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Abstract: The numerical study of solid/liquid phase change problems represents a large and ongoing
field of research with many applications. These simulations should run as fast and accurately as
possible. Therefore, proceeding from previous work and findings from the literature, this study
investigates enthalpy methods for solving solid/liquid phase change problems. The relationship
between temperature and enthalpy is strongly non-linear and requires special treatment; iteratively
corrected methods, as well as approaches that do not correct the temperature/enthalpy relationship
at all or only once per time step, were considered for a one-dimensional test problem. Based on
the results of this study, two solvers can be recommended, the so-called optimum approach and
a simple explicit method; both provide accurate results. The explicit method is easy to program, but
the optimum approach allows larger time steps and is, therefore, faster. The influence of several
parameters was investigated. The mesh resolution strongly influenced the accuracy and the computa-
tional speed, and the time step size barely influenced the accuracy but did affect the computational
speed. An artificial melting temperature range influenced the accuracy but had hardly any influence
on the simulation speed. Higher-order time discretization schemes were not superior compared to
the first-order implicit optimum approach.

Keywords: solid/liquid phase change; phase change material; numerical methods; enthalpy method;
melting; solidification

1. Introduction

Solving solid/liquid phase change problems numerically is a widely performed task
in the fields of latent heat thermal energy storage [1], welding [2], continuous casting [3]
and food processing [4], among others. In these types of problems, the most common
approaches to describe the transition from solid to liquid or vice versa are the enthalpy
methods, also called fixed grid methods [5]. As stated by Furzeland [6], who compares
such different approaches as front-tracking methods with the enthalpy method, the latter is
very attractive as it has no computational overheads, is easy to program and can be used
for complex geometries and materials with a mushy phase change. However, it needs a fine
mesh to achieve highly accurate solutions.

Within the family of the enthalpy method, many approaches have been developed over
the years [4,5,7–9] to solve the challenging coupling between enthalpy and temperature.
A possible classification of these enthalpy methods is shown in Figure 1 with typical
examples. Following this classification, the methods can be divided into explicit and
implicit approaches as well as corrected and uncorrected approaches, which refer to the
coupling of the temperature and the enthalpy. The implicit corrected solvers can be further
subdivided into methods that apply only one correction per time step and iterative methods,
which update the temperature and the enthalpy until convergence.
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Several comparisons are available in the literature considering the accuracy and speed
of different enthalpy methods. Bertrand et al. [10] and Gobin et al. [11] compare various
methods from different research groups; however, as there is no exact solution available
for the 2D melting problem, they only studied a comparison of the results they obtained
among each other. The attained results are generally similar. A comparable attempt was
made by Pointner [12], who included the simulation time in the performed evaluation.
Which solver performed best depended on the time step and mesh resolution. Tamma
and Namburu [13] analyzed explicit and implicit enthalpy methods for the finite element
method; they found that the explicit methods are faster since no update of the mass matrix
is necessary. Mauder et al. [14] compared different methods in MATLAB for accuracy,
simulation time, and the applicability of parallelization. They stated that the effectiveness
of the methods depends on the problem under study.

When it comes to iterative methods (which update the temperature/enthalpy relation
after solving the energy equation and reiterate the two steps as necessary), it has been
repeatedly shown [5,15–19] that the optimum approach developed by Swaminathan and
Voller [17,19], or its source-based counterpart [18] (which performs identically to the opti-
mum approach [5]) have advantages over other methods. Pham [20] developed an apparent
heat capacity method with a single posterior correction step that uses an implicit time-
stepping with three time levels (a similar method was developed by Comini et al. [21]).
However, the idea of the correction step can be applied to lower-order methods as well.
The method was compared to iteratively corrected and non-corrected approaches. For the
same level of accuracy, it performed two to three times faster than the best of the other
methods studied [20]. Pham’s method [20] was also compared with the optimum approach
by Pham [22], Voller [5] and Al-Saadi and Zhai [23]. The latter also developed a hybrid
method that switches from Pham’s method to the optimum approach when at least one
cell is changing phase. Pham’s method appears to be faster than the optimum approach
for small time steps but produces oscillations for large time steps [5,22]. These studies,
however, were performed for a limited parameter space; did not include, for instance,
explicit approaches for comparison; or were performed for building simulations only [23].

Moreover, even for isothermal phase change, some methods rely on an arbitrary
melting temperature range instead of a single melting point. Changing the temperature
enthalpy relation from the real one can have a large effect on the results of numerical
models [24]. Hence, the following questions arise: how should it be modeled, linear or with
a smoothed function? How significant is the error that comes with the implementation of
an arbitrary melting range? Moreover, melting or solidification simulations are nowadays
more and more embedded in larger or more complex simulation problems. These can
be system simulations that include other components [25,26] or multiphysics simulations
that include further physical aspects such as close contact melting [27,28], or additional
components like a heat exchanger and a heat transfer fluid [29,30]. In any of these cases,
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the maximum time step might be dictated by aspects other than the temperature/enthalpy
coupling, and it would be beneficial to know how a simple explicit method performs in
comparison to implicit ones. For the case of system simulations, even the time-stepping
scheme might be optimized for other parts of the model, e.g., in MATLAB Simulink with
a selection of ordinary differential equation (ODE) solvers and implementing iterative
methods might be restricted.

Bearing the abovementioned research gaps in mind, the main objective of this paper is
to enlarge the knowledge of the numerical solution of solid/liquid phase change problems
by addressing the following questions:

• How does the optimum approach perform compared to non-iterative methods in
terms of accuracy and speed?

• How do the mesh, the time step and an artificial melting temperature range affect the
accuracy of the methods?

• How do the mesh, the time step and an artificial melting temperature range influence
the calculation speed?

• Does using a smoothed temperature/enthalpy curve for isothermal phase changes
give some advantages for solvers relying on an apparent heat capacity?

• Does the use of higher-order methods for the time discretization give any benefit?
• Which methods are appropriate when implementing the solid/liquid phase change

in solvers with an automated time step control—like the ODE solvers in MATLAB?
Moreover, how do they perform compared to the other solvers studied?

• Does linearizing the diffusion term of the energy equation instead of the transient
term (i.e., the optimum approach) give any benefits?

To meet the objective, a simple 1D conduction-driven case, known as the Lamé–
Clapeyron–Stefan problem [31,32], was solved with different solvers for a variation of
several parameters, such as the time step size and the mesh resolution, among others,
leading to about 6000 simulations. By also describing the procedure of each solver in detail,
this paper will not only help to choose the right solver but also program it.

2. Problem Statement

In this section, the physical problem and the governing equations are described
first. Then the numerical methods, the parameter variation and the error calculation are
presented in detail.

2.1. Physical Problem and Governing Equations

As depicted in Figure 2, the physical problem consists of a one-dimensional slab of
generic material, initially in a homogenous liquid state, which starts to solidify at t = 0 due
to a convective boundary condition at the left-hand side. The other boundary of the sample
is adiabatic.
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Table 1 shows the material properties of the generic material used and lists the initial
and boundary conditions. All material properties are assumed to be constant and identical
for the solid and liquid states. Later on, the numerical results are compared to a benchmark
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solution. To validate the benchmark solver, a similar problem is used that has an analytical
solution [33]. The whole procedure is described in detail in Section 3.

Table 1. Material properties, initial and boundary conditions for the test case and the validation.

Property Value Units

Tinit 52 ◦C
Tamb 32 ◦C

α 1000 W
m2·K

Tm 42 ◦C
cp 2000 J

kg·K
L 200,000 J

kg

ρ 1000 kg
m3

λ 1 W
m·K

ltc 0.1 m
lval 1 m

The general equation describing the heat transfer in the considered domain is pre-
sented in Equation (1), with the enthalpy H, the temperature T, the time t, and the heat
conductivity λ. Depending on the solver applied, Equation (1) is either directly discretized
or first reformulated.

∂H
∂t

= λ
∂2T
∂x2 (1)

2.2. Implementation of the Temperature/Enthalpy Relation

Based on thermodynamics, the melting/solidification phase change for a pure material
is a first-order transition. This means that there is a discontinuity in the enthalpy/temperature
relation when the phase change occurs. However, since some cp,app-based solvers do not
allow the implementation of a step-function, or may perform much worse with a step-
function, the temperature/enthalpy curves with an artificial melting temperature range
∆Tm are implemented as well. Even though there exist plenty of possible slopes for cp,app
over temperature—like triangular-shaped or sine-based [34]—we limit the number of
variations. Therefore, only two kinds of curves are considered: (i) a linear one; and (ii) one
based on an error function. In Figure 3, the slopes of several curves are shown as examples.
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The definition of cp,app for the linear case is described with Equation (2):

cp,app =


cp T ≤ Ts

cp +
L

Tl−Ts
Ts < T < Tl

cp Tl ≤ T
(2)
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and for the error function, it is Equation (3):

cp,app = cp + L·

4· e−[4
T−Tm
Tl−Ts ]

2

(Tl − Ts)·
√

π

 (3)

For the linear case, H as a function of T can be described with Equation (4):

H =


cp·T T ≤ Ts

cp·T + L
Tl−Ts

· T−Ts
Tl−Ts

Ts < T < Tl

cp·T + L Tl ≤ T
(4)

and for the error function, we have Equation (5):

H = cp·T + L·
[

1− 0.5·er f c
(

4·T − Tm

Tl − Ts

)]
(5)

To describe T as a function of H, Equation (6) is used for the linear case:

T =


H
cp

H ≤ Hs

Ts +
H−Hs

L ·Tl − Ts Hs < H < Hl

Tl +
H−Hl

cp
Hl ≤ H

(6)

There is no analytical inverse error function, but there exists a built-in MATLAB
function. This function, however, is quite slow, so an optimized look-up table was generated
prior to the simulations, which was then called during the simulations.

2.3. Numerical Methods

To address the research questions formulated in the introduction, several solvers
are programmed in MATLAB R2020a. These solvers can be categorized by the following
characteristics:

• Correcting the temperature/enthalpy relation

# Uncorrected solvers
# Corrected solvers, the correction is performed once
# Iterative solvers, the correction is performed iteratively until a convergence

criterion is reached

• Slope of the temperature/enthalpy relation during phase change

# Linear function
# Error function

• Time stepping

# Fixed-step explicit
# Fixed-step implicit
# Fixed-step Crank–Nicolson
# Variable step solver (ode15s solver)

In Table 2, an overview of all the solvers used is provided, together with their identi-
fiers. For all solvers, the finite volume method is applied for spatial discretization, which
is performed with a second-order scheme. In the following sections (Sections 2.3.1–2.3.6),
the procedure of the solvers is described and the pertinent equations are provided. More
information on the solvers described in Sections 2.3.1–2.3.4 can be found in the literature [5].
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Table 2. Overview of the solvers and their identifiers.

Identifier Correcting Approach Slope of the T/H Relation Time Stepping

T/H-lin-expl corrected * linear fixed-step explicit
T/H-lin-ODE corrected * linear variable step ode15s
cp-app-lin-expl uncorrected linear fixed-step explicit
cp-app-lin-impl uncorrected linear fixed-step implicit
cp-app-erf-expl uncorrected error function fixed-step explicit
cp-app-erf-impl uncorrected error function fixed-step implicit
cp-app-lin-ODE uncorrected linear variable step ode15s
cp-app-erf-ODE uncorrected error function variable step ode15s

cp-app-1xcorr-lin-expl one correction linear fixed-step explicit
cp-app-1xcorr-lin-impl one correction linear fixed-step implicit
cp-app-1xcorr-erf-expl one correction error function fixed-step explicit
cp-app-1xcorr-erf-impl one correction error function fixed-step implicit
cp-app-1xcorr-lin-ODE one correction linear variable step ode15s
cp-app-1xcorr-erf-ODE one correction error function variable step ode15s

opti-lin-impl Iterative correction linear fixed-step implicit
opti-erf-impl Iterative correction error function fixed-step implicit
opti-lin-CN Iterative correction linear fixed-step Crank–Nicolson
opti-erf-CN Iterative correction error function fixed-step Crank–Nicolson

lin-diff-lin-impl Iterative correction linear fixed-step implicit

* The temperature is corrected at the end of the time step but only used in the next time step.

2.3.1. Basic Explicit Method (Corrected)

The procedure for the T/H-lin-expl solver is straightforward: Equation (1) is discretized,

put in matrix form, and solved to calculate the new enthalpy field
→
Hnew (see Equation (7)):

→
Hnew =

→
Hold +

−
Acoe f ·

→
T old +

→
RB (7)

The right-hand side of Equation (7) is exclusively formed by known variables, which

allows for a direct solution. After
→
Hnew is calculated,

→
T old for the next time step is de-

termined by Equation (6), provided in Section 2.2. At the end of each time step,
→
Hold is

updated by
→
Hnew and the boundary conditions (

→
RB) and the coefficient matrix (Acoe f ) is

updated if needed as well. The solver proceeds as follows:

• Solve Equation (7)

• Update
→
T old and

→
Hold, as well as Acoe f and

→
RB, if the material properties or the

boundary conditions change
• Go to the next time step

To optimize the calculation speed, Acoe f is implemented as a sparse matrix in MATLAB.

2.3.2. Apparent Heat Capacity Methods (Uncorrected)

For the cp-app-lin-expl, cp-app-lin-impl, cp-app-erf-expl, and cp-app-erf-impl solvers,
Equation (1) needs to be reformulated by means of the relation cp,app

∂T
∂t = ∂H

∂t , to:

ρcp,app
∂T
∂t

= λ
∂2T
∂x2 (8)

Equation (8) is then discretized and put in matrix form. For the explicit solvers,
Equation (9) is obtained, which can be directly solved as all the variables on the right-hand
side are known.

→
T new =

→
T old + Acoe f ·

→
T old +

→
RB (9)
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For the implicit solvers, it yields:

→
T new = Acoe f \

(→
T old +

→
RB
)

(10)

with the MATLAB intern operator “matrix left-divide \”. As cp,app changes with the
temperature, Acoe f is not constant and needs to be updated after each time step. It was
found that using triplets to build up a new sparse matrix each time step is the fastest update
method. The procedure of the solver is as follows:

• Determine cp,app and build Acoe f

• Calculate
→
T new with Equation (9) (explicit solvers) or Equation (10) (implicit solvers)

• Go to the next time step

2.3.3. Apparent Heat Capacity Methods (Corrected)

For the corrected apparent heat capacity methods (cp-app-1xcorr-lin-expl, cp-app-1xcorr-
lin-impl, cp-app-1xcorr-erf-expl and cp-app-1xcorr-erf-impl), Equation (8) is discretized follow-

ing steps 1 and 2 detailed in Section 2.3.2. Then, a correction of
→
T new is performed. To do

so, a corresponding new enthalpy (
→
Hnew) is calculated by Equation (11):

→
Hnew =

→
Hold +

→
c p,app

(→
T new −

→
T old

)
(11)

Afterward,
→
T new is updated via the temperature/enthalpy Equation (6) for the linear

case or with the help of a look-up table for the error function case. Thus, the solver
procedure is as follows:

• Determine cp,app and build Acoe f

• Calculate a preliminary
→
T new with Equation (9) (explicit solvers) or Equation (10)

(implicit solvers)

• Calculate
→
Hnew with Equation (11)

• Update
→
T new with Equation (6) or a look-up table.

• Go to the next time step

2.3.4. Optimum Approach (Iteratively Corrected)

The core of the optimum approach solvers (opti-lin-impl, opti-lin-CN, opti-erf-impl and
opti-erf-CN) is a Newton linearization of the enthalpy with respect to the iteration steps.
This linearization is performed via Equation (12):

Hk+1 = Hk + cp,app,k·(Tk+1 − Tk) (12)

where Hk+1 and Tk+1 are the enthalpy and the temperature of the new iteration step and
Hk and Tk are the enthalpy and temperature of the previous iteration step. As for the
final iteration step, it is fulfilled: Hk+1 = Hnew, and the linearization from Equation (12) is
included in the semi-discretized version of Equation (1), which leads to Equation (13):

ρ

→
Hk −

→
Hold

∆t
+ ρ
→
c p,app,k

→
T
∗
k+1 −

→
T k

∆t
= λ

∂2T
∂x2 (13)

After Equation (13) is solved for
→
T
∗
k+1,

→
Hk+1 is determined with Equation (12). Then,

the temperature is updated to
→
T k+1, either with Equation (6) for the linear case, or with the

help of a look-up table for those solvers using the error function. If the difference between
→
T k+1 and

→
T
∗
k+1 is smaller than a given threshold, the solution is considered converged;
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otherwise,
→
T k and

→
Hk are updated and Equation (13) is solved again. This procedure

is repeated until convergence. Two important aspects of Equation (13) are: (i) for the

first iteration step
→
Hk =

→
Hold and (ii) at convergence

→
T
∗
k+1 ≈

→
T k, this implies that the

first term is not present at the first iteration step and the second term vanishes when
convergence is reached. The optimum approach solvers are implemented either with
an implicit Euler scheme or with the Crank–Nicolson scheme; the difference is only visible
in the discretization of the diffusion term. The matrix equation looks like Equation (10), but

here
→

RB includes the additional known parts from the left-hand side of Equation (13) and
the parts from the diffusion term corresponding to the old-time step for the Crank–Nicolson
solvers as well. The single steps of the solver are:

• Determine cp,app,k and build Acoe f

• Calculate
→
T
∗
k+1 with Equation (10)

• Calculate
→
Hk+1 with Equation (12)

• Update
→
T new with the Equation (6) or the look-up table.

• Calculate the residual (
→
T k+1 −

→
T
∗
k+1)

• Update
→
Hk and

→
T k

• Depending on the obtained residual value, go to step 1 or the next time step

2.3.5. Linearized Diffusion Term (Iteratively Corrected)

This solver (lin-diff-lin-impl) is similar to the optimum approach; however, instead of
H in the transient term, T is linearized in the diffusion term. The linearization is performed
by Equation (14).

Tk+1 = Tk +
(Hk+1 − Hk)

cp,app,k
(14)

Semi-discretizing Equation (1) and implementing the linearization for the implicitly
formulated diffusion term yields Equation (15):

ρ

→
H
∗
k+1 −

→
Hold

∆t
− λ

∂2Tk
∂x2 + λ

∂2 Hk
cp,app,k

∂x2 = λ
∂2 Hk+1

cp,app,k

∂x2 (15)

The given Equation (15) is then put in matrix form and solved for
→
H
∗
k+1 (Equation (16)):

→
H
∗
k+1 = Acoe f \

(→
Hold +

→
RB
)

(16)

where all the known variables can be found in
→

RB. Afterward,
→
T k+1 is determined with

Equation (17):

→
T k+1 =

→
T k +

(→
H
∗
k+1 −

→
Hk

)
→
c p,app,k

(17)

The enthalpy is then updated with Equation (4) and the residual
(→

Hk+1 −
→
H
∗
k+1

)
is

checked, which determines whether another iteration needs to be performed or not. At

convergence
→
H
∗
k+1 ≈

→
Hk, and therefore, the two diffusion terms involving H vanish when

converged. The procedure of the solver reads:

• Determine cp,app,k and build Acoe f ;

• Calculate
→
H
∗
k+1 with Equation (16);
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• Calculate
→
T k+1 with Equation (17);

• Update
→
Hk+1 with Equation (4);

• Calculate the residual
→
Hk+1 −

→
H
∗
k+1;

• Update
→
Hk and

→
T k;

• Depending on the obtained residual value, go to step 1 or the next time step.

2.3.6. The ODE Solvers

To use the ODE solver from MATLAB, the method of lines [35] is applied to the
corresponding equations described above. This results in a system of transient ODE for
every solver, which is then handled by the MATLAB ode15s solver. Compared to other ODE
solvers from MATLAB (ode45, ode23, ode113, ode23s, ode23t, ode23tb), the ode15s solver
performed best on average. Therefore, only the results for the ode15s solver are shown
below. The implementations involved, the pertinent equations and additional information
can be found in the following list:

• T/H-lin-ODE: Equation (1) is implemented semi-discretized, and T is updated with
Equation (6)

• cp-app-lin-ODE: Equation (8) is implemented semi-discretized, and cp,app is determined
by Equation (2)

• cp-app-erf-ODE: Equation (8) is implemented semi-discretized, and cp,app is determined
by Equation (3)

• cp-app-1xcorr-lin-ODE: Equation (8) is implemented semi-discretized, cp,app is deter-
mined by Equation (2) and the correction is performed with Equations (6) and (11).

• cp-app-1xcorr-erf-ODE: Equation (8) is implemented semi-discretized, cp,app is deter-
mined by Equation (3) and the correction is performed with Equation (11) and a look-
up table.

2.4. Parameter Variation

A study was performed to gain knowledge of the influence of certain parameters
on the numerical accuracy of the solvers. The mesh number of nodes and the width of
the artificial melting temperature range ∆Tm were varied for every solver described in
Section 2.3 (Table 2). The time step size ∆t was also varied for all solvers except the ODE
solvers. For the latter, the relative tolerance was varied instead. The time step size was
varied according to the relation ∆t/∆tstab, where ∆tstab is the time step size for which the
explicit stability criterion equals 1. The adopted parameter values are detailed in Table 3.
The simulations were carried out using one kernel of an Intel® Xeon® Gold 6252 CPU @
2.10 GHz (Intel Corporation, Santa Clara, CA, USA) processor.

Table 3. Overview of the parameter variations.

Solvers ∆t Variation [ ∆t
∆tstab

] ∆Tm Variation [K] Rel. Tolerance [-] Mesh [Number
of Nodes]

opti-lin-impl
opti-erf-impl
opti-lin-CN
opti-erf-CN

lin-diff-lin-impl

0.1, 0.2, 0.5, 1, 2, 4, 9, 18,
36, 72, 144, 216 0, 0.01, 0.1, 1, 2, 5 - 10, 20, 50, 100, 200, 500

cp-app-lin-impl
cp-app-erf-impl

cp-app-1xcorr-lin-impl
cp-app-1xcorr-erf-impl

0.1, 0.2, 0.5, 1, 2, 4, 9, 18,
36, 72, 144, 216 0.01, 0.1, 1, 2, 5 - 10, 20, 50, 100, 200, 500
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Table 3. Cont.

Solvers ∆t Variation [ ∆t
∆tstab

] ∆Tm Variation [K] Rel. Tolerance [-] Mesh [Number
of Nodes]

T/H-lin-expl 0.1, 0.2, 0.5, 1 0, 0.01, 0.1, 1, 2, 5 - 10, 20, 50, 100, 200, 500

cp-app-lin-expl
cp-app-erf-expl

cp-app-1xcorr-lin-expl
cp-app-1xcorr-erf-expl

0.1, 0.2, 0.5, 1 0.01, 0.1, 1, 2, 5 - 10, 20, 50, 100, 200, 500

T/H-lin-ODE - 0, 0.01, 0.1, 1, 2, 5

1 × 10−9, 1 × 10−8,
1 × 10−7, 1 × 10−6,
1 × 10−5, 1 × 10−4,
2 × 10−4, 5 × 10−4,
1 × 10−3, 2 × 10−3,
5 × 10−3, 1 × 10−2

10, 20, 50, 100, 200, 500

cp-app-lin-ODE
cp-app-erf-ODE

cp-app-1xcorr-lin-ODE
cp-app-1xcorr-erf-ODE

- 0.01, 0.1, 1, 2, 5

1 × 10−9, 1 × 10−8,
1 × 10−7, 1 × 10−6,
1 × 10−5, 1 × 10−4,
2 × 10−4, 5 × 10−4,
1 × 10−3, 2 × 10−3,
5 × 10−3, 1 × 10−2

10, 20, 50, 100, 200, 500

2.5. Error Calculation

The error was calculated for the phase front position and the final temperature distribu-
tion. In both cases, the simulation results were compared to a benchmark solution described
in Section 3. For the phase front position, the absolute error (εi) and the relative error

(
εrel

i
)

were calculated for every time step (i) with Equations (18) and (19). The absolute error
regarding the final temperature field

(
εT

j

)
was calculated with Equation (20) for every

node (j). When there is no reference node at the same position as T j
sim, an interpolation

was performed to define the reference value.

εi =
∣∣∣Xsim

i − Xref
i

∣∣∣ (18)

εrel
i =

∣∣Xsim
i − Xref

i

∣∣∣∣Xref
i

∣∣ (19)

εT
j =

∣∣∣Tsim
j − Tref

x=̂j

∣∣∣ (20)

For all errors regarding the phase front position, mean values were calculated as well.
These are defined in Equations (21)–(23) for εi, εrel

i and εT
j , respectively.

εmean =
i=nt

∑
i=1

∣∣∣Xsim
i − Xref

i

∣∣∣· 1
nt

(21)

εrel
mean =

i=nt

∑
i=1

∣∣Xsim
i − Xref

i

∣∣∣∣Xref
i

∣∣ · 1
nt

(22)

εT
mean =

j=nx

∑
j=1

∣∣∣Tsim
j − Tref

x=̂j

∣∣∣· 1
nx

(23)

The evaluation of the results was performed based on the error of the phase front
position while εT

mean was applied only to random samples to check the validity.
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3. Validation and Benchmark Solution

To analyze the error of the different solvers, the simulation results were compared to
a benchmark solution, which was validated against analytical results beforehand. The ana-
lytical results were not used directly for benchmarking as they refer to a semi-infinite prob-
lem, which would require an unwieldy, long simulation domain in the numerical model.

The benchmark solution was obtained with the T/H-lin-expl solver and was compared
with the analytical solution of a Lamé–Clapeyron–Stefan problem [33] with a convective
boundary condition to validate it and check the mesh independency. The validation
case is identical to the benchmark case except for the convective boundary condition,
which is time-dependent, and the simulation domain, which is 1 m long in the validation
case (for the exact conditions of the benchmark case and the parameter variation, see
Sections 2.1 and 2.4). For validation purposes, the error of the phase front position as
a function of the mesh number of cells is presented in Figure 4. The error with finer
meshes decreases below 10−6 m, so the solver is considered successfully validated. For the
benchmark solution, the finest mesh resolution studied for the validation (20,000 nodes per
meter) was used, which rendered 2000 nodes as the length of the benchmark simulation
domain is 0.1 m. The maximum number of nodes for the variational simulations was 500,
significantly lower than those used for the benchmark.
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4. Results

In the following, the results are presented. Section 4.1 contains results analyzing the
tested solvers in general. Section 4.2 deals with the influence of the varied parameters.
A comparison of explicit and implicit methods is undertaken in Section 4.3 and in the final
Section 4.4, the number of iterations needed for the optimum approach is studied.

4.1. General Results

Figure 5 shows εrel
mean plotted over the simulation time for all solvers and variations.

At every plot, preferable simulations can be found on the lower left front, while simulations
on the right are slow and simulations on the top are not accurate enough. Overall, the
optimum approach solvers perform best in terms of simulation time and accuracy, followed
by T/H-lin-expl and cp-app-1xcorr solvers. For these solvers, the smaller ∆Tm is, the smaller
the minimum of εrel

mean. When it comes to the uncorrected cp-app solvers and the lin-diff-lin-
impl solver, the mentioned trend is the other way around, and for the ODE solvers, no clear
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trend is visible. The optimum approach and the T/H-lin-expl solvers always result in a εrel
mean

value below 10%, and its minimum is less than 0.01%. The simulation time varies between
10−4 and 104 s, but a εrel

mean lower than 0.01% can already be achieved with a simulation
time of about 1 s.
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mean for all simulations.

When comparing the optimum approach solvers in more detail in terms of εrel
mean

and the simulation time (see Figure 6), the following can be noted: (i) there are no large
differences in the simulation times and errors between the tested implementations, (ii) the
linear implementation performs somewhat faster than the error function for the same
accuracy and (iii) the implicit Euler discretization outperforms the Crank–Nicolson ap-
proach for εrel

mean values from 1 to 10% and for values lower than 0.01%. In between, the
Crank–Nicolson approach is faster.

An analysis of the different ODE solvers shows that there are some distinctive differ-
ences in their performance (see Figure 7). However, the cp-app-ODE and the cp-app-1xcorr-
ODE solvers perform very similarly, which indicates that the correction has no significant
effect here. Acceptable εrel

mean values can be achieved with all ODE implementations, but
the T/H-lin-ODE solver needs the least simulation time for a given εrel

mean below 10% and, on
average, the T/H-lin-ODE solver gives smaller εrel

mean than the other ODE solvers. Moreover,
small ∆Tm lead to high εrel

mean for the cp-app-ODE and the cp-app-1xcorr-ODE solvers, and on
the contrary, they lead to low εrel

mean for T/H-lin-ODE solver.
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mean for all simulations performed with the optimum

approach solvers.

This section on general results is concluded with a study that addresses the question
of how many simulations with a ∆Tm ≤ 0.1 give εrel

mean smaller than 1%. This question
is of particular practical interest as it reveals under which conditions the solvers give
realistic results, even though the threshold for “realistic” results was set arbitrarily to εrel

mean
smaller than 1%. For every solver tested, these results can be seen in Figure A2 in the
Appendix A, dependent on the mesh and the time step (or the error tolerance for the ODE
solvers). Most importantly, all corrected methods (including T/H-lin-expl and T/H-lin-ODE),
except the lin-diff-lin-impl solver, give εrel

mean smaller 1% for a broad field of parameters
for ∆Tm ≤ 0.1. All other solvers perform considerably worse. When it comes to implicit
methods, the optimum approach solver performs most accurately and gives εrel

mean ≥ 1%
only for a mesh with 10 nodes and 20 nodes, and at the same time ∆t/∆tstab ≥ 72 (Euler
scheme) or ∆t/∆tstab ≥ 144 (Crank–Nicolson approach). The uncorrected cp-app solvers
and the lin-diff-lin-impl solver give εrel

mean larger than 1% for most cases, only for small ∆t
and a large number of nodes can an accurate result be achieved. The ODE solvers applying
an apparent heat capacity only give accurate results for fine tolerances and meshes.

4.2. Influence of the Varied Parameters

In this section, the influence of the artificial melting temperature range (∆Tm), the
number of nodes and the time step size (∆t) on εrel

mean is studied primarily for the most
accurate solvers, namely the optimum approach solvers and the T/H-lin-expl solver. The
influence of ∆Tm on εrel

mean is depicted in Figure 8. On average, εrel
mean decreases for the

smaller ∆Tm. The minimum values of εrel
mean are very similar for all solvers shown and

decrease from more than 10−2 for ∆Tm ≤ 1 K to 10−4 for a ∆Tm of 0 K. Finally, it can be
noted that ∆Tm affects the maximum of εrel

mean much less than the minimum of εrel
mean.

For comparison, Figure A1 in the Appendix A shows the same results as Figure 8, but
for the cp-app solvers without correction. Especially for small ∆Tm values, the cp-app solvers
without correction give much larger εrel

mean.
The influence of the mesh resolution on εrel

mean is presented in Figure 9 for the optimum
approach solvers and the T/H-lin-expl solver. The minimum of εrel

mean decreases by about
two orders of magnitude for finer meshes for all solvers shown; while, on the contrary, the
maximum and the mean of εrel

mean are only slightly influenced by the mesh.
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proach solvers.

In Figure 10, the influence of the time step size on εrel
mean is shown. Compared to

the influence of the number of nodes and ∆Tm, the influence of ∆t/∆tstab is smaller. As
long as ∆t/∆tstab ≤ 10, there is practically no influence of the time step size on εrel

mean.
For ∆t/∆tstab > 10, an increase of εrel

mean can be noted (for optimum approach solvers
with an implicit Euler time-stepping scheme first, a decrease occurs for the minimum of
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εrel
mean after which an increase can be seen). Moreover, the increase is only small for all the

solvers shown, even for the largest time steps studied, which refer to ∆t/∆tstab = 216, the
minimum values of εrel

mean are still below 0.1%.
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4.3. Implicit vs. Explicit Approaches

In this section, the value of ∆t/∆tstab required for certain implicit solvers (optimum
approach solvers and cp-app-1xcorr-impl solvers) to be faster than the basic explicit solver
(T/H-lin-expl solver) is assessed. The cited implicit solvers were chosen as they give accept-
able results in terms of accuracy. These results are listed in Table 4, while more detailed
information can be found in Figures A3–A8 in the Appendix A. The minimum of the
necessary ∆t/∆tstab ranges between 2.5–4, and the maximum ranges between 7–25, de-
pending on the solver. For the opti-lin solvers, the maximum of the needed ∆t/∆tstab is
lower than for the opti-erf and cp-app-1xcorr-impl solvers. Overall, the necessary ∆t/∆tstab
value increases with finer mesh resolutions. For the opti-erf-impl solver, there are some
simulations with a larger ∆t/∆tstab than listed in Table 4 that still lead to simulations slower
than the T/H-lin-expl solver with a ∆t/∆tstab = 1.

From Figures A3–A8 in the Appendix A, it can also be seen that varying the number of
nodes from 10 to 500 increases the simulation time for the optimum approach solvers and
cp-app-1xcorr-impl solvers by about four orders of magnitude. When ∆t/∆tstab is increased
from 0.1 to 216, the simulation time is reduced by about three orders of magnitude. In
contrast, ∆Tm has little influence on the simulation time.
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Table 4. List of ∆t/∆tstab values needed to be faster with implicit solvers than the basic explicit solver
T/H-lin-expl.

Solver ∆t/∆tstab Figures

opti-lin-impl ≈3–7 Figure A3 in the Appendix A
opti-lin-CN ≈3–8 Figure A4 in the Appendix A
opti-erf-impl ≈3.5–20 Figure A5 in the Appendix A
opti-erf-CN ≈4–20 Figure A6 in the Appendix A

cp-app-1xcorr-lin-impl ≈2.5–15 Figure A7 in the Appendix A
cp-app-1xcorr-erf-impl ≈3.5–25 Figure A8 in the Appendix A

4.4. Iterations of the Optimum Approach Solvers

The number of iterations is also of great interest for iterative methods because it is
independent of the computer used and gives information about how often additionally
implemented features would need to be calculated. Therefore, the number of iterations per
time step is analyzed next for the optimum approach solvers. In Figure 11, the average
number of iterations per time step is plotted over ∆Tm. The average is less than two itera-
tions per time step, apart from the opti-erf-impl solver at ∆Tm = 0 K, where the average is
almost five iterations per time step. For all solvers shown, except the opti-erf-impl solver,
∆Tm does not considerably influence the number of iterations. Furthermore, choosing the
Crank–Nicolson scheme or the implicit Euler scheme makes almost no difference for the
number of iterations, except for the opti-erf solvers at ∆Tm = 0 K.
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The number of iterations per time step decreases for a larger number of nodes for all
optimum solvers, aside from the opti-erf-impl solver, which is only slightly influenced by
the number of nodes (see Figure 12). If the mesh consists of 100 or more nodes, all optimum
solvers except the opti-erf-impl solver need almost the same number of iterations.

As long as ∆t/∆tstab ≤ 1, all optimum solvers need a similar number of iterations (see
Figure 13). For larger ∆t/∆tstab, the solvers applying an error function need more iterations
than the solvers with a linear function. The solvers using a Crank–Nicolson scheme need
slightly (linear) or distinctly (error function) more iterations for very large ∆t/∆tstab than
the solvers using the implicit Euler scheme.
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5. Discussion

Based on the results presented in Section 4, the research questions stated in the
introduction will now be discussed. Some important aspects regarding the analyzed
solvers are additionally commented on. The questions raised earlier and their answers are:

• How does the optimum approach perform compared to non-iterative methods in
terms of accuracy and speed?

• The optimum approach led to the fastest simulations of the tested methods while still
maintaining high accuracy. The basic explicit method (with the T/H-lin-expl solver) and,
for certain parameter values, the apparent heat capacity method with one correction
(cp-app-1xcorr solvers without the ODE solvers) also gave accurate results within
an acceptable simulation time.

• How do the mesh, the time step, and an artificial melting temperature range affect the
accuracy of the methods?

• For the most accurate solvers (optimum approach and T/H-lin-expl), the mesh and
using an artificial melting temperature range had a large effect on the accuracy. For
example, by increasing the number of nodes from 10 to 500, the minimum value
of εrel

mean was reduced by about two orders of magnitude. If no artificial melting
temperature range was implemented, the minimum of εrel

mean was about 10−4; while,
for a melting temperature range of 1 K, the minimum of εrel

mean increased to about
10−2. On the contrary, the influence of ∆t/∆tstab was much smaller. Up to a ∆t/∆tstab
value of 10, there was a negligible influence on εrel

mean. For the largest time steps tested
(∆t/∆tstab = 216), the minimum of εrel

mean was only distinctive below 10−3.
• How do the mesh, the time step and an artificial melting temperature range influence

the calculation speed?
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• For the implicit solvers with acceptable accuracy (optimum approach and cp-app-
1xcorr-impl solvers), the number of nodes in the mesh had the largest influence on
the simulation time. As shown in the results, changing the number of nodes from
10 to 500 increased the simulation time by about four orders of magnitude. The second
most important parameter was the time step size; increasing ∆t/∆tstab from 0.1 to 216
reduced the simulation time by about three orders of magnitude. Here, it should be
noted that changing the number of nodes also changed the absolute size of the time
step. In comparison to the two said parameters, the influence of ∆Tm on the simulation
time was small.

• Does using a smoothed temperature/enthalpy curve for isothermal phase changes
give some advantages for solvers relying on an apparent heat capacity?

• The optimum approach solvers needed fewer iterations if the cp,app function is linear,
compared to the error function case; in addition, the temperature update is faster
and easier to derive and program when a linear function is used. For the remaining
solvers, relying on a cp,app, the implementation of an error function can increase the
accuracy to some extent, but these methods are still, by far, not preferred over the
optimum approach.

• Does the use of higher-order methods for the time stepping give any benefit?
• Using the MATLAB ODE solvers did not give any benefits, so it should only be an op-

tion when their use is mandatory due to the given simulation framework. Applying
the Crank–Nicolson method instead of the implicit Euler method for the optimum ap-
proach solvers did not give significantly more accurate results for the same simulation
time, and, in some cases, the implicit Euler method gave even more accurate results
for the same simulation time. This underlines the fact that the accuracy is driven
by a correct updating of the temperature/enthalpy relation and not by order of the
discretization scheme of the transient term.

• Which methods are appropriate when implementing the solid/liquid phase change
in solvers with an automated time step control—like the ODE solvers in MATLAB?
Moreover, how do they perform compared to the other solvers studied?

• The best results for the MATLAB ODE solvers were achieved with a method (T/H-
lin-ODE) developed from the basic explicit method, which uses the temperature field
of the old-time step to calculate the new enthalpy field. This enthalpy field is then
used to update the temperature field for the next time step. In terms of accuracy,
this solver achieved results comparable to the optimum approach solvers. With the
cp-app-ODE solvers, acceptable results were also achieved when the tolerance was
set tight enough—the absolute value depends on the solver and the mesh—and the
artificial melting temperature range width was chosen carefully. As a reference (based
on the conditions applied in this work), values between 0.1 to 1 K can be used, which
are not so large as to give errors due to the artificial melting temperature range itself
and not so small as to over-jump the phase change region. Regarding the simulation
time, a large discrepancy to the best solvers studied can be seen for all ODE solvers.
For a given accuracy, the ODE solvers were up to two orders of magnitude slower.

• Does linearizing the diffusion term instead of the transient term (i.e., the optimum
approach) give any benefits?

Linearizing the diffusion term (lin-diff-lin-impl solver) gave much worse results than
using the optimum approach.

Regarding the cp-app methods, it is already stated in the literature [5], that a correction/
projection of the temperature (such as that introduced by Pham [20] and Comini [21]) can
help to increase the stability. However, it did not outperform the optimum approach,
mainly because it became unstable for large time steps. We found that the reason for this
behavior lies in the updating of the temperature, which can give temperatures outside the
boundaries defined by the neighboring cells (similar to an explicit method) when the cell
jumps out of the phase change region. Unlike explicit methods, this behavior is damped to
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some extent by the next time steps and neighboring cells, leading to greater stability than
with the explicit methods.

6. Conclusions

This study deals with different enthalpy methods for solving solid/liquid phase
change problems. The methods were tested on a one-dimensional conduction-driven case
for accuracy and numerical efficiency. Generally, the following conclusions can be drawn.

The projection/correction of the temperature/enthalpy relation is key, and it works
best when this is performed iteratively. The so-called optimum approach [17,19] performed
best in terms of accuracy and simulation time. Another solver that can be recommended is
a basic explicit approach, which gives accurate results in an acceptable simulation time, too.

Therefore, the optimum approach is recommended if the simulation time is more
important than the programming time. However, if the programming effort needs to be as
low as possible, the basic explicit method is a very good alternative. It is easy to program,
accurate, and has little numerical effort per time step—the only drawback is its limitations
to ∆t/∆tstab ≤ 1.

Finally, the classical apparent heat capacity approaches (cp-app-lin-expl, cp-app-lin-
impl, cp-app-erf-expl, cp-app-erf-impl) cannot be recommended, as they only gave acceptable
results for a certain set of parameters, which includes time step sizes of ∆t/∆tstab < 1. As
already stated in the literature [5], a correction/projection of the temperature (such as that
introduced by Pham [20] and Comini [21]) helped but did not outperform the optimum
approach, mainly because it became unstable for large time steps. A solver based on the
idea of the optimum approach but with a linearization of the diffusion term instead of the
transient term performed much worse than the optimum approach itself.

As for the influence of the varied parameters on the accuracy of the most accurate
solvers (optimum approach solvers and the basic explicit solver), the minimum of the
relative mean error was affected most by the number of nodes and the artificial melting
temperature range. On the contrary, the influence of the time step was much smaller.

No matter the time step chosen, the minimum of the relative mean error was distinctly
below 10−3.

Looking at the simulation time of the implicit methods with acceptable accuracy
(optimum approach solvers and apparent heat capacity methods with one correction), the
ranking of the varied parameters is different. Here, the width of the artificial melting
temperature range had almost no influence, but the number of nodes (four orders of
magnitude) and the time step size (two orders of magnitude) had a strong effect.

Comparing the implicit methods with the basic explicit method running with
∆t/∆tstab = 1 revealed that, depending on the solver and the varied parameters, ∆t/∆tstab
needed ranged from 2.5–25 to achieve an equal simulation time for the implicit methods.

The use of higher-order methods for time discretization did not give any advantages
except for solvers with an automated time step control. Here, the time step control allowed
for obtaining acceptable results with uncorrected apparent heat capacity methods. However,
it is important to note that solvers applying higher-order time discretization schemes,
performing a projection between temperature and enthalpy, performed considerably more
accurately than the aforementioned apparent heat capacity solvers without a projection.
Moreover, the optimum approach with an implicit Euler time-stepping scheme was up
to two orders of magnitude faster than the solvers with an automated time step control
(ode15s solver from MATLAB).

Interestingly, the average number of iterations per time step was less than two for
all optimum approach solvers, except for opti-erf-impl, which needed slightly more than
two iterations per time step on average. For small time steps and large numbers of nodes,
the number of iterations per time step was even almost equal to 1. This indicates that the
optimum approach, as the one implemented here, is able to solve the equations correctly
“at the first try” for many time steps, therefore, calling the need for a hybrid method [23]
into question.
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Future work will focus on the development of reduced-order models for the simulation
of solid/liquid phase changes, whereas the results achieved in this study will serve as
a benchmark.
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Nomenclature

Property Value Units
Acoe f coefficient matrix −
cp heat capacity J

kg·K
er f c complementary error function −
H enthalpy J
i time step count variable
l length m
L melting enthalpy J

kg
n number of time steps or nodes −
ODE ordinary differential equation −
q heat flux W

m2
→
RB boundary condition vector −
t time s
T temperature K
∆t time step size s
∆T temperature range K
x coordinate m
X phase front position m
α heat transfer coefficient W

m2·K
ε error −
λ thermal conductivity W

m·K
ρ density kg

m3

subscripts
amb ambient
app apparent
i time step count variable
init Initial
j node count variable

k old iteration step
k+1 new iteration step
l liquid
m melting
mean Mean
new New time step
old old time step
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s solid
stab stability
t time step
tc test case
val validation case
x x-direction
superscripts
re f reference
rel relative
sim simulation
T temperature
∗ preliminary

Appendix A
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mean plotted over ∆Tm for simulations with cp-app solvers.
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