, future versions of the proposed method could benefit
from techniques to escape from these plateaus, as well as more advanced and
flexible stopping conditions, which instead of just visiting the k best neighbors
of the local optima also consider the properties of the optimization problem,
the neighborhood system and the instance itself to make an informed decision
on when to stop evaluating the second degree neighbors. Further research is
required to test the viability of the ER method in a wider range of optimization
problems and see how it compares to current state-of-the-art algorithms.

31

Bibliography

[1] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. “QAPLIB–a quadratic
assignment problem library”. In: Journal of Global optimization 10.4 (1997),
pp. 391–403.

[2] Alan M. Frieze et al. “Algorithms for assignment problems on an array
processor”. In: Parallel computing 11.2 (1989), pp. 151–162.

[3] Leticia Hernando, Alexander Mendiburu, and Jose A Lozano. “Anatomy
of the attraction basins: Breaking with the intuition”. In: Evolutionary
computation 27.3 (2019), pp. 435–466.

[4] Leticia Hernando, Alexander Mendiburu, and Jose A Lozano. “Journey
to the center of the linear ordering problem”. In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference. 2020, pp. 201–209.

[5] Rafael Mart́ı et al. “Multi-start methods”. In: Handbook of heuristics. Springer,
2018, pp. 155–175.

[6] Gerhard Reinelt. “TSPLIB—A traveling salesman problem library”. In:
ORSA journal on computing 3.4 (1991), pp. 376–384.

[7] Valentino Santucci and Josu Ceberio. “Using pairwise precedences for solv-
ing the linear ordering problem”. In: Applied Soft Computing 87 (2020),
p. 105998.

[8] Tommaso Schiavinotto and Thomas Stützle. “The linear ordering problem:
Instances, search space analysis and algorithms”. In: Journal of Mathemat-
ical Modelling and Algorithms 3.4 (2004), pp. 367–402.

[9] Thomas Stützle. “Iterated local search for the quadratic assignment prob-
lem”. In: European journal of operational research 174.3 (2006), pp. 1519–
1539.

32

