
Citation: Gomez-Cornejo, J.;

Aranzabal, I.; Ropero, I.L.; Mazón,

A.J.; Zuloaga, A. A New

Methodology to Manage FPGA

Distributed Memory Content via

Bitstream for Xilinx ZYNQ Devices.

Electronics 2023, 12, 102. https://

doi.org/10.3390/electronics12010102

Academic Editors: Akash Kumar and

Alexander Barkalov

Received: 24 November 2022

Revised: 19 December 2022

Accepted: 21 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A New Methodology to Manage FPGA Distributed Memory
Content via Bitstream for Xilinx ZYNQ Devices
Julen Gomez-Cornejo 1,* , Itxaso Aranzabal 1, Iraide López Ropero 1, Angel Javier Mazón 1,*
and Aitzol Zuloaga 2

1 Department of Electrical Engineering, University of the Basque Country UPV/EHU, 49803 Bilbao, Spain
2 Department of Electronic Technology, University of the Basque Country UPV/EHU, 49803 Bilbao, Spain
* Correspondence: julen.gcb@ehu.eus (J.G.-C.); javier.mazon@ehu.eus (A.J.M.)

Abstract: This paper proposes a methodology to access data and manage the content of distributed
memories in FPGA designs through the configuration bitstream. Thanks to the methods proposed,
it is possible to read and write the data content of registers without using the in/out ports of
registers in a straightforward fashion. Hence, it offers the possibility of performing several operations,
such as, to load, copy or compare the information stored in registers without the necessity of
physical interconnections. This work includes two flows that simplify the designing process when
using the proposed approach: while the first enables the protection or unprotection of writing on
different partial regions through the bitstream, the second permits homogeneous instances of a
design implemented in different reconfigurable regions to be obtained without losing efficiency. The
approach is based and has been physically validated on the ZYNQ from Xilinx, and when using
partially reconfigurable designs, it does not affect the hardware overhead nor the maximum operating
frequency of the design.

Keywords: FPGA; memory; bitstream; reconfiguration

1. Introduction

The increase in the integration level of electronic devices has boosted the use of SoC
(System-on-Chip) designs. Due to their flexibility and continuous innovation, FPGAs (Field
Programmable Gate Arrays) are one of the most interesting platforms for implementing
these designs. FPGAs consist of arrays of configurable logic blocks that can be configured
by the user to perform a custom functionality. In the case of certain FPGAs, such as
SRAM-FPGAs, this configuration can partially run (a concept known as dynamic partial
reconfiguration), increasing their functional capabilities and decreasing resource usage.

A tendency that is gaining momentum consists of coupling FPGA logic with built-in
processor systems in a single device, making them even more attractive for SoC designers.
A remarkable example in this regard is the ZYNQ from Xilinx, which consists of two
main parts: a processing system with a dual ARM9 hardcore processor and a 7 series
programmable logic fabric. A notable aspect of this architecture is the inclusion of a
direct and customizable connection between the processing system and the FPGA fabric,
providing higher adaptability, communication speed and performance. Due to those
reasons, this research has been based on the ZYNQ technology.

A key element in most digital electronic designs is memories, as they are used to store
different data types, such as program code, user data, variables, etc. In the case of FPGAs,
there are two main ways to implement memory elements [1]: by utilizing distributed general-
purpose fabric logic or making use of dedicated BRAM (Block RAM) modules. Memories
based on distributed general-purpose fabric logic are mainly utilized to implement reduced
memory structures with fast access. This is because, due to the hardware overhead and
the delay paths introduced when implementing large memories, these structures are

Electronics 2023, 12, 102. https://doi.org/10.3390/electronics12010102 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010102
https://doi.org/10.3390/electronics12010102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5228-010X
https://orcid.org/0000-0002-4572-4112
https://orcid.org/0000-0002-8199-3117
https://doi.org/10.3390/electronics12010102
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010102?type=check_update&version=1

Electronics 2023, 12, 102 2 of 17

not advisable for implementing big memory modules. On the other hand, BRAMs are
commonly used to store a large amount of data. The reason for this is that, although BRAMs
can also be utilized to implement small memories, the drawback, in this case, could be
slow memory access and misuse of resources. Hence, depending on the requirements,
the designer has to adopt an adequate solution, which usually includes a combination of
both alternatives.

The standard way to access data in memories is based on utilizing dedicated in-
put/output ports. However, this action presents certain limitations, such as the need for
memory controllers, bus interfaces or auxiliary memories and limiting memory access
during its use. An alternative to this is the use of the FPGA’s bitstream [2]. The bitstream
is a file whose content is stored in the configuration memory. This content involves the
device’s configuration parameters, such as the resources used and their interconnection,
initialization values and configuration options. It also includes (or can include) the initial
data content of both BRAM and distributed memories. Nevertheless, working with the
bitstream can be a tedious task because of the limited information about the bitstream
structure released by vendors. In that sense, as [3] describes, several studies have carried
out reverse engineering strategies to increase the knowledge about the bitstream.

The main contribution of this work consists of utilizing bitstream to manage memory
content. This approach provides benefits that could improve existing designs and enables
new paths for several applications, such as data management, fault tolerance or security [4,5].
For instance, in the case of memories implemented as ROMs (widely utilized as pro-
gram memories in soft-core processors), this approach offers an alternative way to carry
out several applications, such as detecting errors by comparing the content of different
instances of memories implemented in a hardware redundancy fault tolerance scheme,
updating/repairing the program and data memories of soft-core processors, synchronizing
the context in a processor redundancy system [6], etc. Another specific example that makes
an interesting approach based on utilizing the bitstream is the case of a faulty interface of a
memory resource, for instance, damaged by an induced fault [7]. If this occurs, the error
can disable or affect significant ports, provoking permanent malfunction in the memory,
which can be critical if the memory contains relevant information (especially if it has not
been hardened). A bitstream-based approach can provide a solution in such unlikely but
possible scenarios. In all those cases, and many other possible applications, one of the
key advantages of this kind of approach is the reduction of hardware overhead, which
usually implies lower power consumption, less logic susceptible to induced faults and
higher availability and reliability.

Nevertheless, its main drawback is the time demand related to the reconfiguration pro-
cess. In addition, managing data via the bitstream for BRAM or distributed memories requires
specific methodologies and is a platform-dependent strategy. While the data management
for BRAM memories of the Xilinx 7 series was addressed in [8], a scarcity of investigations
around distributed memories in such technology has been detected.

Bearing in mind the potential benefits that can be obtained with this strategy, this
work proposes a novel methodology to manage the data content of distributed memories
by utilizing the bitstream. This proposed methodology includes two design flows that
enable this management to be carried out in a straightforward fashion. While the first
design flow permits the protection or unprotection of partial reconfigurable regions against
overwriting in order to be able to choose which regions are to be affected by the restore
signal, the second flow provides an easy way to generate homogeneous implementations
of a design in different reconfigurable regions, making the data processing much simpler.

The remainder of this document is structured as follows. Section 2 surveys the existing
approaches related to the management of distributed memory through the bitstream. Next,
Section 3 introduces the proposed methodology in detail, including the two proposed
design flows. Validations and practical results are presented in Section 4, and finally, Section 5
outlines the conclusions and future work.

Electronics 2023, 12, 102 3 of 17

2. Existing Approaches

Managing user data content through the bitstream is a technology-dependent proce-
dure that requires a deep knowledge of the structure of both the bitstream and the target
FPGA device. While devices from the 7 series from Xilinx share the majority of the characteris-
tics of the bitstream structure, there are differences with previous model families. Despite the
fact that, in several cases, the flows and the main ideas can be adapted to different devices,
the developed approaches are commonly related to a particular FPGA vendor, a particular
FPGA series or even to a particular device. The lines below present the most significant
works that deal with data management through the bitstream, focusing on the data content
of distributed memories of Xilinx devices.

Jbits [9] is one of the first tools reported to be able to modify the bitstream, including
the data content. It consists of a set of Java classes that provides an application program
interface into the configuration bitstream for XC4000 and Virtex families from Xilinx, and it
does not require additional hardware structures. Nevertheless, it has limited efficiency since it
needs to read the entire bitstream, while the user data only uses a relatively small percentage
of it. This tool became obsolete, and it is not suitable for 7 series devices. Similarly, in [10],
the extraction and reconstruction of the status bits from the bitstream were successfully
achieved for the same device. Although the proposed method was an interesting advance
at the time, it is not applicable to modern devices either. Ref. [11] is another example of
obtaining information through the bitstream of older Xilinx devices. However, this method
of extracting target information only functions for look-up tables (LUTs).

In [12], a step forward toward bitstream-based data management was presented. This
approach focuses on saving and relocating the context of a soft-core processor by extracting
(and writing back once processed) the bitstream through the SelectMAP interface. In this
process, the entire configuration data are not read back, but only the frames that contain
the target information. In [13], a similar approach proposing a partial displacement defrag-
mentation algorithm for heterogeneous reconfigurable systems was presented. However,
these approaches are limited to one-dimensional partial reconfiguration of FPGA families
from Xilinx. Hence, they cannot be utilized in the newest devices. In addition, they require
high processing effort and the use of tools, such as a configuration manager, the PARTBIT
software and the REPLICA filter, to manage a complex database to store the placement of
each data bit.

Later works, which tackle newer Xilinx devices, provide support for the case of two-
dimensional partial reconfiguration. The approach presented in [14] develops the capacity
of capturing, storing and copying the content of flip-flops within a Virtex-V FPGA device
on a particular reconfigurable region by utilizing the bitstream in combination with the
STARTUP_VIRTEX5 primitive, the RECAPTURE commands and the ICAP interface. The ICAP
interface is a point-to-point connection between the ICAP (Internal Configuration Access
Port) primitive and the SEM (Soft Error Mitigation) Controller. In a further approach [15],
this approach was extended to enable copying the content of flip-flops between heteroge-
neous reconfigurable regions by processing the captured bitstreams. To determine which
reconfigurable region is about to be targeted, both works follow the strategy depicted
in Figure 1 to protect/unprotect against overwriting. Since the entire FPGA design is
unprotected (open padlocks) by default, in the first step, the entire FPGA design has to
be protected. When the context needs to be saved, the target region has to be protected
(closed padlock) before capturing the data. This protection is carried out by including specific
commands in the partial bitstream. After capturing the data, the target region can optionally
be protected. In any case, before restoring the context, the target region has to be unprotected.
After finishing context saving/restoring processes, the target region can be protected in order
to avoid undesired changes in future startup sequences. In [16], the same authors presented
an implementation of preemptive hardware multitasking for partially reconfigurable FPGAs
that enables configuration prefetching and reuse. This approach, based on their previous
works, reduces configuration overheads, improving the system performance.

Electronics 2023, 12, 102 4 of 17

Protect
entire FPGA

Un-protect
target region

Protect
target region

Initially unprotected
FPGA

target region target region target region target region

Capture/
Restore

Figure 1. Flow chart of an FPGA protection and the unprotective alternative.

In general, these first developed approaches to manage the registers’ content via bit-
stream present some common drawbacks. First, they are not suitable for modern devices
because they are architecture-dependent. In addition, they require complex external con-
troller devices and memories, and they provide low availability due to the time demand of
the reconfiguration. Another limitation of these approaches is that they require the CRC
(Cyclic Redundancy Check) feature of the generated bitstream to be disabled. Hence, the
utilization of the CRC feature would require the generation of a new CRC value, which
requires high processing effort [17].

Regarding the bitstream manipulation of newer devices, such as the 7 series from Xilinx,
some studies, such as [18,19], have been published. Nevertheless, these approaches target
the logic structure of the device without focusing on the registers’ content. More recent
works provide high-level design tools that enable bitstream manipulation to manage user
data content in a more precise manner. For instance, Ref. [20] is a remarkable tool that
enables data of LUTs, CLBs and BRAMs to be managed through the bitstream. It also offers
flexibility since it can be used as a standalone solution (running a Linux-based application
in the ARM of the ZYNQ) or in Windows machines. However, since this is a high-level
approach with complex software processing, it is a time-consuming solution (in the range
of seconds). Although [21] is another newer interesting example, in this case, only the
BRAM content has been targeted.

Table 1 summarizes the presented approaches. In order to target the detected gap, the
work presented in this manuscript proposes a low-level standalone alternative, which con-
sists of different design flows, that allows registers’ content management to be performed
through the bitstream in an autonomous way and a straightforward fashion. Although this
methodology is based on the ZYNQ device, it is adaptable to other 7 series devices from
Xilinx, with which it shares resources and bitstream features.

Table 1. Summary of the existing approaches that deal with user data content management through
the bitstream for Xilinx devices.

Approach Year Target Devices Target Resources Used Key Resources Standalone

Jbits [9] 1999 XC4000 Virtex Registers LUTs
Routing Java software No

Multitasking on FPGA
Coprocessors [10] 2000 XC4000 Virtex Registers Internal

memory
uEnable coprocessor Xilinx
XC4028EX SRAM memory No

Context Saving and Restoring
for Multitasking in
Reconfigurable Systems [12]

2005 Virtex Registers BRAMs
PARTBIT tool REPLICA filter
SelectMAP interface Database
entry

No

Relocation and
Defragmentation for
Heterogeneous
Reconfigurable Systems [13]

2006 Virtex-II/Pro Registers BRAMs
REPLICA 2Pro Filter
SelectMAP interface Database
entry

No

On-Chip Context Save and
Restore of Hardware Tasks on
Partially Reconfigurable
FPGAs [14]

2013 Virtex-V Registers
Microblaze Linux software
ICAP interface SDRAM
memory

Yes

Electronics 2023, 12, 102 5 of 17

Table 1. Cont.

Approach Year Target Devices Target Resources Used Key Resources Standalone

HTR [15] 2013 Virtex-V Registers Microblaze Linux software
ICAP interface Yes

Configuration Prefetching
and Reuse for Preemptive
Hardware Multitasking on
Partially Reconfigurable
FPGAs [16]

2016 Virtex-V Registers BRAMs Microblaze Linux software
ICAP interface Yes

RePaBit [18] 2016 ZYNQ Entire design Xilinx Vivado No

ZUCL [19] 2018 ZYNQ UltraScale+ Entire design Linux PCAP interface Yes

Fast Logic Function
Extraction of LUT from
Bitstream in Xilinx FPGA [11]

2020 Spartan-III Virtex-V LUTs Xilinx ISE No

BITMAN [20] 2021
Virtex-VI 7 series
UltraScale
UltraScale+

Registers BRAMs Windows/Linux
PCAP/ICAP interface Yes

XBERT [21] 2021 ZYNQ UltraScale+ BRAMs Xilinx Vivado checkpoint file
PCAP interface No

3. Description of the Proposed Approach

Since the developed methodology to access and manage data content of distributed
memory via bitstream is based on 7 series devices from Xilinx, studying several relevant
aspects related to flip-flops and flip-flop/latches (that can be configured as either flip-flops
or latches) is required. For this reason, the most remarkable details are summarized in the
following lines.

Each flip-flop of 7 series devices provides SRHIGH/SRLOW (SRVAL) and INIT0/INIT1
(INIT) options [22]. Determined by the HDL (Hardware Description Language) design, each
option and its value is configured and stored in the bitstream. The example from Figure 2
shows a VHDL (VHSIC Hardware Description Language) code for a flip-flop where both INIT
and SRVAL values can be determined. While SRVAL values are controlled by the local SR
control signal, INIT values are mainly utilized during the initialization after reconfiguration.
However, INIT values can be updated by performing a context capture.

signal Q: std_logic:='1';
.......
process (CLK)
begin
 if (CLK'event and CLK='1') then
 if (RST='1') then
 Q <= '0';
 else
 Q <= INPUT_D;
 end if;
 endif;
end process;

INIT (INIT1 option)

SRVAL (SRLOW option)

Figure 2. VHDL code example of a flip-flop with INIT and SRVAL values.

The CAPTUREE2 primitive [23] is a key tool from Xilinx for 7 series devices, which
offers the possibility of capturing the state of user registers and storing it in the configura-
tion memory by loading the GCAPTURE command. An alternative to the utilization of the
CAPTUREE2 primitive is to load the GCAPTURE command in the CMD (command) register of
the bitstream. Thanks to this, current register (flip-flop and latch) values can be stored in the
configuration memory by triggering the CAP input from this primitive. These register values
are stored in the same configuration memory cell that programs the init state configuration

Electronics 2023, 12, 102 6 of 17

of registers (INIT values). These register values can be read from the device along with all
other configuration memory contents by using the readback function. To take advantage of
the CAPTUREE2 primitive, it is necessary to previously know the location of each data bit in
the bitstream. The most straightforward way to obtain this information is to use Xilinx’s
software (Vivado, ISE, etc.) to generate the logic location text file (*.ll).

STARTUPE2 is the other key primitive that features an interface that relates the user
logic resources with the status signal and the configuration logic control. This primitive can
be utilized in an implementation to obtain user control over certain selected configuration
signals during the operation. A relevant port of this primitive is the GSR (Global Set/Reset).
The GSR resets the device by driving the GRESTORE command. This active high-input port
leads an asynchronous set/reset signal that enables CLB/IO flip-flops and DSP (Digital
Signal Processor) registers of the entire device in their initial state to be initialized. The
initialization values of flip-flops are determined by the INIT0/INIT1 options defined in
the bitstream. Furthermore, INIT values can be updated with actual values of registers via
the GCAPTURE command. A remarkable aspect of the utilization of the GSR signal is that it
does not require general-purpose routing. Considering that the skew and release processes
are performed asynchronously, some flip-flops may be released in different clock cycles,
causing metastable events. For this reason, it is advisable to stop the clock before asserting
the GSR signal, to wait until it spreads across the entire device and to tightly cluster all the
registers in order to minimize the path length.

The developed approach to managing data content via bitstream follows these pre-
sented ideas. First, both GCAPTURE and STARTUPE2 primitives have to be included in the
design. Then, the functionality of both primitives can be controlled by the processing system
of the ZYNQ via the EMIO interface. After the target design has been developed, the partial
bitstreams of the reconfigurable modules to be managed have to be generated, enabling the
.ll location file option (and, depending on the case, also the RESET_AFTER_RECONFIG=TRUE
property). Then, the generated partial bitstreams and the .ll file have to be analyzed to-
gether (for example, with a .HEX editor) in order to determine the location of the target
data bits. With the obtained data, an application to be used by the processing system has to
be programmed, enabling the management of the data content bits. Since the functionality
of the application depends on the target design, it has to be specifically programmed to
fit the specifications needed. This application will use the PCAP (Processor Configuration
Access Port) interface to read back the bitstream with the content of the source registers and
download the modified bitstream with the content for the target registers. The developed
application will be able to: control the GCAPTURE command to copy the data content of
the registers in the partial bitstream, process the data and generate new partial bitstreams
with the specific data content, download the generated partial bitstreams and control the
GRESTORE command to load the data content stored in the partial bitstream to the device.

The proposed methodology includes two key flows to extend its functionality and
to provide a straightforward and standalone data management process. While the first
deals with the protection/unprotection against overwriting partial regions in 7 series, the
second allows the generation of homogeneous implementations of a design in different
reconfigurable regions in a straightforward fashion and without affecting efficiency. Both
flows are discussed in the following lines.

3.1. Flow to Protect/Unprotect Partial Regions against Overwriting

A limitation of the CAPTUREE2 primitive is that it stores the content of the entire device
in the configuration memory, even when only registers of certain reconfigurable areas are
intended to be captured. Hence, the information of the rest of the registers, which should
remain unchanged, would also be updated. To solve this problem, the resources of the
reconfigurable region that must remain unchanged have to be protected by setting certain
bits of the bitstream. This process requires a complex bitstream modification process that
demands the knowledge of the location of certain specific command words. To overcome
those issues, this work proposes a design flow that allows the protection or unprotection

Electronics 2023, 12, 102 7 of 17

of the desired reconfigurable regions by performing straightforward modifications of
partial bitstreams.

In [14,15], a method that carried out the protection/unprotection of Virtex-V de-
vices was introduced. However, this method is not valid for the newer 7 series devices
because, unlike Virtex-V devices, Xilinx has not released any information about protec-
tion/unprotection bits of the 7 series.

The only alternative available to the existing methods is to capture and restore the content
of all the registers in the device. Thus, when to read/write data from/to particular areas
is needed, as Figure 3 depicts, context saving and restoring requires a relatively tedious
process. First, the state of all registers has to be captured. In an initial state, the bitstream
contains the INIT values predefined in the VHDL. In the case of triggering the capture signal
without protecting any region, the content of all flip-flops is stored in specific locations of the
bitstream. Hence, the data of the target region has to be extracted from the entire bitstream
and saved in an external memory, which requires using and processing the information
from the previously generated logic location text file (*.ll). To avoid overwriting the current
value of the rest of flip-flops, it is necessary to capture their context and merge it with the
previously stored one. Then, the created partial bitstream can be downloaded to the FPGA
updating the content of the flip-flops memory loaded by triggering the GSR signal. This
method is a complex and time-demanding process since it requires several operations in
each context saving/restoring action. In addition, it requires external memory and complex
customized software for processing the bitstream.

Bitstream

Context A
(Main Reg.)

External Mem.

Capture

Save

Bitstream

Context A
(Main Reg.)

Target Region
(INIT Values)

Main Region
(INIT Values)

Main Region
(Context A)

Target Region
(Context A)

Context A
(Target)

(a)

Bitstream External Mem.

Capture

Download
Bitstream

Bitstream

Context A
(Main Reg.)

Main Region
(Context A)

Target Region
(Context A)

Main Region
(Context B)

Target Region
(Context B)

Context A
(Target)

Bitstream

Context A
(Main Reg.)

Main Region
(Context B)

Target Region
(Context A)

Toggle
GSR

(b)

Figure 3. Context save (a) and restore (b) approach for 7 series devices with external memory.

To circumvent this problem, a novel design flow that enables the unprotection of
as many reconfigurable regions as desired, keeping the rest of the design protected, is
proposed. It also avoids the need to save data from other non-protected regions. Inspired
by an idea suggested in [16], the developed method enables the reading and writing of
registers’ data of a particular region without affecting the rest of the device thanks to the
RESET_AFTER_RECONFIG=TRUE [24] property. This can be used with 7 series devices to imple-
ment partially reconfigurable modules in order to avoid manual unprotection/protection
actions. When implementing partially reconfigurable designs with this property in 7 series
(for UltraScale devices is always enabled), the partial bitstream created by Vivado contains
the commands to protect the rest of the device (including the static and the rest of the
partial regions), keeping the actual partial region unprotected. Hence, this property enables
protecting a particular partial region in a simpler manner. Nevertheless, as Figure 4 shows,

Electronics 2023, 12, 102 8 of 17

this method can only unprotect (open padlock) a single partial region at once. As it can be
observed, every downloaded partial bitstream unprotects the reconfigurable target module
and protects (closed padlock) the rest of the device, even if the partial reconfigurable
module has been previously unprotected. Thus, there is no way to unprotect more than
one partial region from the same device.

FPGA

PBLOCK_B

STATIC1AREA

PBLOCK_A
EMPTY1DESIGN

PBLOCK_B

STATIC1AREA

PBLOCK_A PBLOCK_B

STATIC1AREA

PBLOCK_A

FPGA FPGA FPGA

Complete1
Bitstream

A1Partial1
Bitstream

B1Partial
Bitstream

01010110000101
10101011011110
10101010010101

01010110000101
10101011011110
10101010010101

01010110000101
10101011011110
10101010010101

RESET_AFTER_RECONFIG=TRUE RESET_AFTER_RECONFIG=TRUE

Figure 4. Effect of the RESET_AFTER_RECONFIG=TRUE property in FPGA protection.

With the aim of solving the issue of unprotecting more than a single partial region in
7 series devices, a novel design flow has been developed in this work. As a first step, two
reconfigurable regions (PblockA and PblockB) have been implemented. In this process, PblockA
has been implemented by applying the RESET_AFTER_RECONFIG property, while PblockB has
been implemented without this option. After that, both generated partial bitstreams were
analyzed. For this task, a .HEX file editor has been utilized thoroughly, comparing the
content (data words in hexadecimal notation) of both partial bitstreams. This comparison
has shown remarkable differences in the content of both bitstreams, making it difficult to
identify special bits or command words utilized to perform the protection/unprotection of
the reconfigurable region. However, after further analysis and several tests performed by
loading modified partial bitstreams and checking the result in the implemented hardware,
a special word in the 51st position of the frame with a particular content (0xE00009BC) has
been observed through the partial bitstream. Afterward, a new comparison was performed
to detect discrepancies in the 0xE00009BC special word. The comparison results indicate
that only two 0xE00009BC words appear in partial bitstream A and do not appear in partial
bitstream B. Hence, it has been initially assumed that these two words were the protection
words for reconfigurable region B. In this way, different tests have been carried out by
modifying the partial bitstream of PblockA, downloading it and performing physical tests.
After testing two distinct implementations per clock region and column of registers (28 in
total) of the Zynq device, it has been concluded that erasing one of both special words has
an effective protecting/unprotecting effect on the partial bitstreams.

Using this information, the flow described in Figure 5 has been developed. It uses the
RESET_AFTER_RECONFIG=TRUE property in combination with the edition of the partial bit-
stream as a straightforward method to protect or unprotect as many partially reconfigurable
modules as desired. Despite the fact that this flow can be used for several reconfigurable
blocks, for the sake of simplicity, only two blocks (PblockA and PblockB) are targeted in
this case. As described in Figure 5, the flow consists of four steps:

1. A design that includes the two reconfigurable regions (PblockA and PblockB) has to be
implemented by generating the complete bitstream and the two partial bitstreams.
One of the partial bitstreams (partial bitstream A in this example) has to be generated,
including the RESET_AFTER_RECONFIG property.

2. Once both partial bitstreams have been generated, the one generated without the
RESET_AFTER_RECONFIG property (partial bitstream B in this case) has to be edited by
erasing the proper 0xE00009BC word and stored.

3. Download the complete bitstream to the device.
4. The newly created partial bitstream has to be loaded to protect/unprotect the desired

partial regions.

Electronics 2023, 12, 102 9 of 17

VHDL0design0in0Vivado

STATIC0AREA

P
B

LO
C

K
_A

P
B

LO
C

K
_B

Complete0
Bitstream

01010110000101
10101011011110
10101010010101

A0Partial0
Bitstream

01010110000101
10101011011110
10101010010101

RESET_AFTER_RECONFIG

B0Partial
Bitstream

01010110000101
10101011011110
10101010010101

Generate
Bitstream

9DPRM

Edit0Bitstream
9Erase00xE00009BC0M

Edited
Bitstream

01010110000101
10101011011110
10101010010101

FPGA

PBLOCK_B

STATIC0AREA

PBLOCK_A
EMPTY0DESIGN

PBLOCK_B

STATIC0AREA

PBLOCK_A

FPGA FPGA

Complete0
Bitstream

01010110000101
10101011011110
10101010010101

Edited
Bitstream

01010110000101
10101011011110
10101010010101

Figure 5. Approach to unprotect several regions in 7 series devices based on the RESET_AFTER_RECONFIG
property.

Once the partial regions have been unprotected, the content of the registers of the
unprotected regions can be easily read and written by means of the GCAPTURE and the
GRESTORE, respectively, without affecting the protected regions. When using the RESET _AF-
TER_RECONFIG property, it is advisable to use the SNAPPING_MODE constraint to automatically
create legal reconfigurable blocks. This method, combined with bitstream processing, enables
the altering of register data, i.e., copying data content from one register to another.

The main benefit of this method is its high speed, especially when capturing and restor-
ing the context because both GCAPTURE and GRESTORE operations are not time-consuming
processes. Thus, the time requirements are related to the time needed by the GSR signal to
spread across the partially reconfigurable circuit, which is design-dependent. In addition,
this approach enables both capturing and restoring of the context without the need of
additional elements of external memories or logical resources to be performed.

A drawback of this approach is the need to implement partially reconfigurable blocks.
When using the RESET_AFTER_RECONFIG=TRUE property, the partially reconfigurable mod-
ule’s height must align to clock region boundaries, which means occupying an entire
column of resources (there is no block width restriction). Further, if the XADC component
is used, its interface access will be blocked during the partial reconfiguration. Another
disadvantage of the use of the RESET_AFTER_RECONFIG=TRUE property is that, since the
partial bitstream created contains the commands to protect the rest of the device and to
unprotect the partial region, the size of the bitstream file increases.

Another potential limitation when using approaches that use partial reconfiguration
is the reduction of the maximum achievable operating frequency of the design. Although
two identical designs, one static and another reconfigurable, can be logically exactly equal
from an RTL (Register-Transfer Level) description point of view, the way both are synthe-
sized and implemented differs. The partial reconfiguration flow demands the synthesis
of reconfigurable modules to guarantee that logical interfaces between static and recon-
figurable partitions remain fixed. This limits cross-boundary optimizations. However, if

Electronics 2023, 12, 102 10 of 17

the implementation is already designed as partially reconfigurable; this issue would not
be relevant.

3.2. Location Constraint Flow: Generate Homogeneous Implementations of a Design in Different
Reconfigurable Regions

When reading and writing user data from one memory block to another, two main
cases can be found: homogeneous and heterogeneous implementations. While homoge-
neous designs share the main characteristics, such as size, shape and used resources (with
equivalent fabric locations), heterogeneous modules support distinct features due to the
usage of different resources, placements and granularity levels.

One of the biggest drawbacks of utilizing a bitstream-based strategy to manage the
content of registers from one reconfigurable region to others is the required processing
effort, which is significantly lower in the case of being homogeneous. This is because
homogeneous designs require much simpler bitstream manipulations in order to relocate
data. This aspect gains relevance in designs with a significant amount of registers, such as
soft-core processors.

Even using the same HDL design for different reconfigurable blocks, due to the
resource placement freedom of implementation tools, they create a heterogeneous im-
plementation of each block. The simplest existing alternative to generate homogeneous
implementations is to place all the resources of each instance manually in the same cus-
tom positions of each resource column utilized by the different reconfigurable regions. In
designs with high resource usage, this task can be time demanding and require a high
design effort. However, worse still is the fact that using this strategy requires deep design
knowledge in order to obtain a proper implementation. Bearing in mind the advanced
algorithms utilized by Vivado’s implementation tools, it is highly unlikely that a designer
could obtain such an efficient implementation as Vivado.

In order to overcome those drawbacks, this section presents the developed design
flow to obtain homogeneous implementations of a particular HDL design in distinct
reconfigurable regions without affecting the optimized design generated by the synthesis
software, which, for the sake of simplicity, will be referred to it as Location Constraints Flow.
This flow is based on utilizing the resource placement of one of the instances generated by
Vivado to place the resources of the rest of the instances. Thanks to it, it is possible to obtain
alike implementations in different regions for each design, placing each resource in the
same positions of different columns (reconfigurable regions). A remarkable benefit of this
approach is that it allows the copying process to be performed by copying entire bitstream
portions and using a significantly simpler relocation process, and avoiding the need for
data merging. Hence, it considerably simplifies the data copying program and minimizes
performance penalties. This flow is specifically interesting in some designs that make use
of hardware redundancy strategies, such as TMR (Triple Modular Redundancy) [25,26]. As
described in Figure 6, it consists of several steps:

1.PImplement
design

P2.PGenerate
 .xdcPfile

3.PUnplace
design

4.PEditP
constraints

script

6.PRoutePdesign
&

WritePbitstream
5.PPlacePdesign

Figure 6. Flow chart of the Location Constraints Flow.

1. Implement the previously synthesized design. This results in an implementation with
the resource placement of each instance, making it possible to take advantage of the
optimized implementation generated by Vivado.

2. Use the placement of one of the instances as a reference to generate new placements
for the rest. This can be performed by using the write_xdc TCL command, which
generates a .xdc file that specifies the cells utilized by each resource, providing a
detailed list that contains the placement of all resources utilized by each instance.

Electronics 2023, 12, 102 11 of 17

3. Unplace all resources to avoid the possibility of relocating a resource to a location
occupied by another resource from the original implementation. For this task, a script
can be created using the unplace_cell TCL command combined with the information
from the .xdc file.

4. Once the resources have been unplaced, they have to be placed again based on
the locations of the reference instance following the same TCL script-based strategy.
Nevertheless, in this case, it is necessary to specify the new locations to the place_cell
command. This can be carried out in a straightforward fashion aided by a basic text
editor by simply changing the number of columns (X coordinate) of each SLICE from
the reference instance.

5. After placing the resources, the route_design and write_bitstream commands can
be executed to obtain the complete and the partial bitstreams.

6. Download the design completed to the FPGA.

Thanks to the proposed Location Constraints Flow, an implementation with a proper
placement can be obtained with minimal design costs, preserving the implementation tool’s
efficiency and barely affecting performance when compared with an unconstrained design.

4. Experimental Setup and Physical Validation

An experimental setup has been designed for physical validation purposes, evaluating
aspects, such as the impact on resource overhead, effects in terms of performance penalty,
availability and functionality. A ZedBoard development board from AVNET, which in-
cludes a Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 device, has been used for this task.
The software utilized to develop and implement the different FPGA designs is Vivado
Design Suite (2018.2).

The validation of the proposed flows has been performed through several tests. Many
of these tests have been performed during the developing process of the technique. A sim-
plified block diagram of the validation setup used for the design’s development and
validation is shown in Figure 7. Non-essential elements have been avoided to elude any
possible impact on the bitstream’s content and structure. Initially, a very simple scheme
has been designed by implementing two 8-bit registers in different reconfigurable areas.
Reset ports of the two 8-bit register modules are managed by the processing system via the
EMIO interface. The processing system also controls the CAP and GSR ports from CAPTUREE2
and STARTUPE2 primitives, respectively. With the aim of keeping simplicity and a faithful
physical reading, the data input and output ports are connected directly to ZedBoard’s
switches and LEDs (Light-Emitting Diodes), respectively. The switch connected to the first
data bit also controls the multiplexer, providing the possibility of visualizing the connection
between both registers in real-time. The bitstream is readback from the FPGA, combining
the PCAP and the processing system, and stored in the DDR memory. The content of INIT
values is obtained from the previously generated .ll file. The identification of the location
of the flip-flop’s content has been carried out by utilizing a text editor.

Processing
System

EMIO
Interface

Datauin
Reset
Enable

Reg1

Regu2
Datauin
Reset
Enable

STARTUPEE2

CAPTUPEE2

MUX
Output
LEDs

Pblocku0

Pblocku1

Figure 7. Block diagram of the validation setup.

Electronics 2023, 12, 102 12 of 17

In the first validation step, the functionality of GRESTORE and GCAPTURE commands
have been checked in a non-reconfigurable design with successful results. In addition,
several data content copying experiments have been conducted with this setup. The basis of
these tests has been a basic procedure: first, as Figure 8 shows, specific placement constraints
have been used in order to utilize the same flip-flops of different resource columns for both
registers. As shown in Figure 9, in which segments of .ll files are represented, it has been
confirmed that the same structures (same frame offsets) are contained in the bitstream for
the data of both registers, differing only in the FARs (Frame Address Registers). Utilizing
this information, the content of one register has been copied to the other, with the bitstream
confirming the viability of the proposed approach.

Figure 8. Device image of the design with placement constraints from Vivado.

REGISTER_A
LLLL<offset>L<FAR>LLLLLL<frameLoffset>L<information>
BitLD598[[7]LUxUU7U[[DfLL]LLLLLLLLLLLLLBlock=SLICE_XDU6Y5ULLatch=AQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[U]
BitLD598[[77LUxUU7U[[DfLL7LLLLLLLLLLLLLBlock=SLICE_XDU7Y5ULLatch=AQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[7]
BitLD598[[68LUxUU7U[[DfLL[8LLLLLLLLLLLLBlock=SLICE_XDU6Y5ULLatch=BQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[D]
BitLD598[[69LUxUU7U[[DfLL[9LLLLLLLLLLLLBlock=SLICE_XDU7Y5ULLatch=BQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[5]
BitLD598[[7]LUxUU7U[[DfLL]]LLLLLLLLLLLLBlock=SLICE_XDU6Y5ULLatch=CQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[[]
BitLD598[[77LUxUU7U[[DfLL]7LLLLLLLLLLLLBlock=SLICE_XDU7Y5ULLatch=CQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[6]
BitLD598[[98LUxUU7U[[DfLL58LLLLLLLLLLLLBlock=SLICE_XDU6Y5ULLatch=DQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[]]
BitLD598[[99LUxUU7U[[DfLL59LLLLLLLLLLLLBlock=SLICE_XDU7Y5ULLatch=DQLNet=Two_regs_ibreg8_black_box_UbUUbinstbo_Data[7]

REGISTER_B
BitL[7[75555LUxUU7[[[DfLL]LLLLLLLLLLLLLBlock=SLICE_XDU6YULLatch=AQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[U]
BitL[7[75556LUxUU7[[[DfLL7LLLLLLLLLLLLLBlock=SLICE_XDU7YULLatch=AQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[7]
BitL[7[7558ULUxUU7[[[DfLL[8LLLLLLLLLLLLBlock=SLICE_XDU6YULLatch=BQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[D]
BitL[7[7558DLUxUU7[[[DfLL[9LLLLLLLLLLLLBlock=SLICE_XDU7YULLatch=BQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[5]
BitL[7[75585LUxUU7[[[DfLL]]LLLLLLLLLLLLBlock=SLICE_XDU6YULLatch=CQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[[]
BitL[7[75586LUxUU7[[[DfLL]7LLLLLLLLLLLLBlock=SLICE_XDU7YULLatch=CQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[6]
BitL[7[756DULUxUU7[[[DfLL58LLLLLLLLLLLLBlock=SLICE_XDU6YULLatch=DQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[]]
BitL[7[756DDLUxUU7[[[DfLL59LLLLLLLLLLLLBlock=SLICE_XDU7YULLatch=DQLLNet=Two_regs_ibreg8_black_box_DbUUbinstbo_Data[7]

Figure 9. Fragment of the .ll file from the design with placement constraints.

After, one of the registers has been implemented as a reconfigurable module enabling the
RESET_AFTER_RECONFIG=TRUE property, keeping the other register and the rest of the design in
the static region. In this case, the combination of the information extracted from read bitstreams,
the .ll file and LEDs has proven that the utilization of the RESET_AFTER_RECONFIG=TRUE prop-
erty protects the static area from the effect of the GCAPTURE command. In addition, it has
been demonstrated that when generating bitstreams, the size of the bitstream considerably
increases by enabling the RESET_AFTER_RECONFIG=TRUE property. In this example, in par-
ticular, it has been observed that while the size of a regular .bit file is 88.492 bytes, the size
of a .bit file generated by the RESET_AFTER_RECONFIG=TRUE property is 240.108 bytes. As
a consequence, an increase of 271.3% in the size of the bitstream has been detected. The
main reason for this elevated percentage is that considering the small size of the partial
bitstream, the instructions added to the bitstream to protect the reconfigurable region
imply a significant data overhead. In larger reconfigurable designs, the impact of these

Electronics 2023, 12, 102 13 of 17

instructions would be lower since the added instruction would represent a small data
proportion of the entire bitstream. For instance, in a further test carried out with a larger
design (the instance of the soft-core processor presented in the following validation), the
increase in the size of the bitstream goes from 365.792 to 482.144 bytes, which implies an
increase of 131.56%. Although this size increase in the bitstream usually does not suppose
a remarkable drawback, in some cases, this is an aspect that could be relevant due to the
effect of the size of the bitstream on the storage requirements and in the time necessary to
program the device.

In a further step, the proposed Flow to Protect/Unprotect Partial Regions by editing the
partial bitstream has been validated. In this case, both registers have been implemented
in each reconfigurable Pblock. After editing one of the generated partial bitstreams by
erasing the proper 0xE00009BC special words, it has been downloaded so as to reconfigure
the FPGA. The information provided by the LEDs and bitstream readbacks in different
GCAPTURE and GRESTORE tests have successfully demonstrated that both reconfigurable
regions are unprotected while the static region remains protected.

Next, the Location Constraints Flow has been validated. In this case, a TMR design
with three instances of a PICDiY soft-core processor [27] has been implemented in three
reconfigurable regions (Pblock0, Pblock1 and Pblock2). In this first implementation, all
resources of each instance have been freely placed by the tool. Thus, as can be observed in
Figure 10 obtained from the device diagram of Vivado, the three resultant implementations
have presented distinct placements. Afterward, the Location Constraints Flow was utilized
to generate three alike implementations (selecting Pblock0 as a reference). As can be
observed in Figure 11, the resource placement of the three entities within three Pblocks
has homogeneous architecture. In a similar way, the generated partial bitstreams of the
three Pblocks have been compared in order to check if the location of data bits within the
bitstream is the same. Furthermore, as Tables 2 and 3 demonstrate, the resource usage of
both implementations is almost the same. Table 2 also confirms that the proposed design
flow does not affect the implementation in terms of power consumption and maximum
operation frequency. Further tests carried out on both implementations (with and without
placement constraints) have demonstrated analogous results in terms of functionality.

Figure 10. Device image from Vivado of a TMR design without placement constraints.

Electronics 2023, 12, 102 14 of 17

Figure 11. Device image from Vivado of a TMR design after using the placement constraints flow.

Table 2. Implementation results of a TMR implementation with and without placement constraints
(@60 MHz).

Resource Bitstream Bitstream w/Place

Slice LUTs 678 679
Slice Registers 187 187
F7 Muxes 3 3
Block RAM Tile 3 3

fmax (MHz) 80 80

Dynamic p. (W) 1.668 1.668
Static p. (W) 0.161 0.161

Table 3. Primitive utilization of a reconfigurable TMR implementation with and without placement
constraints (@60 MHz).

Resource Bitstream Bitstream w/Place

FDRE 181 181
FDSE 6 6
CARRY4 24 24
LUT1 3 3
LUT2 90 90
LUT3 47 47
LUT4 55 55
LUT5 109 109
LUT6 405 405
MUXF7 3 3
RAMB18E1 6 6
RAMS32 21 21
CAPTUREE2 1 1
STARTUPE2 1 1
PS7 1 1
PLLE2_ADV 1 1

Electronics 2023, 12, 102 15 of 17

In the final step, several registers’ content-copying tests between the different instances
of the TMR design was carried out. After using the Location Constraints Flow, to obtain three
equal instances of the processor and protecting/unprotecting the required reconfigurable
regions, the processing system of the ZYNQ has been used by running a specific programmed
application to copy the registers’ data content of one of the instances of the soft-core processor
to the rest. The tests performed have proved that, thanks to the developed methodology,
the data content of complex designs can be read, written and copied by using the bitstream,
with a negligible effect, on both hardware overhead and performance penalty.

In addition, these tests have highlighted that the use of the bitstream to manage
the data content of registers comes with the drawback of demanding a large amount of
execution time. For example, in the case of copying data content from one of the instances
of the soft-core processor to the other two, the process takes about 10 ms. The main reason
for this time demand resides in the bitstream reading, manipulation and transferring
processes. Hence, this time demand depends on the characteristics of each design, such as
the number and type of implemented registers, their distribution, required data processing
type, speed of the reconfiguration port, etc. In the presented example, considering the size of
the bitstream, the amount of data to be processed is considerable. In addition, the program
used to execute these processes utilizes general Xilinx functions, and it is not optimized for
this specific application. For instance, the bitstream reading is performed frame by frame,
and consequently, it affects the overall processing time of the proposed method. Therefore,
the optimization of the functions to read more than one frame at once (i.e., bulk read)
could make the technique faster. Another aspect that limits the speed of the approaches
is the limited speed of the configuration port. An alternative in this direction could be
exploring the capabilities provided by the reconfiguration controllers proposed in [28,29].
Thus, depending on several aspects, such as the size of the design, the location of resources,
the processing power of the processor and the application executed, distinct timing results
can be obtained. Hence, to obtain adequate results for particular designs, it is advisable to
perform a specific timing analysis for each case.

5. Conclusions and Future Work

This work proposes a new straightforward and standalone approach to manage
the data content of distributed memory by utilizing the bitstream for the ZYNQ device.
This methodology includes two design flows that ease the designing process (one to
protect/unprotect different partial regions and the other to obtain homogeneous instances
of a design implemented in different reconfigurable regions). In this way, it enables the
capturing or writing of the content of registers without significantly affecting the resource
usage or design’s performance with simplicity and autonomy. By using the proposed
method, the user data content of registers from different instances can be copied in a
simpler and faster way compared with the few existing alternatives for 7 series devices
from Xilinx. For instance, comparing it with the most remarkable one [20], thanks to the
low-level strategy adopted by the proposed approach, it requires fewer resources (a simple
program based on Xilinx functions vs. a complete software tool running under linux OS)
and time (seconds vs. milliseconds).

The developed approach provides useful features for several potential application
fields, such as existing hardening techniques, data management applications, etc. Taking
into account that 7 series devices from Xilinx are supported by Vivado software and share
primitives, main features of logic resources and the bitstream structure [22,23,30], the
proposed methodology is likely to be easily adapted to devices from this family.

All the proposed approaches have been physically tested and validated on a ZYNQ
device, proving their effectiveness. The performed tests proved the proper behavior of the
protection/unprotection strategy. On the other hand, the tests performed with the Location
Constraints Flow have shown that it enables exactly alike implementations of a design in
different reconfigurable regions to be obtained without affecting the hardware overhead or
the performance. In addition, the presented approach has been proven to be effective as

Electronics 2023, 12, 102 16 of 17

a tool to copy the data content of registers of complex designs, such as TMR schemes of
soft-core processors, through the bitstream.

There are some remarkable lines of research to give continuity to this work. For in-
stance, this approach could be used to develop new applications or improve existing ones,
such as checkpointing and rollback methods in lockstep implementations or the synchro-
nization of repaired modules in TMR schemes [31]. Another interesting approach could be
to develop specific software to handle the bitstream in order to reduce the time demand of
the data content-copying through the bitstream. In addition, the adaptation of the proposed
strategies to different hardware platforms could be a very interesting approach. Since the
proposed methodology has been closely developed for Xilinx 7 series device, an interesting
research line could be to expand its use to other families, such as UltraScale from Xilinx,
and even to other vendors’ devices, such as Intel (Altera), Microsemi, etc.

Author Contributions: Conceptualization, J.G.-C.; methodology, J.G.-C., I.A. and I.L.R.; software,
J.G.-C.; validation, J.G.-C., I.A. and I.L.R.; investigation, J.G.-C., I.A. and I.L.R.; resources, A.Z. and
A.J.M.; data curation, A.J.M.; writing—original draft preparation, J.G.-C.; writing—review and editing,
J.G.-C., I.A., I.L.R. and A.J.M.; visualization, A.J.M.; supervision, A.Z.; project administration, A.Z.;
funding acquisition, A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported, within the fund for research groups of the Basque uni-
versity system IT1440-22, by the Department of Education and, within PILAR ZE-2020/00022 and
COMMUTE ZE-2021/00931 projects, by the Hazitek program, both of the Basque Government; the
latter also by the Ministerio de Ciencia Innovación of Spain through the Centro para el Desarrollo
Tecnológico Industrial (CDTI) within the projects IDI-20201264 and IDI-20220543, and through the
Fondo Europeo de Desarrollo Regional 2014-2020 (FEDER funds).

Data Availability Statement: Not applicable.

Acknowledgments: Authors would like to acknowledge the University of the Basque Country
(UPV/EHU).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xilinx Corp. 7 Series FPGAs Memory Resources UG473 (v1.14). Xilinx Documentation. 2019. Available online: http:

//www.xilinx.com (accessed on 18 November 2022).
2. Gong, L.; Diessel, O. Functional Verification of Dynamically Reconfigurable FPGA-Based Systems; Springer: Berlin/Heidelberg,

Germany, 2015.
3. Yu, H.; Lee, H.; Lee, S.; Kim, Y.; Lee, H.M. Recent Advances in FPGA Reverse Engineering. Electronics 2018, 7, 246. [CrossRef]
4. Poverelli, J.; Brewer, F. Direct Bitstream Processing for High Performance Feedback Control. In Proceedings of the IEEE

Conference on Control Technology and Applications (CCTA), Hong Kong, China, 19–21 August 2019; pp. 444–449.
5. Asadi, G.; Tahoori, M. Soft Error Rate Estimation and Mitigation for SRAM-Based FPGAs. In Proceedings of the ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 20–22 February 2005; pp. 149–160.
6. Dumitriu, V.; Kirischian, L.; Kirischian, V. Run-Time Recovery Mechanism for Transient and Permanent Hardware Faults Based

on Distributed, Self-Organized Dynamic Partially Reconfigurable Systems. IEEE Trans. Comput. 2016, 65, 2835–2847. [CrossRef]
7. Villata, I.; Bidarte, U.; Kretzschmar, U.; Astarloa, A.; Lazaro, J. Fast and Accurate SEU-Tolerance Characterization Method for

Zynq SoCs. In Proceedings of the 24th International Conference on Field Programmable Logic and Applications (FPL), Munich,
Germany, 2–4 September 2014; pp. 1–4.

8. Gomez-Cornejo, J.; Zuloaga, A.; Villalta, I.; Del Ser, J.; Kretzschmar, U.; Lazaro, J. A Novel BRAM Content Accessing and
Processing Method Based on FPGA Configuration Bitstream. Microprocess. Microsyst. 2017, 49, 64–76. [CrossRef]

9. Guccione, S.; Levi, D.; Sundararajan, P. JBit: Java Based Interface for Reconfigurable Computing. In Proceedings of the Annual
Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), Laurel, MA, USA, 28
September 1999; pp. 28–30.

10. Simmler, H.; Levinson, L.; Manner, R. Multitasking on FPGA Coprocessors. In International Workshop Ond Field Programmable Gate
Arrays (FPL); Springer: Berlin/Heidelberg, Germany, 2000; pp. 121–130.

11. Choi, S.; Yoo, H. Fast Logic Function Extraction of LUT from Bitstream in Xilinx FPGA. Electronics 2020, 9, 1132. [CrossRef]
12. Kalte, H.; Porrmann, M. Context Saving and Restoring for Multitasking in Reconfigurable Systems. In Proceedings of the

International Conference on Field Programmable Logic and Applications, Tampere, Finland, 24–26 August 2005; pp. 223–228.
13. Koester, M.; Kalte, H.; Porrmann, M. Relocation and Defragmentation for Heterogeneous Reconfigurable Systems. In Proceedings

of the ERSA, Las Vegas, NV, USA, 26–29 June 2006; pp. 70–76.

http://www.xilinx.com
http://www.xilinx.com
http://doi.org/10.3390/electronics7100246
http://dx.doi.org/10.1109/TC.2015.2506558
http://dx.doi.org/10.1016/j.micpro.2017.01.009
http://dx.doi.org/10.3390/electronics9071132

Electronics 2023, 12, 102 17 of 17

14. Morales-Villanueva, A.; Gordon-Ross, A. On-Chip Context Save and Restore of Hardware Tasks on Partially Reconfigurable
FPGAs. In Proceedings of the International Symposium on Field-Programmable Custom Computing Machines (FCCM), Seattle,
WA, USA, 28–30 April 2013; pp. 61–64.

15. Morales-Villanueva, A.; Gordon-Ross, A. HTR: On-Chip Hardware Task Relocation for Partially Reconfigurable FPGAs. In
Reconfigurable Computing: Architectures, Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7806,
pp. 185–196.

16. Morales-Villanueva, A.; Kumar, R.; Gordon-Ross, A. Configuration Prefetching and Reuse for Preemptive Hardware Multitasking
on Partially Reconfigurable FPGAs. In Proceedings of the Design, Automation & Test in Europe (DATE), Dresden, Germany,
14–18 March 2016; pp. 1505–1508.

17. Chakraborty, R.; Saha, I.; Palchaudhuri, A.; Naik, G. Hardware Trojan Insertion by Direct Modification of FPGA Configuration
Bitstream. IEEE Des. Test 2013, 30, 45–54. [CrossRef]

18. Rettkowski, J.; Friesen, K.; Gohringer, D. RePaBit: Automated generation of relocatable partial bitstreams for Xilinx Zynq FPGAs.
In Proceedings of the International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 30
November–2 December 2016; pp. 1–8.

19. Pham, K.; Vaishnav, A.; Vesper, M.; Koch, D. ZUCL: A ZYNQ UltraScale+ Framework for OpenCL HLS Applications. In
Proceedings of the International Workshop on FPGAs for Software Programmers, Dublin, Ireland, 31 August 2018; pp. 1–9.

20. Dang Pham, K.; Horta, E.; Koch, D. BITMAN: A tool and API for FPGA Bitstream Manipulations. In Proceedings of the Design,
Automation Test in Europe Conference Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 894–897.

21. Hofmann, M.; Tang, Z.; Orgill, J.; Nelson, J.; Glanzman, D.; Nelson, B.; DeHon, A. XBERT: Xilinx Logical-Level Bitstream
Embedded RAM Transfusion. In Proceedings of the IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), Orlando, FL, USA, 9–12 May 2021; pp. 1–9.

22. Xilinx Corp. 7 Series FPGAs Configurable Logic Block UG474 (v1.8). Xilinx Documentation. 2016. Available online: http:
//www.xilinx.com (accessed on 18 November 2022).

23. Xilinx Corp. Vivado Design Suite 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries Guide UG953 (v2018.3). Xilinx
Documentation. 2018. Available online: http://www.xilinx.com (accessed on 18 November 2022).

24. Xilinx Corp. Vivado Design Suite User Guide. Partial Reconfiguration UG909 (v2019.2). Xilinx Documentation. 2020. Available
online: http://www.xilinx.com (accessed on 18 November 2022).

25. Benites, L.A.C.; Benevenuti, F.; De Oliveira, B.; Kastensmidt, F.L.; Added, N.; Aguiar, V.A.P.; Medina, N.H.; Guazzelli, M.A.
Reliability Calculation With Respect to Functional Failures Induced by Radiation in TMR Arm Cortex-M0 Soft-Core Embedded
Into SRAM-Based FPGA. IEEE Trans. Nucl. Sci. 2019, 66, 1433–1440. [CrossRef]

26. Shashidhara, B.; Jadhav, S.; Kim, Y.S. Reconfigurable Fault Tolerant Processor on a SRAM based FPGA. In Proceedings of the
IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020; pp. 151–154.

27. Gomez-Cornejo, J.; Zuloaga, A.; Bidarte, U.; Jimenez, J.; Kretzschmar, U. Interface Tasks Oriented 8-bit Soft-Core Processor. In
Proceedings of the Annual FPGAworld Conference, Tampere, Finland; Stockholm/Copenhagen, Sweden, 4 September–5 October
2012; pp. 4:1–4:5.

28. Vipin, K.; Fahmy, S. ZyCAP: Efficient Partial Reconfiguration Management on the Xilinx Zynq. Embed. Syst. Lett. IEEE 2014,
6, 41–44. [CrossRef]

29. Sultana, B.; Ullah, A.; Malik, A.A.; Zahir, A.; Reviriego, P.; Muslim, F.B.; Ullah, N.; Ahmad, W. VR-ZYCAP: A Versatile
Resourse-Level ICAP Controller for ZYNQ SOC. Electronics 2021, 10, 899. [CrossRef]

30. Xilinx Corp. 7 Series FPGAs Configuration UG470 (v1.15). Xilinx Documentation. 2022. Available online: http://www.xilinx.com
(accessed on 18 November 2022).

31. Kretzschmar, U.; Gomez-Cornejo, J.; Astarloa, A.; Bidarte, U.; Ser, J.D. Synchronization of Faulty Processors in Coarse-Grained
TMR Protected Partially Reconfigurable FPGA Designs. Reliab. Eng. Syst. Saf. 2016, 151, 1–9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MDT.2013.2247460
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://dx.doi.org/10.1109/TNS.2019.2921796
http://dx.doi.org/10.1109/LES.2014.2314390
http://dx.doi.org/10.3390/electronics10080899
http://www.xilinx.com
http://dx.doi.org/10.1016/j.ress.2015.12.018

	Introduction
	Existing Approaches
	Description of the Proposed Approach
	Flow to Protect/Unprotect Partial Regions against Overwriting
	Location Constraint Flow: Generate Homogeneous Implementations of a Design in Different Reconfigurable Regions

	Experimental Setup and Physical Validation
	Conclusions and Future Work
	References

