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Abstract

Background The mammal genome is pervasively transcribed, that is, a bigger frac-
tion of the genome is being transcribed at some point of development than what can
be attributed to protein-coding RNAs. It is known that several classes of non-protein
coding RNA (ncRNA) genes are encoded in the mammal genome. Some are essential
well-defined housekeeping RNAs, others small conserved regulatory RNAs that act as
post-transcriptional regulators and others large non-coding transcription products with
limited evidence of function. MicroRNAs (miRNAs) are the main class of noncoding
small RNAs. They are molecules of approximately 22 nucleotides that regulate gene ex-
pression post-transcriptionally by binding to mRNAs. In animals, many miRNAs are
highly conserved, up to 200 miRNA genes can be traced to the vertebrate ancestor of
mammals and bony fish. Nevertheless, the number of confidently identified but poorly
conserved genes is growing as more samples are subjected to high-throughput sequenc-
ing. Long non-coding RNAs (lncRNAs) are a heterogeneous class of transcripts longer
than 200 nucleotides lacking protein-coding potential that are present across a variety
of eukaryotic species. The biogenesis of lncRNAs seems to be very similar to mRNAs:
they are transcribed by RNA polymerase II, are post-transcriptionally modified like mR-
NAs and expressed lncRNA promoters are enriched for the same histone modifications.
However, they show an exceptional cell type, tissue, developmental stage and disease
state specific expression, are expressed at lower abundances than mRNAs, and most of
them are poorly conserved at sequence level. Several lncRNAs have been attributed a
biological function, usually related to a structural or regulatory role, but most of them
remain uncharacterized.

Domestic animals are of great importance as sources of high-quality products for hu-
man consumption and as disease models in biomedical research, and animal health is an
essential component of the “one health” concept for the prevention of zoonotic diseases.
The human and mouse genomes have been deeply annotated for non-coding genes, but
the rest of the mammal genomes, including livestock species, are lacking in terms of
ncRNA gene quantity and quality. These ncRNAs are important because a big fraction
of the thousands of genomic regions that have been associated with complex phenotypic
traits and diseases in farmed animals lie within non-coding genomic regions. miRNAs
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are much more conserved than lncRNAs and have predictable structures, so there have
been more transcriptomic studies in sheep. Still, the number of annotated miRNAs in the
reference databases remain small, with just 103 miRNA genes in miRBase. Considering
lncRNAs, they are also underrepresented in the sheep reference annotations, mainly be-
cause of the difficulty of correctly producing transcript models using in silico analyses.
The vast majority of published functional genomics analyses that have profiled lncRNAs
in sheep are related to phenotypic traits important for production and development of
commercially interesting tissues, but few analyse the immune system.

In non-model organisms, since the non-coding gene sets are still in need for improve-
ment in terms of quantity and quality of annotated genes, genome-wide transcriptomic
studies that link ncRNAs to immune functions have been less common. The main objec-
tive of this work is the identification of ovine non-coding genes, concretely miRNA and
lncRNA genes, that are involved in the innate and adaptive immune responses induced
by vaccines, vaccine components and pathogen infections. For this purpose, sequencing
datasets produced in the lab and datasets publicly available were analysed with bioin-
formatic tools and workflows in order to identify unannotated non-coding genes, pro-
file their expression in different tissues and perform evolutionary conservation analyses.
Statistical approaches for analysing their expression profiles during different immune
responses include differential gene expression analysis and co-expression network anal-
yses.

Methods Transcriptomics is defined as the study of the transcriptome, the complete
set of RNA molecules, as it is the study of expressed RNA in a given cell or tissue type.
For the characterisation of the ovine non-coding transcriptome, high-throughput RNA
sequencing assays were analysed, mainly small RNA-seq (sRNA-seq) and ribosome-
depleted RNA-seq. miRNAs were predicted from sRNA-seq data using widely used
tools – such as miRDeep2 or sRNAbench – that make use of the known structural features
of miRNAs such as length or folding energy of the precursor molecule. Sequencing reads
are mapped against the reference genome, bona fide miRNA sequences are selected and
reads are quantified. Unannotated miRNAs were named after their closest orthologue by
sequence similarity. Target prediction tools were used to know which genes are regulated
by miRNAs. Ribosome-depleted RNA-seq and poly-A selected RNA-seq were analysed
with a tailor-made bionformatic workflow for the identification of unannotated lncRNAs.
Reads are mapped to the reference genome with a splice-aware tool, the transcriptome
is assembled, the transcriptome is compared with the reference annotation, novel tran-
scripts are filtered and gene expression levels are quantified. The filtering of unannotated
transcripts for selecting lncRNAs consists of length filters, coding potential assessment
and protein domain searches.

Expression profiling of lncRNAs and miRNAs along protein coding genes (PCGs) was
used to get clues about their involvement in the immune response to infection and vacci-
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nation. Differential gene expression analysis was used to identify genes with statistically
significant differences in expression levels between animals subjected to two experimen-
tal conditions (e.g. uninfected animals and infected animals). The selected tools were
DESeq2 and edgeR, both based on negative binomial regression models. Besides, gene
co-expression network analysis, an unsupervised clustering method that uses correlation
values as a measure of similarity, was performed with the lncRNA and PCG expression
values. We determine clusters of genes with the same expression patterns, which follow-
ing the guilt-by-association principle are expected to be involved in similar biological
pathways.

Results and discussion The Small Ruminant Lentiviruses group includes the Visna
Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a
disease in sheep and goats characterized by pneumonia, mastitis, arthritis and encephali-
tis. In Chapter 3, we performed the first study reporting miRNA profiling in sheep in
response to VMV infection during different clinical stages of infection. A total of 212
miRNAs were identified, of which 46 were conserved sequences in other species but
found for the first time in sheep, and 12 were completely novel. Differential expression
analysis comparing the uninfected and seropositive groups showed changes in several
miRNAs; however, no significant differences were detected between seropositive asymp-
tomatic and diseased sheep. Thus, the infection could be detected before the appearances
of symptoms by changes in miRNA expression. Oar-miR-21, oar-miR-148a and oar-let-7f
seem to have potential implications for the host-virus interactions because of their strong
upregulation by both treatments. The robust increase in the expression level of oar-miR-
21 is consistent with its increased expression in other viral diseases and during lung fi-
brosis, a common symptom of VMV disease. Furthermore, the target prediction of the
dysregulated miRNAs revealed that they control genes involved in proliferation-related
signalling pathways, such as the PI3K-Akt, AMPK and ErbB pathways, also common
during fibrosis. The known functions of oar-miR-21 as a regulator of inflammation and
proliferation appear to be a possible cause of the lesions caused in the sheep’s lungs. This
miRNA could be an indicator for the severity of the lung lesions, or a putative target for
therapeutic intervention.

In sheep, few miRNAs have been described in comparison with other livestock
species or model organisms. In Chapter 4, we uniformly analysed 172 public ovine small
RNA sequencing datasets from 21 different tissues in order to predict conserved and
novel miRNA precursors and profile their expression patterns. In addition to the 106
annotated sheep miRNAs, 1047 previously unannotated miRNA precursor sequences
were detected and 41% of them were assigned an orthologue from other close species.
Considering expression levels, a set of miRNAs with high sequence conservation were
detected in all tissues, while 733 mature miRNAs were robustly expressed in at least
one tissue. 270 miRNAs showed high tissue specificity index values. Brain, male repro-
ductive tissues and PBMCs showed the most distinct expression patterns. Strikingly,
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over one hundred precursors from the ruminant specific family of mir-2284/mir-2285
miRNAs were found, which were enriched in immune related tissues. This work sup-
ports the known high conservation of many miRNAs, but also highlights the potential
of clade-specific innovations in ruminant evolution.

Aluminium hydroxide adjuvants are crucial for livestock and human vaccines. Few
studies have analysed their effect on the central nervous system in vivo. In Chapter 5,
we assessed lncRNA expression in a long-term vaccination experiment for the study of
vaccine adjuvant safety. Lambs received three different treatments of parallel subcuta-
neous inoculations during 16 months with aluminium-containing commercial vaccines,
an equivalent dose of aluminium hydroxide or mock injections. Brain samples were se-
quenced by RNA-seq for the expression analysis of mRNAs and long non-coding RNAs
and three expression comparisons were made. Commercial vaccines with aluminium
adjuvant did not show almost any effect on lncRNA expression levels in brain tissue,
while the inoculation of the adjuvant alone produced the dysregulation of 30 lncRNAs.
Although few differentially expressed genes were identified, some dysregulated genes
were linked to neurological functions, the lncRNA TUNA among them, or were enriched
in mitochondrial energy metabolism related functions. In brief, in this study aluminium
hydroxide alone altered the transcriptome of the encephalon to a higher degree than com-
mercial vaccines that present a milder effect. The expression changes in the animals inoc-
ulated with aluminium hydroxide suggest mitochondrial disfunction. Further research is
needed to elucidate to which extent these changes could have pathological consequences.

In the context of the same experiment, in Chapter 6 we reanalysed sequencing data
from PBMCs in order to find dysregulated lncRNAs related to the innate immune re-
sponse to aluminium adjuvants. We built a transcriptome from sheep PBMCs RNA-seq
data in order to identify unannotated lncRNAs and analysed their expression patterns
along protein coding genes. We found 2284 novel lncRNAs and assessed their conserva-
tion in terms of sequence and synteny. In this case, we found out that inoculation with
commercial vaccines or aluminium hydroxide alone caused changes in expression of 159
and 170 lncRNAs. The co-expression analysis revealed lncRNAs related to the immune
response to vaccines and adjuvants. A group of co-expressed genes enriched in cytokine
signalling and production highlighted the differences between different treatments. A
number of differentially expressed lncRNAs were correlated with a divergently located
protein-coding gene, such as the OSM cytokine. Other lncRNAs were predicted to act as
sponges of miRNAs involved in immune response regulation. This work puts an accent
on their involvement in the immune response to repetitive vaccination and the under-
standing of the mechanism of action of aluminium adjuvants.

LncRNAs are involved in several biological processes, including the immune system
response to pathogens and vaccines. In Chapter 7, we take advantage of the increas-
ing number of high-throughput functional experiments deposited in public databases in
order to uniformly analyse and profile unannotated lncRNAs from 422 available ovine
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RNA-seq samples of blood cells, lymphoid organs and other immune cells. We identify
the lncRNA gene expression signature of a broad immune response, that is, lncRNAs
that are dysregulated upon immune activation by a variety of pathogens and vaccines.
We identified 12302 unannotated lncRNA genes with support from independent assays
and 873 expressed annotated lncRNAs. Unannotated lncRNAs showed low expression
levels and sequence conservation, with differences depending on lncRNA classification.
Differential expression analyses between unstimulated samples and samples with dif-
ferent stimulations such as pathogen infection or vaccination resulted in hundreds of
lncRNAs with changed expression. In blood cell samples there were 75 differentially
expressed lncRNAs and in lymph node samples there were 46. Gene co-expression anal-
yses revealed immune gene-enriched clusters associated with immune system activation
and related to interferon signalling, antiviral response or endoplasmic reticulum stress.
Besides, differential co-expression networks (DCNs) were constructed in order to find
condition-specific relationships between coding genes and lncRNAs. The DCNs also re-
vealed PCGs that, despite not being differentially expressed, could be implicated in the
immune response to infection and vaccination. Examples of this would be the metabolic
anzyme IDO1 in the innate response and the transcription factor CREB3 in the adaptive
response.

Conclusions Multiple processes are involved in the immune response to infection
and vaccination and ncRNAs play different roles in these processes. The main goals
of this work were, first, to detect unannotated ovine miRNAs and lncRNAs from func-
tional genomics experiments produced in the research group and publicly available RNA
sequencing datasets from immune tissues and, second, to profile the ncRNA gene ex-
pression across a variety of immune stimulations such as pathogen infection or vaccina-
tion. The ovine miRNAs described in this dissertation show diverging levels of sequence
conservation, from a set of deeply conserved miRNA families to species-specific fami-
lies, passing through clade-specific miRNA families that might be important for rumi-
nant evolution. The ovine lncRNAs show the characteristics of other published livestock
lncRNAs and the known features of human lncRNAs: poor sequence conservation, low
expression levels, few exon number and primarily intergenic location. The functional
analyses performed with immune-stimulated samples revealed hundreds of known and
novel ncRNAs with specific expression patterns during an infection or vaccination. These
genes make up a prioritized set of potential candidates for deeper experimental analy-
ses. Taken together, these results should help completing the sheep non-coding gene
catalogue, and most importantly, they give evidence of immune state-specific ncRNA
expression patterns in a livestock species.
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Laburpena

Sarrera Ugaztunen genoma erabat transkribatzen da, hau da, genomaren zati
handiago bat ari da transkribatzen garapen-uneren batean gene proteina kodetzaileei
egotzi ahal zaiena baino. Jakina da zenbait proteina-kodetzaile ez diren RNA (ncRNA)
gene mota ugaztunen genoman kodetuta daudela. Batzuk oinarrizko funtzioak betetzen
dituzten eta ongi definituta dauden funtsezko RNAk dira, beste batzuk kontserbatu-
tako RNA erregulatzaile txikiak dira, transkripzio osteko erregulatzaile gisa jarduten
dutenak, eta beste batzuk RNA ez-kodetzaile produktu luzeak dira, funtzio-ebidentzia
mugatuarekin. MikroRNAk (miRNAk) RNA ez-kodetzaile txikien artean nagusienak
dira. 22 nukleotido inguruko molekulak dira, eta genearen transkripzio-osteko adier-
azpena erregulatzen dute, mRNA molekulekin lotuz. Animalietan, miRNA asko oso
kontserbatuta daude, izan ere, 200 miRNA gene aurki daitezke ugaztunen eta hezur-
arrainen arbaso ornoduneraino. Hala eta guztiz ere, konfiantzaz identifikatutako baina
gaizki kontserbatutako miRNA geneen kopurua gero eta handiagoa da lagin gehiago
ekoizpen-handiko metodoekin sekuentziatzen diren heinean. RNA ez-kodetzaile luzeak
(lncRNAk) 200 nukleotido baino gehiagoko transkripto mota heterogeneoa da, proteinak
kodetzeko ahalmenik ez dutenak, eta espezie eukariotoetan zehar agertzen direnak.
LncRNAen biogenesia mRNAren oso antzekoa da: II RNA polimerasak transkribatzen
ditu, transkripzio-osteko aldaketak dituzte, eta adierazten diren lncRNAen promo-
toreak aberastuta daude histona-eraldaketa berberetan. Hala ere, zelula-mota, ehun,
garapen-etapa eta gaixotasun-egoeraren arabera adierazpen espezifiko aparta erakusten
dute, mRNAk baino ugaritasun txikiagoarekin adierazten dira, eta gehienak sekuentzia
mailan ez daude oso kontserbatuta. LncRNA batzuei funtzio biologiko bat egotzi zaie,
normalean funtzio estruktural edo erregulatzaile batekin erlazionatua, baina gehienak
karakterizatu gabe jarraitzen dute.

Etxeko animaliek garrantzi handia dute giza kontsumorako kalitate handiko pro-
duktuen iturri gisa eta ikerketa biomedikoan gaixotasun-eredu gisa. Gainera, animalien
osasuna “one health” kontzeptuaren atal ezinbestekoa da gaixotasun zoonotikoen
prebentziorako. Gizakiaren eta saguaren genomak sakonki anotatu egin dira gene
ez-kodetzaileei dagokienez, baina gainerako ugaztunen genomak, etxe-abereenak
barne, ncRNA geneen kantitate eta kalitate aldetik gabezi handiak dituzte. Gene
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ez-kodetzaileak garrantzitsuak dira, ohikoa baita ezaugarri fenotipiko konplexuekin eta
etxe-abereen gaixotasunekin lotzen diren milaka eskualde genomikoen zati handi bat
eskualde ez-kodetzaileetan kokatzea. miRNAk lncRNak baino kontserbatuagoak daude
eta aurresan daitezkeen egiturak dituzte, hortaz ardia bezalako animalia ez-eredu batean
gehiago ikertu dira metodo transkriptomikoak erabiliz. Hala ere, erreferentziazko
datu-baseetan jasotako miRNA kopurua txikia da, soilik 103 miRNA gene baitaude
miRBase-n. LncRNAk kontuan hartuta, ardien erreferentzia-anotazioetan ere urriak
dira, batez ere in silico analisiak erabiliz transkripto-eredu zuzenak eraikitzeko dagoen
zailtasunagatik. Ardian argitaratu diren genomika funtzionaleko analisi gehienek
ekoizpenerako eta garapenerako ezaugarri fenotipiko komertzialak aztertu dituzte,
baina gutxik aztertu dituzte lncRNAk immunitate-sistemaren baitan.

Animalia-eredu ez diren organismoetan, gene ez-kodetzaileen bilduma oraindik
hobetzeke dagoenez anotatuta dauden geneen kantitateari eta kalitateari dagokienez,
ez dira hain ohikoak izan ncRNAk funtzio immunologikoekin lotzen dituzten azterketa
transkriptomikoak. Lan honen helburu nagusia gene ez-kodetzaileak identifikatzea da,
zehazki miRNA eta lncRNA geneak, txertoek, txertoen osagaiek eta patogenoen in-
fekzioek eragindako erantzun immunean parte hartzen dutenak. Horretarako, laborate-
gian sortutako sekuentziazio datuak eta publikoki eskuragarri zeuden datu-multzoak
lan-fluxu bioinformatikoekin aztertu ziren, anotatu gabeko gene ez-kodetzaileak iden-
tifikatzeko, ehun desberdinetan euren adierazpena aztertzeko eta kontserbazio-analisi
ebolutiboak egiteko. Adierazpen profilak erantzun immunologiko desberdinetan
aztertzeko erabili diren metodo estatistikoak geneen adierazpen diferentzialaren analisia
eta ko-adierazpen sareen analisia izan dira, besteak beste.

Metodoak Transkriptomika transkriptoma ikertzen duen arloa da, zelula edo
ehun mota jakin batean adierazitako RNA multzoa. Ardiaren transkriptoma ez-
kodetzailearen karakterizaziorako, etekin altuko RNA sekuentziazio datuak aztertu
ziren, batez ere small RNA-seq (sRNA-seq) deritzona eta erribosoma-generik gabeko
RNA-seq. miRNAk sRNA-seq datuetatik abiatuta aztertu ziren, miRNA molekulen
egiturazko ezaugarri ezagunak erabiltzen dituzten tresna ezagunak (miRDeep2 eta
sRNAbench) erabiliz, hala nola sekuentziaren luzera edo prekurtsoreak tolesteko behar
duen energia. Sekuentziazio-irakurketak erreferentziazko genomaren kontra mapatzen
dira, miRNA sekuentzia fidagarriak hautatzen dira eta irakurketak kuantifikatzen dira.
Anotatu gabeko miRNAei ortologo hurbilenaren izena eman zitzaien, lerrokaketak
erabiliz. Jakiteko zeintzuk diren miRNAek erregulatzen dituzten geneak gene-ituak au-
rresateko tresnak erabili ziren. Anotatu gabeko lncRNAk identifikatzeko erribosomarik
gabeko RNA-seq eta poly-A RNA-seq datuak aztertu ziren, neurrira egindako lan-fluxu
bionformatiko batekin. Irakurketak erreferentziazko genomaren aurka mapatzen dira,
moztitsasketa kontuan hartzen duen tresna batekin, transkriptoma eraikitzen da, tran-
skriptoma erreferentziazko anotazioarekin alderatzen da, transkripto berriak iragazten
dira eta geneen adierazpen-maila kuantifikatzen da. Anotatu gabeko transkriptoen
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iragaztea lncRNAk hautatzeko egiten da eta, besteak beste, luzera-iragazkiak, proteina
kodetzeko ahalmenaren ebaluazioa eta proteinen domeinu-bilaketak egiten dira.

lncRNA eta miRNA geneen adierazpena gene proteina kodetzaileekin (PCG) batera
aztertu zen, infekzioaren eta txertaketaren erantzun immunologikoan parte-hartzen
duten ikusteko. Bi baldintza esperimentalen (adibidez, infektatu gabeko animaliak
eta infektatutako animaliak) arteko desberdintasun estatistikoki esangarriak testatzeko
geneen adierazpen diferentzialaren analisia erabili zen. Aukeratutako tresnak DESeq2
eta edgeR izan ziren, biak erregresio eredu binomial negatiboak oinarri dituztenak.
Gainera, geneen ko-adierazpen sarearen analisia, korrelazio balioak antzekotasun-
neurri gisa erabiltzen dituen gainbegiratzerik gabeko taldekatze-metodoa, lncRNA
eta PCG adierazpen-balioekin egin zen. Honekin, adierazpen-eredu berbera duten
gene-multzoak zehazten ditugu eta guilt-by-association printzipioari jarraituz antzeko
bidezidor biologikoetan parte hartzea espero da.

Emaitzak eta eztabaida Visna Maedi birusa (VMV) eta Caprine Arthritis Encephali-
tis birusa (CAEV) hausnarkari txikien lentivirusen taldearen parte dira. Horiek ardietan
eta ahuntzetan gaixotasun bat eragiten dute, pneumonia, mastitisa, artritisa eta entze-
falitisa bezalako sintomekin. 3. Kapituluan, lehen aldiz berri ematen da miRNAren
profilari buruz ardietan VMVren infekzio batean, infekzioaren fase kliniko ezberdinetan.
Guztira 212 miRNA identifikatu ziren, eta horietatik 46 sekuentzia aldetik kontserbat-
uak zeuden beste espezie batzuetan, baina lehen aldiz ardietan aurkitu ziren beste 12
sekuentzia erabat berri. Kutsatu gabeko animaliak eta seropositiboak alderatzen dituen
adierazpen diferentzialaren analisiak aldaketak aurkitu zituen hainbat miRNAtan; hala
ere, ez zen aldaketa esanguratsurik antzeman sintomarik gabeko ardi seropositiboen
eta gaixotutako ardien artean. Horrela, infekzioa sintomen agerpenaren aurretik detek-
tatu ahal izango litzateke, miRNAen adierazpenaren aldaketen ondorioz. Oar-miR-21,
oar-miR-148a eta oar-let-7f ostalariaren eta birusaren arteko elkarrekintzetan garrantz-
itsuak izan litezke, beren adierazpenaren igoera oso nabarmena baita bi tratamendue-
tan. Oar-miR-21 miRNAren adierazpen-mailaren hazkunde indartsua bat dator beste
gaixotasun biriko batzuekin eta biriketako fibrosian duen adierazpen aldaketekin, VMV
gaixotasunaren sintoma arrunta. Gainera, diferentzialki adierazitako miRNAen gene-
ituen predikzioek agerian utzi zuten zelulen ugaritzearekin lotutako bidezidorretan, hala
nola PI3K-Akt, AMPK eta ErbB bideetan, geneak kontrolatzen dituztela, fibrosian ere
ohikoa dena. Jakina denez Oar-miR-21 miRNAk funtzio ezagunak ditu hanturaren eta
zelulen ugaritzearen erregulazioan eta ardien biriketan eragindako lesioen kausa izan
liteke. miRNA hau biriketako lesioen larritasunaren adierazlea izan daiteke, edo inter-
bentzio terapeutikorako itu bat.

Ardietan miRNA gutxi deskribatu dira beste etxe-abere edo animalia-eredu
batzuekin alderatuta. 4. Kapituluan, era uniformean aztertu ditugu ardiaren 172
sRNA-seq datu-multzo publiko, 21 ehun desberdin bilduz, kontserbatutako eta anotatu
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gabeko miRNAk aurresateko eta euren adierazpen mailak aztertzeko. Anotatuta dauden
106 miRNAez gain, aurretik anotatu gabeko 1047 miRNA gene aurkitu ziren. Horietatik,
%41a hurbileko beste espezie baten ortologoa zela zehaztu zen. Adierazpen-maila
kontuan hartuta, kontserbazio-maila handiko miRNA multzo bat ehun guztietan haute-
man zen, 733 miRNAek gutxienez ehun batean adierazpen sendoa zuten bitartean. 270
miRNAek ehun-espezifikotasun indize balio handiak aurkeztu zituzten. Garunak, arren
ugaltze-ehunek eta odol zelulek adierazpen-profil desberdinenak erakutsi zituzten.
Deigarria da mir-2284/mir-2285 miRNA familiako, zeina hausnarkarien espezifikoa
baita, 100 miRNA baino gehiago aurkitu zirela, eta hauek sistema immunearekin lotu-
tako ehunetan gehiago adierazten ziren. Lan honek miRNA askoren kontserbazio-maila
handia babesten du, baina hausnarkarien eboluzioan familia espezifikoek dakartzaten
berrikuntza ebolutiboak ere nabarmentzen ditu.

Aluminio hidroxidozko txerto-laguntzaileak ezinbestekoak dira etxe-abere eta giza
txertoetan. Ikerketa gutxik aztertu dute nerbio-sistema zentralean in vivo duten eragina.
5. Kapituluan, txertoaren segurtasuna aztertzeko epe luzeko txertaketa-esperimentu
batean lncRNAk nola adierazten diren aztertu dugu. Arkumeek hiru tratamendu
desberdin jaso zituzten larruazalpeko inokulazio paraleloetan 16 hilabetez: alumin-
ioa duten txerto komertzialak, aluminio hidroxidoa soilik edo kontrol-inokulazioak.
Garuneko laginak RNA-seq bidez sekuentziatu ziren PCGen eta lncRNAen adier-
azpenaren analisirako, eta hiru konparaketa egin ziren. Aluminiozko laguntzailea zuten
txerto komertzialek ez zuten ia inolako eraginik izan lncRNA genen adierazpen-mailan
garun-ehunean; aldiz, aluminio hidroxidoaren inokulazioak 30 lncRNAren adierazpen
diferentziala baino ez zuen eragin. Nahiz eta diferentzialki adierazitako gene gutxi
identifikatu, zenbait gene funtzio neurologikoekin lotuta zeuden, horien artean TUNA
lncRNA, eta gene kodetzaileak metabolismo energetiko mitokondrialarekin lotutako
funtzioekin erlazionatuta zeuden. Laburtuz, azterketa honetan aluminio-hidroxidoak
entzefaloaren transkriptoman eragin arinagoa izan zuen txerto komertzialek baino,
zeinek eragin oso txikia izan zuten. Aluminio hidroxidoz inokulatutako animalien
adierazpen aldaketek disfuntzio mitokondriala iradokitzen dute. Ikerketa berriak
beharrezkoak dira aldaketa horiek ondorio patologikoak zenbateraino izan ditzaketen
argitzeko.

Esperimentu beraren testuinguruan, 6. Kapituluan, odol-zelula mononuklearren
(PBMC) sekuentziazio-datuak aztertu ziren, aluminiozko txerto-laguntzaileen aurreko
erantzun immunearekin lotutako lncRNA berriak aurkitzeko. Ardien PBMC RNA-seq
datuetatik transkriptoma bat eraiki zen, anotatu gabeko lncRNAak identifikatzeko eta
haien adierazpen-profila gene proteina-kodetzileekin batera aztertzeko. 2284 lncRNAs
berri aurkitu ziren, eta horien kontserbazioa sekuentziaren eta sinteniaren (gene ordena)
arabera ebaluatu zen. Kasu honetan, txerto komertzialekin edo soilik aluminio hidrox-
idoarekin egindako inokulazioek aldaketak eragin zituzten 159 eta 170 lncRNAren
adierazpenean, hurrenez hurren. Ko-adierazpen analisiaren bidez txertoen eta txerto-
laguntzaileen erantzun immunearekin lotutako lncRNAk identifikatu ziren. Zitokinen
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seinalizazioan eta produkzioan aberastutako gene-talde batek tratamenduen arteko
desberdintasunak nabarmendu zituen. Diferentzialki adierazitako lncRNA batzuek ko-
rrelazioak erakutsi zituzten modu dibergentean kokatutako beste PCG batzuekin, hala
nola OSM zitokinarekin. Predikzio bioinformatikoek proposatzen dute beste lncRNA
batzuek belaki gisa jarduteko gai liratekeela, erantzun immunearekin lotutako miRNA
garrantzitsuak doituz. Lan honek lncRNAk txertaketa errepikakorraren immunitate-
erantzunean eta aluminiozko laguntzaileen ekintza-mekanismoaren ulermenean duten
garrantzia azpimarratzen du.

LncRNAk zenbait prozesu biologikoekin erlazioa dute, sistema immuneak patoge-
noei eta txertoei ematen dien erantzunarekin barne. 7. Kapituluan, datu-base
publikoetan pilatutako ekoizpen handiko RNA sekuentziazioan oinarritzen diren
esperimentu funtzional kopuru handia probestu zen. Anotatu gabeko lncRNAk modu
uniforme batean aztertu ziren odol-zeluletako, organo linfoideetako eta beste zelula
immune batzuetako 422 lagin erabilita. Erantzun immune zabal baten lncRNA gene-
sinadura identifikatu zen, hau da, patogeno eta txerto ugariren aurkako erantzun
immunean adierazpenean aldaketak erakusten dituzten lncRNAak. 12302 lncRNA
gene identifikatu ziren eta erreferentziazko anotazioan dauden 873 lncRNA detektatu
ziren. Anotatu gabeko lncRNAek sekuentzien adierazpen- eta kontserbazio-maila
apalak erakutsi zituzten, desberdintasunak zeudelarik lncRNA bakoitzaren sailka-
penaren arabera. Estimulatu gabeko laginen eta estimulu desberdineko laginen arteko
adierazpen diferentzialaren analisian, hala nola patogenoen infekzioa edo txertaketa,
adierazpen diferentziala erakusten zuten ehunka lncRNA agertu ziren. Odol-zelulen
laginetan 75 lncRNA zeuden diferentzialki adierazita, eta gongoil linfatikoen laginetan
46 zeuden diferentzialki adierazita. Gene ko-adierazpenaren analisiek immunitate
sistemarekin erlazionatutako gene-multzoak erakutsi zituzten, sistema immunearen
aktibatzearekin lotuta zeudenak eta interferonaren seinaleztatzearekin, birusen aurkako
erantzunarekin edo erretikulu endoplasmatikoaren estresarekin zerikusia zutenak.
Gainera, ko-adierazpen sare diferentzialak eraiki ziren gene kodetzaileen eta lncRNAen
arteko korrelazio aldaketak aurkitzeko. Sare hauek gene kodetzailei buruzko informazio
interesgarria ere eman zuten, eta, nahiz eta diferentzialki adierazi ez, gene batzuk
infekzioaren eta txertaketaren aurkako erantzun immunearekin erlazionatuta egon
litezke. Horren adibide dira IDO1 entzima metabolikoa sortzetiko erantzunean eta
CREB3 transkripzio-faktorea erantzun adaptatiboan.

Ondorioak Hainbat prozesuk parte hartzen dute infekzioaren eta txertaketaren
aurkako erantzun immunitarioan, eta gene ez-kodetzaileek prozesu horietan hainbat
zeregin dituzte. Lan honen helburu nagusiak izan dira, lehenik eta behin, anotatu
gabeko miRNAak eta lncRNAak detektatzea, gure ikerketa-taldean egindako genomika
funtzionaleko esperimentuak baliatuz eta datu-baseetan dauden ardien RNA-seq esper-
imentuak baliatuz. Bigarrenik, ncRNA geneen adierazpena aztertu zen sistema immun-
earen hainbat estimulazioen aurrean, txertaketaren edo patogenoen infekzioaren aurrean
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esaterako. Lan honetan deskribatu diren ardi miRNAek sekuentzien kontserbazio-maila
desberdinak dituzte: batetik, eboluzioan zehar mantendu den miRNA talde bat dago,
eta, bestetik, espezie-espezifikoak diren miRNAk, tarteko kontserbazioa erakusten
duten miRNA sekuentziak ere daudelarik, hausnarkarien eboluziorako garrantzitsuak
izan daitezkeenak. Detektatu diren lncRNA transkriptoek beste etxe-abere batzuetan eta
gizakian argitaratutako lanen ezaugarriak dituzte: sekuentziaren kontserbazio txarra,
adierazpen-maila apalak, exon kopuru txikia eta kokapen intergenikoaren nagusitasuna.
Immunologikoki estimulatutako laginekin egindako analisi funtzionalek agerian utzi
zuten ehunka ncRNA ezagun eta berri, infekzio edo txertaketa batean adierazpen-
eredu espezifikoak dituztela. Gene horiek analisi esperimental sakonagoak egiteko
lehentasunezko hautagai multzo bat osatzen dute. Emaitza hauek, oro har, ardiaren
gene ez-kodetzaileen katalogoa osatzen lagundu beharko lukete, eta, garrantzitsuena
dena, etxe-abere espezie batean gene ez-kodetzaileen adierazpenean aldaketak daudela
erakusten dute sistema immunearen aktibazioan.
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CHAPTER 1. INTRODUCTION

1.1

The non-coding genome in mammals

Since the historic achievement that meant the sequencing of the entire human genome
for the first time, several other mammals have had their genome sequenced in the last two
decades, including many livestock species. After the culmination of the human genome,
it became apparent that there were much less genes than previously predicted [1], at
least in terms of protein-coding genes [2]. This small number of genes covered a tiny
fraction of the genome, while the rest of the genome was termed as “junk DNA” because
it was supposedly composed of repetitive regions, transposons, pseudogenes and other
unknown functionless sequences.

Eukaryotic genomes are characterised by their large size but low protein-coding con-
tent, with just 1.1% of the human genome being protein-coding. Thus, this raised the
question about the usefulness of the rest of the genome. Non-coding parts of the genome
already sustained interest before the sequencing of the first genomes and early genomi-
cists hypothesised functions for these regions that might not be far from the current dog-
mas: chromosomal pairing, genome integrity, gene regulation, messenger RNA (mRNA)
processing or serving as a reservoir for evolutionary innovation [3]. Part of that obscure
genome has been shown to include functionally important DNA elements that control
gene expression like promoters, enhancers, insulators and silencers, and most recent ex-
haustive efforts estimate that they cover around 8% of the human genome [4].

With the advance in whole-genome technologies, it was shown that the mammal
genome was pervasively transcribed, that is, a bigger fraction of the genome was be-
ing transcribed at some point of development than what could be attributed to protein-
coding RNAs [5]. It was shown that several classes of constitutively expressed non-
protein coding RNAs (ncRNAs) were needed in the transcription and translation pro-
cesses [6]. These well-defined housekeeping RNAs are essential for normal function
of the cell: Small nuclear RNAs (snRNAs), transfer RNAs (tRNAs), ribosomal RNAs
(rRNAs) and small nucleolar RNAs (snoRNAs). Beyond these well-known ncRNAs, a
small number of conserved regulatory RNAs that act as post-transcriptional regulators
had been characterized since the 90s. To date, the following small ncRNAs types account
for hundreds of members in human: microRNAs (miRNAs), piwi-interacting RNAs (piR-
NAs), small interfering RNAs (siRNAs) and others. Finally, the evidence of thousands of
large non-coding transcription products located in intergenic regions or associated with
known genes paved the way for a new, heterogeneous and very numerous class of RNAs
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named under the umbrella term of long non-coding RNAs (lncRNAs).

Nowadays, the annotations with highest quality and completeness agree on a gene
count of about 20,000 coding genes and more than 18,000 non-coding genes in human,
even though those numbers are still being debated [7]. The number of annotated coding
genes in other mammals follow a similar trend, but their non-coding genome is lacking
in terms of gene quantity and quality. For instance, the latest Ensembl human annotation
(release 105) has five times more annotated miRNA genes and ten times more annotated
lncRNA genes than the sheep annotation (Figure 1). The present dissertation focuses on
these two non-coding RNA classes: miRNAs and lncRNAs.

Figure 1: Types of annotated genes in human and livestock species. The
figure illustrates the absolute number of genes from each relevant type
according to the Ensembl release 105 annotations.

1.2

MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs that play
important regulatory roles in plants and animals by post-transcriptional targeting of
mRNA molecules and translation repression [8]. They arise from stem-loop regions of
longer precursor RNA transcripts and the mature products are around 22 nucleotides
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long. The first miRNA was discovered in the 90s, after it was shown that a short RNA
transcript was able to block the mRNA of another gene, and was named lin-4 [9]. Later,
let-7 miRNA was identified also in C. elegans [10]. Because of their relatively recent
discovery knowledge on miRNAs is still in progress, but in the last decade more and
more miRNAs have been characterized, with up to 2000 described miRNAs in humans.
miRNAs are one of the most abundant regulators of gene expression in multicellular or-
ganisms and are said to play part in the expression of a big fraction of protein-coding
genes (PCGs) [11].

The miRNA pathway in animals is derived from the more basic RNA interference
(RNAi) pathway, and has independently arisen more than once in evolution in animals,
plants or algae [12]. In animals, many miRNAs are highly conserved, up to 200 miRNA
genes can be traced to the vertebrate ancestor of mammals and bony fish and some of
them even predate the emergence of bilaterian animals. Nevertheless, the number of
confidently identified but poorly conserved genes is growing as more samples are sub-
jected to high-throughput sequencing.

1.2.1. Biogenesis of miRNAs

The genes coding for miRNAs are located across the whole genome, many are in the
introns of PCGs or are part of non-coding RNA genes. Often, miRNAs are located in the
same locus, forming a polycistronic cluster that is usually co-transcribed and harbours
copies of the same miRNA. The canonical biosynthesis pathway of miRNAs consists in
the transcription by RNA polymerase II of the miRNA genes or the gene that contains
the miRNA in order to form the primary transcript (pri-miRNA), which has around one
thousand nucleotides. Transcription factors and other epigenetic marks can regulate the
expression of these genes [13].

In the nucleus, pri-miRNA molecules undergo the first processing of the canonical
two-step maturation pathway that leads to mature miRNA molecules (Figure 2) [14]. The
long flanking tails of the stem-loop are cleaved from the primary transcript to create the
precursor miRNA (pre-miRNA) transcript, a hairpin of around 60 nucleotides. The Mi-
croprocessor complex, which contains the Drosha RNase III, carries out the cleavage. The
second maturation step happens in the cytosol, to which the pre-miRNA is exported via
the Exportin5 pathway. In the cytosol, Dicer endonuclease cleaves the loop of the hairpin
creating a duplex of approximately 21 nucleotides. Dicer, like Drosha, is a class III RNase
and associates with Protein Kinase, PACT and TRBP [15]. Each of the duplex strands are
known as mature miRNAs. Usually, one of the molecules is functional while the other,
also called passenger strand or star miRNA (miRNA*) is degraded. Some miRNA genes
produce pri-miRNAs by alternative non-canonical pathways.

Eventually, miRNA duplexes are loaded into an Argonaute protein. The protein com-
plex created by Argonaute, the miRNA and other cofactors is called the RNA-induced
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silencing complex (RISC). The orientation by which the duplex binds Argonaute drives
the choice of mature miRNA strand to be retained, and it depends on the capacity of each
strand to bind to the pocket within Argonaute. At this point, the chosen mature miRNA
would be ready for targeting mRNA molecules by pairing with them.

Figure 2: Biogenesis and mechanism of action of miRNAs, inspired by
Saliminejad et al. [14]. Canonically produced pri-miRNA transcripts are
cleaved in the nucleus to form the pre-miRNA transcript, which is trans-
ported to the cytoplasm. There, Dicer cleaves the loop of the hairpin pro-
ducing a pair of mature miRNAs. Mature miRNAs are loaded into RISC
in order to silence their target genes.

1.2.2. Mechanism of action of miRNAs

In animals, the recognition and repression of target RNA transcripts can have two mech-
anisms of action. If the miRNA and the target site pair with perfect or almost identity
the miRNA directs slicing of the target transcript in a similar way as siRNAs work. This
process is much more common for plant miRNAs than animal miRNAs. In mammals,
however, the dominant repression mechanism does not cleave the target transcript and
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does not need an extensive pairing: Translation of the mRNA is inhibited or the mRNA
is cleaved in a non-sequence-specific manner.

These two kinds of silencing without extensive pairing that take place in animals need
different proteins complexes (Figure 2) [16]. On the one hand, the indirect degradation of
mRNAs mediated by miRNAs requires the reduction of their stability. For that, several
proteins are recruited by the adaptor protein TNRC6, such as deadenilases (CCR4-NOT
and PAN2-PAN3), poly(A) binding protein (PABP) or 5’ cap removal proteins. The short-
ening of the poly(A) tail will make the mRNA enter the 5’-3’ degradation pathway. On
the other hand, translation of mRNAs can also be inhibited without an actual change in
mRNA level. The precise molecular mechanism for this remains unclear, but it seems that
miRNAs inhibit translation initiation by meddling with the eukaryotic initiation factor 4F
(eIF4F) complex [16].

As previously mentioned, miRNAs repress target gene mRNA by base pairing be-
tween both transcripts. Target recognition is primarily mediated by the seed region of the
miRNA, defined as nucleotides 2-7 or 2-8, and the 3’ UTR regions of mRNAs [17]. Perfect
matches in the 7 nucleotide seed region, sometimes extended to an 8th nucleotide, per-
form the bulk of the repression, as they are the most effective. Nevertheless, 6 nucleotide
matches can also perform repression, albeit with less strength. Pairing to the 3’ region of
the miRNA around nucleotides 13-16, known as 3’ compensatory sites, can supplement
pairing to the seed region and increase repression efficacy and affinity [17]. The rest of the
miRNA nucleotides can also help pairing, but the seed region remains the main driver.
Because of the small size of the seed, target sites arise in the 3’ UTRs very easily, and thus,
each miRNA family (miRNAs sharing the same seed) can regulate several mRNAs, with
an average of 300 targets per family under selective pressure, and much more if consid-
ering the low efficiency 6 nucleotide target sites [11]. Altogether, miRNAs add a layer of
post-transcriptional gene expression regulation that complements and finely tunes other
regulation mechanisms.
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1.3

Long non-coding RNAs

1.3.1. Definition and general features

Long non-coding RNAs (lncRNAs) are a heterogeneous class of transcripts longer than
200 nucleotides lacking protein-coding potential that are present across a variety of eu-
karyotic species [18]. The 200-nucleotide threshold is an arbitrary limit that serves for
separating these transcripts from other well characterised smaller non-coding RNAs,
such as transfer RNA (tRNA), microRNAs (miRNAs) and small nucleolar RNAs (snoR-
NAs). The biogenesis of lncRNAs seems to be very similar to mRNAs: they are tran-
scribed by RNA polymerase II and are post-transcriptionally modified like mRNAs with
5’ capping, polyadenylation and splicing [19]. Those are not universal properties of all
lncRNAs due to the high heterogeneity and the lack of understanding of this class of
genes. Nevertheless, lncRNAs show significant differences with mRNAs.

Regarding the expression patterns of lncRNAs, they show an exceptional cell type,
tissue, developmental stage and disease state specific expression, and are expressed at
lower abundances than mRNAs. These features were observed by large scale multi-tissue
analyses of human gene expression [20, 21], and have also been confirmed in sheep and
goat [22]. Brain and testis express the highest amount of lncRNAs, which are predomi-
nantly tissue specific or tissue enriched [20, 21], supporting the hypothesis that such tran-
scripts are important for the acquisition of specific phenotypic traits. Besides, lncRNAs
show higher expression variability across cell lines and tissues than PCGs [21], with a
higher natural expression variation than PCGs between healthy human individuals [23].

LncRNAs usually have less exons than PCGs, with a striking tendency to have only
two exons [21]. Their exons are slightly longer and their introns are longer than those
of PCGs, and because they have less exons, lncRNAs are usually shorter [21]. Another
typical feature of eukaryotic mRNAs is RNA splicing. LncRNAs can be spliced simi-
larly to mRNAs, with the same splicing motifs and splicing machinery, but their splic-
ing efficiency is lower due to weaker internal splicing signals [24]. LncRNAs that have
been functionally characterised usually show more efficient and consistent splicing [24].
The epigenetic modifications regulating lncRNA expression profiles have also differences
with mRNAs. They seemingly follow the same rules as PCGs, that is, expressed lncRNA
promoters are enriched for the histone modifications H3K4me3, H3K9ac and H3K27ac
[21]. Because of this, these modifications have been used as a proxy for the identification
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of lncRNAs. In spite of that, recent studies show that active promoters of some lncRNAs
are surprisingly more enriched in the H3K9me3 histone modification, associated with
transcriptional repression, than promoters of active mRNAs, and are slightly depleted
in H3K4me3, H3K4me1 or H3K9ac [24]. Another epigenetic modification, DNA methy-
lation, also differs in lncRNAs, with a higher methylation level around the TSSs than
mRNAs [25, 26].

1.3.2. Classes of lncRNAs

We say that lncRNAs are part of a heterogeneous class of transcripts since not all of them
have all the features explained above. The basic biology behind this class of transcripts is
still under investigation, and it seems that there are specific sub-classes behind the catch-
all term “lncRNA”, even if we are not yet capable of clearly distinguishing them. One
of the most common way of classifying lncRNAs is by their genomic relation with other
genomic elements such as PCGs or regulatory elements, as those relations could give a
hint about their biological function or biogenesis (Figure 3) [27].

Figure 3: Classification of lncRNAs. The figure illustrates the different
classes of lncRNAs based on their location in relation to PCGs and other
functional elements.

The most typical class of lncRNAs are long intergenic non-coding RNAs (lincRNAs),
non-coding transcripts located between genes that are not associated with nearby genes
[18]. Many lncRNA studies only focus on this class since expression profiles, sequence
conservation and experimental characterisation are easier to interpret than those of tran-
scripts that overlap or are very close to other genes. Famous and well-characterised ex-
amples of this class include NEAT1 and MALAT1, which are involved in organisation
of nuclear structure [28] or NORAD, which is an abundant, unspliced, polyadenylated
and conserved mammalian lncRNA functioning as a decoy for RNA-binding proteins
involved in genomic stability [29].

These intergenic RNAs are usually treated differently if they occur very close to an-
other annotated gene, and sometimes are classified into a specific sub-group. If localised
in a sense orientation or convergent orientation in relation to another gene they are still
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called lincRNAs, but because of that closeness, those genes are often first surveyed in
search of potential functions. If the lncRNA is divergently located in relation to another
gene, they can be called divergent lncRNAs or promoter-associated long RNAs [27]. Di-
vergent lncRNAs are transcribed on the opposite strand of another mRNA or lncRNA
gene, their transcription start sites (TTSs) are closely located and share the same bidi-
rectional promoter [30]. The development of new sequencing techniques such as global
run-on sequencing (GRO-seq) showed that divergent transcription is very common at
vertebrate promoters [31] and nowadays promoters are thought to be inherently bidirec-
tional. Nevertheless, the transcripts originated in the antisense direction of a PCG can
have different properties: Some of them may be short and unstable by-products of ac-
tive promoters called promoter-upstream transcripts (PROMPTs) [32], while others may
be bona fide functional and stable divergent lncRNAs [30]. This class is one of the most
abundant, they are coordinated with the expression of the adjacent genes and are en-
riched in essential developmental regulatory genes [30, 33]. Compared to standalone
intergenic lncRNAs, divergent lncRNAs have stronger promoters and are less tissue spe-
cific, and this broader expression profile is related to a higher density of TF motifs in their
promoters [34].

Similarly to how promoters work, active enhancers are also pervasively transcribed in
a bidirectional manner, creating enhancer-derived lncRNAs or enhancer RNAs (eRNAs)
[35]. These RNA products are less stable, shorter, unspliced and are not polyadenylated
[36]. Due to the common features of enhancers and promoters, such as the chromatin
states, eRNAs could be the equivalent RNA by-products to promoter PROMPTs [37].
Enhancer RNAs are more tissue specific and have less strong promoters than intergenic
lncRNAs and divergent lncRNAs [34]. Due to these features, the biological function of
eRNAs is currently debated, apart from being by-products of enhancer activity.

LncRNAs that partially or completely overlap another gene in its antisense strand
are called antisense lncRNAs or natural antisense transcripts (NATs) [27, 38]. The pro-
duction of non-coding transcripts from the antisense strand of PCGs is very common in
eukaryotes, and it is thought that in many cases these antisense RNAs have a regulatory
relationship with the gene in the sense strand [39]. They can be similar in structure to
other lncRNAs, showing splicing and polyadenylation. The expression of the antisense
lncRNA can have a positive or negative effect on the neighbour gene expression, form-
ing self-regulatory loops, but antisense lncRNAs can also be independently regulated
and have another function [40]. For instance, the lncRNA ANRIL (officially CDKN2B-
AS1) is located in the antisense strand of the CDKN2B gene and negatively regulates it
and other close genes via chromatin modifying complexes [41].

Intronic RNAs have often been regarded as junk sequences, as those sequences do
not seem to have any function and spliced-out introns are rapidly degraded, but stable
intronic non-coding RNAs have been described. The category of intronic lncRNA, stable
intronic sequence RNA (sisRNA) or totally intronic noncoding RNA (TIN) can be given
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to any non-coding transcript that overlaps completely or in part an intron of another
gene [27]. An early survey of mRNA and EST public sequences revealed that 74% of all
annotated genes transcribed intronic RNAs from their introns and analysed their expres-
sion using a newly designed oligoarray platform [42]. Intronic RNAs can be dependent
on the splicing machinery and thus be produced by the debranching of the intron lariat
created by splicing, or they can be independent of the splicing machinery and be tran-
scribed from the harbouring gene via independent promoters [43]. They are predicted
to regulate host gene expression through feedback loops or disturb splicing by acting
as protein decoys, but splicing-independent intronic RNAs may also function indepen-
dently of the host gene [43]. Related to these RNA products, other molecules that have
been classified as lncRNAs are circular RNAs, formed by several introns and exons by a
mechanism called back-splicing [44]. Sense lncRNAs that overlap coding mRNAs on the
same strand without encoding any proteins also exist, but this overlap makes the com-
putational and experimental study of these transcripts quite difficult. GENCODE groups
such spliced lncRNAs under their “sense overlapping” biotype [45]. In addition to the
mentioned lncRNA classes, other more unclassifiable transcript groups exist, which are
classified under the “processed transcript” biotype by GENCODE due to the complexity
in their structure [45].

The existing classifications of lncRNAs, as well as the exact definition of what they
are, are still based on very descriptive features and there is not a general agreement on
them. These classifications, albeit practical, have several shortcomings caused by the yet
understudied field of lncRNA biology. For instance, the lncRNA transcripts in human
gene annotations differ from each other, and in non-model species the catalogue is much
smaller. There can be an overlap between different classes, for example one transcript can
be intronic and antisense at the same time. Finally, the functional dissection of lncRNAs
will allow for a more logic definition of lncRNA classes.

1.3.3. Evolutionary conservation of lncRNA sequence
and expression

The study of conservation patterns has greatly helped our understanding of gene evolu-
tion between species and has enabled the transfer of functional information from deeply
studied model species like human or mouse to other less studied species. This knowl-
edge is mainly based on the sequence evolution of PCGs and other non-coding RNA
genes than lncRNAs, in which sequence conservation means that natural selection forces
act in favour of functionally relevant sequences. Identification of conserved structures in
lncRNA sequences should also help to detect those lncRNAs from the genome and link
them to important biological functions. Nevertheless, in clear contrast to PCGs and other
well-known non-coding RNA classes, in general lncRNAs show very little sequence con-
servation between species [18]. Most mammalian lncRNAs lack any ortholog outside
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of vertebrates and compared to PCG sequences, lncRNA sequences evolve very rapidly
[18].

Comparative genomic approaches have been used over the last decade in order to
identify and compare lncRNAs between species with different phylogenetic distances
[46–50]. Overall, all studies agree on the fast evolution of lncRNA sequences compared
with PCGs, with fewer orthologous genes being found as evolutionary distances grow.
The selective constraint on lncRNA sequences is usually weak, but significantly above
the genomic background [51]. In mice, for instance, nearly half of intergenic lncRNA loci
have been gained or lost since the last common ancestor of mouse and rat, compared to
10% of PCGs [52]. In humans, these comparative genomic studies have specially high-
lighted the high numbers of specific lncRNAs at human, hominid and primate taxa levels.
They identify 11000 primate specific lncRNAs [46] and find that around 20% of human
lincRNAs are not expressed beyond chimpanzee and are undetectable even in rhesus
[50]. Another common conclusion is the existence of a smaller set of highly conserved
lncRNAs across taxa, with few of them spanning beyond mammals [48–50, 53]. These
conserved transcripts show strong purifying selection in their genomic loci, exons and
promoters, and were predicted to have diverse roles in processes from stem cell pluripo-
tency to proliferation [53].

The same comparative genomic studies usually performed comparative transcrip-
tomics analyses at the same time in order to assess the conservation of lncRNA expres-
sion across species, tissues and developmental stages [46–48, 50]. Expression patterns of
PCGs tend to be highly conserved among mammals, and lncRNAs also show this feature,
albeit with lower conservation [51]. In the case of lncRNAs, temporal changes in expres-
sion variation are more evolutionarily conserved in tissues during development [47]. Be-
sides, the lncRNAs expressed during embryonic development show more conservation
at promoter and exon sequence level [51]. Considering the lncRNAs that are expressed
in mammals, they show remarkably strong conservation of tissue specificity, even if their
splice-site and sequence turnover suggest that splice-sites and exact sequences are not
critical [46, 48, 50].

Based on these observations, it became evident that the approaches for understanding
lncRNA evolution should be different to the traditional comparative sequence analysis
used to study PCGs and other noncoding RNAs. Alternative approaches have been pro-
posed with this goal [54, 55]. First, the alignable sequences of known lncRNAs with
homologues in other species are much shorter than in PCGs [48]. This calls for a focus
on the conservation of shorter patches of the lncRNAs. These patches could be the func-
tional part of the transcript, while the rest of the sequence may be dispensable and may
tolerate major changes in gene architecture (e.g. splice-site turnover).

Secondly, instead of primary sequence conservation, the structure of the lncRNA
could be conserved. LncRNAs as other RNA classes fold into secondary structures
that could be maintained even if there are mutations due to the base-pairing properties
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of RNA [55]. Conservation of lncRNA structures could be widespread as the human
genome has more than 4 million evolutionarily constrained RNA structures within
mammals and most of them are outside of sequence-constrained regions [56]. Third,
analyses could focus on the conservation of transcription status to identify homologues
with low or almost inexistent sequence identity. In some cases, the promoters and tissue-
specificity of lncRNAs are evolutionarily conserved while losing sequence identity in the
gene body [46, 51]. In fact, it has been proposed that the action of transcription itself is
only necessary in some cases for observing a regulatory effect [57].

Finally, following with the idea of the biological function being independent of RNA
product sequence, we can expect that the position of the region that is transcribed would
be conserved. In this way, if two lncRNAs are located between the same orthologous
genes in the same relative orientation in two different species we say that they show
syntenic or positional conservation and the fact that it is conserved could be a signal of
functionality [58]. A recent work found 665 lncRNA promoters in mouse and human
that are preserved in genomic position relative to orthologous coding genes and found
that were related to developmental transcription factors [59]. As an example, there is a
syntenicaly conserved lncRNA (IFNG-AS1) near the IFNG gene in human and mouse
with limited sequence conservation that has been shown to regulate the expression of
IFNG independently of its RNA product [60].

Taken together, the diverging conservation levels of lncRNAs and the previously dis-
cussed classification into biotypes based on their genomic environment suggest a divi-
sion of lncRNAs into two broad groups [49]. On the one side, a group of lncRNAs that
shows sequence conservation, even if in small patches, or structural conservation. On the
other, lncRNAs whose RNA product sequence is not conserved but show conservation of
promoter sequence, tissue expression or synteny. This kind of lncRNAs share properties
with eRNAs and some divergent RNAs. Most conserved lncRNAs should be functional,
while the biological function of the second group is debated. Importantly, thousands
of reported transcribed sequences do not met any conservation criteria, which has led
to their classification as noise RNA transcripts produced due to the pervasive transcrip-
tion of the mammalian genomes, although biological function for all of those transcripts
cannot be rolled out.

1.3.4. Biological function of lncRNAs

Even though lncRNAs do not code for proteins, they can be functional molecules. Since
the first studies that described and then found a role of XIST in X chromosome inacti-
vation [61], several other lncRNAs have been attributed a biological function. This pro-
cess has been slow and is currently undergoing due to the difficulties of studying these
molecules compared with PCGs. Thanks to their capability of forming different struc-
tures and interact with proteins, DNA and other RNAs, they are very heterogeneous in
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their mechanisms of action [62]. So far, it remains a matter of debate to which extent lncR-
NAs are functional: Do all lncRNAs have a function? Is the RNA product necessary for
function? Two recent systematic functional profiling studies of more than 100 lncRNAs
each could give a hint about the magnitude of lncRNA function. In human fibroblasts,
over 25% of lncRNAs were found to affect cell growth, morphology or migration [63];
and, in fission yeast, 60% of lncRNAs deleted with CRISPR-Cas9 genome editing and
90% of overexpressed lncRNAs showed a phenotype under certain conditions [64].

LncRNAs that have been functionally characterised until now essentially carry out
their functions as structural or regulatory RNAs. These transcripts have been broadly
classified according to their cellular function into those that regulate local chromatin
structure and/or gene expression in cis versus those that perform cellular functions
outside their site of transcription in trans [62, 65]. Regardless of a cis or trans effect,
lncRNAs exert their functions at different levels of the cellular machinery. They have
been proved to regulate chromosomal structure, regulate chromatin accessibility, regu-
late polymerase II transcription, alter pre-mRNA splicing, regulate other RNA molecules
post-transcriptionally, modulate mRNA stability, regulate translation or modulate
post-translational modifications [66]. In terms of the exact molecular mechanism of
action, lncRNA molecules can act as signals, decoys, guides or scaffolds, depending on
how they interact with other molecules [67].

Cis-acting lncRNAs constitute a substantial fraction of lncRNAs with an attributed
function and have been demonstrated to modulate the expression of target nearby genes
by altering chromatin structure, chromatin modifications or transcription control [68].
These mechanisms seem to be related to the fact that lncRNAs tend to overlap in their
TSSs with enhancers more than PCGs and that many enhancers produce stable lncRNAs.
The local effect of cis-acting lncRNAs is relative, for instance, XIST is able to inactivate a
whole chromosome [61], while others act within their topologically associating domain
(TAD), defined as regions with high density of chromatin interactions, or just affect a sin-
gle gene. For example, the human lncRNA UMLILO RNA product is required for the
induction of several chemokine genes located within its TAD [69]. When stimulated with
TNF, UMLILO recruits and binds to a protein complex that deposits histone modifica-
tions in the promoters of those chemokine genes, promoting their expression. Another
example would be the lncRNA Morrbid, which controls apoptosis in many short-lived
immune cells by regulating the neighbouring pro-apoptotic Bcl2l11 gene [70]. It does
so by interacting with PRC2 and thus introducing the repressive H3K27me3 chromatin
mark. Interestingly, in CD8 T cells during infection, this lncRNA has the opposite ef-
fect, it promotes Bcl2l11 gene expression, highlighting the potential of cell type-specific
functions of this class of genes [71].

It is possible that a big proportion of lncRNAs actually represent RNAs that are tran-
scribed from enhancers or promoters, do not perform sequence specific functions and
have a local effect in cis [72]. This idea is backed by their predominant localisation to
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the nucleus, low expression level and their low sequence conservation [5, 21]. For in-
stance, transcription of the lncRNA ThymoD, expressed from an enhancer region 700kb
away from the Bcl11b gene in mouse in T cell progenitors, promotes the demethylation of
CTCF motifs and supports Bcl11b expression by maintaining chromatin contacts between
the enhancer and promoter [73]. Another lncRNA, PVT1, is located downstream of MYC
transcription factor gene locus in vertebrates and negatively regulates the expression of
MYC by competing for the binding of the same enhancers. Thus, its DNA acts as a decoy,
while the RNA product has other functions [74]. The previously mentioned IFNG-AS1
gene, which controls the expression of IFNG, is another example of function independent
of RNA product [60].

Various studies describing a depletion of lncRNA expression without perturbing its
original gene locus demonstrate that lncRNAs have an active biological function in distal
parts of the cell, from other nuclear domains to the cytoplasm [62]. For these roles, the
actual RNA product should be necessary, unlike many cis-acting lncRNAs. Some lncR-
NAs can interact with chromatin complexes and regulate the expression of distant genes:
FENDRR, transcribed bidirectionally with FOXF1, binds to PRC2 and/or TrxG/MLL
complexes to regulate the expression of important transcription factors [75]. NKILA
is a lncRNA that binds to the NF-κB complex to block its phosphorylation and inacti-
vate the complex and is essential to prevent over-activation of NF-κB pathway during
inflammation [76]. LncRNAs can also bind to RNA and DNA binding proteins, es-
pecially transcription factors. For instance, RMST binds to SOX2 to coregulate a large
pool of downstream genes implicated in neurogenesis [77]. Finally, OIP5-AS1 (Cyrano)
is a lncRNA that is part of a regulatory network where it represses miR-7 microRNA
via target-directed microRNA degradation, which in turn enables the accumulation of
Cdr1as circRNA in the mouse brain [78]. In this case, we say that the lncRNA is acting as
a miRNA sponge or competing endogenous RNA (ceRNA).

There are many other functions associated with lncRNAs, which have been exten-
sively reviewed elsewhere [62, 65, 66, 68], but the few functional lncRNAs mentioned in
this section reflect their highly heterogeneous nature and biological implications.
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1.4

The genomics of non-coding RNAs

1.4.1. Methods for transcriptome sequencing

Transcriptomics is defined as the study of the transcriptome, the complete set of RNA
molecules, also known as expression profiling, as it is the study of RNA expression levels
in a given cell or tissue type. It allows the study of the genome fraction that is being
transcribed and the dynamics of that expression. Most transcriptome sequencing meth-
ods, from the early ones to the latest technologies, usually start with the conversion of
RNA to its complementary DNA (cDNA) with a reverse transcriptase, which is more sta-
ble than the RNA molecule and can be amplified by polymerase chain reaction (PCR).
Before the emergence of high-throughput sequencing technologies, the method largely
used was Sanger sequencing, developed in the 70s and based on selective incorporation
of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA repli-
cation [79]. This is a very arduous method, yields less than 1000 bp per read, requires a
known sequence to prime to and only allows the sequencing of a single read. Never-
theless, because of its high per-base accuracy (>99.999%) and the big initial efforts using
this technology to annotate the human and mouse genomes, nowadays the gene collec-
tions from NCBI RefSeq and GENCODE are still largely constituted of models obtained
with Sanger sequencing. It is also still routinely used for specific applications in clinical
genetics or molecular biology, for instance.

Second-generation sequencing Second-generation sequencing (SGS) methods rev-
olutionised RNA sequencing in the mid-2000s by enabling high-throughput parallel tran-
scriptome sequencing, obtaining millions of short sequences from a single extracted RNA
pool. At the beginning various implementations were commercialised, but the technol-
ogy from Solexa/Illumina sequencing became the most popular and the industry stan-
dard. The technology behind SGS RNA sequencing (RNA-seq) is based on sequencing
by synthesis, tracking the addition of labelled nucleotides as the DNA chain is copied.
Prior to the actual sequencing, RNA must be fragmented into shorter molecules, it is
converted into cDNA and adapter sequences are ligated to the double-stranded cDNA.
The modified DNA is loaded onto a flow cell where amplification and sequencing take
place. The DNA molecules anchor to oligonucleotides attached on the nanowells thanks
to the adapter sequences and after an amplification step, rounds of synthesis begin with
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modified nucleotides. These nucleotides have a reversible fluorescence blocker so the
DNA polymerase can only add a single nucleotide in each round. After each round, a
camera determines which was the last added nucleotide and another round begins.

The hundreds of millions of sequencing reads typically obtained from a SGS run are
in the range of 30 to 150 bases, they do not provide the full cDNA sequence, and have
an accuracy of 99.9% [80]. Short reads do not suppose a problem if the objective is to
quantify already known genes, as we can count the number of reads that align to those
genomic loci with specific software. On the contrary, recovering full-length transcripts
from short reads, in order to identify its exact sequence and exon structure, asks for algo-
rithms capable of transcript-assembly. These computational methods are able to identify
new genes and isoforms without a gene annotation, but due to the transcript overlap and
alternative splicing, they do not produce fully accurate transcript models [81]. Illumina
sequencing has been shown to be highly replicable, with little technical variation, never-
theless, it suffers from some biases related to library preparation or the synthesis cycles
in the flow cells [82, 83].

Third generation sequencing In the last years, different third generation sequenc-
ing (TGS) technologies have emerged, which are based on long-reads. These technolo-
gies enable, for the first time, the possibility to sequence RNA transcripts from 5’ to 3’
end, without molecule fragmentation and thus, without having to computationally re-
construct the transcripts. This is obtained at the expense of per-base accuracy, sequenc-
ing depth and cost. There are two main long-read sequencing platforms commercially
available, using deeply distinct principles: PacBio Single-Molecule Real-Time (SMRT)
and from Oxford Nanopore Technologies (ONT) sequencing. On one hand, PacBio’s im-
plementation consists in a sequencing by synthesis method using nucleotides attached to
fluorescent dyes and ligating hairpin adapter sequences to the cDNA molecule. In this
way, each nucleotide added is tracked and the DNA polymerase can cycle over the cir-
cular structure in order to sequence the same read many times. Because the high error
rate of SMRT sequencing, around 13%, this cycling enables the creation of a consensus
sequence with less than 1% error rate, still higher than the SGS Illumina implementation
[80]. On the other hand, ONT sequencing utilises the electrical signal produced when
DNA molecules pass through pore proteins, as each nucleotide produces a specific sig-
nal. This method, despite being cheaper than others and being able to produce very long
reads, has an error rate similar to the single-pass PacBio reads [80], so, on its own, it is still
not the best option for transcriptome sequencing [84]. For other uses such as monitoring
of pathogens or genome sequencing it is a very useful approach.
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1.4.2. Bioinformatic analysis of miRNAs

1.4.2.1. Small RNA sequencing for annotation and expression pro-
filing

The most common assay for the annotation and expression profiling of miRNAs is
high throughput RNA sequencing. It is possible to search for miRNAs de novo from
the genome, but because not all miRNAs are conserved and they are very short in
length, evidence of transcription is often needed. SGS RNA-seq is a flexible method
that allows for many modifications. For miRNA profiling, small RNA enrichment
library preparations are used, which are commonly known as small RNA sequencing
(sRNA-seq) or miRNA-seq, even if other short ncRNAs are also enriched.

MicroRNAs are characterised by unique structural features that separate them from
other RNA families. MiRNA prediction programs for bona fide miRNA annotation make
use these features [85]. These requirements include: (1) 20-26 nucleotide (nt) long reads,
(2) a hairpin precursor of about 59 nt, (3) 2 nt offsets between the 5p and 3p arms (conse-
quence of Drosha and Dicer processing), (4) at least 16 nt complementarity between both
arms, (5) 5’ end homogeneity of expression, (6) genome encoding, (7) loop sequence be-
tween 8 and 40 nucleotides, (8) consistent expression of both arms and (9) phylogenetic
conservation (not all miRNA families).

Most of the novel miRNA annotation tools are often wrappers of other tools that add
their own algorithm for de novo discovery. They usually include unspliced alignment to a
reference genome, alignment to known miRNA sequences from other species and de novo
prediction from unknown aligned reads based on the thermodynamics and structure of
the predicted hairpin structures. The most used tool is miRDeep2 [86], the field reference
tool for miRNA quantification and discovery, but there are several others such as sRN-
Abench, which is included in sRNAtoolbox [87]. In the last years, new tools have been
developed in order to profile other small RNAs present in sRNA-seq reads, even if miR-
NAs are by far the most numerous biotype in this datasets. Manatee [88] and DANSR
[89] are two examples of these new tools.

1.4.2.2. In silico prediction of miRNA targets

Knowing which genes are regulated by miRNAs is necessary for the biological under-
standing of their functions. MicroRNAs produce remarkable changes in several physio-
logical and pathological processes, thus, identification of miRNA-mRNA target interac-
tions is fundamental for disentangling the miRNA-governed regulatory networks [90].
Because there is a high number of potential targets for each miRNA molecule, a com-
putational approach is often needed to prioritise a number of targets that will be exper-
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imentally validated. Many tools that are capable of computationally predict potential
miRNA-mRNA interactions have been developed and even if each program uses its own
strategy, most of the features are shared among them. These tools can be divided into two
groups depending on their strategy: (1) Tools based on empirical sequence characteristics
and (2) tools based on statistical inference with machine learning.

The first kind of approaches employ several analyses to make the predictions. Seed
match is an important factor that most tools rely on, because the sequences involved
tend to be the most evolutionarily conserved regions, looking for Watson-Crick matches
between those 6-8 nucleotides in miRNAs and 3’ UTRs is a common approach. Thermo-
dynamic stability is another highly important feature of target prediction. If the hybridi-
sation of a putative target mRNA with a miRNA is strong, it is more probable that that
match is real. Usually the change in free energy (∆G) in the hybridisation reaction can
be used as binding strength indicator. Another important feature is evolutionary conser-
vation. If the matching is preserved across species it is a good indicator that the target is
real. Normally, the conservation is higher in the regions matching the seed but there is
also conservation in the sequences that pair with the rest of the miRNA. Other commonly
used features in target prediction are accessibility of target site, target site abundance, lo-
cal AU content or site position distribution. Widely used tools based on sequence features
include miRanda [91], TargetScan [92] and RIsearch2 [93].

Machine learning (ML) approaches use experimentally proven miRNA-mRNA in-
teractions as references to make new predictions from unknown data, instead of using
predefined sequence features. ML can be biased by the experimental approaches to infer
confident interactions but enable the prediction of functional non-canonical interactions.
In a recent update, TargetScan has added a neural network based model to the algorithm
[94].

1.4.2.3. Nomenclature and databases

With the number of described miRNAs in the rise, the establishment of a consensus nam-
ing system became necessary, as well as guidelines with must-have features to confi-
dently characterize newly described miRNAs [85, 95]. With some exceptions, all miRNA
names bear the “miR-” prefix followed by a sequentially given identification number,
and a species-specific three letter prefix is added before it if needed. Many miRNAs
show high evolutionary conservation, so it is helpful to give orthologues the same iden-
tifier in different species. The identification number should be the same in two species if
the sequence is the same and the ancestor sequence is the same for both. In the case of
paralogs, which are very common in many miRNA families, the identifier is kept but a
suffix is given, a number or a letter, depending on if the mature sequence is the same or
not. Besides, when naming mature miRNA products the arm the miRNA is coming from
is marked with a “-3p” or “-5p” suffix. It should be mentioned that there have been some
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proposals to modify these criteria to make it more intuitive [85], and that the HUGO
Gene Nomenclature Committee (HGNC) uses a different naming system that keeps the
miRBase sequential numbers.

The classic miRNA database that has been giving names is miRBase [96], but it is
not consistently updated, it has not added many livestock miRNAs in the last years and
it seems that many of the miRNAs are not very robustly backed. For instance, of the
1881 human miRNAs in miRBase (v.21), only 523 genes met the standards for miRNA
annotation [85] and there were just 106 sheep miRNA genes. A recent alternative to miR-
Base would be MirGeneDB [97], which in its latest update (release 2.1) gathers 16670
manually curated miRNAs from 75 metazoan species across several phyla. Its develop-
ment has been focused on phylogenetically relevant species and the sole livestock species
supported is cattle. RumimiR database [98] is a comprehensive repository that stores ru-
minant miRNA sequences from the literature as they were published and is a useful re-
source to find out which sequences have already been detected, but it unfortunately lacks
any naming curation. Regarding the major gene annotation sources, NCBI RefSeq only
includes miRBase miRNAs and Ensembl extends the miRBase miRNA gene catalogue
with the annotation of other evolutionarily conserved miRNAs. Because of this, sheep
miRNAs discovered in several experiments have not been properly characterized and it
is difficult to find them in sequence repositories.

1.4.3. Annotation of lncRNAs

Gene annotation is the process of describing gene boundaries and structures within a
given genome and is the key mechanism through which information is leveraged from
sequence to function. The major targets of annotation pipelines are transcripts and the
process of obtaining functional information about those transcripts, from definition of
gene type to biological function dissection, is called functional annotation [99]. Eukary-
otic genomes contain not only protein coding genes, but also other non-coding genes
such as lncRNAs or miRNAs, and particular approaches are needed for the annotation
of these gene classes.

Annotation strategies can be classified into de novo, using solely the genome sequence
to predict transcribed sequences, or evidence-based, which adds experimental evidence
of transcripts to the de novo predictions. Predictions from the genome in eukaryotes are
difficult because of the complex gene structure with short interspersed exons and alterna-
tive splicing events. Nevertheless, existing algorithms, used by the main gene annotation
consortia, work reasonably well for protein coding gene exons, as open reading frames
(ORFs) can be identified and they are highly conserved [100]. For non-coding RNAs such
as miRNAs, tRNAs, snoRNAs or rRNAs the conservation in terms of sequence and the
prediction of thermodynamically stable secondary structures can help due to the absence
of ORFs, but most lncRNAs lack those features.
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Because of this, experimental evidence of the lncRNA transcription and structure is
needed to properly annotate those genes [101]. This evidence mostly comes from map-
ping sequencing reads to the genome of interest by sequence similarity with algorithms
that take splicing into account. The human and mouse annotations produced in the 2000s
used the low-throughput Sanger sequencing and the gene models were manually curated
by numerous research groups. It was possible thanks to big consortia with huge human
and economic resources but it is nowadays unfeasible to put that effort into all other
species. The hundreds of species annotated in the public databases after those model
species have used SGS short read RNA-seq to help in the transcript definition because of
its high yield and low cost [99]. Identifying novel transcripts using the SGS RNA-seq is a
challenging tasks, because short reads rarely span across several splice junctions, making
it difficult to directly infer all full-length transcripts and transcription start and end sites
are not always present in the reads [102]. However, with paired-end sequencing, higher
coverage and replicates it is possible to obtain a decent transcriptome for those species
in which it has not been put a big effort before. Considering lncRNAs, for now, the only
way to properly annotate them is through experimental evidence and the recent devel-
opment of TGS methods is helping in this task, even if it has only been used in few model
species. For instance, long-read sequencing, coupled with targeted RNA capture (Cap-
tureSeq), has been used by the GENCODE consortium to enlarge the human lncRNA
annotation with full-length transcripts [103]. Recently, PacBio long-read sequencing has
been applied in cattle, showing that there are still many non-coding genes to be described
[104].

SGS RNA-seq is a flexible method that allows for more applications than just full tran-
scriptome sequencing by modifications in library preparation. These applications can
give additional evidence for the lncRNA transcription and help in the transcript model
definition [99]. The usual selection of transcripts with poly(A) tails hinders the discovery
non-polyadenilated lncRNAs, so ribosome RNA depleted total RNA-seq is preferred for
lncRNA profiling (Figure 4). Among other applications, Cap Analysis of Gene Expression
(CAGE-seq) produces reads from the 5’ capped end of the transcripts, which can serve
to identify the exact TSSs [105]. RNA Annotation and Mapping of Promoters for Analy-
sis of Gene Expression (RAMPAGE-seq) is an inproved version of CAGE-seq that allows
for longer reads [106]. PolyA-seq captures RNA sequence immediately upstream of the
polyA tail, in order to identify accurate transcription termination sites (TTSs) [107]. Cap-
tureSeq is used to pull down specific RNA transcripts and deeply sequence them, which
is useful for lowly expressed lncRNAs [108]. Global run-on sequencing (GRO-seq) is an
assay that measures nascent RNA of transcriptionally engaged RNA polymerases [31]. It
is particularly suitable for detecting lowly expressed unstable transcripts such as eRNAs
and study divergent transcription [33].

Other genome-wide “omics” assays can also provide structural or functional evi-
dence for lncRNA annotation. ChIP sequencing (ChIP-Seq) is a powerful epigenomic
approach for identifying genome-wide DNA binding sites for transcription factors and
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Figure 4: Schematic overview of the main library preparation protocols
for SGS RNA-seq. After RNA extraction with an appropriate method, the
cDNA library can be constructed by rRNA depletion or poly(A) selection.

histone modifications. Genomic overlaps between potential novel lncRNA transcripts
and marks of histone modifications that are associated with promoters or enhancers can
be used to provide a higher level of confidence to those loci. This strategy was first used
to identify more than 1500 novel lncRNAs in mouse and humans [53].

All in all, most studies in non-model species have been based on short-read SGS meth-
ods because of their high-throughput, low cost and high accuracy, even though, with this
methods, precise transcript structures are not always correctly predicted. A typical novel
lncRNA identification pipeline would start with mapping the sequencing reads to the
genome with a splice-aware tool followed by a transcriptome assembly [109]. Then the
assembled transcriptome is filtered to search for novel transcripts. Some of the filters
applied are structural, for instance, transcripts shorter than 200 nucleotides are removed
and transcripts that overlap coding genes in the same strand are removed. Other filters
involve the assessment of the evaluated transcripts’ coding potential. There are several
tools that employ machine learning algorithms and sequence features, like ORF length
or K-mer frequencies, to infer the probability of a sequence to be protein coding [110].
It is also possible to scan the evaluated transcripts for known protein domains included
in public databases. At the end, we obtain a set of novel non-coding transcripts to per-
form different analyses: expression profiling, comparative genomics, disease association
or experimental functional validation, among others.

1.4.4. Searching for lncRNA function

Demonstrating the function of a non-coding RNA molecule is an arduous process, as it
is the contrary, to prove that it is a product of transcriptional noise. Sequence conserva-
tion is one of the clearest evidences of function and allows the assignment of a function
to those transcripts found in non-model species that have an orthologue with proven
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functionality in other model species. For the rest of the lncRNAs, including those with
a conserved but functionally uncharacterised orthologue in humans or mice, the starting
point to investigate their biological functions passes through in silico genomic data min-
ing. This involves the utilisation of biological datasets to extract meaningful knowledge
regarding a specific biological question, identifying patterns and relationships within the
data.

Regarding lncRNA research, their well-known properties are their tissue and devel-
opmental specificity and their involvement in the regulation of other genes, thus expres-
sion profiling of lncRNAs along PCGs and other RNA genes can be used to get clues
about their biological function. In fact, expression levels of lncRNAs should be more re-
lated to function than those of PCGs, as it is known that mRNA abundance is not always
coupled with protein abundance. To disentangle the potential biological functions, often,
samples from animals or cells under different biological conditions are used. The datasets
needed for these kind of functional genomics analyses can come from two sources: 1) We
can design an experiment specifically tailored to our biological question. This involves
producing new data by extracting the genetic material from experimental cells or animals
and sequencing it. 2) We can take advantage of the increasing number publicly available
high-throughput datasets to ask a novel biological question, different from what the data
was initially produced for [111]. The two most popular applications for RNA-seq ex-
pression data are differential gene expression (DGE) analysis and co-expression network
analysis.

DGE analysis is used to identify genes with statistically significant differences in ex-
pression levels between two conditions. It is one of the most common applications of
RNA-seq data, as a change in expression levels might be an indication of involvement in
the biological processes activated between two conditions. In the same fashion as PCGs,
if a lncRNA is found to be differentially expressed, it can give a hint about its involve-
ment in a disease, for instance. However, even if a significant change in expression can
be due to secondary processes, this method allows us to prioritize candidate genes for
further functional validation. With respect to the statistical methods needed, the analysis
of short-read transcriptome sequencing is not a trivial matter. Expression values are not
normally distributed, sample outliers are not uncommon and the analysis consists in test-
ing several thousands of genes from relatively few observations, so common parametric
methods do not usually work. Non-parametric methods do not assume any distribution,
but they are underpowered in most cases, because experiments tend to be composed of
few samples due to the high cost of RNA sequencing. This has led to the development
of tools based on a negative binomial distribution that fits better to expression data. Ex-
amples of these tools are edgeR [112], which uses an overdispersed Poisson model and
DESeq2 [113], which uses a generalized linear model in order to account for covariates.
Nevertheless, for very high number of samples, the classic non-parametric methods such
as Mann-Whitney U test may perform better than these tools [114].
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Gene co-expression network analysis is an unsupervised clustering method that asso-
ciates genes between them using correlation strengths as a measure of similarity in order
to find common patterns of expression. It allows to determine clusters of genes with
the same expression pattern, and following the guilt-by-association principle, correlated
genes are expected to be involved in the same biological processes and pathways [115].
By leveraging the known biological functions of the genes in one cluster, one can get a
hint about the potential functions of uncharacterized genes such as lncRNAs. Besides,
with data from functional experiments, it can also be tested if a particular gene cluster
has a different expression pattern between different conditions. Another application of
co-expression networks are differential co-expression network analyses, which have the
advantage of detecting condition-dependent interactions between genes [116]. In this
way, the correlations of individual gene pairs are tested to assess if there are differences
between conditions. For instance, the gain or loss of correlation between a lncRNA and
other PCGs can be due to regulatory relationships between them.

1.4.5. Databases

The most common resources from which lncRNAs can be obtained are the genome an-
notations produced by various consortia and institutions. Ensembl and NCBI Reference
Sequence Database (RefSeq) are the most widely used databases of transcript structures
and they contain gene annotations for hundreds of species, including the main livestock
species. As for Ensembl, there are big differences between the annotations of main model
organisms and other vertebrates. Human and mouse annotations have been built by
the analysis of experimental data through bioinformatic pipelines and are systematically
manually curated by the GENCODE consortium [117], including lncRNA genes. The
GENCODE annotation comprises 18811 human lncRNA genes (version 39), very close to
the amount of PCGs, and 13186 mouse lncRNAs (version M28). Remarkably, in the last
releases this consortium has been using targeted long-read sequencing to get full-length
accurate transcripts. In contrast, the rest of species do not have such a vast number
of annotated lncRNAs and those are only predicted automatically with a bionformatic
pipeline. As a consequence, livestock lncRNAs are also much more less accurate, es-
pecially regarding transcription start sites, and most of them are intergenic transcripts.
Ensembl (v.105) contains 2229 sheep lncRNAs, 2705 goat lncRNAs, 1480 cattle lncRNAs,
6790 pig lncRNAs and 7241 horse lncRNAs, among other species.

Other resources containing lncRNA annotations include RefSeq, NONCODE [118]
and ALDB [119]. In RefSeq, the other widely used resource, lncRNA gene annotation
is done in a similar way as in Ensembl: the human gene annotation is highly manually
curated while most other species are automatically annotated using their own gene an-
notation pipeline. NONCODE is a lncRNA-specialised database that collects data from
literature and performs some additional analyses. It contains a limited number of species,
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excluding sheep or goat for instance, but it gathers more than 20 thousand cow lncRNA
loci. ALDB is a livestock-specific lncRNA database but it is outdated and covers just three
species.

1.5

Non-coding RNAs in farm animals

Domestic animals are of great importance as sources of high-quality products for hu-
man consumption, as disease models in biomedical research and for the prevention of
zoonotic infections. Phenotypic variations among domestic animals can be related with
mRNA expression and, therefore, with miRNAs, which are their key regulators, and with
other non-coding genes. During the last decade, the non-coding genome has gained con-
siderable attention in the pursuit of genotype to phenotype annotation. The human and
mouse genomes have been extensively characterised, which has led to the discovery of
a diverse and numerous set of novel noncoding genes, outnumbering PCGs. Other no-
model species are beginning to have their genomes annotated with non-coding genes in
the last years, but the qualitative and numeric differences with the human annotation
remain vast in farm animals [109, 120].

The rich human and mouse gene and functional element annotations produced by
big consortia such as ENCODE have limited translational utility in livestock species. Al-
though mammalian PCGs are generally highly conserved, important genes involved in
speciation, like those with immune or reproduction functions, are not so widely con-
served [121] and those traits are under positive selection in ruminants [122, 123]. Besides,
many non-coding RNA genes are not conserved between distant mammal species or even
between close species. At the regulatory sequence level, the Mouse ENCODE Consor-
tium found that there is a large degree of divergence of sequences involved in transcrip-
tional regulation, chromatin state and higher order chromatin organization [124].

Thanks to genome-wide association studies (GWAS) based on high-resolution geno-
typing and sequencing, thousands of genomic regions have been associated with com-
plex phenotypic traits and diseases in farmed animals. These associations can be browsed
in the comprehensive AnimalQTLdb database [125]. However, most trait-associated vari-
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ants in sheep, as in most livestock species, lie within non-coding genome regions and in
regions in close proximity to protein coding genes. Therefore, it is imperative to charac-
terise these regions of the genome in order to unravel the molecular and genetic causes,
functional SNPs, causative genes and pathways underlying the variability of complex
production and health traits in livestock species [126].

1.5.1. Sheep miRNAs

Because miRNAs are much more conserved than lncRNAs and have predictable struc-
tures, they began to be studied earlier in livestock species [127]. The first sheep miRNAs
were identified through sequence homology search from Callipyge sheep, which display
a muscle hypertrophy phenotype [128]. They identified several miRNA genes in the im-
printed region that causes the hypertrophic phenotype. Another known example of the
phenotypic interest of miRNAs is the case of the muscular hypertrophy of Texel sheep.
In this breed, there is a G to A mutation in the 3’ UTR of the MSTN gene that creates a
target site for miR-1 and miR-206, highly expressed in muscle tissue. As a consequence,
the expression of MSTN is reduced and a muscle hypertrophy is developed [129].

The bioinformatic analysis of sRNA-seq data is relatively easier and more established
than the analysis of lncRNAs, and direct cause-effect relationships with mRNA genes
can be determined. This has led to a substantial growth in livestock and sheep miRNA
studies, much more numerous than sheep lncRNA analyses. However, there are just 106
annotated sheep miRNAs in miRBase (v.22), so novel miRNA prediction is necessary to
analyse the full miRNAome. The consequence of this is that each work has described a set
of predicted transcripts that differ in stringency criteria, reference genomes used, naming
and orthology determination of unannotated genes. In addition, similar to the lncRNA
analyses, poor compliance with genomic data sharing principles prevent comparisons
between studies.

Livestock miRNA functional genomic studies have explored their involvement in dis-
eases, productivity and animal welfare, with more than 175 miRNA-related ovine pub-
lications in PubMed until 2020 [130]. Small ruminant studies have focused on muscle
development, reproductive traits, mammary gland development, milk composition and
hair-related phenotypes, but there is also extensive research on diseases, infection and
immunity (reviewed in [130] and [131]). Because of the implication of these molecules
in the pathogenesis of several diseases, they have been proposed as biomarkers for the
management of livestock diseases. Nevertheless, this kind of application is hindered by
the difficulty to find markers with enough specificity, accuracy and sensitivity ([130]).
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1.5.2. Livestock lncRNAs

In line with these specific needs in the animal genetics field, an international consortium
was presented, Functional Annotation of Animal Genomes (FAANG), whose aim is to
produce comprehensive maps of functional elements in the genomes of domesticated an-
imal species. In the last years, project collaborators have been producing genome-wide
datasets on RNA expression, DNA methylation and chromatin modifications among oth-
ers, as well as data analyses [132]. LncRNAs have been a particular focus of the FAANG
initiative, with various groups reporting lncRNA transcript sets. Computational meth-
ods for lncRNA identification are in continuous evolution and, currently, there is not a
consensus workflow for this task, with each group using their own lncRNA identifica-
tion pipeline [132]. In addition, the RNA-seq datasets used different library preparation
protocols, the main differences being between ribosome RNA depletion and poly(A) se-
lection protocols. Library preparation has been seen to affect lncRNA identification in
horse [133]. Considering experimental designs, these lncRNA catalogues have been pro-
duced with the aim of identifying lncRNAs expressed across many tissues and usually
take samples from few animals, 2 to 6 from the same breed. In sheep, taking advantage of
the sheep gene expression atlas dataset based on SGS RNA-seq assays [134], they identi-
fied lncRNAs across several tissues from six animals [22]. They highlighted how, because
the exons of lowly abundant transcripts are subject to stochastic sampling, gene models
are detected inconsistently between samples. LncRNAs have also been identified from
multi-tissue RNA-seq datasets in other livestock species like cattle [135–137], horse [133],
chicken [135, 137, 138], pig [135, 137] and goat [22, 135].

Apart from the purely descriptive datasets, functional genomics studies have profiled
lncRNAs across different developmental stages, diseases or phenotypic traits, in order to
connect lncRNAs with those specific biological conditions. LncRNA genes need to be
defined before any functional analysis, and for a comprehensive analysis, it is usually
done de novo due to the small number of annotated lncRNAs in livestock. Because the
lack of consensus computational methods, different stringency criteria, different refer-
ence genomes used and the poor compliance with genomic data sharing principles, those
lncRNA transcript sets are not easily comparable, if they are made publicly available at
all.

In sheep, the vast majority of published functional analyses are related to phenotypic
traits important for production and development of commercially interesting tissues (Ta-
ble 1). The most studied field has been reproduction and fecundity, with works on female
sex organs and hormone secreting organs. Works on the development of sex organs, hor-
mone secreting organs and muscle tissue are also numerous. Another two tissues with
commercial value that have generated interest are adipose tissue and hair follicles. There
are also some lncRNA works on heat stress, milk properties, nutrition, photoperiod and
hypoxia adaptation. Regarding disease-related functional genomics experiments, before
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the current work lncRNAs have only been profiled in a bacterial infection and a helminth
infection.

Table 1: Published functional lncRNA transcriptomic studies in sheep.

Trait Tissues References

Reproduction and fertility Female sex organs [139–144]

Hormone secreting organs [145–152]

Development Sex organs [153–155]

Hormone secreting organs [156, 157]

Muscle tissue [158–162]

Fat Adipose tissue [163–167]

Wool Hair follicle and skin [168–174]

Heat stress Liver [175]

Milk production Mammary gland [176, 177]

Nutrition Liver [178, 179]

Photoperiod Pituitary gland [180]

Hypoxia Lung [181]

Infectious diseases Spleen, lymph node [182, 183]
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The main objective of this work is the identification of ovine non-coding genes, con-
cretely miRNA and lncRNA genes, that are involved in the innate and adaptive immune
responses induced by vaccines, vaccine components and pathogen infections. For this
purpose, sequencing datasets produced in the lab and datasets publicly available are
analysed with bioinformatic tools in order to identify and profile non-coding gene ex-
pression. The working hypothesis is that, considering the known examples in humans
and mice, several ovine miRNAs and lncRNAs should also be associated with immune
responses. It will provide a foundation for future analyses on non-coding RNA function
in non-model organisms such as livestock species. The specific objectives of this thesis
are:

1. To characterise the miRNA transcriptome in sheep by identifying unannotated
miRNAs, evaluating orthology relationships and profiling their expression levels.

2. To associate known and novel miRNAs with the immune response to a viral infec-
tion, specifically Visna-Maedi virus.

3. To develop reproducible bioinformatic pipelines to analyse RNA sequencing data
in order to describe unannotated lncRNAs in a non-model organism.

4. To characterise the lncRNA transcriptome in sheep by identifying unannotated
lncRNAs, evaluating their sequence conservation and profiling their expression
levels.

5. To associate known and novel lncRNA genes with the immune response to vac-
cines, vaccine components and pathogen infections.

These objectives are fulfilled in different chapters. As reviewed in the introduction of
this thesis (chapter 1), miRNAs and lncRNAs are non-coding genes that have attracted
considerable attention in the last years. Nevertheless, livestock genomes remain under-
annotated in terms of these genes and there is a lack of functional annotation regarding
their involvement in important biological functions such as the immune response.

Objective number 1 is fulfilled in chapter 3, where we analyse the miRNA transcrip-
tome in sheep lungs, and, with more depth, in chapter 4, where we analyse more than 20
different tissues. In the latter, we take advantage of hundreds of miRNA-seq samples de-
posited in public databases to uniformly analyse them, describing novel ovine miRNAs,
analysing tissue-specific expression and describing ruminant-specific miRNA families.

Objective number 2 is fulfilled in chapter 3. Here we analyse the miRNA transcrip-
tome in sheep lungs during the infection with a lentivirus (Visna-Maedi virus) causing
chronic asymptomatic and clinical infections to identify dysregulated miRNAs.

Objectives number 3, 4 and 5 are fulfilled transversally in chapter 5, chapter 6 and
chapter 7. In chapter 5 and chapter 6, we analysed RNA sequencing data from a collabo-
rative study carried out in our lab, in which it was characterised the effect of Al hydroxide
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adjuvant on the immune response to vaccination during a long term experiment. Brain
tissue and PBMCs were the tissues analysed. A custom lncRNA identification pipeline
was developed for this works. In chapter 7, using an improved pipeline, we integrate
hundreds of publicly available ovine RNA-seq samples of blood cells, lymphoid organs
and other immune cells in order to identify unannotated lncRNAs. Integrated bioin-
formatic analyses identify hundreds of lncRNAs induced during infection with various
pathogens and vaccination.

These findings are summarised, discussed and put in the context of current research
in chapter 8. The bibliography cited across all chapters of the present dissertation are
included in chapter 9.

This thesis chapters are organised by publications, each results chapter corresponding
to an article published in a scientific journal or under revision.
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Chapter 3

Expression analysis of lung miRNAs
responding to ovine VM virus

infection by RNA-seq

This chapter is based on the following publication:

Bilbao-Arribas, M., Abendaño, N., Varela-Martínez, E., Reina, R., de Andrés, D., and
Jugo, BM. Expression analysis of lung miRNAs responding to ovine VM virus infection
by RNA-seq. BMC Genomics 20, 62 (2019).
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3.1

Background

The Small Ruminant Lentiviruses (SRLVs) are in a group of RNA viruses in the
lentivirus genus that infect cells of the monocyte/macrophage lineage from sheep
and goats. This infection causes progressive inflammatory lesions in the lungs, brain,
mammary glands and joints that are characterized by lymphoid hyperplasia, interstitial
infiltration of mononuclear cells and interstitial pneumonia. Visna/Maedi disease
(VM) has a great economic importance derived from decreased animal production and
increased replacement rates [184]. Infection is present in most countries that raise sheep
but the impact on production and animal welfare is affected by breed [185] and flock
management [186].

Not every infected animal shows the disease due to the importance of the host genetic
background [187]. In genetic association studies several molecules have been shown to
be related to VMV infection: Toll like receptors (TLRs), antiviral proteins (APOBEC fam-
ily, TRIM5alpha, tetherin), and cytokines (among others) [188, 189]. To our knowledge,
microRNAs (miRNAs) have not been analyzed in relation to this viral disease.

miRNAs are a class of noncoding endogenous RNAs of approximately 22 nucleotides
that regulate gene expression posttranscriptionally. By binding to mRNA molecules and
with the help of the RNA-induced silencing complex (RISC), they can silence or cleave
mRNA molecules [8]. They are one of the most abundant gene expression regulators
and have an effect on phenotypic variations in domestic animals [127]. Several studies
have identified miRNAs in various sheep breeds, although miRBase 21 includes only 106
miRNA precursors and 153 mature sequences (January 2018). Regarding tissue types
that have been previously studied, most of the work has focused on muscle quantity,
wool quality, fertility and fat deposition [190–193] with little attention to animal health
and welfare.

Viruses exploit host gene pathways to accomplish their basic biological processes,
from transcription to protein synthesis, thus, ensuring their own survival. MicroRNA
levels can be altered due to the host’s own immune response modulation [194]; however,
viruses can also modulate the expression of host genes to avoid detection by the immune
system or to modify cell survival pathways [195]. Furthermore, it has been proposed
that host miRNAs can directly target RNA viruses either cleaving them or stabilizing
them [196]. Another way that miRNA expression may change involves virally encoded
miRNAs [197].
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The aim of this study was to uncover the host mechanisms that are associated with
VM disease in sheep. To this end, the cellular miRNAs differentially expressed at differ-
ent stages of infection were identified, and information about involved genes, the mech-
anisms, and relevant pathways was inferred via bioinformatics analyses. These predic-
tions could also contribute to uncover the roles of miRNAs in host-virus interactions.

3.2

Methods

3.2.1. Animals

Thirty Rasa Aragonesa adult (3 to 6 years) ewes were included in this study, in different
stages of a natural infection of VMV. The samples were obtained from different com-
mercial flocks in the routine of the Veterinary Faculty (University of Zaragoza) in the
framework of the national research project ref. AGL2010–22341-C04–01. The complete
experimental procedure was approved and licensed by the Ethical Committee of the Uni-
versity of Zaragoza (ref: PI09/10). Animals were euthanized by an intravenous injection
of a barbiturate overdose (Dolethal®, Vetoquinol, Spain) and exsanguinated.

Animals were classified attending to their VMV infection status (seronegative
or seropositive) using an Enzyme-Linked ImmunoSorbent Assay (ELISA) (ELITEST,
Hyphen), and the clinical outcome (asymptomatic and diseased). For RNA-seq analysis,
a total of 15 animals were included: Five animals were seronegative for VMV (seroneg-
ative group), five of the animals tested seropositive for VMV but did not show clinical
symptoms (seropositive asymptomatic group) and, the remaining five animals were
seropositive and had lung lesions (lesions group). For validation of the sequencing data
15 different animals were included (5 seronegative, 5 seropositive asymptomatic and 5
with pulmonary lesions) (Table 2).
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3.2.2. Tissue collection, RNA extraction and small RNA
sequencing

A sample from lung was aseptically taken from each animal and preserved in RNAlater
solution (Ambion, Austin, TX, USA) at -80°C until used. Total RNA was isolated from
lung tissue using Trizol (Invitrogen, Carlsbad, CA, USA) extraction. 60–70mg tissue
samples were homogenized in 1ml of Trizol using Precellys®24 homogenizer (Bertin
Technologies, Montigny le Bretonneux, France) combined with 1.4 and 2.8mm ceramic
beads mix lysing tubes (Bertin Technologies). After adding chloroform, RNA was precip-
itated from the upper aqueous phase with isopropanol, washed with ethanol, suspended
in RNase free water and stored at -80°C. RNA quantity and purity was assessed with
NanoDrop 1000 Spectrophotometer (Thermo Scientific Inc., Bremen, Germany). RNA in-
tegrity and concentration was assessed with the 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA).

The small RNA libraries were generated with Illumina’s TruSeq small RNA library
preparation kit following manufacturer’s instructions. Sequencing was performed in
CNAG-CRG core facility (Barcelona, Spain), using an Illumina HiSeq 2500 instrument.
Single-end sequencing with 50bp read length was used for miRNAs.

3.2.3. Prediction of miRNAs

The quality control was performed with fastQC and the following computational
pipeline was followed (Figure 5). Raw reads were analyzed with the sRNAbench web
tool, which is included in the sRNAtoolbox collection of tools [87]. This program per-
formed the preprocessing, mapping, expression profiling and novel miRNA prediction.
Parameters were set to minimum read count of four, allowing one mismatch, with full
read alignment and three species were selected to search for homologs: goat, cattle and
mouse. After that, the prediction results of novel miRNAs were manually curated to
remove repeated entries that just differed in one nucleotide and to give more updated
miRNA names. Only miRNAs marked with high confidence by the program were
selected for further analysis. Since the program only uses miRNAs present in miRBase,
new predicted miRNAs that could had been previously described elsewhere were locally

Table 2: Samples used in RNA-seq and RT-qPCR study.

Status RNA-seq RT-qPCR

Pulmonary lesions 1P, 2P, 7P, 9P, 10P P21, P22, P24, P25,P26

Seropositive asymptomatic 8P, 11P, 12P, P19, 4 1, 2, 3, 5, 6

Seronegative 7,10,11, 13,14 12, P-13, P-14, P-15, P-16

59



CHAPTER 3. MIRNAS RESPONDING TO OVINE VM VIRUS

blasted against the whole RNAcentral database (http://rnacentral.org/) looking for
perfect identity.

Figure 5: Computational pipeline of miRNA data analysis. The figure
illustrates the four steps of the data analysis starting from the RNA ex-
traction and sequencing: miRNA detection and prediction, differential ex-
pression, target prediction and functional analysis.

3.2.4. Differential expression

Before the differential expression analysis, the matrix of novel miRNAs was built
excluding repeated miRNAs that mapped in different places, miRNAs that ap-
peared in less than half of the samples and with counts lower than ten. This
was done following common criteria in the field to perform a conservative anal-
ysis. In addition, it was performed a principal component analysis (PCA) to
check the grouping of the samples with the DESeq2 Bioconductor R package
(https://bioconductor.org/packages/release/bioc/html/DESeq2.html) [113]. Three
out of the 15 samples were excluded from further analysis - these outliers highly
increased variability - leaving three groups with four samples each. DESeq2 results
were plotted out as a heatmap with the Pheatmap function for R (https://cran.r-
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project.org/package=pheatmap). Differential expression analysis of both, known and
novel miRNAs was performed with the sRNAde web tool included in the sRNAtoolbox
collection [87]. DESeq2 and EdgeR were the methods used by the program. Three
different comparisons were performed: Asymptomatic vs Seronegative, Lesions vs
Seronegative and Lesions vs Asymptomatic. For a miRNA to be considered differentially
expressed (DE), the adjusted p value was set to 0.05 and the absolute log2 expression
fold change (FC) to one.

3.2.5. Target prediction, gene ontology and pathway
analysis

Target genes for each differentially expressed miRNA were predicted using TargetScan
7 [92] and miRanda – via the miRNAconstarget tool included in sRNAtoolbox [87] –
algorithms. The 3’ UTR mRNA sequences of sheep for both programs were obtained
from the multi-species alignment generated from human 3’ UTRs given by the authors of
TargetScan. The threshold for this program was set to absolute context++ score > 1 and
the thresholds for miRanda were set to a score higher than 155 and a free energy lower
than -20 kcal/mol. The consensus targets predicted by both programs were selected.

Viral-targeting miRNAs in the ovine genome were also inferred by using 11 VMV
(Visna Maedi Virus) and 5 Caprine Arthritis Encephalitis Virus (CAEV) complete se-
quences deposited in GenBank database. The program used was standalone miRanda
[198].

In order to obtain biological information from the target genes of differentially
expressed miRNAs, an enrichment analysis was performed. We built three sets of
genes that interacted in our predictions with any of the DE miRNAs in each com-
parison. Pathway and gene ontology (GO) analysis were carried out with David
(https://david.ncifcrf.gov/) web tool. For pathways, KEGG pathway terms were tested
and Benjamini multiple test correction value of 0.05 was applied as a threshold. We used
Cytoscape version 3.5.1 [199] to build functional networks merging interactions among
miRNAs, target genes and enriched pathways. This way, we were able to visualise genes
in the selected pathways that are being targeted by dysregulated miRNAs.

3.2.6. RT-qPCR validation

To validate changes identified by RNA-seq experiment, the relative expression levels of
7 miRNAs (oar-miR-125b, oar-let-7b, oar-miR-181a, oar-miR-148a, oar-miR-21, oar-miR-
30c, oar-miR-379-5p) selected based on significant changes seen in Lesions vs Seronega-
tive comparison in the RNA-seq analysis, were verified by qPCR. The U6 snRNA, oar-
miR-30d and oar-miR-191 were tested as internal standard controls and the last two were
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selected for their expression stability in our samples. Additional file 2 shows the list of the
amplified miRNAs and the corresponding primer sequences. The expression study has
been based on the analysis of miRNA expression with Fludigm’s BioMark HD Nanoflu-
idic qPCR System technology combined with GE 48.48 Dynamic Arrays IFC. qPCR was
performed on a BioMark HD System using Master Mix SsoFastTM EvaGreen® Supermix
with Low ROX (Bio-Rad Laboratories, Hercules, CA, USA). The analysis of expression
with the Fluidigm Biomark HD Nanofluidic qPCR system was performed at the Gene
Expression Unit of the Genomics Facility, in the General Research Services (SGIKER) of
the UPV/EHU.

The software for the real-time PCR analysis and obtaining of the Ct values was
Fluidigm Real-Time PCR Analysis Software [v3.1.3]. PCR efficiency calculation and
correction, reference miRNA stability analysis and normalization was done with GenEx
software of MultiD [v5.4]. Most miRNAs showed high amplification efficiencies
(94.43–99.65%). The stability of candidate reference miRNAs was analyzed using both
NormFinder [200][21] and GeNorm [201] algorithms integrated in GenEx. The two most
stable miRNAs were oar-miR-30d and oar-miR-191 so normalization was performed
using these two reference miRNAs. Normal distribution was checked using the Shapiro-
Wilk test in the IBM SPSS statistical package [v24]. Comparison and correlation between
the RNA-seq and qPCR results was performed using T-test and Pearson’s correlation,
respectively. In all analyses, differences were considered significant when p values were
< 0.05.

3.3

Results

3.3.1. Small RNA sequencing and miRNA prediction

In the present study, the small RNAs from lung tissue of sheep with and without VMV in-
fection were sequenced. The raw reads were high quality – only approximately 2% had Q
scores below 30 – and the numbers of reads ranged from 22 to 8 million, with an average
of 15 million reads. The raw reads were analyzed by sRNAbench for miRNA prediction,
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trimmed the adapters in around the 95% of the reads in all the samples, and 85% of the
preprocessed reads were successfully mapped to the sheep genome. The read-length dis-
tribution showed a clear peak between 21 and 23 nucleotides in all of the samples, where
most of the reads were located.

Out of the mapping, the program could annotate 86 known sheep miRNAs from miR-
Base. All of the other reads that mapped to the genome, but that did not coincide with a
miRBase miRNA were subjected to novel discovery tests, from which several new miR-
NAs arose. Some of these new miRNAs were apparently completely novel molecules,
and others were found to be conserved in other species. After cleaning the output se-
quences and aligning them with RNAcentral, it was found that some were already anno-
tated in sheep and that others had homologs in other species. In total, 86 known miRNAs
from miRBase, 68 known sheep miRNAs from other databases, and 58 miRNAs shown
for the first time in sheep were found (Figure 6b). Twelve miRNAs out of these 58 could
not be considered ovine homologs of previously described miRNAs and were considered
novel. The novel miRNAs were named sequentially, but they were given the name of a
homolog if one existed. Regarding the expression levels, some miRNAs were much more
abundant than others (Figure 6a): the 13% most abundant miRNAs were above 10,000
counts, while the 29% least abundant miRNAs had fewer than five average counts. Fur-
thermore, the miRNAs classified as novel or conserved had particularly low abundance,
with only few of them having more than 1000 counts.

Figure 6: Statistics of RNA-seq and prediction data. a) Average counts
distribution of all the miRNAs detected and predicted. b) Distribution of
miRNAs according to previous knowledge about them
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3.3.2. Differentially expressed miRNAs

We made pairwise comparisons among the three sample groups. Overall, the differential
expression levels, as well as the PCA, pointed out that the biggest differences were be-
tween seronegative sheep and the other two seropositive groups (asymptomatic animals
and animals with Lesions). Clustering of differentially expressed (DE) miRNAs detected
by either of the two programs clearly grouped the seronegative samples, but failed to
distinguish the other two groups, similar to the outcome of the PCA. Seropositive asymp-
tomatic animals and animals with developed clinical symptoms seemed quite similar in
terms of miRNA expression (Figure 7). By merging the results of the EdgeR and DE-
Seq2 analyses, 34 DE miRNAs were identified between clinically affected and seroneg-
ative sheep, of which 23 were upregulated and 11 downregulated. There were also 9
upregulated and one downregulated miRNAs when comparing samples from seroposi-
tive asymptomatic animals with samples from seronegative animals, and only three miR-
NAs were differentially expressed between animals with clinical symptoms and seropos-
itive asymptomatic animals. Some novel ovine miRNAs with homologs in other mam-
mals, namely, chi-miR-30f-5p, chi-miR-449a-5p, mmu-let-7e-3p, mmu-miR-144-3p, bta-
miR-142-5p, chi-mir-92a-3p, ssc-mir-7134-3p, ssc-mir-7134-5p and mmu-miR-98-5p, from
goat (chi), mouse (mmu), pig (ssc) and cattle (bta), showed differences in VMV infected
animals. Completely novel miRNAs did not differ significantly in their expression likely
due to their low expression levels, which were sometimes even below the applied count
threshold.

Among the most abundantly expressed DE miRNAs, some showed relevant increases
or reductions in expression (Figure 8): oar-miR-21 was, by far, the most abundant DE
miRNA, since its expression was elevated 4.3 times in seropositive asymptomatic ani-
mals and 12 times in diseased animals, with average total counts of around two million.
Other highly expressed DE miRNAs, such as oar-miR-148a and oar-let-7f showed signif-
icant increases, with absolute fold changes of 3 and 2.2, respectively, in infected animals
compared with seronegative animals. Furthermore, miRNAs such as oar-let-7b, oar-miR-
99a and oar-miR-125b, showed reduced expression in infected sheep (Figure 8).

3.3.3. Validation of differential miRNA expression

To validate the miRNA-seq data, seven miRNAs (oar-miR-125b, oar-let-7b, oar-miR-181a,
oar-miR-148a, oar-miR-21, oar-miR-30c, and oar-miR-379-5p) were verified using the Flu-
idigm Biomark HD Nanofluidic qPCR system. The log2FC in the miRNA expression lev-
els calculated by qPCR in the Lesions group relative to the Seronegative group are shown
in Fig. 5. The validation results confirmed the upregulated expression of 3 miRNAs (oar-
miR-148a, oar-miR-21, oar-miR-379-5p) and the downregulated expression of 4 miRNAs
(oar-miR-125b, oar-let-7b, oar-miR-181a, and oar-miR-30c), although only two were sta-
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Figure 7: Hierarchical clustering heatmap. Clustering of all the DE miR-
NAs detected by any of both programs (DESeq2 or EdgeR) and samples.
Colours and intensities depend on expression level. Green indicates gene
down-regulation and red up-regulation.

tistically significant: oar-miR-21 (p=0.003) and oar-miR-30c (p=0.004). There were no sig-
nificant differences in the FC data obtained from the RNA-seq and the Fluidigm Biomark
HD Nanofluidic qPCR system (p=0.656) showing a high degree of concordance, with a
correlation coefficient of 0.982 (p=0.000).

3.3.4. Functional analysis of dysregulated miRNAs

In this study, the targets of the DE miRNAs were predicted using the TargetScan and
Miranda algorithms. TargetScan predicted a total of 1.9 million interactions for all of the
identified miRNAs, and this number was reduced to 124,614 after applying the cut-off
value. Miranda predicted 911,069 target sites for the same set of miRNAs and applica-
tion of the threshold settings reduced this number to 41,871 targets. Next, we performed
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Figure 8: Expression of most abundant miRNAs. Average counts of
the most expressed DE miRNAs in the three phases of disease progres-
sion. Asterisks indicate significance level between two groups (*P<0.05,
**P<0.01, ***P<0.001)

an intersection analysis to enhance the confidence of the predictions, and this process
reduced the number of interactions to 12,280, with 6426 unique genes. An average of
35 interactions was observed for each of the 349 mature miRNAs analyzed. Out of the
collection of the predicted targets, we retrieved three sets of genes (one for each compar-
ison) with 1736, 1135 and 190 genes each. These gene sets were then used in enrichment
analyses.

The GO enrichment analysis did not identify any significantly enriched terms using
the multiple testing correction, whereas some pathways were actually overrepresented,
such as, signalling pathways (e.g. PI3K-Akt, AMPK and ErbB), or other terms such as
ECM-receptor interaction and pathways in cancer (Table 3). The PI3K-Akt signalling
pathway had the most genes involved in both comparisons – 51 and 40, respectively
– and it was the most statistically significant term (corrected P values of 2.51E-04 and
0.004). The comparisons between the seropositive and seronegative sheep were the only
ones yielding results, while there were no enriched terms in the comparison between the
seropositive groups, based on the corrected p values.

Interaction maps incorporating the miRNAs and their targets and the pathways infor-
mation were produced in an attempt to unveil how the differences in miRNA expression
could affect these pathways in seropositive asymptomatic compared to seronegative an-
imals (Figure 9) and in diseased animals compared to seronegative animals (Figure 10).
Key regulators in the PI3K-Akt pathway, such as PTEN, and related transcription factors
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Table 3: Enrichment analysis of pathways between both seropositive
groups and the seronegative group. Significant entries with Benjamini
score equal or smaller than 0.05 are shown.

Pathway
Seropositive asymptomatic-Seronegative Lesions-Seronegative

Fold enrichment FDR Fold enrichment FDR

oas04151:PI3K-Akt signaling pathway 2.327 2,51E-04 1.868 0.004

oas04152:AMPK signaling pathway 2.831 0.024 2.411 0.022

oas05202:Transcriptional misregulation in cancer – – 2.111 0.024

oas05161:Hepatitis B 2.542 0.027 2.134 0.047

oas04012:ErbB signaling pathway 3.296 0.034 2.519 0.048

oas05200:Pathways in cancer – – 1.595 0.049

oas04512:ECM-receptor interaction 3.186 0.024 2.435 0.050

oas04510:Focal adhesion 2.232 0.029 – –

oas05215:Prostate cancer 3.296 0.034 – –

oas04360:Axon guidance 2.643 0.034 – –

oas04014:Ras signaling pathway 2.112 0.038 – –

oas05206:MicroRNAs in cancer 2.190 0.050 – –

such as FOXO3 and CREB1, appear to be targeted by dysregulated miRNAs identified
between the seropositive groups and the seronegative group. Most of the miRNAs target
no more than three genes in these pathways, except for oar-miR-143 and oar-mir-361-3p,
which target several genes based on our predictions.

3.3.5. Virus-miRNA interactions

Regarding the highly expressed DE miRNAs, two significantly strong interactions were
found between the miRNAs and the SRLV genome. The upregulated miRNA oar-miR-
200a was predicted to target nine out the eleven tested sequences at nucleotides 1671 to
1689 with respect to the VMV reference genome sequence (GenBank accession number
L06906.1), with a score of 155 and a folding energy of -16.1 kcal/mol. The downregulated
miRNA oar-miR-99a was predicted to target nine sequences around nucleotides 5383
to 5402 with a score of 150 and a folding energy of -25.54 kcal/mol. These predicted
interactions are in the “gag” and “vif” genes, respectively. These targeted sequences are
all from the genotype A of SRLV. On the other hand, oar-miR-99a may also target CAEV
at nucleotides 2194 to 2212 – in the “pol” gene – with respect to the CAEV reference
genome (GenBank accession number M33677.1) with a score of 160 and a folding energy
of -23.83 kcal/mol.
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Figure 9: Functional network of the comparison between seropositive
asymptomatic and seronegative sheep. It illustrates the predicted inter-
actions of DE miRNAs with their targets and the pathways those target
genes are part of. Upregulated miRNAs are coloured in red and down-
regulated ones in green, pathway names in orange and genes in blue.

3.4

Discussion

In this work, we used NGS techniques to analyze the expression pattern of miRNAs in
seronegative sheep and in SRLV seropositive but asymptomatic animals and in diseased
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Figure 10: Functional network of the comparison between diseased and
seronegative sheep. It illustrates the predicted interactions of DE miRNAs
with their targets and the pathways those target genes are part of. Up-
regulated miRNAs are coloured in red and downregulated ones in green,
pathway names in orange and genes in blue.

animals. We then made predictions of the possible regulatory functions of the miRNAs.
Since we used tissue samples from naturally infected animals for the experiments, the
data reflect the actual miRNA transcriptome in the lung tissue of SRLV-infected animals.
Host-virus interactions modify several biological processes as a consequence of the abil-
ity of the viruses to employ the host machinery to complete their replication cycle, and
of the host’s attempts to deal with the infection. These changes can be observed at the
miRNA expression level since miRNAs can control different pathways; therefore, under-
standing changes in miRNA expression could be crucial for understanding the disease.

The enriched pathways identified in this study suggest an increase in cell
proliferation-related signaling. The PI3K-Akt pathway is a key pathway involved
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in growth and proliferation, and it has been extensively studied in the context of
proliferative diseases such as cancer; furthermore, it seems to be influenced by a miRNA
regulatory network as an added layer of modulation [202]. Furthermore, viruses can
hijack this pathway for enhanced replication, as has been reported in several cases [203].
For instance, Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) modulates
PI3K-Akt signalling via FoxO1 and Bad [204] and influenza A codes for the NS1 protein
which directly interacts with the PI3K regulatory subunit p85 [205]. DE miRNAs were
predicted to target very important factors in this pathway including PTEN, PI3K,
FOXO3, the BCL2 family, CREB, GRB2, growth factors (FGF23) and cytokine receptors
(IFNAR1). Other enriched pathways in our set of target genes were the AMPK signalling
pathway, which is a regulator of cellular homeostasis and is linked to PI3K-Akt pathway,
and the ErbB pathway, which is related to signal transduction involving growth factors.

Although miRNAs are fine tuners of gene expression that can act at low concentra-
tions, the appearance of highly expressed miRNAs may be very relevant and could in-
dicate strong modulation. Normally, a few miRNAs comprise the majority of the miR-
NAome, and many others are present at low concentrations. In our experiments, oar-
miR-21 expression showed an interesting behaviour, as its expression is remarkably high
in both seropositive groups, with its highest expression level in diseased animals. miR-21
is a fairly well-studied miRNA, and was one of the first miRNAs identified as an onco-
gene; it has been seen to be upregulated in several conditions including tumours [206]
and viral infections. In the case of RNA viral diseases, miR-21 is upregulated by hepatitis
C virus (HCV), which leads to a decreased IFN response in human cell lines [207], during
dengue virus infection in human cancer cells, which promotes viral replication [208] and
in HIV and in HIV-related pulmonary arterial hypertension in human plasma [209]. Fur-
thermore, Epstein-Barr virus (EBV) induces miR-21 expression in B cells, which promotes
tumorigenesis by activating the PI3K-Akt pathway, causing FOXO3a to stop repressing
miR-21 [210, 211], findings that are in agreement with our current results.

The respiratory form of SRLV infection exhibits some typical histopathological lesions
characterized by lymphocytic infiltration and inflammation, M2-polarized macrophages,
interstitial pneumonia, lung fibrosis and decreased gas exchange [212, 213]. However,
the mechanisms of this pathogenesis, which are likely immunomediated [214], are not
fully characterized. There were no major differences between the infected asymptomatic
animals and the sheep that did show lesions, indicating that the miRNA levels mostly
change after infection, rather than when symptoms appear. It seems that most of the
transcriptional changes occur in the early stages of infection and that the differences be-
tween the asymptomatic-seronegative and the lesions-seronegative comparisons could
be due to disease progression and appearance of clinical symptoms.

Interestingly, these kinds of lesions could be related to some of the DE miRNAs and
with the pathways regulated by them. In an artificially induced lung fibrosis in mice,
miR-21 mediates the activation of pulmonary fibroblasts [215]. Furthermore, miR-21 has
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been recently proposed as an indicator of disease progression and potential treatment
target in another mouse model [216]. MiR-21 could control pathways such as the TGF-
β1 signaling pathway by targeting SMAD7 and SPRY1 or by inhibiting PTEN, which
is a known negative regulator of lung fibrosis [217]. The remodelling of lung tissues
caused by fibrosis related hypoxia has also been linked with miR-21 [218]. Importantly,
PTEN has a crucial role in controlling the PI3K-Akt pathway, and its interaction with
miR-21 has been experimentally validated several times in human and in mice [219].
The upregulated miR-148a also targets PTEN, as well as GADD45A and BCL2L11, and it
accelerates the development of autoimmunity [220].

Another miRNA, miR-99a, which was downregulated in the diseased sheep, appears
to target AKT1 [221] (which has an important role in the PI3K-Akt pathway) and inhibits
cancer cell proliferation by targeting mTOR [222]. Thus, its downregulation in the ani-
mals with lesions should increase AKT1 and mTOR expression, stimulating proliferative
signal. In our analysis, inflammation-related interleukin 13 (IL-13) was predicted as a
target of miR-98-5p and let-7 family miRNAs, and it is noteworthy that previous experi-
mental observations have shown that let-7 miRNAs can modulate inflammation through
inhibition of IL-13 [223]. During bluetongue virus infection in sheep testicular cells, while
IL-13 and let-7f were downregulated, let-7d was upregulated and PI3K-Akt pathway was
overrepresented in the enrichment test of the DE genes [224].

The relationship between the dysregulation of some miRNAs and VM disease could
be a direct consequence of virus modulation or a side effect of the host defense mecha-
nisms. In the case of miR-21, it has been proposed as a key switch in the inflammatory
response [219]. Clinical lesions observed could be a consequence of excessive cell sur-
vival signalling after the initial pro-inflammatory immune response. On the other hand,
the virus itself may modulate miRNA expression, as it does in EBV and HCV infections
[207, 225], during which the viruses induce miR-21 expression to promote their repli-
cation by enhancing the growth and survival of the infected cells, thus modulating the
response in favour of the virus. Furthermore, PRRSV downregulated miR-125b to nega-
tively regulate NF-κB signaling as a survival strategy [226].

Direct targeting of viruses remains controversial not only because of viral genome
structure and rapid evolution but also because the normal concentrations of miRNAs are
too low for efficient silencing [227]. Only some highly expressed DE miRNAs have been
analyzed to determine if they could potentially silence some viral RNA. Interestingly,
there were some predicted miRNA target sites in the SRLV genome, including one for oar-
miR-200a. oar-miR-200a was upregulated in the lesions-seronegative comparison and
could actively target the viral gag gene in the A genotype. Functional experiments are
necessary to uncover the antiviral functions of these candidate miRNAs.

In this work, we performed for the first time a miRNA profiling in sheep respond-
ing to SRLV infection. Twelve completely novel miRNA molecules and more than 40
others were found for the first time in sheep. MiRNAs differentially regulated between
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seronegative and infected sheep, such as oar-miR-21, oar-miR-148a or oar-let-7f may have
potential implications for the host-virus interaction. The miRNAs were predicted to tar-
get important genes involved in apoptosis, proliferation and growth, e.g., the PI3K-Akt
and AMPK pathways. The role of oar-miR-21 as a regulator of inflammation and prolifer-
ation appeared as a possible cause for the lesions caused in sheep lungs, and this miRNA
could be an indicator of the severity of the lung lesions or may be useful as a putative
target for therapeutic intervention.
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4.1

Background

MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that reg-
ulate gene expression by targeting mRNAs and provoking destabilization or translational
repression [12]. Moreover, they have been associated with many diseases and are used
as markers for molecular diagnosis in humans [14]. In livestock species, miRNAs also
show great potential as biomarkers for animal health and product quality, or as biomark-
ers for the selection and improvement of phenotypes of commercial interest in breeding
programs [131, 228].

Livestock genomes remain under-annotated in terms of miRNAs compared with
other model organisms such as human or mouse but the information in sheep is scarce.
In livestock species such as goat, cattle, horse or pig hundreds of miRNAs have been
described, but in sheep there are only 106 miRNA genes in miRBase database [96], there
are 355 miRNA genes annotated in the latest Ensembl (v.104) annotation and sheep
is not among the supported species in the latest MirGeneDB (2.1) update [97]. The
RumimiR database [98] is the most comprehensive repository. It stores ruminant miRNA
sequences from the literature as they were published and is a useful resource to find
out which sequences have already been detected. Considering the important regulatory
roles miRNAs have, their proper characterization in sheep is of prime importance.

Integrated miRNA expression profiling across tissues has been performed to identify
tissue specific miRNAs in other livestock species such as horse or cattle [229, 230]. Dif-
ferent sheep tissues, such as ovaries, heart, lungs or intestines have been analyzed by
small RNA sequencing in several functional experiments [192, 231, 232]. Recently, our
group has also analyzed the miRNA expression in experiments related to the immune
response in infection diseases and vaccination experiments in different tissues such as
lungs [233], cerebral cortex [234], peripheral blood mononuclear cells (PBMCs) [235] and
spleen (Varela-Martínez et al., under revision).

Secondary analysis of genomic data deposited in public databases represents an op-
portunity for scientific questions that could not be possible with individual datasets [111].
In this work, we collected raw miRNA-seq samples deposited in public databases by
multiple projects, comprising a wide range of sheep tissues, and analyzed them in a uni-
form way. Thus, the main objective of this work was to characterize the sheep miRNA
microRNAome by predicting unannotated miRNAs and analyzing their expression pro-
file across different tissues in an integrated manner. We focused on the identification of
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tissue-specific miRNAs and the dissection of miRNA expression distribution, as domi-
nant miRNAs can constitute a significant fraction of the expressed miRNAome, in clear
contrast to protein-coding genes [236].

4.2

Methods

4.2.1. Sample selection and data preprocessing

Firstly, searches in NCBI PubMed and SRA databases were performed using “mirna”
and “sheep” keywords. 226 articles were recovered from PubMed (search performed
on 20/07/2021), and all the projects including the two keywords in the SRA database
were reviewed. Two conditions were established for dataset selection: high-throughput
small RNA sequencing should have been performed in an Illumina platform and the raw
sequencing files should have been uploaded to a public repository with clear metadata.
Three conditions were set up for sample selection: samples without any experimental
treatment (e.g. an infection), with at least two biological replicates in the same study and
from animals older than 6 months were selected.

All samples were downloaded with the SRA toolkit version 2.10.8. Quality control
was performed using Fastqc version 0.11.5. Adapters, low-quality sequences and small
sequences (> 16 bp) were removed using Trimmomatic version 0.39 [237].

Some tissues were grouped into more general groups: ovary and corpus luteum sam-
ples were grouped as “Ovary”; cerebral cortex and hypothalamus samples as “Brain”;
colon and intestine samples as “Intestines” and omasum and rumen samples as “Stom-
ach”.

4.2.2. Characterization and quantification of miRNAs

Preprocessed miRNA reads were mapped against the Ovis aries reference genome
Oar_rambouillet_v1.0 with the mapper.pl script from miRDeep2 v.0.1.2 [238], which
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internally uses bowtie [239]. During mapping, we allowed one mismatch in the seed
sequence, defined as the first 18 nucleotides, and removed reads mapped to more than
five locations. Then, the miRDeep2 core program was used in order to predict bona fide
miRNAs. We used miRNAs from sheep and other species from miRBase release 22.1
[96] to guide the search for unannotated miRNAs. Predicted sequences with 5 or higher
miRDeep2 scores were kept. All the resulting sequences were blasted against the sheep
RNA sequences in RNAcentral database with standalone BLAST+ v.2.9.0 [240] in order
to filter out potentially hairpin-forming RNA classes such as tRNAs and other small
RNAs. A single miRNA was retained when two precursor sequences overlapped more
than 16 base pairs in their location. Known miRBase miRNAs mapping to a different
location were treated as unannotated copies.

Unannotated miRNAs were named based on sequence similarity with other species.
Precursor sequences were blasted against individual datasets of miRBase precursor se-
quences of goat, cattle, horse, pig and human miRNAs with standalone BLAST+ v.2.9.0
[240]. Alignments with Q value < 0.01 and query coverage > 80 were kept, and the one
with highest identity was selected in each species. When a sequence was present in more
than one species, we named the unannotated miRNA with the name of the evolutionarily
closest species. All miRNA loci were intersected with the Ensembl v.104 miRNA genes
with bedtools v.2.26.0 [241]. All miRNA loci were grouped into clusters with a minimum
genomic distance of 10kb with bedtools v.2.26.0 [241].

4.2.3. Analysis of miRNA expression

Expression quantification of known and predicted miRNAs was performed with the
quantifier.pl script from miRDeep2. We conserved the expression of a single represen-
tative miRNA in the case of identical miRNAs located in different genomic loci. For that,
we clustered the mature miRNA sequences into groups with complete identity using cd-
hit-est from the CD-HIT suite [242]. miRNAs that were not expressed in at least one
tissue with 10 reads on average were removed.

Read counts were normalized to counts per million (CPM), using the cpm function
of EdgeR v.3.26.8 R package [112]. The expression matrix was log10-transformed after
adding 0.1 to all the values and the normalized expression matrix was used for visualiza-
tion with the t-distributed stochastic neighbor embedding (t-SNE) method of dimension
reduction with Rtsne v.0.15 R package. Correlation between samples was analyzed using
the Pearson correlation coefficient and was visualized as a heatmap using the pheatmap
v.1.0.12 R package. The miRNA expression distribution was analyzed by averaging the
CPM values in each tissue.
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4.2.4. Analysis of tissue specificity

Two procedures were applied to analyze tissue specific miRNAs. Firstly, it was verified
in which tissue combinations were expressed the miRNAs using a minimum of 5 CPM
to consider them expressed, and it was visualized with UpSetR v1.4.0 R package [243].
Secondly, a previously described tissue specificity index (TSI) called tau (τ) was used
[244]. The range of the TSI values for a miRNA is between 0 and 1, where 1 represents
a miRNA expressed in a single tissue and 0 represents a miRNA expressed in all tissues.
miRNAs with 0.9 or greater TSI values were considered tissue-specific and those who
had a 0.25 or smaller TSI value were considered housekeeping miRNAs.

4.2.5. Target prediction

The target genes of the novel miRNAs were predicted using the standalone version of
TargetScan v.7.0 [92] and the UTR sequences defined in the ovine Ensembl gene annota-
tion (release 107). Predicted miRNA-gene interactions were filtered by a context ++ score
percentile > 95 in order to retain the most confident targets. Gene set enrichment analysis
of targets gene sets was done with gprofiler2 v.0.2.1 R package [245]. Benjamini-Hochberg
FDR correction was applied to the p-values and the threshold was set to 0.01.

4.3

Results

4.3.1. Data retrieval

We selected 20 ovine small RNA sequencing datasets available through NCBI SRA.
Among all the datasets, four had been produced in our lab and another one was
produced by The Ovine FAANG Project. In total, the selected dataset comprises 172
samples and 21 tissues, with ovary being the tissue with the largest number of samples
(Table 4). Information of all samples selected for the study is provided as supplementary
data (Supplementary Table S1). From the 21 tissues, 3 corresponded to the female sheep
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reproductive system (endometrium, ovary and oviduct), 2 to the male sheep reproduc-
tive system (testis and epididymis), 4 to the digestive system (stomach, intestine, liver
and gallbladder), 3 to the immune system (spleen, PBMC and lymph node) and 2 to the
renal system (kidney and ureter). Four of the samples were obtained from unpublished
spleen miRNA-seq experiments that were produced by our group.

Table 4: Summary of samples and publications retrieved for this work.
aPermission from the author. bThe Ovine FAANG Project. cIn review

BioProject accession Tissues (number of samples) References

PRJNA451237 Ovary (6), endometrium (2) [246]

PRJNA354833 Adipose tissue (2) [247]

PRJEB22101 Ovary (10) [192]

PRJEB32852 Corpus luteum (10) [248]

PRJEB32852 Endometrium (10) [249]

PRJNA392421 Intestine (3) [231]

PRJEB20781 Lymph node (6) Unpublisheda

PRJNA505702 Ovary (6) [250]

PRJNA474913 Lung (5) [233]

PRJNA532808 Hypothalamus (12) [145]

PRJNA511987 Heart (6), Muscle (6), Lung (6), Kidney (4), Liver (5), Spleen
(6)

[232]

PRJNA414087 Gallbladder (2), Heart (2), Skin (2), Muscle (2), Lymph node
(2), Colon (2), Omasum (2), Rumen (2), Oviduct (2), Ureter
(2)

[251]b

PRJNA454385 PBMC (6) [235]

PRJNA528259 Cerebral cortex (5) [234]

PRJNA748757 Spleen (4) Varela-Martínez et al.c

PRJNA638028 Ovary (3) [155]

PRJNA613135 Testis (8) [252]

PRJNA608075 Mammary gland (6) [253]

PRJNA694531 Epididymis (9) [254]

PRJNA607580 Mammary gland (6) [255]

4.3.2. Characterization of known and unannotated miR-
NAs

Before data preprocessing, samples had an average of 15.37 ± 0.53 million reads and 14.07
± 0.5 million reads remained after quality filtering and adapter trimming. Samples with
bad quality, very low sequencing depth or read length distribution not centered around
20-22 base pairs were discarded from the analysis. An average of 82.85 ± 0.8% of the
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filtered reads were unambiguously mapped against the sheep genome.

1047 sequences were selected as bona fide miRNAs, corresponding to the sequences
with a probability of being a true miRNA of 0.83 ± 0.01 according to miRDeep2, and after
removing other RNA classes and overlapping predictions. Despite some miRNAs being
already annotated in miRBase, eleven of them did not reach the minimum established
miRDeep2 score to be considered a true miRNA. Comparing with the Ensembl miRNA
gene set, we detected 284 out of the 355 miRNA precursors (80%), of which 97 were an-
notated in miRBase and 187 were not. Sequences and coordinates of all detected miRNA
loci are provided as supplementary data (Supplementary Table S2).

4.3.3. Sequence conservation and miRNA clusters

Regarding the 1047 unannotated miRNAs, they showed differing levels of conservation.
455 (43%) were found at least in another species using a stringent approach. Due to some
miRNAs being located at more than a single genomic loci, they were homologs of 428
miRNAs in other species and most unannotated miRNAs were named based on a goat
or cow homolog (Figure 11). 161 miRNAs (35% of the conserved miRNAs) were found in
all five species and 432 miRNAs (95%) had homologs in cattle. The reason for finding so
many cattle homologs is the higher number of annotated cattle miRNAs, comparable to
that of humans, and especially the high number of ruminant specific miRNAs. Strikingly,
we found 146 precursors of the ruminant specific family of mir-2284 and mir-2285 miR-
NAs, which have 206 annotated precursors in cattle and 5 precursors in goat, but none in
sheep.

We identified 95 miRNA clusters, miRNA groups closely located in the genome, five
of them with at least 5 miRNAs. The biggest one was the known mammal miR-379/miR-
656 cluster located in chromosome 18. It harbors 48 miRNAs included in this study,
mainly from miRBase, but three novel conserved loci were also found in this location.
Interestingly, we found two novel clusters located on chromosome X, with 8 members
each, exclusively made up of unannotated conserved miRNAs. One of them contains
miRNAs homologs to the cattle bta-mir-6526 and horse eca-mir-8908 families, while the
other contains miRNAs homologs to the cattle and goat miRNA families mir-424, mir-
450, mir-503 and mir-542. Many of the small clusters (< 5 miRNAs) were comprised of
multicopy miRNAs, very similar precursors that produce the same mature sequence.

4.3.4. Exploratory analysis of miRNA expression

In total, 1014 miRNAs were quantified, 98 of which were included in miRBase and 916
were previously unannotated miRNAs. These miRNAs represent 1985 unique mature
miRNAs as different pre-miRNAs can produce the same mature miRNA product. Re-
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Figure 11: Comparison between species of miRNA precursor sequences.
All the novel precursors found conserved between sheep and at least an-
other species were visualized as an upset plot. Horizontal bars represent
the number of sequences with a match in each species. Vertical bars repre-
sent the number of sequences common to each intersection. The family of
mir-2284/mir-2285 miRNAs was given a different color in the intersection
bars to highlight the ruminant specificity.

moving lowly and inconsistently expressed miRNAs, a dataset of 1082 mature miRNAs
for the analysis of expression was obtained (Supplementary Table S3). Fourteen % (147)
of the expressed mature miRNAs were miRBase miRNAs, 53% (574) were miRNAs with
homologs in other species, and 33% (361) were unannotated novel miRNAs. MiRBase
miRNAs consistently showed higher expression levels than unannotated miRNAs, re-
gardless of homology (Figure 12A). The miRNAs included in miRBase had a mean ex-
pression of 8369.21 CPM, while conserved miRNAs and novel miRNAs had a mean ex-
pression of 525.66 CPM and 6.36 CPM, respectively. Each tissue expressed nearly 500
miRNAs on average (468.7 ± 25.6 miRNAs), with the highest number in the brain (695)
and the lowest number in adipose tissue (173).

The first exploratory analysis showed that tissues were generally well grouped ac-
cording with their tissue type (Figure 12B). Samples of the same tissue but from differ-
ent works often did not group together, which highlights how other variables can affect
miRNA expression. Brain samples were clustered into two closely related groups, based
on their cerebral cortex and hypothalamus origin. We can observe a similar pattern in
the sample correlation matrix (Figure 12C). Brain, male reproductive tissues and PBMCs
showed the most distinct expression patterns.

The distribution of miRNA expression was skewed towards a handful of highly ex-
pressed molecules (Figure 13A). In some tissues, a single miRNA took more than half
of the total expression (adipose tissue, intestine, stomach and ureter). In all tissues, the
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Figure 12: Exploratory analysis of miRNA expression. (A) Expression
levels of all the miRNAs separated in categories based on sequence con-
servation. Mir-2284/5 family has been represented separately to see its
specific pattern. (B) t-SNE plot of all the samples colored by tissue. (C)
Correlation heat-map and clustering of all the samples using Pearson cor-
relation. Color legend shared by (B) and (C) subfigures.

expression levels decline sharply from the eighth more expressed miRNA. The miRNAs
oar-mir-143, oar-mir-26a, oar-mir-10a and oar-mir-10b were among the most expressed
in most of the tissues, and in many tissues (intestine, gallbladder, lymph node, stomach,
oviduct, ureter, lung, spleen and epididymis), miR-143 was the predominant miRNA.
Most of the predominantly expressed miRNAs were annotated in miRBase.
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Figure 13: Distribution of miRNA expression across tissues. (A) Propor-
tion of the five most expressed miRNAs in each tissue as a fraction of total
expression, using the mean of all samples in each tissue. (B) Upset plot
with the intersection of all the expressed miRNAs above 5 CPM in each
tissue. Horizontal bars represent the number of expressed miRNAs in
each tissue above the threshold. Intersections with at least three miRNAs
are visualized in the vertical bars.

4.3.5. Tissue specificity analysis

To get a picture of the miRNAs expressed in each tissue, we considered all miRNAs ex-
pressed above a threshold of 5 CPM as strongly expressed in that tissue. 733 miRNAs
were expressed above this threshold in half of the samples of at least one tissue, (Fig-
ure 13B). A set of miRNAs, containing 89 miRNAs, was expressed in all tissues. How-
ever, there were several miRNA strongly expressed exclusively in one tissue. In this
analysis, 43 cerebral specific miRNAs, 42 PBMCs specific miRNAs and 37 testis specific
miRNAs were detected. Other tissues with many strongly expressed exclusive miRNAs
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were epididymis (14), mammary gland (10) and gallbladder (9). The aforementioned
tissues correspond to those that showed a lower correlation with other tissues.

To identify tissue specific and housekeeping miRNAs in a quantitative manner, a tis-
sue specificity index (TSI) was calculated (Supplementary Table S4). 270 miRNAs could
be considered tissue specific with a TSI value higher than 0.9 (Figure 14A). Of these, 18
were known miRBase sheep miRNAs and 92 miRNAs were conserved in humans, pigs,
goats, cows or horses (Figure 14B). 25 miRNAs were exclusively expressed by a single
tissue, most of them novel miRNAs.
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Figure 14: Tissue-specific miRNA expression. (A) Expression heatmap
and sample clustering using all miRNAs with a TSI > 0.9. (B) Expression
levels of selected tissue-specific miRNAs in different tissues identified in
this study, using the mean of all samples in each tissue.

Nearly all tissue specific miRNAs showed their highest expression in one of the fol-
lowing tissues: brain (94), testis (54), epididymis (44) and PBMCs (37). It should be noted
that there is a set of 46 miRNAs with their highest expression in the brain that are also
highly expressed in testis or epididymis, or vice versa. These miRNAs include miR-
Base miRNAs such as oar-mir-433, oar-mir-1193, oar-mir-758, an orthologue of human
hsa-mir-2113 or an ortholog of goat chi-mir-873. Samples were better grouped into tis-
sues by the tissue specific miRNA heatmap (Figure 14A). Immune system-related tissues
(PBMCs, spleen, and lymph nodes) were grouped together, even if there were almost no
miRNAs specific to spleen or lymph nodes. This indicates that there is a common miRNA
expression profile in relation to immunity.
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Housekeeping miRNAs, defined here as miRNAs with a TSI < 0.25, were generally
highly expressed and there was not any novel molecule among them. The 47 housekeep-
ing miRNAs include oar-mir-143, oar-mir-26a and oar-mir-10b, present among the top 5
most expressed miRNAs in many tissues, and many members of the let-7 family. One of
the only exceptions among the predominant miRNAs was chi-mir-122, which was specif-
ically expressed in liver. Its most expressed mature arm, chi-mir-122-5p, had a TSI of 0.83,
and the other arm, chi-mir-122-3p had a TSI of 0.97.

4.3.6. Ruminant specific mir-2284/mir-2285 family

In this work, we detected 146 miRNA loci expressing precursors belonging to the family
of mir-2284/mir-2285 miRNAs. They were identified mainly based on sequence simi-
larity with the over 200 cattle miRBase miRNAs from this family. Due to the high sim-
ilarity between these miRNAs at precursor and mature miRNA level, exact one-to-one
homologies were not given to the novel miRNAs. Instead, they were sequentially named
(Supplementary Table S2). Regarding precursor sequences, there were 137 unique mir-
2284/2285 family miRNAs, and regarding mature sequences, defined as the most ex-
pressed mature product from the same hairpin, there were 108 unique sequences belong-
ing to this family. Thus, several copies of identical or very similar miRNAs are located
through the sheep genome.

There were 156 mature miRNAs from the mir-2284/mir-2285 family expressed above
the expression threshold. In general, their expression was lower than annotated miR-
NAs and other conserved miRNAs, but higher than novel miRNAs. In some tissues,
their expression was significantly higher than in all tissues (Figure 15A). This was true
for immune related tissues PBMCs (Mann-Whitney U test, P = 4x10-19) and lymph nodes
(Mann-Whitney U test, P = 7x10-7), but not for spleen. The difference was also signifi-
cant in testis (Mann-Whitney U test, P = 6x10-8). Those tissues with high mir-2284/mir-
2285 expression coincide with some of the most transcriptionally distinct tissues, but,
interestingly, in the brain, the most different tissue and a tissue with the most tissue
specific miRNAs, the expression of mir-2284/mir-2285 family miRNAs was significantly
lower (Mann-Whitney U test, P = 1x10-12). Overall, immune-related tissues and testis ex-
pressed the highest number of these miRNAs (Figure 15B). There were 16 tissue-specific
miRNAs from this miRNA family, representing the 10% of expressed mir-2284/mir-2285
miRNAs, but this is lower than the fraction of tissue specific miRNAs from the whole
dataset (25%) (Figure 15C). Those miRNAs were mainly specific of male reproductive
tissues or PBMCs.

Because lowly expressed miRNAs with similar seeds can have an additive effect on
target gene repression, the 98 genes that were predicted to be targeted by more than
10 mature miRNAs of the mir-2284/mir-2285 family were selected as their putative tar-
gets. AP3S1 was predicted to be targeted by 34 different miRNAs from this family, much
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more than any other gene. The GO overrepresentation test revealed that the set of 98
target genes was enriched in processes related to hormonal regulation, regulation of
female sex organs and response to external stimuli (Figure 15D). The most significant
term was regulation of hormone levels (GO:0010817, FDR=3.9x10-4), with genes such as
AFP, FSHB, VAMP7 or ESR1. Other significant GO terms include ovulation cycle process
(GO:0022602, FDR=2.4x10-3), with genes such as AFP, LHCGR or ESR1; and regulation
of response to external stimulus (GO: 0032101, FDR=9.7x10-3), with genes such as IFNG,
CXCL8 or CD200R1.
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Figure 15: Expression analysis of miRNAs from the mir-2284/mir-2285
family. (A) Expression levels of all miRNAs from the mir-2284/mir-
2285 family in each tissue. (B) Number of expressed miRNAs from the
mir-2284/mir-2285 family with mean expression > 1 CPM. Color legend
shared by (A) and (B) subfigures. (C) Distribution of TSI values in four
miRNA categories based on sequence conservation. Mir-2284/5 family
has been represented separately to see its specific pattern. (D) Gene Ontol-
ogy enrichment results for the set of 98 target genes of the mir-2284/mir-
2285 family. P values were corrected with Benjamini-Hochberg FDR.
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4.4

Discussion

In recent years, thanks to the advances in sequencing technologies, many species have
been extensively annotated for miRNAs. Among livestock species, nearly 1000 miRNAs
have been annotated in cattle, whereas around 300 have been characterized in pig and
goat. However, the current state of sheep miRNA annotation in the reference sources lies
behind human and other livestock species. While there are 106 precursors in miRBase
v.22 database [96] and 355 in the Ensembl v.104 annotation, we identify 1047 unannotated
miRNA gene loci significantly expressed in any of the 172 samples analyzed. Moreover,
most of the annotated miRNAs from both sources were detected in this study. 455 of
these miRNAs were found to be conserved in another livestock species or in humans,
while the remaining were classified as novel. Some of them could be orthologues of
human miRNAs that were not defined as such due to the sequence divergence between
species.

One of the advantages of this work is that it harmonizes the naming of all reanalyzed
studies for an easier comparison between tissues. Other useful resources like the Ru-
mimiR database [98] contain an exhaustive in-depth description of the miRNAs from the
literature, but we go further by reanalyzing all the raw data in an uniform way using the
latest sheep genome (Oar_rambouillet_v1.0) in Ensembl (release 104). It should be noted
that, due to the data being produced by different projects, there is some unavoidable
variability, which could be caused by the experimental procedure for sample and RNA
extraction, breed, diet, sex or age of the animals [111, 232, 256, 257]. Besides, the data for
the tissues with many samples is more reliable than the tissues with few samples, more
affected by variability, but, in general, the data seems representative for most tissues.
We used the CPM normalization method, which compared to other methods appears to
yield better reproducibility between individuals while keeping the distinction between
cell types [258].

miRNAs are frequently clustered in the genome, 25% of human miRNAs are located
in clusters and multicopy miRNAs tend to be in the same cluster [259]. Some interest-
ing clusters were detected in this work. One of them, the miR-379/miR-656 cluster has
already been reported in sheep, is conserved across placental mammals and is located
in an imprinted region [249]. Interestingly, two novel big clusters were detected in this
study on chromosome X, and one of them is potentially specific to the ruminant or ungu-
late clades, since its members have not been found elsewhere. This redundancy created
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by polycistronic loci and paralogous loci grants functional robustness to the mammalian
miRNAome [236]. In addition, predominant expression of a miRNA in a tissue, observed
here and in the FANTOM5 miRNA atlas [258], also plays a significant role in this func-
tional robustness [236]. Most tissue-dominant miRNAs such as mir-143, mir-10b, mir-10a
or mir-21 have been related to basic functions of cell homeostasis and division, and con-
sequently, to cancer [260]. Still, there also are predominantly expressed miRNAs with
roles related to the specific tissue or cell they are expressed in. The clearest example of
this is mir-122, specifically expressed and predominant in mammal liver [261].

In this work, we have identified tissue-specific expression of miRNAs across 21
tissues. Other studies have previously generated miRNA atlases in various mammal
species and have identified tissue-specific miRNAs with differing numbers of tissues.
For instance, there are works in humans [258, 262], cattle [230], giant panda [263], horse
[229], mice [258, 264], rat [265] and dog [266]. When comparing our dataset to those
studies, we found many matching tissue-specific miRNAs, reinforcing the idea that
miRNA gene expression of evolutionarily conserved miRNAs is also conserved [267].

The brain was the tissue that expressed most tissue-specific miRNAs and about half
of the conserved sheep brain-specific miRNAs were also found to be specific in other
works. Seven of them appeared in, at least, three other mentioned works: mir-129, mir-
480, mir-551b, mir-137, mir-383, mir-380 and mir-487b [229, 230, 258, 262–266]. It has been
proposed that brain miRNAs are closely related to the mental and behavioral variation
during vertebrate evolution, by regulating the complex brain networks [268]. A repro-
ductive tissue such as testis is known to be very transcriptionally complex, with a high
number of expressed genes and specific genes, probably due to a more permissive chro-
matin [269]. In this dataset, it is the tissue with the highest amount of expressed miRNAs
and 54 tissue-specific miRNAs show the highest expression in testis. Out of the 12 known
or conserved tissue-specific miRNAs with highest expression in testis, 10 were also sup-
ported by other works, including mir-202 and mir-449a [262, 264–266]. miR202 mediates
the proliferation, apoptosis, and synthesis function of human Sertoli cells [270] and the
mir-449 cluster is essential for spermatogenesis [271]. Other tissue-specific miRNAs with
extensively studied functions and supported by most of the tissue atlases include, for
instance, mir-122, mir-133b and mir-208a/mir-208b. mir-122, specifically expressed in
liver, is known to be involved in lipid and glucose metabolism [272]. mir-133b, expressed
specifically in muscle, has an important role in the differentiation and proliferation of my-
oblasts [273]. The family of mir-208 miRNAs are exclusively expressed in cardiac muscle
and are encoded in two myosin genes, being responsible for the control myosin content
[273].

There is a set of highly conserved miRNAs [12], as well as a great correlation between
the miRNA expression profiles of different mammal species [262]. The list of conserved
miRNAs has been mostly completed, but there are also clade-specific miRNA families,
usually lowly expressed, that could contribute to the phenotypic differences between
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livestock species [12, 274]. One of those families is the extensive mir-2284/mir-2285
miRNA family, which was thought to be specific to cattle. This family seems to have
evolved by seed shifting and point mutation, has expanded very rapidly and might be
related to insulin resistance in ruminants [275]. Homologs of the mir-2284/mir-2285 fam-
ily have been previously described by other sheep studies [233, 276], but here we report
a vast number of members in sheep, comparable to the amount in cattle, thus confirming
that the expansion of this miRNA family is, at least, ruminant specific. Functionally, this
expansion could have had two outcomes: a progressive subfunctionalization depending
on the tissue [277], or an additive dosage effect on a restricted number of target genes
[275]. The data from this study suggest the latter, since they are less tissue-specific than
other families and many predicted target genes are shared among the paralogues.

As for the biological role of the mir-2284/mir-2285 family miRNAs, in cattle, they are
expressed in immune-relevant tissues [278], and show their highest expression in lymph
nodes [277]. Our sheep dataset also follows this trend, as they are highly expressed in
PBMCs and lymph nodes. Nevertheless, besides the predicted targeting of immune re-
sponse and inflammation associated genes, their predicted target genes were also related
to hormone regulation and female sex cycle. The main target of this miRNA family was
predicted to be AP3S1, which encodes a subunit of the AP3 adaptor complex, involved in
intracellular vesicle trafficking. Not only AP3 is involved in the inflammatory response
[279–281], but also, mice lacking AP3 show dysregulated insulin and other hormone se-
cretion [282]. The specific subunit encoded by AP3S1 seems to play a role in the insulin
receptor signalling [283] and variants within AP3S1 have been associated with type 2 dia-
betes in a Chinese population [284]. Considering these results, because vesicle trafficking
is important for both, immune cell function and hormone regulation and evolutionary
innovations have been important for the development of the unique ruminant digestive
system and metabolism [123, 285, 286], mir-2284/mir-2285 family miRNAs could have
evolved as an adaptation to regulate these processes. The exact phylogenetic origin and
functional roles of this family remain to be studied.

In this work, we have created an expression atlas of sheep miRNAs by the integration
of several small RNA sequencing experiments, including hundreds of previously unan-
notated and uncharacterized miRNAs. Our analyses support the high conservation of
many miRNAs, but also highlight the potential of clade-specific innovations for ruminant
evolution, such as the ruminant-specific family of mir-2284/mir-2285. The dataset itself
and the analyses regarding expression distribution and specificity of miRNAs should be
useful for the field of sheep genomic and veterinary research, as it provides sheep-specific
information about the expression of any miRNA in 21 tissues.
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Chapter 5

Analysis of lncRNAs to evaluate the
effect of aluminium hydroxide in

ovine encephalon

This chapter is based on the following publication:

Varela-Martínez, E.*, Bilbao-Arribas, M.*, Abendaño, N., Asín, J., Pérez, M., de An-
drés, D., Luján, L. and Jugo, BM. Whole transcriptome approach to evaluate the effect of
aluminium hydroxide in ovine encephalon. Sci Rep 10, 15240 (2020)
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5.1

Background

Since the 1920’s, when aluminium (Al) was discovered to enhance immune response
providing more effective protection [287] vaccines have been complemented with adju-
vants. Because of the effectiveness of aluminium adjuvants at enhancing humoral re-
sponses, their good tolerance without causing fever and with the longest safety record
among used adjuvants [288] aluminium salts are preferably used in both animal and
human vaccines. Nevertheless, the mechanism of enhancement of immune response by
adjuvants has not been thoroughly analyzed and its importance has been underestimated
for a long time [289].

The aluminium oxyhydroxide based Alhydrogel is one of the most common
aluminium-based adjuvants used in clinically authorized vaccines. The potential effect
of this kind of compounds on the nervous system has been tested mainly in animal
models such as mouse. In CD1 mice, with a dose of 100 µg Al/kg, subcutaneously
inoculated Alhydrogel adjuvant induced cognitive alterations associated with death of
motor neurons and an enormous increase (350%) of reactive astrocytic cells in an inflam-
matory process[290]. Moreover, with a dose of 300 µg Al/kg, microglial and astroglial
reactions were detected in the spinal cord of the same mice type, and altered motor
and cognitive functions were observed [291]. In an immunization experiment in mice,
after the inoculation of oxyhydroxide particles fluorescently labelled, an average of 15
solid aluminium particles were detected in the mice brain at 21 days postimmunization.
In vitro studies performed in parallel confirmed the toxicity of aluminium adjuvant to
neuronal cell cultures [292].

Very few studies have analysed the Al effect in animal nervous system by RNA-seq
technology. In a recent work, Xu et al. [293] identified by means of RNA-seq 96 up-
regulated and 652 downregulated mRNAs, and 37 dysregulated long non-coding RNAs
(lncRNAs) in the hippocampus of Al treated rats. The main functions of dysregulated
genes, revealed by Gene Ontology analysis, were related with glial cell differentiation,
neural transmission and vesicle trafficking. Moreover, the results of this study suggested
that glial cell-related genes had relevant effects in the mechanisms associated with Al
neurotoxicity and that aberrant mRNAs and lncRNAs were involved in the response to
Al in the analysed tissue.

Our group has characterized the effect of Al hydroxide adjuvant and its influence on
the immune response to vaccination in a long term experimental design, using sheep as a
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model, based in total RNA and microRNAs sequencing in peripheral blood mononuclear
cells (PBMCs) [235]. With the main objective of deciphering the molecular signature acti-
vated, two different treatments were applied to lambs: commercial vaccines including Al
hydroxide or Alhydrogel (aluminium hydroxide gel suspension) only in an equivalent
dose. In animals of both treatments the NF-kB signalling pathway was enriched, and
at the end of the experiment a downregulation of cytokines and cytokine receptors was
detected in the adjuvant inoculated animals in relation to the vaccinated animals. In the
adjuvanted group, differential expression of six miRNAs was also detected. Thus, alu-
minium could induce endogenous danger signals with an effect in the stimulation of the
immune system.

Long non-coding RNAs are non-coding RNAs longer than 200 nucleotides and of-
ten transcribed. They usually do not code for proteins but their spatiotemporal-specific
expression patterns indicate their diversity in functions and complexity in mechanisms
[294]. They are implicated in neural function and maintenance, and many neurodegener-
ative diseases such as Alzheimer’s disease (AD) have been linked with aberrant lncRNAs
[295]. They have been also associated with chemical carcinogenicity and metal toxicity,
and the relationship of some lncRNA and cadmium for example, has been reported [296].

Thus, the main objective of this study was to identify the molecular signatures acti-
vated by vaccines and adjuvants in the form of Al hydroxide in sheep encephalon, in the
same group of animals as PCGs and miRNAs were analysed, by combining the molecular
information provided by RNA sequencing of mRNAs and lncRNAs.

5.2

Methods

5.2.1. Animals

The animals studied in this work were previously analysed for a different tissue (PBMCs)
[235]. Briefly, twenty-one Rasa Aragonesa purebred lambs were selected from a single
pedigree flock of certified good health at three months of age and did not undergo any
vaccination before the experiment. The flock analysed in this study was established at
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the experimental farm of the University of Zaragoza, with ideal controlled conditions of
housing, management and diet. The experiment started after an acclimatization phase
of two months, when the animals were five months old. For the purpose of the present
work, they were randomly distributed in different treatment groups, n=7 each. Each
treatment group was kept isolated from the others in three adjacent identical home pens
with the same conditions of housing, diet and management across all the study. Each
group received a parallel subcutaneous treatment with either commercial vaccines con-
taining Al hydroxide (Al(OH3)3) as adjuvant (Group Vac), Al hydroxide only (Group
Adj; Alhydrogel®, CZ Veterinaria, Spain) or PBS (Group Control). Nine different vac-
cines were used and a total of 19 inoculations were applied to each animal throughout 16
different inoculation dates, thus entailing a total amount of 81.29 mg of Al per animal in
Vac and Adj groups (Table S1). The complete study lasted 475 days, from February 2015
to June 2016. Twelve animals were included for the RNA-seq analysis, 4 of each treat-
ment group at the end of the experimetn (Figure S1). For the validation of the sequencing
data 9 different animals were included, 3 of each treatment group (Table 5).

5.2.2. Tissue collection and RNA extraction

Tissues for pathologic studies were collected at necropsy. Samples of 1 g of parietal lobe
from each sheep, with constant proportions of gray and white matter, were taken for
RNA extraction and preserved in RNAlater solution (Ambion, Austin, TX, USA) at -80
°C. The experimental procedure to obtain RNA was similar to the one previously per-
formed in the analysis of PBMCs [235]. Total RNA was isolated from encephalon tissue
using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) and PureLink RNA Mini Kit (In-
vitrogen). 60 mg tissue samples were homogenized in 1 ml of TRIzol Reagent using
Precellys®24 homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France) com-
bined with 1.4 and 2.8 mm ceramic beads mix lysing tubes (Bertin Technologies). RNA
isolation was performed following manufacturer instructions and RNA was suspended
in RNase free water and stored at -80 °C. RNA quantity and purity was assessed with
NanoDrop 1000 Spectrophotometer (Thermo Scientific Inc, Bremen, Germany). RNA in-
tegrity was assessed on a Agilent 2100 Bioanalyzer with Agilent RNA 6000 Nano chips
(Agilent Technologies, Santa Clara, CA, USA), which estimates the 28S/18S (ribosomic
RNAs) ratio and the RNA integrity number (RIN value). The samples presented an av-

Table 5: Samples used in RNA-seq and RT-qPCR study.

Treatment RNA-seq RT-qPCR

Aluminum 114-E, 115-E, 116-E, 117-E 111-E, 112-E, 113-E

Vaccine 121-E, 122-E, 124-E, 126-E 123-E, 125-E, 127-E

Control 131-E, 135-E, 136-E, 137-E 132-E, 133-E, 134-E
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erage RIN value of 8.06 and a 260/280 ratio > 1.7.

5.2.3. RNA sequencing

The TruSeq Stranded Total RNA kit with Ribo-Zero (Illumina, San Diego, CA, USA)
and the TruSeq Small RNA library prep kit (Illumina) were used for Total RNA-seq and
miRNA-seq, respectively. Total RNA libraries were sequenced on a HiSeq2000 with a
mean sequencing depth of 75 million reads (75 bp paired-end reads) at CNAG (Cen-
tro Nacional de Análisis Genómico, Barcelona, Spain), while miRNA libraries were se-
quenced on a HiSeq2500 with a mean sequencing depth of 19 million reads (50 bp single-
end reads) at CRG (Centro de Regulación Genómica, Barcelona, Spain). The samples
used for sequencing and qPCR can be seen in Table 5.

5.2.4. Total RNA expression analysis

The bioinformatics procedure to obtain the expression matrix was similar to the one pre-
viously described in the analysis of PBMCs [235]. Briefly, after quality filtering and trim-
ming, the reads were aligned with the STAR algorithm [v2.5.4a] [297] to the Ovis aries
genome build Oar3.1 [298]. For each library, the uniquely aligned fragments were as-
signed to annotated genes in a strand specific manner with featureCounts [v1.6.0] [299].
Apart from annotated genes, one of the interests of this work is to find new lncRNAs and
study their function in sheep brain. For that purpose, an additional step after mapping
was necessary. The StringTie [v1.3.3b] [81] transcriptome assembler was used to recon-
struct the transcriptome from the previous mapping. From this assembly, only candidate
lncRNAs were selected (the selection process and analysis is explained below) and their
counts were added to the count matrix of annotated genes.

The same sample (116-E) was treated as outlier and was filtered out from the anal-
ysis. Prior to the differential expression, the SVA package [v3.26.0] [300] was applied
to remove unwanted variation and the obtained surrogate variables were incorporated
into the testing model. A PCA was obtained with the corrected data (see Supplemen-
tary Fig. S1A in published article [234]). In this PCA the samples grouped according to
treatment condition. The differential expression analysis was performed using DESeq2
[v1.18.1] [113] with the following variables in the model: treatment (Control, complete
vaccine [Vac] or adjuvant only [Adj]) and SVA covariates (surrogate variables calculated
by sva). Three different comparisons were made (Adj vs. Control, Vac vs. Control and
Adj vs. Vac) in which differentially expressed genes (DEGs) were selected as those with
an adjusted p-value (with the Benjamini Hochberg method) threshold of < 0.05 and a
fold change > 1.5 or < 0.667. Then, gene enrichment analyses were conducted using the
GO database in PANTHER [v12.0] [301] and the KEGG database in DAVID [v6.8] [302],
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considering enriched terms as those with an adjusted p-value threshold of < 0.05.

5.2.5. Weighted gene co-expression network analysis

A weighted gene co-expression network analysis was performed using the WGCNA
[v1.63] [303] R package. Briefly, the similarity matrix was constructed from the normal-
ized data using absolute values of the biweight midcorrelation, chosen for being more
robust against outliers. Then, the adjacency matrix was defined by raising the similarity
matrix to a power β. The parameter β was selected based on the minimum value re-
quired to get a scale-free topology network (R2>0.8), in our data being β=28. Once the
network was constructed, module (clusters of densely interconnected genes) detection
was the next step, setting a minimum module size of 30 genes. Finally, modules with
similar expression profiles were merged based on a height cut-off threshold of 0.3.

Next, we sought modules with strong correlations with the treatment groups. For
that purpose, the treatment variable was dichotomized in all possible combinations (one
group against the other two). For each of the identified modules, eigengene values (the
first principal component of each module) were generated and were used as represen-
tation of the weighted average of the gene expression profile in the modules. Pearson
correlations and their associated p-values were generated for all pairwise comparisons of
the module eigengene expression values and the treatment parameters. All the p-values
were used for estimation of the FDR (q-value) with the qvalue R package, selecting those
modules with a q-value threshold < 0.05.

Modules exhibiting high correlation with the treatment were further studied for en-
richment of GO terms and KEGG pathways, considering statistically significant those
with an adjusted p-value threshold of < 0.05. Apart from enrichment analysis, the hub
genes of each module were obtained. For that purpose, the module membership (MM)
and gene significance (GS) values were calculated. GS values are the Pearson correlations
between the single expression value of each gene and the treatment parameter, whilst
MM values are the Pearson correlations between the single expression value of each gene
and module eigengene values. We defined hub genes as those belonging to the ≥ 85th
percentile for both MM and GS in each module. Those genes are likely ‘key drivers’ and
might play important roles in the treatment.

5.2.6. Analysis of lncRNAs

gffcompare software was used to classify all sequenced transcripts based on their loca-
tion relative to the annotation and extract unknown intergenic transcripts (lincRNAs),
intronic lncRNAs and antisense lncRNAs. Multiexonic transcripts of less than 200 nu-
cleotides and single-exon transcripts of less than 2,000 nucleotides were filtered out. The
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coding potential of the remaining transcripts was assessed with three approaches. Cod-
ing Potential Calculator 2 (CPC2) is a machine learning based program with a species-
neutral model able to classify coding and non-coding sequences [304]. Coding-Potential
Assessment Tool (CPAT) is another machine learning based program that we trained
and selected the classification threshold following authors’ instructions using available
bovine coding and non-coding sequences [305]. HMMER 3.1b2 [306] was used to detect
Pfam protein domains in our potential lncRNAs, which were translated into the three
possible frames. Transcripts classified as non-coding by CPC2 and CPAT and without
protein domains detected were selected and treated as lncRNAs for their functional anal-
ysis. Besides, genes already annotated in sheep (Oar_v3.1) with “lincRNA” biotype were
also added. To evaluate the sequence conservation and to look for known homologues we
performed a Blast search with each lncRNA transcript to the entire RNAcentral database,
which has an up-to-date collection of non-coding RNA sequences [307].

For trans acting lncRNAs potential protein-interacting lncRNAs were predicted with
LncADeep tool [308] and sequences of proteins with at least evidence at transcript level or
from homology were downloaded from UniProt. For more confident results, interactions
were only predicted for proteins from genes in the same co-expression modules and a
probability of 0.9 was set as threshold.

5.3

Results

5.3.1. Statistics for RNA-seq data

The sequenced 12 RNA-seq libraries had an average depth of 74.1 million paired-end
reads. After adaptor and quality filtering, a mean of 68.8 million reads (92.80%) re-
mained for subsequent analyses. Those reads were aligned against the Ovis aries ref-
erence genome (Oar3.1), achieving the following results in average: 60.7 million read
pairs (88.33%) mapped uniquely to the reference, 5.9 million read pairs (8.54%) mapped
to multiple loci and 2.1 million read pairs (3.13%) not mapped to any loci. Only uniquely
mapped reads were used for subsequent analyses.
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5.3.2. Identification and classification of lncRNAs

Filtering steps to improve the reliability of unknown intergenic, intronic and antisense
transcripts as lncRNAs reduced the list of potential lncRNAs to 3,004. Despite their dif-
ferent approaches, the three methods for detecting coding sequences performed in con-
cordance, with CPAT and CPC2 giving more similar results (Figure 16a). They are evenly
distributed across all the chromosomes except for the X chromosome that harbours less
transcripts than expected for its length (Figure 16b). More than half of the transcripts are
longer than 5,000 nucleotides, many of the single-exon transcripts are between 2,000 and
4,999 nucleotides long and there are few transcripts with more than 3 exons (Figure 16c).
We classified all the transcripts into different categories based on their relative location
to their closest genes. Transcripts overlapping and in the same strand as known coding
genes were not considered. Most lncRNAs are located in intergenic regions and those
less than 5 kb apart from their neighbours are classified in their own category due to
potential regulatory relations (Figure 16d). Intronic lncRNAs showed better correlations,
in average, with their closest genes than other categories and the genes that harboured
these transcripts were enriched in several functions and pathways related to neuron ac-
tivity (Figure 17), while other lncRNA types did not show any overrepresented ontology
or pathway terms.

In relation to the conservation of detected lncRNAs in sheep, through Blast searches
against RNAcentral database, we found out that 144 unannotated transcripts (5%) had
significant matches with lncRNAs already annotated in other species. Among them, the
lncRNA TUNA was detected, which was differentially expressed between the adjuvant
group and the other two groups. This lncRNA has been found conserved in many ver-
tebrates like cattle (URS00008E3A0F) or human (URS000075CAB8). We also identified,
albeit with incomplete alignments, similar transcripts to other human lncRNAs such as
NORAD, HCG11 or COPG2IT1.

5.3.3. Analysis of differential expression of mRNAs and
lncRNAs

First, lowly expressed genes, defined as those with an expression lower than 1 CPM and
found in less than four individual libraries, were filtered out from the differential expres-
sion analysis. Thus, 16,369 genes remained for subsequent analysis, of which 14,387 were
annotated genes in Ensembl and 1,982 were candidate lncRNAs. One sample from the
adjuvant group was treated as an outlier and was extracted from the analysis.

In the Adj vs. Control comparison 63 DEGs were identified, including 33 genes, of
which 20 were up-regulated and 13 were down-regulated, and 30 new lncRNAs consist-
ing of 3 that were up-regulated and 27 down-regulated. In the Vac vs. Control compar-
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Figure 16: Summary statistics of the lncRNAs. (a) Venn diagram with the
coding-potential assessment results obtained with CPAT, CPC2 and HM-
MER. (b) Distribution of lncRNA transcripts through chromosomes. (c)
Relationship between length and exon number in the detected lncRNAs.
(d) Classification of detected candidate lncRNAs by relative location to
the closest annotated gene.

ison 13 DEGs were identified, including 6 genes, of which 2 were up-regulated and 4
were down-regulated, and 7 new lncRNAs consisting of 5 that were up-regulated and 2
down-regulated. Furthermore, in the Adj vs. Vac comparison 76 DEGs were identified,
including 45 genes, of which 33 were up-regulated and 12 were down-regulated, and 31
new lncRNAs consisting of 4 that were up-regulated and 27 down-regulated. A detailed
list of the DEGs can be seen as a heatmap (Figure 18a). In Supplementary Datasets S1 and
S2 it can be seen a detailed summary of the differential expression analysis for all genes
and lncRNAs that passed the filtering criteria (see published article [234]).

Within the DE-mRNAs are factors that are clearly related to neuronal development
(NID2, VIM, NTN1, SEMA3, EYA1, CDH19), brain transport and neurotransmission
(SLC13A3, SLC6A20, SLC6A12, MOCOS, TRPM4, KCNJ13, CUBN, MRASAL1), brain
injury (FN1, BHMT2, PATL2, GDF10, GSN, FGL2, OTOF, VCAM1, PROS1, COL4A5,
EFEMP1, NPFFR2, LAMA2, ADAM12, MYOF) and neurodegenerative diseases asso-
ciated with Al like AD (ND6, STOML2, MRC1, KDR, NEIL2), Parkinson Disease (PD)
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Figure 17: Pathway analysis of genes that harboured intronic lncRNAs.
The bubble plot shows in the Y-axis the enriched pathways, while in the
X-axis the rich ratio is represented (rich ratio = amount of genes in the
term/total amount of genes in the enriched term). Size and colour of the
bubble represents the number of genes in the GO term and enrichment
significance (FDR), respectively.

(ATP13A5, HIST1H1C) and Amyotrophic Lateral Sclerosis (ALS) (ANXA2) (Figure 18b).

5.3.4. Functional annotation and classification for RNA-
seq data

Functional characterization of the DE-mRNAs was performed with PANTHER to iden-
tify enriched GO terms in the three domains: Cellular Component (CC), Molecular Func-
tion (MF) and Biological Process (BP). In the Adj vs. Control comparison, 27 significantly
overrepresented GO terms (with an adjusted p-value < 0.05) were identified in total.
Among the top ranked Biological Processes were positive regulation of mitochondrial
DNA replication (GO:0090297), stress-induced mitochondrial fusion (GO:1990046), mito-
chondrial ATP synthesis coupled proton transport (GO:0042776), positive regulation of
cardiolipin metabolic process (GO:1900210), alpha-ketoglutarate transport (GO:0015742),
peptidyl-arginine methylation to symmetrical-dimethyl arginine (GO:0019918), positive
regulation of mitochondrial membrane potential (GO:0010918), mitochondrial protein
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Figure 18: Differential expression of coding and lncRNA genes. (a)
Heatmap depicting all the differentially expressed genes in Adj vs. Con-
trol, Vac vs. Control and Adj vs.Vac comparisons. (b) Radar plot with the
log2FC of overrepresented genes related to neuronal development, neu-
rotransmission and neurodegenerative diseases in Adj vs. Control (blue),
Vac vs. Control (red) and Adj vs.Vac (green) comparisons. (c) GO enrich-
ment term analysis of differentially expressed genes in the Adj vs. Control
and Adj vs. Vac comparisons. The bubble plot shows in the Y-axis the en-
riched GO terms, while in the X-axis the rich ratio is represented (rich ratio
= amount of differentially expressed genes in the term/all genes included
in the term). Size and colour of the bubble represent the number of dif-
ferentially expressed genes in the GO term and enrichment significance
(FDR), respectively.

processing (GO:0034982) and calcium ion transmembrane transport (GO:0070588) (Fig-
ure 18c).
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5.3.5. Results from the weighted gene co-expression net-
work analysis

Next, a gene co-expression network was constructed with WGCNA. Such networks pro-
vide a way to account for the coordinated expression among genes and discern possible
differences between individuals that may relate to differences in treatment group. A
total of 45 co-expressed gene modules were detected (Figure 19a, Figure 19b), module
size ranging from 37 to 2,724 genes. Each module was assigned a ‘colour name’. We
searched for significant correlations among module eigengenes and treatment parame-
ters. There were no co-expressed modules associated with the Control group. In contrast,
three modules showed strong correlations with Vac group and two with Adj group: the
mediumorchid4 module (189 genes, r=0.88, qvalue=0.01), the brown3 module (377 genes,
r=0.88, qvalue=0.01) and the palevioletred3 (275 genes, r=-0.95, qvalue=0.001) for Vac
group and the maroon module (1,325 genes, r=0.88, qvalue=0.01) and the burlywood1
module (228 genes, r=-0.83, qvalue=0.04) for Adj group (Figure 19c). Interestingly, the
maroon module included 36 DEGs, the remaining modules having an insignificant num-
ber of DEGs in comparison.

The obtained treatment associated modules were further studied for enrichment of
GO terms and KEGG pathways. Only the modules maroon and burlywood1 had sig-
nificant enrichments, while the others, probably due to the small number of annotated
genes, did not have significant enrichments. The maroon module, positively correlated
with the adjuvant samples, was enriched for some GO terms, among them regulation
of interleukin-1 beta production (GO:0032651), negative regulation of extrinsic apoptotic
signaling pathway (GO:2001237), negative regulation of canonical Wnt signaling path-
way (GO:0090090), positive regulation of immune system process (GO:0002684), and in-
flammasome complex (GO:0061702). A more detailed list of the enriched GO terms from
the Biological Process category for the maroon module can be seen as supplementary fig-
ure S3 (see published article [234]). In addition, only the maroon module was enriched
in KEGG pathways, mainly: ECM-receptor interaction (oas04512), amoebiasis (oas05146),
focal adhesion (oas04510), PI3K-Akt signaling pathway (oas04151), protein digestion and
absorption (oas04974) and NF-kappa B signaling pathway (oas04064).

Since hub genes are likely ‘key drivers’ of the co-expression modules, we checked
the treatment related modules. In Supplementary Table S1 there is a detailed list of the
hub genes in these modules (see published article [234]). To note the maroon module, in
which 17 of the hub genes are DEGs. Some of them, as previously detailed, had been
related with brain injury (GSN, LAMA2 and PROS1), neuronal development (NTN1
and NID2) and different diseases in brain (MRC1 and ANXA2). Apart from the dif-
ferentially expressed genes, there are other genes related to other functions such as in-
sulin signalling (INSR, IGFBP2 and IGF2BP2), blood brain barrier (ADGRA2 and NTN1),
ERK signalling (INSR, ITGA9, OSMR, COL18A1, LAMA2, BCL2L11, ADAM17, COL4A3,

103



CHAPTER 5. LNCRNAS IN OVINE ENCEPHALON DURING VACCINATION

Figure 19: Weighted gene expression co-variance network analysis
(WGCNA) summary. (a) Gene dendrogram obtained by average link-
age hierarchical clustering. The colour rows underneath the dendro-
gram shows the module assignment before (Dynamic Tree Cut) and af-
ter (Merged Dynamic) modules with similar expression profiles were
merged. (b) Hierarchical clustering of samples used in the analysis. (c)
Module-trait associations. Each row corresponds to a module eigengene,
while the columns to a trait. Each cell contains the corresponding corre-
lations and adjusted p-values. The table is color-coded based on the cor-
relation between the eigengene and corresponding trait. Only modules
associated with at least one trait are shown.

COL4A4, COL4A6, COL2A1 and BMP4) and calcium signalling (APOOL, HOMER3 and
TMBIM1). It seems that the maroon module is composed of genes essential for the correct
function of the brain.

We performed predictions based on proposed mechanisms of action for the DE lncR-
NAs in the co-expression modules. Trans-acting lncRNAs could act in many ways to epi-
genetically regulate expression of distant genes, for instance, by recruiting or acting as
scaffolds of proteins. 20,011 lncRNA-protein interactions were predicted in total, with an
average of 235 interactions per lncRNA transcript. Top scoring interactions were used to
build a network of lncRNA-protein interactions with proteins whose mRNA transcripts
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are correlated with DE lncRNAs (Figure 20). Among these interactions appeared all four
RNA-binding proteins of the ELAV/Hu family, mainly expressed in differentiated neu-
rons.

Figure 20: Interaction prediction of DE lncRNAs with correlated pro-
teins whose mRNA genes were in the same co-expression module as the
lncRNA. Interaction probability of more than 0.9 was chosen as threshold.

5.4

Discussion

In this work, the molecular signature activated in the encephalon of experimentally
treated sheep has been analysed for the first time. After being inoculated with either
Al hydroxide containing vaccines or an equivalent amount of Al hydroxide during 16
months, the differentially expressed mRNAs and lncRNAs were detected and function-
ally characterized. Previously, the transcriptome of PBMCs had been analysed at the
beginning and at the end of the experiment [235]. In this study, the same group of ani-
mals was used and their transcriptomes compared with those of control animals, which
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only received PBS as inoculum, at the end of the experiment. Three comparisons were
made with the transcriptomes: Adjuvant inoculated vs. controls, vaccinated vs. controls
and adjuvant inoculated vs. vaccinated animals.

Analysis of differential gene expression from RNA-seq data identified nearly 5 times
more differentially expressed genomic elements in the Adj vs control comparison than in
the Vac vs. Control comparison. A very similar number of genes and lncRNAs differen-
tially expressed was obtained in each comparison. The expression alteration of four genes
that were previously described in other studies related to several neurological disorders
were detected in this study, namely VCAM1, TRPM4, GDF10 and NTN1. The first three
were detected as significantly upregulated in the Adj-injected sheep, while the latter was
found to be upregulated in Adj vs Control and Adj vs. Vac comparisons. VCAM1 is a
cellular adhesion molecule involved in the migration of immune cells across blood–brain
barrier in inflammatory central nervous system diseases [309]. VCAM1 is also implicated
in neuronal apoptosis and may play a role in the development of rheumatoid arthritis
[310] and in the pathology of intracerebral haemorrhage (ICH) [311]. TRPM4 mediates
neuronal degeneration and has been related to various neurological disorders like exper-
imental autoimmune encephalomyelitis and MS [312]. Moreover, Li et al. [313] found
that GDF10 was induced in peri-infarct neurons in mice, non-human primates and hu-
mans. GDF10 is considered a stroke-induced signal that promotes axonal outgrowth and
enhanced functional recovery after stroke. Finally, another gene involved in blood–brain
barrier integrity, NTN1, was found to be upregulated in 2 comparisons. NTN1 protects
the central nervous system against inflammation.

In a recent study on aluminium accumulation in different tissues of sheep in the
same experiment by means of transversely heated graphite furnace atomic absorption
spectroscopy, most of the accumulation values were below 1 µg/g of aluminium in en-
cephalon. Moreover, Al content tended to be higher in the animals of the adjuvant group
compared with the control group, although without reaching statistical significance [314].
The deposits of aluminium, analysed by lumogallion technique, were cell associated and
sometimes closely related to vessels. In any case, the Al deposits observed in the en-
cephalon were lower in contrast with other tissues such as lumbar spinal cord. The lim-
ited quantity of aluminium that reached this tissue could explain the low number or
differentially expressed genes, comparing with other tissues such as PBMCs.

Functional characterization of the DE-mRNAs showed that there were no overrep-
resented GO terms in Vac vs. Control comparison. In contrast, 27 significantly over-
represented GO terms were identified in the Adj vs. Control comparison, most of them
related with the mitochondrial energy metabolism. As Aluminium is involved in the pro-
duction of reactive oxygen species (ROS), it may impair mitochondrial functions [315,
316]. Changes in mitochondrial functions produce oxidative stress, leading to DNA
damage and cell death. In addition, positive regulation of cardiolipin metabolic process
(GO:1900210) and alpha-ketoglutarate transport (GO:0015742) GO terms were enriched
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in the Adj vs. Control comparison. Interestingly, cardiolipin, a phospholipid located
mainly in the inner mitochondrial membrane, is associated with brain cell viability and
brain homeostasis [317]. Alpha-ketoglutarate is a source of glutamate, a neurotransmit-
ter that is involved in neurotoxicity[318] and the transport of calcium across the inner
mitochondrial membrane plays an important role in neuronal physiology and pathology
[319].

As far as lncRNAs expression is concerned, brain lncRNA expression is highly di-
verse, many lncRNA are brain-specific and some are associated with neural functions
and diseases [320]. More than 3,000 candidate lncRNAs were identified in this work.
Most of them presented characteristics previously described in sheep and other livestock
species — poor sequence conservation, fewer exons than coding genes, diverse lengths
and a majority of intergenic transcripts — even if they may vary depending on the classi-
fication methods [22, 137]. Among the few identified conserved lncRNAs, the DE TUNA,
downregulated in the adjuvant group, seems an interesting element. TUNA is required
for pluripotency and neural differentiation through interactions with RNA-binding pro-
teins in its conserved sequence [321]. It regulates NANOG and SOX2 transcription fac-
tors, and FGF4 growth factor, all of them necessary for neural differentiation.

Among the candidate lncRNAs, intronic lncRNAs showed higher correlations with
their closest gene and the genes that harboured intronic lncRNAs were enriched in synap-
tic processes. Lately, some intronic RNAs, named stable intronic sequence RNAs (sisR-
NAs) have been proposed as a new layer of gene regulation. They could regulate host
gene expression or act as molecular sponges for miRNAs [322]. Based on GO and KEGG
analysis, our data suggest that a number of intronic lncRNAs expressed in the brain may
be regulating genes that act in synapses and other signalling processes, similarly to what
has been proposed for brain circRNAs [323], which are also enriched in synaptic genes.

As previously described, a similar amount of DE coding genes and DE lncRNAs were
detected. This feature is a sign of the importance of non-coding RNA classes in brain de-
velopment, function and disease[324, 325]. Al adjuvant treatment altered the expression
of several lncRNAs, which, in turn, may alter the regulation of certain genes. Since lncR-
NAs have been implicated in neuronal functions in diverse ways [326], we can predict
potential mechanisms of action of lncRNAs. We used in silico predictors of lncRNA-
protein interactions for the trans interactions. The four members of RNA-binding pro-
teins ELAV/Hu that are mainly expressed in differentiated neurons are in the top predic-
tions. ELAVL4, for instance, interacts with many mRNAs altering translation efficiency
and stability, and is related to neuronal differentiation, self-renewal and plasticity [327].
Their activity could be altered by competing RNAs (ceRNAs) like other mRNAs or lncR-
NAs [328]. In fact, recent studies show that ELAVL1 interacts with several lncRNAs in
mice and could have a role in neural stem cell differentiation [329].

A co-expression analysis was also performed for mRNAs and lncRNAs with WGCNA
software, and 45 different modules were obtained. Interestingly, 5 of them correlated
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with different treatments, that is, 3 modules correlated with Vaccinated group (mediu-
morchid4, brown3 and palevioletred3) and 2 with Adjuvant group (maroon and burly-
wood1). Among them, the maroon module contained 36 DEGs and showed significant
enrichments in specific KEGG pathways. Xu et al. [293] also found that ECM-receptor in-
teraction, protein digestion and absorption, focal adhesion and PI3K-Akt signaling path-
way were significantly enriched in the hippocampus of Al-treated rats. Among these
pathways, the PI3K-Akt signaling pathway is expressed during central nervous system
development [330] and it is well known that this pathway is particularly important for
mediating neuronal survival, differentiation and metabolism [331]. In addition, focal
adhesion and ECM-receptor interaction signalling are known to be involved in the reg-
ulation of synaptic plasticity [293, 332] and NF-κB pathway plays a crucial role on neu-
rogenesis, cellular responses to neurological injury and neuroinflammation [333, 334].
Currently, there are few reports regarding the role that these pathways play in the neuro-
toxicity caused by aluminium.

Al hydroxide alone altered the expression of different mRNAs and lncRNAs impor-
tant for neuronal cell survival, mitochondrial energy metabolism, metal ion balance and
others associated with neurological disorders. This work is based on a long term ex-
periment using sheep as a model. Although a considerable amount of aluminium was
inoculated in a relative short period of time, the fact that certain Al salts are able to impair
gene expression in a way that suggests neurotoxicity in this model should be taken into
account for the production of safer vaccines.
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Identification of sheep lncRNAs
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Jugo, BM. Identification of sheep lncRNAs related to the immune response to vaccines
and aluminium adjuvants. BMC Genomics 22, 770 (2021)
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6.1

Background

Aluminium-containing adjuvants have been used for nearly a century now both in
livestock and in humans since their discovery in the early 20th century [335]. Aluminium
salts such as aluminium hydroxide or aluminium phosphate are the most common com-
pounds used as adjuvants to increase the immunogenicity of vaccines. Despite their good
safety record, the mechanism of action of these adjuvants has not been fully characterised
[336]. Current hypotheses include the activation of the NLRP3 inflammasome, release of
DNA and uric acid danger signals, activation of the Syk-PI3K pathway and others [337],
but aluminium adjuvants will most likely exert their function by multiple of these and
more factors. An analysis of gene expression and proteome of Al(OH)3 treated mono-
cytes revealed two new pathways activated by the adjuvant – IFNβ signalling and HLA
class I antigen processing and presentation – and signatures of both Th1 and Th2 immune
response [338].

Systems vaccinology approaches, thus application of systems biology during the de-
velopment of vaccines, can be used to study the mechanism of action of adjuvants, the
immune responses induced by them or, more practically, to improve the quality of vac-
cines [339]. Transcriptional profiles of tissues in vivo provide valuable information on the
behaviour of genes after exposure to vaccines or adjuvants, including the study of non-
coding transcripts, which are becoming more relevant in immunology. Recent studies
have shown that lncRNAs in blood cells participate in the immune response to vaccines
since the expression of several long non coding RNAs (lncRNAs) change after vaccina-
tion and correlate to antibody production [340]. In the context of sheep research, studies
profiling the transcriptomic response to vaccines are scarce [341, 342], with almost none
of them focusing on lncRNAs or vaccine adjuvants [234]. In human, transcriptomic stud-
ies have been used for the dissection of adjuvant mechanism of action [343, 344], and
only one murine study analysed the lncRNAs induced by aluminium salts [345].

Long non-coding RNAs, defined as transcripts longer than 200 nucleotides that lack
protein-coding capability and are consistently transcribed, show spatiotemporal-specific
expression patterns that highlight the diverse processes in which they are involved [346].
In immune cells lncRNAs are expressed in a very cell-specific and dynamic way, even
within lineages of the same cell types [347–349] and this cell-type specificity seems to be
conserved among species [50]. Because of this, it is becoming apparent that lncRNAs
are involved in immune system cell gene expression regulation, which should be finely
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regulated for the generation of a correct immunity and to avoid autoimmune responses.

Thousands of lncRNAs that may have important roles in immune processes are being
described every year, but most of them remain functionally uncharacterised, especially
in particular in non-human species. Many of them might simply be transcriptional noise,
but several other seem to be functional [350]. In a recent collaborative project, more than
the 25% of studied lncRNAs were found to affect the molecular phenotype of human
fibroblasts [63]. LncRNAs do not have a single molecular mechanism. Many of the de-
scribed lncRNAs function by acting as scaffolds via interactions with DNA, RNA and
proteins [62]. Sometimes the act of transcription itself has a local functional output [57],
which could explain the low sequence conservation of some lncRNAs. The functions of
lncRNAs are generally classified as cis or trans, depending if the effect happens in a local
or distant genomic region [65].

In this work, we analysed RNA sequencing data from a previous study carried out in
our lab, in which it was characterised the effect of Al hydroxide adjuvant on the immune
response to vaccination was characterised in a long-term experiment using sheep as a
model [235] for the profiling of novel lncRNAs. We identified novel lncRNAs in sheep
peripheral blood mononuclear cells (PBMCs), a subset of blood cells consisting of mul-
tiple immune cells including lymphocytes, monocytes and dendritic cells that is broadly
used in infectious disease and vaccine research to get a global view of molecular and
cellular events during the development of an immune response [351]. We assessed their
expression kinetics along with protein coding genes (PCGs) and miRNAs by differential
expression analysis and detection of co-expressed gene modules.

6.2

Methods

6.2.1. Experiment design and sequencing data

Raw data from a previous RNA-seq experiment performed by our group was analysed
[235] for the detection of novel lncRNAs. All the animals used in this study were neutered
male lambs of the same age without any vaccination before the experiment. The informa-
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tion regarding experimental design was included in [235]. In short, 14 Rasa Aragonesa
lambs were divided in two treatment groups, one receiving commercial vaccines (Vac
group) and the other only Alhydrogel aluminium hydroxide (Adj group), and were kept
under controlled conditions for 475 days. During that time animals followed an inocula-
tion schedule with commercial vaccines or Alhydrogel® only (Table S1).

RNA was extracted from peripheral blood mononuclear cells (PBMCs) of three ani-
mals of each group at the beginning (t0) and at the end (tf) of the treatment (Figure S1). Ri-
bosomal RNA-depleted total RNA was sequenced in a HiSeq2000 platform with a mean
sequencing depth of 70 million and 2×75 nucleotide paired-end reads at CNAG (Centro
Nacional de Análisis Genómico, Barcelona, Spain). Alignment, mapping and transcrip-
tome assembly

Quality filtering, alignment and count estimates of annotated genes was made as pre-
viously [235] and using the same parameters. In short, adaptor sequence removal and
quality filtering was performed with Trimmomatic v0.36 [237], reads were mapped to
the sheep genome assembly Oar_v3.1 with STAR v2.5.2b [297] and quantification of the
reference transcriptome was performed with featureCounts v1.5.0-p1 [299]. For the de-
tection of non-annotated transcripts, like most lncRNAs, it is necessary to reconstruct
the transcriptome. StringTie [81] assembler was run on each sample with the reference
annotation from Ensembl 95 (Oar_v3.1) and, in order to obtain a non-redundant set of
transcripts, the –merge option was applied afterwards. Then, StringTie was once again
applied on each sample, but with the new GTF transcript file obtained in the previous
step in order to estimate transcript abundances.

6.2.2. Identification of candidate lncRNAs

GffCompare [352] software was used to classify all transcripts based on their location
relative to the reference annotation. Potential lncRNAs were selected among those tran-
scripts classified as unknown intergenic (u), fully contained within a reference intron
(i) and in the opposite strand of a reference gene (x), since there is not enough evi-
dence for other overlapping transcripts, which could arise due to errors or background
noise. Potential lncRNAs were filtered by length and coding potential. First, multiex-
onic transcripts of less than 200 nucleotides and single-exon transcripts of less than 2000
nucleotides were filtered out. Secondly, three approaches were followed to assess the ca-
pability of the transcripts to code for proteins: Coding Potential Calculator 2 (CPC2) is
a machine learning based program with a species-neutral model able to classify coding
and non-coding sequences [304]. Coding-Potential Assessment Tool (CPAT) is another
machine learning based program that we trained and selected the classification threshold
following authors’ instructions using available bovine coding and non-coding sequences
[305]. HMMER 3.1b2 [306] was used to detect Pfam protein domains in our potential
lncRNAs, which were translated into the three possible frames. Transcripts classified as
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non-coding by CPC2 and CPAT and without protein domains detected by HMMER in
any frame were selected as lncRNAs.

Each of the novel lncRNAs was classified based on its position relative to its closest
gene. For parsing and classification we used custom Python scripts, including the BED-
Tools python implementation to get the closest genes (https://github.com/daler/pybedtools).
Transcription start sites (TSSs) were defined as the start or stop nucleotides, depend-
ing on strandness. Seven categories or classes were defined: (1) antisense, for those
transcripts overlapping a gene in the opposite strand; (2) intronic, for transcripts fully
contained within an intron; (3) intergenic, for lncRNAs at least 5 kb away from any
known gene; (4) divergent, with TSSs within 5 kb and in the opposite strand; (5)
convergent, with transcription stops within 5 kb and in the opposite strand; (6) sense
upstream, located less than 5 kb upstream of a gene and in the same strand; and (7) sense
downstream, located less than 5 kb downstream of a gene and in the same strand.

6.2.3. Sequence and synteny conservation

In order to find sequence level conservation of candidate lncRNAs, standalone Blast
searches against the lncRNAs annotated in Ensembl Release 101 of four species: goat,
cattle, pig and human. We libraries with lncRNA cDNA sequences for each species. We
also downloaded cattle transcript sequences from NONCODE. Accounting for the low
sequence conservation expected in lncRNAs, the threshold for identity was set to 50, the
minimum length of the query sequence to half of the target’s length, E-value of 1×10-3
and query coverage of 50%.

Synteny conservation, that is, the preservation of co-localisation of genes between
different species, has been proposed as a way to deal with the low sequence conservation
in lncRNAs. We downloaded from Ensembl BioMart (release 101) a custom dataset of
all sheep (Oar v3.1) PCGs and their Ensembl-defined orthologues for goat (ARS1), cattle
(ARS-UCD1.2), pig (Sscrofa11.1) and human (GRCh38). LncRNA annotations and cDNA
sequences were also downloaded from Ensembl. Then, using a custom python script, we
got the two upstream and downstream flanking orthologues for each lncRNA in the three
species, which had to be located no more than 500 kb apart from it. Each sheep lncRNA
was compared with all other lncRNAs. The minimum number of shared orthologues was
set to two, these being the first flanking genes, and each pair of lncRNAs was scored as
in the Ensembl Gene Order Conservation score. If the lncRNA was conserved in terms
of synteny, an alignment was done between the novel sheep lncRNA transcript and the
longest transcript of the other species’ gene with the Needleman-Wunsch global pairwise
alignment from EMBOSS and the longest stretch of consecutive identical nucleotides in
the alignment was calculated. It is thought that even if complete sequence conservation
is not the most common in lncRNAs, small functional sequences could be conserved. The
analysis was also performed with the set of cattle lncRNAs in NONCODE.
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6.2.4. Differential expression

The gene level expression matrix was built by keeping only the raw counts of novel lncR-
NAs obtained from StringTie and the count estimates of annotated genes. Before dif-
ferential expression, SVA package [v3.26.0] [300] was applied to account for a known
batch effect observed in the PCA analysis. After normalisation and removing of lowly
expressed genes, three packages were used for differential expression: DESeq2 [113],
limma [353] and edgeR [112]. Testing design included treatment, time, animal and SVA
covariates, and differences were tested for the interaction of time and treatment. Thus,
comparisons were made between the time points in both treatments (Vac tf vs. Vac t0 and
Adj Tf vs. Adj t0) and between the treatments at the end of the experiment (Adj Tf vs.
Vac Tf). The differentially expressed genes (DEGs) were selected from the intersection of
the three tools of those genes with an adjusted p-value (using the Benjamini-Hochberg
method) of < 0.05 and a log2 fold change (log2FC) value of > 1.

6.2.5. Gene co-expression analysis

A weighted gene co-expression network analysis was performed using the WGCNA
[v1.63] R package [303]. The similarity matrix was constructed from normalised expres-
sion data using the biweight midcorrelation, a correlation more robust against outliers.
Next, the adjacency matrix was defined by raising the similarity matrix to a power β=18,
the minimum value required to get a scale-free topology network in our data. Modules,
clusters of interconnected genes, were defined by performing a hierarchical clustering on
the topological overlap measure. The minimum module size was set to 30 and modules
with similar expression profiles were merged.

Once modules were defined, we looked for correlations with the treatment groups
by dichotomising the groups in different combinations: samples at the beginning against
samples at the end of the experiment (Treat variable), vaccine samples at the end against
all other samples (TreatVac) and adjuvant samples at the end against all other samples
(TreatAdj). For that purpose, Pearson correlations were generated for all pairwise com-
parisons of the module eigengene expression values and the treatment parameter. The
eigengene is used to summarise each module with its first principal component. p-values
were corrected by FDR (q-value) estimates and modules related to a variable were se-
lected as those with a q-value < 0.05.

Every module that exhibited high correlation with a treatment or harboured many
candidate lncRNAs was tested for enrichment of GO terms and KEGG pathways with
gProfiler [245]. The list of all expressed genes was used as the statistical domain scope
for the test and the significance threshold was set to 0.05 Benjamini-Hochberg FDR. Gene
ontology term networks were created with the EnrichmentMap plugin workflow [354]
for Cytoscape v3.7.1 [199] using enrichment results from gProfiler, and clusters of terms
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were formed by semantic similarity. Apart from enrichment analysis, the hub genes of
each module were obtained by calculating the module membership (MM) and gene sig-
nificance (GS) values according to WGCNA. We defined hub genes as those belonging
to the ≥ 85th percentile for both MM and GS in each module. Those genes, including
lncRNAs, are likely key drivers of expression and can give an idea about the functions or
pathways of candidate lncRNAs in those modules.

6.2.6. Correlations of nearby lncRNA-PCG pairs

Candidate lncRNA-PCG pairs for cis-regulation were obtained from expression correla-
tions between closely located pairs. Candidate lncRNAs whose TSSs were located less
than 100 kb apart from the TSS of another annotated gene were selected, and the Spear-
man correlation was calculated between the expression profiles of both genes. Pairs with
an absolute correlation R higher than 0.8 and a FDR-corrected p-value lower than 0.05
were kept.

6.2.7. Identification of potential miRNA sponges

MicroRNA expression data from the same experiment was downloaded from GEO (se-
ries GSE113897). RIsearch2.1 [93], a large-scale RNA–RNA interaction prediction tool
suitable for full genome or transcriptome screening, was used to predict miRNA target
sites in all the expressed transcripts. The minimum seed size was set to 6, the seed had
to be within the first 8 bases of the miRNA and G-U wobbles were allowed, as proposed
by the authors. Hybridization threshold was set to -15 kcal/mol. For a transcript to be
classified as a potential miRNA sponge we set the minimum of 20 target sites of a single
miRNA and the quantity of target sites in each transcript was averaged for visualisation
at gene level. PCG, lncRNA and miRNA expression levels were normalised by TPM and
Pearson correlations were performed between miRNAs and their putative sponge genes.
Significant negative correlations were visualized with Cytoscape v3.7.1 [199].

6.2.8. RT-qPCR experiments

The relative quantification of 10 lncRNAs and 10 PCGs was performed by RT-qPCR us-
ing 16 different animals, 4 from each treatment group. We chose a heterogeneous set of
lncRNA-PCG pairs regarding DE status and relative position of the lncRNA. They were
required to be correlated at gene expression level and less than 5 kb apart. Primers were
designed using PrimerQuest and OligoAnalyzer tools of Integrated DNA Technologies
(IDT) (Additional file 5). GAPDH, ATPase, ACTB and G6PD were used as putative refer-
ence genes. RT-qPCR experiment was carried out using BioMark HD Nanofluidic qPCR
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System technology (Fluidigm) combined with a GE 48.48 Dynamic Array integrated flu-
idic circuit (IFC) and the Master Mix SsoFast EvaGreen Supermix with Low ROX (Bio-
Rad). RT-qPCR experiment was performed at the Gene Expression Unit of the Genomics
Facility, in the General Research Services (SGIKER) of the UPV/EHU.

Analysis of amplification data was carried out using the Fludigm Real-Time PCR
Analysis Software [4.1.3]. Amplification curves and melting curves were analysed to
discard low quality amplifications and Ct values were corrected for efficiency differences
with GenEx software of MultiD [5.4]. The stability of candidate reference genes was anal-
ysed with NormFinder and GeNorm, implemented in GenEx. G6PD and ACTB were the
most stable reference genes. Relative quantification for the correlations between lncRNAs
and PCGs were determined by the ∆Ct method and log2 fold changes for the validation
of differential expression of lncRNAs were calculated with the ∆∆Ct method. Normal
distribution was checked using the Shapiro-Wilk test, and because the null hypothesis
was rejected, Spearman’s rank correlation coefficient was used to assess the presence of
significant correlation and non-parametric tests for pairwise comparisons.

6.3

Results

6.3.1. Identification and classification of lncRNAs

Unknown intergenic, intronic and antisense transcripts were filtered by length and exon
count, reducing the list of potential lncRNAs from 10,340 to 4899. Transcripts were fur-
ther assessed for protein coding potential, reducing the list to 2284 transcripts. These
2284 lncRNA transcripts were defined as the novel set of lncRNAs. Despite their dif-
ferent approaches, CPAT, CPC2 and HMMER filtered the transcripts with high overlap,
with 72%, 56% and 68% of the predictions, respectively, included in the final set. Candi-
date lncRNAs were evenly distributed across chromosomes, with larger ones containing
more transcripts (Figure 21a). Due to the 2000 nucleotide length threshold for monoex-
onic transcripts, 2-exon transcripts were the most numerous (Figure 21c) and showed a
wider range of lengths than annotated genes (Figure 21d). Single-exon transcripts were
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mostly shorter than 5000 nucleotides while transcripts with more than 2 exons had di-
verse lengths. As for the classification of lncRNAs based on their relative location to their
closest genes, the intergenic class was the most numerous (38%), followed by antisense
(20%) and intronic (18%) transcripts (Figure 21b). Among those intergenic transcripts
very close to an annotated gene (distance < 5 kb), we found 112 (5%) divergent lncR-
NAs, which are interesting because they could share the promoter with its flanking gene.
PCGs were more highly expressed than lncRNAs, and mean expression levels of novel
lncRNAs and annotated lncRNAs were similar (Figure 21e). These results are in con-
cordance with some previous studies, even if due to a lack of a standardised workflow
different results are obtained depending on the analyses done and applied thresholds.

We compared our shortlisted lncRNAs in PBMCs with other works in sheep that also
identify novel lncRNAs by searching for transcripts that share a TSS, defined as the first
transcribed nucleotide, and that are transcribed in the same direction. In brain tissue
of animals from the same experiment [234] 315 transcripts (14%) shared a TSS. However,
examining other works with available annotation of new lncRNA, small numbers of tran-
scripts present in other tissues were found. Just 33 transcripts (1.44%) shared a TSS with
a lncRNA from a multi-tissue catalogue [22] and 56 (2.45%) with lncRNAs from pituitary
gland [156].

6.3.2. Conservation in terms of sequence and synteny

Evolutionary conservation of lncRNAs can be an indicator of function. In this way, hav-
ing orthologues strengthens the evidence on sequenced transcripts, even more if the
lncRNA has already been characterised in other species. As expected because of the na-
ture of lncRNAs, few sequences had matches with other species (Figure 21f). The highest
number of conserved sequences were in goat (6.67%), then cattle (4.28%), human (2.09%)
and pig (1.07%). The human conserved lncRNAs included several functionally char-
acterised lncRNAs such as CHASERR, CYTOR, CCDC26 or FTX. Just eight transcripts
(0.35%) had confident matches with cattle NONCODE sequences. Note that 185 anno-
tated sheep lncRNAs (9.96% of all annotated lncRNAs) were also detected above the
minimum expression threshold in PBMCs.

In terms of gene order, more transcripts appeared to be located in conserved regions
(Figure 21g), some even showing short alignments with annotated lncRNAs in the same
region. We could perform the synteny analysis with roughly half of the novel lncRNAs,
those surrounded with PCGs no more than 500 kb away. The 2.55% of novel sheep lncR-
NAs shared the same syntenic location with an annotated cattle lncRNA, and 2.19% with
goat lncRNAs, a number that was higher in human (11.36%). Both sequence and conser-
vation analyses are biased due to the vast quantity of lncRNAs annotated in the human
genome (17,959) comparing with other livestock species, whose lncRNA repertoire is not
fully annotated and also diverge in the quantity of lncRNA genes (1858 in sheep, 2705
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Figure 21: General characteristics of the novel lncRNAs. (a) LncRNA den-
sity per chromosome. (b) Classification of detected candidate lncRNAs
by relative location to the closest annotated gene. (c) Exon number dis-
tribution in novel lncRNAs and annotated genes. (d) Transcript length
distribution in novel and annotated genes. (e) Mean expression of protein
coding genes, annotated lncRNAs and novel lncRNAs. (f) Novel lncR-
NAs conserved at sequence level comparing with selected Ensembl anno-
tations. (g) Novel lncRNAs with conserved synteny in selected Ensembl
annotations

in goat, 1480 in cattle and 6790 in pig). Because of this, when performing the same anal-
ysis with the 22,227 cattle NONCODE lncRNAs 9.93% of novel lncRNAs show syntenic
conservation. Few of these lncRNAs with shared syntenic location showed short highly
conserved alignments.
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6.3.3. Expression analysis

In order to profile the expression of lncRNAs in the presence of aluminium adjuvants,
differential expression was tested between treatment groups. The analysis was made
with all annotated genes plus the newly identified candidate lncRNAs. In the same fash-
ion as annotated genes [23], there were less DE lncRNAs in the comparison between
both treatments at the end of the experiment than between each treatment at the start
and end of the experiment (Figure 22). 170 lncRNAs were differentially expressed in the
Adj-t0 vs. Adj-tf comparison (19 annotated and 151 candidate lncRNAs). 159 lncRNAs
were differentially expressed in the Vac-t0 vs. Vac-tf comparison (11 annotated and 148
candidate lncRNAs). 65 lncRNAs were differentially expressed in the Adj-tf vs. Vac-tf
comparison (4 annotated and 61 candidate lncRNAs). The expression divergence is clear
when comparing time-points, while treatment-wise changes are more subtle. We found
that five of the DE novel lncRNAs are conserved between sheep and human. The diver-
gent MSTRG.24,028 lncRNA is downregulated in the Adj-t0 vs. Adj-tf comparison and
is homologous to the human OTUD6B-AS1 lncRNA, which has been recently linked to
regulation of apoptosis [355].

Figure 22: Venn diagrams of differential expression of coding and lncRNA
genes. (a) Total differentially expressed genes. (b) Differentially expressed
novel lncRNA genes. Comparisons were made between time points in
vaccinated animals (Vac-tf vs. Vac-t0), between time points in adjuvant-
only animals (Adj-tf vs. Adj-t0) and between the treatments at the end of
the experiment (Adj-tf vs. Vac-tf)

A gene co-expression network was constructed with the same genes used for differ-
ential expression. This analysis provides valuable information about along which genes
are the candidate lncRNAs expressed, and in this way, predicting their putative func-
tions by guilt-by-association. Genes with similar expression patterns were clustered in
32 modules ranging from 39 to 1956 genes (Figure 23a). We searched for significant cor-
relations among module eigengenes, the principal component of the genes in the module
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that depicts its dominant trend, and treatment parameters. 15 modules were correlated
with at least one treatment: 5 modules with the adjuvant treatment, 5 modules with the
vaccine treatment and 7 modules with both treatments taken together as a single group
(Figure 23b).

Figure 23: WGCNA co-expression analysis results. (a) Gene dendrogram
obtained by average linkage hierarchical clustering. The colour bars show
the module assignment before and after modules with similar expression
profiles were merged. (b) Module-trait associations. Each row corre-
sponds to a module eigengene, while columns correspond to a trait (both
treatments together, vaccine and adjuvant-only). Only modules associ-
ated with at least one trait are shown. (c) Expression profiles of hub genes
of modules correlated with at least one trait and that are enriched in some
GO terms.

As for the module membership of candidate lncRNAs, most modules were made of
both PCGs and lncRNAs, although in differing proportions. The five modules with more
than 1000 genes had many co-expressed lncRNAs, while some small modules were only
composed of PCGs. Integrating DE and co-expression analysis, 17 modules had DE genes
within them, most of them belonging to the comparisons between time points.

Modules were characterized by gene enrichment analysis and showed involvement
in distinct biological processes (Additional file 4). Some modules were not enriched in
any term, mainly the smaller ones, and others were enriched in cell cycle functions or
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general metabolic functions. Two modules (coral1 and lightpink4) were clearly linked
to the immune response with functions related to cytokines, immune cell differentiation
and response to stress and external stimuli.

6.3.4. Treatment-correlated co-expression modules

Modules with significant correlations with a treatment variable were selected for fur-
ther analysis, since lncRNAs in those modules are probably responding to the vaccine or
adjuvants and many of them are differentially expressed. Modules whose eigengene is
correlated with the treatment variable should reveal information about the general effect
of aluminium on the immune response and modules whose eigengene is correlated with
one of the treatments should highlight the differences between them. The expression
profiles of the hub genes within each significantly correlated module show the trend of
those modules across treatment groups (Figure 23c).

Among the modules correlated with both treatments at the same time, the pink mod-
ule had the strongest correlation (9e-0.5 p value) and was enriched in DNA repair, methy-
lation and general metabolic processes. Coral1 module was enriched in diverse processes
such as immune response, T-helper cell functions (Th17 specifically), inflammation, cell
motility or proliferation; all of these in concordance with a general response of the im-
mune system. The yellowgreen module included genes related to the respiratory chain
and cell cycle. Lavenderblush3 is highly correlated with the treatment variable, indepen-
dent of its composition, and it is enriched in immune response activation, lymphocyte
activation, cell cycle and metabolic processes (Figure 24).

The most prominent module correlated with a specific treatment variable was
lightpink4, negatively correlated with the adjuvant treatment, suggesting a tendency
for lower expression in the adjuvant group (Figure 23c). It is enriched in responses to
external stimuli, cytokines and differentiation of various immune cells (Figure 24); and
its expression seems to be driven by many DE genes in the Adjuvant tf vs. Vaccine tf
comparison. Besides, this module includes marker genes of classical monocytes (CD14,
S100A12, S100A8) and non-classical monocytes (FCGR3A) [356], possibly indicating a
reduction in the monocyte lineage fraction of PBMCs in the Adjuvant tf group. S100A12
and S100A8 are known to be highly expressed in bone marrow-derived macrophages
of sheep and other mammals [357]. Other abundant genes in this module are those
involved in cytokine production and reception (e.g. IL6R, IL1R1, IL1R2, IRF1, PTGER4,
MYD88, IL17RC, OSM, IL15RA, IL4R, CXCR1, CSF2RB, CSF3R). The genes CXCR1,
CSF2RB and CSF3R are hub genes of this module.
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Figure 24: Networks of enriched GO biological process functions in two
trait-correlated modules: Lavenderblush3 and Lightpink4. Nodes repre-
sent GO biological process terms. Nodes are coloured by false discovery
rate (FDR) and their size represents the number of genes in the module
belonging to the term. Edge width represents the number of shared genes
between two terms.

6.3.5. Expression of nearby PCGs and lncRNAs

Correlated lncRNA-PCG pairs were identified as a way of inferring potential cis regu-
lation. In the RNA-seq dataset, 348 lncRNAs-PCG pairs showed correlations above the
applied threshold. Most of the involved lncRNAs were sense intronic, sense upstream
or sense downstream of their correlated gene, but there were 24 antisense lncRNAs, 9
divergent lncRNAs and 34 intergenic lncRNAs.

Relative expression levels of 10 pairs of correlated lncRNAs and PCGs were measured
by RT-qPCR in order to validate their coordinated expression. Six differentially expressed
lncRNAs and 4 non-differentially expressed lncRNAs were selected. Half of the se-
lected lncRNAs were classified as divergent (MSTRG.9006, ENSOARG00000025373,
MSTRG.17,627, MSTRG.23,098, ENSOARG00000025919), and there were two sense
(ENSOARG00000026290, MSTRG.16,981), two intergenic (ENSOARG00000025821,
ENASOARG00000026567) and one antisense (ENSOARG00000026120) lncRNAs. All
except for the antisense one were amplified, including those that are unannotated in
Ensembl and are predicted in this study. 7 out of 9 amplified lncRNAs (78%) showed
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significant correlations with their corresponding PCG (Figure 25).

Figure 25: Expression correlations between selected lncRNA and protein
coding gene (PCG) pairs assessed by RT-qPCR. Gene expression corre-
lations were performed with efficiency corrected ∆Ct values and Spear-
man’s rank correlation

Among the studied pairs, some are interesting due to their relationship with the
immune system: The gene ENSOARG00000006353, an orthologue of human and
murine OSM gene, encodes for a cytokine secreted by monocytes/macrophages and
T-lymphocytes, and is involved in haematopoiesis and inflammation [358]. It is diver-
gently located to the novel monoexonic MSTRG.9006 lncRNA and both of them are
differentially expressed in the vaccinated group. Another immune related gene, the
transcription factor FOXN2, is correlated with the lncRNA MSTRG.16,981 located sense
upstream of it and is differentially expressed in the adjuvant group. Besides, three novel
lncRNAs, which were not differentially expressed in the RNA-seq dataset, showed
robust correlations with coding genes ARID2, AKIRIN2 and DNAAF5 in a divergent
position.

6.3.6. Novel lncRNAs as miRNA sponges

Some lncRNAs could be acting as miRNA sponges due to their high quantity of predicted
miRNA binding sites. One hundred lncRNAs, 2 annotated lncRNAs and 69 PCGs had
more than 20 predicted target sites for at least one expressed miRNA. 22 miRNAs were
involved in those interactions. Assuming that miRNAs downregulate the expression of
their targets, we calculated the expression correlations between them. 16 novel lncRNAs
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and 26 PCGs showed significant negative correlations with a miRNA (Figure 26). The
miRNAs that target most lncRNAs are oar-let-7b and oar-miR-150. The highly expressed
let-7b was upregulated in the Adj-t0 vs. Adj-tf comparison [235]. The other miRNA,
oar-miR-150, was also one of the most expressed in the miRNA dataset of the same ex-
periment [235].

Figure 26: Network of miRNA sponge candidates. Significant negative
Pearson correlations between miRNAs and target genes are depicted as
edges. Size of target genes reflects the amount of target sites for a miRNA.
Inner colours represent TPM expression and edge colours Pearson corre-
lation strength (r).
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6.4

Discussion

Mining lncRNAs from RNA-seq data allows the detection of large amounts of tran-
scripts that could be classified as candidate lncRNAs. Although there was an overlap
between a priori transcriptionally different tissues such as brain [234] and PBMCs of the
same experimental animals, the identified lncRNAs were mostly tissue-specific, as few
of them were present in other studies in sheep The newly identified lncRNAs shared
similar features with those previously found in other mammal studies: lower expression
than PCGs, fewer exons, limited sequence conservation and a majority of intergenic tran-
scripts. For instance, using a multi-tissue expression dataset, 12,296 and 2657 lncRNAs
with intergenic location mainly were identified in sheep and goat [22]. In a developmen-
tal tissue dataset from seven species, mostly species-specific lncRNAs were found [47].
Other sheep works analysed lncRNAs within a specific functional RNA-seq dataset and
identify lncRNAs with similar characteristics [156, 157, 168, 173].

Apart from a set of highly conserved and functionally characterised lncRNAs [359],
lncRNAs show low sequence conservation. Hence, some may be functionless, function
by the act of transcription itself [57, 360, 361], like the bidirectionally transcribed class of
eRNAs [362], or have short functional elements that escape common conservation anal-
yses. Some of the highly conserved lncRNAs identified in this work have been experi-
mentally tested in humans. For instance, Chaserr (LINC01578), that negatively regulates
its adjacent gene CHD2, to tune its expression [363], and lnc-sox5, that promotes the ex-
pression of IDO1, which modulates T-cell behaviour [364].

A large fraction of annotated lncRNAs are divergent lncRNAs, originated upstream
of an specific gene and regulated by a bidirectional promoter so they often show expres-
sion correlations with their adjacent gene, which can imply a regulatory relationship [30,
33]. Based on this statement, the function of unknown lncRNAs may be inferred from
their relationship with adjacent genes. We found 112 lncRNAs which could be classified
as divergent in the RNA-seq dataset. Five divergent lncRNA-PCG pairs with significant
correlations were tested also by RT-qPCR. Among those pairs, the gene coding for the
OSM cytokine was correlated with a 3 kb long monoexonic lncRNA not annotated in
sheep. Both genes were upregulated in the vaccinated group of animals. Although pend-
ing of functional studies, this could be an example of a bidirectional promoter, known to
be stronger than regular promoters [34], that increases transcription of a PCG.

To predict functions of lncRNAs, prioritise candidates and discern their transcrip-
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tional regulatory programmes a coexpression analysis network was performed, assum-
ing that lncRNAs related to known genes are involved in the same processes or path-
ways. Thus, we hypothesise that differentially expressed lncRNAs co-expressed with
known immune genes are more likely to be involved in immune response functions,. The
gene set enrichments of co-expression modules responding to both treatments pointed
to aluminium-induced inflammation, while the modules responding only to vaccines
or aluminium adjuvants alone highlighted the effect of adding antigens to the adjuvant
preparation, as illustrated by an immune gene-rich module with several genes involved
in cytokine production and reception, and monocyte markers. This module included
many novel lncRNAs, including the one divergently located to the OSM cytokine gene.

Lastly, the data sets were analyzed to investigate the interaction between two regu-
latory elements, lncRNAs and miRNAs. The miRNAs that target most lncRNAs were
oar-let-7b and oar-miR-150. The highly expressed let-7b, being a regulator of innate im-
mune response genes and inflammation activation [365, 366] was upregulated in the ad-
juvant inoculated animals [235].The second miRNA, oar-miR-150, was also one of the
most expressed in the dataset [235]. It is thought to be important in the adaptive immune
response due to its high expression in lymphocytes and its upregulation after vaccination
[367, 368]. Thus, these lncRNAs could act as sponges by sequestrating miRNAs involved
both in the innate and adaptive immune responses.

Future work should focus on annotating non-coding genes in specific immune cell
types combining with functional experiments.

The lncRNA transcriptome of sheep PBMCs after multiple vaccination or adjuvant-
only inoculations was analysed. More than 2000 novel lncRNAs were found, a small
proportion of them being conserved across close species. Some of those lncRNAs could
be involved in the immune response to vaccination and could regulate nearby immune
genes although experimental work should be performed to confirm their potential reg-
ulatory functions. Moreover, both treatments induced lncRNA-containing co-expression
modules, highlighting their immune response signature. At last, some lncRNAs seem
to act as sponges for 2 miRNAs involved in innate and adaptive immune responses. In
this case, advances in systems vaccinology can shed light on the mechanism of action
of aluminium salt adjuvants, and help to understand the overall immune response to
vaccines.
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Chapter 7

Comprehensive analysis of ovine
transcriptomic data reveals novel long

non-coding RNAs related to the
immune response

This chapter is based on the following manuscript:

Bilbao-Arribas, M., and Jugo, BM. Comprehensive analysis of ovine transcriptomic
data reveals novel long non-coding RNAs related to the immune response.
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7.1

Background

Long non-coding RNAs (lncRNAs) are a heterogeneous class of genes that transcribe
transcripts longer than 200 nucleotides lacking protein-coding potential [18]. They are
consistently transcribed, show lower expression, have less exons, are more enriched in
the nucleus and vary in their epigenetic marks and splicing efficiency compared to pro-
tein coding genes (PCGs) [19, 21, 24]. They show spatiotemporal-specific expression and
epigenetic regulation, which highlights the diverse processes in which they are involved
[346, 369]. The expression of most lncRNAs varies greatly between individuals [21, 23].
In the immune system lncRNAs are expressed in a very cell-specific and dynamic way,
even within lineages of the same cell types [347–349] and this cell-type specificity seems
to be conserved among species [50]. Thus, lncRNAs emerge as potential regulators of
immune system cell function and gene expression regulation, which should be finely co-
ordinated for the generation of a correct immune response to external stimuli such as
pathogens or vaccines.

Next-generation sequencing has expanded the mammal transcriptome attributing
to thousands of poorly understood non-protein-coding transcripts the largest share of
genes. There are many lncRNAs that may be involved in immune processes, but most of
them remain functionally uncharacterised, especially in non-model species. Some lncR-
NAs might simply be transcriptional noise, but several others appear to be functional
[63, 350]. LncRNAs do not have a single molecular mechanism. They can regulate gene
expression through interactions with proteins, RNA or DNA and their functions can of-
ten be directed by their location, sequence or secondary structure [62]. Sometimes the act
of transcription itself has a local functional output, regardless of sequence, which could
explain their low sequence conservation [57, 62]. For instance, IFNG gene expression is
regulated by the gene locus of an antisense lncRNA, but not by its non-coding product
[60].

The lncRNA catalogues of livestock species remain under-annotated compared to the
mouse or human annotations [109, 120]. Publicly available gene annotations contain
more than ten thousand mouse and human lncRNA genes, while the sheep annotation
contains 2229 lncRNA genes in Ensembl v.105 and 4442 lncRNA genes in NCBI Release
104. There is limited genomic overlap between both sources, most likely reflecting the
highly specific expression of lncRNAs and the incompleteness of the current annotations
[126]. The annotation and functional characterisation of livestock lncRNAs is essential,
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since most trait-associated variants in livestock lie within non-coding genome regions
[126]. In sheep, lncRNAs have been profiled across a multi-tissue dataset [22], but there
are few functional studies investigating their involvement in the immune response and
those are difficult to compare due to differences in naming and data availability [182, 183,
370].

The exponential increase in RNA sequencing datasets in the last years offers a valu-
able opportunity for posing novel scientific questions or improving the statistical signif-
icance of the analyses in a cost-efficient manner [111]. This is specially suitable for the
profiling of lncRNAs, due to their highly specific expression [109] and for the profiling
of the gene expression signatures of immune responses [371]. There is a great interest in
gene expression meta-analysis methods [372, 373], which have been successfully applied
to profile the transcriptional signatures across respiratory viruses [374] or vaccines [375]
in human blood samples.

In this study, we take advantage of the increasing number of high-throughput func-
tional experiments deposited in public databases in order to uniformly analyse, profile
unannotated lncRNAs and integrate 422 publicly available ovine RNA-seq samples, hi-
stone modification CHIP-seq samples and CAGE-seq samples of blood cells, lymphoid
organs and other immune cells. We expand the lncRNA catalogue in sheep and identify
the common expression signature of protein coding genes and lncRNAs during the im-
mune response, evidencing the potential role of hundreds of lncRNA genes in immune
functions.

7.2

Methods

7.2.1. Data collection

We selected 929 RNA-seq sequencing runs belonging to 15 BioProjects from NCBI Se-
quence Read Archive (SRA), which were merged into 422 samples, by the following cri-
teria: Samples from an immune system tissue (blood, immune cells or lymphoid organs),
at least five samples from a single BioProject, pair-end sequenced using an Illumina plat-
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form and genome mapping rate above 60%. Sample metadata such as tissue type, age,
breed, sex, library type or experimental treatment was collected from NCBI databases
and published articles. Due to metadata ambiguity, the strandness of the samples was
assessed with Kallisto [376] prior to pipeline execution.

Most samples originated from functional experiments that studied the immune re-
sponse to vaccines or vaccine components (PRJEB26387, PRJNA454435, PRJNA559411),
helminth infections (PRJNA291172, PRJNA433706, PRJNA268183, PRJEB33476, PR-
JEB45790, PRJEB44063), bacterial infection (PRJEB15872) and pro-inflammatory gene
upregulation (PRJNA631066). Other transcriptomic studies were not related to the
immune response but were used to improve the novel lncRNA identification and as
unstimulated controls (PRJNA528905, PRJNA485657, PRJNA362606). Besides, we added
samples from the sheep expression atlas (PRJEB19199), including samples from bone
marrow derived macrophages stimulated with LPS. All samples were dichotomized
into two groups: samples from immune-stimulated animals and unstimulated or control
samples.

7.2.2. Transcriptome assembly and quantification

We downloaded and analysed the 422 RNA-seq samples with a uniform workflow us-
ing custom Snakemake v.6.15.1 [377] pipelines (Figure 27). 375 reverse stranded sam-
ples were used for transcriptome construction and novel lncRNA identification, while
all samples were used for quantification based on the new transcriptome. Sequenc-
ing runs were downloaded from NCBI SRA with the SRA Toolkit and were merged
into samples by their experiment ID. Adapter trimming and quality filtering was per-
formed with cutadapt v.3.5 [378]. Reads were aligned to the sheep reference genome
(Oar_rambouillet_v1.0) with STAR v.2.7.3a [297] guided by the Ensembl (v102) annota-
tion. StringTie2 v.2.0 [379] transcriptome assembler was used to reconstruct the transcrip-
tome of each individual sample guided by the Ensembl (v102) annotation and with the
–rf option. Then StringTie2 was applied again with the –merge option using all the tran-
scriptomes in order to obtain a non-redundant transcriptome that is comparable between
samples.

Quantification of gene expression was performed at transcript level with Kallisto
v.0.48 [376] pseudoaligning the trimmed reads of all samples to the newly generated tran-
scriptome, generated with GffRead v.0.11.7 [352]. The –rf-stranded option was used with
the 375 stranded samples.
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Figure 27: Bioinformatic workflow of the study. The workflow followed
in this study can be divided into three sections. (A) First, sequencing data
retrieval, preprocessing and mapping to the sheep genome. (B) Second,
identification of unannotated lncRNA transcripts and evidence of expres-
sion. (C) Third, functional analyses between unstimulated samples and
samples with an immune stimulation.

7.2.3. LncRNA identification

Potential novel lncRNAs were defined as unannotated transcripts that were located either
in an intergenic region, in an intron of a known gene or in the antisense strand of a known
gene. GffCompare v.0.11.2 [352] was used to compare the newly assembled transcriptome
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with the reference annotation and extract these transcripts. Single-exon transcripts longer
than 500 nucleotides and shorter than 10kb, and multiexonic transcripts longer than 200
nucleotides and shorter than 50kb were kept. The assessment of the coding potential
of the candidate transcripts was done with three different tools. The coding potential
prediction module of FEELnc [380], based on a Random Forest classifier, was trained
with sequences of bovine coding genes and lncRNAs from NONCODE database [118].
Coding-Potential Assessment Tool 3.0.2 (CPAT) [305] is a logistic regression-based tool
that we trained and selected the classification threshold following authors’ instructions
using the same bovine coding and non-coding sequences. HMMER 3.3.2 [306] was used
to detect Pfam protein domains in our potential lncRNAs, which were translated into
the three possible frames. Transcripts classified as non-coding by FEELnc and CPAT
and without protein domains detected by HMMER were kept. Transcripts classified by
CuffCompare as a novel isoform of a known gene were also kept, as transcripts that
had passed the coding potential tests could be legit non-coding isoforms. The selected
transcripts were defined as the final set of novel lncRNAs.

Novel lncRNA transcripts were classified with a custom Python script (see Data
Availability section) based on their position relative to their closest gene. Transcription
start sites (TSSs) were defined as the start or stop nucleotides, depending on strandness.
Seven classes were defined: 1) antisense, for those transcripts overlapping a gene in the
opposite strand; 2) sense intronic or antisense intronic, for transcripts fully contained
within an intron; 3) intergenic, for lncRNAs at least 5kb away from any known gene;
4) divergent, with TSSs within 5kb and in the opposite strand; 5) convergent, with
transcription stops within 5kb and in the opposite strand; 6) sense upstream, located less
than 5kb upstream of a gene and in the same strand; and 7) sense downstream, located
less than 5kb downstream of a gene and in the same strand.

To compare the novel lncRNAs with the recently upgraded ovine NCBI RefSeq an-
notation (release 104), which is based on the ARS-UI_Ramb_v2.0 new reference genome
[381], transcript coordinates were remapped with the NCBI Genome Remapping Service
(https://www.ncbi.nlm.nih.gov/genome/tools/remap). They were compared with the
NCBI lncRNAs using GffCompare [352]. Transcripts models with codes “=”, “j”, “c”,
“k”, “o”,"m" or "n" were considered as overlapping, transcripts with codes “c” or “k”
were considered compatible isoforms and transcripts with code “=” were considered ex-
act matches.

7.2.4. CAGE-seq and CHIP-seq data analysis

We downloaded the mapped BAM files of CAGE-seq experiments of five immune tissues
from a multi-tissue project of sheep TSSs (tonsil, alveolar macrophages, spleen, mesen-
teric lymph node and prescapular lymph node) [251] and analysed them using the same
pipeline as the authors, with some modifications. In short, downloaded BAM files were
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converted to bigwig format with bedtools v.2.30.0 [241] and BedGraphToBigWig from
UCSC tools [382]. The R package CAGEfightR v.1.12.0 [383] was used for normalization
and clustering of CAGE tags. CAGE tags <10 read counts were removed and all the tags
from any of the tissues were kept, to include tissue-specific TSSs. CAGEfightR was also
used to identify bidirectional clusters. In order to get the genes supported by CAGE-
predicted TSSs we used the BedTools python implementation pybedtools v.0.8.1 [384] to
search for TSSs from the assembled transcriptome within 0.5 kb from them, accounting
for strandness.

Sheep ChIP-seq sequencing files from alveolar macrophages [385] were downloaded
from the NCBI Sequence Read Archive (SRA) and were analysed in an uniform way.
Reads were aligned to the sheep genome (Oar_rambouillet_v1.0) with Bowtie2 v.2.3.5.1
[386]. SAM files were converted to BAM format with samtools v.1.7 [387], and were
sorted, filtered for quality and removed duplicate reads with sambamba v.0.6.6 [388].
MACS2 v.2.2.6 [389] was used to call narrow peaks for histone modifications with a FDR
cut-off of 0.05 and consensus peaks from the pairs of animals were obtained with bedtools
v.2.30.0 [241]. In order to get the genes supported by CHIP-seq peaks we used pybedtools
v.0.8.1 to search for TSSs from the assembled transcriptome within 0.5 kb from them.

7.2.5. Conservation in terms of sequence

Sequence level conservation was performed with standalone BLASTn (BLAST v.2.9.0)
[240] by aligning the sheep lncRNA transcripts against the lncRNAs annotated in En-
sembl Release 106 from five species: goat, cattle, pig, mouse and human. Because of the
known low sequence conservation expected in lncRNAs, results were filtered by identity
> 50, query coverage > 50, E-value > 1e-05 and it was required that the length differences
between each pair of sequences was less than 50%. Visualization of the genomic con-
text of conserved lncRNAs was performed with pyGenomeTracks 3.7 [390]. The tracks
for CAGE-seq data were constructed by merging all BAM alignment files with samtools
[387] into a single file and then was converted to bigwig format as previously. The tracks
for histone modification CHIP-seq data were the consensus peaks obtained from MACS2.

7.2.6. Analysis of gene expression

Kallisto abundance estimates were imported to R and summarized to gene level with
IsoformSwitchAnalyzeR [391] in order to set confident gene identifiers for ambiguous
transcripts. Counts of annotated genes and novel lncRNA genes were kept for further
analysis, discarding potential novel unannotated coding genes. For gene expression data
exploration, we normalized the estimated gene counts with the variance stabilizing trans-
formation from DESeq2 [113] and filtered out genes with less than 0.5 TPM. The first two
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components of the principal component analysis (PCA) and the two first dimensions of
the t-Distributed Stochastic Neighbor Embedding (t-SNE) were used for visualization.
LncRNAs were tagged as expressed if they could be detected above 0.1 TPM or 1 TPM
in at least 20% of the samples in a tissue group. Two-sided Mann-Whitney U tests were
performed to compare expression means between classes.

Differential gene expression was performed with DESeq2 [113] using the estimated
counts of annotated genes and lncRNA genes expressed in at least half of each sample
groups and exported from IsoformSwitchAnalyzeR [391]. Differential expression was
tested separately in blood and cell samples combined on one side, and samples from
lymph nodes on the other, because there were not stimulated samples from other lym-
phoid organs and that would unbalance the dataset. The Wald test was applied between
unstimulated samples and stimulated samples using the effect of the interaction of tis-
sue type and BioProject IDs as covariates for the lineal regression model, as those were
the main drivers of the groupings seen in the exploratory analysis. Log2 fold change
(log2FC) values from lowly expressed and highly variable genes were shrunken using
the apeglm method [392]. Genes with an FDR-adjusted p-value lower than 0.05 and an
absolute log2FC higher than 0.32, which corresponds to a 20% expression change, were
kept. The relatively low log2FC filter was chosen because the large number of samples
and the heterogeneity of the dataset produced differentially expressed genes with modest
effect sizes and robust p-values.

Gene set enrichment analysis of differentially expressed genes was done with gPro-
filer R package [245]. The statistical domain scope used was the list of all expressed genes
for each tissue, in order to reduce the tissue type specific expression bias. Benjamini-
Hochberg FDR correction was applied to the p-values and the threshold was set to 0.05.

7.2.7. Co-expression analyses

Co-expression analyses were performed in both tissue groups separately. Genes ex-
pressed in less than half of the samples were removed and strong outlier samples were
removed in order to get a better fit to a scale-free topology. We tested two network con-
struction pipelines: 1) The pipeline proposed by the authors of GWENA [393], which
consists of applying the variance stabilizing transformation (VST) from DESeq2 [113] and
using spearman correlations, and 2) counts adjusted with TMM factors followed by asinh
transformation, Pearson correlations and network transformation by context likelihood
of relatedness (CLR) [394]. Before creating the correlation matrices, normalised gene ex-
pression was corrected for covariates with limma’s removeBatchEffect function [353] to
account for the effect of the interaction of tissue type and BioProject ID, as those were
the main drivers of the groupings seen in the exploratory analysis. The 30% less variable
genes were removed for network construction. Co-expression networks were constructed
with GWENA [393] R package, which implements the WGCNA [303] R package.
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Modules of co-expressed genes were detected with the threshold power and cluster-
ing threshold calculated by GWENA and a minimum module size of 30. Modules were
merged if their eigengene, the first principal component of the module, correlation was
higher than 0.9. Modules were associated with overall immune stimulation or specific
stimulation types by correlating their eigengene to those variables. To calculate the cor-
relation p-value threshold, we generated 1000 random gene modules ranging from 30 to
1000 genes, correlated their eigengenes with the treatment variable and calculated the
false positive rate (FPR). The p-value threshold with the FPR lower than 0.05 was 1e-02,
but 1e-03 was chosen for more robustness. The genes in each module were tested for
Gene Ontology (GO) term enrichment with gProfiler [245] R implementation, setting the
statistical domain scope to all the genes in the co-expression network and a FDR-adjusted
P value threshold of 0.05.

The differential co-expression analysis was carried out by calculating the spearman
correlations between all genes used in the co-expression network analysis separately in
the unstimulated and the stimulated samples. The z-score method implemented in the
dcanr v.1.12.0 R package [395] was used for testing the statistical differences between z-
transformed correlation coefficients in both conditions. P values were adjusted for mul-
tiple hypothesis testing in order to select differentially correlated gene pairs. Differential
co-expression networks (DCN) were visualized in Cytoscape v.3.8.2 [199] by integrating
the differential co-expression results, co-expression modules and differential expression
results. For visualization, genes without gene names in the Ensembl annotation were
named after their human orthologue according to Ensembl Compara.

7.3

Results

7.3.1. Dataset description

We collected and analysed 422 publicly available RNA-seq samples of tissues related
to the immune system (Table 6, Supplementary data 1) using a uniform pipeline (Fig-
ure 27). In terms of immune response induction, 49.1% of the samples had been stimu-
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lated in some way. Blood samples, as whole blood or PBMCs, represented the 64.5% of
the dataset, organs and lymph nodes the 30.3% and immune cell subsets the 5.2%. The
mean age of the animals was of 1.32 years and 60.1% of the samples came from male
sheep. There are 12 different breeds in the dataset, with three of them being crossbreed.
Library selection is an important factor for lncRNA profiling because there are transcripts
that are not polyadenylated. Around half of the samples were polyA-selected and half of
the samples sequenced total RNA. Besides, samples had an average of 45 million reads,
summing around 19 billion reads in total (Supplementary Figure 1). Unique genome
mapping rate with STAR was of 84.6% on average and pseudoalignment rate to the new
transcriptome with Kallisto was of 84.7% on average (Supplementary Figure 1). The as-
sembled and merged transcriptome annotation contained 308750 transcripts, of which
41638 were from annotated transcripts and 36067 were from novel lncRNA transcripts
identified by our pipeline. These transcripts correspond to 63364 genes, including 25472
annotated genes and 21223 novel genes with at least one lncRNA isoform.

All samples were clustered based on gene expression to assess the coherence of the
data. Both clustering methods used clustered together the samples based on tissue, al-
though intra-tissue groupings were influenced by the source project (Figure 28A-B). This
could be expected as each study was performed in different conditions, with different
breeds, ages, sex and protocols. Immune stimulation status did not affect much the clus-
tering probably for the same reasons and because of the strong influence of tissue type.

Table 6: Summary of samples and publications retrieved for this work.

BioProject Samples Tissue Reference

PRJEB26387 72 PBMCs [396]

PRJNA291172 36 PBMCs [397]

PRJNA454435 13 PBMCs [235]

PRJNA631066 6 PBMCs [398]

PRJNA433706 5 PBMCs [399]

PRJEB45790 48 PBMCs [400]

PRJNA559411 76 Blood [342]

PRJNA528905 10 Blood [401]

PRJEB15872 16 Ileo-caecal valve lymph node [402]

PRJNA485657 23 Spleen, tonsil, lymph node [403]

PRJNA268183 20 Abomasal lymph node [404]

PRJEB33476 12 Abomasal lymph node [405]

PRJNA362606 6 Spleen [406]

PRJEB44063 19 Hepatic lymph node [407]

PRJEB19199 60 Several tissues [134]
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7.3.2. Novel lncRNA identification

We identified 21223 novel lncRNA genes from the sheep immune system samples that
were assembled, and another 1724 annotated genes had novel non-coding isoforms clas-
sified as lncRNAs by our pipeline. Most of the novel genes with transcripts fulfilling the
requisites to be classified as novel lncRNAs had all of their isoforms classified as such
(17605). Some of the newly assembled gene models were coding genes missing from the
Ensembl annotation that had non-coding isoforms, because they had novel transcripts
with coding potential as well as lncRNA transcripts. Those unannotated genes and the
1724 annotated genes with novel non-coding isoforms were not considered as lncRNA
genes for the gene-level expression analyses, even if individual transcripts could not be
discarded as bona fide non-coding isoforms. We applied the same coding potential as-
sessment methods used for novel transcripts to the annotated lncRNAs and discovered
that there were transcripts potentially coding for a protein. This bias should be taken into
account when comparing between the features of annotated and unannotated lncRNAs.

Regarding the characteristics of the novel lncRNAs, novel transcripts were shorter
than the 2229 lncRNAs annotated in Ensembl (Figure 28C) and a great proportion of
them had 2 exons, in contrast to the Ensembl lncRNAs, which are monoexonic or have
more than 5 exons (Figure 28D). We classified the novel genes based on position rela-
tive to known genes (Fig. 2F, Supplementary Data 2). Intergenic lncRNAs (lincRNAs)
were the most prevalent with 37% of the transcripts, followed by intronic antisense (22%)
and antisense (18%) transcripts. Among the transcripts adjacent to annotated genes, the
class of divergent lncRNAs was predominant (10% of all novel genes). The TSS of this
kind of lncRNAs are very close to another gene’s TSS, which indicates that they probably
arise from a single bidirectional promoter and may have implications in terms of gene
expression regulation.

We explored the sequence-level evolutionary conservation of lncRNAs with other
mammal species. Most lncRNAs are known to be poorly conserved in terms of sequence,
but by detecting mammalian orthologues we provide further strength to the methods by
which all unannotated lncRNAs have been identified. This analysis found a small num-
ber of conserved lncRNAs (Supplementary Figure 2, Supplementary Data 3). The biggest
fractions of lncRNAs with conserved orthologues were found when comparing with goat
and cattle lncRNA catalogues, with 11.9% and 7.3% of transcripts with significant hits,
respectively. Comparing with the human and mouse catalogues, we found much less
conserved lncRNAs. Interestingly, around 3% of novel lncRNAs, corresponding to 746
unique transcripts, matched with 392 unique human lncRNAs. Among these conserved
lncRNAs, widely characterized lncRNAs such as MALAT1, NEAT1, XIST, PACERR or
FIRRE were successfully detected in sheep (Supplementary Figure 3). Other conserved
lncRNAs were those located in Hox gene loci, such as HOTAIR, HOXA10-AS, HOXA-
AS2 or HAGLR. Divergent lncRNAs were also among the conserved ones, like FMNL1-
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DT, TOB1-AS1, EMSY-DT, RIPK2-DT, ATP8A1-DT or MAPK6-DT. Despite not showing
enough sequence similarity, we found some sheep transcripts located in the same di-
vergent promoter as their human counterparts, for instance the putative orthologues of
HEATR6-DT or NIPBL-DT.

Because of the recent improvement of the ovine NCBI reference genome and annota-
tion [381], the NCBI RefSeq lncRNA annotation was compared with the novel lncRNAs.
After remapping to the new genome, out of the 4442 NCBI lncRNA genes, 1961 (44%)
overlapped with an unannotated lncRNA. Exact matches of intron chains occurred in
571 transcripts, 238 transcripts were intron-compatible but differed in exon number and
3679 where multi-exonic transcripts with at least one intron match. The overlap between
Ensembl and NCBI lncRNAs was virtually inexistent. Thus, we detected around half of
the annotated NCBI lncRNA genes using only immune-related tissues, even if most of
the transcript models diverged in terms of splice-junctions.

7.3.3. Expression patterns of lncRNAs

Expression levels of the novel lncRNAs detected in this study were lower than both pro-
tein coding genes and other annotated lncRNAs in the two main tissue categories (Fig-
ure 28E). In fact, after applying a minimum expression threshold in each tissue, expressed
in at least 20% of the samples with 1 TPM, we were left with 2267 expressed novel lncR-
NAs. Besides, we also detected 482 annotated lncRNAs above the expression threshold.
Interestingly, 70% of the lncRNAs annotated by Ensembl were expressed in all three main
tissue categories, while only 15% of novel lncRNAs were expressed in the three tissues
(Supplementary Figure 4). Setting a less stringent mean expression threshold of 0.1 TPM
results in 10045 expressed novel lncRNAs, 28% of them in all three tissues. Most of the
novel lncRNAs (87%) and annotated lncRNAs (93%) could be detected in the set of lym-
phoid organs. Overall the overlap was greater between the blood samples and “immune
cell” samples for both lncRNA genes and protein coding genes, as blood contains most
of those cells (Supplementary Figure 4).

The amount of detected lncRNAs in each sample significantly correlated with se-
quencing depth for both unannotated lncRNAs (Pearson r = 0.75) and annotated lncR-
NAs (Pearson r = 0.85). Expression of PCGs was also correlated (Pearson r = 0.58) with
sequencing depth but the saturation curve showed a flatter slope, meaning that it sat-
urated earlier than lncRNAs (Supplementary Figure 5). The amount of lncRNAs ex-
pressed above 0.1 or 1 TPM got saturated above around 50 million reads, while the overall
amount of expressed lncRNAs at any level did not saturate even at the highest sequenc-
ing depths in the dataset (above 100 million reads) (Figure 28G).

Divergent lncRNAs showed greater expression levels than other lncRNAs classes
such as intergenic lncRNAs (Mann-Whitney U test P-value 2.9e-10) or antisense lncR-
NAs (Mann-Whitney U test P-value 1.3e-03), and only showed significantly lower levels
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Figure 28: Characteristics of the dataset and the identification of lncRNAs.
Exploratory analysis of all the samples included in the study using dimen-
sionality reduction methods: (A) Principal Component Analysis (PCA)
grouped by main tissue, (B) t-SNE plot with samples colored by tissue.
(C) Transcript length distribution of PCGs and lncRNAs. (D) Exon length
distribution of PCGs and lncRNAs. (E) Expression levels of PCGs and
lncRNAs in blood cell samples and tissue samples. (F) Classification of
lncRNAs into classes by genomic location. (G) Number of detected unan-
notated lncRNAs against sequencing depth.

than convergent lncRNAs (Mann-Whitney U test P-value 2.4e-03) (Supplementary Fig-
ure 6). Intronic antisense lncRNAs showed consistently lower expression than the rest of
novel lncRNAs classes, in contrast with convergent lncRNAs, which were significantly
more expressed than all other classes.
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7.3.4. Evidence of transcription by CAGE assays and hi-
stone modifications

Independent datasets of cap analysis of gene expression sequencing (CAGE-seq) and
chromatin immunoprecipitation sequencing (CHIP-seq) of histone modifications were
used in order to provide evidence of lncRNA transcription at RNA and DNA level.
The CAGE-seq dataset contained samples from various lymphoid organs and alveolar
macrophages, so it was used to provide support of expression in two sample subsets,
blood and other immune cells, and lymphoid tissues. We obtained over 2 million signif-
icant CAGE peaks and around 30 thousand bidirectional CAGE peaks present in any of
the five tissues.

In both sample subsets PCGs were more strongly associated with CAGE peaks than
lncRNA genes, but reducing the analysis to the genes expressed above 1 TPM instead
of 0.1 TPM increased the support in all gene types (Figure 29). This increase in support
specially happened in lncRNAs. 64% and 50% of the TSSs of novel lncRNAs expressed
above 1 TPM in the blood subset and the lymphoid subset, respectively, were located
within500 bp of a CAGE peak. LncRNAs annotated by Ensembl reached a support level
comparable to that of PCGs, with more than 90% of supported TSSs at 1 TPM. Bidirec-
tional CAGE tag clusters are usually used to identify active enhancers because it is known
that bidirectional transcription of short transcripts, known as enhancer RNAs (eRNAs),
is a hallmark of enhancer activation. Considering the genes expressed above 1 TPM or
0.1 TPM, novel lncRNAs were slightly less enriched in bidirectional clusters than PCGs.
Around 11% and 8% of novel lncRNAs in the blood and tissue datasets, respectively,
were transcribed from bidirectional sites (Figure 29). Some of them could be enhancer
associated non-coding transcripts while others are divergent lncRNAs.

As for the CHIP-seq data, we analysed two histone modifications that are relevant for
lncRNA transcription from a published dataset: H3K4me3, associated with promoters,
and H3K27ac, associated with active enhancers and promoters. The trend of H3K4me3
peaks from alveolar macrophages and CAGE peaks were similar regarding the genes
expressed in blood and other immune cells, but the overlap between histone CHIP-seq
data with TSSs randomly located in the genome was much lower (Figure 29). PCGs
had the highest proportion of these promoter-associated marks followed by annotated
lncRNAs and novel lncRNAs. Nevertheless, regarding the H3K27ac modification, the
difference between lncRNAs and PCGs was smaller, which reflects the origin of many
lncRNAs from enhancer-like regions. The support from this modification was similar in
novel lncRNAs and annotated lncRNAs. 20% of the TSSs of novel lncRNAs expressed
above 0.1 TPM in the blood subset were associated with H3K27ac. The apparent higher
support for annotated non-coding models is probably linked with their misannotation.

Providing additional evidence of the transcription of novel transcripts assembled
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from short-read RNA-seq reads ensures that the detected genes are reproducible. We
selected 12302 assembled gene models as bona fide lncRNA genes, those which were
supported by at least one of the following: CAGE tags, histone modification CHIP-seq
peaks or expressed above 0.1 TPM in at least 20% of the samples in a tissue group (Sup-
plementary Figure 10A). In this set, 47% of the lncRNAs had at least support from CAGE
peaks or histone modifications. Around 1000 lncRNAs were supported by all assays, in-
cluding both histone modifications. The annotation files with all unannotated lncRNA
transcripts, the set of high confidence transcripts and expression values can be found in
a public repository (see Data availability).

Figure 29: Support for transcription of annotated genes and novel lncR-
NAs as fractions of expressed genes with detected TSSs or active gene hi-
stone modifications. TSSs were obtained from CAGE-seq peaks from five
immune tissues and histone modifications were obtained from CHIP-seq
peaks (H3K4me3 and H3K27ac) from alveolar macrophages. PCG: Pro-
tein coding gene, Ens_lnc: Ensembl lncRNA, Novel_lnc: Novel lncRNA.
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7.3.5. Differentially expressed lncRNAs and PCGs

We performed differential expression analysis between unstimulated or control samples
and samples stimulated with either vaccines or a pathogen in order to identify com-
mon lncRNAs induced during an immune response. In blood samples there were 716
differentially expressed genes, including 75 novel lncRNAs and 22 annotated lncRNAs
(Figure 30A, Supplementary Data 4). The large number of samples used in the blood
sample dataset (222) and the heterogeneity of the data produced many differentially ex-
pressed genes with modest effect sizes but robust p-values (Supplementary Figure 7). The
most significant enriched terms among the known genes were biological processes re-
lated to the immune response to external pathogens such as response to external stimulus
(GO:0009605, FDR=2.86e-09), response to virus (GO:0009615, FDR=6.75e-07) or defense
response (GO:0006952, FDR=1.19e-07). In lymph samples, there were 365 differentially
expressed genes, including 46 novel lncRNAs and 13 annotated lncRNAs (Figure 30B,
Supplementary Data 4). In this case, among the most significant enriched terms with
the highest quantity of genes were general terms such as response to stress (GO:0006950,
FDR=2.51e-04) and response to stimulus (GO:0050896, FDR=1.21e-03). More specifically,
the terms related to T cell activation, like T cell activation (GO:0042110, FDR=3.07e-03)
and regulation of T cell activation (GO:0050863, FDR=3.37e-03), reflect the critical roles
of lymph nodes in adaptive immunity. Besides, there also were highly significant but
smaller in size enriched terms related to response to endoplasmic reticulum (ER) stress.

There were 22 differentially expressed genes common to both datasets, among them
an annotated lncRNA and an unannotated lncRNA. Some of the common PCGs are di-
rectly related with immunity, like IL21, which encodes a well known cytokine with im-
munoregulatory activity that induces proliferation and differentiation in several immune
cell types. Other genes are related to apoptosis and inflammation (MT2, IKBIP, AEN, OS-
GIN1) and ER regulation (WFS1, SELENOS). Despite relatively similar number of DE
genes in both comparisons, there is a big set of highly significant genes with effect sizes
smaller than the threshold in the blood samples and many statistically significant but
lowly expressed novel lncRNAs did not pass the fold change threshold because they
were shrunken (Supplementary file 1: Fig. S7). These results give support for potential
involvement of a fraction of the detected novel and annotated lncRNAs in both the innate
and adaptive immune responses, following the guilt-by-association principle.

7.3.6. Co-expression network analyses detect immune-
enriched gene signatures

Gene co-expression networks were constructed providing valuable information about
the expression relationships of lncRNAs with PCGs and allowing the inference of their
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Figure 30: Differential expression results between stimulated samples and
unstimulated samples in blood cell samples (A) and lymph node samples
(B). For each comparison, a volcano plot using shrunken fold changes and
a dot plot the results of gene ontology enrichment analysis (GO biological
processes) are shown.

putative functions by guilt-by-association. We tested two different network construction
pipelines and selected the one proposed by the authors of GWENA [31], as it produced
networks with better fit to a scale-free topology and most of the genes could be asso-
ciated to an expression module. Covariate correction for tissue type and source project
enabled the construction of unbiased networks (Supplementary Figures 8-9). Filtering of
lowly expressed genes, genes with low variability and outlier samples that reduced the
fit to a scale-free topology resulted in co-expression networks of 12898 and 13428 genes
in blood samples and lymph nodes, respectively. In the blood dataset, genes with similar
expression patterns were clustered in 33 modules ranging from 54 to 1832 genes (Fig-
ure 31A, Supplementary Data 5), and in the lymph node dataset genes were clustered in
30 modules ranging from 44 to 1909 genes (Figure 32A, Supplementary Data 5). Most
modules included novel lncRNAs and annotated lncRNAs, and some of them were even
hub genes of their module.

We searched for significant correlations among module eigengenes, the principal
component of the genes in the module that depicts its dominant trend, and treatment
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variables. In the blood sample dataset, 15 modules were correlated (p-val < 1e-03) with
the general treatment variable, which accounts for any kind of sample stimulation (Fig-
ure 31A). Considering correlations to specific immune stimulations, helminth infection
shared many correlated modules with the general treatment variable, which meant that
it was one of the main drivers of variability in the dataset. Stimulation with LPS and with
FMD inactivated virus (iFMDV) were correlated with specific gene modules different to
those correlated to helminth infection. Other stimulations were also correlated to some
modules but because of their small sample size they were not further taken into account.

Gene expression modules were characterised by GO term enrichment (Supplemen-
tary Data 5). Two of the stimulation-correlated modules (ME16 and ME19) were highly
enriched in biological processes related to the immune response but they were not cor-
related with helminth infection. ME16 was associated with the sum of all treatments
and was specially strongly correlated with LPS stimulation. The most significant en-
riched biological process GO terms were related to the general immune response, like
immune system process (GO:0002376, FDR=2.27e-07) or immune response (GO:0006955,
FDR=1.15e-05) and to cell migration and locomotion, including the terms positive regu-
lation of locomotion (GO:0040017, FDR=1.55e-06) and leukocyte migration (GO:0050900,
FDR=1.16e-05). ME19 was also associated with the sum of all treatments and was cor-
related to iFMDV treatment. It contained a high amount of immune response genes, for
instance, from the 155 genes with GO annotations, 35 were related to response to virus
(GO:0009615, FDR=9.59e-25) and 56 to immune system process (GO:0002376, FDR=1.56e-
10). Besides, terms related to type I interferon response and signalling were also abun-
dant.

In the lymph node network, the eigengenes of 11 modules were correlated (p-val < 1e-
03) with the combined treatment variable (Figure 32A). The two available immune stim-
ulation conditions, helminth infection and paratuberculosis, were correlated with a few
modules, but several other significant modules emerged from the combined treatment
variable correlation. The characterisation of gene expression modules by GO term enrich-
ment revealed up to 5 immune-enriched modules: ME15, ME19, ME24, ME27 and ME28.
Among them, the positively correlated modules showed functions involved in the innate
immune response and general immune terms. For instance, in module ME15 the terms
immune response (GO:0006955, FDR=2.10e-11) or innate immune response (GO:0045087,
FDR=5.77e-07) are highly significant. In contrast, the negatively correlated modules are
enriched in adaptive immune response terms. ME19 is enriched in GO terms related
with T cell activation and lymphocyte proliferation while ME27 is enriched in terms re-
lated to B cell activation and proliferation. The lncRNAs present in the immune-enriched
modules from both co-expression networks were classified as immune response-related
lncRNAs.

In addition to the immune-enriched gene modules, another big module stood up
(ME3), as it was correlated with both helminth infection and paratuberculosis. Most
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Figure 31: Co-expression analysis and differential co-expression network
results in blood cell samples. (A) Correlations of gene co-expression mod-
ules with all stimulations and with each individual stimulation. Mod-
ules enriched in immune genes are highlighted in red. Number of genes
in each module is depicted as a bar plot. (B) The full differential co-
expression network. Node size is proportional to connectivity and dif-
ferential associations are coloured by gain or loss of correlation strength.
The edges of differentially expressed genes are coloured by fold change.
(C) Sub-network with the differentially associated genes in module ME16.
(D) Sub-network with the differentially associated genes in module ME19.

of the enriched GO terms were related to endoplasmic reticulum (ER) stress and protein
post-translational processing, with terms like response to endoplasmic reticulum stress
(GO:0034976, FDR=2.60e-13), Golgi vesicle transport (GO:0048193, FDR=2.42e-07) or re-
sponse to unfolded protein (GO:0006986, FDR=1.72e-06).
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7.3.7. Differential co-expression networks to identify
regulatory relationships

Gene level differential co-expression, the gain or loss of correlation between two genes
in different biological situations, indicates changes in regulatory relationships between
those genes, which are often not evident from DGE results. All gene-pairs used in the
co-expression network construction were tested for significant changes in correlation be-
tween control and stimulated samples and differential co-expression networks (DCN)
were constructed with statistically significant gene-pairs (Supplementary Data 5). The
DCN from the blood sample dataset contained 1589 differential associations (FDR <
0.05) among 1348 genes (Figure 31B) and the DCN from lymph nodes contained 2137
differential associations (FDR < 1e-03) among 1784 genes (Fig. 6B). Both networks in-
cluded around 60 lncRNAs each. In terms of network topology, networks showed a small
amount of nodes (genes) with many edges (differential associations), while the rest of the
nodes were more loosely connected to the network. Just around 5% of the nodes had 10
or more edges. Some very interconnected nodes formed clusters according to the gene
co-expression modules from the previous analysis, but most of the topology was driven
by a few high-degree nodes.

Specific differential associations were observed by individually inspecting each DCN.
The blood sample network was centred on two high-degree genes that had more than
100 differential associations each but did not have obvious biological relationship with
the immune response: DNAJB4 and GUCY1B1. Among the rest of the 42 high-degree
genes, defined as those with more than 5 differential associations, there were some lncR-
NAs and several immune genes such as BATF2, IDO1, IFI6, IL18BP, NFKBIZ and various
CC chemokines. Focusing on the immune-enriched co-expression modules, many genes
from the module ME16, most of them immune-related, formed a very interconnected
subnetwork (Figure 31C). Even though the genes from this subnetwork were already
correlated, they predominantly showed positive z-scores, which means that the correla-
tions were stronger in the control samples than in stimulated samples. On the contrary,
genes from the module ME19 did not form a separate cluster, but they showed negative
z-scores, which means that their expression was correlated in the stimulated samples. In-
terestingly, many genes were up-regulated in the differential expression analysis. In the
subnetwork composed by selecting the genes from this module and their differentially
co-expressed pairs, there were transcription factor coding genes related to the immune
response: BATF2, IRF9 and NFKB2 (Figure 31D). For instance, BATF2, upregulated in
stimulated samples, is a transcription factor that controls the differentiation of lineage-
specific cells in the immune system and immune-regulatory networks. There were sev-
eral interferon-stimulated genes such as IFI6, MX1, MX2, ADAR, EIF2AK2, IRF9 or IFIH1,
all related to antiviral functions and upregulated in the stimulated samples.

The DCN obtained from lymph node samples did not contain many immune-related
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Figure 32: Co-expression analysis and differential co-expression net-
work results in lymph node tissue samples. (A) Correlations of gene co-
expression modules with all stimulations and with each individual stimu-
lation. Modules enriched in immune genes are highlighted in red. Num-
ber of genes in each module is depicted as a bar plot. (B) The full differ-
ential co-expression network. Node size is proportional to connectivity
and differential associations are coloured by gain or loss of correlation
strength. The edges of differentially expressed genes are coloured by fold
change. (C) The genes differentially co-expressed with CREB3 transcrip-
tion factor. (D) Individual examples of statistically significant differential
associations between CREB3 and four genes.

genes (Figure 32B). There were 187 high-degree genes, including 18 transcription factors
coding genes that were potential drivers of the differential co-expressions, like HMBOX1,
CREB3, NFATC4, NFIB or EBF4. NFATC4, for instance, is involved in T-cell activation,
stimulating the transcription of IL2 and IL4 cytokine genes. CREB3, among many other
functions, plays a role in the response to ER stress by promoting cell survival, a process
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that was previously found enriched in a co-expression module of which CREB3 was not
part of. CREB3 was a high-degree node, differentially associated with 27 other genes (Fig-
ure 32C), and it showed mostly positive z-scores, thus, its expression was correlated in the
unstimulated samples but those correlations were lost upon stimulation by helminth in-
fection and paratuberculosis. Examples of differentially associated genes include IL18BP,
CTSL, MAPK13 and ADM (Figure 32D). ADM, which is a known lymphangiogenic fac-
tor, was upregulated in stimulated samples and its expression decoupled from that of
CREB3 in those samples. This DCN also contained several lncRNAs and 12 of them were
high-degree nodes (7 known lncRNAs and 5 novel lncRNAs).

7.3.8. Integration of evidence for lncRNA expression and
function

We used differential gene expression analysis, co-expression analysis and differential co-
expression network analysis for the functional association of lncRNA genes with the ac-
tivation of the immune response. Those three approaches resulted in 320 lncRNAs as-
sociated in at least one analysis (Supplementary Figure 10). The differential expression
between stimulated and unstimulated samples showed the highest number of immune
response-associated lncRNAs. Interestingly, the histone modification support in differen-
tially expressed novel lncRNAs was much higher than in the whole set of novel lncRNA
genes, 49% against 19%, and the trend was similar in the case of CAGE support. A sum-
mary of all transcription evidence and associations in an analysis for each lncRNA is
available as a supplementary file (Supplementary Data 6).

7.4

Discussion

Using 422 RNA-seq samples from ovine immune tissues, we assembled a project-
specific transcriptome and retrieved 17605 unannotated lncRNA loci. Around 70% of
those novel genes were expressed in a sufficient number of samples and/or were sup-
ported by histone modifications or TSSs from independent experiments. LncRNAs are
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usually annotated with evidence-based methods, because they lack sequence features
like conservation or complete ORFs [101], and this evidence mostly comes from map-
ping sequencing reads to the genome of interest. Model organisms have been annotated
via manual curation of a variety of assays, but in the absence of this kind of data in live-
stock species, lncRNA annotations usually rely on automated short-read transcriptome
assemblies. SGS short-read RNA-seq is widely used because of its high yield and low
cost [99] and has been used in many lncRNA annotations [101], but using this kind of
data is challenging, because the nature of short reads makes it difficult to completely
characterize the structure of non-coding transcripts [102].

For higher confidence on the assembled transcripts, only paired-end samples were
used and additional support was included from expression levels, CAGE-seq tags and
histone modification CHIP-seq assays. Thus, the confidence in the existence and location
of the more than 12 thousand confident lncRNA loci is high, even though not all gene
boundaries and splice sites might be correct. In fact, the reproducibility of exact lncRNA
short-read transcript models between samples was shown to be low in another sheep
study [22]. Related to this, the amount of detected lncRNAs did not reach saturation at
any sequencing depth. It has been proposed that, because of stochastic sampling, much
higher sequencing depth is needed to reconstruct the vast number of lowly expressed
lncRNA transcript models [22]. It should be mentioned that it is expected that a higher
number of the assembled transcripts have independent evidence of expression. On one
side, the signal of CAGE-seq scales with expression, similar to RNA-seq so, lowly ex-
pressed transcripts are also more weakly represented. On the other, the CHIP-seq dataset
used only comprises a single cell type, while the RNA-seq dataset includes several tissue-
types.

As observed in other livestock studies [22, 137], the expression levels of lncRNAs were
lower than those of PCGs. The lncRNAs already present in the Ensembl annotation were
more abundant, were expressed in more samples and were better supported by TSSs
and histone modifications, reflecting their misannotation as lncRNA genes when many
of them show coding potential. The low expression in bulk RNA-seq samples might
be due to their known exceptional cell type, tissue, developmental stage and disease
state specific expression [20, 21] and even to lowered transcriptional burst frequencies in
single-cells [408]. In human and murine T cells and B cells, lncRNAs are expressed in a
very cell-specific and dynamic way during differentiation within lineages of the same cell
types [347–349]. In this manner, cell or tissue type specific lncRNAs could be involved in
immunological pathways in response to infection and vaccination [340, 345], even if the
perceived bulk expression was low.

The biological function of most lncRNAs remains unknown, particularly in non-
model organisms. With notable exceptions, few genes can be assigned a putative
function by homology with human or mouse lncRNAs. Considering sequence similarity,
around 700 novel sheep lncRNA transcripts had orthologues in human, including some
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functionally characterised lncRNAs, and more than 3000 in goat or cattle, which are
mostly uncharacterised. Because of this, we linked the sheep lncRNAs with potential
broad biological functions and pathways by using classical analyses like, differential
gene expression and co-expression analysis, and alternative methods like differential
co-expression network analysis. In the case of the co-expression analyses, following
the principle of guilt-by-association [115], association with the immune response was
assigned via correlation to a group of co-expressed genes. This approach has been
widely used for the functional profiling of lncRNAs by several studies [409, 410]. In
addition, one of the datasets included in this study has already been analysed in this
way to specifically search for candidate lncRNAs during an helminth infection [183].

Regarding the results from the blood cell dataset, with samples from whole blood,
PBMCs and other cells like macrophages, all analyses resulted in the identification
of genes linked to the innate immune response. Many genes were part of the in-
terferon (IFN)-mediated immune response, which provides a first line of defence
against pathogens, from viruses to parasites [411]. Upon pathogen detection and IFN
stimulation, the transcription of several genes termed as IFN-stimulated genes (ISGs)
is activated, which control pathogen infection by targeting pathways necessary for
pathogen life cycles. Up to 21 of the most important antiviral ISGs were upregulated in
the differential expression analysis, including ADAR, APOBEC3Z1, BST2, RSAD2, MX1,
MX2, IFI6, IRF9 or orthologues of the OAS gene family. These genes were part of the
iFMDV-associated co-expression module and many were also part of the DCN. The IFN
response was mostly driven by the inactivated vaccine [342, 396] and the LPS stimulation
datasets [357], while the helminth infection [397, 400] and other smaller datasets [235,
398, 399] produced a different expression profile, as seen in the stimulation-correlated
co-expression modules. In the same manner as known ISGs, lncRNAs can also be in-
duced by IFN and have important roles in controlling pathogen infection and resolution
of the immune response, or they can regulate the IFN mediated host defence [412, 413].
For instance, in human, NRIR is a negative regulator of IFN antiviral response [414]
and IFNG-AS1, located near the IFNG locus, regulates its expression [16]. Considering
that differentially expressed lncRNAs have been proposed to function as negative or
positive regulators in various critical steps of antiviral response [415], some of the ovine
transcripts detected in this study could also be related to those processes.

The fact that the lymph node dataset was dominated by helminth infection exper-
iments [404, 405, 407], except for a single bacterial infection experiment [402], greatly
marked the type of genes involved in the general analysis. The different analyses re-
vealed important immune-related genes and biological pathways, but there were many
other processes involved. Parasite infections produce a different response than viral or
bacterial infections and are usually associated with a non-inflammatory Th2-biased re-
sponse in both parasites present in the datasets: Teladorsagia circumcincta and Fasciola
hepatica [416–418]. In a human gene expression meta-analysis with different helminth
species, they found upregulated immune regulatory genes while down-regulated genes
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were mainly involved in metabolic processes, and showed that the response was similar
between species and tissues [419]. To date, there are very few studies linking lncRNAs to
helminth infection in mammals. In sheep, one of the datasets included in this study [405]
has been analysed for this purpose to specifically search for candidate lncRNAs during
T. circumcincta infection [183]. It remains greatly important to identify novel gene candi-
dates for this disease, as it is a source of economic loss and animal welfare deterioration
[417].

Integration of several RNA-seq datasets and different bioinformatic analyses allows
us to better characterise patterns that could have been overlooked in individual exper-
iments. One of the processes consistently appeared associated with all the analyses in
lymph nodes was the response to ER stress, which is an endogenous source of cellu-
lar stress that arises in the ER of cells following the accumulation of misfolded proteins
during protein synthesis [420, 421]. In the immune system, this response is particularly
important for resolving secretory stress and survival of highly secretory cells such as im-
munoglobulin producing plasma cells [420], cytokine producing Th2 cells [422] and other
immune cells [421]. Among the ER stress response-related dysregulated genes, the two
most important members of the IRE1a-XBP1 pathway (ERN1 and XBP1) were upregu-
lated in the lymph node samples [421] and a co-expression module enriched in ER stress
response genes was correlated with both helminth infection and paratuberculosis. This
process was enriched in the sets of DEGs in the original analyses of the paratuberculosis
dataset [402] and one helminth infection dataset [397], but were not further discussed
in their respective publications. Furthermore, while belonging to a non-associated co-
expression module and not being differentially expressed, the ER localized transcription
factor CREB3 was differentially co-expressed with several other genes. CREB3 has been
implicated in the ER and Golgi stress response and regulation of genes in secretory path-
ways [423]. LncRNAs have also been linked to proliferation and apoptosis during ER
stress [424].

The DCN analyses revealed the involvement of other PCGs and lncRNAs in the ovine
immune system activation. Compared to the widely employed co-expression methods,
differential co-expression have the advantage of detecting condition-dependent interac-
tions between genes [116]. For instance, the gain or loss of co-expression between a TF
and its targets can be due to expression changes or post-translational modifications of
the TF [395]. Apart from the mentioned CREB3 transcription factor in lymph nodes, in
blood cell samples IDO1 seemed to be differentially regulated. IDO1 is a rate-limiting
metabolic enzyme that converts tryptophan into downstream kynurenines, which have
immunosuppressive roles, and is known to be interferon-inducible [425]. Similarly to the
general differential expression analysis in this study, the original analysis of LPS effect
on macrophages did not find an induction of IDO1 expression, even if it was expected
[357]. Interestingly, we found that IDO1 was part of a co-expression module associated
with immune stimulation and enriched in ISGs, and was differentially correlated with
several genes. In stimulated samples its expression was independent from other genes,
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but upon immune stimulation it gained correlations with genes like the ISG DDX58. All
in all, the constructed DCNs revealed several lncRNAs with stimulation-dependent as-
sociations that could have immune regulatory roles, and this approach could be useful to
find novel gene candidates in each pathogen infection or vaccine component.

Multiple processes are involved in the immune response to infection and vaccination
and lncRNAs might play different roles in these processes. The goals of this work were (1)
to detect unannotated ovine lncRNAs from publicly available RNA sequencing datasets
from immune tissues and then (2) define a lncRNA gene expression signature of the gen-
eral immune activation. Poor sequence conservation and low expression, general fea-
tures found in other mammal studies, were also features of ovine lncRNAs. Adding sup-
port from CAGE sequencing and histone modifications, we obtained a shortlist of more
than 12 thousand unannotated high-confidence ovine lncRNAs. The functional analy-
ses performed with immune-stimulated samples revealed hundreds of known and novel
lncRNAs with specific expression patterns during an infection or vaccination. These
genes make up a prioritized set of potential candidates for deeper experimental analyses.
Taken together, these results should help completing the sheep non-coding RNA gene
catalogue, and most importantly, they give evidence of immune state-specific lncRNA
expression patterns in a livestock species.
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8.1

General discussion

This thesis dissertation brings together a wide range of high-throughput sequencing
assays that have been used for the exploration of the currently under-annotated sheep
non-coding transcriptome in the context of the immune response to pathogens and vac-
cines. While these projects have focused on different non-coding RNA classes (miRNAs
and lncRNAs) and different aspects of the immune response, they are united by the com-
mon goal of characterising unannotated non-coding genes and their expression patterns
along protein coding genes. Since results have been specifically discussed in each chap-
ter, in this discussion we give some general remarks common to all studies and discuss
the implication of non-coding genes in the immune system.

8.1.1. Methodological aspects of non-coding RNA detec-
tion in non-model species

An important aspect for lncRNA detection is the selection method used during library
preparation, as effective ribosomal RNA removal is required for all RNA-seq libraries.
The samples sequenced by our lab were prepared with a total RNA approach, using ri-
bosomal RNA (rRNA) depletion, whereas in the multi-tissue immune dataset there were
samples prepared by rRNA depletion and samples prepared with poly-A selection. It
has been proposed that, because not every lncRNA is polyadenylated [426, 427], total
RNA should be the preferred selection method for a complete transcriptome dissection.
In this way, studies have shown that rRNA depletion does allow for the detection of more
lncRNA transcripts, but it needs more sequencing depth than poly-A selection [428]. In
fact, at the same depth, the number of lncRNA genes obtained is usually greater with
poly-A selection [429], but it still lacks non-polyadenylated transcripts. This happens be-
cause the effective number of exonic reads in total RNA data is lower, since a big propor-
tion of them come from unspliced introns, remaining rRNA contamination, small RNAs
or other sources of intergenic noise [428]. In the multi-tissue immune dataset, even if
there was not any paired sample with both selection methods, we could detect a higher
amount of lncRNAs in samples with rRNA depletion, but differences were small when
considering strongly expressed genes only. Part of these non-polyadenylated transcripts
could be enhancer RNAs, a class of non-coding RNAs known to be lowly-expressed, un-
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stable and nuclear with emerging functions in gene regulation [430].

Novel miRNA prediction is a compulsory step for the analysis of the full miRNA
transcriptome in non-model organisms. For this, we applied the widely used workflows
miRDeep2 [238] or sRNAbench [431] to annotate the missing ovine miRNAs from high-
throughput sequencing data. These tools have been updated through the years and are
now standards in the field [432].

On the contrary, the methods and pipelines used for the discovery of lncRNA genes
are in constant evolution. In this work, we used genome-wide short-read RNA sequenc-
ing assays in order to reconstruct unannotated lncRNA transcripts with a specifically de-
signed pipeline. In the first steps of the workflow sequencing reads were mapped to the
sheep genome and the resulting alignments were used for transcriptome assembly using
established tools [433]. As already mentioned, short reads seldom span across several
splice junctions, making it challenging to infer full-length transcripts and determining
transcription start and end sites [102]. Nevertheless, non-model and human studies have
extensively and successfully used this approach, due to the high cost of long read se-
quencing and overall good performance. Some recent examples include an RNA atlas
from 300 human tissues and cell lines [427], a study on human intergenic transcription
[434] and an analysis of thousands of sequencing datasets in different yeast species [435].
Works in livestock species have also identified novel lncRNAs by assembling transcripts
from short reads in two multi-species datasets [135, 137], as well as the novel lncRNA
set obtained from The Sheep Expression Atlas [22]. Importantly, these tools are much
more accurate at reconstructing lowly expressed transcripts such as lncRNAs if provided
with enough sequencing depth [436]. The sequencing datasets from ovine brain and
PBMCs had around 70 million paired-end reads, and the samples collected from multi-
ple immune tissues had 45 million reads on average, with some samples having up to
150 million reads. This depth makes the datasets used in this study optimal for lncRNA
detection.

As far as the bioinformatic analysis is concerned, for the actual identification of
lncRNA transcripts among the great amount of RNA products that were reconstructed,
we produced a workflow with Python scripts and selected tools. Existing tools for global
lncRNA discovery often include several modules for extracting and filtering candidate
transcripts, computing candidate transcripts’ coding potential, and classifying lncRNAs
based on their genomic localization [48, 380, 437, 438]. These tools, albeit useful for rapid
transcriptome characterisation, can have some drawbacks: they might be only available
to study specific model species, they might require extensive effort for installation and
use in a high-performance computing server, or most importantly, they might lack in
flexibility with the desired parameters and do not allow customisation. For instance,
the widely used tool FEELnc [380] outputs a higher quantity of transcripts, but some
overlap PCGs in the same strand, and it does not allow for different transcript length
filters between monoexonic and polyexonic transcripts. Thus, the pipeline used through
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this thesis for lncRNA characterisation was developed from scratch for a tailor-made
analysis of the sheep transcriptome, while using the latest tools and concepts in the
lncRNA field. For the sake of reproducibility, the pipeline can be run as a Snakemake
[377] pipeline with fixed program version numbers and has been posted to a public
repository (https://github.com/bilbaom/immune-lncrnas-sheep). As a limitation of
this work, it should be noted that the workflow has not been optimized for execution
time and has not been wrapped into a single standalone tool with documentation for an
easier use because, as mentioned, there are other tools that can do a similar job.

8.1.2. Characteristics of ovine lncRNA genes

Newly found ovine lncRNAs shared similar characteristics with those previously found
in other livestock [22, 133, 135–137] and human [21, 427] studies: they were lowly ex-
pressed, they had few exons, they were primarily intergenic and they showed limited
sequence conservation. For an additional level of confidence on the existence of the unan-
notated transcripts, CAGE-seq and histone modification CHIP-seq data was intersected
with the set of lncRNAs in the multi-tissue immune study. This approach, which is fol-
lowed by the main gene annotation pipelines [439], was used in a recent human study
and showed similar levels of support as in our analysis [427].

Classifying novel transcripts based on their genomic location can give an insight
about their potential biological roles, as seems that there might be different gene sub-
types within the lncRNA umbrella term [27]. In each study, we classified all transcripts
with a custom-made script. In general, there were more divergent lncRNAs - transcripts
sharing a bidirectional promoter with a PCG - than the other PCG-associated classes and
tended to be correlated with the adjacent gene. In human and murine embryonic and
pluripotent stem cells it emerged as the most abundant class and they might regulate the
expression of adjacent genes [30, 33]. As an example, in this thesis, the expression of a
novel lncRNA in PBMCs was correlated with the adjacent OSM cytokine gene, and both
genes were induced in groups treated with commercial vaccines or vaccine adjuvants
(chapter 6). We also showed that they were expressed at higher levels than other classes
like antisense or intergenic lncRNAs (chapter 7).

8.1.3. Functional implications in the immune system

The differentiation and activation of the innate and adaptive immune cells in response to
diverse external stimuli are tightly coordinated events that cause activated immune cells
to undergo rapid and dynamic changes in gene expression [440–442]. There is growing
evidence of the involvement of miRNAs and lncRNAs in immune functions [443, 444],
with most of the experimental work belonging to human or murine studies.

161

https://github.com/bilbaom/immune-lncrnas-sheep


CHAPTER 8. GENERAL DISCUSSION AND CONCLUSIONS

miRNAs have been shown to be essential for the host antiviral defences and viral
pathogenesis [445]. In this way, the miRNAs that are upregulated or downregulated in
livestock species have been proposed as potential biomarkers for a variety of infections,
ranging from micobacterial infections or mastitis in cattle, to Peste des petits ruminants
virus (PPRV), sheep pox virus (SPPV) or bluetongue virus (BTV) infection in small rumi-
nants [130, 131]. For instance, miR-21 was highly upregulated in VMV infected sheep, but
it has also been found differentially expressed during bovine mastitis [446, 447], influenza
A virus infection in pigs [448], avian influenza infection in chicken [449] or PPRV infec-
tion in sheep [450]. miR-21 is a critically important miRNA in livestock health, develop-
ment and disease, but due to its lack of specificity, it does not seem a useful biomarker
[451]. Nevertheless, as previously discussed, it could serve as an unspecific marker of
inflammatory lesions in VM disease and other infections, or it could be targeted for ther-
apeutic intervention in these diseases. In fact, a clinical trial is testing a miR-21 mimic in
human patients with diabetes (NCT02581098).

Unlike miRNAs, which interact with their target RNAs through base complementar-
ity, lncRNAs control immune processes through a variety of mechanisms [444]. Despite
the limited number of lncRNAs with known function, hundreds of human or murine
lncRNAs have been shown to be specifically expressed in certain immune cell types
and immune cell development stages [347, 349]. Besides, many others are known to
respond during the immune system activation by external pathogens, vaccines or pro-
inflammatory mediators [340, 452].

In non-model organisms, since the non-coding gene sets are still in need for improve-
ment, genome-wide transcriptomic studies that link ncRNAs to immune functions have
been less common. In the present thesis, we have analysed their expression profiles dur-
ing different immune responses. A widely used heuristic approach, termed guilt-by-
association, was followed in order to associate transcripts with unknown functions to
biological processes. A known example of successful outcome of this approach was the
discovery that TP53COR1 as part of a co-expression cluster of genes related to the p53
transcriptional pathway [53], which afterwards was confirmed to mediate p53-dependent
apoptosis [453]. In this manner, a putative immune-related function can be assigned to
the ovine lncRNAs that were part of co-expression gene modules enriched in immune
biological processes and pathways. The hundreds of lncRNAs that were dysregulated
during an immune stimulation with commercial vaccines or various pathogen infections
should also be implicated in those responses.

8.1.4. Evolution of non-coding genes

The evolutionary dynamics of non-coding genes is different from PCGs because they
are not restricted by the genetic code. Unlike lncRNAs, many miRNA genes show high
evolutionary conservation, but the emergence and turnover of new miRNAs is also sig-

162



CHAPTER 8. GENERAL DISCUSSION AND CONCLUSIONS

nificant [12]. Similarly to the results obtained in this project, it is known that in mammals
broadly conserved miRNAs show higher expression levels and tend to be among the
annotated genes [454]. Nevertheless, the ample use of high-throughput sequencing tech-
niques has led to an increase in the number of miRNAs with limited sequence conserva-
tion. Evolutionary young miRNAs are considered those which are specific to a clade, like
primates or ruminants. These genes are usually confidently identified by miRNA predic-
tion algorithms as bona fide miRNAs but show lower expression levels or very tissue, cell
or development specific expression. Evolutionary studies in domestic mammals suggest
that young miRNAs are expressed in a single or a few tissues when they first appear, and
become more broadly expressed over time [274]. We could observe this in the multi-tissue
analysis, where miRNAs with no known orthologue showed lower expression levels and
many of them were highly tissue specific.

Despite the fact that in both, lung samples and brain samples, more than half of ex-
pressed miRNAs were not previously annotated, we could identify orthologues in other
species by sequence similarity for the majority of those miRNAs. These results are com-
mon when profiling sheep miRNAs by sRNA-seq. For instance, recent works on female
reproductive organs have also identified hundreds of unannotated sheep miRNAs and
many of them are conserved in another species [192, 249]. In order to produce a com-
prehensive list of sheep miRNAs for future studies, we took advantage of the increasing
number of small RNA sequencing experiments uploaded to public databases to detect
hundreds of unannotated miRNA genes across several tissues (chapter 4). Among the
over 1000 previously unannotated miRNA precursors, 41% were assigned an orthologue
in a close species or human by sequence similarity.

MicroRNA evolution is characterised by punctual instances of elevated rates of
miRNA innovation, such as the increase occurred in the lineage leading to human, after
it split from mouse [85]. New miRNAs can be rapidly gained and lost during metazoan
evolution, implying that many poorly conserved miRNAs in extant species have not yet
acquired a fitness-enhancing function [12]. In the VMV dataset analysed in this work, we
described the ruminant-specific novel miRNA family mir-2284/2285 in sheep, which had
already been described by other studies [276], but is currently annotated only in cattle
and goat. In the multi-tissue analysis, over 100 members of that family were identified
in the sheep genome for the first time, thus confirming that the expansion of this family
is also present in sheep. Unlike other lowly expressed and poorly conserved miRNAs,
the miRNA family mir-2284/2285 has had an impressive expansion in ruminants, both
in term of quantity and divergence, thus, it may represent a ruminant innovation with
functional importance [275]. We found out that they are significantly more abundant
in immune-related tissues and, in cattle, their predicted target genes have been linked
to insulin resistance [275]. The target-gene predictions in sheep also pointed towards
metabolism and immune related functions. Nevertheless, more research is needed to
elucidate if this family has gained a functional role in ruminants.
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Evolutionary conservation of lncRNA loci is a subject of intense research and debate.
Unlike miRNAs, in most cases their function is not linked to a strict sequence feature,
which makes the identification of orthologues between distant species very challenging
[455]. There seems to be two sets of conserved lncRNAs: one that shows signs of pu-
rifying selection at the sequence level, and one that shows selection for transcription,
small functional elements or secondary structure only. [49, 455]. Even if they are highly
conserved, most members of the first set were not present in the ovine reference anno-
tations. Comparing with other species, among the unannotated novel genes we found
conserved lncRNAs such as TUNA, a nervous system-specific transcript necessary for
neural development [321], and other lncRNAs widely characterised in human or mice.
These included MALAT1, NEAT1, XIST, PACERR or FIRRE, for example. There were
much more conserved lncRNAs between sheep and other close livestock species, show-
ing that, even if there is a high evolutionary turnover, some could be lineage specific,
similarly to what happens with miRNAs.

The meaning of the non-coding transcripts that lack evolutionary conservation is
the most contested issue. It has been hypothesised that the occurrence of these non-
conserved and lowly expressed transcripts might be necessary for novel gene evolution.
The unstable transcripts found in the inherently bidirectional promoters and enhancers
may not even have a function as mature transcripts, but they can serve as a fertile ground
for more complex non-coding transcript evolution [456, 457]. A range of factors may
drive the generation of longer, more stable ncRNAs from these elements and, occasion-
ally, their functionalization [458]. The first is that these transcripts will be spatiotem-
porally controlled from the beginning in conjunction with one or more nearby PCGs,
providing an opportunity for the creation of a negative or positive feedback loop. Sec-
ond, transposable elements that are inserted close to enhancers or promoters may boost
the extension and stability of developing lncRNAs. What is more, it has been recently
proposed that the production of functionless no-coding transcripts could also provide a
base for protein-coding gene de novo evolution [459].

8.1.5. Future prospects

The future of non-coding RNA research in farm animal species, important for global food
production and in the emergence of zoonotic diseases, is linked to the profound func-
tional annotation of their genomes. New emerging technologies such as long-read high-
throughput sequencing and single-cell RNA sequencing will provide more accurate gene
models and will disentangle the high tissue and cell type specificity of non-coding tran-
script expression. The non-coding genes related with the immune response to pathogens
and vaccines could be useful to directly associate molecular phenotypes like gene expres-
sion to variants associated with complex traits (e.g. resistance to pathogen infection or
good response to vaccination).
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8.2

Conclusions

The main conclusions of the present work are the following:

1. By analysing high-throughput sequencing data from 21 tissues produced in our re-
search group or available in public repositories, more than 1000 unannotated ovine
miRNA genes were predicted. A big proportion (40%) of those sequences had a
conserved orthologue in another species, but we found several clade or species-
specific miRNAs that were characterised by higher tissue specificity. Among those,
we detected 146 loci expressing precursors of the miR-2284/2285 miRNA family
confirming its ruminant-specific expansion.

2. As for miRNAs relating to infection, comparing seronegative, asymptomatic
seropositive and diseased animals, Visna-Maedi virus infection causes changes
in expression in several miRNAs in lungs, which are already evident in asymp-
tomatic animals. Oar-miR-21, oar-miR-148a and oar-let-7f seem to have potential
implications for the host-virus interactions because of their strong upregulation in
both asymptomatic and animals with lesions. Oar-miR-21 could serve as a marker
of the lesions produced by the virus.

3. In this work, a tailor-made bioinformatic pipeline was created for the identification
and classification of unannotated lncRNAs from reference annotation-guided tran-
scriptome assemblies, which was applied through the present thesis project. This
provided a useful way of selecting lncRNA transcript candidates using specific pa-
rameters not available in other tools.

4. More than 12000 unannotated ovine lncRNA genes were identified by analysing
high-throughput sequencing data produced in our research group and available in
public repositories. These transcripts showed the usual characteristics of these non-
coding elements such as lower expression levels, higher tissue specificity and poor
sequence level conservation.

5. Long non-coding RNA genes were found to be dysregulated during the immune
responses to different stimulations like pathogens or vaccines, which may implicate
them in those biological processes.

• In a long-term vaccination experiment with animals treated with commercial
vaccines and aluminium hydroxide adjuvant alone, lncRNA expression was
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altered by both aluminium hydroxide and complete vaccines. Two tissues
were analysed from this experiment: the changes were strong in the innate
immune response profiled in PBMCs, with a total of 304 lncRNAs with altered
expression by any of both treatments. In the brain transcriptome there were
also changes, but to a lesser extent, with 30 differentially expressed lncRNAs
in the adjuvant-only group and 7 lncRNAs in the vaccine group.

• Using a transcriptome meta-analysis approach based on data-base data from
422 samples, a lncRNA gene expression signature of the general innate and
adaptive immune system response to pathogens and vaccines was obtained.
Differential co-expression networks find immune state-specific relationships
between coding genes and lncRNAs. Using different analyses, we associate
320 known and unannotated lncRNAs with putative immune response func-
tions because of their expression patterns, including response to viruses, im-
mune cell activation, interferon response or endoplasmic reticulum stress.
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Supplementary information for chapter 5 and chapter 6

Table S1: Commercial vaccines used on sheep in the experiment of this
thesis.

Vaccine
number

Commercial
name

Manufacturer Antigen/s Inoculation
day

Al per
dose
(mg)

1 Heptavac P Plus MSD Animal
Health S.L.

Pasteurella multocida,
Mannheimia haemolytica,

Clostridium spp.

0, 23, 233 7.5

2 Autogenous
vaccine

Exopol Staphylococcus aureus spp.
Anaerobius

44, 69, 349 1.64

3 Vanguard R Zoetis Rabies virus 98 1.03

4 Agalaxipra Hipra Mycoplasma agalactiae 129, 146 6.76

5 Ovivac CS Hipra Chlamydophila abortus,
Salmonella abortus ovis

209, 233 5.60

6 Autogenous
vaccine

Exopol Corynebacterium
pseudotuberculosis

254, 272 1.32

7 Bluevac-1 CZ Veterinaria
S.A.

Bluetongue virus serotype 1 293, 329 4.18

8 Bluevac-4 CZ Veterinaria
S.A.

Bluetongue virus serotype 4 293, 329 4.16

9 Bluevac BTV 8 CZ Veterinaria
S.A.

Bluetongue virus serotype 8 449, 470 4.40
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Figure S1: Experimental design of the long-term vaccination study.
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Supplementary Fig. 1: Summary statistics of the samples included in the study. (A) Average 
number of reads in each dataset before and after quality filtering and read adapter removal. (B) 
Average mapping rate to the genome (STAR) and average pseudo-alignment rate (Kallisto) to the 
full unfiltered transcriptome assembled with Stringtie. Unstranded samples were not used in the 
genome mapping for lncRNA identification.

APPENDIX

202



Supplementary Fig. 2: Summary of sequence conservation analysis. Number of sheep lncRNA 
transcripts with significant sequence similarity with annotated lncRNAs in other mammal species.
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Supplementary Fig. 3: Examples of conserved lncRNAs. Genomic context of selected conserved 
lncRNAs between sheep and human is depicted, including CAGE-seq read mapping, predicted 
CHIP-seq peaks and transcripts models.
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Supplementary Fig. 4: Expression Venn diagrams. Venn diagrams comparing the expression of 
PCGs, annotated lncRNAs and novel lncRNAs in each tissue group.
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Supplementary Fig. 5: Saturation of gene detection. Number of expressed PCGs and lncRNAs in 
each sample as a fraction of all genes annotated from each type compared to sequencing depth of 
the samples.
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Supplementary Fig. 6: Expression of lncRNA classes. (A) Expression of each class of unannotated
lncRNAs in blood and cell samples and in lymphoid tissues. LncRNAs expressed above 0.1 TPM in
at least one fifth of the samples in each tissue group were used. (B) One-sided Mann-Whitney U 
tests between the expression levels of each class of unannotated lncRNAs. LncRNAs expressed 
above 0.1 TPM in at least one tenth of the samples were used.

Supplementary Fig. 7: MA plots of the differential-expression results in blood cells and lymph 
nodes.
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Supplementary Fig. 8: PCA plots of the blood cell samples used for coexpression analysis, 
coloured by treatment group and tissue. (A) Samples before any correction. (B) Samples after 
correction for covariates.
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Supplementary Fig. 9: PCA plots of the lymph node samples used for coexpression analysis, 
coloured by treatment group and project accession. (A) Samples before any correction. (B) Samples
after correction for covariates.
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Supplementary Fig. 10: Upset plots of the integration of lncRNA features and the functional 
analyses. (A) Intersections of support from CHIP-seq histone modifications and CAGE-seq peaks in
all annotated and novel lncRNAs. (B) Intersections of statistically significant genes from 
differential expression analysis (DE), immune-enriched modules (Coex_mod) and differential co-
expression analysis (DCN) with CAGE peaks and histone modifications. Annotated and novel 
lncRNAs statistically significant for at least one functional analysis are depicted. (C) Intersections 
of statistically significant genes from differential expression analysis (DE), immune-enriched 
modules (Coex_mod) and differential co-expression analysis (DCN) in annotated and novel 
lncRNAs.
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