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We propose digitized-counterdiabatic quantum optimization (DCQO) to achieve polynomial enhancement
over adiabatic quantum optimization for the general Ising spin-glass model, which includes the whole class of
combinatorial optimization problems. This is accomplished via the digitization of adiabatic quantum algorithms
that are catalyzed by the addition of nonstoquastic counterdiabatic terms. The latter is suitably chosen not only
for escaping classical simulability, but also for speeding up the performance. Finding the ground state of a general
Ising spin-glass Hamiltonian is used to illustrate that the inclusion of k-local nonstoquastic counterdiabatic
terms can always outperform the traditional adiabatic quantum optimization with stoquastic Hamiltonians. In
particular, we show that a polynomial enhancement in the ground-state success probability can be achieved
for a finite-time evolution, even with the simplest two-local counterdiabatic terms. Furthermore, the considered
digitization process within the gate-based quantum computing paradigm, provides the flexibility to introduce
arbitrary nonstoquastic interactions. As an experimental test, we study the performance of the DCQO algorithm
on cloud-based IBM’s superconducting and Quantinuum’s ion-trap quantum processors with up to 8 qubits.
Along these lines, using our proposed paradigm on current noisy intermediate-scale quantum (NISQ) computers,
quantum speedup may be reached to find approximate solutions for NP-complete and NP-hard optimization
problems. We expect DCQO to become a fast-lane paradigm toward quantum advantage in the NISQ era.

DOI: 10.1103/PhysRevResearch.4.L042030

Introduction. Many important optimization problems in
science and industry can be formulated as solving combina-
torial optimization problems [1]. In general, these problems
are known to be NP-hard so that no classical or quantum
computers are expected to solve them efficiently. However,
there is a hope that quantum computers might give some
polynomial speedup, which helps reduce the resources and,
hence, the cost of solving many practical problems of interest.
Especially, adiabatic quantum optimization (AQO) algorithms
are developed to tackle such problems [2–4]. Here, the solu-
tion to the optimization problem is encoded in the ground state
of an Ising spin-glass Hamiltonian [5]. The adiabatic theorem
states that the system will remain in the instantaneous ground
state if the evolution from the ground state of an initial Hamil-
tonian to the final Hamiltonian is sufficiently slow enough.
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The corresponding time-dependent Hamiltonian is given by

Had (λ) = λ(t )

[∑
i< j

Ji jσ
z
i σ z

j +
∑

i

hiσ
z
i

]

− [1 − λ(t )]

[∑
i

σ x
i

]
, (1)

where σ z and σ x are the Pauli operators. And, λ(t ) ∈ [0, 1]
is a scheduling function that represents the interpolation from
the initial Hamiltonian to the final Hamiltonian. In Eq. (1),
the first term corresponds to the Ising spin-glass Hamiltonian
with all-to-all interactions, finding its ground state in the worst
case scenario is NP-hard [6]. The second term with a trans-
verse field represents the initial Hamiltonian, corresponding
to quantum fluctuation.

The Hamiltonian Had (λ) has off-diagonal matrix elements
that are real and nonpositive in the computational basis, in
other words, stoquastic and quantum Monte Carlo simulations
can tackle such problems without facing any sign problem.
It is believed that adiabatic quantum optimization or quan-
tum annealing with stoquastic Hamiltonian might not give
significant enhancement over classical algorithms, but some
counterexamples have recently been found [7–9]. The adia-
batic quantum computation with nonstoquastic Hamiltonians
is known to be universal [10]. However, the role of nonsto-
quastic catalysts to speed up adiabatic quantum optimization
problems is an unresolved problem. There are some problems
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where the nonstoquastic catalysts are advantageous [11–18],
and others are known to worsen the performance compared
to their stoquastic counterparts [19]. The main reason for this
ambiguity is that the nonstoquastic terms are chosen randomly
in all the previous works.

The counterdiabatic (CD) technique, borrowing from
shortcuts to adiabaticity (STA) [20,21], was introduced to
speed up adiabatic evolutions by adding Hamiltonian terms
to suppress the nonadiabatic transitions [22–25]. Recently,
a number of developments have shown the advantage of
CD techniques in digitized-adiabatic quantum computing
[26–29], quantum annealing [30–34], and quantum ap-
proximate optimization algorithms [35–37]. In this Letter,
we propose digitized-counterdiabatic quantum optimization
(DCQO) as a novel paradigm to solve the general class of
combinatorial optimization problems with quantum speedup.
We show that the suitably designed CD terms appearing
during the nonadiabatic evolution act as nonstoquastic cata-
lysts. This provides us with a guaranteed enhancement over
traditional adiabatic quantum optimization with stoquastic
Hamiltonians, whereas solving the long-range Ising spin-glass
problem. Moreover, we consider approximate local CD terms
that can be obtained without knowing any prior detail of
the Hamiltonian spectra [38–40]. We remark that we derive
a general analytical expression for the CD coefficients so
that one does not have to calculate them explicitly for each
case. Finally, we follow the gate-model approach for the
digitized-adiabatic quantum evolution [26,41], allowing the
digital implementation of arbitrary nonstoquastic CD terms in
current noisy intermediate-scale quantum (NISQ) computers.
Consequently, the proposed DCQO paradigm will be useful
to solve the general class of combinatorial optimization prob-
lems with quantum speedup in the NISQ era.

Counterdiabatic driving as a nonstoquastic catalyst.
The concept of STA was originally proposed in the past
decade [20] and was found to have wide applications in
many fields, ranging from quantum physics and classical
physics to stochastic physics [21]. Among all techniques of
STA, CD driving, also called transitionless driving, provided
the possibility of tailoring the Hamiltonian of quantum
many-body systems [38,39] to speed up the adiabatic process.
Here, the source adiabatic Hamiltonian is added by a CD term
that takes the form

H (λ) = [1 − λ(t )]Hi + λ(t )Hf + f (λ)Hcd . (2)

Here, Hi and Hf are the initial and the problem
Hamiltonians connected by λ(t ), satisfying λ(0) = 0 and
λ(T ) = 1, and Hcd is the CD term with scheduling f (λ),
which vanishes at the beginning and end of the protocol.
In principle, introducing the exact CD term help to follow
the instantaneous ground state of the original Hamiltonian
Had (λ) at all times during the evolution. This motivates us to
define the CD term as Hcd (λ) = λ̇Aλ. We can note that, when
the evolution is very fast, Hcd increases dramatically, and in
the adiabatic limit, i.e., |λ̇| → 0, the CD term vanishes.

Here, Aλ = i
∑

m[1 − |m(λ)〉 〈m(λ)|] |∂m(λ)〉 〈m(λ)| is
known as adiabatic gauge potential corresponding to the
nonadiabatic transitions between the eigenstates |m(λ)〉 [42],
which satisfies the condition [i ∂λHad − [Aλ, Had ], Had ] = 0.
Obtaining the exact Aλ for a many-body system is challenging.
Its implementation is not optimal because, in many cases, Aλ

can contain exponentially many terms with nonlocal many-
body interactions. An alternative approach is to consider the
approximate form of the adiabatic gauge potential [38,40]
that can be obtained from a nested commutator (NC) [39],

A(l )
λ = i

l∑
k=1

αk (t ) [Had , [Had , . . . [Had ,︸ ︷︷ ︸
2k−1

∂λHad ]]]. (3)

Here, αk (t ) is the CD coefficient, obtained by minimizing the
operator distance between the exact gauge potential and the
approximate gauge potential. This is similar to minimizing
the action S = Tr[G2

λ] where the Hilbert-Schmidt operator
Gλ = ∂λHad + i[A(l )

λ , Had ]. For the real-valued Hamiltonian
in Eq. (1), the adiabatic gauge potential is always imaginary,
so the terms appearing in the NC expansion always contain an
odd number of Pauli-y terms. So, by restricting to lower-order
terms obtained from Eq. (3) and postselecting only one-spin
and two-spin interaction terms, one can construct the general
two-local CD term as

Hcd (λ) =
∑

i

αi(λ)σ y
i +

∑
i �= j

βi j (λ)σ z
i σ

y
j + γi j (λ)σ x

i σ
y
j , (4)

where the CD coefficients αi, βi j , and γi j are obtained by
variational minimization [38,43]. We can note that, by con-
struction, the approximate CD terms have imaginary numbers
as the off-diagonal matrix elements, which makes it nonsto-
quastic. So, the NC ansatz in Eq. (3) serves as a prescription
for choosing the nonstoquastic catalyst. However, not all
the terms in the NC ansatz give significant enhancement.
Therefore, preselecting the correct operators can help reduce
the cost of implementation. Besides, by introducing more
control parameters, the use of machine learning techniques
and quantum variational algorithms for obtaining optimal
values might further enhance the performance [35,43–46].

We start with a simple local adiabatic gauge potential,
which takes the form Ãλ = ∑N

i βi(t )σ y
i where the general

expression for the CD coefficient βi(t ) is calculated as
βi(t ) = hi/2[(λ − 1)2 + λ2(hi

2 + ∑
i J2

i j )]. Even though the
off-diagonal matrix elements for Ãλ contain complex values
with a simple change of basis, one can make it stoquastic.
Also, from the first-order expansion of the NC ansatz we
obtain the two-local CD term as

H (1)
cd (λ) = −2λ̇α1(t )

[∑
i

hiσ
y
i +

∑
i< j

Ji j
(
σ

y
i σ z

j + σ z
i σ

y
j

)]
.

(5)

Here, the CD coefficient α1(t ) = − 1
4 [

∑
i h2

i + 2
∑

i< j J2
i j]/R(t ), where R(t ) is given by
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FIG. 1. Schematic of the quantum circuit implementation of
digitized-counterdiabatic evolution using the first-order Trotter-
Suzuki formula in Eq. (7).

In the last term of Eq. (6), we have the following additional
constraints: i = k or j = l , and, equivalently, i = l or j = k.
In Eq. (5), we only have a single variational parameter α1(t ).
For better performance, one can also consider the CD term in
Eq. (4), which requires optimizing N2 parameters considering
βi j = β ji and γi j = γ ji. For convenience, we use the short-
hand notation, Y = λ̇

∑N
i βi(t )σ y

i and Y |ZY = H (1)
cd (λ).

Digitized counterdiabatic driving. For adiabatic quantum
optimization problems, the CD terms are nonstoquastic, mak-
ing it challenging to realize such a Hamiltonian on existing
quantum annealers [15,47]. Also, for obtaining a higher suc-
cess probability in many-body systems, it is essential to
consider higher-order k-local CD terms. This is a challenging
task for analog quantum computers and quantum annealers.
Along with that, the lack of flexibility in realizing arbi-
trary interactions is one of the main drawbacks of analog
quantum computers and quantum annealers. To overcome all
these problems, we used digitized-adiabatic quantum com-
puting techniques [26,41], which provides the flexibility to
introduce arbitrary multiqubit and nonstoquastic interactions.
The model is also consistent with error correction [48], and
error mitigation techniques are being developed for NISQ
computers [49].

For the time-dependent Hamiltonian in Eq. (2), the evolved
state is given by |ψ (T )〉 = T exp[−i

∫ T
0 H (λ)dt] |ψ (0)〉,

where |ψ (0)〉 = 1√
2
(|0〉 + |1〉)⊗N , and T is the time-ordering

operator. The total Hamiltonian can be decomposed into sum
of local terms, i.e., H (λ) = ∑

j γ j (t )Hj . We discretize the
total time T into many small intervals of size δt . Using the
first-order Trotter-Suzuki formula, we obtained the approxi-
mate time-evolution operator given by

Udig(0, T ) =
M∏

k=1

∏
j

exp{−i δt γ j (k δt )Hj}, (7)

where M corresponds to the number of Trotter steps. For bet-
ter approximation one can also consider the recently proposed
commutator product formulas [50]. In Fig. 1, the quantum
circuit for implementing the digitized-counterdiabatic quan-
tum evolution is shown. For the evolution of a time-dependent
Hamiltonian, the Trotter step size δt should be less than
the fluctuation timescale of the Hamiltonian [51], i.e., δt 	
‖∂H/∂t‖ −1. However, recently, it has been shown that the
digitized-adiabatic quantum evolution is robust against the
discretization error [52]. This loosens the restrictions on δt .

The cost associated with the digitized-counterdiabatic quan-
tum evolution is given by Cost = T maxλ ‖H[λ(t )]‖, which
corresponds to the total gate count, whereas the number of
Trotter steps decide the circuit depth. For the fully connected
Ising spin-glass problem, total N (N − 1)/2 entangling op-
erations are needed for each Trotter step, and the inclusion
of the two-local CD terms increases it by a constant factor.
Recently, it has been shown that implementing such fully
connected Ising spin-glass problems on current quantum an-
nealers, and on parity quantum computers, results in huge
time overhead because of the embedding schemes [53]. In
this regard, it is argued that gate-model quantum computing
on a two-dimensional grid has an advantage compared to
other architectures. In this sense, trapped-ion systems with
all-to-all connectivity would be an ideal choice, but they are
not strictly necessary. In our simulation, we fix the total time
T = 1 and the step size δt = 0.05. The scheduling function
is chosen as λ(t ) = sin2[π

2 sin2( πt
2T )] so that CD terms vanish

at the beginning and the end of the evolution. Each matrix
exponential term in Eq. (7) is implemented using standard
two-qubit CNOT gates and single-qubit rotations. For all the
cases, the number of shots is chosen between 10 000 and
100 000 depending on the system size. By measuring the
qubits in the computational basis, we obtain the success prob-
ability given by Ps = | 〈ψg|ψ f (λ = 1)〉 |2. Here, |ψg〉 is the
actual ground state, and |ψ f (λ = 1)〉 is the time-evolved state
at t = T . For the Hamiltonian in Eq. (1), the coupling terms Ji j

and the local fields hi are chosen randomly from a continuous
Gaussian distribution with unit variance and zero mean. For
estimating the fraction of instances where the inclusion of the
CD term gives an enhancement, we define a metric called
enhancement ratio, given by Renh = Lcd/L. Here, Lcd is the
number of instances with enhanced performance by including
the CD term, and L is the total number of instances, where
we set L = 1000. In order to quantify the improvement in
the success probability, we define a quantity called success
probability enhancement, given by Penh = Pcd

s /Pad
s . Here, Pcd

s
and Pad

s are the success probability with and without the CD
terms, respectively.

In Fig. 2, the average ground-state success probabilities
for the naive stoquastic Hamiltonian with only a transverse
field in Eq. (1), including the local CD term Y , and two-
local CD term obtained from NC ansatz Y |ZY are depicted
for system sizes up to 18 qubits. We see that the success
probability decreases rapidly with increasing system size for
the naive nonadiabatic approach, the inclusion of the two-
local CD term H (1)

cd gives a polynomial enhancement, and
the local single-spin CD gives a constant enhancement. The
top panel in Fig. 3 shows the average success probability
enhancement (Pavg

enh ) by including the CD terms Y and Y |ZY .
As the system size grows, Pavg

enh increases polynomially for the
CD term obtained from the first-order NC ansatz. With the
single-spin CD term Y , we obtained an enhancement by a
factor of ≈3, irrespective of the system size. The bottom panel
in Fig. 3 depicts the fraction of instances where the inclusion
of the CD term gives enhancement. For the local CD Y , we
obtained Renh ≈ 75.6%, whereas the CD term Y |ZY gives the
enhancement ratio Renh ≈ 100%, indicating that the two-local
CD term gives a guaranteed enhancement for all the random
instances. In general, the inclusion of CD terms does not help
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FIG. 2. The average success probability of obtaining the ground
state as a function of number of spins in the Ising spin-glass Hamil-
tonian is depicted. Here, we fix the total evolution time T = 1 and
the number of Trotter steps to 20, i.e., δt = 0.05. The interaction
strengths and the local fields are chosen randomly from a Gaussian
distribution for 1000 random instances. The blue curve corresponds
to the evolution without the CD term, the red curve is with the local
single qubit CD term, and the green curve is for the two-local CD
term in Eq. (5). In the latter case, a polynomial enhancement in the
success probability can be observed.

reduce the minimum gap, and its enhancement is explained
by the fact that the additional terms help suppress the matrix
elements responsible for the excitations between the eigen-
states. However, to analyze the effect of nonstoquastic CD
terms on the minimum gap �min, we study the instantaneous
energy spectrum as a function of time. Surprisingly, we noted
that the inclusion of approximate CD terms obtained from the
NC ansatz increases the minimum energy gap between the
ground state and the first excited state during the evolution.

FIG. 3. The average success probability enhancement (Pavg
enh ) and

probability enhancement ratio (Renh) as a function of system size for
the Ising spin-glass problem is depicted. For the two-local CD term
from the first-order NC ansatz, Pavg

enh increases with the system size.
Whereas for the local CD term (Y ), a constant enhancement by a
factor of 3 is observed. In the bottom panel, we see that, the two-local
CD term always give enhancement for all the 1000 random instances,
whereas the local CD has an average enhancement ratio 0.756.

FIG. 4. The energy gap between the ground state and the first
excited state is plotted as a function of time for a system size N = 10.
The blue curve corresponds to the stoquastic Hamiltonian in Eq. (1),
whereas the green curve corresponds to the nonstoquastic Hamilto-
nian by including the two-local CD term in Eq. (5).

This increased gap helps to reduce the excitations, resulting
in increased success probability. In Fig. 4, the energy gap be-
tween the ground state and the first excited state (|E1 − E0|) as
a function time is plotted for four randomly chosen instances
with system size N = 10.

Experimental implementation. In order to demonstrate
the potential of DCQO on current NISQ devices, we
use IBM’s cloud-based superconducting quantum processor
IBMQ_MONTREAL with 27 qubits and Quantinuum’s fully con-
nected ion-trap processor with 10 qubits. The system we study
consists of N = {5–8} spins, and the interaction between spins
Ji j and local fields hi are chosen randomly. The CD term is
considered as in Eq. (5). For the Trotterized evolution, we set
the total evolution time T = 0.1 and the step size δt = 0.05
with only two Trotter steps. The CD term Hcd is dominant
for this fast evolution, and we can neglect Had whereas im-
plementing on the hardware. We prepare the qubits in the
initial ground-state |+〉⊗N by using Hadamard gates and apply
the time-evolution unitary operator using the available basis
set of gates. We obtain the result by measuring the qubits in
the computational basis with a number of shots Nshots = 8192
and Nshots = 500 from the superconducting and trapped-ion
systems, respectively. For the complete experimental details,
see the Supplemental Material [54]. In Fig. 5, the proba-
bility distribution obtained from the different hardware and
ideal simulators with and without including the CD terms are
compared. For all the cases we studied, the result obtained
from DCQO has a large overlap with the exact ground state
even with just two Trotter steps (see Fig. 5). To compare the
success rate of the ideal result with the experimental results,
we compute the Hellinger distance using F (Pexp, Pideal ) =
[
∑

i

√
Pi,idealPi,exp]2, where Pi,ideal and Pi,exp are the state occu-

pations and i runs over the computational basis. The success
rate for the ideal DCQO with the results from the trapped-ion
system is 0.966, 0.956, 0.887, and 0.845 for system sizes 5 to
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FIG. 5. Probability distribution obtained from digitized-counterdiabatic quantum evolution of Ising spin-glass Hamiltonian is depicted. We
considered random instances of all-to-all connected Ising spin-glass Hamiltonian with 5 to 8 spins. The system is evolved using Trotter-Suzuki
approximation with and without including the CD terms given in Eq. (5). The experimental results are obtained from IBM’s transmon-based
superconducting quantum processor IBMQ_MONTREAL and Quantinuum’s ion-trap quantum processor. The ground-state success probability
obtained after two Trotter steps are compared for the digitized-counterdiabatic quantum evolution with the nonadiabatic one. We observed that
the experimental and ideal simulations using the DCQO approach have a large overlap with the exact ground state highlighted in the figure.
The inset depicts the graph representation of the problem instance with coupling terms and local field strengths are shown using color bars.

8 qubits, respectively. And for the superconducting quantum
processor, we restricted our experiment to only five spins due
to limited qubit connectivity and obtained a success rate of
0.835.

Discussion and conclusion. In this Letter, we studied a
long-debated problem in adiabatic quantum optimization, i.e.,
the speedup role of nonstoquastic catalysts. We showed that
cleverly chosen nonstoquastic counterdiabatic Hamiltonians
achieve enhanced performance compared to traditional sto-
quastic adiabatic methods. We considered the general Ising
spin-glass Hamiltonian with all-to-all connectivity to show
that a polynomial enhancement in the ground-state success
probability can be obtained, even with two-local nonstoquas-
tic CD terms stemming from the NC ansatz. As an outlook,
considering higher-order k-local CD terms may further en-
hance the already observed quantum speed up of the DCQO
paradigm. In this Letter, we also provided a general analytical
expression for scheduling these CD terms, whose calculation
does not require any prior knowledge of the Hamiltonian spec-
tra or the structure of the eigenstates. Finally, we implemented
the DCQO algorithm on two different quantum hardware,

i.e., transmon-based superconducting quantum processor and
trapped-ion system. In conclusion, we proved that the pro-
posed DCQO paradigm involving suitable nonstoquastic CD
terms is superior to the traditional AQO using stoquastic
Hamiltonians. In this sense, DCQO might help to achieve
quantum advantage for obtaining approximate solutions to
combinatorial optimization problems on NISQ computers
from hundreds to a few thousand qubits.

Data availability.The authors declare that the main data
supporting the finding of this Letter are available within the
Letter.
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