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Abstract: In this work, we present an approach to understand the computational methods and
decision-making involved in the identification of emotions in spontaneous speech. The selected
task consists of Spanish TV debates, which entail a high level of complexity as well as additional
subjectivity in the human perception-based annotation procedure. A simple convolutional neural
model is proposed, and its behaviour is analysed to explain its decision-making. The proposed model
slightly outperforms commonly used CNN architectures such as VGG16, while being much lighter.
Internal layer-by-layer transformations of the input spectrogram are visualised and analysed. Finally,
a class model visualisation is proposed as a simple interpretation approach whose usefulness is
assessed in the work.
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1. Introduction

Emotion theories agree that an emotional episode consists of several components,
such as the stimulus, motivation for action, central and peripheral physiological responses,
behaviour (e.g., facial and vocal expressions, among others) and subjective experiences or
feelings [1]. In addition, the behavioural and physiological expression of emotions and the
stimulus quality depend on the person and on the specific scenario [2].

Affective computing often uses a categorical model based on a set of predefined emo-
tional labels that are roughly supported by the basic emotions defined by the affect program
theory [3], which might cover the whole emotional space. Each basic emotion encompasses
a wide subset of emotions that can be understood as blends or elaborations of the basic ones.
An alternative theory [1] discriminates emotions on the basis of combinations of continuous
variables aiming to characterise the contents of feelings [4]. Typical variables are Valence
and Arousal, which define a 2D space for representations, even though Dominance has
also been proposed, resulting in a 3D model usually called a VAD model.

Furthermore, emotional responses result in changes in gaze, facial and vocal expres-
sions, speaking style, in the way the language is used as well as in changes in physiological
signals, such as the electroencephalographic signals or galvanic skin responses, among
others [5]. The information provided by each signal has distinctive features, which can
be complementary. This might result in a variety of approaches and systems for emotion
recognition with different goals and application tasks [6]. However, universal facial expres-
sions [7], also considered as short-term stereotypical responses, are the more extensively
analysed emotional expressions.

Speech signals encode speaking styles, paralinguistic features, the usage of language,
message contents to be transmitted, environmental sounds, etc., which contain varied in-
formation about the speaker profile, intent, current emotional status, and even information
about some mental diseases [8].

Appl. Sci. 2023, 13, 980. https://doi.org/10.3390/app13020980 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020980
https://doi.org/10.3390/app13020980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6131-712X
https://orcid.org/0000-0002-3142-539X
https://orcid.org/0000-0003-1739-1397
https://orcid.org/0000-0002-1773-3214
https://doi.org/10.3390/app13020980
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020980?type=check_update&version=2


Appl. Sci. 2023, 13, 980 2 of 19

In contrast to this complexity, computational researchers of emotions need an exact
ground truth to be used for supervised learning, decoding and evaluating computational
models of emotions. Usually, human annotators establish their own perception of the emo-
tional data as the ground truth and reference for the automatic identification of emotions.
These perceptual experiments add subjectivity and complexity to the already complex and,
to some extent, subjective emotional constructions, mainly in speech processing.

In the next step, researchers submit the data to black boxes, i.e., to complex architec-
tures of neural networks, whose behaviour is not fully understood but that might perform
well in terms of usual scores. Therefore, the key to successful or unsuccessful classification
rates remains unknown. In other words, we are unaware of what the computational model
identifies as emotional cues.

Over the last few years, some techniques have been proposed to explain the internal
behaviour of complex computational models, resulting in what is called XAI, i.e., eXplain-
able Artificial Intelligence. Some of them propose simple models that can represent the
aforementioned external behaviour. However, the most amount of effort has been put
into the image analysis domain because the action of the network on the original images
can be visually represented and, thus, it can be more easily understood. In contrast, XAI
methodologies have been scarcely used in voice processing.

The aim of our work is to contribute to the understanding of computational methods
and decision-making involved in the identification of emotions in spontaneous speech. To
this end, we selected a task consisting of TV debates in which spontaneous emotions can
be investigated. To this end, we follow the transformation of the input data, from layer to
layer, until the classification is carried out in the output layer of the network. If the whole
architecture becomes too deep, this process is hard and it becomes difficult to extract valuable
conclusions. Thus, we propose a CNN-based deep architecture capable of providing good
results but simple enough to be able to follow and interpret the decisions taken.

The main contributions of the work can be summarized as follows:

• We develop a multitask architecture to simultaneously classify discrete categories
and VAD dimensions, in the aforementioned realistic task. This requires a previous
annotation of the corpus in terms of both categorical and VAD models through human
perception experiments, which define the ground truth. The proposed model is
also compared to a more complex state-of-the-art image processing network such as
VGG-16 [9], resulting in a better performance (even if slightly) for the target task.

• In an attempt to explain the decisions of our automatic system, we analyse the evolu-
tion of the categorical representations of our model layer-by-layer. Thus, we analyse
the evolution of the data until they become predictions, i.e., from input spectrograms
to the results.

• As a final contribution, we use the spectrogram to parameterise the voice signal
to process it as an image. This allows us to obtain a visual class model [10] (deep
dream) that can be used to visualise the patterns learnt by the proposed network. This
technique is widely used when dealing with images, but as far as we know, it has
never been applied to speech.

The paper is organised as follows: Section 2 reports some related works. Section 3
describes the methodology selected to develop an automatic recogniser of emotions from
spontaneous speech. This section includes the description of the task and corpus, the neural
network model proposed for the joint classification of categories and emotional dimensions,
and also a comparison of classification results obtained with our network and a pretrained
VGG-16 net. Then, Section 4 deals with the interpretation of the model behaviour. It first
presents a joint analysis of the results in terms of both categories and dimensions. Then, the
evolution of the model across the layers is visualised and examined. Finally, the proposed
simple interpretation model, i.e., the class visualisation model is introduced and assessed.
Finally, Section 5 reports the main conclusions of this work.
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2. Related Work

Affective computing has become more relevant due to its impact on person–computer
interactions [11,12]. This has translated into significant progress in all its modalities [13–15]:
face [7,16], gestures [17], text [18–21], audio [22] and others. Some investigations do not
only focus on a single modality but also multi-modal approaches [23].

With regard to the detection of emotion from facial cues, most studies deal with the
categorical model for emotional state representation. Within this framework, the most
employed set of emotions is the one proposed by Ekman [3], which is widely accepted
under the name of “The Big Six” [24]. Ekman’s proposal consists of six basic and universal
emotions: surprise, disgust, sadness, anger, fear, and happiness. However, in other works
dealing with speech, emotions are also represented using a dimensional model [25–27].
Dimensional theories postulate that the vast array of emotions cannot be simplified to
a basic set but can be mapped to a continuous low-dimensional spatial representation.
Most of the works in this context propose a two-dimensional model, comprised of valence
(whether the emotional state is positive/pleasant or otherwise negative/aversive) and
arousal (intensity or level of arousal) [28,29]. Dominance is a third dimension also included
in some works that encodes the level of control (leading to feelings of power/dominance or
weakness/submission) [30]. The aforementioned two models (categorical and dimensional)
show a close relationship according to the Core Affect theory [4], where each categorical
emotion is represented in a point/area of the dimensional model. An example of this is
the illustration of Sherer’s circumplex [31], which makes use of the arousal/valence two-
dimensional model to represent categorical emotions. In this work, the two models were
considered to represent the emotional status of the speakers because they can complement
each other.

In order to build an emotion detection system from scratch, annotated data are needed,
assuming the supervised machine learning paradigm. Finding corpora where real emotions
appear is a really difficult task. Thus, most of the research in this field relies on data sets where
emotions have been acted or forced [26], as occurs with the EMODB [32] or IEMOCAP [33]
corpora. However, in recent years, there has been an attempt to put emphasis on creating
corpora with spontaneous emotions such as AVEC2012 [34], EmoL6N [35] or DBATES [36].
However, this is a challenging task because, on the one hand, the perception of emotions
is not as intense as in the corpora with acted emotions [35] and, on the other hand, the
annotation procedure is very subjective, leading to low inter-annotator agreements [37–39].
This work deals with a task in which spontaneous emotions are involved. This entails an
additional challenge for the system that has to deal with speech chunks with subjective and
subtle emotional representations.

Another important issue to be addressed is how to identify the most suitable features,
i.e., speech representations, for detecting emotions. In recent years, there have been several
attempts to build a set of features suitable for the identification of emotions in the speech
signal [40,41]. Several works are based on Low-Level Descriptors [42–46], whose characteristics
are related to prosody (pitch, formants, energy, jitter and shimmer), the spectrum (centroid, flux,
entropy) and their functionals (mean, std, quartiles 1–3, delta, etc.). In this context, Ref. [47]
proposes the GeMAPS set of speech features that has been considered as a standard. However,
and thanks to challenges such as INTERSPEECH [48], other sets have also been proposed
(ComParE) to become a reference in this area. However, none of these sets has actually proven
to be superior to the rest in a global environment. Several works [43,46,49] suggest that there
are no universal acoustic features that extract the emotional content and work well in all
contexts. In this direction, some works propose working with the spectrogram [45,46,50–54]
since it contains almost all the information about a speech signal. More recently, self-learning
based approaches [55,56] have shown to find good representations of the speech signal. Indeed,
self-learning has been applied in a variety of applications of speech processing with successful
results in solving different tasks [56–59]. In fact, our task has already been addressed using
such speech representations [2]. However, pretrained (and not fine-tuned) models were needed
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to obtain good results, and thus the analysis of the decisions made by such models cannot be
easily conducted.

The understanding of which patterns are detected by deep neural networks, or how
they work, can help to design new architectures or new learning paradigms that can make
a difference. The introduction of such advances has been decisive to achieve the current
automatic systems’ performance. One of the clearest examples appears when the field of
computer vision introduces convolutional [60] and pooling [61] networks, which marked
the beginning of a new age. In 1997, the recurrent networks based on LSTM cells were
proposed [62], which are known for their ability to process long sequences that were first
used in NLP or speech processing. However, attention networks [63,64] have been the
ones that have made progress in the NLP field. In emotion recognition, although some
work has been conducted [2,65,66], promising results have not yet been achieved. Different
works based on CNNs [67], LSTMs [68,69] and attention mechanisms [67,69] have reached
accuracy values (or F1 scores) of around 0.7 with the most commonly employed acted
data sets.

Moreover, this kind of deep neural architecture is sometimes so complex that even
experts are hardly able to interpret it [70]. As a consequence, understanding the behaviour
of a model to make predictions is becoming as important as its accuracy. In fact, inter-
pretability is nowadays a key to improving the performance of complex neural architectures.
Several methodologies have recently been proposed to explain the importance of particular
features for decision-making. These methodologies are sometimes integrated into the
models, but they also very often consist of postprocessing analysis and models [71]. On
the other hand, explanation and interpretation are context-, domain- and task-dependent
concepts. In this way, XAI targets are the end-users who depend on the decisions taken
by the automatic system [72]. Some recent works also argue that explanations must be
related to the perceptual process from cognitive psychology [73]. In brief, XAI is still a
domain to be explored by AI researchers in relation to the domain addressed. Due to the
intuition of vision and the availability of data, much of the XAI research has focused on
image prediction tasks [10]. On the contrary, few techniques have been developed for audio
or speech prediction [6,74,75]. In this work, an architecture based on CNNs and inspired by
computer vision was designed. Moreover, employing the spectrogram as the input allows
us to represent the audio as an image and apply XAI image processing techniques.

In summary, we propose an emotion detection system capable of providing two emo-
tion representation levels: a categorical one and another one based on three-dimensional
VAD space. The proposed model is simple enough to allow a detailed analysis of the
network behaviour layer by layer while providing accurate classification results. In order to
increase the level of explainability of the decisions made by the network, the Visual Model
Classification XAI technique was selected. To this end, the spectrogram was selected as the
input of the system along with a CNN-based deep neural architecture.

3. Emotion Detection

In this section, we describe the selected neural model capable of detecting emotions in
TV debates. This model is inspired by previous works [2,39], but it has been adapted for
the joint classification in terms of both categories and emotional dimensions.

3.1. Task and Corpus

This task consists of human–human spontaneous conversations gathered from the La
Sexta Noche Spanish TV program. This TV show addresses the hot news of the week in
social and political debate panels led by two moderators. A very wide range of talk-show
guests (politicians, journalists, etc.) analyse social topics from their perspectives. Given that
the topics under discussion are usually controversial, it is expected to have emotionally rich
interactions. However, the participants are used to speaking in public so they mostly do not
lose control of the situation. Nevertheless, even if participants might overreact sometimes,
it is a real scenario in which emotions are subtle.
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In order to build a corpus, the programs of La Sexta Noche broadcasted during the
electoral campaign of the Spanish general elections in December 2015 were selected. Then,
speech signals were extracted from the videos of the TV shows. Then, they were split into
shorter segments or chunks. The segments have to be short enough to avoid changes in
emotional content but long enough to allow for their identification. Thus, the speech signal
was divided into clauses. A clause was defined as “a sequence of words grouped together
on semantic or functional basis” [76], and it can be hypothesised that the emotional state
does not change inside a clause. An algorithm that considered silences and pauses, as
well as text transcriptions, was designed to identify the utterances compatible with the
clauses [39]. This produced a set of 5500 audio chunks in Spanish, ranging from two to five
seconds long that was used as our data set. Regarding the speaker features, the resulting
gender distribution in the processed data was 30% female and 70% male, with a total
number of 238 different speakers and an age ranging from 35 to 65. These data just reflect
the nature of the described TV shows.

The corpus was emotionally annotated in the framework of the AMIC “Affective
multimedia analytics with inclusive and natural communication” project [77], as de-
scribed in [2,39]. The annotation was carried out through perception experiments in
which crowd annotators were asked to identify both emotional categories and Valence–
Arousal–Dominance dimensions [78,79]. A crowdsourcing platform [38] was used to gather
five annotations for each audio chunk. All the annotators filled out a questionnaire related
to the perceived emotions in each audio chunk, and an agreement higher than 60% was
required as a quality guarantee for the categorical annotation [35,39]. The questionnaire re-
lated to the dimensional model considered discrete labels to facilitate the crowd annotation
process. However, instead of asking a 60% of agreement again, a consensus of the different
annotations was achieved by converting the labels to real values, as shown below:

• Valence: Positive = 1, Neutral = 0.5, Negative = 0;
• Arousal: Excited = 1, Slightly excited = 0.5, Neutral = 0;
• Dominance: Rather Dominant = 1, Neutral = 0.5, Rather intimidated = 0.

Then, the average values attached to each audio chunk by different annotators were
computed. In this way, each label of the VAD model corresponds to a real value. This sce-
nario suggests a classification problem for the categorical model and a regression problem
for the VAD. However, previous works [39] showed that the regression problem might be
too ambitious for this task, and if it is addressed as a classification task, a better performance
might be achieved. Specifically, the distribution of the annotated data for each of the VAD
dimensions was analysed. According to these distributions, a discretisation of each VAD
dimension was carried out in order to learn a categorical classifier to predict each of the
discretised classes. This procedure led to a set of 4118 annotated chunks distributed, as
shown in Table 1. Let us note that Table 1 shows a high imbalance between classes. The
tendency to neutrality that is observed is related to the spontaneity conditions in which the
corpus was acquired.

Table 1. Class distribution of the annotated data for categorical and VAD model.

Categorical Model (%)
Dimensional Model

Arousal (%) Valence (%) Dominace (%)

Angry: 30.2 Excited: 25.5 Positive: 29.0 Dominant: 26.2
Happy: 15.3 Neutral: 74.5 Neutral: 54.4 Neutral: 73.8
Calm: 54.5 Negative: 16.6

3.2. Convolutional Neural Model

Convolutional neural architectures have become a standard in image processing over
the last few years. However, other types of tasks have also taken advantage of these
architectures by adapting the problem and addressing it with computer vision techniques.
For example, audio analysis can be performed with computer vision techniques if the



Appl. Sci. 2023, 13, 980 6 of 19

audio is represented by a spectrogram. In addition, other areas such as speech and natural
language processing have also taken advantage of the potential of convolutions for the
analysis of temporal sequences [80].

In this work, we propose a simple and light convolutional network architecture (a
network with 43K parameters) and compare it with the VGG16 convolutional network [9],
a model widely used in the literature but that consists of 134M parameters, which makes it
difficult to understand its behaviour.

Both network architectures are designed to obtain, from the speech spectrogram,
the joint classification of emotional state in terms of both representations, the categorical
model and VAD dimensions, as shown in Figure 1. On the one hand, after a number of
convolutional and pooling layers are applied, three scalar values corresponding to each
dimension of the VAD model are computed through three linear layers with a sigmoid
activation function at point A. These values are then converted to discrete VAD predictions
linearly, at point B. On the other hand, the categorical model is inferred in two ways. First,
at point C, the categories are predicted based on the output of the CNNs. Second, at point D,
the scalar predictions of the VAD model are used instead. Intuitively, this second prediction
might perform better as it could explicitly take advantage of the multi-tasking capabilities
of the networks.

Figure 1. Representation of the structure of the VGG16 [9] network and our proposal. In both cases,
the convolutions (blue boxes) and max-poolings (red boxes) help to extract a set of appropriate
features, while the linear ones are in charge of performing the class discrimination. Point A represents
a dimensional prediction of the VAD model, while point B provides the discretisation of each of the
dimensions. On the other hand, the categorical model is inferred directly in point C, and from the
scalar VAD model predictions, in point D.

As for the training procedure, a resampling strategy is used when training both
networks to deal with the imbalance of the data, as observed in Table 1. The employed
method consisted of selecting the samples inside a batch using a random function that can
take into account the weight given to each sample. The weight Wx for each sample x was
computed, as Equation (1) shows

Wx = min
{
|X|
|Xc|

, β · min
∀c∈C

{
|X|
|Xc|

}}
(1)
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where |X| is the number of samples in the corpus, |Xc| is the number of samples in the class
which sample x belongs to, and β is the oversampling coefficient (in this work it was chosen
a value β = 2). In this way, the samples of the minority classes appear proportionally more
times, but never more than twice as much as a sample from the majority class.

Regarding the optimisation hyperparameters, the Adam optimiser was chosen with
a learning rate of 10−4 and with a batch size of 16. The models were trained throughout
7K iterations. Note that our network is trained from scratch, whereas VGG16 is fine-tuned
from the publicly available pretrained checkpoint. The cross-entropy loss function is used
for each classification task. The five losses (two for the categorical model, and three for the
VAD model) are then averaged (with different weights) to obtain the final loss. The weights
for the categorical losses were half the weights for the VAD model, since this led to the best
results, empirically.

3.3. Classification Results

The performance of the proposed classification system for both emotion categories
and VAD dimensions are compared to the VGG16 model in Tables 2 and 3. All results were
obtained after a 10-fold cross-validation procedure. For the categorical model, two different
results are given, one corresponding to the direct categorical classification associated with
output B in Figure 1 (CLS C) and another one making use of the predicted VAD floating
point values associated with output D (CLS D). The average and standard deviation of five
metrics commonly employed to evaluate emotion classification systems [81,82] are reported:
F1 score, Unweighted Accuracy (UA, also known as balanced accuracy or unweighted
average recall), average precision, Matthews Correlation Coefficient and Area Under the
ROC Curve (AUC). Additionally, paired t-tests were computed to assess the statistical
significance of the performance differences between our model and the VGG16 network.

Table 2. Classification performance of our proposal and VGG16 for the categorical model prediction
task. Two ways of predicting the emotion categories were tested. Comparisons where a network
significantly outperforms the other (i.e., p-value < 0.05) are marked with the symbol *. The best result
for each comparison is highlighted in bold.

Our Net/VGG16 CLS C CLS D

F1 0.58 ± 0.04/0.57 ± 0.06 0.59 ± 0.05/0.57 ± 0.05
UA 0.57 ± 0.04/0.54 ± 0.06 0.58 ± 0.04/0.54 ± 0.05
Average precision 0.60 ± 0.05/0.63 ± 0.07 0.60 ± 0.06/0.63 ± 0.07
Matthews corr. coef. 0.39 ± 0.06/0.38 ± 0.08 0.41 ± 0.05/0.38 ± 0.06
AUC 0.80 * ± 0.03/0.75 ± 0.03 0.81 * ± 0.02/0.74 ± 0.04

Table 3. Classification performance of our proposal and VGG16 for the VAD model prediction task.
Comparisons where a network significantly outperforms the other (i.e., p-value < 0.05) are marked
with the symbol *. The best result for each comparison is highlighted in bold.

Our Net/VGG16 Arousal Valence Dominance

F1 0.67 ± 0.11/0.67 ± 0.02 0.42 ± 0.03/0.41 ± 0.05 0.57 ± 0.05/0.56 ± 0.03
UA 0.67 ± 0.09/0.66 ± 0.03 0.45 * ± 0.04/0.41 ± 0.03 0.57 ± 0.03/0.56 ± 0.03
Average precision 0.69 ± 0.13/0.69 ± 0.02 0.44 ± 0.05/0.45 ± 0.09 0.58 ± 0.07/0.58 ± 0.04
Matthews corr. coef. 0.35 ± 0.17/0.35 ± 0.03 0.14 ± 0.04/0.12 ± 0.04 0.15 ± 0.06/0.14 ± 0.06
AUC 0.74 ± 0.11/0.72 ± 0.02 0.65 * ± 0.03/0.60 ± 0.02 0.63 ± 0.07/0.60 ± 0.03

First, and most importantly, our network performs slightly better than the fine-tuned
VGG16 network for most classification tasks and metrics. This is already remarkable
because our architecture uses around 3000 times fewer parameters than the VGG16 CNN.
Furthermore, the differences in performance are statistically significant in four comparisons:
when measuring the AUC for CLS C, CLS D and arousal, and also for the Unweighted
Accuracy in the arousal prediction task. Importantly, these results support the use of our
light network to apply XAI techniques.
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If we further analyse the results, Table 2 shows a slight tendency towards a better per-
formance of CLS D, i.e., the classifier that uses the predicted VAD values before classifying
the categories, particularly in the case of our proposed network. Looking at the results for
the VAD dimensional classification of Table 3, it can be concluded that the best results are
achieved for Arousal. However, it should be noticed that, in this case, there are only two
different categories (Excited and Neutral), whereas, in Valence, there are three different
ones (Positive, Neutral and Negative).

For a better understanding of the VAD results, Figure 2 shows the VAD predicted
values vs. the annotated, i.e., perceived, values. Straight lines in the figure show the
borderlines learnt to discretise the problem, i.e., to transform the regression problem into
a categorisation one. This figure shows the good performance of our proposal. In fact,
opposite diagonals are very low-density regions. When it comes to Arousal, for instance,
it seems to be easier to predict accurately higher values than lower ones that are more
scattered in the lower part of Figure 2. In Valence, it can be concluded again that positive
and negative categories are sometimes mixed with Neutral, but rarely among each other
(see secondary diagonal in the figure). Finally, Dominance shows a lower correlation
between the predicted and annotated values.

Figure 2. Comparison between the samples annotated by humans and predicted by the network in
the dimensional model. Each of the plots depicts a VAD dimension. Each sample is placed at a point
based on the actual value of the annotations (y-axis) and the actual value of the predictions of the
network (x-axis). The lines show how the samples have been separated for the classification problem
on each dimension (y-axis) and how the network has separated them (x-axis).

4. Interpreting the Model Behaviour

This section aims to explain the proposed model’s decisions, providing a better un-
derstanding of the work of each layer, as well as an analysis of the input features learnt by
the model.

4.1. Analysis of the Classification Results

Figure 3 shows the three projections of the VAD values in a 2D space. The colours
of the points show the category they belong to. In the first row, both the VAD points and
the categories are the ones perceived by annotators. In the second row, the VAD points
are the ones predicted by the network (Point A) and coloured according to the perceived
categories. Finally, in the third row, the colour of the points corresponds to the predicted
categories. Specifically, the output of the network at Point D (CLS D) has been used, since
it outperforms CLS C in our experiments.

The first row of Figure 3 shows mixed VAD points. In fact, the subjectivity of human
perception witnessed during the annotation procedure makes it difficult to obtain clear
boundaries between classes. However, some patterns can still be observed. For example,
“Angry” samples present higher arousal than “Calm” and “Happy”, which can be seen in
the first and second plots. In terms of valence, the distinction between the three categories
is a bit more clear: “Happy” is the most positive emotion, followed by “Calm” which is
neutral, and “Angry”, which indicates negative arousal. This result is clearly aligned with
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the literature on emotion theory. Finally, we would like to mention that the dominance axis
does not show clear boundaries between the categories.

Figure 3. Correlation between the VAD and categorical models, according to both the annotated and
predicted data.

A transformation of the space is observed in rows two and three; points are no longer
located in the same place as in the first row of Figure 3. Instead, they correspond to the
model’s predictions. The difference between the second and third rows is that in the
third one we can clearly see the boundaries learnt by the network to decide to which
category a sample belongs to. In this new space, the categories can be better separated,
even the annotated ones in the second row. It can be hypothesised that this fact is due
to the joint training of the categories and VAD dimensions. The simultaneous VAD and
categorical classifications result in the collaboration of both models in decision-making.
Thus, the regions associated with categories are well-defined in the VAD projection space.
Finally, similar relations of the categories and the VAD axes can be seen in the last two
rows. Moreover, in this case, the dominance axis shows that, as expected, “Calm” is less
dominant than “Happy” and “Angry”.

4.2. Evolution of the Model

In this section, we show a representation of the work that each layer of the deep
network is carrying out. To this end, the progress in the training stage can be explained
as a fine-tuning process of the data representation, which can lead to a good classifica-
tion. For this purpose, we present the output provided by each layer for each training
sample in a bidimensional space, by applying a dimensionality reduction method such
as PCA. Assuming that X = {x1, x2, . . . , xn} is the set of training samples, where xi is the
spectrogram associated with each audio chunk presented in Section 3.1, the output of the
first convolutional layer for each sample can be defined as yi = conv1(xi). This yi output
is transformed into a flattened vector that can be visualised in a 2D space by applying a
decomposition in Principal Components as y′i = (z1, z2), where z1 and z2 are the two first
principal components in the PCA analysis of yi. This representation can be replicated for
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the output for each convolutional network (conv1, conv2 and conv3) and also for the two
dense layers: linear1 and linear2.

The visualisation of the aforementioned representations is displayed in Figure 4. Points
in the picture stand for the decomposition in Principal Components of the outputs of each
convolutional layer. The colour of each point represents the category it belongs to. In the
first row, the colours of the categories correspond to the annotated labels (ground truth),
whereas in the second row the colours represent the predicted categories.

Figure 4. Two-dimensional representation obtained for each sample over different layers of the
network using the PCA technique. The colour of each point represents the category to which it
belongs, showing in the first row the annotated categories (ground truth) and in the second row the
predicted categories.

Samples are mixed in the first stages, but as we go deep into the network, the categories
are better-defined, so that the figure shows how the network learns how to differentiate
them. Let us note that the dimensionality reduction in conv1 + pool1 (left image) is from
3416 to 2, whereas in linear2 + ReLU (right image) this is from 32 to 2, which could also lead
to regions being better delimited, as the last picture of the right-hand side of Figure 4 shows.

In the second row, the colours are associated with the predicted categories. Thus, the
regions of each category are well-defined at the final stages by clear boundaries, which
supports the network’s decision-making. It is interesting to note that, comparing the
right-hand side pictures of annotated and predicted categories, a tendency toward “Angry”
and “Happy” is shown in the predicted values. This correlates well with the values of
the confusion matrices of the previous section, where the network estimates some “Calm”
samples as “Angry” or “Happy”. This seems to be due to the oversampling method that
makes the minority classes more relevant. A more accurate sweep of the β coefficient might
be useful in future work.

4.3. Class Model Visualisation

Class Model Visualisation is a global method within the Explainable Artificial Intelli-
gence (XAI) framework, the goal of which is to generate image visualisations of each of the
classes or categories the system is trying to predict [10]. We selected this method because it
can provide insights into the features that the system takes into account when making those
predictions in a visual way. At this point, we take advantage of the fact that we use the
spectrogram to parametrise the voice signal by processing it as an image. This can be very
useful for understanding the performance of the system and acting. For instance, it might
be used for analysing the diversity of the samples in a category, which can be influenced by
different factors such as the subjectivity in the annotation process. If a sample has a feature
that the model relates to a different category that is not the predicted one, it might be due
to a low agreement among the annotators, and it might be interesting to see what happens
after a second annotation process.
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Given a convolutional network f and a class of interest c, the goal is to generate an
image visualisation I′, which is representative of c. This is based on the scoring methods
used to train f , which maximises the class probability score Sc(I) for c, combined with a
weighted (λ) L2 regularisation so that the image I′ keeps regular values, such that:

I′ = arg max
I

Sc(I)− λ‖I‖2
2 (2)

Thus, the generated images (usually called Deep Dream) provide information related
to what the black box model had learnt for a particular class or category in the dataset [83].
In this work, the Deep Dream images associated with the different classes, for both categor-
ical and VAD models, are shown in Figure 5. A random spectrogram sample was selected
for initialisation and an L2-regularisation method was employed to obtain the final images.

These deep dream images show different patterns for different categories. However,
their interpretation is difficult since speech information is harder to interpret visually than
deep dreams of images. First of all, it is worth noting that usually human speech is located
in the 300–4000 Hz range, so the analysis will be focused on that interval. Focusing on the
categorical model, it can be appreciated that, in “Calm”, there is an intensity attenuation
of around 1000 Hz, whereas, in “Happy”, this is an intense interval, and the attenuation
can be appreciated at lower frequencies, below 500 Hz. For the “Angry” category, the
attenuation is observed below 1024 Hz, and above that frequency, there is an intense band
(narrower than in the “Happy” class).

Categorical

Arousal

Figure 5. Cont.
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Valence

Dominance

Figure 5. Extraction of the suitable spectrogram that maximises the classification output for each
class using the DeepDream technique.

Switching to the VAD model, if we focus on Arousal, it can be concluded that, in
“Neutral”, there is a mix of high and low frequencies that are activated. However, the
“Excited” category seems to be more activated at high frequencies (above 1024 Hz). Regard-
ing Valence, the patterns are better-defined, and there seems to be much less noise here.
Clearly differentiated bands emerge in this dimension, and are located in different places
for the three different values. If we compare “Negative” with “Neutral”, it can be seen that
“Negative” has more defined blue bands between green or yellow bands, mainly at low
frequencies. In “Neutral”, the separation among bands becomes vaguer, and a pattern is
replicated all over the frequencies, which might be considered as complementary to the
one appreciated in “Negative” (see frequency bands above 512 Hz, blue in “Negative” and
green/yellow in “Neutral”). Finally, the vagueness among bands increases in “Positive”.
Finally, the obtained images for the Dominance dimension are much noisier. However, the
“Dominant” category seems to be activated at higher frequencies (2000–4000 Hz), while
“Neutral” is activated at lower ones (below 1000 Hz).

In order to evaluate the effectiveness of these images to represent the categories, we
tried to artificially transform all the samples in our test set into a specific category (using
Deep Dream). To this end, the transformation consists of removing the profile of the deep
dream image associated with the category it belongs to from each spectrogram, according
to the system, and then adding the profile (deep dream) of the target category. We define
the deep dream profile as a function that provides the average and standard deviation,
over time, for each frequency, as Equation (3) shows. Assuming that x is the intensity
associated with a time t and a given frequency f , the average and standard deviation for
each frequency are computed as follows:

DDavg( f ) = ∑
t∈∆t

x( f , t)
∆t

(3)
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DDstd( f ) =

√√√√√
 ∑

t∈∆t
(x( f , t)− DDavg( f ))2

∆t

 (4)

The transformation made to remove the profile of a specific category is described in
Equation (5).

x′( f , t)∀t∈∆t =
x( f , t)− DDavg( f )

DDstd( f )
(5)

and the transformation made to add the profile of a new category is described in Equation (6):

x′( f , t)∀t∈∆t = (x( f , t) · DDstd( f )) + DDavg( f ) (6)

First, the samples that were correctly classified by the Neural Network were considered.
These samples were transformed to a new category by applying the transformation in
Equation (5) to each spectrogram, thus removing the profile of the category the sample
belongs to. Then, the transformation on Equation (6) is applied to add the profile of the
new category. These samples were firstly transformed to “Angry”, then to “Calm” and
finally to “Happy”. Finally, the neural network classifies the transformed samples. The
resulting confusion matrix is shown in Table 4.

Table 4. Confusion matrix with the percentage of correctly classified samples after profile transforma-
tion for each category (only correctly classified test samples). Each sample has been transformed to
the profile of each class and therefore each row sums up to 100%.

Angry Calm Happy

Angry 100 0 0

Calm 0 100 0

Happy 7.33 0 92.67

Table 4 shows that, when the transformations are applied, the system classifies the
samples correctly in almost all the cases, i.e., only 7.33% of the samples transformed to
“Happy” were wrongly classified as “Angry”. Let us note that the transformation may
introduce some noise that might lead to peak values that could be misinterpreted by the
system, leading to errors. However, the good results suggest that the deep dream images
are good representations of what the neural network learns for each category.

Then, all the samples of the test set, i.e., the ones not correctly classified, were con-
sidered and the process was replicated again. In this case, the predicted category was
considered to remove the profile in the first step. The new results are shown in Table 5.

Table 5. Confusion matrix with the percentage of correctly classified samples after profile transfor-
mation for each category (all test samples). Each sample has been transformed to the profile of each
class and therefore each row sums up to 100%.

Angry Calm Happy

Angry 97.67 2.33 0

Calm 0 89.33 10.66

Happy 8.00 0 92.00

Table 5 shows some more misclassified samples for this experiment (8% of “Happy”
that were classified as “Angry”, 10% of “Calm” that were classified as “Happy” and 2% of
“Angry” that were classified as “Calm”). In this case, there are more noisy samples because,
when converting them to a new category, once the information about its prediction was
removed, a higher error is achieved. For these samples, a reannotation process might be
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considered in order to see whether the noise comes from the subjectivity associated with
the annotation procedure.

Moreover, the achieved results let us estimate which frequency bands are more relevant
in each category. Let us focus, for instance, on the band above 512 Hz in the categorical model.
We took a sample, labelled as “Happy”, which shows low-intensity values in the selected band.
Then, the intensity values in that band were gradually increased until the spectrogram shown
in Figure 6 was achieved. In this process, the values of the last layer of the network, from
which the predictions were carried out, are represented in Figure 7. The figure shows how the
prediction changes from “Happy” to “Calm”, which corresponds to a higher intensity band
above 512 Hz in the Deep Dream image. This provides a hint to analyse samples that should be
“Calm” and are predicted as “Happy” for instance. If the band above 512 Hz has low-intensity
values, it might be a sample wrongly annotated as “Calm”.

Finally, it is worth mentioning that a qualitative comparison of the Deep Dream images
shed some light on the achieved results. In fact, it is understandable why sometimes the
system’s predictions are not accurate and some classes are mixed. If we focus on the
categorical model, it is noticeable that Calm is something that is in between “Angry” and
“Happy”, having similarities with both of them. However, “Happy” and “Angry” are much
more different from each other. In the same way, regarding Valence, high similarity can be
appreciated among “Negative”-“Neutral” and “Neutral”-“Positive”, while the differences
between “Positive” and “Negative” are much more significant.

Figure 6. Spectrogram modified to alter the network prediction from “Happy” to “Calm”, intensifying
frequencies above 512 Hz.

Figure 7. Representation of how the values of the network prediction change when applying changes
by a factor in the spectrogram in Figure 6.

5. Conclusions

Here, we have presented a method to improve our understanding of the computational
methods and decision-making involved in the identification of emotions in spontaneous
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speech. The selected task consists of Spanish TV debates, with a high level of complexity as
well as additional subjectivity in the human perception-based annotation procedure.

Both categories of emotions and Valence–Arousal–Dominance dimensions were con-
sidered to represent emotional information. Then, a simple and light convolutional neural
model was proposed to allow the joint identification of emotions using the VAD and the
categorical model. The architecture of the model allows us to follow the decision-making
process in order to understand where the outputs come from. The overall performance
of our proposed model has also shown to be slightly higher than VGG16, a complex
well-established CNN for image processing.

In this work, we focused on the understanding of the decision-making process—that
is, where the errors come from and how the decisions are made. The evolution of the
extracted patterns in the network layers that support their internal decisions was visualised
and analysed. In addition, an XAI technique called Deep Dream was used to visualise the
features related to the emotional categories. The experiments carried out show that the
Deep Dream images might be an interesting tool when considering such complex neural
network architectures for carrying out speech emotion detection over realistic tasks.
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