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the approximations presented here can be easily adapted to other inventory systems with similar char-
acteristics. Most of the formulae in this article are new for nonstationary models under the EWA policy;
indeed, formulae for the age distribution of units in stock and of units issued have not appeared in the
literature even for the simpler base-stock replenishment policy. We apply our results to a real blood bank
and find very close agreement between the formulae and the results of Monte Carlo simulations. The ac-
curacy of our approximations is also tested in several scenarios, depending on the lifetime of units, safety
stock levels and the probabilistic distribution of demand.
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1. Introduction
1.1. Background and motivation

Inventory management of perishable items is of great impor-
tance in many sectors of the economy. Food and blood products
are just a couple of examples of perishable goods. The mathemat-
ical analysis of inventory models for these products is much more
difficult than for nonperishable items. Also, although there are a
great many research papers on models for perishable goods they
are still far fewer in number than the papers and books devoted to
nonperishable products; see, e.g., Silver, Pyke, & Peterson (1998).

Much of the research on inventory management for perish-
able products has focused on blood products, and has been pub-
lished both in medical and mathematical journals; see Atkinson,
Fontaine, Goodnough, & Wein (2012), Belién & Forcé (2012),
Civelek, Karaesmen, & Scheller-Wolf (2015), Ensafian & Yaghoubi
(2017), Rajendran & Ravindran (2019). Blood products are used for
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transfusion in most hospitals and are seen as a scarce, precious
resource. They are of vital importance for patients, so a sufficient
stock must be kept in order to avoid stockouts. Different compo-
nents of blood, such as red blood cells, plasma and platelets, are
used for transfusion. Among them, platelet concentrates are con-
sidered as a critical product since they have a short lifetime (usu-
ally 5 or 7 days). They are also expensive (for instance, Haijema,
van der Wal, & van Dijk (2007) assume a cost of more than 450 Eu-
ros per patient per treatment), and overcautious policies in keeping
big stocks result in a large number of outdated units, leading to an
unnecessary waste of money and ethical concerns.

In this paper we focus on a periodic review model for fixed life-
time perishable goods such that stockouts must be kept to a min-
imum. Platelets are a clear example of such products, and we use
the inventory model of the Basque Centre for Transfusion and Hu-
man Tissues (CVTTH) in Galdakao, Bizkaia, Spain, for the derivation
of our formulae. This research originated in collaboration between
the University of the Basque Country and the CVTTH for the imple-
mentation of a mathematical model for the management of blood
products; see Pérez Vaquero, Gorria, Lezaun, Lépez, Monge, Eguiz-
abal, & Vesga (2016), Gorria, Labata, Lezaun, Lopez, Pérez Aliaga,
& Pérez Vaquero (2020). The paper focuses on this model for the
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production of platelet concentrates, but our analysis can easily be
adapted to other perishable goods where the service level needs to
be high.

1.2. Objective of the paper

In practice, it is very useful to have approximations of the per-
formance measures of an inventory system, which can be used to
validate policies and optimise the parameters of the model. When
such approximations are not available, validation and optimisation
must rely on simulations. This paper sets out to derive analytical
approximations for the main performance measures of nonstation-
ary models when the Estimated Withdrawal and Aging (EWA) re-
plenishment policy is used and a high service level is needed. EWA
is a modification of the base-stock replenishment policy where the
inventory position is modified by subtracting an estimation of the
amount of outdating, for placing a new order.

We do not assume any specific form for the probabilistic dis-
tribution of the daily demand. Among others, we obtain formulae
for the expected on-hand inventory, the probability of stockout, ex-
pected outdating, the age distribution of stocks and the freshness
of units issued. The models that we consider are not stationary,
but weekly stationary: the weekly pattern exists in the distribution
of the demand and in the operational assumptions of the system
(for instance, orders are placed every weekday but not on week-
ends). Since our model has a weekly pattern, all the formulae are
obtained for each day of the week.

We derive the approximations for a particular model to be de-
scribed in detail in Section 2. This may be seen as somewhat re-
strictive, but we see two advantages in it. First, the model is real-
istic, since it is very close to the operation of a real blood bank.
Second, it includes a variety of situations (e.g. not all days have
the same lead or review times and units arriving on Mondays have
a different remaining lifetime than units arriving on other days);
thus, the reasoning and derivation of the formulae for the model
can be adapted without difficulty to other systems.

To the best of our knowledge, this is the first paper where ap-
proximations for performance measures are given when the model
is nonstationary and the EWA policy is used (except for the fill
rate, which has already been approximated in van Donselaar &
Broekmeulen, 2011). A key point in our analysis concerns the for-
mulae for v{, the expected number of units ordered on day t which
are in stock at the end of day t +1i, derived in Section 3.3. These
formulae enable us to give approximations for many performance
measures of the model, such as expected outdating. Freshness, de-
fined as the expected remaining lifetime of units issued, can also
be easily computed from vt". In fact, we give more comprehensive
information on units issued by deriving approximations for the val-
ues wf, the expected number of units issued on day t with r days
of remaining lifetime.

We also use v{ to compute the age distribution of the stock,
i.e. the expected number of units in stock with remaining lifetime
1, ..., m at the beginning of a day in the long run. This distribution
gives full information on the behaviour of the system. We point
out that age distribution of stock in nonstationary models for per-
ishable items has not appeared in the literature even under the
simpler base-stock policy.

While in most instances of inventory systems demand is dis-
crete in nature, continuous distributions are often used to model
it. Throughout the paper we assume that demand is well modelled
by a continuous distribution, so our formulae are expressed using
integrals and probability density functions (PDF); if a discrete dis-
tribution for demand is to be used, then, PDFs must be replaced
by probability mass functions and integrals by sums.
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1.3. Literature review

There is a great variety of mathematical models for perishable
items. They differ in many characteristics, such as deterministic or
random demand, fixed or random lifetime, zero or positive lead
time, stationary or time-varying demand, among others. We work
with a random demand, fixed lifetime model here, so we restrict
ourselves to that setting for the rest of the paper.

An excellent review of the research published on inventory
models for perishable items can be found in Nahmias (1982) for
early papers on the subject; in Raafat (1991) for papers up to 1991;
in Goyal & Giri (2001) for publications from the early 90s to 2000;
and in Bakker, Riezebos, & Teunter (2012), Janssen, Claus, & Sauer
(2016) and Chaudhary, Kulshrestha, & Routroy (2018) for more re-
cent work. The first mathematical studies on inventory systems
for perishable items set out to find optimal solutions in terms
of minimising cost functions. However, in contrast to what hap-
pens for nonperishable items, where optimal solutions are known
in a wide variety of settings, researchers found that models for
perishable items were much harder to analyse, at least when de-
mand was random. Thus, optimal solutions were obtained only in a
limited number of situations such as very short product lifetimes
(m=1,2) or zero lead time; see Nahmias (1982) and references
therein.

One way of finding an optimal solution is by using dynamic
programming, which is a suitable tool for these models, taking
a state space defined by the age distribution of the stock and a
stochastic transfer function (see Nahmias, 1975). This technique
solves, at least theoretically, the problem of finding a policy which
minimises the cost function subject to a service constraint. How-
ever, due to the “curse of dimensionality” of dynamic program-
ming, the state space of the problems becomes huge even for mod-
erate values of m (lifetime) and maximum storage capacity and the
problems become unsolvable in practice. In the last few decades
the increasing speed and capacity of computers have led to a re-
emergence of this technique, although it still needs to be combined
with aggregation of states or simulation to find solutions in a rea-
sonable time. Haijema et al. (2007), who combine dynamic pro-
gramming with simulation, work with a model whose state space
is larger than 108, which implies a complexity of the order of 1013
for one week iteration, so a downscaling of four to one units is
carried out. Algorithms based on aggregation of states in multiple
levels are proposed in Voelkel, Sachs, & Thonemann (2020).

Another approach for finding good policies in inventory mod-
els is discrete event simulation. It consists of modelling the sys-
tem and implementing it in simulation software. By running the
simulation with different policies and in various settings, the per-
formance of the policies can be compared with a view to choos-
ing the best. Simulation has been widely used to model real blood
banks. For instance, Rytild & Spens (2006) compare different sce-
narios of production and distribution of blood components in Fin-
land. Asllani, Culler, & Ettkin (2014) build a model for a blood bank
centre supplying 50 health care facilities in the US to search for the
best platelet production policy in the week, when platelets are dif-
ferentiated by blood type. Dalalah, Bataineh, & Alkhaledi (2019) use
a simulation-optimisation approach to find an optimal policy when
demand is differentiated by the age of platelets, and apply it to
Kuwait public hospitals. Gorria et al. (2020) use data from two
blood banks in Spain to study the decrease in outdating when
the lifetime of platelet concentrates is extended from 5 to 7 days
via pathogen reduction technologies and analyse what days of the
week are most appropriate for applying these technologies. An ad-
vantage of the simulation approach is that the model can be as
realistic as desired. However, no analytical expressions of the op-
timal solution or the performance measures of the model are ob-
tained, which prevents the parameters of the model from being in-
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terpreted directly; moreover, simulations must be run every time a
change in the parameters is observed.

Yet another approach is to use heuristics to find a good so-
lution. This approach does not seek to find the best of all feasi-
ble solutions, but rather to propose reasonable, easy-to-implement
policies which perform well in practice. Many of these policies are
myopic, in the sense that they make period-by-period decisions,
and/or involve a simplification of the state space (for instance, us-
ing a simple function of the composition of the stock instead of its
complete age distribution). Nandakumar & Morton (1993) describe
heuristic solutions in the case of zero lead time which are close
to optimal. For positive lead time, Chiu (1995) develops a solution
based on a period-by-period optimisation of an approximation of
the cost function which only takes into account the size of the
stock but not its age distribution. Haijema & Minner (2019) give
an overview of some of the most important stock-age dependent
order policies, propose new ones and compare them in a broad set
of scenarios.

One heuristic developed for periodic review and fixed life-
time models, which yields good results, is the EWA policy, intro-
duced in Broekmeulen & van Donselaar (2009). It is known (see
Broekmeulen & van Donselaar, 2009; Haijema & Minner, 2019)
that the EWA policy significantly outperforms the base-stock pol-
icy. The EWA policy has been analysed by van Donselaar & Broek-
meulen (2011), van Donselaar & Broekmeulen (2012), Broekmeulen
& van Donselaar (2019). van Donselaar & Broekmeulen (2011) give
approximations for the fill rate both when demand is stationary
and when it has a weekly pattern. In the case of stationary mod-
els, van Donselaar & Broekmeulen (2012) give analytical expres-
sions to approximate the expected outdating; these approxima-
tions are then improved by simulating a large number of sce-
narios and fitting a regression model. Also for stationary mod-
els, Broekmeulen & van Donselaar (2019) propose several poli-
cies for reducing waste and increasing freshness. Freshness is a
very important performance measure when dealing with perish-
able items, since waste due to outdating occurs very frequently
at customer level: e.g. households for food (Secondi, Principato, &
Laureti, 2015; van Geffen, van Herpen, & van Trijp, 2020) or hos-
pitals for platelets (Flint, McQuilten, Irwin, Rushford, Haysom, &
Wood, 2020; Pérez Vaquero et al., 2016). Moreover, fresher units
are usually preferred by customers in the case of both food prod-
ucts (Li & Teng, 2018) and platelets, since they have better proper-
ties than older ones, Caram-Deelder, Kreuger, Jacobse, van der Bom,
& Middelburg (2016), Aubron, Flint, Ozier, & McQuilten (2018).
Broekmeulen & van Donselaar (2019) were the first to obtain an
approximation of freshness in an inventory model for perishable
items. To estimate freshness, they propose an expression based on
Little’s formula for queuing theory; the expression uses an estima-
tion of expected outdating, so simulations must be run and a re-
gression model fitted as in van Donselaar & Broekmeulen (2012) in
order to compute the approximation of freshness.

A more comprehensive description of the performance of an
inventory system for perishable items is achieved by computing
the age distribution of the stock. Formulae for the age distribu-
tion of stock are challenging to obtain even in the stationary case
and under the base-stock policy. They have been computed only
for continuous-review models assuming that demand follows a
Poisson process, using the theory of queuing networks. See Kouki,
Legros, Babai, & Jouini (2020) and references therein.

The rest of the paper is organised as follows. Section 2 describes
the model used for developing our approximations and how the
EWA policy applies to it. The formulae for the approximations are
given in Section 3. The accuracy of the approximations is assessed
via comparison with Monte Carlo simulations in a real example in
Section 4. Section 5 shows the results for 72 scenarios and analy-
ses the extent to which our approximations can be regarded as re-
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liable. Conclusions and ideas for future work are given in Section 6.
The paper has four appendices with some additional formulae and
information and a Supplementary Material file with tables related
to Sections 4 and 5.

2. The model

For ease of exposition, we develop our results for a particular
model, i.e. the production of platelet concentrates in the CVTTH.
The characteristics of the model presented are common to many
blood banks. For instance, a similar model is analysed by Haijema
(2013) using dynamic programming. The formulae derived here can
be easily adapted to any model with periodic review, stochastic de-
mand, fixed lifetime and a weekly pattern.

We consider a FIFO issuing policy (older items are issued first).
FIFO is the most common issuing policy in the literature on per-
ishable items, especially when dealing with blood products; it is
known that the freshness of units issued is lower using a FIFO pol-
icy than with other issuing policies such as LIFO (newer items are
issued first), but outdating is lower with FIFO than with LIFO; see,
for instance, Cohen & Prastacos (1981), Stanger, Yates, Wilding, &
Cotton (2012).

There is daily demand from hospitals from Monday to Sunday
whose distribution depends on the day of the week. Let D; be the
random variable representing the demand on day t > 1. We take
day t =1 to be a Monday. As usual in these models, we assume
that demands on different days are independent of each other.
Similarly, we assume that the demand is weekly stationary, i.e. the
probability distribution of D, is identical to D; for all 1 <t <7,
k > 1. We denote by F the cumulative distribution function (CDF)
associated with Dy and its mean and variance by wu: = E[D;] and
o = Var[D], respectively.

For t,i > 1, the aggregated demand during the interval [t, t + i]
is denoted by

i
Z Dt+j'
j=0

For ¢ <s, let F s be the CDF of Dy s and u¢s = E[D¢s] and o =
Var[D; ] the corresponding mean and variance. We also WriteyFt,s
with 1 <s <t <7 to denote the CDF of D; ¢, 7, which has the same
distribution as D; 7 + Dy ¢; for instance, F5, represents the distri-
bution of D5 g, the demand from a Friday to the following Tues-
day. Accordingly, for 1 <s <t <7, let pu¢s=E[D;7]+E[D;s] and
crtz_s = Var[D; 7] + Var[D; ], the mean and variance of F ;.

In practice, historical data is used to fit a distribution for F and
to estimate yu and o¢, t = 1,...,7. The estimations of F s, ;s and
ors can be computed from the estimations of F, u: and o, t =
1,...,7 since we assume independence of the random variables D;.

Platelet concentrates have a fixed lifetime of m days. We derive
our formulae for general m; when a specific value of m is needed
we take m =5 since this is the most common lifetime of platelet
concentrates and the one used in Pérez Vaquero et al. (2016). Pro-
duction orders can be placed every day from Monday to Friday.
This is equivalent to saying that there is a review interval of one
day from Monday to Thursday, R = 1, and of three days on Friday,
R =3. An order means that blood is processed immediately after
the order and platelet concentrates are produced during the day.
If the order is placed on any day between Monday and Thursday,
the concentrates are ready for use in the morning of the following
day, with a remaining lifetime of m days; orders placed on Friday
are ready for use on Monday morning, with a remaining lifetime
of m — 2 days. That means that the lead time is L =1 for orders
placed from Monday to Thursday and L =3 for orders placed on
Friday. Note that this model is not daily stationary, but weekly sta-
tionary: the distribution of demand, the review interval and the

Dt,t+i
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lead time depend on the day of the week. We assume that the
service level is high, which is customary in blood banks, and that
unsatisfied demand is not backlogged (in practice, stockouts are
covered by an urgent request to a neighbouring bank). Orders are
placed at the beginning of the day, taking into account the on-hand
inventory and the arriving units but before the demand for the day
is known. If a unit has not been used by the mth day of life it is
disposed of; for instance, if m =5, concentrates ordered on Mon-
day and not used by Saturday are discarded. The order of events
each day is: (1) receive the incoming order (only for weekdays);
(2) place the new order (only for weekdays); (3) observe and meet
the demand; (4) dispose of outdated units.

2.1. The EWA policy

Ours is a typical model for perishable items with fixed lifetimes.
As commented in the Introduction, there is no known optimal pol-
icy for such a model (weekly pattern, nonzero lead time, stochastic
demand and lifetime greater than 2). A heuristic approach to find
a reasonable solution is the base-stock policy, which is a simple
order-up-to policy. The EWA policy is an improvement of that pol-
icy. We describe both these policies here.

The base-stock policy has been widely used as a heuristic for
stochastic demand, fixed lifetime inventory systems; see for in-
stance Nahmias (1982), Cooper (2001) and references therein. It
has been also used as a benchmark for comparison with more
complex policies: Tekin, Giirler, & Berk (2001), Broekmeulen & van
Donselaar (2009), Duan & Liao (2013), Haijema & Minner (2019).

The base-stock policy works like an order-up-to policy for non-
perishable items. Its rationale is to have sufficient on-hand in-
ventory to meet demand until the inventory replenishment corre-
sponding to the next order. At each review point t an order of size

QF = max{SS + phr.c11+r-1 — IPt, 0} (1)

is placed. Here SS; is the safety stock for day ¢, ¢ ¢ 4g_1 is the
expected demand from the placement of the order until the ar-
rival of the next order and IP is the inventory position. Note that
both L and R may depend on the day of the week. When val-
ues are assigned to the subscript t + L+ R —1, the R correspond-
ing to day t and the L corresponding to day t + R are taken. Let
St =SSt + ¢ t41+r—1 be the order-up-to quantity of day t.

This policy takes into account the inventory position for plac-
ing an order, but not its age distribution. The EWA policy, proposed
by Broekmeulen & van Donselaar (2009), works like the base-stock
policy, but the inventory position is decreased by an estimation of
the expected outdating between the placement of an order and
day L+ R -1 thereafter. The order quantity under this more so-
phisticated policy for day t is

Q = max{SS; + p¢r+1+r1 — IP: + E¢, O},

where E; is an estimation of E;, the expected outdating during
the interval [t,t + L+ R —2]. Note that the outdated quantity on
day t+L+R-1 is not included because it does not affect the
ability to meet demand that day. In the EWA policy, the estima-
tion E; is computed assuming that demands during the interval
[t,t +L+R—2] are equal to their mean values. More accurate es-
timations of waste can be computed by using the exact distri-
bution of demand instead of its mean, but they show little im-
provement and are very time-consuming (see Haijema & Minner,
2019). There is an irrelevant shift of the index of the days to be
considered for outdating in the computation of E;, when com-
pared to Broekmeulen & van Donselaar (2009). In their paper the
days to be considered are t+1,....,t+L+R—1 while we take
t,...,t + L+ R —2. This is because in their study orders are placed
at the end of the day but in ours they are placed at the beginning
of the following day.
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To estimate E;, we need some notation. Let B}, r=1,...,m be
the number of units in stock (on-hand) at the beginning of day t
with r days of remaining lifetime after the arrival of new items,
and B; = Bt1 +---+BJ". Note that B is equal to IP; except for Satur-
days and Sundays, where Friday’s order is included in IP but not
in B;. Let W/ be the number of units with r days of remaining life-
time which are issued on day t. The following recursive formulae
relate the outdated quantity O; on day t to the on-hand units B,
the units issued W/ and the demand D; (see Broekmeulen & van
Donselaar, 2009):

O = B} —W,' = max {B{ - D, 0},

r—1

W/ =min{B[.D: =Y Wft, r=1,....m,
k=1
-1 -1
Bl =B -W/ +Al, r=2...m Bl =A",, (2)

where Al is the number of units arriving on day t with r days of
remaining lifetime. The term A{;} is not included in formula (6)
of Broekmeulen & van Donselaar (2009) because in their case all
units enter the system with m days of remaining lifetime. In our
case, units arriving from Tuesday to Friday have m days of remain-
ing lifetime while units arriving on Monday have m — 2. Due to the
recursive nature of (2), there is no simple way to express O;,; as a
function of B},...,B[" and D, ..., Dy,;. Moreover, since Dy, ..., D, ;
are random, so are O, ..., O,;, but a deterministic value is needed
for the latter in order to approximate the expected outdating E;.
The EWA policy assumes that Dy,...,Dy g are equal to their
expected values, uses (2) to get the estimates O; Ot+L+R,2 of
Or.....0p g > and then takes E; = Op + - + Opypip_o.

.....

2.2. Application of the EWA policy to the model

We first show the application of the base-stock policy to our
model, which is needed for the EWA policy. Recalling (1), and
due to weekly stationarity, we need to define SS;, t =1
safety stock for Mondays, Tuesdays, Wednesdays, Thursdays and
Fridays, respectively (no orders are placed on Saturdays or Sun-
days). Note that the values of R and L depend on the day of the
week. The values of R and L to be used for the order placed on
day t are the time until the next order is placed (R) and the time
between the placement of that order and its arrival (L). For Mon-
day, t =1, the review interval is R =1, since a new order will
be placed on Tuesday, and the lead time is L =1, since the or-
der placed on Tuesday will arrive on Wednesday. Also, L=R=1
for Tuesday and Wednesday (t = 2, 3). For Thursday, t = 4, the re-
view interval is R = 1, since a new order will be placed on Friday,
and L = 3, since the order placed on Friday will arrive on Monday;
for Friday, t =5, we have R =3, L = 1. In other words, the period
from t to t + L+ R —1 corresponds to Mon-Tue for orders placed
on Monday, Tue-Wed for orders placed on Tuesday, Wed-Thu for
orders placed on Wednesday, Thu-Sun for orders placed on Thurs-
day and Fri-Mon for orders placed on Friday. There are different
ways to determine the safety stock for day t. A common option, for
both nonperishable and perishable items, is to take it as a factor of
the standard deviation of the demand; see Chapter 7 in Silver et al.
(1998). We take it as

SStz{

with k, kq, ky > 0, where the values of L,R depend on the day of
the week as explained above. That is, the safety stock is propor-
tional to the standard deviation of the demand to be covered, plus
a fixed value (k; or k;); we allow different values of k; for Mon-
days, Tuesdays and Wednesdays, which cover only 2 day demand,

fort=1,2,3,
fort=4,5,

kot triir-1 + K
kot cs11r-1+ k2
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Table 1
Random variables related to the inventory system.
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number of units in stock (on-hand) at the beginning of day t with r days of

total number of units in stock (on-hand) at the beginning of day t once the

number of units issued on day t with r days of remaining lifetime
number of units ordered on day t which are in stock (on-hand) at the end of

number of units in stock (on-hand) at the end of day t once outdated units

B} t>1r=1,..., m
remaining lifetime once the incoming order has arrived
B¢ t>1
incoming order has arrived
Q t>1 order quantity of day t
St t>1 order-up-to quantity of day t
O t>1 number of units outdated on day t
E; t>1 expected outdating in the interval [t,t + L+ R — 2]
Wy ot=Lir=1,..., m
1A t>1,i=1,..., m
day t +i before outdated units are discarded
H; t>1
are discarded
Ue t>1 unsatisfied demand on day t

and for Thursdays and Fridays, which cover 4 day demand. We de-
cided to use only two parameters, k; and k,, instead of five differ-
ent parameters k¢, t =1,...,5, one for each weekday, for reasons
of simplicity and efficiency. This assertion is based on the conclu-
sions of a simulation-optimisation model for the management of
platelets used in Pérez Vaquero et al. (2016), where the optimal
solutions in terms of few outdatings and freshness of units issued
were found for the empirical data of 52 weeks in the CVTTH. In
any event, the choice of this form of safety stocks does not affect
the derivation of our formulae, and they can be straightforwardly
adapted to any other form of safety stocks, such as taking a differ-
ent parameter k; fort =1,...,5.

We now turn to the application of the EWA policy. To compute
E;, we consider several cases, depending on the day of the week.
When day t is a Monday, from (2), O; = (B} —D;)*, where a* =
max{a, 0}. Since the EWA policy assumes D; = u1, it follows that
Or = (B} — 11)*. As L+ R —2 =0 in this case, Er = (B} — ;)*. The
same expression is valid when day t is a Tuesday or a Wednesday
(replacing ¢ by uy, us, respectively).

When day ¢ is a Thursday or a Friday, L + R — 2 = 2. Thus, O; =
(B! =D¢)* and Or = (B! — juc)*. Also, Opq = (Bl,; — Diy1)*, with
W, = min {B} Dt}, W2 = min {B?,Dt -w! } which yields B, =
(B — (D —B})*)* and Oy = ((B? — (De —B{)*)* —D¢11)*. The
derivation of O, = (B],, — D¢;2)* is more involved. Note that
Bl,, =B, —W? (B2 = (D =W —W2))* and W2 =

“rp2
t+1 1o With B 4 =

min {BZ, (D¢ — B})*}. We have

Bty = (B — (O = B))" —BF)")",

Wl = min{(Bf — (De = B{)*)*. D }

W2, = min {B? ;, (Der1 — (B — (D —B{)*)*)*}.

Therefore, B} , = (B? - (Dm + (D — B})+ - B§)+)+. Collecting

all the terms above gives Oy, = ((Bf — (De41 + (Dt — B})* — B?)*)*
—D;,2)*. The value of E; is obtained by summing up O, O 4
and O, and replacing D¢, D¢,1 and D¢,o by pr, per1 and peo,
respectively.

The expressions are valid for general m. They are simple for
Monday, Tuesday and Wednesday, but are rather complicated for
Thursday and Friday. However, they get simpler when a concrete
value of m is taken since some Bj are equal to 0. For instance, m =
5 gives E; = (B} — 4q6)* for Thursdays and E = (B — pusp)t +
(B} — (s — B2)* — pu7)* for Fridays.

3. Approximations of performance measures under the EWA
policy

We now derive analytical approximations of the main perfor-
mance measures in the model. Table 1 summarises the random
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variables related to the inventory system. We use the same nota-
tion, with small instead of capital letters, for their expected values
in the steady state. The model is weekly stationary, so these ex-
pected values depend on the day of the week, which means that
the expected on-hand stock h;, say, is the same for all t + 7k, k > 0.
See Appendix A for a theoretical justification of the existence of
the long-run distribution and its periodicity. In the rest of the Sec-
tion we write the formulae for t =1,...,7 only. On some occa-
sions the subscripts in the formulae become negative or zero: for
instance when day t is a Monday (t = 1) and we write D;_3;_1; in
those cases the value t in the formula must be understood as t + 7.
In this section we keep m general as long as we can. When the
approximations need a specific value for m, we take m = 5.

3.1. Approximation of the order quantities

Note that the order quantity of day t, Q, is (S; — B;)*, where
St =SSt + teer1iR1+ Ot + -+ Opppr_2, and Oy, is the estima-
tion of the outdated quantity on day ¢ + j in Section 2.2. Approxi-
mating O; by o; gives an approximation of the order-up-to quanti-
ties:

St ~ M1 + ko + ko, £=1,2,3
~ a7+ k0417 +ky 4+ 04 + 05 + 0g,

~ U571+ k05,1 + ky + 05 + 0g + 07.

Sa
3)

Note that, depending on the particular value of m, some of the
o¢ are 0. For instance, if m =5, then 04 = 05 = 0 since there is no
production on Saturdays or Sundays, so there is no outdating on
Thursdays or Fridays.

We now make two assumptions. The first is (B — D¢)* ~ B —
D¢, which is quite reasonable since the service level is high, so
most days we have B; > D; and, even if B; < Dy, the difference
Dy — B; = U; (unsatisfied demand on day t) is small. In fact, this
assumption is common when analysing inventory systems: for in-
stance, Silver et al. (1998) assert (p. 253) that a usual assumption
for the inventory management of items with random demand is
“Unit shortage costs (explicit or implicit) are so high that a prac-
tical operating procedure will always result in the average level of
backorders being negligibly small when compared with the aver-
age level of the on-hand stock”. The second assumption is S; > B;
for every weekday t, as otherwise the stock at the beginning of the
day is very large and Q; = 0, which is infrequent in many inventory
models, such as models for the production of platelet concentrates
in blood banks, where the size orders are positive at every review
point.

Now we approximate b;. For t = 2, 3,4, 5, we have

B = (Bi-1 —Dr-1)" + Qi1 — Or—1 = (Boy — Dyq) ™
+ (St=1 = Br—1)* = Or—1 ~ St—1 — Dy—1 — Op_1.

S5
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By (3), bt ~ ¢ + kor_1¢+kq for t =2,3,4 and bs = s 7 + kog 7 +
ky + 05+ 0g. For Saturday, = (B_1 —Di_1 —0¢_1)T ~ St —
Dt—2,t—1 — 0ty — 0¢_4 which yields b5 ~ We,7 + k0'4y7 +ky + 0g.
For Sunday, Bt = (Bi_1 —D¢_1 —0_1)*
O;_3—0;_5—0;_1 and b; ~ u7;+ k0'417 + ks
Bt ~S_3=D¢_3¢-1—0;_3 —0;_p — Or_q, S0 by
Since Q[ = (St 7Bt)+ ~ St
pected order quantities are

~St3—Dt 3¢ 1
Last, for Monday,
~ 1 +kos 1 + k.

— B, the approximations for the ex-

1 ~ M2 +k(o12—051) + ki —kz 401
G2 ~ U3 +k(o23—012) + 0z
g3 ~ Ha+k(034—023) +03
qs ~ W57 +k(0a7 —034) +ky — ki + 04+ 05+ 06
qs ~ 1 +k(os51 —047) +07
Note that the formulae above depend on o, t=1,...,7,

which are unknown. We give approximations for their values in
Section 3.4.

3.2. Expected on-hand inventory

Since H; = (Bt — D;)™ — O; and stockouts are assumed to be un-
common, we can approximate H; ~ By — Dy — O; and the formulae
in Section 3.1 give
h] ~ k0‘5,1 =+ kz — 01
he ~kor_1¢+ki —o;
hs ~ we7+koyg7+ka + 06
he ~ w7 +kosz +ka
h7 ~ kO'4y7 =+ kz — 07

t=2,3,4

3.3. A formula for u{ and the age distribution of the stock

In this section we derive a formula for E[th], the expected num-
ber of units ordered on day t which are in stock at the end of
day t + i before outdated units are discarded. First note that V/ =0
for i=1,...,m when t =6 is a Saturday or t =7 is a Sunday;
also, V! =V2 =0 if t =5 is a Friday, since units arrive on Mon-
day. For the rest of the values V!, recall that Q; = (S; — Bt)*. Now,
since the order placed on day t sets the inventory position to
St and we use a FIFO issuing policy, Vti can be approximated by
(St = D¢ pyi— (Ot + -+ 4 Opyj_1))T, with a limit of (S — B)*. That
is,

Vi~ min {(St = De.esi = (Oc+ -+ Opsiin)) ™ (Sc = B) ™

In order to compute E[Vti], we condition on B;. In what follows, we
take S; as if it was deterministic, which is not true because under
the EWA policy it depends on the age distribution of the stock. Let
Dityi=Dresi+ Ot +---+0p g, fore>1,i=1,..., m. Note that if
B: > S, then vg' =0 for everyi=1,...,m; if B <S;, then

. . St
E[V;|B] ~ (St — BOP(Dy.yi = B) + /B (St =00, (dx

-/ fr, (0dxdy
{(x.y):Br<y<S:,0<x<y}

St
=/%n
Bt

~and F~ , are the PDF and CDF, respectively, of the
+1

demand m the mterval [t, t +i] plus the outdated units in the in-
terval [t,t +1i— 1]. Thus,

L dx,

where fD

th Dyryi (X)dx if B <S¢,

E[v;‘|Bt1~{ h s
t t-
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By the properties of conditional expectation,

. St S
E[V{] N/(; </y Fs, ., (x)dx>f3t (y)dy
- /f FDt i (X)fB[ (.Y)dXdy
{(xy):0<y<x<S;}

- [ ( [ 5 (y)dy)Fﬁm,. (x)dx

St
:/@ﬂ%wmm 4)
To apply formula (4), we need approximations of F (x) and
F, (x). Since we approximate O; by its expected value ot, we have
B, %) =P(D¢rsi+ O + -
~ Feix = (0 + -

+ O¢tic1 < X)
+0t4i-1))-

The approximation of B; depends on the day of the week. When
day t is a Monday, using the approximations in Section 3.1,

B (x) ~ P(St—3 —D¢_3¢-1 —0r—3 — 0;_ — Or_1 <X)
~ P(us;1 + kos 1+ ky —Di_3:-1 <X)
= F5,7(##5,1 + kos 1 +ky —Xx),

where F(t) =1 —F(t).
When day t is Tuesday, Wednesday or Thursday,

B (x) ~ P(St-1 —Dt_1 — 01 < %)
~P(Di—1 = pe—1¢ + ko1 + ki —x)
=F 4 (Me-1,¢ + ko1 + ki —X).

with t = 2, 3, 4, respectively.
Analogously, for Friday:

Fg (x) = P(S;-1 —Dt—1 — Or—1 < %)
~ F4(la7 +kog7 + ka + 05 + 06 — ).

The above expressions, together with (4), yield the required ap-
proximations of v, t=1,...,5, i=1,...,m. For instance, the ex-
pected number of units that are ordered on Thursday and are in
stock at the end of Sunday, Uﬁ, can be approximated by

Ma7+koy 74k +04+05+06
/ F3(u34+kos g+ Kk —X)
0

xFy7(x — (04 + 05 + 06) )dX.

These formulae are explicit; however, they depend on oy, ..., 07,
the expected number of outdated units each day. In the next sec-
tion we show how to estimate these quantities. Once they have
been estimated, their values can be plugged into the above formu-
lae to compute the approximations of vi, since the distributions F s
are known.

The formulae above enable us to approximate the age distri-
bution of the stock bl. In fact, when day t is not a Monday, the
number of units with r days of remaining lifetime at the begin-

ning of day t, once the incoming order has arrived, B, is V7",

forr=1,...,m—1, and B]" = Q;_;. When day t is a Monday,B =
v forr: 1,....m-3,B"2 =0, 3 and B! = B]" = 0. The

approximation of b{ is obtained by substituting the values of Q and
V by the corresponding approximations of g and v.

3.4. Expected outdating

In this section we set m = 5. Derivation of the formulae when
m is 4 and 6 can be found in Appendix B. Other values of m can
be worked out in a similar way.
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Let m = 5. Recall first that o4 = 05 = 0 since there is no outdat-
ing on Thursdays or Fridays. Now, since O; = V[5_5, we use formula
(4) with i =5, and get

W3 4+kos 4+ki+03
01 ~ / Fa(p23 + ko3 + ki —X)F 1 (X — 03 — 06 — 07)dX,
0

[ha7+kos 7+ky+0s
0y ~ / F3(i3,4 + ko3 44+ k1 —X)Fy2(x — 06 — 07 — 01)dX,
0

s,1+kos 1+ko+06+07
- /
0

03 Fq(pa7 +koa7 4 ko + 06 — x)

XF513 (X — 06 — 07 — 01 — Oz)dX,

f12+kor p+ki+01
06 ~ / Fs7(us1 +kos1+ky —x)F 6(x — 01 — 02 — 03)dx,
)

M2 3+koy3+ki+02 _
~ / Fi(p12 + ko z + Kk —X)E 7(x — 05 — 03 — 0g)dXx.
0

(5)

The formulae above are cyclical, since os is needed to compute
o;. We solve this via an iterative procedure: we set all o; = 0, com-
pute the formulae in (5) to get an approximation of o; and plug
the new values into the formulae to get another approximation.
This procedure is iterated until the changes in the o; are smaller
than a tolerance value. While we have not proved analytically that
this procedure converges, in all our settings below a small number
of iterations (less than 8) were needed for a tolerance of 10-3.

07

3.5. Remaining lifetime of units issued and freshness

For a given day t, the number of units issued with a remain-
ing lifetime of r days, W/ can be expressed as W/ = [”l;fmq -
Vt”lj_lr;r_l, forr=1,...,m—1 and W" = Q4 —thl. This formula
has two exceptions related to the weekend: when t is a Monday
and r=m-2, th*Z =Q_3 —\4{3, and when t is a Saturday and
r=m, W = 0. Thus, the values w| can be approximated by sub-
stituting Q and V by their approximations in Sections 3.1 and 3.3,
respectively. Also, freshness of units issued on day ¢, t=1,...,7
can be approximated by
YL Wy
Y W

Note that extending the formula derived by Broekmeulen & van
Donselaar (2019) for freshness in stationary models to the present
situation is difficult, since the distribution of the demand, the val-
ues of the lead time L and the review interval R, and the remaining
lifetime of units when they enter the inventory depend on the day
of the week. Thus, there seems to be no easy way of using Lit-
tle’s formula in our context to find the freshness of units delivered
each day of the week. Appendix C shows how that approach can
be used to get a formula for the freshness of units without differ-
entiating by the day of issue, although it still requires the approx-
imations in Section 3.4.

3.6. Expected shortage

We are assuming that stockouts are rare, but they may still oc-
cur, so it is important to have an approximation of the expected
shortage, u;, where U; = (D; — B;)™. We begin when day t is a
Tuesday, Wednesday or Thursday. Using the approximations for By,
St and O in the previous sections, Us ~ (D¢ —S;_1 +D¢_1 + 0¢_1)™,
so

U ~ E[(Dt—l,t = (Me-re + ko + k]))+]

/m
He1e+koe e+ky

oo

'/I;'t—l.t"'kat—l.:-%—kl

(% — (pe—1,c + ko1 + k1)) fro1,e (x)dx

f[,l,t(x)dx,
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fort =2,3,4.
When t is a Friday, Us ~ (Dy — S;_1 +D¢_1 + 0;_1)" and
o0
Us ~/ Fys5(x)dx.
JLa,7+ko4 74ka+05+06
When ¢t is a Saturday, Us ~ (D — St 2+ D¢ 2t 1+ 0r 2+ 0;_1)7,
S0

oo

Ug ~ [
a4 7+koy 7+ky+0g

U~ (Dt =Se-3 = Dy_3 -1 +0r_3+0;_5 + 0;_1)*

Fa6(x)dx.

For
and

Sunday,

o0

uz ~ /
g 7+kog 74k

Lastly, when ¢t is a Monday, Us ~ (Dt —St_3 — D¢ 31+ O3 +
Ot +0;_1)", s0

F4y7 (X)dx.

o)

uq ~ /
s 1+kos 1+k;

The fill rate of day t can be approximated by 100(1 — u¢/ut).

F5,1 (X)dX.

3.7. Probability of on-hand inventory being lower than a threshold

The probability of the on-hand inventory at the end of day t
(before outdated units are discarded) being less than a is P[D; >
B: — a], which can be approximated in a similar way to the previ-
ous section, obtaining:

P(Dt > Bt —a)

Fs1(is1+kosy+ky —a)
Feo1e(pe1e +kor_qe + ky —a)

if day t is a Monday,

if day t is a Tuesday,
Wednesday or Thursday,
if day t is a Friday,

if day t is a Saturday,

if day t is a Sunday.

E4.5 (Ma7 +koa7 +ky + 05 + 06 —a)
Fag(ua7 +koss +ko + 06 —a)
Fa7(ita7 +kog7 +ky —a)

In particular, taking a = 0 gives an approximation of the probability
of a stockout, i.e. 1—service level.

4. Application to the CVTTH data

We assess the accuracy of our approximations by comparing
them with the values obtained by Monte Carlo simulations in a
real example. For the distributions of the daily demand we choose
those fitted to the data of the CVTTH for 2012 (which were consid-
ered by Pérez Vaquero et al. (2016)), i.e. (discretised) normal distri-
butions with means and standard deviations as shown in Table 2.
The lifetime of platelet concentrates is m = 5.

The normality assumption was checked using the Shapiro test
for normality. Significant p—values were found for Saturday and
Sunday. Note however that the distributions of the demand on
those days are never used on their own in our formulae; instead
they are used at least together with Friday (for Saturday) and with
Friday and Saturday (for Sunday). Therefore, what needs to be
checked is not the normality of the demand on Saturdays and on
Sundays but the normality on Friday + Saturday and Friday + Sat-
urday + Sunday. Table 3 shows that the normality assumption is
reasonable.

We remark that the hypothesis of normality is not necessary for
the derivation of our formulae: they can be applied with any other
distribution, including the empirical distribution of historical data
if available.

Regarding independence of the daily demand, we performed
the (Pearson) correlation test for each pair of consecutive days.
Two of the pairs were found to be significant, namely Tue-Wed
(p—value 0,045) and Thu-Fri (p—value 0,004). An analysis of the
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Table 2
Means and standard deviation for daily demand of platelet concentrates in CVTTH in 2012.
Monday  Tuesday = Wednesday = Thursday  Friday  Saturday  Sunday
e 27,75 23,71 24,57 22,16 29,39 13,29 11,82
ot 6,85 5,65 7,86 6,90 7,81 4,89 4,38
Table 3 © -
p—values of the Shapiro test of normality for demand of platelet concen-
trates in CVTTH in 2012.
Mon  Tue Wed Thu  Fri Fri + Sat  Fri + Sat + Sun @ O
© | 7T SR
0,05 0,32 0,95 0,22 0,50 0,59 0,41 z Tt
8 <
Q
Table 4 £
p—values of the Pearson correlation test for independence of demand on consecu- 8 ™ —
tive days in CVTTH in 2012. I
Mon-Tue  Tue-Wed  Wed-Thu  Thu-Fri  Fr-Sat  Sat-Sun  Sun-Mon ..g: I
0,10 0,06 0,38 0,11 0,67 0,07 0,79 g
>
scatterplots of these two pairs reveals the existence of influential o
points which correspond to very low demand (under 10 units) on T T T T I
ublic holidays over the year. Once these points are removed the
P Y y : p 095 096 097 098 0.99
p—values are greater than 0,05, so independence can be assumed:
see Table 4. .
Fill rate

We compare our approximations with the estimations ob-
tained from simulations for different values of parameters k, kq, k.
Namely, we take all combinations where k ranges in {1.5, 2, 2.5, 3}
and (kq,ky) is (0,0) or (10,5). For the Monte Carlo simulations,
we set 1000 runs and a run length of 520 weeks (10 years),
where the first 52 weeks of each simulation run are taken as the
warm-up period. The number of simulations and their length are
chosen to give a small simulation error. This can be checked in
Table D.8 in Appendix D which shows, for the case k=1.5,k; =
ky = 0, the standard deviation of the estimations using simulation
together with their relative errors, measured as the ratio of the
half-width of the 95% confidence interval over the sample mean.
In almost every instance the relative error is smaller than 2%, with
the only exceptions being quantities with a very small sample
mean. Increasing the length of the simulation runs or their num-
ber (and thus increasing the simulation time) produces almost no
changes in the sample means. The computation of our formulae in
Section 3 for the setting k = 1.5, k; =0, k; = 0 takes 4 ms. on an
Intel(R) Core(TM) i5 (3.30 GHz), while simulation takes 1130 ms.

4.1. Results for the CVTTH data

Table 5 shows the results of our formulae and the simulation
for k =1.5, k; =0, ky = 0. The tables for the rest of the cases are
available in Section 1 of the Supplementary Material file. In the
tables there are two rows for each quantity: the upper row (plain
font) is the result of the application of the formulae in Section 3;
the lower row (italic font) is the result obtained by averaging the
results over the simulation runs. We explain Table 5 in detail, and
the rest of the tables have the same structure.

The first part of the table gives the results for each day of the
week. The first column shows the values of b;; for instance by, the
expected number of units in stock at the beginning of a Monday is
46,2 by our formula in Section 3.1 and 46,8 by the simulation. Be-
low we write first the result of our formula and then, in brackets,
the result of simulation, i.e. by is 46,2 (46,8). The second column
is q¢, the expected order size; thus, for instance, the expected or-
der size on Mondays is 18,6 (18,3). The next column gives o¢, the
expected quantity outdated on day t: so there are, on average, 0,17
(0,14) units outdated on Wednesdays. The next column is h;, the
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Fig. 1. Efficient Frontier relating waste with the fill rate (solid curve) for m =4
(blue), m=5 (green) and m =6 (red). Dotted curves represent the freshness of
units issued in each optimal configuration. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

expected number of units on-hand at the end of day t. Column u
gives the value of u, the expected shortage on day t. The following
two columns give the service level and the probability of the on-
hand stock being below a threshold at the end of the day; we use
5 units as the threshold in all settings. Thus, for instance, the ser-
vice level on Tuesdays is 94,0% (95,2%) and 14,7% (14,1%) of Tues-
days end with an on-hand stock lower than 5 units. The following
columns b(1),...,b(5) are the values of b}, the expected number
of units with a remaining lifetime of r days at the beginning of
day t; for instance, the expected number of units with 2 days of
remaining lifetime at the beginning of a Monday is 18,8 (18,9). The
following five columns w(1), ..., w(5) are wf, the number of units
issued on day t with remaining lifetime equal to r days; for in-
stance, the expected number of units issued on Monday with 2
days of remaining lifetime is 16,7 (16,7). The last column is fresh-
ness, the expected remaining lifetime of units issued on day t; for
instance, units issued on Wednesday have an expected remaining
lifetime of 4,14 (4,09).

The second part of the table, below the “Week” line, sum-
marises the values over the whole week, computing sums, aver-
ages or percentages over the 7 days where appropriate. The first
column gives the average of the b; values, i.e. the average num-
ber of units on-hand at the beginning of a day: 43,9 (44,1). q is
the total number of units ordered over the week: 152,9 (151,7),
which correspond to 100,2% (99,4%) of the demand. The next col-
umn shows that 0,25 (0,22) units go out of date over the week,
i.e. 0,16% (0,15%) of the units ordered. The average on-hand inven-
tory at the end of the day is 22,0 (22,4) units. There are, on aver-
age, 1,426 (1,243) units not served over the whole week, i.e. 0,93%
(0,81%) of the demand, so the fill rate is 99,07% (99,19%). The fol-
lowing two columns show that the service level is 95.6% (96,2%);
i.e. 4,4% (3,8%) of the days have a stockout, and 9,6% (9,5%) of the
days end with less than 5 units in stock. Columns b(1), ..., b(5)
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Table 5
Performance measures for the CVTTH data in Section 4: approximations by formulae (plain font) and simulation (italic font). k =1.5; k; =0; k, = 0.
Day b q o h u s.l. P(u.t.) b(1)  b(2) b(3) b(4) b(5) w(l)  w(2) w(3) w(4) w(5) freshness
Monday 46,2 18,6 0,00 184 0328 0938 0120 00 188 27,7 0,0 0,0 0,0 16,7 11,1 0,0 0,0 2,40
46,8 18,3 0,00 193 0226 0954 0,110 0,0 189 279 00 0,0 0,0 16,7 10,8 0,0 0,0 2,39
Tuesday 370 259 0,08 13,2 0229 0940 0,147 2,2 166 0,0 0,0 186 2,1 13,6 0,0 0,0 8,0 2,93
376 254 0,08 140 0,197 0952 0,141 22 17,1 0,0 0,0 183 21 13,9 0,0 0,0 75 2,87
Wednesday 39,1 23,5 0,17 144 0252 0940 0,139 31 0,0 0,0 105 259 29 0,0 0,0 9,6 12,1 4,14
395 226 0,14 150 0,238 0947 0,138 32 0,0 0,0 108 254 31 0,0 0,0 98 11,5 4,09
Thursday 378 573 0,00 157 0275 0939 0,132 0,0 0,0 0,9 13,7 235 00 0,0 0,9 11,9 9.3 4,38
375 575 0,00 156 0254 0,944 0,141 0,0 0,0 1,0 140 226 00 0,0 1,0 12,2 838 4,36
Friday 73,0 27,7 0,00 43,6 0,000 1,000 0,000 0,0 0,0 1,8 142 573 00 0,0 1,8 13,2 14,7 4,43
73,1 27,9 0,00 43,7 0,000 1,000 0,000 0,0 0,0 18 138 575 00 0,0 1,8 12,9 14,6 4,44
Saturday 43,6 0,0 0,00 30,3 0,013 099 0,011 0,0 0,0 1,0 426 0,0 0,0 0,0 0,8 12,4 0,0 3,93
43,7 0,0 0,00 304 0,011 0997 0,011 0,0 0,0 09 428 00 0,0 0,0 08 12,5 0,0 3,94
Sunday 303 0,0 0,00 185 0329 0938 0,120 00 0,1 302 00 0,0 0,0 0,1 11,4 0,0 0,0 2,99
304 00 0,00 189 0317 0942 0,124 0,0 0,1 303 00 0,0 0,0 0,1 11,4 0,0 0,0 2,99
Week
Average 43,9 22,0 0956 0,096 0,8 51 8,8 11,6 179
44,1 224 0962 0,095 0,8 52 838 11,6 17,7
Sum 1529 0,25 1,426 5,0 30,4 25,9 47,2 44,2 3,62
151,7 0,22 1,243 52 30,7 25,8 474 424 3,60
Percentage 100,2%  0,16% 0,93% 3,3% 199% 17,06 309%  28,9%
99,4% 0,15% 0,81% 34% 203% 17,05  31,3%  28,0%
Table 6
Performance measures for the CVTTH data in Section 4: approximations by formulae (plain font) and simulation (italic font). Aggregated weekly results.
Safety stock b q (o] h u s.l. P(ut) b(1) b(2) b(3) b(4) b(5) w(1) w(2) w(3) w(4) w(5) freshness
k=1,5, k1=0, k2=0 43,9 1002% 0,16% 22,0 093% 0956 0,096 0,8 51 8,8 11,6 179 33% 199% 17,06 30,9% 289% 3,62
44,1 99,4% 0,154 224 081%¥ 0962 0,095 08 52 88 11,6 17,7 3,4% 20,3% 17,04 31,3  280% 3,60
k=1,5, k1=10, k2=5 51,0 1004% 0,36% 29,1 0,19% 0,990 0,024 1,3 6,3 10,7 148 179 55% 232% 20,05 36,9% 144% 331
51,0 100,12 031% 292 0,18% 0991 0,025 1,3 64 10,7 148 178  5,6% 233%  20,1%  368% 142% 331
k=2, k1=0, k2=0 494 1004% 043% 275 026% 0985 0,038 1,4 6,5 10,1 136 18,0 6,0% 23,4% 164% 341% 201% 3,39
49,5 100,1% 036% 276 025% 0987 0,039 14 6,5 10,1 13,6 17,8  6,1% 23,5% 165%  34,4% 195% 3,38
k=2, k1=10, k2=5 56,6 1009% 086% 34,6 0,04% 0997 0,007 2,2 7.8 124 162 180 9,1% 257%  212%  354%  8,6% 3,09
56,5 100,7%  0,72% 345 005% 0998 0,008 2,2 7,8 12,5 16,1 179  92% 257%  214%  353%  83% 3,08
k=2,5, k1=0, k2=0 550 101,0% 1,006 33,0 0,06% 0996 0,012 2,3 7,9 116 152 181 9,8% 254% 16,8% 351% 13,0% 3,16
54,8 100,7%  082% 328 006% 0996 0,013 23 7,8 11,5 152 180  9,8% 25,4% 169%  353% 12,7% 3,16
k=25, k1=10, k2=5 62,2 101,8% 1,80% 400 0,01% 0999 0,002 34 9,2 142 172 183 13,6% 26,7% 228% 32,1% 4,7% 2,88
61,8 101,5% 1,47% 39,7 0,01% 1,000 0,002 33 9,1 14,2 17,1 18,1 13,65  265%  235% 31,84  45% 2,87
k=3, k1=0, k2=0 60,6 102,1% 2,02% 384 0,01% 0999 0,003 35 9,2 13,1 166 183 141% 258% 181% 341% 7,9% 2,96
60,6 101,7% 1,694 384 001% 0999 0,004 35 9,1 13,1 16,6 18,3 145%  25,6% 181%  340%  7,8% 2,95
k=3, k1=10, k2=5 67,8 1034% 3,28% 452 0,00% 1,000 0,000 4,7 10,5 159 18,1 186  183%  26,5%  24,5% 282%  2,5% 2,70
67,7 102,9%  2,78% 452  0,00% 1,000 0,000 4,7 104 159 18,1 18,6 187%  26,1%  255%  274%  24% 2,69
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Table 7

Mean absolute error between formulae and simulation in the settings of Section 4.
Day b q o h u s.l. P(ut) b(1) b(2) b3) b)) bB) wl) w?2) w3) wH4) w() freshness
Monday 02 03 0,00 03 0,020 0,003 0,002 0,1 03 04 0,0 0,0 0,1 0,1 0,1 0,0 0,0 0,00
Tuesday 03 07 0,04 04 0,005 0,002 0,002 0,2 0,4 0,0 0,0 03 0,1 0,2 0,0 0,0 0,2 0,03
Wednesday 0,5 0,6 0,31 03 0,003 0,002 0,001 0,1 0,0 0,0 0,2 0,7 0,4 0,0 0,0 0,3 0,3 0,06
Thursday 05 06 0,00 05 0,006 0,001 0002 00 0,0 03 0,5 0,6 0,0 0,0 03 03 03 0,03
Friday 03 04 0,00 03 0,000 0,000 0,000 00 0,1 0,2 0.4 0,6 0,0 0,1 0,2 0,2 0,1 0,01
Saturday 03 00 0,00 03 0,000 0,000 0,000 00 0,1 0,3 0,5 0,0 0,0 0,1 0,1 0,2 0,0 0,02
Sunday 03 00 0,00 03 0,006 0,001 0,003 0,0 0,2 0,4 0,0 0,0 0,0 0,1 0,1 0,0 0,0 0,01
Week
Average 0,1 0,1 0,001 0,001 0,0 0,1 0,0 0,0 0,1
Sum 0,6 0,32 0,029 0,2 0,2 0,4 0,3 0,6 0,01
Percentage 04%  0,20% 0,02% 01% 02% 03% 03% 03%

give the average number of units in stock with r days of remain-
ing lifetime at the beginning of a day; thus, the average number of
units with 4 days of remaining lifetime at the beginning of a day
is 11,6 (11,6). The next five columns give the distribution of the
remaining lifetime of units issued; for instance, 30,4 (30,7) units
are issued with 2 days of remaining lifetime over the week, corre-
sponding to 19,9% (20,3%) of the total units issued. The freshness
of units issued is 3,62 (3,60).

Analysing the results for all the values of (k,kq, k) (Table 5
and Tables 1-7 in the Supplementary Material file) close agree-
ment is observed between the values given by the formulae in
Section 3 and those obtained by simulation. For daily measures,
there are no discrepancies greater than 1,5 units in any quantity
and there are very few cases where the discrepancy is greater than
1 unit. One of the main novelties of the paper lies in the formulae
for the age distribution of units issued (columns w(1),...,w(5)).
In all instances the discrepancies observed are lower than 1 unit
for all ages and days. This results in a very accurate estimation of
freshness, with no discrepancies greater than 0,1 days in any case,
for every day. Note also that columns b and b(1), ..., b(5) are com-
puted using very different expressions (those in Sections 3.1 and
3.3, respectively); but the sum of columns b(1),...,b(5) is still
very close to column b, which shows the internal consistency of
our formulae.

A summary of the eight tables, with the aggregate (weekly) re-
sults, is given in Table 6. This table shows for each measure the
value of either the Average or Percentage row, as in the last rows
of Table 5. Table 6 also shows very close agreement between for-
mulae and simulations: there are no discrepancies greater than 0,5
units or greater than 1% in the case of percentages (actually, most
percentages show discrepancies lower than 0,5%).

Table 7 shows the mean absolute errors between formulae and
simulations over the 8 settings; that is, for each quantity, the abso-
lute values of the differences between the value given by the for-
mula and the value obtained by simulation are added together and
then divided by 8 (the number of settings). All the figures in the
table are smaller than 1 unit (or 0,5% in the case of percentages)
and the approximation of freshness in particular is very accurate,
with a mean absolute error of 0,01 days.

4.2. Optimisation

We do not include costs in our model. This could be readily
done since the cost function can be written in terms of the approx-
imations given in Section 3. In this paper we do not look deeper
into the use of the formulae for optimisation of the parameters
in the model, but we show a direct application which consists on
finding the safety factors to minimise outdating subject to the con-
straint of having a minimum fill rate. The optimisation can be done
using the formulae in Section 3 via a grid search of the values
k, ki1, ky. An Efficient Frontier showing how the outdating depends
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on the target fill rate can then be computed. The Efficient Frontier
is a tool proposed and analysed in Broekmeulen & van Donselaar
(2019) which enables different settings to be compared. We use
it here to compare three values of m (4, 5 and 6) in the model in
Section 4 (normal distributed demand with mean and standard de-
viations in Table 2). See Fig. 1, which also includes the freshness of
the delivered platelet concentrates for the optimal parameters for
each fill rate. Observe that there is a small difference in waste be-
tween m =5 and m = 6, and m = 4 gives much higher waste quan-
tities. For freshness, there are three almost parallel curves with a
shift slightly smaller than 1. The overall conclusion is that fresh-
ness is not greatly influenced by the fill rate and the differences in
freshness for different values of m are basically the differences in
the lifetimes of the units. On the other hand, waste is affected by
the fill rate, especially when m = 4, with the differences between
m =5 and m = 6 being very small.

5. Simulation experiments

Section 4 shows that our formulae give accurate approximations
in the case of the data analysed in Pérez Vaquero et al. (2016).
Since these data can be seen as a specific environment, with m = 5,
normally distributed demand, low demand uncertainty and similar
average demand on non-weekend days, in this section we analyse
other situations to determine the extent to which our approxima-
tions are applicable. There are many settings that can be consid-
ered, so we have chosen the following four “parameters” to vary:
(1) Lifetime m: 4, 5 and 6; (2) demand distribution: normal dis-
tribution with CV=0,25, normal distribution with CV=0,5, expo-
nential distribution and Poisson distribution; (3) mean demand
on weekdays: flat demand (30,30,30,30,30) and peaked demand
(22,32,42,32,22), with the mean demand on Saturday and Sunday
set to 15 in both cases (note that the mean demand for the whole
week is 180 units); (4) safety stock parameters (k, k1, kp): (1.5,0,0),
(2,5,5) and (2.5,10,5). The choice of the normal and Poisson dis-
tributions is a natural one since they are, by far, the most widely
used distributions for modelling demand in inventory systems, es-
pecially in blood banks. Setting CV at 0,25 is similar to the data
in Pérez Vaquero et al. (2016); we also take a value of 0,5 to see
the effect of greater variability in demand on the accuracy of the
approximations. Note that the CV in the Poisson distribution is
1 over the square root of the mean, so the values obtained are
0,15 to 0,26 for that distribution in our scenarios. Haijema et al.
(2007) take values of CV from 0,20 to 0,35 for their experiments,
while Stanger et al. (2012) take values from 0,1 to 0,5. Other publi-
cations, such as van Donselaar & Broekmeulen (2011) and Haijema
& Minner (2019), use the ratio variance/mean instead of CV as the
parameter and take values in the range from 0,75 to 4; note that
the variance/mean ratio is 1 in the Poisson distribution and ranges
from 0,9 to 10,5 in the normal distributions that we consider. The
exponential distribution is not commonly used for modelling de-
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mand, but it is considered, for instance, in Williams & Patuwo
(1999); and the geometric distribution (which can be seen as its
discretised version) appears in Cooper (2001) and van Donselaar &
Broekmeulen (2012). We include it because it has a high variabil-
ity, with a CV of 1 and variance/mean ratio ranging from 15 to 42
(the mean of the distribution).

For each of the 3 x 4 x 2 x 3 = 72 settings we compute our for-
mulae and run the Monte Carlo simulations (using the same num-
ber and length of runs as in Section 4). The results are shown
in Tables 8-13 of the Supplementary Material file. The tables are
obtained by varying m and the mean demand on weekdays and
each one contains 12 settings defined by the distribution of the
demand and the values of (k, kq, kp). Their structure is the same
as in Table 6.

Table 14 of the Supplementary Material file summarizes the re-
sults in the 72 settings. For each value of m =4, 5,6 and for each
distribution, we compute the absolute and relative errors of four
output variables (% outdating, on-hand stock, fill rate and fresh-
ness). The absolute error is defined as |Xgj;, — Xapprox| and the rela-
tive error as |Xgm — Xapprox|/Xsim- We get 6 values of these variables
for each pair (m,distribution) and show their minimum, average
and maximum.

The tables reveal that all parameters are relevant for the be-
haviour of the systems, but some of them seem to have little influ-
ence on the accuracy of our formulae. For instance, the system per-
forms better when the demand on weekdays is equally distributed
(flat demand), but the accuracy for flat and peaked demand is very
similar, with the rest of the parameters being equal. Analogously,
systems with longer unit lifetimes behave better, in the sense of
having a smaller outdated quantities with the same service level,
but the accuracy of our formulae is not clearly influenced by this
parameter.

On the other hand the distribution and, especially, the variabil-
ity of demand measured by its CV play an essential role in the
closeness of our approximations to the simulated values. Very high
accuracy is observed for the Poisson and normal distributions with
CV=0, 25. For these distributions, the difference in outdating be-
tween our approximations and the simulated values is less than
1% of total demand in all instances, with a maximum difference of
1,6 units per week in the case of Poisson distribution and 1 unit
per week in the normal distribution. Note that some relative er-
rors in the column % outdating of Table 14 are large, due to a small
value in the denominator of the formula. For instance, the Pois-
son distribution with m = 4 has a maximum relative error of 53, 6%
corresponding to the setting with k =1, 5, k; = k; = 0 and flat de-
mand. In this setting, our formula yields a mean number of out-
dating units per week equal to 0,77, while the value estimated by
simulation is 0,50, so the difference is 0,27 units per week, which
can be regarded as negligible when evaluating the performance
of the model, regardless the large relative error. The approxima-
tions for freshness (differences lower than 0,05 days with relative
errors smaller than 1,5%), unsatisfied demand (differences smaller
than 0,4 units per week and relative errors of the fill rate smaller
than 0,25%) and average on-hand stock (differences smaller than
0,8 units and relative errors smaller than 3%) are also very accu-
rate.

For the normal distribution with CV= 0, 5, the accuracy of the
formulae for unsatisfied demand (differences between approxima-
tions and simulated values smaller than 1 unit per week in all set-
tings, with a maximum relative error of the fill rate equal to 0,5%)
and freshness (maximum difference of 0,08 days) can still be re-
garded as very good. For the number of outdated units, the for-
mula behaves slightly worse than in the cases of the Poisson and
normal distributions with CV=0,25, with a maximum difference
of 2,40% of total demand, which corresponds to 4,32 units per
week.
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The exponential distribution can be seen as an extreme exam-
ple, as it has very high variance/mean ratios, ranging from 15 to
42 in our settings, far from those used in van Donselaar & Broek-
meulen (2011) and Haijema & Minner (2019), where the maximum
ratio considered is 4. In fact, the number of outdated units is very
high: in the most favourable case (m = 6), outdating is 26% for a
fill rate of 98, 7%; this means that an average of 2,5 units are not
satisfied every week, while 47 units are outdated. When m =4, 5
the situation is even more extreme; for instance, with m =5, a fill
rate of 98,7% is associated with an outdating of 35, 8%. For this
distribution the fill rate is poorly estimated by our formulae, since
the approximations for unsatisfied demand are almost double the
values obtained by simulation, which yields differences of up to
8 units per week between the formula and the simulation. Major
differences are also observed in the estimation of freshness, with
a maximum of 0,28 days and relative errors up to 10, 9%. Notably,
the approximation for the number of outdated units is not so bad;
actually, the differences between our approximations for outdating
and the simulated values are smaller than 1% of the total demand
in all but four of the settings, meaning a difference of less than
2 units per week, while the number of outdated units per week
ranges from 22 to 90 across all the scenarios.

A common feature observed in the tables is that (leaving out
the exponential distribution) our formulae can be seen as conser-
vative, since there is a slight bias which presents the model as
worse than the real situation. In fact, in almost all instances where
there is a difference between the approximations and the simu-
lations, our formulae give higher values for outdating and lower
values for service levels and fill rates. Therefore, practitioners can
use our formulae to get a good approximation of the actual perfor-
mance measure and can expect the model to behave as predicted
by the formulae or slightly better.

Given that we have observed no substantial differences in
accuracy depending on the mean demand during the week
(flat/peaked) or on the lifetime of the units, our advice on the use
of the formulae depends essentially on the variability of demand.
We recommend using them when demand has moderate variabil-
ity such as the Poisson or others with a similar CV. The approxima-
tions are still good for distributions with a slightly higher variabil-
ity, although the number of outdated units may be overestimated.
On the other hand, we do not recommend it for systems where
there is high uncertainty in demand, since it is very difficult in
such cases to maintain a high service level, which leads to poor
approximations.

6. Conclusions and future work

e We have analysed a complex inventory model for perishable
items with fixed lifetimes, random demand, nonzero lead time
and a weekly pattern, where stockouts must be kept to a mini-
mum. No assumptions on the distribution of demand are made.

o We use a realistic model for production of platelet concentrates,
with particular values of L, R, form of the safety stock, etc. This
has the advantage of including a variety of situations (different
days have different characteristics) which are present in many
inventory systems. Therefore, users can easily adapt the formu-
lae in this paper to their particular operating procedures.
We derive analytical approximations of the main performance
measures of the model, namely day by day approximations of
expected on-hand inventory, size of stockouts, order size, num-
ber of outdated units, fill rate, probability of stockouts and of
having on-hand inventory below a threshold, age distribution
of units in stock, date of issue and freshness. To the best of
our knowledge, no approximations of these quantities (except
for the fill rate) in nonstationary models under the EWA policy
have appeared in the literature.
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* Monte Carlo simulations are used to assess the accuracy of the
approximations. Platelet concentrate production at a real blood
bank is analysed in detail. The results show a very close agree-
ment between our formulae and the results obtained by simu-
lation for that case. Then the comparison is extended to 72 sce-
narios depending on the lifetime of the units, the distribution
of demand and the values of the safety stock. The results indi-
cate that the approximations in this paper are reliable as long
as the variability of daily demand is not very high (CV smaller
than 0,5). More extensive simulations are needed to assess the
usefulness of the approximations in more general settings.

Our formulae are developed under the EWA replenishment pol-
icy. If the simpler base-stock policy is used, straightforward
modifications can be made to obtain the corresponding formu-
lae. In particular, the resulting approximations for the age dis-
tribution of the stock would be new, since they have appeared
in the literature only for continuous review models where the
distribution of demand is stationary.

We use the approximations to find an Efficient Frontier which
shows how the outdated quantity (and the freshness of units
issued) depends on the target fill rate. We do not include costs
in our model but this can be readily done since the cost func-
tion can be written in terms of the approximations given in
Section 3. In future work we will look for the values of the
parameters (k, ki, ky in our model) which minimise the long-
run expected cost subject to certain service restrictions (service
level, freshness, etc.).

We also seek to compute approximations of the performance
measures for a LIFO issuing policy. Although the LIFO policy
may not be very relevant for blood products, there are other
systems where it is common, such as retail food distribution,
where the customer can see the expiration dates of the prod-
ucts; see Section 9 of Silver et al. (1998). When dealing with
food products, it will be desirable to consider also the effect of
case pack sizes, as in Broekmeulen & van Donselaar (2019).
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Appendix A. Existence of the long-run expected values

In Section 3 we derive approximations for the long-run expec-
tations of the random variables related to the model described in
Table 1. The model has a week pattern, so the long-run expecta-
tions depend on the day of the week. For every random quantity
X, the long-run expectation is defined as

1
n th+7ka
k=1

fort=1,...,7.

The theory of discrete time Markov chains guarantees that the
above limits exist. In fact, the system can be modelled as a homo-
geneous Markov chain Z; = (Day[,Z},‘..,Z{”), where Day; is the

X = lim

n—oo
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day of the week and Z{ is the number of units in stock at the be-
ginning of day t with r days of remaining lifetime (except when
t is a Saturday or a Sunday, where Z" and Z}TH are the number
of units ordered on the previous Friday). Assuming an (arbitrarily
large) daily production capacity M, the process (Z;) is a discrete
time irreducible periodic (period = 7) Markov chain with finite
space state E. This assures the existence of the almost sure limits
of 3"p_; h(Z; + 7k)/n, for any h : E — R. Therefore, all the expected
values (interpreted as long-run averages) in Section 3 exist.

The theory of Markov chains enables the existence of the long-
run expectations to be shown, but it is not useful for finding a for-
mula for their values, since they are expressed as a function of the
solution of a linear system where the coefficient matrix is the tran-
sition matrix of the chain. The dimension of the matrix is equal to
the cardinal of E which, for m <6, is (m—1)(M + 1)™2 +2(M +
1)m-1 4 (6 —m)(M + 1)™. For instance, if the lifetime of units is
m =5 and the daily production capacity is M = 100, then the car-
dinal of E is greater than 100, Even if the solution could be ob-
tained numerically, it would give no insight on the role of the dif-
ferent parameters in the model.

Appendix B. Derivation of the formulae in Section 3.4
For m =4, 03 = 04 = 0. Using formula (4) with i = 4, we get:

Ha7+kos 7+ky+05+06
01 ~ / F3(u3 4+ kos 4+ ki —X)
0
xFy1(x — 05 — 05 — 07)dx,
Ws,1+kos 1+ky+05+06+07
0y ~ f
0

F4(pra7 +koa7 +ky 4 05 + 06 — X)

><F5,2(X — 05 — 0g — 07 — O])dX,

12+kor 2+ki+01 _

05 ~ /0 Fs7(us 1 +kos 1 + ky—x)F 5(x—01 — 07)dX,
23+kos 3+ki+0y

0g ~ /0 Fi(ui2 + ko1 s +ki —x)E (x — 03 — 05)dx,

M3 a+kos a+ki+03
07 ~ fo F(u23 + ko3 + ki —x)F 7(x — 05 — 06)dX.

Analogously, for m =6, we have 05 = 0g = 0. Using formula
(4) with i =6:

M2 3+koa 3+ki+02
01 ~ ./o Fi(12 4+ kor2 + ki —x)
xF1(Xx — 02 — 03 — 04 — 07)dx,
34+kos a+ki+o3
03 ~ / Fa(23 4+ koaz + ki —x)
0
xB2(x — 03 — 04 — 07 — 01)dx,
a7+kos7+ky+04
03 ~ / F3(3.4+ ko3 4+ ki —x)
0
xFy3(x — 04 — 07 — 01 — 02)dx,
s 1+kos 1+ky+o7
04 ~ / Fa(lha7 4+ koa7 +kz —x)
0
xFs5 4(X — 07 — 01 — 02 — 03)dXx,
M 2+koq 2 +ki+01
07 ~ /(; Fs7(us1 +kos 1 +ka — x)
xF 7(x — 01 — 03 — 03 — 04)dXx.
Appendix C. Use of Little’s formula for freshness

In Broekmeulen & van Donselaar (2019) the authors use Little’s
formula L = AW from queuing theory to estimate freshness in a
stationary model. Although Little’s formula can be applied to non-
stationary models under some circumstances, for instance when
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there is a fixed T such that the system is empty at times 0 and
T (see Little, 2011), it seems that it cannot be used to estimate
freshness of units issued on a certain day. However, if the goal is
to find the mean freshness of all units issued (without drawing
a distinction by the day they are issued) then, following Theorem

2.1 in Whitt (1991), and given that our system is weekly stationary, 6 NN ONero o

Little’s formula can be applied using the approach in Broekmeulen g S 883 m~&R8 8

& van Donselaar (2019). In our case, we consider the week as the ° eececececececee <

time unit. A platelet concentrate enters the (queueing) system as o o wxox—xaxo

soon as it is ordered and not when it arrives at the blood bank g 2 8zazazgaze
N ) A N N . o SO Ooocococoooo
since in that case units ordered on Friday, which arrive three days

later, would be different from units ordered on other days. The ~1888 8 axngnogex

time in the system of a concentrate is 1 day if it is issued with (333 S 58358352283

m days of remaining lifetime, 2 days if it is issued with m — 1 days

of remaining lifetime and so on; the time in the system of an out- S|SHg88 8§ EZREZAEE

dated unit is m days. Therefore W, the mean time in weeks that a 2SS S SwcSwod

unit spends in the system is . .

S|legeRgys 8 5 3
1nm+2npm_1+---+mny +mng F|22383R%s & & §
7 MmN+ 01+

where n; is the mean number of units issued with r days of re- =18 §$8zEBEE¥8 8
. e : LIg YT—Mmoaomes S
maining lifetime for r=1,...,m and ny is the mean number of f|So ocococooco o

outdated units. The mean number of units in the system is © 52 o 3¢ — 3¢ w0 3¢
4 . |8 8 ZERZLTEES
[ 2iz19i+395 + Yig hi Tls 3 3535535338

= 5 ,

where the first two terms in the numerator correspond to the days 1888 8 SE3EmEsS

that the units ordered spend in the queuing system before actually F|loscS oS SSSSSosS

arriving at the blood bank and the last term is the number of units

. O R N X O o 00 3% I~ 3% > %

in the blood bank throughout the week. Lastly, A, the mean num- S|R=928 8 535839

ber of units arriving during the week is ny + - - - + nq + ng. There- ||eeceee e ewewen

fore, Little’s formula yields 7L = ny + 2ny,_1 + - - - + mnqy + mng and N MNRTREe © =
we have clegdedng & 8 §

7L =} CwLWOoOOoOOooo o o o

— Mny
A—n = Pm+2Pm1 + -+ mpy, T|linxoxroRoro  1nwRn R
0 5|585RK52528 8r38
where pr =n;/(nm + --- 4+ ny) is the probability of a unit being is- F|locodososss Sdoo

sued with r days of remaining lifetime, r =1, ..., m. Since fresh- i

R X © O OROR—=ROD A

ness is equal to m+1— (pm +2pm_1 +---+mpy) it follows that s|_.|aM3R325~x8 8 352
Eld|c~c~0~S =0 oS O~

7L — mng £

freshness:m—l—l—)Li. (C1) 8 IS ZIRINS ¥R

—To S eRoegnong ooy
3 . . Zlos|loco~oco—~c—0o—0o S 6o —

For instance, in the case of Table 5 (simulated values), m =5, 7L = g

364,4, A =151,7 and ng = 0, 22, yielding a freshness value of 3,60 2 FEIReRgEIBB8gR

days, which coincides with the value in the table. El=|S535 ScIcscsecsaec

Formula (C.1) is exact but its application still requires approx- 9

. . . . = ) Q

imations of main performance measures on specific days and not S § g N § § § § § )

only their weekly aggregated values. In particular, it seems there is w|o|S SHoNs o S o

no way to circumvent our formulae in Section 3.4 to approximate g

. R . " O3 — R NN I~ X WX O (=

freshness. Moreover, note that (C.1) provides only partial informa- g IUIELERIRLS 8

tion on freshness as it gives the weekly average, while our formu- s|T|eeeeeeeeeee °

lae in Section 3.5 approximate freshness of units issued on each E R P VR
[ nNnoounmumITNMmOoAN!L O —O

day of the week. ¢ fSASNSMENgYSh=
— [=NeeeleloloNoloBolo e NeoN =
-

Appendix D. Accuracy of simulations 'g U U U U U U UL
L) ﬂ) - - — - = - -
< |5 s & &8 S8 5 & ©

. . . . 22 g g 2 g2 2 £ g
Results on the accuracy of simulations in the setting of Sl E| a8 a8 ,8,8p88n38
B 2 o 9o o Q° o

Table 5 are shown in Table D1. For each day, the first row shows 5 Z|PRORARD RN RN RO R

the sample standard deviation SD of each quantity across the 1000 § -

simulation runs. The second row shows the ratio in percentage < - = g = z .

. . 2] v
terms of the half-width of the 95% confidence interval for the ex- a E %’ v £ é 5 g =
. . > (9] [=]
pectation over the sample mean value, that is, % E Elg 8 £ E £ 7 &
=N

1,96 x SD/~/1000
— %

where SD is the value in the first row and X is the sample mean
given in Table 5 (italic font). For values where the sample mean is
smaller than 0,001 the ratio (second row) is not computed.
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