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Abstract: The use of whole-genome sequencing (WGS) for bacterial characterisation has increased
substantially in the last decade. Its high throughput and decreasing cost have led to significant
changes in outbreak investigations and surveillance of a wide variety of microbial pathogens. Despite
the innumerable advantages of WGS, several drawbacks concerning data analysis and management,
as well as a general lack of standardisation, hinder its integration in routine use. In this work, a
bioinformatics workflow for (Illumina) WGS data is presented for bacterial characterisation including
genome annotation, species identification, serotype prediction, antimicrobial resistance prediction,
virulence-related genes and plasmid replicon detection, core-genome-based or single nucleotide
polymorphism (SNP)-based phylogenetic clustering and sequence typing. Workflow was tested
using a collection of 22 in-house sequences of Salmonella enterica isolates belonging to a local outbreak,
coupled with a collection of 182 Salmonella genomes publicly available. No errors were reported
during the execution period, and all genomes were analysed. The bioinformatics workflow can be
tailored to other pathogens of interest and is freely available for academic and non-profit use as an
uploadable file to the Galaxy platform.

Keywords: foodborne pathogens; whole-genome sequencing; bioinformatics workflow; Galaxy

1. Introduction

Throughout the last decade, the use of whole-genome sequencing (WGS) has become
paramount for routine use at laboratories worldwide. Its decreasing cost, coupled with
its high speed and throughput, have led to significant changes in the investigation and
surveillance of outbreaks of foodborne illnesses caused by a wide variety of microbial
pathogens [1]. The epidemiological characterisation of isolates using conventional methods
such as pulsed-field gel electrophoresis (PFGE) or multiple-locus variable-number tandem
repeat analysis (MLVA), considered gold standards for bacterial typing, requires several
labour-intensive assays that can take days to complete [1]. In contrast, WGS provides
an ‘all-in-one’ solution, providing all the information required for pathogen typing and
characterisation, including the detection of genes of interest (e.g., antimicrobial resistance
(AMR) genes and virulence factors), serotype prediction, plasmid replicon detection and
sequence typing, among others, in a shorter amount of time (3–5 days). This is all achieved
with unprecedented resolution and at a relatively low cost per sample, avoiding the need
for multiple sequential laborious molecular assays as well.

In addition, WGS has enabled the development of novel typing methods such as core-
genome multilocus sequence typing (cgMLST) that expand the standard seven-gene MLST
by including hundreds of loci and whole-genome single nucleotide polymorphism (wgSNP)
analysis, which provides much greater discriminatory power compared to conventional
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methods such as PFGE or MLVA. Thus, the resolution up to the nucleotide level enables
pathogen comparison and clustering with unprecedented precision [2], making WGS
the indisputable candidate to replace conventional typing methods. Thanks to these
advantages, the use of WGS is becoming more widespread for pathogen typing in both
outbreak and routine surveillance studies, with an increasing number of national reference
centres (NRCs) and laboratories (NRLs) integrating it into their routine activities [3]. The
added value of WGS in surveillance monitoring and outbreak cases for many microbial
pathogens of interest in public health has been illustrated extensively [2–5].

Despite the innumerable advantages of using WGS, several drawbacks concerning
data analysis, data management and exchange, and mainly the lack of validation, hinder
its integration into routine use in NRCs and NRLs. For centres or laboratories in smaller
or less-developed countries, the integration of WGS is particularly troublesome as they
do not always have equal access to resources compared to public health agencies or large
laboratories (WHO, Geneva, Switzerland, 2018). The data analysis in particular represents
a bottleneck, becoming a serious hurdle to overcome because it typically consists of a
stepwise process that is complex and tedious for non-experts [6]. The amount of software
for analysing data is continuously growing, providing users with multiple choices based
on their particular aims and interests. Several commercial software packages such as
CLC Genomics Workbench (CLC Bio, Aarhus, Denmark), BioNumerics (Applied Maths,
Sint-Martens-Laterm, Belgium) and Ridom SeqSphere+ (Ridom GmbH, Münster, Germany)
ease the analysis of data by providing desktop applications. However, in this paper
we leave commercial software packages aside as their associated costs usually become
unaffordable for many laboratories; our focus is free and user-friendly alternatives for
analysing WGS data.

An overview of data analysis tools was published by the ENGAGE consortium [7],
with the aim of establishing the capability of WGS for genomic analysis in Europe. Attempts
to integrate WGS into routine surveillance were also made in the INNUENDO project [8],
whose aim was to develop a standardised cross-sectional framework for the application of
bacterial WGS for the surveillance of foodborne pathogens that embraces governmental
organisations, authorities and research institutes from the food, veterinary and human
sectors in Europe. Unfortunately, most software for WGS data analysis runs on the Linux
environment and requires a certain level of expertise in command-line skills, thereby
hindering the analysis process for those who are not bioinformaticians. This problem can
be managed by increasing the availability of web-based tools that allow non-experts to
analyse their data without the need for command-line experience [1]. Currently, several
web-based platforms are available for pathogen characterisation through WGS. Hosted
at the Technical University of Denmark, the Center for Genomic Epidemiology (CGE)
(https://www.genomicepidemiology.org/ (accessed on 14 September 2022)) provides a
number of tools for performing serotyping [9], AMR characterisation [10], virulence gene
detection [9], plasmid replicon detection [11], MLST and phylogenetic clustering, among
other processes [12]. The Bacterial and Viral Bioinformatics Resource Center (BV-BRC)
website (https://www.bv-brc.org/ (accessed on 14 September 2022)) provides a set of tools
for WGS data analysis focused on pathogens. Other websites for WGS-based analysis of
specific species exist, such as EnteroBase (https://enterobase.warwick.ac.uk/ (accessed
on 14 September 2022)) [13], which provides solutions for analysing WGS data. PubMLST
(https://pubmlst.org/ (accessed on 14 September 2022)) is another popular web-based
platform that maintains databases with sequence typing information and schemas for a
wide variety of pathogens, enabling the query of WGS data to be analysed. Although
these resources are useful and user-friendly, they do have several drawbacks, as tools
and databases must be combined manually, making the process difficult and tedious. In
addition, database versions and tool parameters can alter the output, giving rise to different
interpretations, and, thus, limiting the comparability, reproducibility and exchange of data
between laboratories.

https://www.genomicepidemiology.org/
https://www.bv-brc.org/
https://enterobase.warwick.ac.uk/
https://pubmlst.org/
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Another alternative is Galaxy, an open-source, community-driven, and web-based
platform that provides a broad array of tools for analysing WGS data in a user-friendly
interface [14]. Indeed, software and tools required for the analysis can be linked and
processes executed sequentially by creating automated workflows. Several papers have
reported the use of Galaxy for foodborne outbreak investigations and surveillance of a
wide variety of microbial pathogens [15]. Consequently, Galaxy constitutes an appealing
choice for analysing WGS data as it enables users to perform analyses easily, quickly and
intuitively. In this paper, we present and evaluate a Galaxy bioinformatics workflow de-
signed for the characterisation of foodborne pathogens focused on the study of an outbreak.
This workflow was designed with the aim of routine utilisation by non-bioinformatician
laboratory staff.

2. Materials and Methods
2.1. Bioinformatics Workflow
2.1.1. Data Processing and Quality Control

An overview of the bioinformatics workflow is provided in Figure 1. The workflow
supports all WGS data generated by means of the Illumina technology. To perform an all-in-
one pre-processing of FastQ files, Fastp [16] is used with default settings. First, low-quality
raw reads are removed if the average Q-score is >15, minimum length is <40, and number of
N bases is >5. Afterwards, reads are trimmed at front and tail by removing all residues with
a Q-score < 15; adapter sequences are automatically detected and removed, and the polyG
tail in 3’ends, commonly seen in NovaSeq and NextSeq data, is detected and removed.
Pre-trimming and post-trimming data-quality reports are obtained and merged into a
single report by MultiQC [17]. Prior to the assembly, paired-end reads are taxonomically
labelled by Kraken2 [18] with default parameters and the PlusPF database (last update
17 May 2021) to identify species and detect possible contamination. Kraken2 outputs are
plotted by means of a Krona chart [19], enabling a visual check for contamination. Processed
paired-end reads are de novo assembled with the SPAdes genome assembler [20] using
the Shovill pipeline (https://github.com/tseemann/shovill (accessed on 20 May 2022))
with default settings. Assembly statistics such as N50 value and number of contigs are
calculated with QUAST [21] using default settings.
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2.1.2. Strain Genotyping, AMR and Plasmid Replicon Detection

Genotyping of assembled genomes is performed by Staramr [22]. The MLST scheme
from PubMLST is applied for genotypic sequence typing, allocating MLST profiles to each
assembled strain. For AMR detection, the ResFinder database [23] is used for alignment-
based detection. Assembled genomes are aligned to the database using BLASTn and
only hits with >90% identity and >60% target coverage are retained. Additionally, for
the detection of plasmid replicons, the PlasmidFinder database [11] is applied. In accor-
dance with default recommendations for plasmid replicon detection, minimum percentage
identity for BLASTn is set at >95% instead of 90%, while target coverage percentage is main-
tained. Strain serotyping is performed by Salmonella In Silico Typing Resource (SISTR) [24]
to obtain the antigenic profiles for each strain; this tool is useful only for Salmonella
genome investigation.

2.1.3. Virulence-Associated Gene Detection

Genes related to virulence (such as invA, pefA and spvC for the adhesion and invasion
of epithelial cells or spiC for intracellular survival or host defence escape) are detected using
ABRicate (https://github.com/tseemann/abricate (accessed on 3 June 2022)) by means of
the Virulence Factor Database (VFDB) [25]. Only hits with >90% identity and >60% target
coverage are retained.

2.1.4. Genome Annotation

Prokka [26] is used for the annotation of features of the draft genomes. Coding
sequences (CDS) and ribosomal and transfer RNA genes are determined, among others.
Several standard output files are created for further analysis.

2.1.5. Phylogenetic Analysis

To perform the core-genome-based phylogeny, Prokka’s GFF output files are used for
pan-genome creation by means of the Roary pipeline [27]. Parameters set for core genome
determination are 95% of identity for protein matches and 99% of the isolates having the
designated gene for it; that is the way to be considered a core gene. For each isolate, a
fasta file containing the concatenated core gene´s sequences is created, and subsequently
a multi-fasta alignment for all strains is performed for phylogenetic tree construction by
IQ-TREE [28] using default settings. Thus, core genome-based phylogeny is constructed in
order to enable the clustering of all isolates.

For SNP-based phylogeny, variant calling and filtering is performed by Snippy pipeline
version 4.6.0 (https://github.com/tseemann/snippy (accessed on 16 June 2022)). SNPs are
filtered by a minimum SNP quality of 25 and minimum mapping quality of 30, covered by
at least 10 reads. Snippy outputs for every isolate are combined into a core SNP alignment,
and subsequently non-standard sequence characters are removed. An SNP distance matrix
is created by computing the distance in SNPs between all sequences in the aligned fasta
file. Additionally, SNP phylogeny tree construction from the polished fasta alignment is
performed by IQ-TREE [28] using default settings. CFSAN-FDA framework [29] is applied
for interpreting the SNP analysis. When there are 20 or fewer SNPs and the phylogenetic
analysis shows a monophyletic relationship with bootstrap support of 0.9 or higher, isolates
within the same clade are considered closely related and are likely to have emerged from
the same source, assuming that they share a common origin. In the same way, isolates
presenting more than 100 SNPs are considered to be distantly related, assuming that they
do not share the same origin.

2.1.6. Implementation and Availability

The workflow is available at https://github.com/aatxaerandio/Galaxy_Workflow_
for_Genomic_Analysis (accessed on 11 November 2022) as a downloadable file. Users can
download and import it into their Galaxy platform for non-profit or academic use. Our
workflow is compatible with data from any Illumina sequencing platform. Furthermore,

https://github.com/tseemann/abricate
https://github.com/tseemann/snippy
https://github.com/aatxaerandio/Galaxy_Workflow_for_Genomic_Analysis
https://github.com/aatxaerandio/Galaxy_Workflow_for_Genomic_Analysis
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it allows parameter adjustment and use of other bioinformatics assays for strain charac-
terisation and AMR gene detection with alternative databases (e.g., ARG-ANNOT, CARD
or NCBI). A summary of the steps and software used on the bioinformatics workflow is
available in Table S1.

2.2. Validation of the Workflow
2.2.1. Validation Dataset

A collection of 22 Salmonella isolates recovered from food and stool samples derived
from a local outbreak that occurred in 2019 were obtained from the Basque Government
Public Health Laboratory (PHL_716—PHL_738). Procedures for the isolation and detection
of Salmonella were conducted following the ISO 6579-1 protocol [30]. Of the total of 22 iso-
lates, 12 were from stool, eight from eggs and two from food products (omelette) involved
in the outbreak. Strain serotyping, phage typing and pulsed-field gel electrophoresis (PFGE)
were conducted by the National Microbiology Centre (Institute of Health Carlos III, ISCIII,
Spain) as performed routinely in suspicious outbreak cases.

Genomic DNA of the isolates was extracted by means of a NucleoSpin Tissue DNA
purification kit (Macherey-Nagel, Duren, Germany) following manufacturer’s instructions
from overnight cultures grown at 37 ◦C in tryptic soy broth (TSB) (Condalab, Madrid, Spain).
Sequencing libraries were prepared using the MiSeq library preparation kit (Illumina,
San Diego, CA, USA) and paired-end sequenced on an Illumina MiSeq instrument with a
150-bp paired-end protocol by the General Services of the University of the Basque Country
UPV/EHU (SGIker). All WGS data generated for these samples have been deposited in the
NCBI Sequence Read Archive (SRA) under accession number (PRJNA891285).

Based on the serotyping results obtained for the isolates described above, 182 Salmonella
genomes from different countries, sources and time periods were downloaded from the
European Nucleotide Archive (ENA) and NCBI repository and added for comparison
and validation of the workflow. Therefore, the isolates dataset comprised 204 Salmonella
genomes from numerous sources and different serovars (149 Salmonella enterica serovar
Enteritidis, 31 Salmonella enterica serovar Bovismorbificans, 18 Salmonella enterica serovar
Paratyphi B, and six Salmonella enterica subspecies arizonae).

2.2.2. Validation Strategy

The designed workflow repeatability and reproducibility were evaluated by running
the bioinformatics workflow on the same dataset twice locally, on the one hand, in the
Galaxy environment as previously noted and, on the other, in two other computational
environments. Those two computational environments were an Ubuntu 18.04.4 LTS (64-bit)
server (8 GB RAM, 4 × Intel Core i7-8665U CPUs) and a Red Hat Enterprise Linux 7.9
(64-bit) server (32 GB RAM, 48 × Intel Xeon Silver 4116 CPUs). Each tool of the workflow
was run in the same order on the command-line in both computational environments. Tool
versions were equal in all the analyses performed. Results obtained from Galaxy and both
computational environments were subsequently compared.

2.3. Further Genomic Analysis

As the isolates of this study belonged to the genus Salmonella, additional analyses
were performed by means of external software, which is not part of the Galaxy workflow.
The cgMLST profiles were obtained using cgMLST Finder 1.1 from the CGE (https://cge.
cbs.dtu.dk/services/cgMLSTFinder/ (accessed on 14 June 2022)) based on the 3002 loci
scheme developed by EnteroBase Salmonella database (https://enterobase.warwick.ac.uk/
(accessed on 14 June 2022)). Furthermore, Interactive Tree Of Life (iTOL) [31] was used
for phylogenetic tree visualisation in both cases, the SNP and the core genome-based
phylogenetic trees together with isolates metadata.

https://cge.cbs.dtu.dk/services/cgMLSTFinder/
https://cge.cbs.dtu.dk/services/cgMLSTFinder/
https://enterobase.warwick.ac.uk/
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3. Results
3.1. Validation of the Workflow

The workflow was uploaded to the European Galaxy server (https://usegalaxy.eu/
(accessed on 16 July 2022)) and executed on the total number of isolates in the study. No
errors were reported throughout the execution period. In parallel, the same dataset was
analysed twice by running these tools one by one in two different computational envi-
ronments. These validation analyses yielded the same outputs, showing 100% agreement
between them.

3.2. Data processing and Quality Control

Read-trimming data and assembly statistics for all 204 genomes of the dataset are
provided in Table S2. The percentage of forward and reverse reads surviving was high
(>90%) in the majority of samples except for two samples where percentages were 80.3%
and 86.6%. The fraction of reads with a mean quality score > Q30 was high in the majority
of samples and did not decrease from 81%.

The N50 value, a metric used as a proxy for assembly quality, fluctuated punctually
among samples. Although the vast majority of raw reads passed the trimming filtering, few
genomes (IN_SeE_AU_084, IN_SeE_AU_104, IN_SeE_AU_151, ERR017993, SRR1060731,
SRR1966201 and SRR3049093) showed a higher number of contigs (>100) in comparison
with others. As a result, N50 values in those genomes are lower, indicating highly fractured
genomes. Disregarding highly fractured genomes, average contig length was 32 for the
total set of isolates. No significant evidence of contamination was detected in the assay.

3.3. Strain Characterisation

Results obtained from all the assays performed are summarised in Table S3. Species
identification and serovar prediction obtained by Kraken2 and SISTR were 100% in agree-
ment with the dataset used in the study. Up to 13 different STs were identified among
the total dataset; ST42 in S. Paratyphi B var. Java strains (n = 18), ST2811 in S. arizonae
strains (n = 6), four STs for S. Enteritidis strains (ST11, n = 146; ST3233, n = 1; ST5094,
n = 1; and ST5280, n = 1) and seven STs for S. Bovismorbificans (ST142, n = 8; ST1312, n = 8;
ST1499, n = 7; ST150, n = 4; ST2345, n = 2; ST377, n = 1; ST2723, n = 1). Regarding cgMLST,
up to 152 cgSTs were identified: five for S. arizonae (ST113232, n = 2; ST17246, ST42261,
ST236629 and ST238128, one isolate per each cgST); 17 cgSTs for S. Paratyphi B var. Java
(ST51845, n = 2; while one isolate was allocated for the remaining 16 cgSTs); 24 cgSTs for S.
Bovismorbificans (ST274809, n = 8; while only one isolate was allocated for the remaining
23 cgSTs); and 106 cgSTs for S. Enteritidis (ST101570, n = 22; ST149200, n = 10; ST133290,
n = 9; ST60723, ST133244, ST136918, ST136945 and ST136966 two isolates per each cgST;
the remaining 98 cgSTs were allocated to one isolate each) (Table S3).

AMR gene detection revealed up to 12 different predicted resistance profiles. The
aac(6’)-Iaa gene, conferring predicted resistance to gentamicin, was detected in all the
genomes except for S. arizonae isolates (no antimicrobial resistance genes were detected
on those genomes). The majority of the isolates carried only the aac(6’)-Iaa gene, but a
few (n = 11) carried up to eight AMR genes. Disclosed information about the predicted
phenotype and genes detected in each strain is presented in Table S3.

An overview of the detection of plasmid replicons is also shown in Table S3. Plasmid
replicons were detected in 61.3%, 96%, 50% and 5.5% of S. Bovismorbificans, S. Enteritidis,
S. arizonae and S. Paratyphi B var. Java isolates, respectively. The most frequently identified
plasmid replicons among the isolates were IncFII (74%) and IncFIB (71.6%), followed by
Incl1 (8.3%) and IncX1 (4.9%). No plasmid replicons were detected in 18.6% of the isolates.
Further data regarding identity percentage and coverage percentage, contig start and end
position, and AMR and plasmid accession numbers for detected replicons are available in
Table S4.

Virulence-related genes were also detected in the analysis (Table S5). A total of
125 virulence factors were identified in the entire dataset. Virulence profiles were in

https://usegalaxy.eu/
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accordance with the Salmonella serotype; isolates belonging to the same serovar showed the
same virulence-factor profiles despite slight differences. The numbers of virulence-related
genes identified were 101 to 108 for S. Enteritidis, 91 to 111 for S. Bovismorbificans, 97 to 114
for S. Paratyphi B and 43 to 45 for S. arizonae.

3.4. Phylogenetic Analysis

A total of 2516 genes were selected to compose the core genome of the Salmonella
dataset. Core-genome-based phylogeny (Figure 2) allowed strain clustering up to serovar
level and showed concordant results with those obtained with species identification and
serovar prediction.
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the characteristics of the isolates is available in Table S4.



Microorganisms 2022, 10, 2364 8 of 13

Considering that SNP analysis is better suited for closely related isolates, a single
analysis was performed within S. Enteritidis isolates (n = 149), using S. enterica subsp.
enterica serovar Enteritidis str. P125109 (GenBank assembly accession GCA_000009505.1) as
the reference genome. A total of 472 SNP positions were identified in the tested S. Enteritidis
dataset. In this analysis, 99 isolates from the 149 studied were clustered into nine different
clades (A, n = 6; B, n = 4; C, n = 6; D, n = 10; E, n = 10; F, n = 12; G, n = 15; H, n = 8; I, n = 28).
The SNP matrix with the clades identified for S. Enteritidis genomes is available in Table S6.
Isolates from stool samples from the local salmonellosis outbreak that occurred in 2019 (in
bold) were clustered with 15 other strains. Fewer than 20 SNPs were detected among them.

4. Discussion

Foodborne pathogens are an important problem worldwide and are responsible for
600 million foodborne illnesses and 420,000 deaths annually. Bacterial pathogens such
as Salmonella, Campylobacter, Listeria, Escherichia and Brucella, among others, remain the
most hazardous due to the large numbers of cases they cause and the resulting economic
burden [32]. Surveillance programs are responsible for the identification, outbreak control
and tracking of foodborne pathogens, and the information gathered throughout an epi-
demiological investigation is essential for the evaluation of the effectiveness and for the
development of new prevention strategies [4,33].

For decades, epidemiological investigations have been conducted through conven-
tional methods such as MLVA and PFGE, the latter being considered the gold standard.
Throughout the last decade, WGS has become increasingly available for routine use world-
wide due to its unprecedented resolution, high speed and low cost per sample. WGS
provides the bulk of information on bacterial isolates such as serotyping prediction, geno-
typing, detection of interesting genes (e.g., AMR and virulence-related genes), plasmid
detection, and phylogenetic relationship determination, among others, in a much shorter
time frame. Due to these characteristics, WGS is becoming highly useful and practical in
epidemiological studies [2,4,5,33,34]. However, while the use of WGS implies considerable
advantages over conventional methods, several drawbacks concerning data analysis, man-
agement and exchange, and a generalised lack of validation are hindering its widespread
use. Currently, a broad array of tools is available for analysing WGS data published and
available on the web. However, a certain level of expertise in command-line computing is
required as most of the software is run in Linux environments. Thus, few alternatives are
available that combine user-friendliness and all-in-one analysis at no cost. In that scenario,
we present a Galaxy workflow for the characterisation of an important foodborne pathogen,
Salmonella, coupled with a dataset as test data, with the aim of evaluating this tool for
possible routine use by non-bioinformaticians.

As test data for the workflow validation, 204 Salmonella genomes were used: S. Enteritidis
(n = 149), S. Bovismorbificans (n = 31), S. Paratpyhi B (n = 18) and S. arizonae (n = 6). Workflow
design concerned the pre-processing of raw data and the general downstream genotyping
assays for microbial pathogens, combined with serotyping, AMR gene and plasmid de-
tection, virulence factors identification, core genome creation and phylogenetic clustering.
Workflow was executed on the European Galaxy server (https://usegalaxy.eu/ (accessed
on 16 July 2022)), and no errors were reported during the running time. For the evaluation
of workflow repeatability and reproducibility, the bioinformatics workflow was run twice
on the same dataset in the same and different computational environments. Each tool
was run in the same order on the command line in both Ubuntu and Red Hat Enterprise
Linux environments, and the results were 100% congruent with those obtained by the
Galaxy server. All raw reads from isolate-sequencing data passed the trimming filtering,
showing high-quality ratios. No evidence of contamination was detected in the dataset
used, although a few samples displayed a higher number of contigs. Samples with a high
number of contigs are deduced to be highly fragmented, due more to the sequencing of
genomes than to possible errors in the assembling process.

https://usegalaxy.eu/


Microorganisms 2022, 10, 2364 9 of 13

The results obtained from the computational analysis showed that the designed
pipeline is able to determine different characteristics among strains. In this case, 13 STs,
153 cgSTs, and a wide range of AMR-related genes and plasmid replicons as well as
virulence gene profiles were identified. Predicted resistance to gentamicin was detected
in the majority of the isolates of the study, and few of them carried blaTEM-1B, blaTEM-1C or
blaSHV-2 genes coding for extended-spectrum β-lactamases (ESBL) that are able to degrade a
wide range of antibiotics such as the cephalosporins and become a food safety concern [35].
However, further considerations regarding results interpretations should be taken into
account, as bioinformatics assays are performed at the genetic level, meaning that they
may not correspond to real phenotypes [36]. Few plasmid replicons were identified in
S. Paratyphi B and S. arizonae isolates, while numerous replicons were identified in the
majority of S. Enteritidis and S. Bovismorbificans isolates. IncFIB and IncFII were the most
abundant plasmid replicons identified in the dataset. Both plasmid replicons belong to the
family of IncF, which is widely distributed and restricted to the Enterobacteriaceae family,
in particular Salmonella enterica, Shigella and Escherichia coli, and carry virulence factors,
AMR, cytotoxins, and adhesion factors [37]. Our results are similar to those of previously
published studies [38,39].

Core-genome-based phylogeny was constructed in order to enable the clustering
of all the isolates tested in this study. Isolates were clustered in accordance with their
serotype and cgST, showing differences between serotypes or among different isolates
within the same serotype. SNP analysis was performed only with S. Enteritidis isolates as
it is better suited to related isolates belonging to the same species or serovar. A total of
472 SNPs positions were identified, and nine different clades were observed. Following
the guidelines to interpret SNP analysis [29], clades were designated based on the SNP
differences between genomes. Strains sharing fewer than 20 SNPs are considered closely
related and as having a common source. Thus, the clade I composition is remarkable. The
12 S. Enteritidis isolates belonging to the local outbreak of 2019 clustered in that clade with
another 10 recovered from Ireland and the UK (years 2017 to 2020) and with six other
strains recovered from Austria in 2012. Although they are not exact matches with regard
to the same time and geographic location, they are closely related, probably because they
emerged from a common source. This could be the first step in deciphering a cross-country
transmission, although further investigation is required. In addition, previous studies
within other bacterial species have shown that SNPs and cgMLST are congruent [34], as
both techniques are suitable candidates for outbreak and epidemiological investigations.

Furthermore, we stress that several web-based and command line-free alternatives ex-
ist for pathogen typing and visualisation. In this manuscript, we leave commercial software
aside because the associated costs usually become unaffordable for many laboratories [40].
Therefore, we focused on free and user-friendly alternatives for analysing WGS data. In
this sense, the iTOL tool was used for visualising phylogenetic clustering and data because
of its user-friendly interface. Alternatives for data visualisation are available as MEGA
X [41] or Phyloviz [42], among others, which perform and visualise phylogenetic clustering
of isolates. Moreover, platforms such as PubMLST, Bacterial and Viral Bioinformatics
Resource Center (BV-BRC), EnteroBase and CGE are powerful tools for pathogen typing
that have been used extensively worldwide, but they do not provide a personal instance
to run genomic analyses or an automated pipeline for performing all the desired analyses
at once. Several pipelines such as Bactopia [43], AQUAMIS [44], ASA3P [45], rMAP [46],
Nullarbor (https://github.com/tseemann/nullarbor (accessed on 10 November 2022))
and TORMES [47] perform automated analyses of bacterial genomes and provide users
with a wide range of tools to customise the analysis to their needs. In fact, the results are
presented in appropriate formats to facilitate their interpretation. However, installing and
running the workflow remains a challenge as it is undertaken strictly on the command line.
Workflows hosted on Galaxy instances partially solve installation issues by providing a
ready-to-use platform for performing analyses. Indeed, several Galaxy workflows that
are used for different purposes have been published in the last decade [48–51], but only

https://github.com/tseemann/nullarbor
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a few of them address bacterial pathogens [52] and cover their complete characterisation.
Thus, workflows hosted on Sciensano Galaxy (https://galaxy.sciensano.be/ (accessed on
10 November 2022)) for the characterisation of Neisseria meningitidis, Shiga toxin-producing
Escherichia coli and Mycobacterium tuberculosis were published [1,6,53]. Those workflows are
supported with specific databases and analyses according to each of the three species to be
studied, making it easy to execute and visualise reports.

Bioinformatics tools hold great promise with regard to enhancing the productivity
and discrimination power of current conventional methods and may even replace them.
However, for WGS to be used broadly, it must be implemented in user-friendly software
that facilitates the entire process [54].

Despite the low number of Galaxy workflows for bacterial characterisation, some
papers have reported the use of Galaxy in foodborne outbreak investigations and the
surveillance of a wide variety of microbial pathogens [15], making it suitable for epidemio-
logical investigations. Although extra computational power to run analyses is not necessary,
the limited storage (up to 250 GB but expandable to user’s requirements) becomes a hurdle
as it hinders it use and implementation in NRC and NRLs, as the volume of data and com-
putational needs exceed Galaxy’s limits. Our study is relevant as we provide guidelines
to perform the first steps in the analysis of WGS data from scratch that are specifically
addressed to non-bioinformaticians. Even though the proposed workflow was tested with
a dataset composed of isolates of the genus Salmonella, workflow components and desired
parameters could be adapted to users’ aims and tailored to other bacterial organisms.
Our bioinformatics workflow is available at https://github.com/aatxaerandio/Galaxy_
Workflow_for_Genomic_Analysis (accessed on 11 November 2022) as an uploadable file to
a user’s Galaxy account and ready to use as an automated pipeline.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/microorganisms10122364/s1, Table S1: Overview of the steps and
software used in the bioinformatics workflow; Table S2: Overview of reads trimming and assembly
statistics for the dataset. The first column lists the sample name, second and third columns the %
of surviving paired-end reads and percentage of reads with a mean quality score above 30. Fourth
and fifth columns list the total number of contigs and contigs larger than 1000 bp, respectively. Sixth,
seventh and eighth columns show the total length of the assembly, the GC content and N50 values,
respectively; Table S3: Overview of the data used in the study and assays performed. First and
second columns list the name and subspecies of the samples. Third and fourth columns list the
antigenic profile and serovar of samples. Fifth and sixth columns list the sequence type (ST) of
both classical MLST and cgMLST. Seventh and eighth columns list the AMR gene detection and
phenotype of samples; ninth column lists the plasmid replicon found; Table S4: Extended data of
the assays performed. First column lists sample name; second and third columns list data summary
and data type obtained. % identity and % of coverage against reference target sequence is listed
in columns 5, 6 and 7. Column 8 shows the contigs where data were detected, with start and end
positions in columns 9 and 10. Accession number for target sequences is shown in column 11;
Table S5: Virulence-related genes presence and absence for all the genomes analysed. Blue, presence
of the gene; grey, absence; Table S6: SNP distance matrix of the studied isolate dataset. Values and
colour codes in the matrix indicate pairwise SNP distances between isolates, from red (0 SNPs) to
green (up to 500 SNPs). Outbreak isolates are shown in bold. The colour of the boxes identifies the
different SNP clades (A—purple, B—dark cyan, C—magenta, D—orange, E—yellow, F—bright blue,
G—dark blue, H—black and I—grey).

Author Contributions: Conceptualisation, J.G. and J.B.; methodology, A.A.-L., A.A.-G. and L.L.;
software, A.A.-L.; validation, I.M.-B. and I.M.-M.; formal analysis, A.A.-L., A.A.-G. and I.M.-B.; data
curation, A.A.-L. and J.B.; writing—original draft preparation, A.A.-L.; writing—review and editing,
all authors; supervision, I.M.-B. and J.G.; funding acquisition, I.M.-B., I.M.-M., L.L. and J.G. All
authors have read and agreed to the published version of the manuscript.

Funding: A.A.-L. and A.A.-G. are recipients of predoctoral grants from the Basque Government
and UPV/EHU, respectively. This research was funded by the Basque Government through grant
PA20/03 and the University of the Basque Country UPV/EHU through grant GIU21/021.

https://galaxy.sciensano.be/
https://github.com/aatxaerandio/Galaxy_Workflow_for_Genomic_Analysis
https://github.com/aatxaerandio/Galaxy_Workflow_for_Genomic_Analysis
https://www.mdpi.com/article/10.3390/microorganisms10122364/s1
https://www.mdpi.com/article/10.3390/microorganisms10122364/s1


Microorganisms 2022, 10, 2364 11 of 13

Data Availability Statement: The sequencing data from the study obtained after Illumina sequencing
are available in the DDBJ/EMBL/GenBank databases under the accession number PRJNA891285.
Other data presented in this study are available in Supplementary Materials.

Acknowledgments: We are in debt to the Clinical Microbiology Laboratory members of Galdakao-
Usansolo and Cruces Hospitals, the Public Health Laboratory food inspectors from the Basque Coun-
try and Castilla-León Governments, and the National Microbiology Centre (Institute of Health Carlos
III, ISCIII). The authors are grateful for the technical and human support provided by UPV/EHU
Advanced Research Facilities (SGIker).

Conflicts of Interest: The authors declare that there are no conflict of interest.

References
1. Bogaerts, B.; Nouws, S.; Verhaegen, B.; Denayer, S.; van Braekel, J.; Winand, R.; Fu, Q.; Crombé, F.; Piérard, D.; Marchal, K.; et al.

Validation Strategy of a Bioinformatics Whole Genome Sequencing Workflow for Shiga Toxin-Producing Escherichia coli Using a
Reference Collection Extensively Characterized with Conventional Methods. Microb. Genom. 2021, 7, mgen000531. [CrossRef]
[PubMed]

2. Ronholm, J.; Nasheri, N.; Petronella, N.; Pagotto, F. Navigating Microbiological Food Safety in the Era of Whole-Genome
Sequencing. Clin. Microbiol. Rev. 2016, 29, 837–857. [CrossRef] [PubMed]

3. Allard, M.W.; Bell, R.; Ferreira, C.M.; Gonzalez-Escalona, N.; Hoffmann, M.; Muruvanda, T.; Ottesen, A.; Ramachandran, P.;
Reed, E.; Sharma, S.; et al. Genomics of Foodborne Pathogens for Microbial Food Safety. Curr. Opin. Biotechnol. 2018, 49, 224–229.
[CrossRef] [PubMed]

4. Gerner-Smidt, P.; Besser, J.; Concepción-Acevedo, J.; Folster, J.P.; Huffman, J.; Joseph, L.A.; Kucerova, Z.; Nichols, M.C.;
Schwensohn, C.A.; Tolar, B. Whole Genome Sequencing: Bridging One-Health Surveillance of Foodborne Diseases. Front. Public
Health 2019, 7, 172. [CrossRef] [PubMed]

5. Ashton, P.M.; Nair, S.; Peters, T.M.; Bale, J.A.; Powell, D.G.; Painset, A.; Tewolde, R.; Schaefer, U.; Jenkins, C.; Dallman, T.J.; et al.
Identification of Salmonella for Public Health Surveillance Using Whole Genome Sequencing. PeerJ 2016, 4, e1752. [CrossRef]
[PubMed]

6. Bogaerts, B.; Winand, R.; Fu, Q.; van Braekel, J.; Ceyssens, P.J.; Mattheus, W.; Bertrand, S.; de Keersmaecker, S.C.J.; Roosens,
N.H.C.; Vanneste, K. Validation of a Bioinformatics Workflow for Routine Analysis of Whole-Genome Sequencing Data and
Related Challenges for Pathogen Typing in a European National Reference Center: Neisseria meningitidis as a Proof-of-Concept.
Front. Microbiol. 2019, 10, 362. [CrossRef]

7. Hendriksen, R.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Malorny, B.; Borowiak, M.; Battisti, A.; Franco, A.; Alba, P.; Carfora, V.;
Ricci, A.; et al. Final Report of ENGAGE—Establishing Next Generation Sequencing Ability for Genomic Analysis in Europe.
EFSA Support. Publ. 2018, 15, 1431E. [CrossRef]

8. Llarena, A.; Ribeiro-Gonçalves, B.F.; Nuno Silva, D.; Halkilahti, J.; Machado, M.P.; da Silva, M.S.; Jaakkonen, A.; Isidro, J.;
Hämäläinen, C.; Joenperä, J.; et al. INNUENDO: A Cross-sectoral Platform for the Integration of Genomics in the Surveillance of
Food-borne Pathogens. EFSA Support. Publ. 2018, 15, 1498E. [CrossRef]

9. Joensen, K.G.; Tetzschner, A.M.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and Easy in Silico Serotyping of Escherichia coli
Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 2410–2426. [CrossRef]

10. Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of
Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [CrossRef]

11. Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection
and Typing of Plasmids Using Plasmidfinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58,
3895–3903. [CrossRef] [PubMed]

12. Deng, X.; den Bakker, H.C.; Hendriksen, R.S. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and
Outbreak Investigation of Foodborne Bacterial Pathogens. Annu. Rev. Food Sci. Technol. 2016, 7, 353–374. [CrossRef] [PubMed]

13. Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Achtman, M. The EnteroBase User’s Guide, with Case Studies on Salmonella
Transmissions, Yersinia pestis Phylogeny, and Escherichia Core Genomic Diversity. Genome Res. 2020, 30, 138–152. [CrossRef]
[PubMed]

14. Jalili, V.; Afgan, E.; Gu, Q.; Clements, D.; Blankenberg, D.; Goecks, J.; Taylor, J.; Nekrutenko, A. The Galaxy Platform for Accessible,
Reproducible and Collaborative Biomedical Analyses: 2020 Update. Nucleic Acids Res. 2021, 48, W395–W402. [CrossRef]

15. Gangiredla, J.; Rand, H.; Benisatto, D.; Payne, J.; Strittmatter, C.; Sanders, J.; Wolfgang, W.J.; Libuit, K.; Herrick, J.B.; Prarat, M.; et al.
GalaxyTrakr: A Distributed Analysis Tool for Public Health Whole Genome Sequence Data Accessible to Non-Bioinformaticians.
BMC Genom. 2021, 22, 114. [CrossRef]

16. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890.
[CrossRef]

17. Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a
Single Report. Bioinformatics 2016, 32, 3047–3048. [CrossRef]

18. Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [CrossRef]

http://doi.org/10.1099/mgen.0.000531
http://www.ncbi.nlm.nih.gov/pubmed/33656437
http://doi.org/10.1128/CMR.00056-16
http://www.ncbi.nlm.nih.gov/pubmed/27559074
http://doi.org/10.1016/j.copbio.2017.11.002
http://www.ncbi.nlm.nih.gov/pubmed/29169072
http://doi.org/10.3389/fpubh.2019.00172
http://www.ncbi.nlm.nih.gov/pubmed/31316960
http://doi.org/10.7717/peerj.1752
http://www.ncbi.nlm.nih.gov/pubmed/27069781
http://doi.org/10.3389/fmicb.2019.00362
http://doi.org/10.2903/sp.efsa.2018.EN-1431
http://doi.org/10.2903/sp.efsa.2018.EN-1498
http://doi.org/10.1128/JCM.00008-15
http://doi.org/10.1093/jac/dks261
http://doi.org/10.1128/AAC.02412-14
http://www.ncbi.nlm.nih.gov/pubmed/24777092
http://doi.org/10.1146/annurev-food-041715-033259
http://www.ncbi.nlm.nih.gov/pubmed/26772415
http://doi.org/10.1101/gr.251678.119
http://www.ncbi.nlm.nih.gov/pubmed/31809257
http://doi.org/10.1093/nar/gkaa434
http://doi.org/10.1186/s12864-021-07405-8
http://doi.org/10.1093/bioinformatics/bty560
http://doi.org/10.1093/bioinformatics/btw354
http://doi.org/10.1186/s13059-019-1891-0


Microorganisms 2022, 10, 2364 12 of 13

19. Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive Metagenomic Visualization in a Web Browser.Pdf. BMC Bioinformatics
2011, 12, 385. [CrossRef]

20. Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski,
A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol.
2012, 19, 455–477. [CrossRef]

21. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29,
1072–1075. [CrossRef]

22. Bharat, A.; Petkau, A.; Avery, B.P.; Chen, J.; Folster, J.; Carson, C.A.; Kearney, A.; Nadon, C.; Mabon, P.; Thiessen, J.; et al.
Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella enterica in Canada Using
Staramr. Microorganisms 2022, 10, 292. [CrossRef] [PubMed]

23. Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa,
A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [CrossRef]
[PubMed]

24. Yoshida, C.E.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.J.; Nash, J.H.E.; Taboada, E.N. The Salmonella In Silico
Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies.
PLoS ONE 2016, 11, e0147101. [CrossRef] [PubMed]

25. Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years On.
Nucleic Acids Res. 2016, 44, D694–D697. [CrossRef] [PubMed]

26. Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [CrossRef]
27. Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J.

Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [CrossRef]
28. Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating

Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [CrossRef]
29. Pightling, A.W.; Pettengill, J.B.; Luo, Y.; Baugher, J.D.; Rand, H.; Strain, E. Interpreting Whole-Genome Sequence Analyses of

Foodborne Bacteria for Regulatory Applications and Outbreak Investigations. Front. Microbiol. 2018, 9, 1482. [CrossRef]
30. ISO 6579-1:2017; Microbiology of the Food chain—Horizontal Method for the Detection, Enumeration and Serotyping of

Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
31. Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids

Res. 2021, 49, W293–W296. [CrossRef]
32. World Health Organization. Estimating the Burden of Foodborne Diseases: A Practical Handbook for Countries: A Guide for Planning,

Implementing and Reporting Country-Level Burden of Foodborne Disease; World Health Organization: Geneva, Switzerland, 2021.
33. Rantsiou, K.; Kathariou, S.; Winkler, A.; Skandamis, P.; Saint-Cyr, M.J.; Rouzeau-Szynalski, K.; Amézquita, A. Next Generation

Microbiological Risk Assessment: Opportunities of Whole Genome Sequencing (WGS) for Foodborne Pathogen Surveillance,
Source Tracking and Risk Assessment. Int. J. Food Microbiol. 2018, 287, 3–9. [CrossRef] [PubMed]

34. Pearce, M.E.; Alikhan, N.F.; Dallman, T.J.; Zhou, Z.; Grant, K.; Maiden, M.C.J. Comparative Analysis of Core Genome MLST
and SNP Typing within a European Salmonella Serovar Enteritidis Outbreak. Int. J. Food Microbiol. 2018, 274, 1–11. [CrossRef]
[PubMed]

35. Bae, D.; Cheng, C.M.; Khan, A.A. Characterization of Extended-Spectrum β-Lactamase (ESBL) Producing Non-Typhoidal
Salmonella (NTS) from Imported Food Products. Int. J. Food Microbiol. 2015, 214, 12–17. [CrossRef] [PubMed]

36. Rossen, J.W.A.; Friedrich, A.W.; Moran-Gilad, J. Practical Issues in Implementing Whole-Genome-Sequencing in Routine
Diagnostic Microbiology. Clin. Microbiol. Infect. 2018, 24, 355–360. [CrossRef] [PubMed]

37. Villa, L.; García-Fernández, A.; Fortini, D.; Carattoli, A. Replicon Sequence Typing of IncF Plasmids Carrying Virulence and
Resistance Determinants. J. Antimicrob. Chemother. 2010, 65, 2518–2529. [CrossRef]

38. Lyu, N.; Feng, Y.; Pan, Y.; Huang, H.; Liu, Y.; Xue, C.; Zhu, B.; Hu, Y. Genomic Characterization of Salmonella enterica Isolates From
Retail Meat in Beijing, China. Front. Microbiol. 2021, 12, 636332. [CrossRef]

39. Egorova, A.; Mikhaylova, Y.; Saenko, S.; Tyumentseva, M.; Tyumentsev, A.; Karbyshev, K.; Chernyshkov, A.; Manzeniuk, I.;
Akimkin, V.; Shelenkov, A. Comparative Whole-Genome Analysis of Russian Foodborne Multidrug-Resistant Salmonella infantis
Isolates. Microorganisms 2022, 10, 89. [CrossRef]

40. Carriço, J.A.; Rossi, M.; Moran-Gilad, J.; van Domselaar, G.; Ramirez, M. A Primer on Microbial Bioinformatics for Nonbioinfor-
maticians. Clin. Microbiol. Infect. 2018, 24, 342–349. [CrossRef]

41. Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38,
3022–3027. [CrossRef]

42. Ribeiro-Gonçalves, B.; Francisco, A.P.; Vaz, C.; Ramirez, M.; Carriço, J.A. PHYLOViZ Online: Web-Based Tool for Visualization,
Phylogenetic Inference, Analysis and Sharing of Minimum Spanning Trees. Nucleic Acids Res. 2016, 44, W246–W251. [CrossRef]

43. Petit, R.A.; Read, T.D. Bactopia: A Flexible Pipeline for Complete Analysis of Bacterial Genomes. mSystems 2020, 5, e00190-20.
[CrossRef]

44. Deneke, C.; Brendebach, H.; Uelze, L.; Borowiak, M.; Malorny, B.; Tausch, S.H. Species-Specific Quality Control, Assembly and
Contamination Detection in Microbial Isolate Sequences with Aquamis. Genes 2021, 12, 644. [CrossRef]

http://doi.org/10.1186/1471-2105-12-385
http://doi.org/10.1089/cmb.2012.0021
http://doi.org/10.1093/bioinformatics/btt086
http://doi.org/10.3390/microorganisms10020292
http://www.ncbi.nlm.nih.gov/pubmed/35208747
http://doi.org/10.1093/jac/dkaa345
http://www.ncbi.nlm.nih.gov/pubmed/32780112
http://doi.org/10.1371/journal.pone.0147101
http://www.ncbi.nlm.nih.gov/pubmed/26800248
http://doi.org/10.1093/nar/gkv1239
http://www.ncbi.nlm.nih.gov/pubmed/26578559
http://doi.org/10.1093/bioinformatics/btu153
http://doi.org/10.1093/bioinformatics/btv421
http://doi.org/10.1093/molbev/msu300
http://doi.org/10.3389/fmicb.2018.01482
http://doi.org/10.1093/nar/gkab301
http://doi.org/10.1016/j.ijfoodmicro.2017.11.007
http://www.ncbi.nlm.nih.gov/pubmed/29246458
http://doi.org/10.1016/j.ijfoodmicro.2018.02.023
http://www.ncbi.nlm.nih.gov/pubmed/29574242
http://doi.org/10.1016/j.ijfoodmicro.2015.07.017
http://www.ncbi.nlm.nih.gov/pubmed/26210532
http://doi.org/10.1016/j.cmi.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/29117578
http://doi.org/10.1093/jac/dkq347
http://doi.org/10.3389/fmicb.2021.636332
http://doi.org/10.3390/microorganisms10010089
http://doi.org/10.1016/j.cmi.2017.12.015
http://doi.org/10.1093/molbev/msab120
http://doi.org/10.1093/nar/gkw359
http://doi.org/10.1128/mSystems.00190-20
http://doi.org/10.3390/genes12050644


Microorganisms 2022, 10, 2364 13 of 13

45. Schwengers, O.; Hoek, A.; Fritzenwanker, M.; Falgenhauer, L.; Hain, T.; Chakraborty, T.; Goesmann, A. ASA3P: An Automatic
and Scalable Pipeline for the Assembly, Annotation and Higher-Level Analysis of Closely Related Bacterial Isolates. PLoS Comput.
Biol. 2020, 16, e1007134. [CrossRef]

46. Sserwadda, I.; Mboowa, G. Rmap: The Rapid Microbial Analysis Pipeline for Eskape Bacterial Group Whole-Genome Sequence
Data. Microb. Genom. 2021, 7, 000583. [CrossRef]

47. Quijada, N.M.; Rodríguez-Lázaro, D.; Eiros, J.M.; Hernández, M. TORMES: An Automated Pipeline for Whole Bacterial Genome
Analysis. Bioinformatics 2019, 35, 4207–4212. [CrossRef]

48. Jagtap, P.D.; Johnson, J.E.; Onsongo, G.; Sadler, F.W.; Murray, K.; Wang, Y.; Shenykman, G.M.; Bandhakavi, S.; Smith, L.M.; Griffin,
T.J. Flexible and Accessible Workflows for Improved Proteogenomic Analysis Using the Galaxy Framework. J. Proteome Res.
2014, 13, 5898–5908. [CrossRef]

49. Cock, P.J.A.; Grüning, B.A.; Paszkiewicz, K.; Pritchard, L. Galaxy Tools and Workflows for Sequence Analysis with Applications
in Molecular Plant Pathology. PeerJ 2013, 1, e167. [CrossRef]

50. Thanki, A.S.; Soranzo, N.; Haerty, W.; Davey, R.P. GeneSeqToFamily: A Galaxy Workflow to Find Gene Families Based on the
Ensembl Compara GeneTrees Pipeline. Gigascience 2018, 7, giy005. [CrossRef]

51. Thang, M.W.C.; Chua, X.Y.; Price, G.; Gorse, D.; Field, M.A. Metadegalaxy: Galaxy Workflow for Differential Abundance Analysis
of 16S Metagenomic Data [Version 1; Peer Review: 1 Approved, 1 Approved with Reservations]. F1000Res 2019, 8, 726. [CrossRef]

52. Wee, S.K.; Yap, E.P.H. GALAXY Workflow for Bacterial Next-Generation Sequencing De Novo Assembly and Annotation. Curr.
Protoc. 2021, 1, e242. [CrossRef]

53. Bogaerts, B.; Delcourt, T.; Soetaert, K.; Boarbi, S.; Ceyssens, P.J.; Winand, R.; van Braekel, J.; de Keersmaecker, S.C.J.; Roosens,
N.H.C.; Marchal, K.; et al. A Bioinformatics Whole-Genome Sequencing Workflow for Clinical Mycobacterium tuberculosis Complex
Isolate Analysis, Validated Using a Reference Collection Extensively Characterized with Conventional Methods and in Silico
Approaches. J. Clin. Microbiol. 2021, 59, e00202-21. [CrossRef]

54. Brown, E.; Dessai, U.; Mcgarry, S.; Gerner-Smidt, P. Use of Whole-Genome Sequencing for Food Safety and Public Health in the
United States. Foodborne Pathog. Dis. 2019, 16, 441–450. [CrossRef]

http://doi.org/10.1371/journal.pcbi.1007134
http://doi.org/10.1099/mgen.0.000583
http://doi.org/10.1093/bioinformatics/btz220
http://doi.org/10.1021/pr500812t
http://doi.org/10.7717/peerj.167
http://doi.org/10.1093/gigascience/giy005
http://doi.org/10.12688/f1000research.18866.2
http://doi.org/10.1002/cpz1.242
http://doi.org/10.1128/JCM.00202-21
http://doi.org/10.1089/fpd.2019.2662

	Introduction 
	Materials and Methods 
	Bioinformatics Workflow 
	Data Processing and Quality Control 
	Strain Genotyping, AMR and Plasmid Replicon Detection 
	Virulence-Associated Gene Detection 
	Genome Annotation 
	Phylogenetic Analysis 
	Implementation and Availability 

	Validation of the Workflow 
	Validation Dataset 
	Validation Strategy 

	Further Genomic Analysis 

	Results 
	Validation of the Workflow 
	Data processing and Quality Control 
	Strain Characterisation 
	Phylogenetic Analysis 

	Discussion 
	References

