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1. Introduction

It is well understood that the central point for the empirical testing of option pricing
models is whether the actual distribution d the underlying asst implied by the option
market data is consistent with the distribution assumed by the theoreticd option picing
mode.

Given the Black-Schales (1973 assumptions, al option prices on the same underlying
seaurity with the same expiration date but with dfferent exercise prices sioud have the
same implied vadatility. However, the well known vdatili ty smile pattern suggests that
the BS formula tends to misprice deg in-the-money and dee ou-of-the-money
options’. There have been various attempts to ded with this apparent failure of the BS
valuation model. In principle, as explained by Das and Sundaram (1998 and ahers, the
existence of the smile may be atributed to the well known presence of excesskurtosis
in the cndtiona return dstributions of the underlying assets. It is clear that excess
kurtosis makes extreme observations more likely than in the BS case. This increases the
value of out-of-the-money and in-the-money options relative to at-the-money options,
creding the smile. However, at least in the U.S. market, the pattern shown by data
contains a dear asymmetry in the shape of the smile. This may be due to the presence of
skewnessin the distribution which has the dfect of accentuating just one side of the

smile.

Given this evidence extensions to the BS mode that exhibit excess kurtosis and
skewnesshave been propased in recent years aongtwo lines of research: Jump-
diffusion models with a Poison-driven jump process and the stochastic volatili ty

framework are the two key developmentsin the theoreticd option gricing literature.

! After the October 1987 crash, the implied volatility computed from options on stock indexes in the US
market inferred from the BS formula gpeas to be different acossexercise prices. This is the so-cdled
“volatility smile”. In fad, as pointed out by Rubinstein (1994, Ait-Sahalia and Lo (1998) and Dumas,
Fleming and Whaley (1998, implied volatilities of the S&P 500 options deaease monotonicdly as the
exercise price becomes higher relative to the airrent level of the underlying asset. On the other hand,
Taylor and Xu (1994 show that currency options tend to present a much more pronounced smile. Similar
patterns of implied volatilities acoss exercise prices are found by Pefia, Rubio and Serna (199%) in the
Spanish options market. Moreover, Bakshi, Cao and Chen (1997, and Fiorentini, Ledn and Rubio (1998
report smile shapes for the (implied) instantaneous volatility under stochastic volatitity and jump-
diffusion option pricing models. Ledn and Rubio (1999 theoreticdly study the behavior of the implied
volatility function (smile) when the true distribution of the underlying asst is consistent with the
stochastic volatility model propaosed by Heston (1993.



Unfortunately, however, the empiricd evidence regarding these new models is quite
disappanting. Bates (1996, and Bakshi, Cao and Chen (1997) rged the jump-
diffusion ogion picing model on bdh currency options and equity options
respedively. The stochastic volatility model proposed by Heston (199) is rejected by
Bakshi, Cao and Chen (1997, and Chernov and Ghysels (1998 for options written on
S& P 500 index. Fiorentini, Ledn and Rubio (1998 rejed the same model for equity
options on the Spanish IBEX-35 index.

These latter authors argue that the ultimate reasons behind the performance fail ure of
Heston’s model are dosely related to the time-varying skewnessand kutosis foundin
the data. In particular, they suggest that the asssumption d a @nstant correlation
coefficient between returns and stochastic volatility shoud be relaxed if we redly want
to have aricher model. Unfortunately, the complexities nealed to price options eem to
increase withou bound. It may be the case that simple nongarametric (semiparametric)
methoddogies are &le to incorporate the missng (redistic) fadors in ou option
pricing models.

Along these lines, it shoud be pointed ou that all previous models have been devel oped
in a competitive, frictionless framework. It may the case that liquidity costs, as
represented by the percentage bid-ask spread, accourt for some of the differences
observed between market prices and theoreticd prices. Interestingly, Pefia, Rubio and
Serna (199%) show that liquidity costs sgnificantly cause the magnitude of the smilein
equity options written onthe Spanish IBEX-35 index?.

A patentialy relevant areaof reseach might be related to endogenously incorporating
liquidity costs in opion pricing models with either stochastic volatility, stochastic
jumps or both. A much more simple but, at the same time, effedive gproach would be
based on the estimation o the implied vdatility function with semiparametric
methoddogies, where the Black-Schoes implied vdatility is replaced by a
nonparametric function which depend upona vedor of explanatory variables. This is
the multivariate kernel regresson approach which has been recently followed by Ait-
Sahalia and Lo (1998a). However, they ignore the potential effeds of market frictions
on the nonparametric volatili ty function. The objedive of our paper isto fill up this gap



by incorporating, as an additional explanatory variable on the nonparametric volatili ty
function, the percentage bid-ask spread. Thus, we nstruct the @rrespondng cdl
pricing function unar liquidity costs, and compare its performance relative to more
traditional option pricing models. Hence, ou nonparametric volatili ty function depends
on moneyness time to expiration and the percentage or relative bid-ask spread. In this

sense, we ae deding with amulti variate nonparametric estimation®.

Moreover, we dso estimate the state price density (SPD) or the so cdled (under non-
arbitrage models) risk-neutral density, with the added pdentia effects of market
frictions as proxied by the bid-ask spread. This is a key contribution d this paper to
previous literature on ogion picing. At the same time, and from a statisticd point of
view, ou work improves the technique used by Ait-Sahalia and Lo (1998&)) in, at least,
two important ways. (i) The use of a multivariate kernel based ona global smoacthing
parameter may lead to estimation problems when oltaining the volatility nonparametric
function in moneynessintervals for which the anourt of datais relatively small. These
interval s coincide with extreme out-the-money and in-the-money options and, d course,
these ae precisdly the sedions of the smile in which we are particularly interested.
Given these arguments, we are planning to use the so cadled Symmetrized Nearest
Neighbors (SNN) estimation instead of the more traditional kernel approach. (ii)
Degspite the fact that they have athree-dimensional kernel estimator, Ait-Sahalia and Lo
employ a univariate smocthing parameter criterion. Moreover, they simplify the
problem by eliminating the bias term in chocsing the necessary bandwidth to estimate
their nonparametric volatility function. We employ severa criteriain order to calculate
the bandwidth used in ou estimations. In particular, we employ a plug-in criterion and
multivariate gproaches under three dternative spedficaions. Robusteness relative to

the bandwidth parameter is an important issie in non@rametric statistics.

2 See 4so Longstaff (1995 and Dumas, Fleming and Whaley (1999.

3 Using alinea and a quadratic parametric gpproach, Pefia, Rubio and Serna (19991 solve numericaly a
forward pertial differential equation with transadion costs also proxied by the relative bid-ask spread.
Independently of the parametric spedfication, they find that these models sem to perform poarly relative
to Black-Scholes.



We report bath the in-sample and ou-of-sample option pricing empiricd results. We
quarterly estimate our nonparametric multivariate volatility function and the
correspondng option frices. Independently of the bandwidth criteria used, the in-
sample results fiow an important improvement whenever we incorporate liquidity
eff ects on the estimation. This result may have serious implicaions for option pricing
research. However, the out-of-sample results are generally quite poar. All pricing
models have asignificant degree of mispricing. This soud na be surprising taking
into acourt that all models are estimated using quarterly data. This introduces a
demanding requirement of stability to ou estimated nonmrametric functions, even
though it shoud be naticed that, using a randamization test, we ae not able to rgject the

stabili ty of risk-neutral densiti es between quarters.

The paper is organized as follows. Sedion 2 contains a brief discusson onthe relation
between risk-neutral densities and nonarbitrage derivative pricing, and introduces our
nonparametric estimation. In Section 3we present the data available for our research.
Sedion 4 dscusses the nonparametric estimation o both the volatility smile and the
risk-neutral density. The main empiricd results are reported in Sedion 5. We first
discuss the in-sample results, and secondy we present the stability tests of the risk-
neutral densities over time and the out-of-sample performance of alternative pricing
models. We @nclude in Sedion 6 with a summary of results and a brief discusson o

future work.

2. Nonparametric Estimation of Risk-Neutral Densities

2.1Non-arbitrage Pricing

It is well known that, under risk-neutrality, the price of any financial asset can be
expressed as the expeded present value of its future payoffs, where the present value is
obtained relative to the risklessrate and the expedation is taken relative to the risk-
neutral density function d the payoffs.



For completness’, we provide abrief summary of this nonarbitrage framework. Let
Wi = (Wy,...,Wq) be ad-dimensional Brownian motion. Let the stock prices be

represented by the following general model:
d .
dsjt = thsjtdt +Sjt kzlﬁjktdwkt y )= 1'1m (1)
Let us consider next the so caled market price of risk equations:
d .
kz OiktOkt =Hjt — Tt » J=1..m 2)
=1

where m is the number of equations (number of stocks), d is the number of unknowns

(number of sources of randamness), and 6, is the market priceof risk.

Moreover, we can use the Martingale Representation Theorem® to guarantee the

existence of a d-dimensional process Wy = (Wy;...,¥q) S0 that we may solve the so

cdled hedging equationsfor Aq,...,Apy:

m
z AjtSthjkt :pt“Pkt ) k:l,,d (3)
=1

where m is the number of unknovns (number of stocks), dis the number of equations

t
(number of sources of randomnesy, and p; = exp{j rudu}.
0

4 See &so Ait-Sahalia and Lo (19983, 1998b).
® SeeShreve, Chalasani and Jha (1997).



We say that the market is complete if and ony if the system (2) has a unique solution.

Then, this implies that (3) always has a solution, and every contingent claim can be

hedged. Finally, if 0 =(01,,...,04;) isthe unique solutionto (2), we define,

t 1t 2
Zy = expy—[0ydwW, —§I||9u|| du
0 0

P*(A)= [Z1dP , VA eQ
A

where Z; has finite variance. This probability measure,P*, is the unique risk-neutral

measure of the mode.
In this case, the risk-neutral density or SFD can be dharacterized withou any explicit
reference to preferences. When we asume ageometric Brownian motion with constant

volatility and interest rate, the risk-neutral density is given by the ndtiona
distribution d the risk-neutral stochastic processgiven by,

dS; = rSydt + S, dW;

which is the well known lognorma distribution with mean (r—csz/ZXT—t) and

variance GZ(T—t).

In generd, if S is the stock price and ft*(S-r) is the date-t risk-neutral density of the

stock price a future date T, then any european derivative with a payoff at expiration

given by some function ¢(St) can be priced by the following expresson,

e (e o(sp)] =T~ [o(Sy)f; (Sr)dsy @
0

wherer isthe onstant risklessrate betweent and T.



When the derivative is a european cdl option with expirationat T and exercise price, X,

its pricewould be:

c=e" T Tmax(Sr - KJf; (Sr)dSy )
0
Finaly,
(57 = ef(T-0 0°C 6)
t axz X=S-|-

so that, the risk-neutral density is propational to the second cerivative of the option

pricefunction with resped to the exercise price.

2.2Nonparametric Estimation

As discus=d in the introduction, the idea of the paper is to estimate the risk-neutral
density nonparametrically, and to be &le to price options. Our procedure is based on
the foll owing sequence of estimations: We anploy option market prices to estimate a
nonparametric volatili ty function which depends uponthe degree of moneyness time to
expiration and liquidity, proxied by the relative bid-ask spread. Then, given this
function in which vdatility is allowed to vary with moneyness time to expiration and
the bid-ask spread, the Black-Scholes formula can be used to oltain,
semiparametrically, option prices’. In the last step, we differentiate this option estimator
twice with respect to the exercise priceto oltain (6), given the gpropiate interest rate.
The isaue, of course, is how to estimate the multivariate volatility function

nonparametricaly.

® This miparametric estimation of option prices considerably reduces the dimensionality of the problem.
As pointed aut by Ait-Sahalia and Lo (199&), the sample size required to achieve the same degree of
acadracy asin the full nonparametric estimation may be much smaller.



It is important to redize that there is no an obvious way to model the influence of
moneyness time to expiration and liquidity on the volatility function. It is precisely in

this snse in which the nonparametric framework provides avery flexible gproac.

Let us consider a multivariate kernel estimator of the volatility function, with passbly

diff erent smoathing parameters for the @variates:

n J _ .
1 > K(E’ §|]K(SP SP,)K(r leci
nhehgphy =1\ he hsp h

1 QK(&—&iJK(SP—SHjK(r—nj
nhehgphy =1 | he hsp he

c(§,SP1) = (7)

where & = X/F is the degree of moneyness where X is the exercise price and F is the
futures price (underlying asset)’, SP is the relative bid-ask sprea, t is the time to
expiration,o; is the volatility implied by the option rice g, hy is the bandwidth or
smoothing parameter for each covariate j=¢,SP,t, and o(§,SP,1) is the three

dimensional nonparametric volatility functionto be estimated.

It is important to pant out that a kernel estimator based on a global smoathing
parameter may lead to paoor estimation results basicdly in thase zones where we have a
relatively small amourt of data. Translating these eff ects to ou case, it suggests that we
may obtain poa estimations for the volatili ty function for out-of-the-money and in-the-
money options. Of course, from afinancia point of view, these ae precisely the options

(andthe sections of the volatility smile) which we ae particulary interested in.

Given this fad, in this paper we employ the Symmetrized Neaest Neighbars (SNN)
estimation as an alternative to the dassca kernel estimator. Thiskind d estimators was
propcsed by Yang (19817), and studied in detail by Stute (1984). The ideabehind them is

" Note that the underlying asset in the Spanish market for which we have data is the futures price on the
stock exchange index.



very simple. When estimating in ore point we cdculate the weight for the rest of
observations looking at the distance between the values of the eanpiricd distribution at
eat pant rather than the distance between the points themselves. Hence, the estimator
isdefined as:

" K[F (&) -F(&, )J (Fn (SR -F, (se)jK(Fn (r);a(ri)}ci

T

1 i [F(@) F(&)] (Fn(sp)—Fn(SR)JK(Fn(r)—ij
nh,hgh, < hep h

i T

6(&,SP1) =

)
where Fy(.) denotes the empiricd distribution d correspondng variable, &, SPor t.

Roughly spe&ing, the empiricd distribution changes the randam design to a uniform
design with the knots uniformly spaced between zero and ore. In pradice, using SNN
estimators is basicdly the same & employing kernel estimators for F,(X;) instead of X;.
A detalled dscusson on the differences between these estimators is contained in
Appendix A, where we present and compare the minimum asymptotic mean square
error (MSE) for both kernels and SNN. Moreover, to provide some intuition related to

our particular case, we discussan example that ill ustrates the behavior of our dataset.

As down in Appendix A, bah estimators have the same MSE under a uniform design.
On the other hand, if we assume the bias to be negligible with resped to variance, it is
easy to show that using the SNN estimator with bandwidth his equivalent to employ a
kernel estimator with variable bandwidth equal to h/f(x). Also, the discusson provided
in Appendix A alows us to argue that, in the tails, a smaler MSE is obtained for the
SNN estimator. It shoud be recdl ed that we ae particularly concerned with the tail s of
the distribution given, o course, that extreme degrees of moneynessare akey ise in

terms of bath the volatility smile and pricing.

Once we have estimated the volatility function given by (8), we have to estimate the
cal-pricing function. This functionis evaluated as, &(&,r,,6(€,SP, 1)), where the

10



function €(.) isthe same & in the Bladk-Schales expresson with the nonparametricdly

estimated vdatility. Thisisto say,

o(&,7,1,6(5,Sp.1)) = Ces(&,7,1,6(8,SP 1)) 9)

The risk-neutral density estimator follows by taking the gpropriate partial second
derivative of €(.) with resped to the exercise price. The detailed derivation d this

send crivativeisreported in Appendix B:

2. ~
il sn) e“”)[@ C(a’r’r'cf'sp’r))] 10
oX .

In pradice, the last and probably most important problem faced upby any researcher is
the seledion d the smocthing parameters, (hi,hsp,hT). It is interesting to pant out

that there is a tremendouws amourt of literature developed for the univariate cae. See
Hérdle (1990) for a general presentation d this literature. Unfortunately, the bandwidth

seledion becomes much more complicated in the multivariate context.

Generdly speding, there are two groups of methods to select the bandwidth: plug-in
methods and methods based onthe minimization d some penalized least square aror
measure. To dedde the particular seledion methodto be enployed is not atrivial task.
Even in the smpler case, in which we have afixed design and an unvariate estimator,
different asymptotically optimal methods may lead to dfferent smoothing parameters.

In our case, we have not only arandam design bu also a multi variate @ntext.

For a similar context as ours, Ait-Sahalia and Lo (199a) use a global univariate
seledion criterion. However, this criterion do no take into account the multivariate
character of the estimator (the optimum univariate bandwidths might be different from
the optimal bandwidths in the multivariate ntext), and, moreover, they do nd offer
any criteriato choase the @nstant involved in the estimation.

11



It seems clear to us that the bandwidth parameter is the most important quantity to be
seleded for any nonparametric estimation; it must definitely be arefully selected. It
seans, therefore, convenient to analyze the stability of the smoacthing estimators, and
the robustness of results, relative to alternative seledion methoddogies. Appendix C
contains a detailed dscusson d the dternative techniques employed in this paper to
cdculate the bandwidths.

With these @nsiderations in mind, and keing concerned with computational costs
whenever a very sophsticaed methodis used, we propase the following methoddogy.
We first compute the univariate pilot bandwidths for our three explanatory variables by
using a plug-in method, where the mnstants are selected with an iterative method dwe to
Gas=r, Kneip and Kéhler (1991) and dscussed in Appendix C2. Sincethe asymptotical
rates of convergence suggest that the bandwidth is influenced by the dimensionality of
the problem, we ded the validation d these pilot bandwidths by using three
aternative multivariate adossvalidation criteria. In particular, we enploy the natural
extensions of Generalized CrossVadidation (GCV) method and Rice’'s bandwidth
seledors to the multivariate case. All of them are presented in Appendix C. They are

evaluated in agrid of bandwidths aroundthe pilot smocothing parameters.

As it will be shown later when presenting the eampirical results, it is observed that the

multivariate aiteria tend to seled dightly higher parameters. There is ome intuition

behind this result. The rate & which h must go to zero is of order nY (4+d), where d
denotes the dimension d the @variate vedor. Therefore, it shoud na be surprising to
seethat, whenever we employ a multivariate aiterion, hbemes larger. On the other
hand, given that the final estimators do nd change substantially, we report most of our
results on the basis of the plug-in smoacthing parameters slector. More will be said later

ontheseissues.

8 We ae arrently working in extending this iterative method to our multivariate case.
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3. TheData: The Spanish IBEX-35 and the Option Contract

The Spanish IBEX-35 index is a value-weighted index comprising the 35 most liquid
Spanish stocks traded in the continuows auction market system. The official derivative
market for risky assets, which is known as MEFF, trades a futures contract on the
IBEX-35, the correspondng option onthe IBEX-35 futures contrads for cdls and pus,
and individual option contrads for blue-chip stocks. Trading in the derivative market
started in 1992. The market has experienced tremendows growth from the very
beginning. Relative to the volume traded in the Spanish continuows market, trading in
MEFF represented 40% of the regular continuows market in 1992and 1386 in 1996.
The number of al traded contrads in MEFF relative to the mntrads traded in the
CBOE readched 21% in 1996.

The Spanish option contrad on the IBEX-35 futures is a cah settled European option
with trading during the three nearest consecutive months and the other three months of
the March-June-September-December cycle. The expiration day is the third Friday of
the contrad month. Trading occurs from 10:30 to 1715. During the sample period
covered by this research, the multiplier has changed from 100 Spanish pesetas times the
IBEX-35index at the beginning of the sample period to 1000 setas during 1998, and
prices are quaed in full paints, with a minimum price dange of one index point®. The
exercise prices are given by 50 index point intervals.

It is important to pdnt out that liquidity is concentrated in the neaest expiration
contrad. In fad, during the sample period aimost 90% of crossng transadions occurred
in this type of contrads.

Our database is comprised of all cdl and pu options on the IBEX-35 index futures
traded daily on MEFF during the period January 1996through November 1998.Given
the concentration in liquidity, ou daily set of observations includes only cdls and pus
with two possble expiration dates. We only include options which expire between five
andforty days. That is, we diminate dl transadions taking placeduring the last five

® Starting in January 1999 it has been changed to 10euros.
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days before expiration, and transactions which will expire in more than forty days.

Asusua in this type of research, ou primary concern is the use of simultaneous prices
for the options and the underlying security. The data, which are based onall reported
transadions during each day throughou the sample period, do neé alow us to observe
simultaneously enough options with the same time-to-expiration onexadly the same
underlying seaurity price but with dfferent exercise prices. In order to avoid large
variations in the underlying seaurity price, we restrict our atention to the 45 minute
window from 16:00to 1645. It turns out that almost 25% of crosdng transactions occur
during this interval. Moreover, cae was aso taken to eliminate the potential problems
with artificial trading that are most likely to occur at the end d the day. Thus, all trades
after 16:45 were diminated so that we avoid data which may reflect trades to influence
market maker margin requirements. At the same time, using data from the same period
eath day avoids the posshility of intraday effeds in the IBEX-35 futures options
market. Finally, we diminate dl cdl and pu prices that violate the well known
arbitrage bounds. The number of observations within a day may vary according to the

number of crosgng transadions associated with dfferent exercise prices avail able eat

day.

These exclusionary criteria yield a final daily sample of 8321 olservations (4798calls
and 3523 pte). Theimplied vdatility for ead of our 8321 opionsis estimated next. To
do so, nde that we take a the underlying asset the average of the bid and ask price
guaation given for each futures contract associated with eatcy ogion duing the 45-
minute interval. To proxy for riskless interest rates, we use the daily series of
annuali zed repo T-hill rates with either one week, two weeks or threeweeks to maturity.
One of these threeinterest rates will be enployed depending upon fow close the option
isto the expiration day.

Table 1 describes the sample properties of the cdl and pu option pices employed in
this work. Average prices, average relative bid-ask spread and the number of available
cdls and pus are reported for eatr moneyness category. Moneynessis defined as the
ratio of the exercise priceto futures price. A cal (put) optionis sid to be deg ou-of-
the-money (deep in-the-money) if the ratio K/F belongs to the interval (1.03, 1.0§; out-
of-the-money (in-the-money) if 1.03> K/F > 1.01, at-the-money when 1.01> K/F >

14



0.99 in-the-money (out-of-the-money) when 0.99> K/F > 0.97 and degp-in-the-money
(deep ou-of-the-money) if 0.97> K/F > 0.90.As we dready discussd, there are 4798
cdl option olservations (3523 pus), with OTM, ATM and ITM cdl (put) options
respedively representing 61% (68), 30% (25) and P (7) . The average call (put) price
ranges from 61.6 (64.1) pesetas for degp OTM cdl (put) options to 381.2(461.7)
pesetas for degp ITM cdl (put) options. The average relative bid-ask spread tends to
move in the oppasite diredion to the average price In particular, it ranges from 0.38
(0.33 for degp OTM cdl (put) optionsto 0.12(0.12) for degp ITM cdls (ITM puts).

4. Smiles and Risk-neutral Densities

It is well recognized that option pices provide the market participants with a
tremendows amourt of information. In particular, we have drealy discussed how to
infer the risk-neutral density or, aternatively, the Arrow-Debreu prices from trading
options on the market portfolio. This dion pesents our norparametric estimation o
both the risk-neutral density and the volatility smile for 1998°. Implications for the
behavior of the market porfolio, as represented by the IBEX-35 stock exchange index,
are drawn on the basis of the implied (risk-neutral) distribution embedded in option

prices.

We first discuss the nonpmrametric estimation d the univariate (traditional) volatili ty
smile. As before, we employ the SNN estimator instead of the dasscd kernel
estimator, and the plug-in bandwidth selection method

1 & [RO-FRE)
A nhﬂ*{ 3 ]"i
§(8)=——

1 K(Fn@;a(m}

(11

ngi:l

3

Expresson (11) is firstly estimated using only cdl options transaded duing 1998.1t is
interesting to nade the important differences obtained when we employ the SNN

9 During 1998 financial markets experimented an enormous amourt of volatility. Our presentation for
1998should be just taken as a working example. In any case, the main implicaions of our analysis could
have been obtained with any other yea of the sample period.
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procedure rather than the traditional kernel estimator. Figure 1 contains the
nonparametric volatility smile estimated with bah methods. It turns out that the optimal
bandwidth under the SNN estimator is 0.093and, as we can seein Figure 1, the smileis
optimally smocthed. A very different pictures arises when we enploy the traditional
kernel estimator given by:

1 0 &-&|_
nthlK[ jcl

o(§) = (12)

1 0 [E-§;
K
nhg El { hg j

The dfed of undersmocthing is clealy reflected in Figure 1. The estimator is highly

variable because the optimal bandwidth seleded according to the plug-in method tends
to zero. We ague that, given the specific data we usually have when ddng research in
option pricing, where alot of observations are centered aroundthe a-the-money options

andrelatively few observations are avail able in the extremes, the SNN estimator is more
appropriate.

It is also well known that, given equation (10), the pattern of implied vdatiliti es for
aternative exercise prices (the smile) gives us a dired evidence of the risk-neutral
density function adually embedded in option price data. Note that Figure 1 suggests
that implied vdatilities are lower for low-exercise-price options than for high-exercise
priceoptions. Thisis consistent with adistribution having a fatter right tail and athinner
left tail relative to the normal distribution. In ather words, Figure 1 seems to imply that,
during 1998, a positive relationship between vdatili ty shocks and price danges of the
underlying asset was adually the case in the Spanish market.

To further investigate this iswue, we run bah a Nagarch (1,1) and a GJR (1,1)** models
in which we are dlowed to cdculate the crrelation between condtional variance and
the returns of the underlying asst. Let R; be the return generated by the foll owing
mode!:

Rt =u+ey

1 GJR refers to Glosten, Jagannathan, and Runkle (1993.
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where,
&t = N (0, Vt)

e = V¥ ;g ~ildN(O2)

Under the Nagarch(1,1), the condtional variance, V;, and the mrrespondng correlation

coefficient are defined as:

2
Vi :m+BVt—1+0‘(gt—1+Y\/Vt—l) (13

where y represents the relation between the shocks and the @ndtional variance, and

®, B, o >0, andwhere the @rrelationis:

J1+2y2

Under the GJR(1,1) model we have that:
Vi = +BVi_1+(a+vD¢_1)efq (14)
where D; is adummy variable defined as:
_[Lif g <O
Y700 if g,>0

andthe crrelation coefficiente is'>

_ —v
\/;(2(12 + 20y +5/4y2)

The adua estimations using daily returns for the IBEX-35 stock exchange index during

1998 result in a significant and regative rrelations of -0.753 and -0.701 for the
Nagarch(1,1) and GJR(1,1) respectively™>,

12 Note that in this model a positive y implies a negative crrelation coefficient.
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The explanation abou this apparent contradiction between the direct evidence provided
by the underlying as=t, and the implicit results obtained from option rices lies on the
lack of call transadions available for in-the-money cdls. This suggest that, if we want
to extrad information about the behavior of the underlying asset, and correctly estimate
the risk-neutral density of the underlying asset implied by option grices, we shoud use
both cdls and pus. This argument is nat related to the put-call parity relationship. It is
simply a amnsequence of ladck of transadionsin arelatively thin ogion market.

Figure 2 contains the nonparametric estimation d the volatility smile using both cdls
and pus. As we can observe, orce the full option market is incorporated into the
anaysis, a typicd asymmetric smile is obtained. This volatility function is consistent
with anegative asymmetric distribution d the underlying asst.

We next estimate the implied risk-neutral distribution reagnizing the potential effeds
of, na only moneyness bu also time to expiration and liquidity.

As we dready mentioned in Sedion 2, we first estimate the nonparametric function,
6(&,SP,t) where € is the degreeof moneyness SPis the relative bid-ask spread, and t

is time to expiration. We employ the SNN estimator given by expresson (8). It shoud
be pointed ou that we dso estimate the norparametric volatility function withou the
liquidity variable. Thisis an important issue in this paper. These estimations will alow

us to compare the impli ed risk-neutral densities with and withou liquidity effeds.

Table 2 contains the optimal bandwidths given by the plug-in criterion for our three
explanatory variables and for the three years in ou sample. Given the high degree of
uncertainty experimented by the market during 1998, it shodd na be surprising to
observe that the bandwidths become larger for all variables during 1998.Otherwise, the

results sesem to be reasonable.

Once we have the nonparametric volatility functions with and withou liquidity, we
employ equation (10) to estimate the risk-neutral density function for 1998.1n order to

3 The mrrelations for the whole sample period (1996-1998) are dso negative and significant. They are
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do so, we first observe dl exercise prices available during 1998. The rest of the
explanatory variables are asaumed to be constant in their means for that year, so that the
future price, the relative spread and time to expiration remain constant in their means,
F,SP, 7. Note that the only variable dlowed to vary is the exercise price. We now
estimate the nonparametric volatility function given by (8) in the new knots

(Xi/F.SP,7) where X;, i =1, ..., nare the number of exercise prices observed for

that particular period. The implied risk-neutral distribution is then given by**:

T 0%y X /F,%.1.6(X; [F,SP,7))

fr (%) = X2

(19

X =St

Sincewe ae interested in the d@feds of liquidity on ogion picing, the same procedure
is repeaed withou taking into accourt the bid-ask spreal variable. Thus, we have two
risk-neutral densities, where in the first one the potential eff ects of market frictions are
explicitly considered. As areference we dso present the Blad-Schales distribution by
employing the a-the-money mean implied vdatility during 1998 as an inpu in the
expresson d the lognormal density. Note that this (mean) implied vdatility is used as a
constant volatility in all knots where the density is estimated.

Figure 3 contains the estimated risk-neutral density for 1998in terms of returns rather

than levels of exercise prices. Thisfigureisobtained using all cdlsand pusavailable in
the sample. The returns are smply calculated as R = In(Xi /I_:) Theresults suggest a

(slightly) negatively skewed dstribution relative to Bladk-Scholes'®, where the density
estimated without liquidity presents a fatter left tail relative to the density estimated
with liquidity, and a thinner right tail. This implies that the model withou liquidity
would underprice out-of-the-money puts and in-the-money calls relative to the model
with liquidity, and, at the same time, the model withou liquidity would owerprice ouit-
of-the-money cdls and in-the-money puts relative to the option model incorporating
liquidity.

equal to -0.407 and -0.310 for the same models.

1n fad, the estimation of the implied risk-neutral density is easily simplified by noting that the only
relevant term of equation (B.2), in terms of magnitude, is the first component of the expresion. The last
two terms are very small sincethey are multiplied by 1/X and 1/F? respedively.
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This evidence suggests that there might be relevant effects of liquidity on opion
pricing. They will be further investigated in the next sedion. It shoud aso be noted that
the implied dstributions estimated non@rametricaly are dearly leptokurtic relative to
Bladk-Schaoles.

Finally, Figures 4 and 5 present the densities estimated with either only cdls and orly
puts respedively. Again, it is clear that one shoud be very careful in diving
conclusions abou the behavior of the underlying asst withou considering
simultaneously cdls and pus in the estimation. This might be particularly important in
relatively thin option markets, where trading is much more @ncentrated than in markets
like the US option market.

5. Empirical Results

5.11n-sample pricing performance

This dion evaluates the performance of the dternative semiparametric option pricing
models described above.

Two theoretical option prices are calculated using the nonparametric volatili ty functions
estimated acwording to ou two versions of equation (8) with and withou liquidity.
Once we have these functions, we amploy Blak’'s (1976) model to oltain ou
theoreticd semiparametric option rices for each cdl in the sample. In particular, we
cdculate the following cdl prices by:

& (&i.7i.n.61) =TT Ui [EN(dy) - X;N(d)] (16)
where,

B In(E/Xi)+€5i/2(T—t)i

% = Gi/(T—-1);

, Ogj =dgi —Gi/(T—1); (17)

where eab ogion i available in the sample is characterized by a futures prices, F;, an

exercise price X;, a time to expiration, (T-t); and, given the days to maturity, the

15 This is consistent with the volatili ty smile shown in Figure 2.
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correspondng repo rate with similar maturity, ri. As the inpu for volatility, 6j, we

introdwce the estimated (norparametricdly) volatility function which is obtained by

either one of the following two SNN estimators:

n K(F (&) -F. (& )J (Fr,(sa—Fn(SFf)jK(Fn(r)—Fn(ri)jGi
nh.hgoh, hSPh = hep h

T

OwL =
Zn: F (E_v) F (E_v ) I:n (SH B Fn (SFI)) K I:n (T) B I:n (Ti)
nh hsph £ h, hes h
(18)
1 C K F (i) F (a ) Fn (T) - Fn (Ti) G
~ hi T i=l hr |
SwoL = (19

3 F (EJ) F (E.> ) I:n (T)_ I:n(’ci)
TR

nnn. o h, .
It shoud be pointed ou that these two equations are estimated querterly over the whole
sample period from January 1996to November 1998.The plug-in criterion is employed
to cdculate the optimal bandwidth for each explanatory variable and for each querter. In
this way, we have 4798 picing errors for cdls from January 2, 1996to November 10,
1998,and for each of the models analyzed.

Table 3 reports two measures of performance for the dternative model specificaions.
Panel A contains the asolute pricing error which is the sample average of the squared
difference between the model price and the market price for ead cdl in the sample
period. In Panel B, the reported percentage pricing error is the squared sample average
of the theoretical price minus the market price divided by the market price These two
statistics are cdculated for each moneyness categories and for al cdls in the sample.

They are given by the following expressons:
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(20

2
Ni(.TH M
ifeth _ Al
PPE = iz(u]

where ciTH denctes the estimated price for the call option wsing a particular option

pricing model, and ciM Is the correspondng option pice observed in the market. N
represents the number of call sin each moneynesscategory (j = Deep OTM, OTM, . . .)

The results of Table 3 are reported by years. The evidence is quite striking. In all cases,
both the APE and PPE are lower when liquidity is incorporated in the estimation d the
nonparametric volatility function. It is clear that pricing errors for our norparametric
mode with liquidity are larger during 1998, b it is also the cae that they are even

larger whenever we do nat price options taking into aceurt the bid-ask spread.

In this paper, the statisticd significance of performance is assessd by analyzing the
propation d theoretical prices lying outside their correspondng bid-ask spread
boundxries. Thiswill alow usto test whether or nat the differences between the pricing

performance of our two competing models are statisticdly diff erent from zero.

For each model and each moneyness category, we @wmpute the propation d options
such that the estimated theoreticd price falls outside the bid-ask bourdary. Let us
denote by p; the propation d prices outside the boundary when the model does not
include liquidity, and p the propartion when the bid-ask spread is taken into accourt.
We want to test whether p, < p;. If this were the cae, we may argue that liquidity is a

relevant variable in pricing cdl options.

One shoud be careful in defining this gatistic. It shoud be noted that these two models
are not independent. In fact, they are nested models. Thus, if we @nsider the difference
P> —P1, where p, and p; denote the estimated propations, the asymptotic normal

distribution unar the null does not have the usual variance term. The reason is that the
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propartions are not independent (in fad, they are directly dependent) and the variance of

the diff erence shoud be small er than the variancefor the independent case.

To avoid this problem, we coompute p, and we anploy this propation, which is the one

for the most restrictive cae, as our null hypothesis for the second model. In ather

words, wetest Hy:py > pq against H,:po < Pq. Inthis context, the Z-statistic is given
by:

_ r)Z - f)l (21)
VP1(1-pq)/n

where n is the sample size. This gatistic is asymptoticdly distributed as a standardized

normal variable.

Given that we are dso interested in knawving whether a given theoretical valuation
model undervalues or overvalues market prices, the Z-statistic is aso cdculated to
obtain the propartion for which the theoretical model yields a price below the bid qude,
and the propation for which the model gives a price @owve the &k quade. If a
theoretica model tends to undervalue market prices, it would yield a higher proportion
of prices below the bid qude. If, onthe other hand, the model tends to overvalue market

prices, it would have ahigher proportion d prices above the ak qude.

Table 4 contains the results for eadh year and for each moneyness caegory. As in the
previous table, the empirical results are quite impressve. For OTM and ATM call s the
pricing performance of the semiparametric option pricing mode with liquidity is
statisticdly and systematicdly superior to the model withou liquidity. In-sample
pricing performance is clearly better by recognizing that liquidity effects are present in
the pricing of options. This is also the cae when we onsider al cdls together. The
evidenceis dightly lessclea for ITM cdls and particularly for 1998.1n any case, only
in 1998for ITM cals, the model withou liquidity performs better than the model with
the liquidity effed (the cae of the price below the bid qude). Liquidity, as proxied by
the relative bid-ask spreald, seams to be an important variable in pricing cdl options in
the Spanish market.
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In order to validate our previous results we have carried ou a dightly different in-
sample test. We separate the sample of eah quarter in two subsamples. The first
subsample ntains 10% of calls for each moneynessdegree (subsample 10). The other
subsample (subsample 90) contains the rest of the sample. We estimate the price of each
cdl in the subsample 10 with the information contained in the subsample 90. The
bandwidths used are the ones slected by the plug-in method with al available callsin
the quarter. Thisis not the usua in-sample pricing because the cdl s in the subsample 10
are not included in their estimation. As in the previous case, in Table 5 we now report
both the @solute pricing error and the relative pricing error as a measure of pricing
performance In the first two panels of Table 5 we observe that in al cases bath
measures are lower when liquidity is incorporated in the estimation o the
nonparametric volatili ty function. We again analyze the propation d theoretical prices
lying outside their correspondng bid-ask spread bourdaries. Panel C presents the
results when we wnsider al cdls together. Again, the option pricing model with
liquidity is superior to the model withou liquidity, although in some caes we ae not
able to rgect the null hypothesis. The same holds when we separate the subsample

acording to moneynessdegree™.

16 Results are available upon request.
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5.2In-sample pricing perfor mancewith alternative smoothing parameters

As mentioned in Sedion 2.2,we deck the gpropriateness of the plug-in smoathing
parameter estimators by calculting three different bandwidths obtained from the three
aternative multivariate aiteriadescribed in Appendix C. They are given by expressons
(C.4), (C.5) and (C.6).

It shoud be reagnized that our norparametric problem is inherently a multivariate
estimation problem. These dternative aiteria-the GCV and the Rice’s estimators- have
been used in unvariate ntexts. However, in pradice and to the best of our knowledge,
they have not been extended to the multivariate case until this paper. They are eaier

generali zed to the multi variate case than the plug-in method.

Table 6 reports the bandwidths obtained for each criteria and for each year during the
sample period. In 1996and 1997, for time to expiration and the spread variable, the
bandwiths sleded by the multivariate aiteriatend to be higher than optimal parameter
from the plug-in method. As discussd in Sedion 2.2,this result may be expeded.
However, thisis not the cae for 1998, where the smoothing parameter selected for the

moneynessdegreeis lower than the selected with the plug-in method.

Table 7 compares the effects of the GCV seledion method with the plug-in method on
option picing. As we can observe from the table, when we take out the 10% of the
sample, we are nat able to statisticdly reject the equality of propartions between the two
seledion models. This result suggests that the plug-in method produces a quite good
estimation d the smoothing parameter. In any case, although na reported, the results in
terms of lower propartions of prices lying outside the bid-ask spread boundxries in the
mode with liquidity remain the same. Of course, further research spedficdly directed

toward thisissueis clealy justified"’.

" Note that Table 7 is different from Table 4. Thisis becaise in Table 4 we price quaterly, with the
bandwiths sleded for ead quarter, and in Table 7 we pricewith the bandwidths slected yealy.
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5.3 Stability of the Risk-Neutral Density and the Out-of-sample Pricing
Performance

We next use data and the estimated nonmrametric volatility function from one quarter
to price options in the following quarter. To justify this out-of-sample analysis is
ressonable to argue that a previous gabili ty tests on the risk-neutral densities oud be
performed. We propose anew stability test to analyze the stability of the risk-neutral

densities over al quartersin ou sample period.

Ait-Sahalia and Lo (19983) deal with asimilar problem and they derive adiagnaostic test
based onthe integrated squared difference between two risk-neutral densities estimated
over two dfferent time periods.

Of course, testing the equality of two non@rametric functionsis not atrivia isaue. First
of al, we work with asymptotic distributions and, seoondy, there are several quantities
that must be estimated and may affed the results substantially. Practicd reasons have
led us to propose a simple and easy to implement test based on the so called
randomization tests to deted if the differences between the risk-neutral densities are

statisticdly significant. This test lies on the permutation o optionsin ou dataset.

More spedficdly, we aume that options may be randamly assgned to different testing
periods. Data ae permuted repeaedly and the test statistic shown below is computed
for each o the resulting data permutations. These data permutations, including the one
representing the obtained results, constitute the reference set for determining the level of
significance The propation d data permutations in the reference set that have avalue
of the test stastistic greaer than o equal to the value of the experimentally obtained
results is the p-value. It shoud be noted that, in the proposed test, the basis for
permuting the data is randam assgnment. This is why is known as a randamization
test'®. The null hypathesis is that the risk-neutral density is the same for each pair of

quarters.

The steps foll ow to implement thistests are & foll ows:
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(i) We define agrid of paints (returns) where the risk-neutral density is estimated. Note
that thisis necessary given that the two groups (two periods) do nd necessarily have in
common the same returns (same set of exercise prices) of the underlying asst. The
number of paintsin the grid is denoted by Ng.

(i) We estimate the risk-neutral densities, f_(.), f,,(.), using the method described in

Sedion 4,where g denotes a particular given quarter, and liquidity isincluded.

(iii) We define the test statistic &s:

Ng, . )
Tobs = 2 fq (Sj) B fq+1(5j) (22
j=1

(iv) We permute the rows of the data matrix -in ou case the set of cal options for bath
guarters g and g+1 a given number of times. In this case we eanploy 200 permutations.

In general, we denote B the number of permutations.

(v) For each of theb =1, . . . ,B permutations of the data, we asgn Nq options to
quarter g and the rest to the following quarter. This constitutes our new dataset
originated from permuting the data.

(vi) We estimate f4°(.),f421(.), by keeping the values for the bandwidths we obtained

under the origina dataset. This sans to be reasonable since the optimal bandwidth is
not aff ected by the randamization process and computational costs are degoer.

(vil) We mmpute the test statistic of equation (22) for each of theb =1, . . . ,B

permutations of data.

(viii) We next cdculate the p-value or the aitical value for our randamization test. The
propation d data permutations in the reference set that has values of the statistic (22)

greder than or equal to the value for the experimentally obtained results is the p-value

18 SeeGood (1994) for detail s on randomization tests.

27



we ae looking for. The aiticd vaueis the (1-o)th percentil e of the values taken by the

test statistic cdculated from the respective permutations.

(ix) We @nclude whether or not the differences in the risk-neutral densities between

two conseautive quarters are statisticdly significant at the o level of signiifcance

The results are ontained in Table 8. They show a remarkably stability between risk-
neutral densities for any two consecutive quarters. It shoudd be pointed ou that this
result is also consistent with the findings of Ait-Sahalia and Lo (199a), where they are
not able to rejed the stability for two semesters during the same year. In our data, and
for all cases, the null hypaothesis of no significant differences between quarters can na
be rgjected. It may be naticed that in every turn o the year, the p-value obtained is

lower than in ather cases, dthough we can na rgjed the null hypothesis.

This driking result seans to be useful in justifying the use of a given risk-neutral
density estimated for a given quarter as the basis for pricing options during the
following quarter. The out-of-sample performance is investigated next. We use the
nonparametric volatility function estimated for a given quarter q as the true volatili ty
functionfor the following quarter g+1.

We aain cdculate the theoreticd option prices of our two competing models using
expresson (16) by employing the norparametric volatility function estimated ower the
previous quarter. As before, the Z-statistic given in equation (21) is used.

The results are cntained in Table 9. Unfortunately, the empirical performance of both
models is redly disappanting. Independently of the moneyness degree onsidered, we
are not able to rged the equality of performance between the two models. Moreover,
the propations of theoretical prices lying outside the bid-ask spread is considerably
higher than in the in-sample case. The mnclusion seems to be dear. The out-of-sample
performance of our semiparametric models is quite poa either with liquidity or withou
liquidity.

It shoud be naticed that the results of Table 9 are based onthe comparison ketween the

secondand third quarter of each year during the sample period. We report this gedfic
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out-of-sample quarter performance & a representative case of what is found in all
guarters. In fad, as a way of aggregating quarter Z statistics over a single year, the
quarter Z's are alded and dvided by the squared root of the number of quarters where

we do the pricing (\/Z in 1997,+/3 in 1996and 199§, to oltain an aggregate N(0,1)
statistic from which an aggregate p-value is obtained. These aggregate p-values for
differences in proportions between the two competing models are reported in Table 10.
In this case, we just include the results for al cdls. Asit can be observed, we are never
able to regect the eguality of proportions between the model with liquidity and the
model withou liquidity. The out-of-sample performance is always poa independently
of the moddl.

Thisisan interesting result. In spite of the fad that we ae nat able to rgject the stabili ty
of the risk-neutral densities over time, the pricing results are very disappanting. This
shoud be understood as a warning about the stabili ty test as a sufficient condtion for

pricing.

6. Conclusions

This paper has investigated the dfeds of liquidity, as proxied by the relative bid-ask
spreal, onthe pricing of options. Given the evidence mntained in Pefia, Rubio and
Serna (199%) where linear (and nan-linea) causality tests between the shape of the
volatili ty smile and the bid-ask spread show abidirectional Granger causality, this paper
estimates a nonparametric volatili ty function in which liquidity is incorporated as a key
explanatory variable. Given the structure of our dataset accross the degree of
moneyness the paper employs the Symmetrized Nearest Neighbas (SNN)
nonparametric estimator rather than the traditiona kernel estimator. Moreover, speaa
caeistaken in the estimation d the smoothing parameter. The results sow that the in-
sample performance is clearly favorable to a semiparametric model with liquidity
relative to a similar model estimated without liquidity. In fad, liquidity is very useful if
we anploy options close together on time. This is suppated by the in-sample pricing
when we take off 10% of data.
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Unfortunately, however, the out-of-sample performance results are quite disappanting.
We amploy the nonparametric volatili ty function estimated for a given quarter g as the
true volatility function for the following quarter g+1. Our two semiparametric
competing option pricing models present high propations of theoreticd prices lying
outside the bid-ask spread boundaries. At the same, we ae not ableto rejed the equality
of these propartions acrossboth models. This result is found aespite the fad that we do
not rejed the stabili ty of risk-neutral densiti es over the quarters covered by the research.

Future work will concentrate in extending the univariate plug-in criterion to a
multi variate framework. We will also analyze whether the optimal multivariate plug-in
seledion method is able to oltain a better trade-off between hias and variance in the

estimation d the volatility function aroundthe &-the-money options.

Finally, given ou in-sample result, we are planning to analyze the pricing performance
of our semiparametric option pricing model with liquidity on daily basis. Thisisto say,
we will daily estimate the nonparametric volatili ty function with the SNN estimator, and
this function will be used as an input in the option pricing function for the foll owing

day. This procedureis closer in spirit to ather empiricd related papersin ogtion gricing.
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APPENDIX A
SYMM ETRIZED NEAREST NEIGHBORS (SNN) METHODOL OGY

For simplicity, we make a comparison between kernel and SNN estimators in the

univariate mntext. Let us assume the foll owing data generating process

Yi =m(Xj)+g;i=1..n (A.1)

where m(.) is the unknawn function, and X; arei.i.d. randam variables having a density

function f(x). The disturbance terms are dso assumed to bei.i.d.,and a sample of sizen

is taken. The main advantage of the nonparametric estimation is that we do nd have to

asume anything abou the functional form of the regresson function. We only assume

that thisfunctionis gnoaoth and (at least) twicedifferentiable. The kernel estimator is:

i () === _ (A2)

where h is the smoaothing or bandwidth parameter to be selected.
The kernel or weight function K has the foll owing properties:
[K(u)du=1
[K(u)udu=0
[K(uu?du=d, (finite)

jK(u)zdu= ck (finite)

In pradice, we employ the Gausdan kernel which has these properties andis given by,

K(u) — ie_uz/z

J2n

The estimation proposed by Yang (1984 and studied by Stute (1984) is:
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ms(X) _ %glK( Fn (X) _th (XI )jYI (A.3)

The known k-nearest neighbors estimate define neighbas in terms of the k-nearest
points of x. On the other hand, with the SNN methoddogy, neighba's are defined in
terms of the distance between the values of the empirical distribution function at eat
point. Since expresson (A.3) picks up its neighbas symmetricdly, it is known as the
Symmetrized Nearest Neighbors (SNN).

Under the usual assumptionsin kernel estimation, it iswell known that the leading term

in the mean square eror is given by™®:

dZh? (m"f +2m't)2(x) . £ o
4 £2(x) nhf ()

MSE(my (x)) = (A.4)

where d¢ and ¢k are constants (already defined above) that depend onthe kernel chosen,

and s? isthe variance of the disturbanceterm.

The MSE for the SNN estimator is;

2
- mf ')(X)J LS (A.5)

d% . af (m"f
MSE(mg(X))=—>h
(ms(x)) 4 ( 30 “hCK
By minimizing the MSE for eat case, the optima bandwidth h is derived. This is
substituted into (A.4) and (A.5) to get the minimum MSE denoted by MSE*. If we
employ the kernel estimator:

U5 0
MSE* (g (X)) = > (GR) () ekt (A9

4 n4/5.|: (X) 4/5
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where,

(m"f +2m'f ’)z(x)

H(x) =
(x) 200

On the other hand, if we use a SNN estimator has an equivalent expresson which

asymptoticdly isequal to:

15 \45 4
(¢%) (52)4/;?253@”5 "7

MSE* (s (x)) :% ;

where,

(mf —m'f)%(x)

S(x) = 00

Thus, we can conclude that it is advisable to employ the SNN estimator instead of the
kernel estimator when MSE* (fhg(x)) < MSE* (fh (x)). This will be the cae for any
x such that:

H(x)
£4(x)

> () (A.8)

Alternatively, condtion (A.8) is equivaent to:
(m"f +2m'f ’)2 >(m"f — m'f ’)2 < mf(mf +2m’f)>0 (A.9)

As we drealy mentioned, depending on the specific functional form of the unknown
function, m(x), and the density function, f(x), we would prefer either one of them. This
is $rown in the following simple example. The intuition behind this example is that it
seans reasonable to exped that a typicd smile volatility pattern (if it exists) may be
cgptured by a (parametric) quadratic regresson equation. At the same, it is not plausible
to assume that the design of moneynessis fixed duing the period d study. Hence, the
assumption d anormal density for x seams appropriate.

¥ MSE = (Bias)? + Variance
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Suppacse that we have the foll owing parametric mode!:
yi = m(xj) +¢g;

where

m(x;) = ax{

Let us also asaume that the errors arei.i.d. and that x have anormal density with mean 0

and variance

2/2
f(x):ie_X s
7T

J2n

By taking the gpropriate derivatives for m(x) and f(x) and substituting them into
expresson (A.9), we obtain that the MSE under the kernel estimation is higher than in
the SNN estimationaslong as | x |>s. Inwords, when the paints are in a distance from
the mean (in this example zero, bu it may be generalized) higher than the standard

deviation, we obtain better results using the SNN estimation.

This example suggests that whenever we ae interested in estimating in thase places
where the density is very small (away from the mean), the SNN may yield better results
than the traditional kernel estimators. Given the empirica distribution d moneyness
this suggest that, in general, the MSE * (rhg(x)) might be lower in those sections of the
smile where the degree of moneynessis far away from at-the-money options. Of course,
aswe said before, whether in general MSE* (fhg(x)) < (>)MSE* (fy (x)) dependson
the particular functional form of the unknavn function m(.) and the density f(x). We
susped that in most cases the SNN estimator would present better results when
estimating in places where the density is snall.
APPENDIX B
APPROPRIATE DERIVATIVESFOR THE CALCULATION
OF THE RISK-NEUTRAL DENSITY
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The Black-Schdes formulafor a European futures cdl option is*:

c=e "(T-Y[FN(dy) - XN(dy)]
where,

i In(F/X) +02/2(T-1)
LS oot

2
0, - In(F/XL—:_/tZ(T—t) 4o

N(d,) isthe value for the accumulative probabili ty distribution o a normal variable with

mean Oand variance 1. Its derivative is, therefore, the normal density function:

It is easy to show that,

1

N,(dZ) = \/ﬂ

—d2/2 _ \rgan F
e 2/ =N'(d)—
(1)X

Our objedive is to find the second deivative of the call price with resped to the
exercise price It shoud be noted that, in ou case, the volatility is a function d the

exercise pricetoo:

(B.1)

%e  o0%c _ d%c & | d%c acl|ocs
= +2 —+ +—
oxX2  ox? 0Xo0o 0X | ps? 0o |ax?

We nedl the foll owing results,

2 n fad, thisis Black (1976.
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2 =& TIN(dy)

oX

2
0% _ Ty 1 exp _[ln(F/X)_G /2(T—t)]2
X2 X+[2162(T 1) 26%(T-1)
ody -1
0X XoT-t

g_c = e "T-UN'(d))FVT -t
(o)

oc — _e—r(T—t) ENn(dl)i
0c0oX X c

azc —r(T—t) d2\/_ "
e FE2 JTIN"(dy)
0G c

We ned to cdculate the derivatives of our volatili ty function estimation with resped to
the exercise price, 66/0X and azé/axz . To oltain them, akernel estimation is used.

But recdl that our nonparametric estimation d volatility depends on moneyness and it
does not depend on the eercise price. Hence, the gpropriate derivatives for the

volatili ty with resped to the exercise price are:

oMs oms 1

oxX™ g(x/F)™ F™

Therefore,

36



0%t

oX?

_ ety 1 InEx)-o*/2-nf
X216 (T - t) 26°(T - 1)
F 1 a6 1
_ 2e—r(T—t) - N” d - Y=
X ( l)ca(X/F)X
-1 (T-t) d2 " —r(T-t) \y 7 62(} 1
+| —e"TYUFEZ2 T —tN"(d,) + " TUN'(d,) FVT -t S
o a(X/F)* F

(B.2)
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APPENDIX C
SELECTING THE SMOOTHING PARAMETER

We know that the acairacy of kernel smoaothers as estimators of any functionm(.), asin
expresson (A.1) isafunction d the kernel and the bandwidth h. In pradice, it is well
aacepted that the accuracy depends mainly onthe dhosen smoaothing parameter h. In this
appendix we first discussthe plug-in method as applied to ou multivariate particular
case. Seondy, we present the multivariate crossvalidation criteria dso employed in

our estimations.
Let us briefly describe the gpropriate dgorithm for the simple kernel univariate case.

We know that asymptotic mean squared error for the usual kernel estimator is given by
the foll owing equation:

Lo, . h%dZ [m"(x)]?

AMSE = — (C.D)
nh
and the asymptotic integrated mean squared error is:
AMISE = = ¢y +h*d2 [[m0)2dx]
= k +h7dic [[m”(x)“dx
nh 4
(C.2

OAMISE (1)1/5(0ij5[ & ]1/5
OAVISE _oh=|=) | &) |5
oh n/ d%) [m7(x)2dx

where the problem is that m”(x) is unknovn and must be estimated. Note that thisis

the cae given that the mnstants ¢, and di depend onthe kernel function assumed, nis
the sample size, and the value of the variance of the resporse variable may easily be
estimated as,

2 1
n-1li-p
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Let y(x,hy) be the estimator of m”(x) where h, refers to the second derivative It

turns out that this can be estimated using akernel estimator again

(X, hp) =—3 g K"(X_Xini (C3

where the spedfic kernel assumed must have the foll owing properties:

[K"(u)du=0
[K"(u)udu=0
jK”(u)uzdu= 2
jK”(u)u3du: 0
[K"(wutdu=d, (finite)
[K"(u)?du=cy (finite)

105

1—6(—5u4 +6U° - 1) has these properties

In particular, the kernel function K”(u) =

and hes been used in this estimation.

The bandwidth h is estimated diredly according to the dgorithm proposed by Gas<r,
Kneip, and Kohler (1997 for the univariate case. The dgorithm is performed by the

following steps:
D 1
i) hg==
(i) ho -
1/5
a2
(i) h; = kS 5
ndﬁjmz(x,ﬁj_lnj/lo) dx
(iii ) stopwhen it converges
In words,
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e Obtain the expresson for the mean integrated squared error for the norparametric
regresson (expresson C.2)

e Estimate the partial derivativesinvolved using pil ot bandwidths. In this case we need
the seaond derivative of the m(x) function, where the pil ot bandwidth is h,.

e Get theinitial bandwidth and transform it to oltain ancther pil ot bandwidths.

e |terate until convergence

The extension d this univariate plug-in method to the multivariate cae is nat trivial.
For this reason, in arder to ched the robustnessof our results, we eamploy the (easier)
extensions of the univariate aossvalidation criteria given in Hardle (1990. In
particular, the aiteria enployed in this research and their penalizing functions are the

foll owing:

(i) The Generalized CrossValidation (GCV), where we have to minimize:

1

GCV (hy, hy,hg) = RSS(hy, hy, h3) 5 (C.4)
L K(0)3
n h1h2h3
(i) Rice's bandwidth selector 1, where we have to minimize:
RICE, (hy,hs,h3) = RSS(hl,hz,h3);3 (C.5
1_g K(0)
n h1h2h3
(i) Rice’s bandwidth selector II, where we have to minimize:
28% K(0)3
RICE); (hy,hp,h3) = RSS(hy, hy hz) —— © (C.6)
n h1h2h3

where RSY.) is the sum of squared residuals; this is to say, the residuals we obtain in
the nonparametric estimation with the kernel. Finally, K(0) is the kernel evaluated at 0.
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It is important to pdnt out that either (C.4), (C.5) or (C.6) are truly multivariate
bandwidth seledion methods.
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TABLE 1
SAMPLE CHARACTERISTICSOF IBEX-35FUTURES OPTIONS

Average prices, average relative bid-ask spread and the number of available cdls are reported for eah
moneyness category. All cdl options transacted over the 45 minute interval from 16:00 to 1645 are
employed from January 2, 1996to November 10, 1998. X is the exercise price and F denotes the futures
price of the IBEX-35 index. Moneynessis defined as the ratio of the exercise price to the futures price
OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options respedively.

CALLS
Moneyness Average Average Number of
(K/F) Price Bid-Ask Spread Observations
DEEP OTM: 1.03-1.08 61.6 0.378 1478
OTM: 1.01-1.03 817 0.237 1457
ATM: 0.99-1.01 1204 0174 1422
ITM: 0.97-0.99 1800 0122 355
DEEPITM: 0.90-0.97 3812 0124 86
ALL CALLS: - 99.6 0251 4798
PUTS
Moneyness Average Average Number of
(K/F) Price Bid-Ask Spread Observations
DEEP OTM: 1.03-1.08 4617 0.197 53
OTM: 1.01-1.03 1652 0.119 180
ATM: 0.99-1.01 1265 0.152 878
ITM: 0.97-0.99 90.6 0.196 988
DEEPITM: 0.90-0.97 64.1 0.325 1424
ALL PUTS: - 982 0.233 3523
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TABLE 2

SMOOTHING PARAMETERSCALCULATED BY THE ITERATIVE PLUG-IN METHOD:
THE NONPARAMETRIC VOLATILITY FUNCTION

All cdl option data for eat yea separately is used in cdculating the optimal bandwidth parameters for
eah of our three explanatory variables when estimating the nonparametric volatility function,

6(€,SP, ). We follow the univariate iterative procedure suggested by Gasser, Kneip, and Kohler

(1991) in which the optimal bandwidth parameter, h;, (j = £, SP, 1) is obtained by minimizing the mean
integrated squared error.

BANDWIDTH

PARAMETERS 1996 1997 1998
he (moneyness 0.0537 0.0614 0.0931
hsp (bid-ask spreed) 0.0383 0.0434 0.0721
h, (time to expiration) 0.0397 0.0502 0.0%41
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TABLE 3

IN-SAMPLE ABSOLUTE AND PERCENTAGE PRICING ERRORSFOR ALTERNATIVE
SEMIPARAMETRIC OPTION PRICING MODELS: THE LIQUIDITY EFFECTS

The nonparametric volatility function is estimated for ead quarter from January 2, 1996 to November 10,
1998using al available cdl options in ead quarter. The @rresponding cdl priceis cdculated by using
the Bladk-Scholes pricing function evaluated at the previously (nonparametricaly) estimated volatility.
The bandwidths parameters are obtained by the plug-in method. The reported absolute pricing error is the
sample average of the squared difference between the model price and the market price for ead cdl in a
given moneyness category. The reported percentage pricing error is the sample average of the squared
difference between the model price and the market price divided by the market price for ead cdl in a
given moneyness caegory. We mmpare the pricing errors between the semiparametric option pricing
model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL). For
presentation reasons, the empiricd results are aggregated for yeas. Moneynessis defined as the ratio of
the exercise priceto the futures price OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-
the-money options respedively.

PANEL A: ABSOLUTE PRICING ERRORS FOR CALLS

1996 1997 1998
WL WOL WL  WOL WL  WOL
DEEP OTM 0523 1985 3909 8.713 24816 41548
OoT™M 1351 2671 3919 9.362 20026 32404
ATM 1138 2932 5343 11.866 22.823 38489
IT™ 0711 2.803 4065 11487 22499 27.186
DEEPITM 0444 2.095 4592 15810 3.324 6.492
ALL CALLS 1123 2724 4.031 10.096 22.730 37.420

PANEL B: PERCENTAGE PRICING ERRORS FOR CALLS

1996 1997 1998

WL WOL WL  WOL WL  WOL
DEEP OTM 0.072 Q221 0.083 0210 2082 2312
OoT™M 0.206 Q393 0.068 Q149 0.148 Q217
ATM 0.026 Q061 0.038 Q087 0082 Q151
IT™M 0.006 Q031 0.019 Qo061 0.055 Q070
DEEPITM 0.002 Q012 0.015 Q038 0.006 Q013
ALL CALLS 0.012 Q247 0.066 Q159 1333 1485
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TABLE4

IN-SAMPLE STATISTICAL SIGNIFICANCE OF PERFORMANCE FOR ALTERNATIVE
SEMIPARAMETRIC OPTION PRICING MODELS: THE LIQUIDITY EFFECTS

The nonparametric volatility function is estimated for each quarter from January 2, 1996 to November 10, 1998 using all available
cdl optionsin each quarter. The corresponding cdl priceis cdculated by using the Black-Scholes pricing function evaluated at the
previously (nonparametricdly) estimated vdatility. The bandwidths parameters are obtained by the plug-in method. The statistica
performance for pricing errors is assessed by analyzing the proportion of theoreticad prices lying outside their corresponding bid-ask
spread bourdaries. The Z-stetistic for testing the diff erences between two proportions is employed. The statistic is asymptoticaly
distributed as a standarized normal variable. We report the statistica significance of pricing errors between the semiparametric
option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL). For presentation
reasons, the empiricd results are aggregated for years. Moneynessis defined as the ratio o the exercise price to the futures price.
OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options respectively.

19% 1997 1998
CATEGORIES WL WOL Z-STAT WL WOL Z-STAT WL WOL ZSTAT
OTM CALLS:
Bid>c>Ask 0110 0216 -689 0171 0417 -1707 0.306 0430 -7.39
(0.000) (0.000) (0.000)
c> Ask 0064 0135 -556  0.086 0237 -1213 0156 0232 -5.30
(0.000) (0.000) (0.000)
c < Bid 0046 Q081 -342 0084 0179 -845 0.149 0197 -3.57
(0.000) (0.000) (0.000)
ATM CALLS:
Bid>c>Ask 0100 0217 -7.18 0180 0357 -7.71 0245 0411 -6.03
(0.000) (0.000) (0.000)
¢ > Ask 0050 Q115 -519 0117 0221 -520 0141 0220 -3.38
(0.000) (0.000) (0.000)
c < Bid 0050 0101 -431 0101 0224 -448 0.103 0191 -3.98
(0.000) (0.000) (0.000)
ITM CALLS:
Bid>c>Ask 0139 0213 -344 0137 0391 -610 0302 0372 -1.33
(0.000) (0.000) (0.091)
c> Ask 0054 Q114 -265 0036 0166 -411 0151 0232 -1.78
(0.004) (0.000) (0.037)
c < Bid 0084 0129 -1.89 0101 0224 -346 0151 0139 0.311
(0.029) (0.000) (0.622)
ALL CALLS:
Bid>c>Ask 0109 0220 -1051 0170 0400 -1956 0.290 0.421 -9.47
(0.000) (0.000) (0.000
c> Ask 0057 Q124 -805 0090 0228 -1370 0152 0229 -653
(0.000) (0.000) (0.000)
c < Bid 0052 Q095 -577 0080 0172 -1015 0.138 0192 -4.90
(0.000) (0.000) (0.000)
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TABLE 5
THE 10% IN-SAMPLE PRICING ERRORSFOR ALT ERNATIVE SEMIPARAMETRIC

OPTION PRICING MODELS: THE LIQUIDITY EFFECTS
The nonparametric volatility function is estimated from January 2, 1996 to November 10. The price of each cdl is estimated in a

subsample containing 10% of all available cdls. They are estimated using the remaining 90% of cadls. The corresponding cal price
is calculated by using the Black-Scholes pricing function evaluated at the previously (nonparametricdly) estimated volatility. The
bandwidths parameters are obtained by the plug-in method. Panel A: The reported absolute pricing error is the sample average of the
squared diff erence between the model price and the market price for each call in a given moneynesscategory. Panel B: The reported
percentage pricing error is the sample average of the squared diff erence between the model price and the market price divided by the
market price for each cdl in a given moneyness caegory. Panel C: The statistical performance for pricing errors is assessed by
analyzing the proportion of theoreticd prices lying outside their corresponding bid-ask spread bourdaries. The Z-statistic for testing
the diff erences between two proportions is employed. The statistic is asymptoticdly distributed as a standarized normal variable.
The empiricd results are aggregated for years. Moneynessis defined as the ratio o the exercise price to the futures price. OTM,
ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options respectively. We compare the pricing errors between
the semiparametric option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL).

PANEL A: ABSOLUTE PRICING ERRORS FOR CALLS

1996 1997 1998
WL WOL WL  WOL WL  WOL
DEEPOTM 0.689 2.029 11.880 15.186 39.265 47.205
OT™M 2037 3221 13.789 18.284 32575 37.702
ATM 3268 5.129 13.459 19.394 19428 33.007
IT™ 1594 2438 3.082 10.143 5591 16.596
DEEPITM 0.016 0.143 15.086 21.028 1530 3941
ALL CALLS 2521 3.997 12594 17.095 32144 40.135

PANEL B: PERCENTAGE PRICING ERRORS FOR CALLS

WL WOL WL  WOL WL  WOL
DEEPOTM 0.102 0.133 0.233 0.288 1228 1.568
OT™M 0.113 0.149 0.164 0.231 0.303 0.323
ATM 0.068 0.107 0.116 0.149 0.106 0.164
IT™ 0.016 0.026 0.018 0.051 0.018 0.051
DEEPITM 0.000 0.000 0.037 0.052 0.004 0.010
ALL CALLS 0.088 0.121 0.179 0.231 0.807 1.026

PANEL C: PERFORMANCE FOR ALTERNATIVE MODELS

CATEGORIES WL  WOL Z-STAT WL WOL Z-STAT WL WOL Z-STAT

ALL CALLS:

Bid>c>Ask 0196 0344 -380 0512 0668 -428 0438 0570 -2.93
(0.000) (0.000) (0.001)

¢ >Ask 0108 0175 -216 0295 0403 -284 0272 0338 -153
(0.015) (0.002) (0.063)

¢ <Bid 0087 0169 -263 0216 0265 -1.40 0165 0231 -1.72
(0.004) (0.080) (0.043)
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TABLE 6

A COMPARISON OF ALTERNATIVE SMOOTHING PARAMETERS:
THE NONPARAMETRIC VOLATILITY FUNCTION

All cdl option data for ead yea separately is used in cdculating the optimal bandwidth parameters for
eah of our three explanatory variables when estimating the nonparametric volatility function,

8(&_,,SP, T) . We mmpare the univariate iterative procedure suggested by Gasser, Kneip, and Koéhler

(2991) in which the optimal bandwidth parameter is obtained by minimizing the mean integrated squared
error, the multivariate the Generalized Cross-Validation (GCV) in which the RSSis penalized by:

2
]/[1— 1/n (K(O) 3/h§ hsph, )] , the multivariate Rice’s bandwidth selector (1), with penalty equal to

]/1— 2/n(K(O)3/h§ hgph, ) and the multivariate Rice’s bandwidth seledor (Il), in which the RSS

is penalized by —2%2/n(K(0)3/h§hsphr) where & is the variance of the residuals of the kernel

regresson.
1996
BANDWIDTH
PARAMETERS PLUG-IN GCV RICE | RICE Il
he (moneynes9 0.0537 0.0537 0.0537 0.0537
hsp (bid-ask spread) 0.0383 0.0882 0.0882 0.0729
h, (time to expiration) 0.0397 0.0915 0.0915 0.0756
1997
BANDWIDTH
PARAMETERS PLUG-IN GCV RICE | RICE Il
h: (moneynes9 0.0614 0.0614 0.1166 0.0614
hsp (bid-ask spread) 0.0434 0.0998 0.0824 0.0998
h. (time to expiration) 0.0502 0.0502 0.0502 0.0502
1998
BANDWIDTH
PARAMETERS PLUG-IN GCV RICE | RICE Il
h: (moneynesy 0.0931 0.0465 0.0838 0.0465
hsp (bid-ask spreed) 0.0721 0.0721 0.0721 0.0721
h, (time to expiration) 0.0441 0.0%41 0.0847 0.0%41

50



TABLE 7

THE 10% IN-SAMPLE PRICING PERFORMANCE FOR THE SEMIPARAMETRIC OPTION
PRICING MODEL WITH LIQUIDITY FOR ALTERNATIVE SMOOTHING PARAMETERS:
The nonparametric volatility function is estimated yealy during the sample period. The price of ead cdl
is estimated in a subsample @ntaining 10% of al available cdls. They are estimated using the remaining
90% of cdls. The arresponding cdl price is cdculated by using the Bladk-Scholes pricing function
evaluated at the previousy (nonparametricdly) estimated volatility. We @mpare the dstatisticd
significance of the in-sample pricing performance when the following smocthing parameter seledion
procedures are employed: the univariate iterative procedure suggested by Gasser, Kneip, and Kohler
(1991) in which the optimal bandwidth parameter is obtained by minimizing the mean integrated squared
error nad the multivariate the Generalized Cross-Validation (GCV) in which the RSS is penalized by:

2
]/[1—]/n(K(O)3/h§hSphT)] . The statisticd performance is assessed by analyzing the propation of

theoreticd prices lying outside their corresponding bid-ask spread baundaries. The Z-statistic for testing
the differences between two propartions is employed. The statistic is asymptoticdly distributed as a
standarized normal variable.

1996 1997 1998

Plugin GCV Z-STAT Plug-in GCV Z-STAT Plug-in GCV Z-STAT

ALL CALLS:
Bid>c>Ask 0444 0549 -259 0697 0732 -1.03 0743 0743 0.00
(0.004) (0.151) (0.500)
c>Ask 0268 0326 -155 0383 0413 -0.77 0493 0493 000
(0.006) (0.220) (0.500)
c < Bid 0176 Q222 -1.36 0314 0319 -019 0250 0250 0.00
(0.086) (0.436) (0.500)
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TABLE 8
A RANDOMIZATION TEST FOR THE STABILITY OF DENSITIESOVER TIME

A new test to analyze the stability of the risk-neutral density over different quarters is proposed. We
basicdly assume that options may be randomly assgned to dfferent quarters. Data ae permuted
repeaedly and the test statistic shown below is computed for ead of the resulting data permutations.
These data permutations, including the one representing the obtained results, constitute the reference set
for determining the level of significance The proportion of data permutations in the reference set that
have avalue of the test stastistic greaer than or equal to the value of the experimentally obtained results
is the p-value. It should be noted that, in the proposed test, the basis for permuting the data is random
assgnment. This is why is known as a randomization test. The null hypothesis is that the risk-neutral
density isthe same for ead pair of quarters. The test statistic is defined as:

Ng .

Tobs = '21 fq(Sj) -fq+1(S;)
J:

where Ny is the number of time points in the previously defined grid where the risk-neutral densities are
estimated, and qrefersto quarter.

QUARTERS VALUE OF THE TEST STATISTIC P-VALUE VALUEAT 10%
1st 96 = 2nd 96 0.3123 0.790 Q793
2nd 96=3rd 96 0.3748 0.730 Q783
3rd 96 = 4th 96 02818 0510 0496
4th 96 = 1st 97 05101 0.130 0562
1st 97=2nd 97 0.2154 0.735 0452
2nd 97=3rd 97 0.2635 0.655 0516
3rd 97 = 4th 97 04031 0430 Q680
4th 97 = 1st 98 01972 0.275 0250
1st 98=2nd 98 0.1413 0.770 0353
2nd 98= 3rd 98 0.2388 0.715 0449

52



TABLE9
OUT-OF-SAMPLE STATISTICAL SIGNIFICANCE OF PERFORMANCE FOR
ALTERNATIVE SEMIPARAMETRIC OPTION PRICING MODELS: THE LIQUIDITY

EFFECTS

The nonparametric volatility function is estimated for each quarter from January 2, 1996 to November 10, 1998 wsing al available
cdl optionsin each quarter. The corresponding cal price is cdculated by using the Black-Scholes pricing function evaluated at the
previously (nonparametricdly) estimated vdatility. The bandwidths parameters are obtained by the plug-in method. The statistica
performancefor pricing errorsis assssed by analyzing the proportion of theoreticd prices lying autside their corresponding bid-ask
spread bourdaries. The Z-statistic for testing the diff erences between two proportions in each quarter is employed. The statistic is
asymptotically distributed as a standarized normal variable. We report the statisticd significance of pricing errors between the
semiparametric option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL),
using data and the estimated nonparametric volatility function from one quarter to price options in the following quarter. For
presentation reasons, the empirical results are reported only for the 2nd vs. the 3rd. quarter of each year. Moneynessis defined as the
ratio of the exercise price to the futures price. OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options
respectively.

1996 (2nd vs. 3rd) 1997 (2nd vs. 3rd) 1998(2nd vs. 3rd)

CATEGORIES WL  WOL Z-STAT WL WOL Z-STAT WL WOL ZSTAT

OTM CALLS:
Bid>c>Ask 0670 0592 212 0789 0778 050 0915 0.907 0.54
(0.982) (0.691) (0.705)
c> Ask 0111 0139 -1.07 0282 0277 023 0384 0382 0.10
(0.142) (0.591) (0.539)
c < Bid 0558 0452 285 0506 0501 021 0530 0525 021
(0.997) (0.583) (0.583)
ATM CALLS:
Bid>c>Ask 0569 0512 126 0771 0638 284 0838 0.838 0.00
(0.896) (0.997) (0.500)
c> Ask 0227 0138 287 0180 0085 348 0462 0451 0.20
(0.997) (0.999) (0.582)
c < Bid 0341 0373 -074 0590 0552 078 0376 0387 -0.21
(0.229) (0.782) (0.417)
ITM CALLS:
Bid>c>Ask 0703 Q741 -043 0400 0.600 -223 0937 0937 0.00
(0.333) (0.012) (0.500)
c>Ask 0.148 Q148 Q00 0033 0200 -228 0937 0937 000
(0.500) (0.011) (0.500)
c < Bid 0555 0592 -0.39 0366 0400 -0.37 0.000 0.000 0.00
(0.318) (0.355) (0.500)
ALL CALLS:
Bid>c>Ask 0635 0574 223 0762 0737 122 0901 0.894 0.45
(0.987) (0.889) (0673
c>Ask 0158 Q139 Q95 0245 0231 074 0419 0415 0.18
(0.828) (0.770) (0.571)
c < Bid 0477 Q434 155 0516 0506 044 0481 0479 009
(0.939) (0.670) (0.535)
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TABLE 10

OUT-OF-SAMPLE STATISTICAL SIGNIFICANCE OF PERFORMANCE FOR
ALTERNATIVE SEMIPARAMETRIC OPTION PRICING MODELS:
AGGREGATING P-VALUESFOR THE DIFFERENCES IN PROPORTIONS OF
THEORETICAL PRICESLYING OUTSIDE THE BID-ASK BOUNDARIES

The nonparametric volatility function is estimated for each quarter from January 2, 1996 to November 10, 1998 wsing al available
cdl optionsin each quarter. The corresponding cdl priceis caculated by using the Black-Scholes pricing function evaluated at the
previously (nonparametricdly) estimated vdatility. The bandwidths parameters are obtained by the plug-in method. The statisticd
performancefor pricing errorsis assssed by analyzing the proportion of theoreticd prices lying autside their corresponding bid-ask
spread bourdaries. The Z-statistic for testing the diff erences between two proportions in each quarter is employed. The statistic is
asymptotically distributed as a standarized normal variable. We report the statisticd significance of pricing errors between the
semiparametric option pricing model with liquidity (WL) and the semiparametric option pricing model without liquidity (WOL),
using data and the estimated nonparametric volatility function from one quarter to price options in the following quarter.. We add
the Z-statistic corresponding to each quarter every year, the sum isdivided by the square roat of 4, and the asociated p-value to this
aggregate Z-statistic is reported.

199 1997 1998
AGGREGATE AGGREGATE AGGREGATE
P-VALUE (from quarters) P-VALUE (from quarters) P-VALUES (from quarters)
ALL CALLS
Bid > c> Ask 0.994 0992 0998
c> Ask 0.963 0935 0999
c<Bid 0.976 0974 0999

54



Volatility

Figure 1: Nonparametric Volatility Smiles in 1998:
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Volatility

Figure 2: Nonparametric Volatility. Calls and Puts in 1998
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Figure 3:Risk-Neutral Densities for Calls and Puts in 1998: Liquidity Effects
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Fgure 4: Risk-Neutral Densities for Calls in 1998
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Figure 5: Risk-Neutral Densities for Puts in 1998
\

\ \ ‘
——— Black-Scholes
--------- Nonparametric with liquidity o
. . . . Lo
------- - Nonparametric without liquidity ; "\i\,
6 i
! 3
i 3
. ] L
=
2
o
, | L
0-
| | | |
06 04 -0.2 0.0 0.2
Returns

58



