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The functional scope of unconscious visual information processing and its implementa-

tion in the human brain remains a highly contested issue in cognitive neuroscience. The

influential global workspace and higher-order theories predict that unconscious visual pro-

cessing is restricted to representations in the visual cortex, which are not read-out further

by parietal and prefrontal cortices. However, the prior work may lack sensitivity, with

studies using a low number of trials per participant to pinpoint unconscious processing on

an individual basis, and further lack a sound computational framework to understand the

representation of unconscious knowledge. The present thesis employs functional magnetic

resonance imaging (fMRI) and computational approaches to develop a high-precision,

within-subject framework in order to define the properties of the brain representations of

unconscious content associated with null perceptual sensitivity. Machine learning models

were used to read-out multivariate unconscious content from fMRI signals throughout

the ventral visual pathway, and model-based representational similarity analysis exam-

ined the properties of both conscious and unconscious representations. Finally, a wide

range of feedforward convolutional neural network (FCNN) models was used to simulate

the fMRI results, namely, to probe the existence of informative representations of visual

objects associated with null perceptual sensitivity in artificial networks. The results show

that even when human observers display null perceptual sensitivity at a behavioral level,

there are neural representations of unconscious content widely distributed throughout the

cortex, and these are not only contained in visual regions but also extend to higher-order

regions in the ventral visual pathway, parietal and even prefrontal areas. The computa-

tional simulations with different FCNN models trained to perform the same visual task

with noisy images demonstrated that even when the FCNN models failed to classify the

category of the noisy images, the hidden representation of the FCNN models contained an

informative representation that allowed for decoding of the image class. The implications

of the results for models of visual consciousness are discussed. We also anticipate that the

current study will inspire future work integrating neuroimaging, machine learning, and

computational modeling to investigate the representation of conscious and unconscious

knowledge across different cognitive domains.
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1

1 Introduction

1.1 Theories of consciousness

It is very difficult to write down a general definition of consciousness. Despite recent

methodological and conceptual development, the neuroscience of consciousness is still

in its infancy. Consequently, different authors hold very different opinions on what it

means to be conscious. So, as a first approach, we can simply bypass all these theoretical

considerations and focus on everyday examples of what it is like to be conscious. For

instance, if you ever used glasses, you know what it is like to go from not recognizing

the face in front of you to immediately recognizing your friends’ faces after wearing your

lenses. Philosophers would say that there is something like seeing this person’s face which

is different from other possible experiences (Nagel, 1974). This subjective dimension of

cognition is considered the basis of our conscious experience. Thus, the neuroscience

of consciousness aims to explain the neurobiological basis of subjective experience - the

personal stream of perceptions, thoughts, and beliefs that constitute our inner world.

In this regard, the conscious experience should not be confused with the state of alert-

ness of being consciously awake. The first consciousness is used as a transitive verb, like

in the case of “I am conscious of my back pain” or “I am aware of the smell of spring

flowers”. While, the second consciousness is used as an intransitive verb that does not

require an object (i.e., the patient gains consciousness after anesthesia). In the present

manuscript, the term "consciousness" therefore refers to the subjective experience of the

external world. The conscious experience is always subjective and sometimes mixed with

attended experience. The focus of the subjective experience aims to investigate whether
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such experience can be measured quantitatively. When people fail to match their experi-

ence and the external world, they are “unconscious”. Introducing the notion of conscious

perception implicitly assumes the existence of its contrary, namely, unconscious percep-

tion. Even though most researchers in Cognitive Neuroscience agree upon the existence of

conscious perception based on their personal experience, there is less consensus regarding

the existence of unconscious perception. In fact, it has been argued that understanding

the distinction between conscious and unconscious information processing in the human

brain is one of the main problems in Psychology and Neuroscience. For instance, the

scope of the functional operations that can take place during unconscious information

processing remains unclear (Dehaene, 2014).

A spectrum of paradigms (see review by Kim & Blake, 2005) allow us to test con-

scious and unconscious stimuli extensively in research labs (Baars, 1993). There are two

distinctive kinds of unconscious stimuli, one is subliminal and the other is preconscious

(Dehaene et al., 2006; Kanai et al., 2010). Subliminal stimuli are processed bottom-up

with no top-down constraints, and researchers often flash them rapidly or mask them so

that they are undetectable even with focused attention (Dehaene & Changeux, 2011).

On the other hand, preconscious stimuli are visible at a certain level, but people are not

consciously aware of them due to distraction or inattention (Dehaene & Changeux, 2011).

The current thesis aims to test the scope of unconscious processing triggered by subliminal

stimuli. However, due to the nature of introspective self-report of one’s conscious state,

it is impossible to reliably confirm that every unconscious experience is only triggered by

subliminal stimuli. Therefore, it is important to introduce objective behavioral measure-

ments, such as those of signal detection theory (Macmillan & Creelman, 2004), which will

be discussed later.

Recent research has suggested that people can maintain information in working mem-

ory even though they lack conscious access to it (i.e., King et al., 2016; Soto et al., 2011)

and that "unconscious" working memory may engage prefrontal substrates to support the

encoding and maintenance of non-conscious information (Dutta et al., 2014). Likewise,

blindsight patients with lesions in the primary visual cortex appear able to respond to
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and discriminate information in their impaired visual field for which they lack conscious

experience (Weiskrantz, 2009) and a case-study using electroencephalography (EEG) doc-

umented brain responses to stimuli in the "blind" hemifield (Rossion et al., 2000). "Blind-

sight" and "unconscious" working memory processes are interesting phenomena because

they indicate that subjective perceptual reports and objective discrimination performance

can dissociate. However, the blindsight phenomena can only provide limited insights into

the properties of unconscious information processing, because there remain fundamen-

tal issues to reliably differentiate unconscious from conscious processing. For instance,

many studies, including those on "unconscious" working memory and blindsight cited

above, employed subjective measures of perceptual awareness to separate non-conscious

and conscious trials (Overgaard et al., 2010). However, subjective measures are unreliable

because they are affected by decision biases. For instance, people may report a lack of

awareness for otherwise conscious stimuli if they had very low confidence about what they

were perceiving (Lau, 2008).

Understanding the distinction between conscious and unconscious information pro-

cessing remains a key unresolved issue, but is paramount for developing a comprehensive

neuroscientific account of consciousness and its role in cognition and behavior. Influen-

tial neurocognitive models of visual consciousness such as the global neuronal workspace

model (Dehaene, 2014) propose that conscious awareness is associated with sustained

activity in large-scale association networks involving the frontoparietal cortex, making

information globally accessible to systems involved in working memory, report one’s ex-

perience verbally, and behavioral control. Unconscious visual processing, on the other

hand, is thought to be transient and operates locally in domain-specific systems, support-

ing low-level perceptual analysis (Lamme, 2020).

Recent studies have, however, confronted this view with intriguing data suggesting that

unconscious information processing is implicated in higher-order operations associated

with cognitive control (Van Gaal & Lamme, 2012), memory-guided behavior across both

short- and long-term delays (Chong et al., 2014; Rosenthal et al., 2016; Soto et al.,

2011; Trübutschek et al., 2017; Wuethrich et al., 2018), and also language computations
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(Hassin, 2013). However, subsequent work has failed to support these findings (Rabagliati

et al., 2018), and even the evidence for unconscious semantic priming has been recently

called into question (Kouider & Dehaene, 2007; Stein et al., 2020). The limits and scope of

unconscious information processing remain to be determined. This is critical for producing

a contour map of information processing from unconscious to conscious activity (Dehaene,

2014).

In the next few sections (sections 1.1.1, 1.1.2, and 1.1.3), we will introduce some of

the mainstream theories of consciousness.

1.1.1 Global workspace theory of consciousness

Baars (1993) first coined the psychological term "global workspace", which was inspired

by its use in artificial intelligence, referring to a memory space that allows programs to

solve problems in a collective fashion (Baars et al., 2021). Baars et al. (2021) pointed

out that global workspace theory centers on answering this question of his influential

paper: “How does a serial, integrated and very limited stream of consciousness emerge

from a nervous system that is mostly unconscious, distributed, parallel, and of enormous

capacity”?

To answer this question, Stanislas Dehaene and Jean-Pierre Changeux have developed

many experimental paradigms to test different aspects of the global workspace theory

of consciousness in the human brain (Dehaene & Changeux, 1989, 2000; Dehaene et al.,

2001; Dehaene et al., 1998b; Naccache & Dehaene, 2001; Sergent et al., 2005; Sergent &

Dehaene, 2004a, 2004b). In these studies, stimuli, such as letters (Naccache & Dehaene,

2001), numbers (Naccache & Dehaene, 2001), and words (Dehaene et al., 2001), were

flashed briefly, masked, and primed, so that they were difficult to perceive.

Dehaene and Changeux (2005) presented a detailed biologically plausible model, global

neuronal workspace (GNW), that illustrated that the "global workspace" was grounded



Chapter 1. Introduction 5

by long-distance cortical connections, “particularly those linking prefrontal cortex to as-

sociative areas of the parietal and cingulate cortices” (Dehaene & Changeux, 2005, sec-

tion "Comparison with Other Theories of Consciousness", p. 0923). In other words, a

conscious experience occurs when the long-range connected neurons ignite widespread

whole-brain feedforward and feedback activation (Dehaene et al., 1998a; Sergent & De-

haene, 2004b). Unconscious contents/representations oscillate within the sensory cortices.

These activities can be attentionally selected and broadcasted to the whole brain and then

form conscious contents/representations (Dehaene, 2014). Many parts of the brain, such

as the inferior temporal cortex, the middle frontal cortex, and the prefrontal cortex, have

reciprocal neuronal projections with the sensory cortex. Therefore, conscious represen-

tations emerge from such feedforward and feedbackward networks. The ignition of the

"global workspace" is a psychological marker of conscious access to the sensory contents,

thus, when the ignition is absent, the sensory contents are subjectively unconscious, even

though the contents form representations in the sensory cortices at some level.

Broadly speaking, the GNW proposes that a brain mechanism integrates input from

the sensory cortices, the long-term memory system, the temporal cortex, and the pre-

frontal cortex to form a global workspace that shares all the information (Dehaene &

Changeux, 2011, 2005; Dehaene et al., 1998a; Dehaene & Naccache, 2001; Dehaene et al.,

2003). GNW assumes contents are encoded in the shared neural representational space,

namely the "working space", and the long-distance connections between different areas

of the brain allow the whole brain to be efficiently integrated, leading to the emergence

of conscious contents. According to GNW, unconscious contents are bottom-up driven

in the sensory cortices, and unconscious visual stimuli elicit small magnitudes of neural

activity that are not projected to the shared neural representational space. Thus, uncon-

scious neural representations are rapidly triggered and processed by the low-level sensory

cortex, but quickly vanish in a few milliseconds (Dehaene & Changeux, 2011). GWT pre-

dicts that unseen and unconscious processing stop at the early perceptual level (Dehaene

et al., 2014). Thus, no brain activity related to the unconscious representations should be

observed beyond the primary visual cortex (i.e., prefrontal -PFC-) if this theory is correct.
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Also, the GWT does not predict that the representation of seen contents is similar to that

of unseen contents. This will be tested in the present thesis.

1.1.2 Recurrent processing theory of consciousness

The recurrent processing theory (Beck et al., 2001; Goebel et al., 2001; Lamme, 2010;

Lamme et al., 2002) suggests consciousness emerges when recurrent top-down and bottom-

up activities occur in sensory areas of the brain such as early visual cortex.

The recurrent processing theory proposes that the brain first processes the input signals

with a "feedforward sweep" (Lamme, 2006). The "feedforward sweep" rapidly passes

information through the visual areas and is further passed to the higher areas, such as the

motor cortex and the frontoparietal areas (i.e., for a potential response). The "feedforward

sweep" information might not lead to conscious contents if the information stays in the

early sensory areas, such as the primary visual cortex (Dehaene et al., 2006; Lamme, 2010).

A deeper "feedforward sweep" that involves the motor areas and the frontoparietal areas,

where the stimulus is masked and invisible, may influence the responses (i.e., unconscious

priming, see the review of Dehaene et al., 1998b; Lamme, 2010) but not lead to conscious

awareness. Without recurrent feedback within the sensory areas, information remains

unconscious. Therefore, the stage of information processing known as "localized recurrent

processing" (Lamme, 2006) is critical for the processed information to become conscious.

When the input signals in the primary sensory areas are strong enough to evoke recur-

rent processing within the sensory areas, the input image signals emerge into consciousness

and can be reported and acted upon (i.e., through verbal or motor responses). Thus, re-

current processing, even only within the sensory cortex, allows the second or third waves

of "feedforward sweep" information to reach higher areas (Lamme, 2010), and also allows

dynamic interactions between areas so that object recognition reaches semantic/concept

level (Lamme et al., 2000; Lamme et al., 1998; Lamme et al., 1993).
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1.1.3 Higher-order theory of consciousness

Rosenthal (2004, P. 24) pointed out that “we are introspectively conscious of a state when

we are not simply aware of that state, but aware of it in a deliberate, attentively fo-

cused way”. The higher-order theory of consciousness (Rosenthal, 1993) describes the

conscious experience as a subjective mental state that is supported by not only first-order

representations from the primary sensory cortex, but also some higher-order mechanisms

from higher-order regions, such as the prefrontal areas (Brown et al., 2019). First-order

representations can arise when the sensory cortices perceive external stimuli, and their

processing is automatic (Brown et al., 2019). However, neuroimaging studies in blind-

sight patients (Persaud et al., 2011) and relative blindsight in normal observers (Lau

& Passingham, 2006) show that “perceptual awareness is better correlated with activity

in brain areas responsible for high-level cognition rather than in early sensory regions”

(Brown et al., 2019, section "Current Status of HOT"). Both global workspace theory

and higher-order theory argue that consciousness emerges from additional processes on

top of early sensory perceptions. However, in global workspace theory, the early sensory

representations are boosted and stabilized to enter the "global workspace". Provided the

sensory representations are globally broadcast, the representations are conscious contents.

Whereas in higher-order theory, inner awareness is represented by higher-order thoughts

(i.e., meta-representations of sensory perceptions, Brown et al., 2019), thus, such higher-

order representations, particularly in the pre-frontal cortex (PFC), mark the distinction

between consciousness and unconscious processing. Similar to the global workspace the-

ory, the higher-order theory predicts no brain activity related to the unconscious contents

should be observed beyond the primary visual cortex in the current thesis.
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1.2 Behavioral evidence: Masking and Stimulus degra-

dation

The history of visual masking can be traced back to the 1960s (Breitmeyer et al., 2006;

Kouider & Dehaene, 2007). This paradigm has been used for investigating unconscious

stimuli, visual limits, and perceptual impairments (Bachmann & Francis, 2013). One

frequently used masking paradigm is simply perceptual and involves showing the probe

stimulus (i.e., an object or a word) followed by a mask (Breitmeyer, 2007). and partici-

pants are required to make a perceptual choice on the stimulus. Another type of masking

paradigm is masked priming, which involves masking the probe stimulus and then pre-

senting a stimulus that is related or unrelated to the probe, and asking participants to

report if the presented stimulus was seen or unseen (Wickens, 1973). Marcel et al. (1974)

showed that after briefly showing a word followed by a pattern mask, participants could

correctly report perceived words. In follow-up studies, Marcel and colleagues (Marcel,

1980, 1983) demonstrated that the masking paradigm elicited automatic unconscious vi-

sual processing. In these studies, a prime word was masked and then two probe words

were presented. One probe word was related to the prime word and the other word was

unrelated. Participants were asked to choose one of the probe words and they chose

the related one on 60% of the trials. These studies showed that unconscious processing

reached the semantic level (Kouider & Dehaene, 2007).

Continuous flash suppression (or CFS) is also another form of masking that is used

for studying conscious and unconscious processing (Pournaghdali & Schwartz, 2020). It

involves using a stereoscope to present images to each eye separately (Tsuchiya & Koch,

2004). While presenting the probe image to one eye, colored mondrian-like pattern images

are presented to the other eye, hence masking the probe image presented in the other eye.

Many subjects reported they did not see the probe images even though the probe images

were presented for a long time, but still observed that the masked content could be

unconsciously processed and influence behavioral performance (Tsuchiya & Koch, 2005).
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Many studies have investigated the boundary between unconscious and conscious pro-

cessing using masking, CFS, and priming (Breitmeyer et al., 2005; Breitmeyer et al., 2004;

Dehaene et al., 2004; Dehaene et al., 1998b; Evett & Humphreys, 1981; Fahrenfort et al.,

2007; Greenwald et al., 1996; Humphreys et al., 1988; Humphreys et al., 1982; Koechlin et

al., 1999; Lamme et al., 2002; Naccache et al., 2002; Suzuki & Fukuda, 2013; Tsuchiya &

Koch, 2004, 2005). However, these studies have been extensively debated and questioned

regarding the validity of the measures of awareness (Cheesman & Merikle, 1984). The

caveats regarding the use of the subjective and objective measure of conscious awareness

will be discussed in section 1.5, but in short, it is concerned that a weak but above chance

level sensitivity of the stimuli may raise conscious awareness (Soto et al., 2019), and this

raises a discrepancy between subjective and objective measurements of consciousness.

The subjective measurement is self-report while objective measurement involves post-hoc

signal detection theory tests (see section 1.5). Cheesman and Merikle (1986) argued that

the ease of distinguishing between subjective consciousness and unconsciousness depends

on the form of the processing being investigated. This will be further discussed in section

1.5.

1.3 M/EEG evidence

Magnetoencephalography (MEG) (Hämäläinen et al., 1993) and electroencephalography

(EEG) (Henry, 2006) are non-invasive methods to study brain functions through the

recording and analysis of electromagnetic field potentials in the scalp. Due to the preci-

sion of the temporal resolution, M/EEG are often used to study the distinction between

unconscious and conscious processing. King et al. (2016) masked a briefly presented

Gabor patch (tilted left or right) and then, following a delay period, they presented a

probe Gabor patch. They asked the subjects to compare the orientation of masked and

probe Gabor patches and also rate their visibility of the masked Gabor patch. The dis-

crimination performance of the trials in which subjects reported having no awareness

whatsoever of the masked Gabor (unseen trials) was significantly above the chance level.
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Using multivariate pattern analyses of the MEG signals, they showed that the presence

(or absence) of the Gabor, its rotation and contrast levels, the phase, and the spatial

frequency of the masked unseen Gabor patches could be decoded by machine learning

algorithms significantly above chance levels across the delay period before the onset of

the visible probe. Multivariate pattern analysis (decoding) applied to neural data from

the masking paradigms can be more sensitive to detecting unconscious processing signals.

In an eight-location masking experiment, the target line segment was post-masked (Salti

et al., 2015). The performance of identifying the reportedly "unseen" line segments was

way higher than the chance level. The location of "unseen" segments can be decoded

from MEG and EEG signals for up to 800 ms. Additionally, another MEG masking study

showed that the increases in neural activities in higher-order visual areas correlated with

conscious visual perception (Fisch et al., 2009).

Moving beyond the study of low-level perceptual features, Van Gaal et al. (2014)

applied a spatial negation paradigm with EEG to investigate the cognitive processing of

grammar rules that were traditionally thought to be slow and require conscious access

(Deutsch et al., 2006). The key aspects of the stimuli are a modifier (i.e., "not" or "very"),

an adjective word (i.e., "good"), and a target noun (i.e., "peace"). The modifier and

the adjective word were presented together briefly, and they were pre- and post-masked.

The discrimination performance of the masked words was at chance (26.4%) compared

to unmasked words (75.1%). Van Gaal et al. (2014) found that the N400 effect of the

masked words was remarkably similar to the unmasked words.

M/EEG techniques provide excellent temporal resolution of cognitive functions, how-

ever, they lack neuroanatomical precision to detect where in the brain the effect happens.

An important question in the study of consciousness is to define whether unconscious

visual contents are merely represented in the visual and/or whether they also involve

higher-order areas that are relevant for decision-making and working memory functions,

namely, the frontoparietal areas. Below, I review the neuroimaging evidence regarding

this issue.
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1.4 fMRI evidence

Functional magnetic resonance imaging (fMRI) is used for studying blood oxygen-level

dependent brain responses triggered by stimuli and tasks (Ekstrom, 2010). fMRI has

been a dominant neuroimaging method to study maps of brain activity and the spatial

correlation between different brain areas in different cognitive functions. Using the word

masking paradigm, Dehaene and colleagues showed that when the words were masked and

invisible, participants recognized the masked words at chance level (Dehaene et al., 2001),

and weak brain activations were only observed in the visual areas, such as the fusiform

gyrus. When the words were visible, participants recognized the words successfully, and

there were activations across the visual cortex as well as in the parietal areas. The acti-

vations were much stronger than those in the unconscious condition. Diaz and McCarthy

(2007) conducted two masking experiments similar to Dehaene et al. (2001). In one of

the experiments, subjects first decided whether a visible stimulus was a real-word or a

non-word. And then a masked stimulus that could be a real-word or a non-word. The

masked real-word could be semantically related to the visible real-word or not related.

The responses to the masked, semantically related words were significantly faster. In the

other experiment, which was an fMRI experiment, subjects were presented with masked

real-words and non-words. Subjective and objective measurements of consciousness were

used to ensure subjects were not aware of the masked stimuli. They found that the masked

real-words elicited significantly greater responses in a distributed network of the left hemi-

sphere, “including the inferior frontal gyrus, the angular gyrus, and posterior regions of

the lateral temporal cortex”, compared to the masked non-words. In a recent fMRI study

using masked words, multivariate patterns of the unseen words could be decoded by ma-

chine learning algorithms from the fMRI data in areas including the visual and inferior

frontal areas (Sheikh et al., 2019). In another study, Stein et al. (2021) presented masked

images of faces and houses and sampled trials as subjectively invisible (based on partic-

ipants’ awareness reports) and objective invisible conditions (based on signal detection

measures). The perceptual sensitivity in the subjectively invisible trials was greater than
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zero. The objective invisible trials had a fixed mask contrast and d’ of these trials were

not different from zero. A localizer scan in which the different clear images were presented

was collected to assess fMRI patterns and correlate the subjective and objective invisible

fMRI patterns. The correlation between the localizer and the subjective invisible trials

showed the role of the fusiform gyrus in processing the invisible contents, but as expected

the correlation between the localizer and the objective invisible trials was weaker, likely

due to stronger masking. Further, the correlation between the localizer and the subjective

invisible trials showed patterns of unseen contents that extended to the inferior temporal

gyrus.

In line with the above study, Sterzer et al. (2008) used a CFS fMRI paradigm in

which faces and houses were presented only to one eye and masks were presented to the

other eye to facilitate suppression of the faces and houses (N = 4). Subjects were at

chance of discriminating between faces and houses (d’ = -0.05 ± 0.14), but these unseen

contents were decoded from the fMRI data in areas such as the fusiform face area and

parahippocampal place area better than chance.

Jiang et al. (2007) recruited five subjects and presented flickers at different frequencies

(5 Hz at full contrast, 5 Hz at subthreshold contrast, and 30 Hz). Behaviorally, subjects

clearly viewed the 5 Hz flickers at full contrast, but their responses to the 5 Hz flickers at

sub-threshold contrast as well as the 30 Hz flickers were at chance by an off-line post-hoc

test. Interestingly, the 30 Hz flickers elicited stronger brain activities in V1 through V4

compared to the 5 Hz flickers at subthreshold. They argued that stronger brain responses

in the visual areas did not suggest conscious experience.

The fMRI studies (Dehaene et al., 2001; Sheikh et al., 2019; Stein et al., 2021; Sterzer

et al., 2008) provide a more precise spatial resolution of the brain areas associated with

unconscious and conscious information processing. However, the behavioral measurements

of awareness and lack of awareness in these fMRI studies do not follow a consistent

criterion. This will be discussed further in section 1.5.
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1.5 Controversy in unconscious processing research

As mentioned in the previous sections, there remain significant hurdles in studying un-

conscious processing. For instance, in "subliminal priming" studies (i.e., Kouider and

Dehaene, 2007), a briefly presented stimulus (the prime) is “masked” and followed by a

visible target stimulus, and the subjects must respond to the category of the target. The

masked prime can be congruent or incongruent with the response to the target thereby

affecting the response latencies to the targets. Subliminal priming is inferred if, in a

subsequent post-hoc offline perceptual test, the subjects can not distinguish the identity

of the masked prime presented alone in a forced-choice test. However, in masked prim-

ing studies, no awareness measures are collected during the priming task. Considering

that perceptual thresholds may vary across time, this leaves unclear the extent to which

subjects have some degree of awareness in some trials hence leading to the behavioral

priming effect. Studies of unconscious processing, in particular priming studies, do not

include both subjective, trial-by-trial reports of awareness, and also objective criteria to

pinpoint unconscious and consciousness states. Hence, it is difficult to know (i) whether

or not subjects were aware of the prime in some trials and (ii) whether the perceptual

threshold associated with null prime identification in the post-hoc test was similar to the

perceptual threshold during the priming task (e.g. due to practice or fatigue effects).

Some studies report either subjective awareness or objective signal detection measures

(see Dehaene et al., 2001; Salti et al., 2015) but it is important to integrate both subjective

and objective behavioral measurements to provide robust evidence of null awareness and

sensitivity for masked stimuli at the behavioral level (Soto et al., 2019). While subjective

reports are essential for experimenters to acknowledge subjects’ conscious states on a

moment-to-moment basis, signal detection measures (Macmillan & Creelman, 2004) are

critical to demonstrating null perceptual sensitivity at the behavioral level (Soto et al.,

2019). As pointed out by Newell and Shanks (2014), both subjective reports and offline

measures of perceptual sensitivity considered separately are of little use for understanding

unconscious information processing. Thus, it seems clear that signal detection theory
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(SDT) measures of objective perceptual performance (i.e., d’) collected online during the

critical task (Macmillan & Creelman, 2004), in combination with trial-by-trial subjective

reports, are best suited to demonstrate whether or not observers lack awareness of the

target stimulus (i.e., the null sensitivity criterion, Newell and Shanks, 2014).

1.6 Lack of information-based approaches

Combining both subjective and objective measures (i.e., the null sensitivity at the behav-

ioral level on trials reported as unaware, Soto et al., 2019) to study researchers were able

to advance our understanding of unconscious processing (Lamme et al., 2002; Soto et al.,

2011). The representation of unconscious processing may be delineated based on the in-

formation patterns extracted with visible contents through fine-grained analyses of brain

data (i.e., M/EEG and fMRI), which are then extrapolated to the context of null percep-

tual sensitivity. Finding robust brain signals of information processing in the presence of

null behavioral sensitivity could be the neural marker of unconscious processing. Stud-

ies mentioned in sections 1.3 and 1.4 have provided insights into the distinction between

conscious and unconscious processing (Dehaene et al., 2001; King et al., 2016; Kouider &

Dehaene, 2007; Salti et al., 2015; Stein et al., 2021). However, many of the studies did not

demonstrate the null sensitivity at a behavioral level (see King et al., 2016), and could

not draw robust inferences about unconscious processing (see Stein et al., 2021) due to a

lack of statistical power. To address the latter matter, one should turn to information-

based approaches (Kriegeskorte et al., 2006) to study multivariate patterns in the brain

signals while collecting a high number of trials (i.e over 1000 trials) per participant. This

will allow determining the presence of null sensitivity while exploiting machine learning

(Haxby et al., 2001), pattern analyses (Kriegeskorte, 2011; Kriegeskorte et al., 2008a), and

computational models (Kriegeskorte, 2015) to significantly improve the reliability and re-

producibility of the results in studying unconscious processing. In addition, by exploiting

machine learning algorithms, representational dissimilarity, and computational models as

information-based approaches, one could measure the level of representational invariance
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between different levels of (un)conscious processing by investigating the generalization of

the brain patterns learned by the models across the different states of (un)awareness (Soto

et al., 2019). This approach allows the re-use of learned representations associated with

the conscious state to inform the unconscious representation.

1.7 Objectives of the present thesis

Considering the neuroimaging evidence to date, the extent to which unconscious infor-

mation associated with null perceptual sensitivity can permeate different stages of brain

processing is unclear. The standard approach to neuroimaging studies of unconscious

processing is limited because it lacks high within-subject precision. Previous studies

used group-based statistical inference with few participants, and crucially also, very low

numbers of trials per participant, which makes it underpowered to test the null sensitiv-

ity assumption and pinpoint the brain representation of unconscious knowledge reliably

within each subject. Here we present a computational framework that circumvents these

limitations.

A key objective of this thesis is to develop sensitive, within-subject neural markers

of the scope of unconscious and conscious information processing. Here we use a high-

precision, highly-sampled, within-subject computational approach to define the properties

of the brain representations associated with unconscious perceptual content, defined by

the absence of null perceptual sensitivity. In order to ensure null sensitivity, researchers

must make a trade-off with the risk of being unable to detect brain signals of uncon-

scious information processing (Soto et al., 2019). Therefore, machine learning algorithms

and computational models are alternative tools to provide an information-based approach

(Kriegeskorte et al., 2006) to test the existence of unconscious representations in brain ac-

tivity patterns with higher sensitivity. This is something that traditional mass-univariate

brain mapping approaches (Friston et al., 1995; Friston et al., 1994; Maris & Oostenveld,

2007) cannot achieve.
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In addition, a further objective of this thesis is to provide information-based ap-

proaches, including a dense sampling of the brain signals, machine learning algorithms

for pattern analysis, and computational models based on deep neural networks serving

as encoding models to explain brain activity. These approaches provide us with very

fine-grain neural representations of conscious and unconscious contents.

The final objective of this thesis is to provide a computational simulation of the repre-

sentation of unseen contents using state-of-the-art deep neural network models (Kriegesko-

rte, 2015; LeCun & Bengio, 1995; LeCun et al., 2015; Lindsay, 2021). The simulation

results allow us to understand better whether and how the representations of unseen con-

tents differ from seen contents in both the human brain and artificial intelligence models

of the human brain.
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2 Decoding unconscious and conscious

contents from fMRI data

2.1 Introduction

2.1.1 Machine learning in cognitive neuroscience

Machine learning is an important component of data science. It uses statistical algorithms

(i.e., gradient descent Ruder, 2016) to learn key aspects of the data, such as classifying

categories or revealing structures in the data. Machine learning models often use differ-

ent algorithms that have different data assumptions to learn the key aspects from the

data based on predefined questions. For instance, classification models are often used in

studying the problems from the level of neuronal (Li et al., 2015) to neuroimaging (Haxby

et al., 2001) to behaviors (Mei et al., 2020), and this method is often used to illustrate

whether there exists information in regions of the brain according to the experimental

conditions. When a model maps the brain signals to the experimental conditions, it is a

"decoding model"; while a model that maps the experimental information to the brain

signals, it is an "encoding model" (Kriegeskorte & Douglas, 2019).

Decoding (Haxby et al., 2001) and encoding (Naselaris et al., 2011) are modeling

approaches that have been used in making sense of neuroimaging data such as fMRI

(Kriegeskorte & Douglas, 2019). Machine learning algorithms (Jordan & Mitchell, 2015)

are the core of the decoding and encoding approaches. These algorithms often utilize

linear models, such as logistic regression (King et al., 2016; Wright, 1995) and linear

support vector machine (Bhavsar & Panchal, 2012; Sheikh et al., 2019) to decode the

experimental conditions from brain signals or encode experimental information to brain
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signals (Naselaris et al., 2011). The performance of the decoding models is computed

using cross-validation and it is often used as the measure of experimental information

that is contained in the multivariate pattern of brain signals.

Computational models, a subset of machine learning algorithms, are often used as

alternative models to explain how information is represented in the brain. Particularly,

in the field of computer vision, models like HMAX (Riesenhuber & Poggio, 1999) and

convolutional neural network (CNN, Fukushima, 1980; Hinton et al., 2015; LeCun and

Bengio, 1995; McFee et al., 2018) are used to explain how visual information is processed

in the primary visual cortex. CNNs are now better models for predicting brain signals in

several benchmarking visual tasks (Schrimpf et al., 2020), and this makes them the best

alternative encoding models of visual processing and object recognition (Kriegeskorte,

2015).

Distance-based measurements such as Euclidean distance Kriegeskorte et al., 2006

are also used to compare the distance between pairs of activity-patterns. The distances

indicate the relative similarities among pairs of activity-patterns from different levels

of analyses (i.e. brain, computational model, across species) and different principles of

information processing (see Chapter 4).

Additionally, computational models, such as CNNs, can be used to model how an

ideal observer performs a visual processing task (i.e., object recognition), approximating

the visual information being processed in the human brain, which is often referred to

as simulation-based approaches (Kriegeskorte, 2015; Kriegeskorte and Douglas, 2018, see

Chapter 3).

2.1.2 Limitations in previous decoding studies of unconscious pro-

cessing

There is extensive literature on using machine learning to learn about how the human

brain processes information (Haxby et al., 2001). Particularly, multivoxel pattern analysis

(MVPA), which is also called "decoding", maps the multivariate brain patterns to the
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experimental conditions. It is popularized in studying the neural correlates of unconscious

processing of simple visual patterns in the visual cortex (Haynes, 2009), such as grating

patterns (King & Dehaene, 2014; Salti et al., 2015), letters (Trübutschek et al., 2017),

and words (Sheikh et al., 2019).

Considering the available neuroimaging evidence to date, the extent to which un-

conscious information associated with null perceptual sensitivity can permeate different

stages of brain processing is unclear. The standard approach to neuroimaging studies of

unconscious processing is limited because it lacks high within-subject precision. Previous

studies used group-based statistical inference but low sample sizes in terms of subjects,

and crucially also, very low numbers of trials per participant, making it hard to test the

null sensitivity assumption and pinpoint the brain representation of unconscious knowl-

edge reliably within each subject (also see section 1.6).

In this chapter, we introduced a within-subject design fMRI experiment (N = 7; over

1700 trials per participant) (i) to shed new light on the scope of unconscious information

processing in the human brain; (ii) to reveal the properties of the brain representations

during unconscious information processing and the extent to which they are similar to the

conscious counterparts. We used a standard linear classifier applied to the fMRI signals

to decode the categories of living and non-living images presented at different levels of

visibility and assessed generalization for "out-of-sample" images (i.e., cat, bicycle) not

used during classifier training, and, critically, we assessed generalization across different

states of awareness within-subjects utilizing a large number of instances. It is unclear

whether conscious and non-conscious items are represented similarly in the human brain.

We examined how much information we could read-out and generalize from areas in

the ventral visual pathway and frontoparietal cortex. Using a highly-sampled within-

subject design, we tested the main hypothesis that visual and semantic representations

of unconscious items in the ventral visual pathway, and perhaps also in other higher-

order nodes of the frontoparietal network, can share similar properties to their conscious

counterparts.
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2.2 Methods

2.2.1 Participants

We recruited seven subjects from the Basque Center on Cognition, Brain, and Language,

one of the subjects was female. Subjects agreed to participate in six fMRI scanning

sessions by signing the BCBL fMRI consent agreement. Subjects had normal visions or

corrected visions.

2.2.2 Task and procedures

In the fMRI experiment, subjects (N = 7, one female) were presented with images of

animate and inanimate objects (Moreno-Martínez & Montoro, 2012). We selected 96

unique items (48 animate and 48 inanimate, i.e., cat, boat) for the experiment. These

images could also be grouped into 10 subcategories (i.e., animal, vehicle) and 2 categories

(i.e., animate/living v.s. inanimate/nonliving). The experiment was an event-related

design. On each day, subjects carried out nine blocks of 32 trials (16 animate and 16

inanimate) and every three blocks contained a full set of all the unique items (96 unique

images). Subjects came back six times within two weeks. There were hence 288 trials per

day and 1728 trials in total per subject. The probe images were gray-scaled and presented

in different orientations. In other words, the original images were augmented before the

experiments using Tensorflow-Keras (Abadi et al., 2015; Chollet et al., 2018). A random-

phase noise background generated from the images was added to the target image before

the experiment to facilitate masking. The random-phase noise background was generated

by converting the image to the Fourier domain using fast-Fourier-Transformation (FFT),

and then we added Gaussian noises to the Fourier domain values. In the end, we inverted

the FFT to get the random-phase noise background.

The experiment was programmed using Psychopy (Peirce, 2007).The experiment was

carried out on a monitor with a refresh rate of 100 Hz. Figure 2.1 illustrates the sequence

of events on each trial. A fixation point appeared for 500 ms and was followed by a
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blank screen for 500 ms. Twenty frames of Gaussian noise masks were presented and

then followed by the probe image, which was followed by another twenty frames of masks.

Then, there was a jittered blank period (1500 - 3500 ms) with a pseudo-exponential

distribution in 500 ms steps (sixteen 1500 ms, eight 2000 ms, four 2500 ms, two 3000 ms,

and two 3500 ms) selected randomly and without replacement on each block of 32 trials.

Following the jittered blank period, subjects were required (i) to identify and respond to

the category of the image and (ii) to rate the state of visual awareness associated with

the image. There was a 1500 ms deadline for each response and subjects were allowed

to change their responses during this time window. Only the last response was recorded.

For the categorization decision task, two choices were presented on the screen - living (V)

and nonliving (nV) - i.e., "V nV" or "nV V", and the left-right order of the choices was

randomly selected for each trial. Subjects pressed "1" (left) or "2" (right) to indicate

the probe condition. For the awareness decision task, there were 3 choices: (i) "I did

not see anything that allowed me to categorize the item, I was completely guessing";

henceforth, the unconscious trials, (ii) partially unconscious ("I saw a brief glimpse but I

am not confident of the response"), and (iii) conscious ("I saw the object clearly or almost

clearly and I am confident of the categorization decision"). The inter-trial interval was

then followed with a jittered blank period of 6000 - 8000 ms with a pseudo-exponential

distribution in 500 ms steps.

Figure 2.1: Example of the sequence of events within an experimental trial. Subjects were
asked to discriminate the category of the masked image (living vs. non-living, categorization
decision task) and then rate their visual awareness on a trial-by-trial basis. Example of a trial
with a masked image of a cat. The stimuli were selected and augmented from an open source
image set (Moreno-Martínez & Montoro, 2012).

The duration of the probe image was based on an adaptive staircase that was running
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throughout the trials. Specifically, based on pilot tests, we elected to use the staircase to

get a high proportion of unconscious trials while ensuring that perceptual sensitivity was

not different from chance level. If the subject reported "glimpse", the number of frames

of stimulus presentation was reduced by one frame for the next trial, unless it was already

only one frame of presentation; if the subject reported "conscious", the number of frames

of presentation would be reduced by two or three frames for the next trial, unless it was

less than two to three frames, in which case it would be reduced by one frame; if the

subject reported "unconscious", the number of frames of presentation increased by one or

two frames for the next trial randomly. Examples of probe images were shown in Figure

2.2.
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Figure 2.2: Example probe images used in the fMRI experiment. Subjects were asked to per-
form a perceptual categorization task and to rate their awareness (Moreno-Martínez & Montoro,
2012).
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2.2.3 Analysis of behavioral performance

We assessed whether the level of discrimination accuracy of the image departed from

chance in each of the awareness conditions. The metric to measure accuracy was the

area under the receiver operating curve (ROC AUC). A response was defined as a "true

positive" (TP) when "living" was both responded to and presented. A response was

defined as a "false positive" (FP) when "living" was responded to while "nonliving" was

presented. A response was defined as a "false negative" (FN) when "nonliving" was

responded to while "living" was presented. A response was defined as a "true negative"

(TN) when "nonliving" was both responded to and presented. Thus, a hit rate (H) was

the ratio between TP and the sum of TP and FN, and a false alarm rate (F) was the ratio

between FP and the sum of FP and TN. We first calculated ROC AUC associated with

the individual behavioral performance within each of the different states of awareness

(henceforth called the experimental ROC AUC). Then, we applied permutation tests to

estimate the empirical chance level. We bootstrapped trials for a given awareness state

with replacement (Horowitz, 2001); the order of the responses was shuffled while the

order of the correct answers remained the same to estimate the empirical chance level.

We calculated the ROC AUC based on the shuffled responses and correct answers to

estimate the chance level of the behavioral performance, and we called this the chance

level ROC AUC.

This procedure was repeated 10,000 times to estimate the distribution of the empirical

chance level A’ for each awareness state and each subject. The probability of empirical

chance level ROC AUC being greater or equal to the experimental ROC AUC was the

statistical significance level (one-tailed p-value, Ojala and Garriga, 2010). Hence, we de-

termined whether the ROC AUC of each individual was above chance across the different

awareness states (Bonferroni corrected for multiple tests).
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2.2.4 fMRI acquisition and preprocessing

A 3-Tesla SIEMENS’s Magnetom Prisma-fit scanner and a 64-channel head coil was used.

In each fMRI session, a multiband gradient-echo echo-planar imaging sequence with an

acceleration factor of 6, resolution of 2.4x2.4x2.4 mm3, TR of 850 ms, TE of 35 ms, and

bandwidth of 2582 Hz/Px was used to obtain 585 3D volumes of the whole brain (66

slices; FOV = 210 mm). For each subject, one high-resolution T1-weighted structural

image was also collected.

The visual stimuli were projected on an MRI-compatible out-of-bore screen using a

projector placed in the room adjacent to the MRI room. A small mirror, mounted on

the head coil, reflected the screen for presentation to the subjects. The head coil was

also equipped with a microphone that enabled the subjects to communicate with the

experimenters in between the scanning blocks.

The first 10 volumes of each block were discarded to ensure steady-state magnetiza-

tion; to remove non-brain tissue, a brain extraction tool (BET; Smith, 2002) was used;

volume realignment was performed using MCFLIRT (Jenkinson et al., 2002); minimal spa-

tial smoothing was performed using a Gaussian kernel with full width at half maximum

(FWHM) of 3 mm. Next, Independent component analysis based on automatic removal

of motion artifacts (ICA-AROMA) was used to remove motion-induced signal variations

(Pruim et al., 2015) and this was followed by a high-pass filter with a cutoff of 60 seconds.

The sessions are aligned to a reference volume of the first session1. All the processing

of the fMRI scans were performed within the FSL (FMRIB Software Library, v6.0.0;

Jenkinson et al., 2012) framework and were executed using the NiPype Python library

(Gorgolewski et al., 2011).

For each subject, the relevant time points or scans of the preprocessed fMRI data

of each run were labeled with attributes such as (i.e., cat, boat), category (i.e., animal,

vehicle), and condition (i.e., living vs. nonliving) using the behavioral data files generated

by Psychopy (v1.84, Peirce, 2007). Next, data from all sessions were stacked and each

voxel’s time series was block-wise z-scored (normalized) and linear detrended. Finally, to
1Detailed documentation can be addressed in https://tinyurl.com/up2txma

https://tinyurl.com/up2txma
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account for the hemodynamic lag, examples were created for each trial by averaging the

3 or 4 volumes between the interval of 4 and 7 seconds after image onset.

Figure 2.3: Selected regions of interest projected on an MNI standard template image. Ini-
tially, 12 ROIs were extracted for each hemisphere fusiform gyrus, inferior parietal lobe, inferior
temporal lobe, lateral occipital cortex, lingual, middle frontal gyrus, parahippocampal gyrus,
pericalcarine cortex, precuneus, superior frontal gyrus, superior parietal gyrus, pars opercularis
gyrus, pars triangularis gyrus, and pars orbitalis gyrus. The last three ROIs were combined into
a larger, bilateral ROI, namely the inferior frontal gyrus.

For a given awareness state, examples of BOLD activity patterns were collected for

each of the 12 regions of interest (ROIs). There were 12 ROIs for each hemisphere (see

Figure 2.3). The ROIs included the lingual gyrus, pericalcarine cortex, lateral occipital

cortex, fusiform gyrus, parahippocampal gyrus, inferior temporal lobe, inferior parietal

lobe, precuneus, superior parietal gyrus, superior frontal gyrus, middle frontal gyrus, and

inferior frontal gyrus (comprising pars opercularis gyrus, pars triangularis gyrus, and

pars orbitalis gyrus). Automatic segmentation of the high-resolution structural scan was

done with FreeSurfer’s automated algorithm recon-all (v6.0.0). The resulting masks

were transformed into functional space using 7 degrees of freedom linear registrations

implemented in FSL FLIRT (Jenkinson et al., 2002) and binarized. All further analyses

were performed in the native BOLD space within each subject.
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2.2.5 fMRI decoding pipeline within awareness states

MVPA in the current chapter was conducted using scikit-learn (Pedregosa et al., 2011)

and Nilearn (Abraham et al., 2014), using a linear support vector machine (SVM) classifier

(Cortes & Vapnik, 1995). SVM has limited complexity, hence reducing the probability of

over-fitting (model performs well in training data but has a poor performance in testing

data) and it has been shown to perform well with fMRI data (Lewis-Peacock & Norman,

2014; Pereira & Botvinick, 2011). We used an SVM with L1 regularization, nested with

invariant voxels removal 2 and feature scaling between 0 and 1 3 as preprocessing steps 4.

The key parameter of the invariant voxel removal was to determine which features had

a variance of zero, and the parameter of the scaling is to learning the minimum and the

maximum of the features. The key parameters of the invariant voxel removal and scaling

were fitted in the training set and applied to the testing set. Note that these preprocessing

steps are different from the detrending and z-scoring of the BOLD signals and represent

conventional machine learning practices (Bruha, 2000; King et al., 2016).

During cross-validation, trials corresponding to one living (i.e., cat) and one non-living

(i.e., boat) item for a given awareness state (i.e., unconscious) were left out as the test set

and the rest was used to fit the machine learning pipeline. With 96 unique items, 2256

cross-validation folds could be performed in principle. However, because the awareness

states were randomly sampled for each unique item (i.e., cat), the proportion of examples

for training and testing were not equal among different folds. Some subjects had less than

96 unique items for one or more than one of the awareness states. Thus, less than 2256

folds of cross-validations were performed in these cases. The number of total available

instances ranged from 700 to 800 and the number of test sets ranged from 2 (one trial for

living and one trial for nonliving) to 20 for either unconscious or conscious states. The

performance of the fitted pipeline was estimated by comparing the predicted labels and

the true labels using ROC AUC for the test set.
2sklearn.feature_selection.VarianceThreshold
3sklearn.preprocessing.MinMaxScaler
4sklearn.pipeline.make_pipeline
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To get an empirical chance level of the decoding, the same cross-validation procedures

were repeated by replacing the linear SVM classifier with a "dummy classifier" 5, which

makes predictions based on the distribution of the classes of the training set randomly

without learning the relevant multivariate patterns. The same preprocessing steps were

kept in the pipeline. It is important to note that the optimization of L1 regularization

was SVM specific, thus, it did not apply to the "dummy classifier".

The mean differences between the true decoding scores and the chance-level decoding

scores were computed as the experimental score. To estimate the null distribution of the

performance differences, we performed permutation tests. First, we concatenate the true

decoding scores and the chance level decoding scores and then shuffle the concatenated

vector. Second, we split the concatenated vector into a new "decoding scores" vector

and a new "chance level decoding scores" vector. The mean differences between these

two vectors were computed. This procedure was repeated 10,000 times to estimate the

null distribution of the performance differences. The probability that the experimental

score was greater or equal to the null distribution was the statistically significant level

(one-tailed p-value). Finally, the comparisons across awareness states and the number of

ROIs were corrected using Bonferroni correction (Figure 2.5 columns 1 and 2).

2.2.6 Generalization pipeline across awareness states

Here the classifier was trained from data in a particular awareness state (the "source";

e.g., on conscious trials) and then tested on a different awareness state (the "target"; e.g.

on unconscious trials) on top of the cross-validation procedure described above. Similar to

the decoding analysis within each awareness state, instances corresponding to one living

and one non-living item in both "source" and "target" were left out, but only the left-out

instances in the "target" were used as the test set. The rest of the instances in "source"

were used as the training set to fit the machine learning pipeline (preprocessing + SVM)

as described above. Because the awareness states were randomly sampled for each unique

item (i.e., cat), the proportion of examples for training and testing were not equal among
5sklearn.dummy.DummyClassifier
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different folds. The number of total available instances ranged from 700 to 800 and the

number of test sets ranged from 2 (one trial for living and one trial for nonliving) to 20.

The performance of the fitted pipeline was estimated by comparing the predicted labels

and the true labels using ROC AUC for the test set.

To get an empirical chance level of the decoding, a similar procedure to that described

above with a "dummy classifier" was employed here. Similar permutation test procedures

were used to estimate the empirical null distribution of the difference between the ex-

perimental and chance level ROC AUC and the estimation was repeated 10,000 times.

The probability that the experimental score was greater or equal to the null distribution

was the statistically significant level (one-tailed p-value). Finally, the comparisons across

awareness states for each subject were corrected using Bonferroni correction (Figure 2.5

column 3).

2.3 Results

2.3.1 Behavioral performance

We assessed whether subjects’ performance at discriminating the image category from

chance in each of the awareness conditions by using a signal detection theoretic measure

to index perceptual accuracy, namely, the non-parametric A’ (Zhang & Mueller, 2005).

Permutation tests were performed to estimate the empirical chance level within each

subject (see Methods). All subjects displayed above chance perceptual sensitivity in both

glimpse and visible trials (p < 0.001, permuted p-values). Four of the seven subjects

showed null perceptual sensitivity (0.16 < p < 0.64) in those trials in which subjects

reported a lack of awareness of the images. Discrimination performance in two additional

subjects deviated from chance (p values < 0.02, 0.03, uncorrected for the number of tests

across the different awareness states) but only one subject clearly showed above chance

performance in the unaware trials (p = 0.00036). Figure 2.4 illustrates the distribution

of A’ values alongside the chance distribution for each participant.
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While individual biases in reporting awareness are difficult to control experimentally,

several features of the data indicate that subjects were using the subjective ratings ap-

propriately. First, the meta-d’ scores that measure how well one’s awareness ratings align

with discrimination accuracy were high. Second, as noted above, the average target’s

duration set by the adaptive staircase was the lowest/highest in the trials rated as un-

aware/aware. Finally, an inspection of the data shows that the proportion of trials rated

as aware was similar among the subjects showing null sensitivity on the unconscious tri-

als and those shown above chance performance (see table 2.1). Table 2.1 shows that six

out of seven subjects showed null perceptual sensitivity in the behavioral test in those

trials in which subjects reported a lack of visual awareness of the images (Figure 2.4).

In trials with partial awareness ("glimpse") and full awareness, behavioral discrimination

performance was well above chance.
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Figure 2.4: Behavioral performance. Distribution of within-subject A’ scores with mean, first
and third quartile, and the corresponding empirical chance distributions for each subject and
awareness state. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Subject Awareness Proportion Probe time (ms) P(FA) p(Hit) d’ p meta-d’
Sub-01 Unconscious 0.45 18.77 ± 10.56 0.51 0.51 0.02 0.4371 2.53

Glimpse 0.26 29.96 ± 11.16 0.13 0.87 2.26 < 0.001***
Conscious 0.29 41.30 ± 13.54 0.01 0.99 9.30 < 0.001***

Sub-02 Unconscious 0.35 16.48 ± 09.11 0.44 0.48 0.11 0.2341 1.64
Glimpse 0.45 24.22 ± 13.42 0.29 0.71 1.12 < 0.001***

Conscious 0.20 36.74 ± 13.62 0.04 0.97 3.82 < 0.001***
Sub-03 Unconscious 0.44 34.73 ± 18.91 0.49 0.54 0.12 0.1675 1.54

Glimpse 0.31 50.79 ± 18.52 0.19 0.77 1.61 < 0.001***
Conscious 0.24 58.92 ± 20.79 0.04 0.98 3.81 < 0.001***

Sub-04 Unconscious 0.44 34.92 ± 16.57 0.22 0.20 -0.06 0.6526 1.85
Glimpse 0.32 51.55 ± 18.12 0.10 0.95 2.91 < 0.001***

Conscious 0.24 59.07 ± 18.27 0.01 0.99 6.37 < 0.001***
Sub-05 Unconscious 0.42 19.80 ± 11.93 0.39 0.49 0.25 0.0276* 2.55

Glimpse 0.28 31.43 ± 13.50 0.19 0.74 1.51 < 0.001***
Conscious 0.29 40.22 ± 17.03 0.09 0.96 3.14 < 0.001***

Sub-06 Unconscious 0.44 22.70 ± 13.98 0.51 0.61 0.27 0.019* 1.72
Glimpse 0.22 35.80 ± 15.42 0.21 0.77 1.53 < 0.001***

Conscious 0.34 43.18 ± 17.83 0.05 0.91 3.00 < 0.001***
Sub-07 Unconscious 0.41 28.48 ± 16.39 0.39 0.57 0.47 < 0.001*** 1.37

Glimpse 0.39 41.19 ± 17.60 0.27 0.83 1.57 < 0.001***
Conscious 0.20 50.47 ± 20.39 0.06 0.95 3.21 < 0.001***

Table 2.1: Individual proportion of awareness ratings, target duration, probability of hits and
false alarms and corresponding d’ scores, as well meta-d’ scores for each subject.*:p < 0.05, **:p
< 0.01, ***:p < 0.001; one-tailed p-values, Bonferroni corrected.
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2.3.2 Decoding within each awareness state and generalization

across awareness states

Out-of-sample generalization was applied to decode the categories of the items when they

were consciously aware and when they were not. Figure 2.5 illustrates the decoding re-

sults in the unconscious and the conscious trials as well as the generalization performance

from a decoder trained on the conscious trials and tested on the unconscious trials. Im-

portantly, Figure 2.5 shows individual classification performance by using cross-validation

and permutation tests run within each participant. ROC AUC was used as a measure

of decoding accuracy (*:p < 0.05, **:p < 0.01, ***:p < 0.001, after multiple comparison

corrections for the number of ROIs tested). In the unconscious trials, associated with

null perceptual sensitivity in most subjects, significant decoding of the image class was

achieved from multi-voxel activity patterns in ventral visual areas and even prefrontal

regions. In the unconscious trials, multi-voxel patterns in the fusiform gyrus and middle

frontal gyrus contained information that allowed for decoding of the item class in six of

seven subjects. The unconscious item could also be decoded from activity in the inferior

frontal gyrus in five subjects, and in four subjects from the inferior parietal lobe, infe-

rior temporal lobe, lateral occipital cortex, parahippocampal gyrus, and superior parietal

gyrus. Interestingly, the pattern of decoding results of the subjects that showed above

chance perceptual sensitivity in those trials subjectively rated as unaware did not appear

different in any brain area from the subjects in which sensitivity was at chance (Figure

2.6), although further research comparing a bigger number of subjects in the two cases is

necessary to make further determinations.

We then investigated whether the multi-voxel patterns in the conscious trials were

similar to the patterns in the unconscious trials. We applied cross-awareness-state gener-

alization from the conscious to the unconscious condition. We found that the patterns in

fusiform gyrus, lateral occipital cortex, and precuneus could be generalized from conscious

to unconscious in all subjects. Additionally, the activity patterns in inferior parietal lobe,

inferior temporal lobe, lingual, middle frontal gyrus, and superior parietal gyrus could



Chapter 2. Decoding unconscious and conscious contents 34

be generalized from conscious to unconscious in six out of seven subjects. The activity

in inferior frontal lobe and pericalcarine cortex could be generalized from conscious to

unconscious in five out of seven subjects. And lastly, the activity in parahippocampal

gyrus and superior frontal gyrus could be generalized from conscious to unconscious in

four out of seven subjects.

This pattern of results indicates the presence of invariant multivariate patterns in both

the visual areas and the frontal regions for the same item categories in the conscious and

unconscious conditions.
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Figure 2.5: Decoding performance (ROC AUC) for out-of-sample images for each subject
across the unconscious and conscious trials. *:p < 0.05, **:p < 0.01, ***:p < 0.001, one-tailed
p-value, after multiple comparison correction for the number of ROIs tested for each subject.
Error bars represent the standard error of the mean. Red asterisks indicate those ROIs in which
the cross-awareness state generalization appeared above chance but the decoding in the conscious
condition was at chance
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Figure 2.6: Additional decoding results. Distribution of decoding accuracy across the subjects
whose perceptual sensitivity was at chance level and those who deviated from chance, including
the mean, first, and third quartiles.
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In addition to the standard MVPA we conducted on the fMRI data, we measure the

robustness of the MVPA results by increasing the magnitude of the L1 regularization and

changing the cross-validation paradigm (random stratified shuffling).

Showed as in Figure 2.7, when we increase the L1 regularization for the magnitude of

5, for the unconscious trials, we could decode the image categories from the lingual gyrus,

fusiform gyrus, parahippocampal gyrus, middle frontal gyrus, and the inferior frontal

gyrus in all subjects. Compared to the initial model, the pattern decoding was more

robust using higher regularization. Additionally, when we change the cross-validation

partitioning method (using random stratified shuffling, Figure 2.8), similar patterns were

observed. Thus, we can confirm the robustness of the decoding pipeline used in the initial

analysis.



Chapter 2. Decoding unconscious and conscious contents 38

Figure 2.7: Decoding performance of the SVM with L1 regularization (C = 5) using the
previous out-of-sample generalization cross-validation partitioning scheme: *:p < 0.05, **:p <
0.01, ***:p < 0.001; one-tailed p-value, after multiple comparison correction for the number of
ROIs tested for each subject. Error bars represent the standard error of the mean. Red asterisks
indicate those ROIs in which the cross-awareness state generalization appeared above chance but
the decoding in the conscious condition was at chance
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Figure 2.8: Decoding performance of the SVM with the default L1 regularization (C = 1) using
the stratified random shuffle cross-validation partitioning scheme. During each cross-validation
within each state of awareness, 95% of the data was used for training, and 5% of the data was used
for testing. This cross-validation scheme was repeated 1000 times. During the cross-awareness
cross-validation, 95% of the trials in the conscious condition were randomly selected for training
and 100% of the trials in the unconscious condition were used for testing: *:p < 0.05, **:p <
0.01, ***:p < 0.001; one-tailed p-value, after multiple comparison correction for the number of
ROIs tested for each subject. Error bars represent the standard error of the mean.
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2.4 Discussion

In this chapter, we presented the results of a high-precision, within-subject fMRI-based

decoding experiment to assess the representation of unconscious and conscious items using

a combination of subjective and objective measures of awareness (i.e., null perceptual

sensitivity on trials in which participants reported no awareness).

Isolating the brain representation of unconscious contents has been difficult to achieve

systematically and reliably in previous work (Michel, 2019), with low numbers of trials

and signal detection theoretic constraints (Macmillan, 1986) not allowing to decisively

discard conscious perception (Fang & He, 2005; Gayet et al., 2020; Hesselmann et al.,

2011; Ludwig et al., 2015; Stein et al., 2021). High-precision fMRI decoding paradigms

can thus provide a richer information-based approach (Kriegeskorte et al., 2006) to reveal

meaningful feature representations of unconscious content, and that otherwise would be

missed. And critically, when unconscious content could be decoded, this was restricted

to the visual cortex (also see Ludwig & Hesselmann, 2015; Stein et al., 2021).

Here we showed that even considering those subjects that had absolutely no aware-

ness of the target item (null perceptual sensitivity), a linear SVM could decode the image

categories from the fusiform gyrus and the middle frontal gyrus robustly through differ-

ent modifications of decoding pipelines. High-precision fMRI decoding paradigms can

thus provide a richer information-based approach (Kriegeskorte et al., 2006) to reveal

meaningful feature representations of unconscious content, and that otherwise would be

missed.

Remarkably, the fMRI decoding results indicate that the neural representation of con-

scious and unconscious contents overlap in the ventral visual pathway, also including

parietal and even to some extent in prefrontal areas in a substantial part of the observers.

Previous studies using lowly sampled fMRI designs could not reveal evidence consistent

with this view (Schurger et al., 2010; Sterzer et al., 2008). Visual consciousness may be

associated with neural representations that are more stable across different presentations
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of the events (Schurger et al., 2010), but our data indicate that the underlying represen-

tational patterns in terms of perceptual content are to some degree generalizable across

awareness states, despite the non-linear dynamic changes in the intensity of the neural

response that occur in the frontoparietal cortex during conscious processing, (Beck et al.,

2001; Dehaene & Changeux, 2004; Dehaene et al., 2001; Haynes et al., 2005; Kranczioch

et al., 2005; Pessoa & Ungerleider, 2004), and even despite the visible items were here

presented for a longer duration. This observation points to revisions to the neuronal

global workspace model (Dehaene, 2014).
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3 Assessing the representation of

unseen contents using deep neural

networks

3.1 Introduction: Artificial deep neural network as a

model of the human visual system at the represen-

tational level

The first neural network model, the perceptron (Rosenblatt, 1960), was first proposed

as an abstract mathematical model of a biological neuron. The extension of multilayer

perceptron and the different activation functions (Leshno et al., 1993) allowed perceptron

models to map complex input and output patterns (Schäfer & Zimmermann, 2006; Sonoda

& Murata, 2017). One of the classes of neural network models is called the feedforward

convolutional neural network (FCNN) (Fukushima, 1980; Hinton et al., 2015; LeCun &

Bengio, 1995; McFee et al., 2018). FCNNs are reasonably good model candidates for

studying the human vision system (Lindsay, 2021; Richards et al., 2019). They have

shown excellent performance in image recognition as well as predicting primate brain

activities (Hinton et al., 2015; Kietzmann et al., 2019a; Kriegeskorte & Douglas, 2018;

Schrimpf et al., 2020). The convolutional layers are thought to ensemble local features

(i.e., edges and line segments) to become more robust features (i.e., eyes and noise on a

face) for the higher-order layers (Qin et al., 2018).

A typical FCNN contains multiple convolutional layers and pooling layers, followed by
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a few fully-connected layers before the last output prediction layer (Leshno et al., 1993).

For instance, an image, with a height and width of 256 and 3 color channels, is processed

by a moving two-dimensional (2D) kernel (e.g. 3 × 3) separately for each channel. The

2D kernel moves sequentially from the left to right and from top to bottom within each

channel to extract "features" for the next layer. The extracted feature at each iteration by

the 2D kernel could be maximized or averaged to represent the features at a higher level

(i.e., pooling, Scherer et al., 2010). This processing is repeated for several convolutional

layers that contain these 2D kernels. After multiple convolutions and pooling processing,

the feature representations of the original image become more and more abstract and the

“field of view of network becomes wider” (Fukushima, 1980). Following the convolutional

layer, the abstract "feature representations" were pooled or resized and then connected

to fully-connected layers. These fully-connected layers are often called "hidden layers"

in cognitive computational neuroscience literature (Kriegeskorte, 2015). In the end, an

output prediction layer with a softmax (Equation 3.2) produces the probability of the

input belonging to one of the categories. In order to train a FCNN to classify image

categories, the images are passed forward through the model, and then the predicted

categories and the true categories are compared by a loss function, for instance, cross-

entropy. The difference between the predicted and true categories, namely the loss, is

backpropagated from the last layer to the previous layers. The backpropagated error

signals are the gradients. An optimizer, the stochastic gradient descent, for instance, uses

the gradients to modify the weights in the layers. Weights in the convolutional layers are

the weights in the kernels and the weights in the fully-connected layers are the connections

between the artificial neurons between two layers.



Chapter 3. Assessing the representation of unseen contents using DNNs 44

3.2 Methods

3.2.1 A feedforward convolutional neural network simulation of

unconscious processing at the representational level

In this chapter, we had deep artificial neural networks from computer vision to perform

a similar visual discrimination task to that given to our human observers. We sought to

model our observation of hidden informative neural representations of items associated

with null perceptual sensitivity. Note that the computer simulation approached the ques-

tion at the representational level and not at the implementation level (Marr and Vision,

1982, i.e., the network simulation did not aim to provide a biological model of the system).

Our modeling goal, therefore, was to demonstrate that the hidden layer representation of

the neural network contains information that allows for decoding of a noisy visual stimulus

even when artificial neural networks performed image classification at chance level.

The FCNN was pretrained with the ImageNet dataset (Deng et al., 2009) and then

adapted to our experiment via transfer learning procedures (Yosinski et al., 2014). Due to

a large number of model testing and limited computational power, this chapter focused on

decoding the last hidden layer of the FCNN. The rationale was based on previous studies

that also modeled visual recognition using FCNN (Güçlü & van Gerven, 2015; Khaligh-

Razavi & Kriegeskorte, 2014). These studies demonstrated that the last hidden layer of

the FCNN contains a condensed summarization of the relevant object properties by as-

sembling feature information from the previous convolutional layers. These hidden layers

have representational spaces that are similar to the inferior temporal cortex (IT) (Güçlü

& van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014). IT is considered one of the

regions that ensembles low-level visual inputs and produces high-level features for recog-

nizing objects (Kriegeskorte et al., 2008b). Therefore, we focused our representational

modeling approach on the very last hidden layer of the FCNN in the current chapter. We

hypothesized that similar to the human observers, when the FCNN displays null sensitiv-

ity in image classification, a linear classifier could nevertheless read out information from
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the hidden layer of the FCNN that can predict the content of the stimulus presented.

However, we also predicted that when the signal-to-noise ratio of the image was too high,

neither the FCNN nor the linear classifier could classify the object categories.

We used the convolutional layers from different pretrained FCNNs, such as the AlexNet

(Krizhevsky et al., 2012), the VGGNet (Simonyan & Zisserman, 2015), the ResNet50 (He

et al., 2016), the MobileNet (Howard et al., 2017), and the DenseNet169 (Huang et al.,

2017), implemented in PyTorch V1.8.0 and torchvision V0.9.0 (Paszke et al., 2017; Paszke

et al., 2019) to perform the simulations. These models were downloaded from PyTorch in

May 2022. The FCNNs first learned to perform the same visual discrimination task as the

human observers with clear images of animate and inanimate items with no background.

“Soft labels” were used to make the network less sensitive to the noise added during

testing (Nguyen et al., 2014). One example composed of random noise was added to each

batch of animate and inanimate images (batch size = 8) during the training phase. The

noise was sampled by a normal distribution with the mean and standard deviation of

the images of the same batch. The probability associated with this noise instances was

"0.5". These random noise training examples are important to improve the robustness

of the FCNNs when dealing with animate and inanimate images embedded in noise, and

they are important to reduce the bias of the FCNNs in predicting the image categories

when the embedded noise was very high. The FCNNs only predict one category, either

animate or inanimate, when the images are embedded in high levels of noise if they were

not trained with the random noise examples. This method is inspired and simplified from

Jin et al. (2015) research results.

The FCNNs were then tested under different levels of noise in the image. The goal

here was to emulate the pattern observed in the fMRI study (i.e., decoding of the noisy

image in the absence of perceptual sensitivity). To control for the initialization state

of the FCNNs, we fine-tuned some of the popular FCNN pretrained models, AlexNet

(Krizhevsky et al., 2012), VGG19 (Simonyan & Zisserman, 2015), ResNet50 (He et al.,

2016), MobileNetV2 (Howard et al., 2017), and DenseNet169 (Huang et al., 2017), which

were pretrained using the ImageNet dataset (Deng et al., 2009) and then were adapted to



Chapter 3. Assessing the representation of unseen contents using DNNs 46

our experiment using a transfer learning (fine-tuning) procedure (Yosinski et al., 2014),

illustrated by Figure 3.1.

The AlexNet (Krizhevsky et al., 2012) contained six convolutional layers; the VGG19

(Simonyan & Zisserman, 2015) contained five convolutional blocks with an increased size

of convolutional processing, resulting 16 convolutional layers; the Resnet50 (He et al.,

2016) contained an initial convolutional layer, followed by four convolutional blocks, re-

sulting 50 convolutional layers; the MobileNetV2 (Howard et al., 2017) contained an

initial convolutional layer and seven bottleneck blocks, followed by a convolutional layer,

a pooling layer, and another convolutional layer, resulting 25 convolutional layers; the

DenseNet169 (Huang et al., 2017) contained an initial convolutional layer and four con-

secutive dense blocks and each was followed by a transition convolutional layer, resulting

in 168 convolutional layers.

Pretrained FCNNs were stripped of the original fully-connected layer while weights

and biases of the convolutional layers were frozen and not updated further (Yosinski et

al., 2014). An adaptive pooling (McFee et al., 2018) operation was applied to the last

convolutional layer so that the output of this layer became a one-dimensional vector, and

a new fully-connected layer took the weighted sum of these outputs (namely the "hidden

layer"). The number of artificial units used in the hidden layer could be any positive

integer, but for simplicity, we took 300 as an example and we explored how the number of

units (i.e., 2, 5, 10, 20, 50, 100, and 300) influenced the pattern of results. The number of

hidden layer units determined the number of new weights, wi, for training. The outputs

of the hidden layer were passed to an activation function (Specht, 1990), which could

be linear (i.e., identical function) or nonlinear (i.e., rectified function). A dropout was

applied to the hidden layer during training but not during testing. The dropout function

randomly zeros a proportion of outputs of the applied layer, and this procedure forces

the layer to learn redundant features to improve robustness. Different dropout rates were

explored (i.e., 0, 0.25, 0.5, and 0.75), where a zero dropout rate meant no dropout was

applied. The dropout operation was varied to investigate how feature representations

could be affected by a simple regularization.
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A new fully-connected layer (namely the "classification layer") took the outputs pro-

cessed by the activation function of the hidden layer to compose the classification layer.

The number of artificial units used in the classification layer depended on the activation

function applied to the outputs of the layer. If the activation function was sigmoid (Equa-

tion 3.1), one unit was used, while if the activation was a softmax function (Equation 3.2),

two units were used.

ψ(xi) =
1

1 + e−xi
(3.1)

Equation 3.1: Equation of a sigmoid function. xi is the prediction of the ith categories after the
initial pass of the output layer. Under subscripts "i" denotes the ith output of a given artificial
unit.

ψ(xi) =
exi∑
exi

(3.2)

Equation 3.2: Equation of a softmax function. xi is the prediction of the ith categories after the
initial pass of the output layer. Under subscripts "i" denotes the ith output of a given artificial
unit.

CNNi x wi + bi

hidden layer (5, 10, ... 300

units)

Pretrained
convolutional neural

network (CNN)

Hidden activation Sigmoid (1 unit) or 

Softmax (2 units)

Classification

Hi x wi + bi

Figure 3.1: A simplified scheme of fine-tuning a pre-trained feedforward convolutional neural
network model. The task is to classify the living vs. non-living category of the images used in the
experiment without noise. The blue architecture was frozen and the weights were not updated,
while the weights of the red architectures were updated during training.

The reorganized FCNN was trained on the gray-scaled, augmented (flipped or rotated),

and normalized experimental images. The FCNN was then validated on images that were

also gray-scaled but with different degrees of augmentation. The loss function was the

binary cross entropy (Equation 3.3), a special case of the cross entropy family. The

optimizer was Adam (Kingma & Ba, 2014) with a learning rate of 1e−4 without decay.

The PyTorch implemented binary cross entropy “clamps its log function outputs to be
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greater than or equal to -100. This way, we can always have a finite loss value and a linear

backward method” (Paszke et al., 2017; Paszke et al., 2019). The validation performance

was used to determine when to stop training, and it was estimated every 10 training

epochs. The FCNN model was trained until the loss did not decrease for five validation

estimations.

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.3)

Equation 3.3: Binary cross entropy loss function used for computing the loss during training
and validation of the FCNNs. yi is one of the two categories, and p(yi) is the probabilistic
prediction of the corresponding category.

As noted, after training, the weights and biases of the FCNNs were frozen to prevent

the weights from changing during the test phase. During the test phase, Gaussian noise

was added to the images to reduce the FCNNs classification performance. Similar aug-

mentations as in the validation set were applied to the testing image sets. The noise added

to the images was sampled from a Gaussian distribution centered at zero and different

variance (σ). The level of noise was defined by setting up the variance at the beginning

of each test phase.

The noise levels ranged from 0 to 1000 in steps of 51 following a logarithmic trend. For

a given noise level, 20 sessions of 96 images with a batch size of 8 were fed to the FCNN

model, and both the outputs of the hidden layer and the classification layer were recorded.

The outputs of the classification layer were used to determine the "perceptual sensitivity"

of the FCNN model, and the outputs of the hidden layer were used to perform subsequent

decoding analyses with a linear SVM classifier, in keeping with the fMRI analysis.

To determine the significance level of the FCNNs performance, the order of the true

labels in each session was shuffled while the order of the predicted labels remained the

same. The permuted performance was calculated for the 20 sessions. This procedure

was repeated 10,000 times to estimate the empirical chance level of the FCNNs. The

significance level was the probability that the performance of the FCNNs was greater or

equal to the chance level performances (one-tailed test against 0.05). If the p-value is
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greater or equal to 0.05, we considered that FCNNs’ performance was not different from

the empirical chance level.

We then assessed, for a given noisy image, whether the hidden layer of the FCNN (i.e.,

following the last convolutional layers), contained information that allowed decoding of

the category of the image (animate vs inanimate). A linear SVM used the information

contained in the FCNN hidden layer to decode the image class across different levels of

noise, even when the FCNNs classification performance was at chance level. The outputs

and the labels of the hidden layer from the 20 sessions were concatenated. A random

shuffle stratified cross-validation procedure was used in the decoding experiments with 50

folds to estimate the decoding performance of the SVM. The statistical significance of the

decoding performance was estimated by a different permutation procedure to the FCNNs,

which here involved fitting the SVM model and testing the fitted SVM with 50-fold cross-

validation in each iteration of permutation, and it was computationally costly 1. On each

permutation iteration, the order of the labels was shuffled while the order of the outputs

of the hidden layer remained unchanged before fitting the linear SVM model (Ojala &

Garriga, 2010). The permutation iteration was repeated 10,000 times to estimate the

empirical chance level. The significance level was the probability of the true decoding

score greater or equal to the chance level.

Thus, with five FCNNs (AlexNet Krizhevsky et al., 2012, VGGNet Simonyan and Zis-

serman, 2015, ResNet50 He et al., 2016, MobileNet Howard et al., 2017, and DenseNet169

Huang et al., 2017) as CNN backbones, with seven hidden layer sizes (2, 5, 10, 20, 50,

100, 300), with six hidden layer activation functions (ReLU Nair and Hinton, 2010, ELU

Clevert et al., 2015, SELU Klambauer et al., 2017, Sigmoid, Tangent, Identical), with four

dropout rates (0, 0.25, 0.5, 0.75), with two output layer activation functions (Sigmoid and

Sotfmax), and with fifty-one noise levels, we had tested 85,388 pairs of FCNN and SVM

models in classifying or decoding the image categories.
1sklearn.model_selection.permutation_test_score
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3.3 Results

3.3.1 General results of the simulation models

Despite the FCNNs failing to classify the image, the animate vs inanimate categories of

the stimulus could still be decoded by analyzing the activity patterns of the hidden layer

of the network. To test this, a linear SVM was applied to the hidden layer representation

for decoding the image class across different levels of noise, even when the FCNN model

classification performance was at chance level. Previous studies modeled visual recogni-

tion using FCNNs (Güçlü & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014),

demonstrating that the last hidden layer of FCNNs has representational spaces that are

similar to those in high-level regions in ventral visual cortex (Güçlü & van Gerven, 2015;

Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte et al., 2008b). Therefore, we focused

our analyses on the very last hidden layer of the FCNN in the current chapter, also

considering limitations in computational resources due to a large number of simulations

2.

Figure 3.2 3 shows the classification performance of the FCNNs (black) and also the

decoding performance of the SVM decoding the image categories from the hidden layer

representation of the FCNNs (blue) as a function of the level of noise and the different

factors. When the level of noise was low, FCNNs could classify the category of the images

very well, reaching ROC AUC scores higher than 0.9 but performance dropped with the

level of Gaussian noise. The observed logarithmic downward trend could be due to the

sampling of noise levels in the logarithmic space.

Remarkably, when the FCNNs failed to classify the noisy images (p > 0.05; N =

56,258), we observed that the hidden layer representation of these FCNNs contained

information that allowed a linear SVM classifier to decode the image category above

chance levels reliably in 21,188 of the simulations (p < 0.05, one sample permutation
2The results were initially reported in Mei et al. (2022), but the models were re-run for checking of

robustness and reproducibility on 01/05/2022. The patterns observed are similar between the two runs,
but the exact values are different.

3High definition figure: https://tinyurl.com/y6dhls7c

https://tinyurl.com/y6dhls7c
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test). Figure 3.3 illustrates the decoding results based on the hidden layer representation

when the FCNN was at chance level.

In order to better interpret the results, we divided the results based on the noise levels.

We defined low and high noise by the median of the noise level between 0.01 and 1000

with 50 steps on a logarithm scale. When the noise level was relatively low ( < 2.8) and

the FCNNs failed to discriminate the noisy images (N = 16,338), 73.01% of the linear

SVMs could decode the FCNN hidden layers, and the difference in decoding performance

between SVM and FCNN was significantly greater than zero (p < 0.001, one sample

permutation test, no correction for multiple comparisons).

Remarkably, even when the noise level was higher (> 2.8) and the FCNNs classified the

images at chance level (N = 39,920), 23.19% of the linear SVMs could decode the image

category from the FCNN hidden layers. Crucially, the comparison of SVM decoding from

the hidden layer and the FCNNs classification performance including those 56,258 cases

in which the FCNNs classified noisy images at chance level again showed a significant

difference (permutation p < 0.05), demonstrating that the hidden layer of the FCNNs

contained informative representations despite the FCNN classification performance was

at chance level.

MobileNetV2 produced more informative hidden representations that could be de-

coded by the linear SVMs compared to other candidate model configurations. We also

observed that the classification performance of ResNet50 models trained with different

configurations (e.g., varying number of hidden units, dropout rates) did not fall to chance

level until the noise level was relatively high (closer to the dashed line), and the propor-

tion of SVMs being able to decode FCNN hidden layers was higher compared to other

model configurations (39.36% v.s. 32.93% for MobileNetV2, 30.14% for AlexNet, 24.30%

for DenseNet, and 24.37% for VGGNet). Additionally, we observed that even when the

noise level was high, the ResNet50 models provided a higher proportion of hidden repre-

sentations that were decodable by the linear SVMs (34.07% v.s. 23.86% for MobileNetV2,

22.72% for DenseNet169, 22.69% for AlexNet, and 12.15% for VGGNet, see Figure 3.3).
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In summary, MobileNetV2 and ResNet50 generated the most informative hidden repre-

sentations. These networks have an intermediate level of depth. By comparison, the

deepest network, DenseNet, did not produce better hidden representations. Hence the

depth of the network per se does not appear to determine the quality or informativeness

of the hidden representations significantly.

Then, we sought to further understand the influence of the components of the FCNN

architecture (i.e., convolutional layers, dropout rate, number of hidden units) on decoding

performance. We used a random forest classifier to compute the feature importance of

the different FCNN components for predicting whether or not the SVM decoded the

image class based on the hidden layer representation. The classification performance was

estimated by random shuffle stratified cross-validation with 100 folds (80/20 splitting).

In each fold, a random forest classifier was fit to predict whether or not the hidden

representation was decodable on the training set, and then the feature importance was

estimated by a permutation procedure on the test set (Altmann et al., 2010; Fisher et al.,

2018). Briefly, for a given component (i.e., hidden layer activation function), the order

of instances was shuffled while the order of the instances of other components was not

changed, in order to create a corrupted version of the data. The dropped classification

performance indicated how important a particular feature was. Figure 3.4 shows that

the noise level in the image was the best indicator of whether a hidden representation

was decodable, followed by model architecture, followed by the number of hidden units,

and then by the type of hidden activation and output activation functions. The least

important feature was the dropout rate. We conducted a one-way ANOVA on the feature

importances obtained in each cross-validation fold using the attributes in Figure 3.4 as

a factor. This allowed us to quantify the effect of the noise level, model architecture,

number of hidden units, type of hidden activation function, type of output activation

function, and dropout rate, on the feature importance. There were significant differences

between the components of the network models tested (F(5, 594) = 2215.57, p < 0.001,

η2 = 0.95). Tukey HSD post-hoc tests showed that all the pairwise comparisons were

reliable (lowest p < 0.015, Bonferroni corrected for multiple comparisons, see Table 3.1).
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Figure 3.2: The black dots illustrate the classification performance of the FCNNs, as a function
of noise level, type of pre-trained model configuration (column) and activation functions (row).
The blue dots illustrate the classification performance of the linear SVMs applied to the hidden
layer of the FCNN model.
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Figure 3.3: Image classification performance of the linear SVMs applied to the FCNN hidden
layers when a given FCNN failed to discriminate the living v.s. nonliving categories, as a function
of the noise level. The superimposed subplot depicts the proportion of times in which the linear
SVM was able to decode the FCNN hidden layers as a function of low and high noise levels. The
blue bar represents the proportion of linear SVMs being able to decode the FCNN hidden layers,
while the orange bar represents the proportion of linear SVMs decoding the FCNN hidden layers
at chance level.
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Figure 3.4: Feature importance of FCNN components that were manipulated in computational
modeling. Feature importance was measured in arbitrary units, including the mean, first and
third quartiles. The number of hidden layer units, noise levels, and pretrained configurations
influenced the decoding performance of the image class based on the hidden layer of the FCNNs
when its classification performance was at chance level.
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A B A B ∆(A,B) SE T p-tukey η2

Dropout Hidden func 0.00767 0.01741 -0.00972 0.00022 -43.49 < 0.001 0.90
Dropout Hidden units 0.00768 0.01993 -0.01225 0.00022 -54.77 < 0.001 0.94
Dropout Model architecture 0.00768 0.02444 -0.01676 0.00022 -74.95 < 0.001 0.97
Dropout Noise level 0.00768 0.02687 -0.01919 0.00022 -85.82 < 0.001 0.97
Dropout Output func 0.00768 0.01120 -0.00352 0.00022 -15.74 < 0.001 0.55

Hidden func Hidden units 0.01741 0.01993 -0.00252 0.00022 -11.28 < 0.001 0.39
Hidden func Model architecture 0.01741 0.02444 -0.00703 0.00022 -31.46 < 0.001 0.83
Hidden func Noise level 0.01741 0.02687 -0.00946 0.00022 -42.33 < 0.001 0.90
Hidden func Output func 0.01741 0.01120 0.00621 0.00022 27.75 < 0.001 0.79
Hidden units Model architecture 0.01993 0.02444 -0.00451 0.00022 -20.18 < 0.001 0.67
Hidden units Noise level 0.01993 0.02687 -0.00694 0.00022 -31.04 < 0.001 0.83
Hidden units Output func 0.01993 0.01120 0.00872 0.00022 39.04 < 0.001 0.88

Model architecture Noise level 0.02444 0.02687 -0.00243 0.00022 -10.87 < 0.001 0.37
Model architecture Output func 0.02444 0.01120 0.01324 0.00022 59.22 < 0.001 0.95

Noise Level Output func 0.02687 0.01120 0.01567 0.00022 70.08 < 0.001 0.96

Table 3.1: Post-hoc test results regarding the feature importances. A: mean of A; B: mean
of B; ∆A,B: difference between A and B Dropout: Dropout rate; SE: standard error of the
difference between A and B; Hidden func: Hidden activation function; Output func: Output
activation function.
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3.3.2 Robustness of the simulation models under various condi-

tions

Additional simulations were run to test whether similar results are obtained when the

FCNNs are trained with images embedded in Gaussian noise. Here we used a similar

pipeline to that used with clear images, except that here the images during training

were embedded in Gaussian noise sampled from a standard normal distribution (mean

centered at zero with unit variance, one). The results are shown in Figures 3.5 and 3.6.

To interpret the results, here we defined “low noise” as the noise level was lower than 1

(i.e., the noise level used during training) and “high noise” as the noise level was greater

than 1. In the range of low noise, 96.71% of the DenseNet169 configurations (93.20%

for ResNet50, 93.40% for VGG19, 77.87% for MobileNetV2, and 75.78% for AlexNet)

produced informative hidden representations when the performance of the FCNNs was at

chance level (p > 0.05 by a permutation-based t-test). This was due to the FCNN being

sensitive to the removal of the noise when it was tested with clearer images. Recall that

FCNNs are known to be very sensitive to image perturbations (Kubilius et al., 2019).

Critically, when the level of noise was high, 43.72% of the VGG19 configurations (41.67%

for ResNet50, 37.35% for DenseNet169, 34.42% for MobileNetV2, and 33.51% for AlexNet)

produced informative hidden representations when the performance of the FCNNs was

at chance level (Figure 3.7). The performance of the SVM decoding the hidden layer

representation was statistically significant overall across all the noise levels (p < 0.001 in

a permutation-based t-test), and it was also significant when the noise level was low (p <

0.00001) or high (p < 0.001).
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Figure 3.5: Performance of the FCNNs and the SVM decoding the hidden representations,
when the FCNNs were trained with images embedded in standard Gaussian noise. Color blue
depicts the ROC AUC scores of the FCNNs and color black depicts the ROC AUC scores of
the SVMs. Different sizes depict the different dropout rates and different shapes depict different
numbers of hidden units.
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Figure 3.6: Difference of performance between the FCNNs and the SVM decoding the hidden
layer representation. We subtracted the performance of the FCNNs from the performance of
the corresponding SVM. Different colors represented different computer vision models, different
sizes represented different dropout rates, and different marker types represented different hidden
layer sizes. The small titles on top of each subplot showed the activation functions of the hidden
layer and the output layer.
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Figure 3.7: The performance of the SVM decoding the hidden representations when the FCNNs
performance was at chance level. The vertical red dash line depicts the noise level that was used
during training. Low and high noise levels were defined based on this. The smaller figure within
each subplot shows the proportion of FCNNs configurations that produced informative hidden
representations when the noise level was low or high.
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Additional analyses were conducted to test whether the image categories could be

decoded from the first layer activity pattern. Since the convolutional layers were frozen

during the simulation, testing the decoding of the image categories from the first layer was

redundant across different FCNN configurations (i.e., across different numbers of hidden

units or activation functions). For the analysis of the first layer, we simply added a new

output layer on top of the original model that was trained on the ImageNet dataset. We

trained the newly added output layer, which mapped 1000 outputs (ImageNet dataset

categories) to 2 outputs (animate v.s. inanimate) on the clear images. The training only

affected the weights associated with the last layer of the original CNN models and the

newly added output layer. The output layer activation function was softmax and the loss

function for training was the binary cross entropy. After the training, we froze the model,

and then, this was tested with images of different levels of noise following the pipeline

of the first simulations. During the testing, the activity patterns of the first layer were

recorded for further analyses. The image sizes were 128 × 128 × 3 and the output of the

first layer for the VGG19 was 127 × 127 × 64 (i.e., with a dimensionality of over one

million features after flattening). Relative to the number of trials (i.e., 96 × 20 =1920),

the decoding matrix for a linear SVM classifier with an L2 regularization implemented

by scikit-learn was computationally intensive. In a unit test, it took the classifier 20

minutes to train on 80% of the data and test on 20% of the data. For a standard 50-

folds cross-validation, it took about 16 hours. To reduce the computational cost, we

applied a principal components analysis (PCA) implemented by scikit-learn to reduce the

dimensionality of the data. The PCA algorithm was set to keep the components that

represented 90% of the variance. Then a linear SVM classifier with L2 regularization was

applied to decode the image categories (animate vs inanimate) in 50-fold cross-validation.

The discrimination performance of the FCNN and the SVM decoding performance based

on the first layer activity patterns were compared to their corresponding empirical chance

levels to assess the statistical significance using the same non-parametric t-test conducted

for the analyses of the hidden layer. The results showed that the image categories could

be decoded from the first layer and decoding performance decreased with increasing levels



Chapter 3. Assessing the representation of unseen contents using DNNs 62

of noise in the image. Remarkably, even when the FCNN performed at chance level with

noisy images, the image category could be decoded from the first layer activity patterns.

These results are presented in Figure 3.8.

Similar patterns were observed: when the FCNNs failed to classify the noise image

embedded in a high level of noise, a linear SVM could decode the image categories from

the first convolutional layer representations from these FCNNs. The results imply that the

FCNNs pretrained on the ImageNet dataset have learned organized patterns that could

extract informative representations from noisy images even from the very first layer. These

representations are insensitive to noise.

Figure 3.8: The left part depicts the FCNN performance (black dots) relative to the SVM
decoding performance based on the first layer activity patterns (blue dots). The right part
illustrates the range of noise at which the FCNN is at chance level but the SVM could decode
significantly above chance the image categories.

3.4 Discussion

In the current chapter, we conducted a computational simulation of the fMRI experiment

using FCNNs at the representational level. We observed that when the FCNNs failed to
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classify the noisy images, we could still decode the noisy image categories from the hidden

layer representations of the FCNNs. Additionally, this was replicated with FCNNs trained

with adversarial training (i.e., trained with noisy images).

FCNN is arguably one of the many computer vision models that may explain the com-

putations of the ventral visual pathway of the brain (Kriegeskorte, 2015; LeCun et al.,

2015; Lindsay, 2021). The results of this chapter provide a simplified computational mod-

eling approach to studying the processing of unseen contents. The simulation approach

allowed us to explicitly formulate the properties of the visual unconscious processing (e.g.

model backbones, hidden layer size) and test how different features of the properties in-

fluenced the processing of unseen items. We tested a combination of five FCNN model

backbones, seven hidden layer sizes, six hidden layer activation functions, four dropout

rates, and two output layer activations under fifty-one noise level conditions. The wide

range of simulation space allowed us to observe how these components of the FCNNs

influenced the capacity of the FCNNs’ hidden representations to retain information for

decoding. The results of the feature importance test of these components showed that

besides the noise levels, the CNN backbone model determined the capacity of the hid-

den layer to retain information for decoding when the FCNN performed at chance level.

Kriegeskorte (2015) argued that FCNNs can map complex image features to the goal-

driven decision outputs (i.e., living v.s. nonliving). If the FCNNs’ hidden layer had

a sufficient number of hidden units, the FCNNs could learn the representations of the

concepts. The FCNNs mapped the complex image features to the outputs by capturing

the different, increasingly abstract levels of representation of the information through the

different layers of the network, and importantly, these dynamics are considered similar to

the different levels of the ventral visual pathway (Yamins et al., 2013; Yamins & DiCarlo,

2016). Schrimpf et al. (2020) established the brain-score competition for researchers to

use many different models to predict different levels of the vision system in primates (hu-

man and nonhuman). The representations captured by each layer of the FCNNs were

often good predictors of brain representations. These results supported the FCNNs being

a reasonable choice of model to simulate the brain representation of visual contents. The
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simulations conducted in this chapter provided a computational approach to studying the

representation of unseen (i.e unrecognized) images. When the FCNNs classified the noisy

images at chance level and the noisy image categories could be decoded from the hidden

layer representations, the information contained in the hidden layer was not used for the

last layer predictions. In other words, information was not read-out by the last layer. The

results provided a computational account for the phenomena we observed in the fMRI

experiment. When the subjects were unconscious of the image class and their perceptual

sensitivity was at chance level, we could decode the image categories from their fusiform

gyrus and the middle frontal gyrus. This could also be due to a read-out problem between

perceptual information processes at a non-conscious level and how decision mechanisms

in the brain use the information to achieve categorical decisions.
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4 An information-based approach to

study neural signatures of conscious

and unconscious contents

4.1 Introduction: using information-based methods to

study conscious and unconscious processing

Kriegeskorte et al. (2006) proposed that researchers should take into greater considera-

tion of the larger, distributed spatial patterns of brain activity, in order to increase the

sensitivity in modeling neural activity. By combining a local sphere searchlight method,

the multivariate statistics improve the sensitivity of the modeling. A searchlight is a pro-

cedure in which a classifier is fit and tested separately for a subset of voxels defined by

a moving sphere, and this results in a whole brain decoding accuracy map. Instead of a

classifier, a representational similarity analysis using a computational model (see below)

can also be used. This approach is now in the class of information-based approaches.

Representational similarity analysis (RSA) quantifies the geometry of the multi-voxel

representations using a collection of pairwise item dissimilarity measurements among

BOLD responses in a given region of interest (Diedrichsen & Kriegeskorte, 2017; Kriegesko-

rte et al., 2008a). RSA characterizes the information patterns that come from different

aspects (Kriegeskorte et al., 2008a). The activity-pattern information could be measured

in the so-called representational similarity analyses by distance-based measurements such

as Euclidean distance (Kriegeskorte et al., 2006). The distance-based approach compares
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the distance between pairs of activity patterns relative to a computational model. The

distances indicate the relative similarities among pairs of activity patterns, including com-

putational model patterns. Thereby allowing comparison across different levels of analyses

and different principles of information processing.

The deep convolutional neural network is one of the classes of deep neural network

models in computer vision that had been used to explain brain activity (Güçlü & van

Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2009; Seeliger et al.,

2018). In this chapter, in order to quantify the voxel-wise responses to the masked images,

we compared the information patterns captured by the state-of-the-art computer vision

models (Schrimpf et al., 2020) and the information patterns captured by the fMRI. Thus,

we conducted a standard RSA and an encoding-based RSA, which are explained below.

4.2 Methods

4.2.1 Representations of the images from the state-of-the-art com-

puter vision models

The information patterns captured by the computer vision models were quantified by the

representational dissimilarity matrix (RDM, namely model RDM). First, we fine-tuned

the pretrained models with the Caltech101 dataset (Fei-Fei et al., 2004) to control for

the size of the hidden representations (i.e., to match the number of units across models

for the RSA). A 2D adaptive average pooling was applied to the last convolutional layer

of the FCNNs so that the outputs became one-dimensional vectors (He et al., 2015) 1.

The pooled activity patterns of the Alexnet and the VGG19 had 512 units, MobilenetV2

and DenseNet169 had 1024 units, and ResNet50 had 2048 units. Then, a fully-connected

layer with 300 units was added to the outputs of adaptive pooling, followed by a scaled

exponential linear unit function (SELU, Klambauer et al., 2017) 2. This allowed us to

rescale the representational dimensions of different models to the same dimension. And
1torch.nn.AdaptiveAvgPool2d((1,1))
2torch.nn.SELU(inplace=False)
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SELU was chosen to speed up the training of the new components and scale the output

activity patterns for better propagating information to the next layer.

A fully-connected layer with 96 units (1 per category of the Caltech dataset) was

added to the outputs of the SELU layer, followed by a softmax activation function to

compute probabilistic predictions of the image categories. The model was trained using 96

unique categories of the Caltech101 images (BACKGROUND_Google, Faces, Faces_easy,

stop_sign, and yin_yang were excluded, Fei-Fei et al., 2004). The convolutional layers

were frozen during the training. The loss function was binary cross entropy and the

optimizer was stochastic gradient descent. The data was split into train and validation

partitions and the training was terminated if the performance on the validation data did

not improve for five consecutive epochs.

We then fed the trained FCNNs with exactly the same images used in our experi-

ment but without the noise background, in order to extract the hidden representations

of the images. We then average the hidden representations of the trials belonging to

the same item (i.e cat) and computed the model RDMs for the AlexNet, the VGGNet,

MobileNetV2, the ResNet50, and the DenseNet169 (Figures 4.1, 4.3, 4.2, 4.4, and 4.5

depict the RDMs for these hidden representations), and it appears to be clear clusters for

the animate and inanimate image categories. Although it might be difficult to visually

inspect for AlexNet, the animate images were highly similar among each other and the

inanimate images were highly similar among each other, forming clusters at the lower left

and upper right quadrants. The similarities were more consistent among animate images

(lower left quadrant) compared to the inanimate images (upper right quadrant).

Using these RDMs, we further conducted a standard RSA (section 4.2.2) and an

encoding-based RSA (section 4.2.3) on the fMRI data within each subject.
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Figure 4.1: Representational dissimilarity matrix of the hidden representations of the AlexNet
model fine-tuned by Caltech101 dataset. The images were resized to 128 × 128 × 3 and then
passed through the model to obtain the feature representations. The RDM was computed by 1
- Pearson correlations of the feature representations. The first 48 items were animate and the
last 48 items were inanimate.
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Figure 4.2: Representational dissimilarity matrix of the hidden representations of the Mo-
bileNetV2 model fine-tuned by Caltech101 dataset. The images were resized to 128 × 128 × 3
and then passed through the model to obtain the feature representations. The RDM was com-
puted by 1 - Pearson correlations of the feature representations. The first 48 items were animate
and the last 48 items were inanimate.
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Figure 4.3: Representational dissimilarity matrix of the hidden representations of the VGG19
model fine-tuned by Caltech101 dataset. The images were resized to 128 × 128 × 3 and then
passed through the model to obtain the feature representations. The RDM was computed by 1
- Pearson correlations of the feature representations. The first 48 items were animate and the
last 48 items were inanimate.
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Figure 4.4: Representational dissimilarity matrix of the hidden representations of the ResNet50
model fine-tuned by Caltech101 dataset. The images were resized to 128 × 128 × 3 and then
passed through the model to obtain the feature representations. The RDM was computed by 1
- Pearson correlations of the feature representations. The first 48 items were animate and the
last 48 items were inanimate.
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Figure 4.5: Representational dissimilarity matrix of the hidden representations of the
DenseNet169 model fine-tuned by Caltech101 dataset. The images were resized to 128 × 128
× 3 and then passed through the model to obtain the feature representations. The RDM was
computed by 1 - Pearson correlations of the feature representations. The first 48 items were
animate and the last 48 items were inanimate.
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4.2.2 Standard whole-brain searchlight RSA

To conduct a whole-brain searchlight RSA, we then extracted the BOLD activity patterns

using a mask that contained all the ROIs used for the decoding analyses. We averaged

the BOLD signals of trials belonging to the same item (i.e., cat) within a searchlight

sphere of 9mm that moved around the brain mask. An RDM was computed for the

extracted BOLD signals using 1 - Pearson correlation implemented by Scipy (Virtanen

et al., 2020) 3 among each pair of images within each sphere. The lower triangles of

the two RDMs were extracted and correlated using Spearman correlation for each sphere

of the searchlight. The Spearman correlation coefficient was assigned to the center of

each sphere of the whole-brain searchlight. The resulting brain map of FCNNs/brain

similarities was converted to standard space for visualization using Nipype (Gorgolewski

et al., 2011) and FSL (Jenkinson et al., 2012) tools. This pipeline was run separately in

the unconscious and conscious conditions, separately within each participant. Note the

fMRI experiment in chapter 2 was designed for within-subject analysis, thus, it was not

suitable to further statistical inference on the RSA results.

4.2.3 Encoding-based whole-brain searchlight RSA

Konkle and Alvarez (2022) proposed an encoding-based RSA pipeline, adding encoding

models on top of the standard RSA pipeline, which can be used to better contextualize

the information patterns from the computational model space (i.e., VGG19) to the brain

space.

To conduct an encoding-based RSA, we split the data into train and test sets by

leaving four unique items out. With 96 unique items, we had twenty-four folds for cross-

validation. Within the training set, an L2-regularized linear regression model (ridge re-

gression) implemented by scikit-learn (Hilt & Seegrist, 1977; Pedregosa et al., 2011) was

trained to predict the voxel values using the image features in the computational model
3Scipy.spatial.distance.pdist
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space. The image features in the computational model space were the information pat-

terns captured by the computer vision models fine-tuned by the Caltech101 (Fei-Fei et al.,

2004). The fine-tuning procedure is described in section 4.2.1. Prior to training the ridge

regression model, two scalers were trained using only the training set. One scaler was a

MinMaxScaler 4 that normalized the voxel values, and the other was a StandardScaler

5 that normalized the image features. These scalers were trained in the training set and

then applied to the test set data for data normalization to improve the analyzing perfor-

mance and robustness. The ridge regression model was nested in a grid-search algorithm

to cross-validate the best L2-regularization term by stratified random shuffle splitting in

the training set using twenty folds. The trained ridge regression model predicted the voxel

values in the test set. The predicted voxel values were averaged for each unique item.

An RDM of the predicted voxel values and an RDM of the original voxel values in the

test set were computed using 1 - Pearson correlation implemented by Scipy (Virtanen

et al., 2020) among each pair of items within each sphere. The lower triangles of the

two RDMs were extracted and correlated using Spearman correlation for each sphere of

the searchlight and the correlation coefficients were assigned to the center of the spheres.

This pipeline (Figure 4.6) was run for three within- and cross-conscious state conditions

similar to sections 2.2.5 and 2.2.6.

These results are however descriptive since currently there are no robust within-subject

RSA analytical pipelines to make a within-subject statistical inference.

4sklearn.preprocessing.MinMaxScaler
5sklearn.preprocessing.StandardScaler
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Figure 4.6: General diagram of the encoding-based RSA pipeline. The CNN features and the
BOLD signals were split into "training" and "testing" sets accordingly for within- and cross-
conscious state conditions. The training set was used to train the encoding model (Ridge regres-
sion), and the encoding model was used to predict the BOLD signals in the testing set using the
testing set CNN features. In the end, we correlated the predicted BOLD signals with the true
BOLD signals to obtain the Spearman correlation brain map for further analysis.
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4.3 Results

4.3.1 Standard whole-brain searchlight RSA

We conducted a standard whole-brain searchlight RSA (Kriegeskorte et al., 2008a) to test

the information-based approach at the single subject level. We correlated the RDMs of

the AlexNet (Figure 4.1), VGGNet (Figure 4.3), MobileNetV2 (Figure 4.2), ResNet50

(Figure 4.4), and DenseNet169 (Figure 4.5) with the voxel responses for unconscious and

conscious conditions separately. Note that the results captured by the VGGNet and the

ResNet50 models are likely most informative due to their higher ranking in explaining the

variance of the human brain (Schrimpf et al., 2020).

In the unconscious condition (Figure 4.7), an RSA based on the AlexNet to extract

the model representations of the images showed that six of seven subjects demonstrated

model-relevant representations in both the ventral visual pathway and frontoparietal ar-

eas. An RSA based on VGG19 representations showed that four subjects had model-

relevant representations in the ventral visual pathway, and a different subset of four

subjects showed model-relevant representations in the frontoparietal areas. Using the

MobileNet, five subjects showed model-relevant representations in the ventral visual path-

way, and four subjects showed model-relevant representations in the frontoparietal areas.

ResNet50-based RSA showed model-relevant representations in the ventral visual path-

way in five subjects, and six subjects showed model-relevant representations in the fron-

toparietal areas. Finally, the DenseNet169-based RSA showed that three subjects had

model-relevant representations in the ventral visual pathway, and four subjects showed

model-relevant representations in the frontoparietal areas.

For the conscious condition (Figure 4.8), all subjects showed model-relevant represen-

tations in the ventral visual pathway across all models. Six of seven subjects also showed

model-relevant representations in the frontoparietal areas across all models.
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Figure 4.7: RSA map of the unconscious condition for the five FCNNs. Each row showed the
left and right hemisphere RSA maps of the same subject, and every two columns showed the left
and right hemisphere RSA maps of the same computer vision model.

Figure 4.8: RSA map of conscious condition for the five FCNNs. Each row showed the left
and right hemisphere RSA maps of the same subject, and every two columns showed the left and
right hemisphere RSA maps of the same computer vision model.
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4.3.2 Encoding-based whole-brain searchlight RSA

We also conducted the encoding-based whole-brain searchlight RSA (Konkle & Alvarez,

2022). Compared to the standard whole-brain searchlight RSA, the encoding-based ap-

proach first contextualizes the model representations in the source brain state (i.e., con-

scious) and then measures the model-relevant representations in the target brain state

(i.e., unconscious). Thus, the encoding-based approach allows us to measure the model-

relevant representations with one extra dimension and test the representational similarity

across brain states.

Across different models within the unconscious condition, the computer vision model

feature representations were positively correlated to brain representations in the visual ar-

eas in four out of seven subjects (column 1 of Figures 4.9 - 4.13). Additionally, we observed

that the model feature representations of the AlexNet and DenseNet169 were negatively

correlated to the brain representations in the frontal areas for five of seven subjects. The

brain patterns correlated to the model were much stronger and more consistent across

subjects in the conscious condition. Negative correlations in RSA are difficult to inter-

pret, thus, we only gave a descriptive and speculative interpretation for the moment. The

brain representations in the frontal areas of these subjects were similar to the computer

vision models, but the brain representations were projected from the visual areas, there-

fore, the re-represented information "pointed to" a different high-dimensional direction

compared to the visual area representations, resulting in a negative correlation. This was

also observed within the conscious condition (column 2 of Figures 4.9 - 4.13), where posi-

tive correlations were observed in the visual areas and negative correlations were observed

beyond the visual areas. As we trained the encoding model in the conscious condition

and then transferred the encoded model features to the unconscious condition (column 3

of Figures 4.9 - 4.13), the RSA results could be an enhanced pattern of representations

of the unconscious condition, which was contextualized by the conscious brain states.

The patterns observed in the transferred encoding-based RSA pipeline from the conscious
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condition to the unconscious condition were very similar to those observed within the un-

conscious condition. This could be due to that the signal-to-noise ratio in the unconscious

condition was very low so the univariate encoding models did not enhance the RSA for

better pattern representations.

Figure 4.9: Encoding-based RSA map of the AlexNet model. The first and second columns
showed the RSA maps within the unconscious condition, the third and fourth columns showed
the RSA maps within the conscious condition, and the last two columns showed the RSA maps
that were contextualized in the conscious condition and then generalized to the unconscious
condition.
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Figure 4.10: Encoding-based RSA map of the VGG19 model. The first and second columns
showed the RSA maps within the unconscious condition, the third and fourth columns showed
the RSA maps within the conscious condition, and the last two columns showed the RSA maps
that were contextualized in the conscious condition and then generalized to the unconscious
condition.
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Figure 4.11: Encoding-based RSA map of the MobileNetV2 model. The first and second
columns showed the RSA maps within the unconscious condition, the third and fourth columns
showed the RSA maps within the conscious condition, and the last two columns showed the RSA
maps that were contextualized in the conscious condition and then generalized to the unconscious
condition.
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Figure 4.12: Encoding-based RSA map of the ResNet50 model. The first and second columns
showed the RSA maps within the unconscious condition, the third and fourth columns showed
the RSA maps within the conscious condition, and the last two columns showed the RSA maps
that were contextualized in the conscious condition and then generalized to the unconscious
condition.
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Figure 4.13: Encoding-based RSA map of the DensNet169 model. The first and second columns
showed the RSA maps within the unconscious condition, the third and fourth columns showed
the RSA maps within the conscious condition, and the last two columns showed the RSA maps
that were contextualized in the conscious condition and then generalized to the unconscious
condition.
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4.4 Discussion

In this chapter, we explored information-based approaches to investigate the properties of

the unconscious and conscious contents represented in the brain. We presented the results

of the standard RSA pipeline (Kriegeskorte et al., 2008a) and the encoding-based RSA

pipeline (Konkle & Alvarez, 2022). Due to the small sample size of the subject pool and

both RSA pipelines were not designed for within-subject design experiments, we offered

descriptive results from these RSA pipelines.

The standard RSA results showed that three of the seven subjects’ brain activity pat-

terns were correlated to the computational model, including the left prefrontal areas and

the occipital areas (i.e., VGG19 and RestNet50) even when the subjects were unconscious

of the images. However, the pattern was not robust across all five FCNNs in all subjects.

When the subjects were conscious of the images, six of the seven subjects’ brain activity

patterns were correlated to the computational model in the ventral visual pathway and

the frontoparietal areas, and the pattern was consistent across all five models. However,

the results of the encoding-based RSA in the unconscious condition were mixed and diffi-

cult to interpret. There were negative correlations in the visual areas for some subjects in

some of the models (i.e., AlexNet and DenseNet169), and there were negative correlations

in the frontal areas for most of the subjects in many of the models (i.e., ResNet50 and

DenseNet169). We interpret the negative correlations as the brain representations were

associated with the model, but the brain representations of the images have a different

structure compared to the computer vision models in terms of how the perceptual in-

put (the images) are decomposed and projected into the model and the brain images are

high-dimensional and complex stimuli. In other words, while the hidden representations

of the FCNNs of the images are known to explain a large variance of the brain responses

(Schrimpf et al., 2020), the way that the brain processes information and encodes relevant

features may still be different from the FCNNs. The FCNNs, particularly those trained

with supervised methods for image classification (Deng et al., 2009), learn to represent the
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images through different layers in a bottom-up fashion, but the brain represents the im-

ages not only through bottom-up processes in the visual stream but also through top-down

processes, taking information from other higher-order areas (i.e., prefrontal cortex). Thus,

representations in the brain could be more visual-oriented or more semantic-oriented in

terms of different levels of processing (Popham et al., 2021), which are deeper in the brain

than in FCNNs. The higher-order areas of the brain like the prefrontal cortex decode the

information projected from the lower-order areas (i.e., ventral visual pathway), and thus

the representations become more abstract (Kriegeskorte & Douglas, 2018). The repre-

sentations in the ventral visual pathway are primarily visual-oriented like the computer

vision model, thus, the pattern representations were positively correlated to the FCNNs’

hidden representations. On the other hand, when the information was processed and

projected to higher-order areas in the frontal cortex, the representations became more

semantic-oriented in the brain but less in the model. This may explain that the brain

representations in the prefrontal areas were negatively correlated to the FCNNs’ hidden

representations. The results of the encoding-based RSA are in line with the suggestion

that there are representational boundaries between visual-oriented representations and

semantic-oriented representations of images in the brain (Popham et al., 2021) and this

may not be the case in the FCNNs because it does not incorporate recurrent connections.

Additional work is needed to make further determinations.
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5 General Discussion

5.1 Summary of findings and general conclusions

A very important criterion to determine unconscious visual processing is to establish null

sensitivity using both subjective measures of awareness collected on a trial-by-trial ba-

sis and also objective measures derived from signal detection theory (Soto et al., 2019).

Previous fMRI studies of consciousness performed group-level statistical inference from a

few subjects and each participant had a low number of trials. These studies were under-

powered to test the null sensitivity assumption and hence could not pinpoint the brain

representation of the unconscious representation reliably within each subject (Macmillan

& Creelman, 2004).

In this thesis, we first aimed to develop sensitive, within-subject neural markers of

unconscious and conscious information processing. The high-precision, highly-sampled,

within-subject approach allowed us to investigate the properties of the brain representa-

tions associated with unconscious perceptual contents. A secondary aim of the thesis was

to provide an information-based approach, using machine learning algorithms, pattern

matching, and representational similarity analysis using computer vision models. These

information approaches allowed us to investigate neural representations of conscious and

unconscious contents using both model-/hypothesis-based and data-driven approaches.

The third aim of the thesis was to provide a computational simulation of the represen-

tations of unseen contents using state-of-the-art FCNNs (Kriegeskorte, 2015; Lindsay,

2021). The simulation approach allowed us to provide a representational model simula-

tion of visual processing/representation associated with null perceptual sensitivity using

a simplified approximation of the human brain in which all parameters could be well
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controlled.

5.1.1 High-precision, high-sampling fMRI data associated with

null sensitivity reveal representations of unconscious con-

tents

Even in those subjects who showed null perceptual sensitivity, unconscious contents could

be decoded in the visual, parietal, and frontal areas including the fusiform and the middle

frontal gyrus. Additionally, the brain representations of the unconscious contents and the

conscious contents were similar to a certain degree. A classifier trained to discriminate the

visual categories of the items in the conscious trials generalized to the unconscious state in

different regions, including the inferior parietal lobe, inferior temporal lobe, lingual, middle

frontal gyrus, and superior parietal gyrus in six out of seven subjects. These patterns

were robust across machine learning algorithms defined by different hyperparameters.

As discussed in Chapter 2, the high-precision, highly-sampled, within-subject decoding

paradigm provided a richer information-based approach to studying the representations

of unconscious contents (Kriegeskorte et al., 2006). The paradigm improved the data-

driven sensitivity and the statistical power for detecting unconscious brain representations

associated with null perceptual sensitivity.

5.1.2 A simulation of the fMRI results using feedforward convo-

lutional neural network models

It has been well documented that FCNNs can explain a great amount of variance of

the neural response patterns in the ventral visual pathway (Fukushima, 1980; Güçlü &

van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte & Douglas, 2018;

LeCun et al., 2015; Lindsay, 2021; Lindsay et al., 2019; Schrimpf et al., 2020; Yamins

et al., 2013; Yamins & DiCarlo, 2016). Thus, it is a reasonable choice to utilize FCNNs to

simulate the fMRI results. Accordingly, we had FCNNs perform the image categorization

task as in the fMRI experiment, and we manipulated the level of Gaussian noise added
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to the images during categorization. The performance of the FCNNs decreased as the

noise level increased. When the noise level was high enough to make the FCNNs perform

at chance, the categories of the noisy images in the hidden layer could be read-out by a

linear machine learning algorithm but could not be read-out by the last output layer of

the model.

It was expected that the image categorization performance of the FCNNs was impaired

by the addition of noise (Jin et al., 2015), but it was surprising that the information failed

to guide the decision of the output decision layer, which resulted in incorrect classifica-

tions, could nevertheless be read-out and decoded by an independent classifier (i.e., a

linear machine learning algorithm). This means there remain informative traces of the

categories of the noisy images in the FCNNs’ layers, but the information did not support

categorization decisions and the agent’s classification performance was at chance level.

Thus, information processing of unseen contents in the visual domain, including process-

ing without sensitivity, can lead to meaningful but hidden representational states that

are ubiquitous in brains and biologically plausible models based on deep artificial neural

networks (Kriegeskorte, 2015; Miconi, 2017; Nonaka et al., 2021; Taherkhani et al., 2020).

5.1.3 Neural signatures of conscious and unconscious contents

from an information-based perspective

To provide a richer representational account of the unconscious information processing

in the human brain, we conducted a standard whole-brain searchlight RSA (Kriegeskorte

& Diedrichsen, 2019; Kriegeskorte et al., 2006) and an encoding-based RSA (Konkle

& Alvarez, 2022) to investigate how the FCNNs’ hidden layer representations of the

experiment images correlated to the brain representations.

The standard whole-brain searchlight RSA revealed that the FCNNs’ hidden layer

representations correlated to the brain representations of the unconscious contents in the

ventral visual pathway in four of seven subjects. Particularly for models that ranked high

in explaining the variance of the visual cortex (i.e., based on brain-score, Schrimpf et al.,
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2020, i.e., VGGNet and ResNet50), five of seven subjects showed model-correlated pat-

terns in the left ventral visual pathway and the left frontoparietal areas in the unconscious

condition. In the conscious condition, all the subjects showed model-correlated patterns

in the bilateral visual cortex, and six of the seven subjects showed model-correlated pat-

terns in the unilateral frontoparietal areas. Similar to the standard RSA analysis, the

encoding-based RSA revealed that the brain representations of the unconscious contents

in both the occipital and the frontal areas correlated to the FCNNs’ hidden layer rep-

resentations. For instance, in the VGG19 model-based RSA, six of the seven subjects

showed positive correlations to the model in the visual cortex for unconscious contents.

Three subjects showed positive correlations in the frontoparietal areas, and two subjects

showed negative correlations to the model in the frontoparietal areas. The brain patterns

correlated to the model were much stronger and more consistent across subjects in the

conscious condition.

When we encoded the FCNNs’ hidden representations from the conscious contents,

these contextualized representations in the encoding-based RSA were also correlated to

the brain representations of the unconscious contents in both the occipital and the frontal

areas. The encoding-based RSA allowed us to investigate how the representations of the

computational models are generalized in different conscious states. Taking together the

encoding and the decoding results, we suggest that the representations of the conscious

contents were enhanced patterns of similar representations associated with the uncon-

scious contents, but additional work is needed to make further determinations.

5.2 Integration of different results

The goal of the current thesis was to test the scope of information processing and repre-

sentation of items associated with null perceptual sensitivity in both brains and artificial

neural networks. The extent to which information processing occurs for unconscious

stimuli remains highly debated in consciousness science. Previous evidence of uncon-

scious information processing in the brain and behavior suffers from confounds associated
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with the use of subjective measures to assess awareness (i.e., criterion biases) and the

lack of reliability and sensitivity of the measures used for assessing awareness (Newell

& Shanks, 2014). We approached this question using a framework that aimed to care-

fully control for objective null perceptual sensitivity at the individual level, and exploit

information-based approaches (Kriegeskorte et al., 2006) to characterize the brain rep-

resentation of unconscious items (Soto et al., 2019) using a within-subject design, high-

precision, highly-sampled neuroimaging approach. Here we demonstrated that even when

subjects display null perceptual sensitivity, distributed information patterns related to the

semantic category of unconscious items can be reliably decoded from BOLD multivoxel

patterns. Evidence of unconscious information processing was largely distributed in the

brain across the ventral visual pathway, involving prefrontal substrates in most subjects.

Additionally, there were associations between the computer-vision model representations

and the brain patterns in both the ventral visual pathway and the frontoparietal areas in

the unseen trials, mainly using the standard representational similarity analysis pipeline.

This result has implications for models of visual consciousness which suggest that un-

conscious information processing is local and restricted to the visual cortex (Dehaene et

al., 2006), relative to conscious information processing which is widespread in large-scale

frontoparietal systems. These data suggest this does not need to be the case.

Our results extend previous neuroimaging studies of unconscious visual processing.

Studies have shown that the identity of unconsciously processed items such as grating

patterns (King et al., 2016), locations of small line segments (Salti et al., 2015), location

of letters (Trübutschek et al., 2017), and human faces (Axelrod et al., 2015) can be decoded

from brain activity patterns. However, these studies used subjective measures of visual

awareness to split unconscious and conscious trials, and these are known to be unreliable

and subject to decision biases. Also, as noted in the introduction, brain responses to

unconscious items associated with null perceptual sensitivity have been difficult to detect

in a reliable and replicable manner (see Fang & He, 2005; Gayet et al., 2020; Hesselmann

et al., 2011; Ludwig & Hesselmann, 2015; Ludwig et al., 2015) and when information could

be decoded from multivoxel patterns this was restricted to the primary visual cortex (Stein
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et al., 2021).

Intriguingly, our results indicate that the multivariate activity patterns associated

with unconscious items associated with null perceptual sensitivity generalize to the repre-

sentation of conscious items for which perceptual sensitivity was well above chance. This

indicates that the brain representations of visual items may be invariant across states of

conscious awareness. Schurger et al. (2010) showed that classifiers trained to discriminate

the category of invisible items did not generalize to predict the category of conscious

visible items. However, unlike the present well-powered within-subject study with over

1300 trials per subject (∼700 for the unconscious condition), Schurger et al. (2010) only

used a limited number of trials (∼300) per subject which might have been insufficient for

training a classifier that generalized across awareness states.

According to the Global Workspace Model of consciousness (Baars, 1997; Dehaene

& Naccache, 2001), consciousness depends on "active neural firing" across large-scale

frontoparietal networks (Dehaene & Changeux, 2011, 2004). while unconscious contents

only activate primary sensory cortices. However, the GWT needs to be accommodated to

explain two features of our results: (i) that the categories of the unseen images could be

decoded from the multivoxel patterns of the prefrontal areas (i.e., middle frontal gyrus)

and (ii) the brain patterns were similar between the unconscious and conscious conditions.

Both the decoding and to some extent the encoding-based RSA results suggested that

when the model was trained with the trials of the conscious condition, the model could

be generalized from the conscious condition to the unconscious condition. There appear

to be invariant properties of visual representations expressed in a spectrum involving

unconscious and conscious states. This was not predicted by the Global Workspace model.

According to the local recurrent process model of consciousness, the rapidly presented

and masked images trigger a "feedforward pass" through the brain from the occipital to

higher-order areas of the ventral visual stream. However, this "feedforward pass" does

not lead to conscious awareness (Lamme, 2000, 2020; Lamme et al., 1998). The fact that

we observed that unconscious information can be decoded from the prefrontal activity

is somehow in line with the recurrent theory, although the theory does not specifically
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predict that unconscious contents may be decoded from the prefrontal cortex. Addi-

tionally, according to the high-order theory of consciousness (Gennaro, 1996; Rosenthal

& Weisberg, 2008; Rosenthal, 2004), conscious awareness occurs when the higher-order

brain areas (i.e., the prefrontal areas) re-represent the information projected from the

lower-order brain areas (i.e., the visual cortex). Thus, when the re-representation fails,

stimuli are unconscious. The decoding and the encoding-RSA results in the unconscious

condition show that information about the image categories could be decoded in both the

visual cortex and the prefrontal areas, but the encoded representations were not the same

in the prefrontal areas (even if the patterns were decodable; see Discussion of Chapter

4). This suggests that the re-representation of the visual content by the prefrontal cor-

tex may be operating at a non-conscious level and this would challenge the higher-order

theory. However, recent evidence indicates that long-range feedback connections from the

prefrontal cortex, rather than local feedback loops in the visual cortex, are more critical

for visual consciousness (Huang et al., 2020). Based on this recent observation, our results

may still be accommodated by the higher order theory, if we assume that there can be

non-conscious decoding of visual content in the prefrontal in the absence of strong top-

down feedback connections to the visual cortex (Rosenthal & Weisberg, 2008; Rosenthal,

2004).

Our simulations provided a computational approach to studying the processing of un-

seen contents. The information of the noisy image categories in the hidden layer could

not be used to guide the network’s last readout layer. The simulation results are similar

to the observation that areas of the ventral visual pathway contain multivariate patterns

of activity that allow for decoding of the image class even when observers display null per-

ceptual sensitivity to the target category. Our results provide new insight into how images

are represented in FCNNs and how information is used to make the classification deci-

sion under noisy conditions. Moreover, these results provide a formal demonstration that

even under conditions associated with null perceptual sensitivity there remains meaning-

ful information in a hidden state of the feedforward network. Recurrent processing could

be the underlying mechanism that links processing in the visual cortex, temporal, and
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parietal areas (Beck et al., 2001; Fahrenfort et al., 2007; Grill-Spector et al., 2000). How-

ever, when visual signals are embedded in noise (i.e., visually masked as in our current

experiment) they are more likely to trigger feedforward information processing only with-

out recurrent feedback (Fahrenfort et al., 2007). Accordingly, it has been proposed that

visual representations may be preserved during feedforward processing but the absence

of recurrent feedback leads to the absence of conscious experience (Bullier, 2001; Lamme

& Roelfsema, 2000; Pascual-Leone & Walsh, 2001). The neural network models we used

in the computer simulation of the visual task were all feedforward (DiCarlo et al., 2012;

Yamins & DiCarlo, 2016), which may lack the capacity to preserve visual features across

higher-order layers, so that any useful information might be left to local processes within

each layer (Nayebi et al., 2018) and, therefore, the last readout layer may not fully exploit

the information from previous layers to guide the perceptual decision.

Recent research has tried to overcome these issues and experimental data indicates

that recurrent neural network (RNN) models provide better representations than FCNNs

in object recognition at different levels of image noise (Spoerer et al., 2017; Zwickel et al.,

2007). Instead of feedforward connections, RNN models propose feedback connections to

incorporate different levels of information. Spoerer et al. (2017) and Kietzmann et al.

(2019c) proposed RNN models with local and cross-layer feedback connections and they

encode image features that better explain brain activity compared to FCNNs (Kietzmann

et al., 2019c; Nayebi et al., 2018; Shi et al., 2018; Spoerer et al., 2017). It will be relevant

for future studies to test whether adding recurrent processes to the FCNN model improves

the read-out of the hidden layer representations for recognizing noisy images, hence in-

creasing classification performance. For now, we conclude that feedforward processing

can lead to meaningful hidden representational states that are ubiquitous in brains and

artificial neural network models.
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6 Resumen amplio en castellano

El modelo de la conciencia humana basado en un espacio neural de trabajo global (De-

haene, 2014) propone que la conciencia está asociada con la actividad sostenida en redes

de asociación a gran escala que involucran la corteza frontoparietal, haciendo que la in-

formación sea accesible globalmente a los sistemas involucrados en la memoria de trabajo

y el control del comportamiento (Dehaene, 2014). Se cree que el procesamiento visual

inconsciente, por otro lado, es transitorio y opera localmente en sistemas perceptivos de

bajo nivel (Lamme, 2020). Sin embargo, estudios recientes han confrontado este punto

de vista con datos interesantes que sugieren que el procesamiento de información incon-

sciente está implicado en operaciones de orden superior asociadas con el control cognitivo

(Van Gaal & Lamme, 2012), el comportamiento guiado por la memoria (Chong et al.,

2014; Rosenthal et al., 2016; Soto et al., 2011; Trübutschek et al., 2017; Wuethrich et al.,

2018), y el lenguaje (Hassin, 2013). Sin embargo, trabajos posteriores no apoyan este

punto de vista (Rabagliati et al., 2018), e incluso la evidencia de procesamiento semán-

tico inconsciente se ha cuestionado recientemente (Kouider & Dehaene, 2007; Stein et al.,

2020). Quedan por determinar los límites y el alcance del procesamiento inconsciente.

Es probable que esta controversia se origine por la falta de un marco sólido para aislar

el procesamiento de información inconsciente (Soto et al., 2019). Los estudios a menudo

se basan sólo en medidas subjetivas para definir la ausencia o presencia de consciencia

(Overgaard et al., 2010) y para identificar los marcadores neuronales del procesamiento

inconsciente, pero estas medidas son sensibles a sesgos en el criterio de decisión para in-

formar acerca de la presencia o ausencia de conciencia (Peters & Lau, 2015). Esto hace

imposible determinar si la “invisibilidad subjetiva” está realmente asociada con el proce-

samiento inconsciente. La literatura de antecedentes relevante se resume en el Capítulo
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1.

Un objetivo clave de esta tesis es desarrollar marcadores neurales que sean sensibles

dentro de cada participante del alcance del procesamiento inconsciente. Aquí utilizamos

un enfoque de análisis computacional dentro de cada participante, de alta precisión y al-

tamente muestreado con muchos ensayos por participante, para definir las propiedades de

las representaciones cerebrales asociadas con el contenido perceptivo inconsciente, definido

por la ausencia de sensibilidad perceptiva nula. El segundo objetivo es proporcionar enfo-

ques basados en técnicas de aprendizaje automático para la codificación y la decodificación

de representaciones inconscientes en patrones de actividad cerebral. El tercer objetivo es

proporcionar una simulación computacional de la representación de contenidos no vistos

(i.e. inconscientes) utilizando modelos de redes neuronales profundas de última generación

(Kriegeskorte, 2015; Lindsay, 2021). Este enfoque nos permitirá comprender mejor si las

representaciones de los contenidos invisibles difieren de los contenidos visibles tanto en el

cerebro humano como en los modelos de inteligencia artificial del cerebro humano.

El Capítulo 2 describe el experimento de resonancia magnética funcional de alta pre-

cisión tal y como se describe en el párrafo de arriba. Reclutamos a siete participantes

para que ser escaneados con fMRI durante seis días. Las imágenes presentaban muy

brevemente por unos milisegundos y se enmascararon antes y después. Se pidió a los

sujetos (i) que identificaran y respondieran a la categoría de la imagen (es decir, animado

versus inanimado) y (ii) que calificaran el estado de conciencia visual asociado con la

imagen (es decir, inconsciente, breve destello y consciente). Luego llevamos a cabo un

análisis de comportamiento fuera de línea para asegurarnos de que los sujetos tenían una

sensibilidad perceptiva nula acerca de la categoría de las imágenes cuando informaban

que eran "inconscientes". Y luego llevamos a cabo un análisis de patrones multivariado

para decodificar las categorías de imágenes de las señales de resonancia en varias regiones

de interés (ROI), es decir, giro lingual, corteza pericalcarina, corteza occipital lateral, giro

fusiforme, giro parahipocampal, lóbulo temporal inferior, lóbulo parietal inferior, precú-

neo, giro parietal superior, giro frontal superior, giro frontal medio y giro frontal inferior.

Esto se hizo para cada sujeto y cada uno de los estados de conciencia. Usamos un support
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vector machine con regularización L1, anidado con la eliminación de vóxeles invariantes

y escalado de características entre 0 y 1 como pasos de preprocesamiento. Los datos se

dividieron en conjuntos de entrenamiento y prueba dejando un objeto animado y otro

inanimado como conjunto de prueba. El rendimiento de la tubería instalada se estimó

usando el área bajo la curva operativa del receptor (ROC AUC) en el conjunto de prueba.

Esto se denominó generalización fuera de la muestra y se llevó a cabo dentro del estado

inconsciente y consciente de cada sujeto y cada ROI.

PPara los resultados de comportamiento, todos los sujetos mostraron una sensibilidad

perceptiva superior al azar tanto cuando los participaban informaban de ver un destello

o ser conscientes. Cuatro de los siete sujetos mostraron una sensibilidad perceptiva nula

en aquellos ensayos en los que los sujetos informaron ser inconscientes de las categorías

de las imágenes. Dos de los otros tres sujetos mostraron sensibilidad nula marginal.

En los ensayos inconscientes, los patrones cerebrales en la circunvolución fusiforme y la

circunvolución frontal media contenían categorías de imágenes que podían decodificarse

en seis de los siete sujetos. Las categorías de las imágenes inconscientes también se

decodifico a partir de la actividad en la circunvolución frontal inferior en cinco sujetos,

y en cuatro sujetos del lóbulo parietal inferior, el lóbulo temporal inferior, la corteza

occipital lateral, la circunvolución parahipocampal y la circunvolución parietal superior.

Este resultado tiene implicaciones para los modelos de conciencia visual que sugieren que

el procesamiento de información inconsciente es local y está restringido a la corteza visual

(Dehaene et al., 2006). Estos datos sugieren que este no tiene por qué ser el caso.

También encontramos que los patrones en la circunvolución fusiforme, la corteza oc-

cipital lateral y el precúneo podían generalizarse de consciente a inconsciente en todos los

sujetos. Además, los patrones de actividad en el lóbulo parietal inferior, el lóbulo tempo-

ral inferior, la circunvolución frontal media lingual y la circunvolución parietal superior

podrían generalizarse de consciente a inconsciente en seis sujetos. Estos resultados fueron

sólidos incluso con diferentes términos de regularización o procedimientos de validación

cruzada. Esto indica que las representaciones cerebrales de elementos visuales pueden ser

invariantes a través de los estados de conciencia.
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El objetivo del Capítulo 3 es utilizar redes neuronales artificiales convolucionales feed-

forward (FCNN) para proporcionar una simulación de los resultados obtenidos en el ex-

perimento fMRI. La hipótesis es que la representación de la capa oculta de la red neuronal

puede contener información que permite la decodificación de un estímulo visual ruidoso

incluso cuando las FCNN realizan la clasificación de imágenes al azar (sensibilidad nula

en la discriminación).

La FCNN fue entrenada previamente y adaptado a nuestro experimento a través de

procedimientos de aprendizaje por transferencia (Yosinski et al., 2014). Nuestras FCNN

contenían sólo una capa oculta después de las capas convolucionales previamente entre-

nadas (es decir, VGGNet, Simonyan and Zisserman, 2015).Las FCNN primero aprendieron

a realizar la misma tarea de discriminación visual que los observadores humanos con imá-

genes claras de elementos animados e inanimados. Luego, las FCNN realizaron la tarea

con diferentes niveles de ruido en la imagen. Al igual que en el estudio de fMRI con

los observadores humanos, usamos un máquina de vector de soporte lineal (SVM) para

analizar la información contenida en la capa oculta de FCNN y ver si se podía decodificar

la clase de imagen bajo diferentes niveles de ruido. Sorprendentemente, cuando las FCNN

no podía clasificar las imágenes con ruido, observamos que la representación de la capa

oculta de estos FCNN contenía información que permitía que un clasificador (support

vector machine lineal) decodificara la categoría de imagen por encima del azar.

El Capítulo 4 utilizó enfoques computacionales basados en la información para estudiar

los marcadores neuronales de los contenidos conscientes e inconscientes, usando los datos

de fMRI presentados en el primer de los capítulos empíricos. Cuantificamos las respuestas

a nivel de vóxel a las imágenes enmascaradas dentro de las regiones del cerebro analizadas

y comparamos los patrones de información capturados por los modelos de visión por

computadora (Schrimpf et al., 2020) y los patrones de información capturados por el

fMRI. Por lo tanto, realizamos analísis de la similaridad de las representación (RSA)

(Kriegeskorte et al., 2006), lo que nos permitió cuantificar la similaridad entre el modelo

de computación visual y los patrones de fMRI.



Chapter 6. Resumen amplio en castellano 98

Los resultados mostraron que los patrones de actividad cerebral en tres de los siete su-

jetos estaban correlacionados con el modelo computacional, incluidas las áreas prefrontal

izquierda y las áreas occipitales (es decir, VGG19 y RestNet50), incluso cuando los sujetos

no eran conscientes de las imágenes. Sin embargo, este patrón no fue sólido en los cinco

modelos de FCNN. Cuando los sujetos eran conscientes de las imágenes, los patrones de

actividad cerebral de seis de los siete sujetos se correlacionaron con el modelo computa-

cional en la vía visual ventral y en las áreas frontoparietales, y el patrón fue consistente

en los cinco modelos.

El Capítulo 5 resume y discute los hallazgos experimentales de la tesis. El objetivo

de la tesis fue probar el alcance del procesamiento inconsciente y la representación de los

contenidos asociados con una sensibilidad perceptual nula, tanto en el cerebro humano

como en redes neuronales artificiales de visión computacional. La evidencia previa de

procesamiento de información inconsciente en el cerebro y el comportamiento adolece

de varios factores de confusión asociados con el uso de medidas subjetivas para evaluar

la conciencia (es decir, sesgos en el criterio de decisión para informar de la ausencia de

consciencia visual) y la falta de confiabilidad y sensibilidad de las medidas utilizadas

para evaluar la conciencia (Newell & Shanks, 2014). Abordamos este tema utilizando

un paradigma novedoso para controlar cuidadosamente la sensibilidad perceptiva nula

objetiva a nivel individual y explotar los enfoques basados en la información (Kriegeskorte

et al., 2006) y el aprendizaje automático para caracterizar la representación cerebral de

los elementos inconscientes (Soto et al., 2019) utilizando un enfoque de neuroimagen

altamente muestreado, de alta precisión dentro de cada sujeto.

Los resultados indican que los patrones de actividad multivariados asociados con el-

ementos inconscientes asociados con una sensibilidad perceptiva nula se generalizan a la

representación de elementos conscientes para los cuales la sensibilidad perceptiva estaba

muy por encima del azar. Esto indica que las representaciones cerebrales de elementos

visuales pueden ser invariantes a través de los estados de conciencia. Este resultado no se

predice por el influyente modelo de la conciencia humana basado en un espacio neural de

trabajo global (Dehaene, 2014). Los resultados también sugieren que la re-representación
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de los contenidos codificados en la corteza visual por parte de la corteza prefrontal podría

estar operando a un nivel inconsciente y esto desafiaría modelos de conciencia como la

teoría de orden superior que proponen un papel fundamental de los procesos de repre-

sentación en la corteza frontal para la experiencia consciente. Sin embargo, la evidencia

reciente indica que las conexiones de retroalimentación (feedback) de largo alcance desde

la corteza prefrontal a la corteza visual son más importantes para la conciencia visual

que las conexiones de abajo-arriba o feedforward (Huang et al., 2020). En base a esto,

nuestros resultados aún pueden ser explicados de acuerdo la teoría de orden superior de

la consciencia (Rosenthal & Weisberg, 2008; Rosenthal, 2004).

Los resultados de nuestra simulación brindan una nueva perspectiva sobre cómo se rep-

resentan las imágenes en las FCNN y cómo usas la información para tomar decisiones en

condiciones ruidosas. Además, estos resultados proporcionan una demostración formal de

que, incluso en condiciones asociadas con una sensibilidad perceptiva nula, sigue habiendo

información significativa en un estado oculto de la red neural. El procesamiento recurrente

(feedback o de arriba-abajo) podría ser el mecanismo subyacente que vincula el proce-

samiento en la corteza visual, las áreas temporal y parietal (Beck et al., 2001; Fahrenfort

et al., 2007; Grill-Spector et al., 2000). Sin embargo, cuando las señales visuales están

mezcladas con ruido (es decir, visualmente enmascaradas como en nuestros experimentos),

es más probable que activen un procesamiento de información de abajo-arriba o feedfor-

ward, sin retroalimentación recurrente (Fahrenfort et al., 2007). En consecuencia, se ha

propuesto que las representaciones visuales pueden conservarse durante el procesamiento

feedforward pero la ausencia de retroalimentación recurrente conduce a la ausencia de ex-

periencia consciente (Bullier, 2001; Lamme & Roelfsema, 2000; Pascual-Leone & Walsh,

2001). Los modelos de redes neuronales que usamos en la simulación por computadora

de la tarea visual eran todos feedforward (DiCarlo et al., 2012; Yamins & DiCarlo, 2016),

y por tanto, pueden carecer de la capacidad para preservar las características visuales en

capas de orden superior, de modo que cualquier información útil puede quedarse en los

procesos locales dentro de cada capa (Nayebi et al., 2018) y, por lo tanto, es posible que

la última capa de la red neural no aproveche completamente la información de las capas
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anteriores para guiar la decisión en la clasificación de la percepción.

Investigaciones recientes han tratado de solventar este asunto y los datos experimen-

tales sugieren que los modelos computacionales basados en redes neuronales recurrentes

(RNN) proporcionan mejores representaciones que las FCNNs para el reconocimiento de

objetos a través de diferentes niveles de ruido en la imagen (Spoerer et al., 2017; Zwickel

et al., 2007). En vez de conexiones puramente feedforward, los modelos RNN models

poseen mecanismos de feedback (Kietzmann et al., 2019b; Nayebi et al., 2018; Shi et al.,

2018; Spoerer et al., 2017). Será relevante para estudios futuros examinar si la presencia

de proceso de feedback recurrente en las redes neurales artificiales mejora la lectura de la

información en la capa oculta de la red para el reconocimiento de imágenes en presencia de

ruido. Por ahora, concluimos que el procesamiento de abajo-arriba (feedforward) puede

dar lugar a representaciones significativas de objetos enmascarados y no vistos que se

encuentran en estados ocultos de la red neural, y que están presentes tanto en el cerebro

humano como en los modelos artificiales de visión computacional.
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