
MASTER’S DEGREE IN
TELECOMMUNICATION ENGINEERING

MASTER’S THESIS

A NOVEL EDGE COMPUTING
FRAMEWORK FOR AUTOMOTIVE

DATA PROCESSING

A NOVEL EDGE COMPUTING
FRAMEWORK FOR AUTOMOTIVE

DATA PROCESSING

Student: Serón Esnal, Mikel

Director: Astorga Burgo, Jasone

Co-director: Huarte Arrayago, Maider

Director’s Department : Communications Engineering

Bilbao, September 2022

Abstract Laburpena Resumen

In recent decades, the mobile cellular communications market has seen much
activity. Telecommunications operators are undergoing a digital transition to give users a
real-time, on-demand experience. The fifth generation ofmobile networks, or 5G,marks
the start of the digitization of society’s interconnection. The telecommunications sector
sees thenext generationofmobile networks, as a critical growth factor for innovationand
automation, resulting in increased commercial and economic competitiveness.

5G systems are planned to handle awide rangeof application scenarios anduse cases
(for example, automotive, public services, smart cities, and medical care), each with its
own needs. In this context, edge computing is considered one of the essential features in
next-generation networks since it will allow for a flood of latency, throughput, and data-
sensitive edge-native applications. Edgeapplicationdevelopers neededge infrastructure
to host the application workload and network connectivity protocols to link application
users to the nearest edge where the application workload is located.

At the same time, in the vehicular sector, the growing amount of car-generated data
is opening new possibilities for the automotive sector. The use of automotive data is
strategic for industry players. New paradigms in car messaging and data gathering for
establishing new opportunities are vital for expanding the ecosystem of connected and
autonomousmobility services.

In this context, this project aims to study the current state-of-the-art in edge comput-
ing, analyze the existing edge computing frameworks oriented to connected vehicle use
case, and design a platform that will fit all the requirements of car-generated data man-
agement. The captured data will be processed on consumer demand in an edge server
and delivered to the users through a cloud platform, being possible to filter the data be-
tween geographical positions.

Keywords: 5G, Automotive data, CCAM, Edge Computing, Kubernetes, MEC, V2X,
VNF.

1

Azken hamarkadetan, komunikazio zelularren merkatuak mugimendu handia bizi
izan du. Telekomunikazio operadoreak trantsizio digital batean murgiltzen ari dira er-
abiltzaileei denbora errealean lan egiten dituzten esperientziak eskaini ahal izateko.
Sare mugikorren bosgarren belaunaldiak, edo 5G-k, gizartearen interkonexioaren digi-
talizazioaren hasiera adierazten du. Telekomunikazioen sektoreak sare mugikorren hur-
rengobelaunaldia ikustenduberrikuntzarenetaautomatizazioarenaldeko faktorekritiko
gisa, lehiakortasun komertzial eta ekonomikoa handituko duelarik.

Bosgarren belaunaldiko sistemak aplikazio eta erabilera kasu ugari (automobilgintza,
zerbitzu publikoak, hiri adimentsuak eta osasun arreta zerbitzuak esaterako) kudeatzeko
diseinatuak izan dira. Testuinguru honetan, muturreko konputazioa edo edge comput-
ing-a funtsezko ezaugarri bat da, izan ere latentzia gutxiko, errendimendu handiko edo
denbora errealeko datuen inguruko aplikazioak ahalbidetzen dituelako. Edge comput-
ing aplikazioen garatzaileek edge azpiegiturak behar dituzte aplikazioen lan-kargak eta
sare protokoloak ezartzeko, erabiltzaileak hurbilen dagoen edge-era konektatzeko, non
bertan aplikazioa kokatuta egongo den.

Aldi berean, automobilgintza sektorean, autoek sortzen dituzten datuak gero eta an-
itzagoak izateak, aukeraberriak ireki dizkio automozioaren sektoreari. Kotxean sortutako
informazioaren erabilera estrategikoa da industriako enpresentzat. Auto mezularitzan
eta datuen bilketan paradigma berriak izatea ezinbestekoa da aukera berriak ezarri eta
mugikortasun-zerbitzuen ekosistema zabaldu ahal izateko.

Testuinguruhonetan , proiektuhonekEdgecomputing-ekoartearenegoeraaztertzea
du helburu, ibilgailuei zuzendutako edge computing egitura edo framework-ak azter-
tuz, eta autoek sortutako datuak kudeatzeko sistema bat diseinatzea. Lortutako dat-
uak kontsumitzaileen eskaripean tratatuko dira edge zerbitzari batean eta erabiltzaileei
eskainiko zaizkie cloud plataforma baten bidez, datuak horiek kokapen geografikoaren
arabera iragazi ahalko direlarik.

Gako-hitzak: 5G, Autoen datuak, CCAM, Ertz konputazioa, Kubernetes, MEC,
V2X. VNF.

2

En las últimas décadas, el mercado de las comunicaciones móviles celulares ha ex-
perimentado una gran actividad. Los operadores de telecomunicaciones están llevando
a cabouna transicióndigital paraofrecer a los usuarios unaexperiencia en tiempo real. La
quinta generación de redes móviles, o 5G, marca el inicio de la digitalización de la inter-
conexión de la sociedad. El sector de las telecomunicaciones considera que la próxima
generación de redes móviles es un factor de crecimiento crítico para la innovación y la
automatización, lo que se traduce en unamayor competitividad comercial y económica.

Los sistemas 5G están planificados para manejar una amplia gama de escenarios
de aplicación y casos de uso (por ejemplo, automoción, servicios públicos, ciudades
inteligentes y atenciónmédica), cada uno con sus propias necesidades. En este contexto,
la computación de borde o edge computing se considera una de las características
esenciales en las redes de próxima generación, ya que permitirá una avalancha de
aplicaciones edge nativas aportando una latenciamínima y una gran afluencia de datos.
Los desarrolladores de aplicaciones de borde necesitan una infraestructura edge para
alojar la carga de trabajo de la aplicación y los protocolos de conectividad de red para
enlazar a los usuarios de la aplicación con el edge más cercano donde se aloja la
aplicación.

Por otra parte, la creciente cantidad de datos generados por los automóviles está
abriendo nuevas posibilidades para el sector de la automoción. El uso de los datos
del automóvil es estratégico para los agentes del sector. Los nuevos paradigmas en la
mensajería dirigida al automóvil y la recopilación de datos son vitales para establecer
nuevas oportunidades y ampliar el ecosistema de servicios de movilidad conectados y
autónomos.

En este contexto, este proyecto tiene como objetivo estudiar el estado actual de
la técnica en edge computing, analizar los marcos o frameworks existentes de edge
computing orientados al caso de uso del vehículo conectado, y diseñar una plataforma
que se ajuste a todos los requisitos de la gestión de datos generados por el automóvil.
Los datos capturados serán procesados a demanda del consumidor en un servidor edge
y entregados a los usuarios a través de una plataforma en la nube, siendo posible filtrar
los datos entre posiciones geográficas.

Palabras Clave: 5G, CCAM, Computación en el borde, Datos de automóviles,
Kubernetes, MEC, V2X, VNF.

3

Contents

Abstract Laburpena Resumen 1

List of Figures 7

List of Tables 8

Listings 9

Terms and Abbreviations 10

1 Introduction 14

2 Background 17

2.1 5G network and technology enablers . 17

2.1.1 NFV . 19

2.1.2 SDN . 21

2.2 Edge computing . 22

2.2.1 Edge computing landscape . 23

2.2.2 Uses-cases of edge computing . 27

2.3 C-V2X and CCAM . 28

3 Objectives and scope 30

4 Outcomes 31

4.1 Technical outcomes . 31

4.2 Economic outcomes . 31

4.3 Social outcomes . 32

5 Edge Computing: State-of-the-art 33

4

5.1 MEC technologies for CCAM services . 33

5.2 Open-source Edge computing frameworks 34

6 Analysis of requirements 36

7 Analysis of alternatives 38

7.1 NFV Orchestration Systems . 38

7.2 Virtualization technology . 39

7.3 Monitoring system . 41

7.4 Messaging protocol and data broker . 42

8 Analysis of risks 45

8.1 Description of the risks and contingencymeasures 45

8.1.1 R1: Deviation from schedule . 45

8.1.2 R2: Variance against budget . 45

8.1.3 R3: Attacks affect the production network 46

8.1.4 R4: Hardware or physical infrastructure failure 46

8.2 Risk probability-impact Matrix . 46

9 Description of the solution 47

9.1 High-level architecture . 47

9.1.1 General operation of the platform . 50

9.2 Implementation of themodules . 51

9.2.1 M1: MEC Virtualization infrastructure 52

9.2.2 M2: MEC VNFManagement . 55

9.2.3 M3: Monitoring . 57

9.2.4 M4 &M6: MEC and Cloud Broker and data handling 59

9.2.5 M5: MEC Security . 60

9.2.6 M7: Cloud APIs . 62

10 Validation of the solution 66

11 Description of tasks 67

11.1 Gantt diagram . 70

12 Description of the budget 71

5

12.1 Manpower . 71

12.2 Amortizable costs . 71

12.3 Non-amortizable costs . 72

12.4 Total cost . 72

13 Conclusions and future work 74

References 75

A Annex I: Platform deployment scripts 81

6

List of Figures

1 5G use cases and their mapping to the 5G services 18

2 ETSI NFV architectural framework . 20

3 SDN architecture and its fundamental abstractions 21

4 Multi-access Edge Computing architecture . 26

5 High-level architecture of the platform . 48

6 Platform’s automotive data workflow . 50

7 Architecture of the MEC platform . 52

8 OSM interface . 56

9 Pipeline deployment at a specific MEC infrastructure 57

10 Prometheus interface . 58

11 Grafana interface . 58

12 Data handlingmodules sequence diagram . 60

13 APIs stages and key technologies and formats 63

14 SLA API Swagger User Interface . 64

7

List of Tables

1 Requirements to address . 36

2 Comparison between OpenStack, OpenShift and Kubernetes 39

3 Comparison between OpenStack, OpenShift and Kubernetes 41

4 Comparison between ELK stack and Prometheus / Grafana 42

5 Comparison betweenMQTT and AMQP . 42

6 Comparison between ActiveMQ, RabbitMQ and Kafka 43

7 Risk probability-impact Matrix . 46

8 Requeriments validated by the platform . 66

9 Work team . 67

10 Human resources . 71

11 Cost of human resources . 71

12 Amortizable costs . 72

13 Non-amortizable costs . 72

14 Total cost . 73

8

Listings

9.1 Python example . 53

9.2 Python example . 53

9.3 OSMAPI call to deploy a pipeline . 56

9.4 OSMAPI call to deploy a pipeline . 57

9.5 Metric gathering through Prometheus API . 58

9.6 Connaisseur validator schema for trusting a repository 61

9.7 Calico network policy manifest file . 61

A.1 MEC instatiation ansible-playbook . 81

A.2 OSM installer for an already existing K8s cluster 93

A.3 OSM ”cits” pipeline’s KNFD and NSD descriptors 107

A.4 Resource introspection script . 107

A.5 Confluent Kafka values file . 109

A.6 Connaisseur Helm values file . 113

A.7 SLA API definition and logic . 117

9

Terms and Abbreviations

Terms

Terms that will be common and repeatedly employed during the work

Edge Computing The delivery of computing capabilities to the logical extremes of a
network in order to improve the performance, operating cost and reliability of
applications and services. By shortening the distance between devices and the
cloud resources that serve them, and also reducing network hops, edge computing
mitigates the latency and bandwidth constraints of today’s Internet, ushering
in new classes of applications. In practical terms, this means distributing new
resources and software stacks along the path between today’s centralized data
centers and the increasingly large number of devices in the field, concentrated, in
particular, but not exclusively, in close proximity to the last mile network, on both
the infrastructure and device sides.

Dataflow Unique flow/stream of produced data that is shared by Sensors and Devices
(S&D) through a Pipeline in a MEC.

Data-type Type of data that S&D shares and that a Pipeline in a MEC accepts and
handles.

Pipeline Group ofModules (containers) running in aMEC to handle a specific data-type.
Each module can process the data received by subscribing to a queue/topic and
generate output data in a new queue/topic into the MEC’s message broker.

Module Container running in a MEC that handles a specific data-type or group of data-
type (e.g. C-ITSmessages).

Third-party application Application/service lying outside the platform, which acts as
a third-party, consuming the available data, and optionally pushing events to the
platform (e.g., a CCAM application).

Abbreviations

3GPP 3rd Generation Partnership Project

5GPPP 5G Infrastructure Public Private Partnership

AAA Authentication, Authorization and Accounting

AI Artificial Intelligence

10

AMQP AdvancedMessage Queuing Protocol

AP Access Point

API Application Programming Interface

AR Augmented Reality

AWS AmazonWeb Services

BSS Business Support System

CAM Connected and AutomatedMobility

CAPEX Capital Expenditures

CCAM Cooperative, Connected and AutomatedMobility

C-ITS Cooperative Intelligent Transport System

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

C-V2X Cellular Vehicle-to-everything

DCAE Data Collection, Analytics and Events

eMBB EnhancedMobile Broadband

EU European Union

ELK Elasticsearch, Logstash and Kibana

ETSI European Telecommunications Standards Institute

gNB gNodeB

GPU Graphics Processing Unit

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IaaS Infrastructure-as-a-Service

IoE Internet of Everything

IoT Internet of Things

ISG Industry Specification Group

ISP Internet Service Provider

ITU International Telecommunication Union

KNF Kubernetes-based Network Function

KNFD Kubernetes Network Function Descriptor

11

KPI Key Performance Indicator

LAN Local Area Network

LTE Long Term Evolution

LF Linux Foundation

LIDAR Laser Imaging Detection and Ranging

MANO Management and Orchestration

MEC Multi-access Edge Computing

MQTT Message Queuing Telemetry Transport

mTMC Massive Machine-Type Communication

NF Network Function

NFV Network Functions Virtualization

NFVI Network Functions Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NR New Radio

NS Network Service

NSD Network Service Descriptor

OAS OpenAPI Specification

OBU On-Board-Unit

OEM Original Equipment Manufacturer

ONAP Open Network Automation Platform

ONOS Open Network Operating System

OPEX Operating Expenditures

OS Operating System

OSI Open Systems Interconnection

OSM Open Source MANO

OSS Operations Support System

PaaS Platform-as-a-Service

QoS Quality of Service

RAM RandomAccess Memory

RAN Radio Access Network

ROI Region Of Interest

RSI Road Side Infraestructure

12

RSU Road Site Unit

SaaS Software-as-a-Service

SDN Software Defined Networking

SLA Service Level Agreement

SME Small andMedium-sized Enterprise

S&D Sensors and Devices

TCP Transmission Control Protocol

UE User Equipment

URLLC Ultra-Reliable Low-Latency Communication

V2I Vehicle-to-Infrastructure

V2N Vehicle-to-Network

V2P Vehicle-to-Pedestrians

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VM Virtual Machine

VNF Virtual Network Function

VNFM Virtual Network Function Manager

VR Virtual Reality

WAN Wide Area Network

WLAN Wireless Local Area Network

WP Work Package

13

1. Introduction

Radio technology has enabled wireless communications over longer distances and
ever-higher capabilities for more than a century. Guillermo Marconi made the first
radio transmission at the beginning of the 20th century, capable of sending Morse code
through radiowavesup toahalf-mile, laying thegroundwork forwireless communication
[1]. Wirelessmobile technologieswereexploredand testedbefore the turnof thecentury,
but it was not until the early 1970s that cellular networks andmobile phones weremass-
produced. Since then, as technology has advanced, the options have expanded, as have
user requirements and expectations. We can now connect with anybody, wherever
globally, thanks tomore than seven billionmobile smartphones [2] [3].

With the introduction of 5G, the telecommunications sector is undergoing a revolu-
tion compared to previous generations of mobile communications. The networks will
not only provide connection but will also give end-users a differentiated quality of expe-
rience. 5G offers 1000 times more bandwidth, 50-100 times reduced latency, and 10-20
times faster download speeds [4].

Moreover, the number of devices connected to the internet, as well as the volume of
data createdby those devices and consumedby enterprises, is outpacing traditional data
center infrastructures. According toGartner, [5], 75 percent of enterprise-generated data
will becreatedoutsideof centralizeddatacentersby2025. The thoughtof transmitting so
muchdata in situationswhere timeor interruption is critical places anenormousdemand
on the global internet, which is already prone to congestion and disruption.

As a result, the attention has been switched away from the central data center toward
the logical edge of the infrastructure, relocating storage and computing resources from
the data center to the point where data is generated. The idea is simple: if it is not
possible to bring the data closer to the data center, move the data center closer to the
data, making possible to address the limitations of centralized systems [6].

Edge computing, an emerging distributed computing paradigm, is all a matter of
location. It may operate many devices across a much smaller and more efficient Local
AreaNetwork (LAN) by placing servers and storagewhere the data is generated, resulting
in nearly non-existent latency and congestion. Local storage captures and secures raw
data, while local servers can execute critical edge analytics and pre-process and reduce
thedata in real-time tomakedecisionsbefore transferring results or just forwardessential
data to the cloud or central data center [7].

5G networks complemented by edge computing are enabling low latency communi-
cation and related use cases [8]. They are two significantly linked technologies, and both
are designed to boost application performance and enable massive volumes of data to
be processed in real-time.

In the sameway, the telecommunication industry has been leveraging edge comput-

14

ing to solve critical network challenges, and the automotive industry is also looking to
edge computing as a framework for ensuring connectivity. The sector of vehicle manu-
facturing isonapathwherevehicles are continuouslybecomingmoreawareof their envi-
ronmentdue to theadditionof various typesof integrated sensors. Theyare continuously
collecting data and performing a variety of functions, i.e., monitoring road conditions and
engaging the brakes when a hazard is detected. These kinds of functions produce such
high data volumes that must be analyzed in real-time, and they must occur at the edge
rather than in a central site. Connecting autonomous vehicles to the edge can increase
safety, efficiency, reduce accidents, and cut traffic congestion [9].

The marriage of 5G and edge computing relieves the load on mobile networks as a
growing number of vehicles become linked and generates an increasing amount of data.
More connected vehicles and the data they exchange can be enabled by this distributed
approach to data processing at the mobile network’s edge, allowing more vehicles and
data to be processed on existing networks.

Edge computing is quickly being adopted by the automobile industry, and the intelli-
gent vehicles, in particular autonomousvehicles,will disruptnumerouseconomic sectors
and significantly affect people’s lives. Typical use cases thatwill benefit automotiveOrig-
inal Equipment Manufacturers (OEMs) from edge computing and 5G capabilities could
include, for example, collision risk warnings (in particular at high speeds and following
unexpected actions from other traffic participants), warnings of nearby vulnerable road
users such as pedestrians or cyclists, cooperative lane changes, real-time traffic alerts,
real-time telemetry, high-definition maps for real-time navigation, and new, innovative
passenger experiences. Edge computing solutions can contribute to the effective real-
ization of many of those use cases as they offer [10].

The growing amount of car data available opens up new possibilities for the auto-
motive sector. The use of automotive data is strategic for industry players to generate
money, lower costs, and improve safety and security. The automobile data and device
ecosystem has been targeted by high-tech Internet companies which use digital plat-
forms with data-driven business models.

Several research and surveys predict that car-related earnings will fall in the long
run, with data-driven services compensating for the decline after 2050 [11]. Over-
the-air upgrades and maintenance, sharing models, the penetration of car fleets with
autonomous vehicles, and smart mobility services contribute to the growth of this data-
based business industry. New paradigms in-car messaging and data gathering and the
establishment of new opportunities and markets on top of car data processing and
analysis are key for expanding the ecosystem of connected and autonomous mobility
services.

5G technology and edge computing are crucial for the vehicular industry as it is
undergoing a shift quicker than ever before with the rapid evolution of the technology.
The increasing number of sensors in connected vehicles and roads creates a large data
processing and storage issue. This requires new flexible platforms with substantial
processing, reliable storage, and real-time communication for pipelining car-captured
and generated data to traditional and new automotive industry players.

This work presents a platform designed as an open architecture that will allow access
to in-vehicle data and resources enabling the different actors in the sector to consume
it. This architecture aims to ease the development of different solutions when accessing
in-vehicle data aswell as the interoperability, portability, and theuseof open standards to
avoid vendor lock-in. For that, the capturedvehicular datawill beprocessedonconsumer

15

demand through pipelines deployed in the Multi-access Edge Computing (MEC) that
process the data samples, applying privacy, interoperability, computing, and security
functions. Service LevelAgreement (SLA) policies andgeographic filteringwill be applied.

16

2. Background

As stated in previous sections, 5G technology is expected to be a key enabler for re-
liable vehicle communication, managing their safety and automation. It will also allow
for real-time data processing, allowing applications and devices to react to data instan-
taneously. 5G features, like Cellular Vehicle-to-Everything (C-V2X) communications or
edge computing, will play a significant role in changing the automotive industry. An in-
crease in the number of sensors on board vehicles and an increase in the number of vehi-
cleswill require a networkwith ahigh capacity for efficient functioning. 5Gwill also speed
up the communication processing time for devices, thanks to extremely low latency.

This chapter will discuss the context in which this project is framed, as 5G technol-
ogy, Software Defined Networking (SDN) and Network Functions Virtualization (NFV)
paradigms; andmaking specialmention to Cooperative, Connected andAutomatedMo-
bility (CCAM) and Edge computing technologies, the principal key enablers of this Mas-
ter’s Thesis. This thesis has beendevelopedwithin the frameworkofHorizon2020project
5GMETA, funded by the European Union (EU) [12].

2.1 5G network and technology enablers

5G represents a fundamental redesigningof theaccessnetwork that takes advantage
of several technological advancesandsets itonapath toenablemuchgreater innovation.
Similar to how 3G defined the transition from voice to broadband, 5G’s promise is
primarily focused on the transition from a single access service (broadband connectivity)
to amore robust assortment of edge services and devices.

5G networks will allowmany additional use-cases based on these upgraded qualities,
which may be divided into three categories according to the International Telecommu-
nication Union (ITU): Massive Machine-Type Communication (mTMC), Enhanced Mobile
Broadband (eMBB), and Ultra-Reliable Low-Latency Communication (URLLC).

These characteristics will allow the start-up of products and services in which high
speed is required, such as multimedia or augmented reality applications, as well as the
definitive takeoff of the Internet of Things (IoT), due to the possibility of simultaneously
having a huge volume of connected devices. On the other hand, it will allow applications
that require responses in real time to become a reality, such as those of the connected
industry, remote assisted surgery or connected vehicles, and will enable the expansion
of services based on automated decisions, often using artificial intelligence. To carry out
the deployment of 5G networks, network architecture and network functions are going
to undergo major changes with the introduction of technologies such as virtualization,
edge computing and network slicing. In Figure 1 5G use cases and their mapping to the
5G services are represented:

17

Figure 1: 5G use cases and their mapping to the 5G services

Source: [13]

• EnhancedMobile Broadband: 5G is designed to deliver peak data rates up to 20
Gbps. The largebandwidthof 5Genablesahugeamountofdata transfer and traffic.
This is particularly relevant for complex visual solutions such as augmented and
virtual reality. For example, 4K videos can be loaded on a smartphone in seconds
instead of minutes, enabling many new real-time applications. It is vital to note
that all users on a cell tower share bandwidth. With theprevious generation, if a few
people were streaming a movie at the airport or watching replays of a touchdown
at a stadium, the download wouldmost likely be choppy withmuch buffering, and
the experience would be less than pleasant.

• Ultra-Reliable Low-Latency Communication: Autonomous automobiles and
mission-critical industrial gadgetswill be controlled in real-time using 5Gnetworks.
These use cases necessitate high availability and dependability at all times. End-
to-end latency — the time it takes for data to go across the network — must be
exceedingly low to happen safely. 5G networks will have a latency of less than 1ms.

• MassiveMachine-TypeCommunication: According to Ericsson’s recentmobil-
ity report [8], 52 percent of all cellular IoT connections are expected to be Massive
IoT connectionsby2025. Massive IoTprimarily consists ofwide-areause cases, con-
necting vast numbers of low-complexity, low-cost deviceswith longbattery life and
relatively low throughput speeds. From environmental sensors for agricultural ap-
plications installed in remoteareas thatmight senda fewbits of data every fewdays
or weeks to extremely high-precision, low-latency devices in nanotechnology, au-
tonomous cars, and critical industrial environments that rely on real-time commu-
nication for potentially lifesaving functions, these devices will have widely varying
network requirements.

5G networks introduce several new technologies across different layers, including
radio, core, operation support system (OSS), andbusiness support system (BSS). Onother
hand, new technologies that have emerged in recent years, such as Software Defined
Networking [14] and Network Functions Virtualization [15], are also essential enablers of
5G networks. SDN and NFV follow the principle of decoupling software functions from
general-purpose hardware, usually referred Commercial-Off-The-Shelf (COTS), where
they aremeant to be run.

18

SDN solutions focus on forwarding capabilities, i.e., layer 2 (L2) and layer 3 (L3) of the
Open Systems Interconnection (OSI) model, providing a centralized control to monitor
and operate distributed network routers and switches [16]. NFV technologies manage
higher layers (L4-7) of the OSI model, virtualizing Random Access Memory (RAM) and
Central Processing Unit (CPU) resources and simplifying the lifecycle management of
software instances of network functions, referred to as Virtual Network Function (VNF),
or a combination of them in a complete infrastructure, referred to Network Service (NS),
on top of them [15].

Consequently, SDN and NFV are deeply changing the telecommunication infrastruc-
tures and pushing the research on network deployment, monitoring, and management.
The combination of SDN and NFV capabilities will create virtualized networks embed-
ding heterogeneous software functions and running on top of programmable network
devices [17].

However, the paradigm shift introduced by SDN and NFV brings significant chal-
lenges. The most important one is their interoperability inside the network architecture.
While their complementarity is evident, their integration into a common network infras-
tructure still presents significant issues to overcome. It means that SDN and NFV solu-
tionswill need further steps tobe integratedandachievea fully programmablevirtualized
network.

2.1.1 NFV

The NFV concept introduces a new way to abstract and virtualize network functions,
allowing them to be created, operated, distributed, and controlled by software running
on standard servers.

NFVManagement andOrchestration (NFV-MANO), presented in 2, is the architecture
proposed by the European Telecommunications Standards Institute (ETSI) to cope with
the need to effectively deploy andmanage NSs, VNFs, and the underlying infrastructure.
The NFV-MANO includes three main components: the Virtual Infrastructure Manager
(VIM), the Virtual Network Function Manager (VNFM), and the Network Function Virtu-
alization Orchestrator (NFVO).

19

Figure 2: ETSI NFV architectural framework

Source: [18]

Each of these components provides Application Programming Interfaces (APIs) ac-
cording to ETSI specifications [19] in order to intercommunicate with each other. The
VIM controls and manages the NFV Infrastructure (NFVI) by virtualizing the psychical re-
sources, including computation, storage, andnetworkones. It creates andassigns the vir-
tual resourcesneededbyeachVNF. TheVNFMoversees the lifecycle ofVNFsdeployedon
top of the NFVI, including the configuration and deployment, the scaling operations, and
the termination. Finally, the NFVO is responsible for the NSs and VNFs by validating them
before the deployment. It is also in charge of the lifecycle management of NSs, mean-
ing the orchestration of the different VNFs included in the NS according to programmed
networking policies [20].

When considering VIM solutions, common public cloud platforms, such as Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud Platform, already provide APIs
to be used as VIMs. OpenVIM [21], hosted by ETSI, and OpenStack [22], supported by
Open InfrastructureFoundation [23], represent the reference solutionsand themostused
ones. Both of them are open source and have proved to be valid for managing private
data centers [24].

Regarding VNFM and NFVO, it is not easy to separate the solutions between those
that provide VNFM and those that provide NFVO, as in many cases, they are together
in the same suite. Focusing on open source software, the most relevant VNFM/NFVO
implementations areOpen SourceMANO (OSM) [25], hosted by ETSI, andOpenNetwork
Automation Platform (ONAP) [26], supported by Linux Foundation.

The introduction of NFV is essential to increase flexibility when provisioning network
resources. It enables fitting the Quality of Service (QoS) requirements of applications in
a network while reducing the costs for its Capital Expenditure (CAPEX) and Operational
Expenditure (OPEX) [27]. Operators and network service providers have been pushed
to embrace NFV in order to deliver network services faster and minimize the need to
manually set up specific hardware devices to establish service chains [28].

The integration of SDN and NFV enables the operation and management of VNF

20

instances on top of virtualized resources available at NFV-enabled data centers. The
instances are interconnected through the forwarding rules of the SDN resources, such
as switches and routers, established by an SDN controller.

2.1.2 SDN

Toadequately defineSDN technology, it is necessary to explain howa typical network
operates and what symptoms led to the development of the SDN paradigm. The
data plane and the control plane are the two main planes that constitute a network in
general. The first, also known as the user plane or forwarding plane, displays messages
generated by network users that must be transmitted according to rules. The network
must undertakemany actions in order to transfer thesemessages, including discovering
the overall network topology, determining the optimum path, and deciding where the
traffic should be sent, among other things. The control plane is represented by the
exchanged requests to complete these operations. SDN paradigmmakes management
and evolution challenging [14] [29]. The SDN architecture, principles, and building blocks
are depicted in 3.

Figure 3: SDN architecture and its fundamental abstractions

Source: [20]

Themain featureof theSDNparadigm is theseparationof thecontrol anddataplanes.
The SDN controller provides a Northbound API to enable communication between the
network administrator application and the control plane. The SouthboundAPI is respon-
sible for communicationbetween theSDNcontroller andnetworkdevices. Different from
the Northbound API, where each SDN controller has its API implementation, the South-
bound API is usually based on standard, and widely employed protocols, such as Open-
Flow [30] and Netconf [31] to bridge universal interoperability.

Concerning the control plane, lots of SDN controller implementations are available,
where the most employed for research purpose are Open Network Operating System
(ONOS) [32], OpenDaylight [33], RYU [34] and FloodLight [35]. A comparison of common
SDN controllers is presented in [36], where several features, such as programming lan-
guage, Graphical User Interface (GUI) and APIs, platform support, and internal architec-
ture (modularity, distributed/centralized), are considered.

21

When the capabilities and benefits of SDN are considered, it can be concluded that
its operations can be used to leverage NFV by acting as the network orchestrator. By
changing flow rules at forwarding nodes and provisioning network connectivity, SDN can
automate the service chaining. This complementarity between these two technologies
also applies in the opposite direction. The SDN controller can benefit from NFV in
reliability and elasticity because it is deployed and delivered as a service.

Network services and functions can be created as software and deployed at the
network’s edgeas virtualized implementations thanks to the seamless integrationofNFV
and SDN. As a result of this collaboration, service orchestration becomes more effective
by allowing the implementation of a network function at any location when required.

AnSDNcontroller can residewith thevirtualized infrastructuremanager, is considered
part of the NFV infrastructure, virtualized as a VNF, ormerged with the OSS/BSS system.
As a result, SDN controllers are installed in edge servers to provide on-demand edge
services by connecting VNFs and managing infrastructure resources dynamically (i.e.,
computing, storage, and networking). Both together provide higher levels of automation
necessary to implement edge computing, promoting the adoption into cellular and
non-cellular networks. Edge computing enables service providers to launch innovative
services that require cloud computing capabilities at the network’s edge [29].

Multi-Access Edge Computing (MEC) is an important element of the 5G architecture.
MEC represents an evolution in cloud-based computing that moves applications from
centralized data centers to the network edge and therefore closer to end users and their
devices. This implies a shortcut in content delivery between the user and the host, and
the long network path that previously separated them.

This technology is not exclusive to 5G technology, but it is certainly essential to
its effectiveness. Features of the MEC include low latency, high bandwidth, and real-
time access to Radio Access Network (RAN) network information that distinguish the
5G architecture from its predecessors. This convergence of RANs and core networks
will require operators to take advantage of new approaches to network testing and
validation.

2.2 Edge computing

Over the years the computing paradigms have evolved from distributed, parallel, and
grid tocloudcomputing. The inherentbenefitsof cloudcomputing includescalability, on-
demand resource allocation, decreased administrative effort, and easy application and
service provisioning. Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),
and Software-as-a-Service (SaaS) are the three main service models included in it. IaaS
provides virtualized resources, such as compute, storage, and networking. PaaS offers
software platforms for the creation, deployment, and administration of applications.
SaaS is a service that offers end users and other applications software applications and
composite services [37].

Cloud computing is widely used today, but it has some restrictions, though. The
connectivity between the cloud and the end devices is the main limitation. Since
communication is established over the Internet, it is unsuitable for many cloud-based
applications, such as those that depend on latency, for example, connected vehicles
or content delivery applications which generate a massive amount of data at a very
high speed. The rapid development of the Internet of Everything (IoE), and the growing

22

amount of IoT devices or sensors also do not help at all.

The conventional cloud-only model may shortfall due to centralized computation,
storage, and networking in a small number of data centers. Moreover, the relatively long
distancebetween theedgedevicesand the remotedatacenters is vulnerable to real-time
application. Therefore, there has been a need for looking ‘beyond the clouds’ towards the
edge of the network, and edge computing technologies have emerged [38]. Bringing the
computing capabilities closer features the following key values [10]:

• Speed and Latency: The more time it takes to process data, the less useful it
becomes. Time is of the essence in the case of the autonomous car because
most of the data it collects and requires becomes obsolete after a few seconds.
Withouta round-trip to thecloud, data latencydecreases, reducing the time it takes
automobiles and other connected equipment to complete control loops.

• OptimizedData: Edgecomputingwill bringdataprocessingcloser toautomobiles
and other connected devices, lowering the quantity of data thatmust be sent back
and forth between the cloud and the network’s edge, as the data is pre-processed
before, and not all the raw data is sent.

• Security: Edge computing aids in the security concerns for connected vehicles and
devices. End-to-end security (from a vehicle or device to the cloud) is enabled by
managing and deploying localized security policies, which provide real-time threat
identification at the network’s edge.

• Scalability: In most circumstances, data must initially be routed to a centralized
data center, even in cloud computing infrastructures. Expansion or even simple
modifications todedicateddata centers are costly. Furthermore, rather than relying
on the coordination of efforts from employees at numerous locations, IoT devices
can be installed along with their processing and data management capabilities at
the edge in single implantation.

• Regional Processing : Data compliance and deployment in a particular region
is possible by regional processing (in regulated countries). Using edge computing,
sensitive, personally identifiable information will be locally processed.

2.2.1 Edge computing landscape

Over the last years, the concept of edge computing has evolved from many initial
concepts. Under theumbrella of the edge computingparadigm, various edge computing
approaches have been proposed in the literature. Terms such as Cloudlet, Fog and MEC
are all umbrella concepts of Edge computing. However, each proposal’s implementation
specification differs in several ways.

One of the first concepts of edge computing was highlighted by Satyanaraynan et al.
in 2009 [39], where authors introduced a term called ”Cloudlets”. The authors discussed
the constraints of IoT devices which have limited computing and storage capabilities
and a latency-constrained central cloud in order to create new use cases that take into
account the data stream. By introducing ”Cloudlets,” a Virtual Machine (VM) based
platform that provides compute, storage, and networking services to the devices and
applications more nearby to the user, the authors suggested a need to move the cloud
closer to the user/device. The concept claims that it could handle a wide range of use

23

cases where devices needed to boost their computing power or offload large amounts
of data to the cloud in a low-latency and high-bandwidthmanner[40].

Cisco [41] introduced a similar concept in 2011 called Fog computing [26] and
elaborated further in 2012 by Bonomi et. al [42] by describing the characteristics of fog
computing and proposing a virtualized platform to deliver the fog computing capability.
Fog computing enables a bettermanagement of the Clouds bymaking possible services,
applications, and content storage close to mobile end users. Data processing takes
place locally rather than being transferred to cloud servers. Offloading, caching, location
awareness, and mobility data are supported by fog computing. Applications that are
time-sensitive can benefit greatly from it [37].

Both cloudlets and fog computing’s primary goal is to make it possible for resource-
constrained mobile or IoT devices to run and process intensive applications close to the
User Equipment (UE) or edge. Low latency and low data transport costs, which enable
quicker local task execution, are advantages of hosting these applications as cloudlets/-
fog nodes/edge clouds rather than at a central cloud. Fog computing positioned itself as
a component of the central cloud computing, and core network and smaller data centers
hosted close to the users hence named as fog. Cloudlets were referred to as small data
centers close to users without any network connection [43].

The termMulti-access EdgeComputing (MEC), formerlyMobile Edge Computing, was
created by the ETSI with the intention of leveraging software virtualization at the radio
edge and pushing computational power into RANs. According to ETSI, MEC can shorten
latency and give mobile users location awareness. Future mobile networks, such as 5G
and beyond, should meet requirements like bandwidth (higher), latency (lower), and
mobility. Therefore, both theRANand core network should be optimized to serve billions
of devices in order to satisfy such requirements. Additionally, Edge servers deal with the
core network congestion problem as most of the traffic is processed locally rather than
sent to the backbone networks [44].

To reduce latency and energy consumption, MEC offers access within RAN rather
than coreWideAreaNetwork (WAN). Cloudlets and Fog computing provides the services
to offload the subscriber’s tasks. According to the MEC requirements, the base station
for the cellular network and MEC servers should be positioned together. On the other
hand, Fog servers are generally provided by private environments like shopping centers,
coffee shops, etc. However, they can be used in the infrastructure of Internet Service
Providers (ISPs) as routers and gateways. Distributed deployment of Cloudlet is possible.
However, no exact location or vendor is designated for the deployment of Cloudlets.
Third generation/LongTermEvolution (3G/LTE) base station is used to accessMEC server.
However, a wireless Access Point (AP) with amuch smaller coverage area than 3G/LTE is
required to access Fog servers and Cloudlets. Wi-Fi is primarily emphasized as an access
technique in the Cloudlet study. Cloudlet, however, is not constrained and can also be
used with other wireless technologies.

The operators put a greater emphasis on MEC technology due to cellular networks’
technological advancement. In other words, MEC is more frequently used to refer to
future cellular networks than any other Edge Computing concept. Hence, for cellular
networks, MEC is the de-facto Edge computing technology. The issue is that Cloudlet
and Fog computing cannot function at the MEC level since they only have short-range
communication capabilities, like Bluetooth andWi-Fi.

The number of users and devices varies across each proposal. IoT use cases and
vehicle-to-vehicle (V2V) connectivity are addressed by fog computing. Fog computing is

24

therefore anticipated to have more users and devices than Cloudlet. Cloudlet, however,
excludes V2V communication from its coverage of IoT devices. The users ofMEC ismuch
smaller because MEC only focuses on subscribers and providers in cellular environment.
TheserverdensityofMECservers is also restricted to thebase stations. While theCloudlet
can be set up anywhere that is open to the public. Wireless Local Area Network (WLAN)
is the primary access method used by cloudlets. As a result, Cloudlet has a significantly
higher density than comparable edge computing solutions. Similar to Cloudlet, Fog
server(s) deployment is average and cannot be deployed everywhere [44].

2.2.1.1 MEC

The concept of edge computing is gaining more andmore interest in different fields,
from IoT to the distribution of multimedia content. For this reason, there are different
concepts of edge. This section will concentrate on what has been defined by ETSI in the
framework of the MEC group starting from late 2014 [45].

According to the ETSI, theMEC is defined as following: “Multi-access EdgeComputing
(MEC) offers application developers and content providers cloud-computing capabilities
and an IT service environment at the edge of the network. This environment is character-
ized by ultra-low latency and high bandwidth aswell as real-time access to radio network
information that can be leveraged by applications. [46]”

MEC is a new paradigm that provides computing, storage, and in general, networking
resourceswithin the edge of the network. While at the beginning, the groupwas focused
on cellular networks, today, it has broadened its interest to every network type, e.g.,Wi-Fi
or cabled. MEC servers are deployed on generic computing hardware, allowing delay-
sensitive, highly scalable, and context-aware applications to be executed close to the end
users. Anapplicationcanalsobeanetwork functionchainedwithothers to realizeamore
complex end-to-end service.

The twomain benefits ofMEC systems are the reduction of latency and the possibility
to improve localized user experience thanks to the proximity to the users, even though
theprocessing power and storageof aMEC system is typically limitedwith respect to that
of the centralized cloud. It is worthmentioning that MEC paradigm is not opposed to the
Cloud principle, in fact, the two concepts complement each other.

The position of a MEC server inside the network operator depends on the use case
requirements but also on the CAPEX and OPEX expenditure. In general, the MEC server
could be placed very close to the gNodeB (gNB) where the best performance in terms
of latency and scalability can be obtained, but with a high cost of deployment and
maintenance (MEC server is needed for each base station). Moving the MEC server
towards the operator’s coremeans a slight increase in the latency andmore devices to be
managed, and lowermaintenance costs. It is worthmentioning too that the MEC can be
seen as an opportunity to find new revenues for the network operators. MEC servers can
host third-party services with access to data and information not available in the cloud
and so with a potential big value to build novel applications.

TheMEC ETSI Industry Specification Group (ISG) has defined a reference architecture
with different APIs to be used among the different components of the MEC architecture.
TheseAPIs are related to the basic functionality of the application development platform
and to the management and orchestration layer. The general framework is shown in
Figure 4:

25

Figure 4: Multi-access Edge Computing architecture

Source: [47]

The MEC host level is where the MEC applications are hosted typically on top of a
virtualizedor containerized infrastructure that provides computing, storage, andnetwork
resources. This level also includes a management subsystem that is the interface with
the orchestration in the MEC system level. Themanagement level has the global view of
the system and some of its responsibilities are: coordination and control of instantiation,
resolving resource conflicts, scaling up and down resources, etc. Themanagement block
is similar to the same level in NFVs, and the two concepts are strictly related (e.g., MEC
apps canbe implementedasVNFs). TheMECorchestrator is also responsible for checking
that the application’s status complies with the target requirements (e.g., throughput,
latency, etc.). The orchestrator can decide to allocate additional resources or relocate
applications in order to fulfil their needs.

Moreover, ETSI ISGs have worked on the integration between MEC and NFV MANO
and they have already achieved a good degree of integration. Other milestones in MEC
standards are the use of container technology, in addition to the virtualization one, the
multi-tenancy and the network slicing at the edge.

MEC standardization activities are held in the corresponding ETSI ISG group as
explained previously. Several standards have been released, the main one is: MEC 001
[48] which provides a glossary of terms relating to the conceptual, architectural, and
functional elements within the scope of Multi-access Edge Computing. On the other
hand, MEC 002 [49] specifies the requirements for Multi-access Edge Computing with
the aim of promoting interoperability and deployments. The framework and reference
architecture for MEC is described in MEC 003 [47] where a MEC system that enables MEC
applications to run efficiently and seamlessly in amulti-access network is depicted.

Moving from the architecture to the APIs, it is worth mentioning MEC 009 [50],
which defines the design principles for RESTful MEC service APIs, provides guidelines
and templates for the documentation of these, and defines patterns of howMEC service

26

APIs use RESTful principles. The lifecycle of the applications together with rules and
requirements management are highlighted in MEC 010 [51]. Other relevant APIs are
presented inMEC013 [52] thatdescribe theLocationAPIs, useful toaccess theUEposition
as known by the network.

MEC groups are also working on the CCAM field: MEC 022 [53] is a Study on MEC
Support for V2X Use Cases, while MEC 030 [54] specifies the API to facilitate V2X
interoperability in amulti-vendor, multi-network, andmulti-access environment.

2.2.2 Uses-cases of edge computing

We live in a technologically advanced, intelligent world with smart technologies.
As a result, many people are unaware that edge computing is a part of their daily life.
Edge technology makes possible anything from remote office work to remote surgery,
smartphones to smart cities, self-driving cars and�voice-controlled products.

Edge computing is crucial for enterprises to function with the greatest operational
efficiency, higher safety, and better performance at an enterprise and industrial level. It
opens the door for better and more innovative ideas. Every industry vertical can benefit
from edge computing, including banking, healthcare, retail, andmining.

While there may be dozens of examples and use cases for edge computing, here we
focus on some of themore important ones [55]:

• Automotive: Latency is a significant barrier to the widespread adoption of con-
nected and, subsequently, self-driving automobiles. Autonomous automobiles will
need to engage in a significant volume of real-time data transmission in order to
operateefficiently and securely. Evenwith theadventof 5Gconnection, theecosys-
tem needs for such exchanges may not be met by the speed and dependability of
those exchanges. This problem is partially resolved by the newly developed C-V2X
communication protocol. However, edge computing has the potential to acceler-
ate itsuptakeandexpand the rangeofV2Xservices for connectedandautonomous
vehicles. Delays in information in this regard could be all the differencebetweenen-
dangering a life and saving one.

• Manufacturing: Industrial leaders are starting to encounter speed restrictions in
data transmissions as Industry 4.0 initiatives transition from thepilot stages tomass
deployments. In fact, more resilience, speed, and bandwidth are needed to support
more complex networks of Industrial IoT devices and, potentially, completely
automated factories. Oncemore, edge architecturemight accomplish that.

• AugmentedReality (AR) andVirtual Reality (VR):Due to the growing demand
for AR/VR experiences, edge computing�applications have also increased recently.
However, the present barrier to widespread adoption is the high cost of the�equip-
ment. Usersmust invest in pricey head-mounted displays, consoles, and computer
setups since VR programs demand a lot of processing and storage space for graph-
ics. Edge computing has the potential to significantly lower the cost of VR and ac-
celerate its adoption in other sectors like education, hospitality, or travel.

• Healthcare: The healthcare industry, particularly the manufacture of medical
monitoring equipment, has a lot of potential and opportunity thanks to edge
computing. It could change how inpatient and outpatient records are handled. In
conjunctionwith automation andmachine learning, Edge computing could quickly

27

identify patients exhibiting troubling symptoms and take action to help them in
real-timewhendevices likehealth toolsmeasuringheart rate, temperature, glucose
monitors, sensors, and other medical equipment record data.

• Smart cities: Massive volumes of data are necessary for smart cities to function.
Edge computing can fuel every component of a smart city, including autonomous
vehicles, intelligent street lights, intelligent manufacturing, intelligent power grids,
and public transportation that can bemonitored for increased efficiency.

• Video streaming: The methods of accessing content have significantly evolved
over time, from cable to streaming. Customers need a pleasant streaming experi-
ence even if High Definition (HD) video streaming uses a lot of bandwidth. Moving
the load close by and edge caching content can dramatically enhance content de-
livery.

A growing number of new edge computing use cases will probably emerge as the
edge computing business grows.

2.3 C-V2X and CCAM

Autonomous driving capabilities in vehicles have been a growing reality on our road-
ways in recent years. Huge research anddevelopment efforts are beingmade to incorpo-
rate connectivity features into these vehicles to enable information exchange between
them and their surroundings, also known as Vehicle-to-Everything (V2X) communica-
tions, in order to significantly improve road safety and to further this revolution.

Furthermore, the automotive industry is moving toward a future where vehicles
are increasingly wirelessly connected, automated, and cooperative for safer and more
effective driving. Today, on-board sensors, which are restricted to visual line-of-sight,
support the majority of automobile safety and efficiency functions. By increasing vision
and detection ranges even when visual line-of-sight is impossible, connectivity is a
useful complement to the on-board sensors. Additionally, connectivity is essential for
cooperative activities [56].

Cooperative Intelligent Transport Systems (C-ITS), will enable road users and traffic
controllers to share information and use it to coordinate their actions.�By assisting the
driver inmaking the best decisions and adjusting to the traffic situation, this cooperative
element—made possible by digital connectivity between vehicles, and between vehicles
and transportation infrastructure—is anticipated to significantly increase road safety,
traffic efficiency, and driving comfort.

In order to boost the safety of future automated vehicles and ensure their full
integration into the larger transportation systems, communication between vehicles,
infrastructure, and other road users is essential. To further support EU countries and the
European automotive industry in their transition to connected and automated driving,
the European Commission started the Cooperative, Connected and Automated Mobility
(CCAM) initiative [57], for cooperation with European standardisation bodies to ensure
interoperability of new technologies being developed.

The introductionofC-ITS (Themainstandard forCCAM[58]) aswell asnewcapabilities
for CCAM�are backed by V2X technologies, which are viewed as crucial technologies for

28

enabling vehicles to communicate with one another and everything around them. C-
V2X (Cellular Vehicle-to-Everything) is a new concept that refers to cellular technologies
adapted for connected vehicle communication. C –cellular- refers to 4G LTE and 5G
New Radio (NR) 3rd Generation Partnership Project (3GPP) technologies. C-V2X term
covers communication between vehicles, and other road users or entities by using
the cellular network (so-called, Vehicle-to-Network –V2N- communication) but also
direct communication (either Vehicle-to-Vehicle -V2V-, Vehicle-to-Infrastructure –V2I-
or Vehicle-to-Pedestrians -V2P).

C-V2X was firstly published by 3GPP in Release 14. The direct communication
procedures used by C-V2X are based on Device-to-Device (D2D) communications, firstly
introduced in Release 12. Release 15 deals with 5G, specifying the support for data
connectivity over NR and LTE access technologies. The enhanced V2X services foreseen
are advanced driving, extended sensors, remote driving, and platooning. Release 16
provides full LTE and NR communication support, including the 5G core, interworking
between both technologies, and an extensive list of enhancements.

29

3. Objectives and scope

The main goal of this work is to propose and implement a novel edge-computing
platform that fits to the requirements of the use cases of connected vehicles.

The platform will capture vehicular data and instantiate on consumer demand
pipelines that process the data samples according to Service Level Agreement (SLA)
policies and filter it from specific geographic areas. The deployed pipelines in the
Multi-access Edge Computing (MEC) platform will aid in delivering real-time through
data privacy, interoperability, computing, and security functions embodied in Virtual
Network Functions (VNFs) deployed in a Network Functions Virtualization (NFV) enabled
architecture.

With that aim, the specific objectives can be stated as follows:

1. Study the current context [Section 2] and state-of-the-art in edge computing
[Section 5.1].

2. Analyse the current existing edge computing frameworks for connected vehicles
[Section 5.2].

3. Analyze the requirements of the use cases in connected vehicles (input from the
5GMETA European project) and understand their implications [Section 6]. Analyze
the different solution alternatives for fitting the requirements [Section 7].

4. Design, define and implement a novel proposal for an edge-computing platform
that fits the aforementioned analysis and requirements [Section 9].

5. Validate the proposed framework [Section 10].

Thanks to the proposed framework, a flexible and modular 5G edge approach will
be provided to catalyze innovative data-based services for connected and autonomous
mobility applications, delivering data pipelines and sending relevant data to data-based
services for the benefit of new stakeholders.

30

4. Outcomes

The following sectionoutlines themain technological, economicand social outcomes
of the work carried out.

4.1 Technical outcomes

Thisworkproposes anarchitectural approachdesignedand implemented to facilitate
thedeliveryof a vast volumeofdata coming fromthevehicles and their surroundingsand
tofilter this data fromspecificgeographical areas. Furthermore, somenovel featurespro-
vided by the proposed architecture, when compared tomarket solutions, are the separa-
tion of data producers and consumers throughdedicated IoT topicswhere pipelines read
raw samples andwrite processed data, the allocation of computing resources adapted to
the data consumption demand and the hosting of services which require low latency in
MEC infrastructures applying the container-based life cyclemanagement for pipelines to
third-party services. The presented architecture also embeds many components to en-
sure security and privacy by design and by default, offering an efficient and secure plat-
form to process the data.

The design of this architecture proposes a technological advance in the processing of
automotive data while it will bring better use of the resources of MEC systems, as well as
an innovative way to filter the different data that the MEC processes.

4.2 Economic outcomes

Taking advantage of the large amount of data generated by the different in-vehicle
sensors, the use of real-time data processing is expected to have an overall positive
impact on our economy. The availability of automotive data can support the continued
growth of the Small andMedium-sized Enterprise (SME)market and the creation of new
employment opportunities, thanks to theopportunities for newbusiness concepts based
on new technologies as the ones proposed by this work.

The stakeholders can utilize collected data in the automotive ecosystem tobring new
data-driven services, innovative products, and new business models into the market.
These data can be vital in the advancement of not just the automotive industry but also
for new players that could enter themarket.

31

4.3 Social outcomes

Even though theprojectwill focus on technological outcomes, exploring a novel edge
computing platform for connected cars could also bring some social outcomes. Thanks
to the data collected and delivered by the platform, new indirect benefits are expected to
be generated from increased road safety and traffic efficiency, greener traffic, as well as
a reduction in time spent on the road and a reduction in accident rates.

32

5. Edge Computing: State-of-the-
art

To optimize the design of a framework at the network edge, an initial analysis of
related concepts/technologies and state-of-the-art literaturemust be performed.

5.1 MEC technologies for CCAM services

The following section presents a study of different research works about MEC imple-
mentations in the vehicular context. The application of MEC technology to boost the re-
sponse of CCAM services or to empower the processing of automotive data is a novel
research field with someworks studying edge computing in vehicular communications.

A MEC architecture and some APIs for C-V2X systems are proposed in [59], checking
the feasibility of hosting CCAM use cases in the MEC. The work presented in [60] goes a
step further in describing a Docker-based ETSI-compliant MEC platform, taking benefit
of the microservice paradigm. Thanks to the modularity of the microservices, a service
migration procedure is proposed.

In regard to mobility inherent to users of cellular networks, the handovers between
different MEC servers have gained a lot of attention. The problem ofmaintaining service
continuity and synchronization of relevant data among multiple MEC servers to support
vehicular applications is studied in [61] and an architecture is proposed for this end.

Two different frameworks for integrating big data analytics with vehicular edge
computing are proposed in [62] and [63]. These frameworks select the offloading
infrastructures from the available ones satisfying heterogeneous requirements. Another
approach involves a hierarchical model for resource management at MECs targeting
latency and energy efficiency requirements [64].

Two topics are paramount when studying the fields related to vehicular data sharing
using edge computing platforms and cellular networks: privacy and efficiency. Regard-
ing privacy concerns, secure peer-to-peer data sharing systems are necessary to prevent
second-hand data sharing without authorization, as the one based on blockchain pro-
posed in [65]. Regarding processing and communications efficiency, a hierarchical edge
framework performing computation offloading and content caching is proposed [66] to
minimize network communication overheads for recalled tasks.

All the presented works ignore critical aspects of vehicle data platforms to connect
data sensors with future CCAM applications. They focus on processing all the produced
data, lacking a mechanism to trigger data processing offloading in the MEC when the

33

consumption demand is there. All the data processed and not consumed mean a big
overhead and an inefficient approach. Additionally, they put SLA levels aside ignoring
business models when allocating computing resources.

5.2 Open-source Edge computing frameworks

This section analyzes some existing open source initiatives that currently revolve
around developing solutions for edge computing. The main interest when presenting
these solutions is to provide insights about existing developments and baseline solutions
that can potentially be used to enrichmore complex, business-driven use cases.

KubeEdge [67] is an open source Kubernetes distribution originating from Huawei,
currently adopted by the Cloud Native Computing Foundation (CNCF) as an incubating
project. It is specifically designed for use in an edge environment, with a control plane
in the cloud and worker nodes at the edge. It provides essential infrastructure support
for network app deployment and metadata synchronization between cloud and edge.
It allows a light installation on devices with limited computing and storage resources,
although it requires the existence of a previous K8s cluster. This implies that it must
be installed on top of a base installation of K8s. It is an appropriate distribution for
IoT environments, which supports device management and communication with them
throughMessage Queuing Telemetry Transport protocol (MQTT).

Akraino [68] is an opensource initiative of Edge Computing platforms from Linux
Foundation (LF) Edge. Is a set of open infrastructures and application blueprints for the
Edge, spanning various use cases, including 5G, AI, Edge IaaS/PaaS, IoT and Automotive,
for both provider and enterprise edge domains. These Blueprints, created by the Akraino
community, focus exclusively on edge in different forms. What unites all of these
blueprints is that they are community tested and are ready for adoption or used as a
starting point for customizing a new edge blueprint. Its mission is to create a unified
community for open source edge that fosters cross-industry collaboration across IoT,
Telecom, Enterprise, and Cloud ecosystems. Enable organizations to accelerate adoption
and the pace of innovation for edge computing and deliver value to end-users by
providing a neutral platform to capture and distribute requirements across the umbrella.

EdgeX Foundry [69] is an open-source, vendor-neutral, Edge IoTmiddleware platform
under the Edge umbrella. It collects data from different sensors at the Edge and acts
as a dual transformation engine sending and receiving data to and from enterprise,
cloud, andon-premiseapplications. EdgeXenablesautonomousoperationsandArtificial
Intelligence (AI) at the edge. EdgeX translates and transforms the information from
sensors and devices and delivers it to applications over network-based protocols in
formats and structures that meet customers’ needs. It also takes data from applications
and delivers it to the edge nodes/devices for updates, control, and actuation.

Kube5G [70] is an open source platform that fosters research and development of
cellular mobile networks, 5G and Beyond, in a cloud native environment. Services can
be deployed on baremetal, virtual machines, and/or any private/public cloud using the
Kube5G platform. Kubernetes is used as container orchestration for both applications
and infrastructure. Kube5G, which was inherited from K8S, can support both CNF
and VNF applications by using docker and kubevirt as runtime environments. Kube5G
supports a variety of value-added extensions, including management and orchestration
like OSM, monitoring and network intelligence like Kubeflow, and Kube5G-Operator for
zero-touch configuration and dynamic service updating/upgrading. It also presents a

34

revolutionarymethod for creating and packaging a telco network function that complies
with cloud native technology in the form of nested, clearly defined layers.

StarlingX [71] is a complete edge cloud infrastructure software stack used by de-
manding applications in industrial IoT, telecom, video delivery, and other ultra-low la-
tency use cases. StarlingX provides a container-based infrastructure for edge implemen-
tations in scalable solutions with the deterministic low latency required by edge applica-
tions and tools that make distributed edgemanageable.

Baetyl [72] is an open edge computing framework of LF Edge that seamlessly extends
cloud computing, data, and services to edge devices. It can provide temporary offline,
low-latency computing services such as device connection, message routing, remote
synchronization, function computing, video capture, AI inference, status reporting, and
configuration optimization, among other things. It provides a edge cloud integration
platform, which adopts cloudmanagement and edge operation solutions, and is divided
into an Edge Computing Framework and a Cloud Management Suite. It can manage
all cloud resources, such as nodes, applications, configuration, and so on, and can
automatically deploy applications to edge nodes to meet a variety of edge computing
scenarios.

35

6. Analysis of requirements

Since this Master Thesis is part of a European project called 5GMETA, this work
received as an input the requirements created by the European consortium, with key
stakeholders in the connected vehicles sector, and categorizes them in a requirements
table that the proposal should fulfill.

The whole platformmust address all the requirements stated in the presented table.
During the course of this thesis different parts of the platform have been designed and
developed. The requirementsmarked in green are the ones that the developedmodules
have to comply with and address.

The accomplished requirements will be validated in Section 10mapping them to the
developedmodules and explaining why the requirement is validated.

Table 1: Requirements to address

Tier
Requirement
Category

Requirement Req ID Description

MEC

General /
Platform

Use of VNF REQ01

According to the dataflows subscribed by CCAM applications,
it is needed to deploy VNFs in the MEC infrastructure to run
microservices that run pipelines to connect data an CCAM service.
This means that dataflows not being demanded by CCAM
applications are directly dropped at the edge and only the
dataflowwith CCAM subscribers are processed.

Datatype Pipeline
execution

REQ02
Be able to deploy a datatype specialized VNF at the MEC
infrastructure, being downloaded from a Dockerhub
repository, managing the VNFs lifecycle.

Pipeline allocation REQ03
Accept containers with Third Party signatures and certify
the limited interaction with MEC local services.

Data Processing
Scalability

REQ04
Provide hierarchical messaging structures to connect
multiple live dataflows to different CCAM services.

Scalability at
MEC level

REQ05
Produce dataflows tag with origin and
delivered to CCAM applications.

Uplink and
Downlink
dataflows

REQ06
Make possible to send data from sensors to CCAM services .
and to push notifications from CCAM services to sensors and
devices of an area subscribed to events bus.

Security /
Privacy /
Data
protection

Intra services
flows confidentiality

REQ07
The access to internal dataflows is limited to local systems.
Dataflows are regenerated to avoid access to data origins.

Data ,
Management

Specialised
Processing
Capacity

REQ08

MEC infrastructure will provide hardware acceleration resources
when available for high demanding VNFs. However, when
possible raw processing will be avoided, and sampling rates
will come first to avoid oversampling for anonymization
or sharing, applying first the SLA.

36

Tier
Requirement
Category

Requirement Req ID Description

Cloud

General /
Platform

Use of VNF REQ09
Approach required to create the requested
data pipelines in a dynamic way and in general
to have a flexible and scalable platform

Datatype Pipeline
execution

REQ10
To scalably create the data pipelines
based on developer’ requirements.

Pipeline allocation REQ11 To on board and instantiate the data pipeline.

Resources
allocation onMEC

REQ12
The platform should allocate resources on
the edge servers fulfilling the SLA requested
by the developers.

5G network
resources
monitoring

REQ13
To use the SDN APIs tomonitor that the
allocated resources of the 5G network can
satisfy the SLAs.

5G network
resources
allocation

REQ14
To use the SDN APIs to allocate resources
of the 5G network for satisfying the SLAs.

Data
Interoperability

REQ15
Tomake available to developers data from
different sources in a consistent way.

Data Processing
Scalability

REQ16
To automatically scale the processing of
large quantities of data.

Scalability at
MEC level

REQ17
To exploit the geographic diversity of MEC
server to implement a scalable approach for
the collection of data from sensors and devices.

Uplink and
Downlink
dataflows

REQ18
The data flows should bemanaged both in
uplink (to collect data) and in downlink
(e.g. to give feedback to vehicles).

Data
anonymization

REQ19
The data coming from different sources and
devicesmust be anonymized.

Security /
Privacy /
Data
protection

Data access REQ20 Tomanage the accounting policies.
User registration REQ21 To authenticate users accessing the loud Platform.
Intra services
flows confidentiality

REQ22
All the flows among different services in the
platform should be protected.

Data access
authorization

REQ23 To authorize the access to data flows.

Third party
APIs

API registration REQ24 Tomake data available through Third Party APIs.

API format REQ25
To implement a widespread API formatting
approach such as the OpenAPI.

API protection REQ26
To protect access to the API exploiting
the AAAmodule.

API discovery REQ27

Developer’s APIs for Sensors and Devices have
to connect to data broker according to a protocol to
provide dataflowmetadata including licensing, sample-rate,
resolution and type, push dataflows according to the returned
configuration and subscribe to published event topics.

API data broker REQ28

Developer’s APIs for Sensors and Devices have to connect
to data broker according to a protocol to provide dataflow
metadata including licensing, sample-rate, resolution and type,
push dataflows according to the returned configuration and
subscribe to published event topics.

API data gateway REQ29

Developer’s APIs for CCAM applications have to connect to a
single endpoint where all the dataflows are signaled and provided
with IoT and standard communication protocols and where
notifications to specific sensors or areas can be pushed.

5G features
requirements

NFV and SDN
approach

REQ30 To enable a dynamic configuration of the platform components.

Network slicing REQ31
To provide adequate resources to fulfil heterogeneous
SLAs for each CAM service.

MEC based
approach

REQ32
To distribute the load of some of its functionalities from the
cloud platform to the edge servers to ensure scalability.

MEC based
approach

REQ33
To guarantee low latency communications to
time sensitive CAM services.

37

7. Analysis of alternatives

This chapter presents an analysis of different alternatives that have been considered
to design and implement the proposed solution, based on the requirements analyzed
before. For eachalternative solution, several variantswill bepresentedand their strengths
and weaknesses will be analyzed. Later, an analysis of the main characteristics of the
solution will bemade.

To make the best choice of the described alternatives, a grade from 0 to 10 will be
assigned in the evaluation criteria.

Concerning the technology stack at the network edge to support an edge platform
for vehicular data processing, different options can be used for resource virtualization,
orchestration, monitoring or messaging.

7.1 NFVOrchestration Systems

Prior to the introduction of NFV, it was common practice to deploy network applica-
tions and services using specialized proprietary hardware and software that could only be
used in particular installations, being an unyielding system. NFV overcomes challenges
like reducing capital and operating expenses and satisfying the growing demand formo-
bile services. Due to NFV, software and services may be deployed in any environment,
enabling them to be virtualized. NFV Management and Orchestration is a crucial infras-
tructure for unlocking the full potential of the virtualization of network functions. The
most relevant implementationsareOpenSourceMANO(OSM), hostedbyETSI, andOpen
Network Automation Platform (ONAP), supported by Linux Foundation.

BothOSMandONAPbring interestingalternatives, butOSM ismorewidely employed
in research projects funded under the umbrella of the Horizon 2020 5G Infrastructure
Public Private Partnership (5G PPP) programme as analyzed in [73]. In order to decide
which better fits the project requirements, the key features to be considered are:

• Technological, comprising the support of baremetal infrastructures, multiple VIMs,
slicing.

• Monitoring, support of performance with third party frameworks.

• Learning curve, documentation and community.

Considering those features, OSM supports Bare Metal or VM hosts. ONAP’s base
architecture also supports installation in bare metal infrastructure. Concerning network
slicing, the basic idea is to create dedicated virtual networks using a common physical

38

infrastructure for a specific service by using independent logical network functions. This
component aims to become complementary to the already used SDN/NFV technologies
to improve the existing network infrastructure resources usage andmanagement.

OSM has an integrated slicemanager that follows the guidelines provided by ETSI for
slicing support since release 5. In the case of ONAP, fromGuilin Release version onwards,
orchestrates network slices in all three domains – RAN, Transport, and Core, expanding
upon the end-to-end network slicing introduced with Frankfurt Release.

Regarding the compatibility with multiple VIMs, OSM supports deployments in
Openstack-based cloud environments, VMware, Amazon Web Services (AWS), Whites-
tack or Wind River for example. ONAP MultiCloud aims to mediate most interactions
between ONAP and any underlying VIM or Cloud to enable ONAP to deploy and run also
onmultiple infrastructure environments such as OpenStack, VMware, Azure, AWS, etc.

Concerning monitoring support, OSM has a monitoring module designed to support
a flexible plugin method to integrate with the monitoring tool of choice. The Data Col-
lection, Analytics and Events (DCAE)module of ONAP is responsible for gathering perfor-
mance, usage and configuration data about theVNFs and their underlying infrastructure.
It provides APIs for developers of data analytics applications.

OSM, in general, has an easier learning curve thanONAP. The time and effort required
to set up the platform or to attach a VIM are less complicated in the first solution. OSM
also provides a very good wiki and has active community support. ONAP is not as well
documented and sometimes is difficult to get clear information, but it has huge support
from the community andmain technology companies.

Table 2: Comparison between OpenStack, OpenShift and Kubernetes

Criteria OSM ONAP
Resource footprint (10%) Small resource footprint (8) High resource footprint (5)
Baremetal server
installation support (5%)

Yes (10) Yes (10)

Kubernetes
installation support (30%)

Supported (10)
Yes, ONAP-B can havemultiple instances with
different name-spaces (10)

Performancemonitoring (10%)
Open for 3rd party monitoring
services (6)

DCAE (Data Collection and Analytics
Engine) module of ONAP is responsible
for this withmuch richer APIs for developers
of Data Analytics Applications (7)

Multi-VIM support (20%)
OpenStack, VMware, AWS,
Microsoft Azure (9)

OpenStack, VMware, AWS,
Microsoft Azure (9)

CLI support (5%) Powerful CLI (8) Not user friendly (5)
Life-cycle management
support (5%)

Subscribe life-cycle
management event (8)

Not available (0)

Documentation and
community (5%)

Very good wiki and active
community support (8)

Not well documented, pretty difficult to
get clear information (6)

TOTAL 7.5 7.05

Taking these characteristics into account, there is no one solution that prevails over
the other. Nevertheless, as OSM is more widely employed in research projects, we will
consider it as the orchestration solution for the proposed platform.

7.2 Virtualization technology

With respect to the virtualization technology, en edge platform can be designed
in different ways depending on the operations to be made. If infrastructure layer

39

services must be provided, OpenStack is a reference technology. If the platform handles
containers, other technologies such as Kubernetes or OpenShift are more appropriate.
Anyway, it is important to consider the following criteria when selecting technologies:

• Flexibility on the heterogeneous OS to virtualize, support of virtualized hardware
acceleration, configuration formats, readiness for dynamic changes or access from
outside infrastructure.

• TRL including open-source project versus industrial/commercial product.

• Learning curve, documentation and community.

Kubernetes and OpenShift are both open-source software platforms that facilitate
application development via container orchestration in a robust and scalable architec-
ture. They make managing and deploying containerized apps easy. Due to the similari-
ties, the decision to choose one of the two platforms can be difficult. In the following an
overview of both platforms are provided.

Kubernetes is an open-source Container-as-a-Service (CaaS) platform for managing
containerized workloads and services. It handles scheduling onto nodes in a compute
cluster and activelymanagesworkloads. Kubernetes is flexiblewhen it comes to running
on different operating systems, and it can be run in multiple environments, including
on-premises, public, or hybrid cloud infrastructures. Kubernetes lacks a networking
solution but lets users employ third-party network plug-ins and provides monitoring
capabilities to help check the health of servers and containers. It neither does have
built-in authentication or authorization capabilities. Kubernetes enables you to set up
your own Docker registry, but no integrated image registry exists. Kubernetes has a
complicatedweb console, whichmakes it difficult for novices, but it has a large andactive
online user community andnew features get added frequently. Theuser community also
provides technical support that encourages collaborations.

OpenShift is a Platform-as-a-Service (PaaS) that operates independently of cloud
resources through containerization. From OpenShift version 3 onwards, Docker is the
prime container technology, and Kubernetes is the container orchestration technology.
OpenShift can be installed on Red Hat Enterprise Linux (RHEL) and CentOS. Version
4 currently supports AWS and vSphere. OpenShift comes with Prometheus, which is
a DevOps database and application monitoring tool. It allows users to visualize the
applications in real time, using a Grafana dashboard. Regarding the security policies,
OpenShift restricts you from running simple container images andmany official images,
requiring specific privileges to maintain a minimum-security level. OpenShift has a
very user-friendly web console that allows users to perform most tasks directly on it.
OpenShift has no vendor lock-in and provides a vendor-agnostic open-source platform,
allowing users to migrate their own container processes to other operating systems
as required without taking any extra steps. OpenShift has a much smaller support
community that is limited primarily to Red Hat developers.

While Kubernetes helps automate application deployment, scaling, and operations,
OpenShift is the container platform that works with Kubernetes to help applications run
more efficiently.

On the other hand, OpenStack is an Infrastructure-as-a-Service (IaaS) platform
that controls large pools of compute, storage, and networking resources throughout a
datacentre. It allows to build and manage cloud computing platforms for public and

40

private clouds. However, OpenStack offers minimal support for containers and instead
focuses on bootable virtual machines, meeting the hyper scale-demands of massive
network providers. It can even provide Bare Metal as a Service for high-performance
applications without the usual management complexity.

The CaaS and IaaS archetypes offered solutions to relatively similar problems but do
so on different layers of the stack. Deploying a container platform such as Kubernetes
and OpenShift with a cloud infrastructure platform such as OpenStack can offer a very
good solution for scalability and automation, allowing faster delivery of infrastructure.

Table 3: Comparison between OpenStack, OpenShift and Kubernetes

Criteria OpenStack OpenShift Kubernetes

Container support (25%)
Minimal, with some plugins,
VM focused (5)

Yes (10) Yes (10)

Monitoring (25%) Basic monitoring (6) Yes (9)
Offers an API for that,
third-party tool needed (8)

Storage orchestration (10%) Yes (10) Yes (10) Yes, through a plugin (10)
Scaling (10%) Yes, complicate (6) Yes (7) Yes, very powerful (10)
Self-healing (10%) Partially (6) Partially (6) Yes (10)
Load-balancing (10%) Yes (10) Yes (10) Yes (10)
Learning curvem (5%) Difficult (7) Medium (8) Difficult (7)
Documentation and
community (5%)

Notmany and difficult
documentation (5)

Smaller support
community (5)

Large and active support (10)

TOTAL 6.55 8.7 9.35

Finally, Kubernetes has been chosen because it gives high availability, low latency at
the edge, and the ability to iterate and quickly deploy different services. It is very versatile
and fast scalable. Because of its automatedmanagement features, Kubernetes can react
instantly to changes at the edge, being a very fittable solution for a MEC platform.

7.3 Monitoring system

In today’s world, with many services fueling hundreds of components, the failure of
just one piece can cause a crash for the whole system. The solution is to constantly
monitor key characteristics. Thus, the infrastructures need to be monitored, given the
importance of preventing errors and system failures. In addition, obtaining metrics and
logs of the deployed applications is key tomeasuring their performance, status, or speed
in real-time and automatically reacting to a given event.

Multiplemonitoring andvisualization tool options are available, suchasPrometheus/-
Grafana and Elasticsearch, Logstash and Kibana (ELK) stacks. Monitoring the platform
and its workloads allows for scheduling the server’s resources and reserving a portion of
the Central Processing Unit (CPU) andmemory resources for use in different services.

Prometheus is an open-source metrics monitoring tool. Metrics are collected and
stored as time-series data (metrics that change over time). It is appropriate to monitor
metrics from both static container environments and traditional IT infrastructures. Met-
rics collection, storage, and querying are itsmain objectives. For its part, Grafana is a pop-
ular open-source visualization and analytics tool that focuses on providing rich visualiza-
tions of time-series metrics. These two tools used together, become very powerful in
providing amazing insight into infrastructure and services performance.

On the other hand, ELK stack is a combination of three open-source tools (Elastic-

41

search, Logstash and Kibana), that form a log management platform that specializes in
searching, analyzing, and visualizing logs generated fromdifferent systems. They include
a distributed storage system, a search and processing engine, and a display system.

Table 4: Comparison between ELK stack and Prometheus / Grafana

Criteria ELK Stack Prometheus / Grafana
Resource footprint (10%) High resource footprint (5) Small resource footprint (10)
Scope (15%) Log analysis (6) Metric monitoring (9)
Database (10%) No SQL (8) TimeSeries DBMS (8)

Queries (15%)
Domain-specific query language
based on JSON, also SQL-like queries (8)

PromQL (8)

Retention (10%) Long-term data retention (8) Difficult for longer periods (6)
Data stored (15%) Numeric, string, boolean, binary data (9) Numeric examples of named time series (5)
Access method (10%) RESTful HTTP/JSON API access methods (10) RESTful HTTP/JSON API access methods (10)
Integration with systems (10%) High (10) High (10)
Learning curve (5%) Difficult (5) Medium (7)
TOTAL 7.8 8.05

Themainobjectiveof themonitoring solution is togathermetrics so that theplatform
can react to a given event. Prometheus/Grafana is a more lightweight solution for the
MEC and it has very good compatibility with Kubernetes system, becoming a very good
option for the solution proposed.

7.4 Messaging protocol and data broker

Message Queuing Telemetry Transport (MQTT) is a standard messaging protocol for
IoT. It is designed as an extremely lightweight publish/subscribe messaging transport
protocol based on Transmission Control Protocol (TCP), ideal for connecting remote
devices with a small code footprint and minimal network bandwidth while providing
multiple QoS options. Nowadays, MQTT is used in a wide variety of industries, such as
automotive, manufacturing, telecommunications, oil and gas, etc.

AdvancedMessageQueuingProtocol (AMQP) is amessage-orientedmiddlewarepro-
tocol commonly used for IoT, as an alternative to publish/subscribe protocols. It relies on
TCP formessage delivery and ensures interoperability between vendor implementations
by enforcing a commonmessage transfer/interpretation approach. One of itsmain char-
acteristics is its ability to be extended to support application-specific properties.

Table 5 shows themain differences between the two protocols.

Table 5: Comparison betweenMQTT and AMQP

Criteria MQTT AMQP
Messaging scenarios (10%) Basic messaging scenarios only (5) Rich set of messaging scenarios (8)
Framing (10%) Stream-oriented approach (7) Buffer-oriented approach (7)
Connection security (10%) Limited security support (5) Comprehensive security support (8)

User security (10%)
User authentication exists
but is weak (6)

Comprehensive security support (8)

Metadata (20%) Nometadata support (0)
Metadata enables deeper functionalities
for routing, messaging, etc (8)

Reliability (20%)
Reliable with three levels
of reliable message delivery (10)

Reliable, with two levels of reliable
message delivery (8)

Discovery (10%) Hierarchical topic space only (6)
Comprehensivemechanism of
queues/namespaces (8)

Scalability (10%) Very scalable (10) Scalable (9)
TOTAL 5.9 8

42

The main characteristics that tip the balance in favor of a messaging protocol for a
MEC platform are to have Universal support from existing Sensors and IoT frameworks,
to be a lightweight protocol, and to be scalable for hierarchical data aggregation. It is
important to have the possibility to merge and filter the data. AMQP is the protocol that
best fits this case.

Besides that, a message broker solution must be used for handling the messaging
protocol at the MEC. Apache Kafka, ActiveMQ and RabbitMQ are three broadly used
messaging brokers that allow the exchange of messages between applications to be
decoupled, making use of some pattern (Pub-Sub or Queues).

Apache Kafka is capable of processing messages and storing themwith a publisher-
subscriber model with high scalability and performance. It distributes the topics among
the nodes through partitions to store the received events or messages. It combines the
two messaging patterns described above, message queuing with publisher-subscriber,
taking advantage of both. It is also responsible for guaranteeing the order of the
messages for each consumer.

RabbitMQ is considered a more traditional messaging broker. It is based on the
publisher-subscriber pattern, although it can handle communication synchronously
or asynchronously, depending on the configuration. It also guarantees the delivery
and order of messages between producers and consumers. ActiveMQ for its part
is also a message broker supporting point-to-point and publish-subscribe messaging
semantics. Standard messaging constructs like queues and topics are available for
variousmessaging use cases.

Themain differences can be found in Table 6

Table 6: Comparison between ActiveMQ, RabbitMQ and Kafka

Criteria ActiveMQ RabbitMQ Kafka
Clients (20%) Java, C, C++, Python, etc (9) Java, C, C++, Python, etc (9) Java, C, C++, Python, etc (9)

Protocols (20%)
AMQP, MQTT, REST,
WebSockets (9)

AMQP, MQTT, STOMP,
WebSockets (8)

Binary over TCP (9)

Synchronous /
Asynchronous (20%)

Both (10) Both (10) Asynchronous (8)

Persistence (20%) Yes (8)
Persist messages until they are
dropped on the
acknowledgement of receipt (7)

Persists messages with an option
to delete after a retention period (10)

Failover / HA (20%) Yes (10) Yes (10) Yes (10)
TOTAL 9.2 8.8 9.2

Although the three technologies provide equal security, scalability, and transaction
capabilities, things get different when we narrow down specific use cases. ActiveMQ
and RabbitMQ have been established as enterprise message brokers, providing reliable
delivery guarantees across business applications. They are configured to acknowledge
each message by default and have built-in recovery mechanisms. Also, they provide
interfaces to popularmessagingprotocols, allowingmore integrationpointswith existing
enterprise systems.

Kafka is an event streaming platform designed tomeet different expectations. Kafka
has the edge over former technologies in performance, message retention, and total
ordering. It allows low-latency and high throughput write performances at scale. Its
partition-based design enables a higher read capacity and a strict ordering of messages.
Therefore, Kafka is ideal for building applications that demand more scalability, perfor-
mance, message ordering, and longer retention periods.

43

Considering this conclusion, ActiveMQ has been chosen as the message broker for
the MEC platform. Nevertheless, Kafka is a very interesting solution for a cloud platform
managing dataflows coming from different MECs.

44

8. Analysis of risks

In this chapter, the possible risks that can influence both the planning and the
execution of the project itself will be reviewed. The identification of these risks provides
security for their management.

The chapterwill bedivided into two sections. Thefirstwill bebasedonadescriptionof
each risk thatmay influence theproject, and also contingencymeasures are definedwith
the purpose ofminimizing the impact of these risks. Subsequently, each of the identified
risks will be evaluated by employing a risk matrix in which the probability and impact of
the samewill be related.

8.1 Description of the risks and contingencymeasures

Four possible risks have been identified that may affect the project’s development.
Therefore, this risk analysis has been carried out in order to quantify the effect that these
risks would have if they were to occur. The identified risks are:

8.1.1 R1: Deviation from schedule

This risk is a management risk and occurs when the deadlines foreseen in the initial
planning are exceeded. It is a risk with an unlikely probability of happening since this
project includes a learning period of complex softwares, each onewith its characteristics
and properties. This learning period is a long and complex period. Therefore, slowing
down in this process may mean misaligning all the planned planning. In order to avoid
a significant delay in the planification, it is considerable to invest time inmaking a proper
work planning.

8.1.2 R2: Variance against budget

This risk is amanagement risk andoccurswhen thebudget proposed for theproject is
exceeded. It is a risk with a rare probability of happening since the equipment to be used
is already available and the software to be used is mostly open source. Therefore, there
are few expenses that can really divert the project from the proposed budget. However,
if it does happen, it may have amoderate impact on the project. Depending on the case,
it could force the modification of some element of the approach, design or deployment
of the project.

45

8.1.3 R3: Attacks affect the production network

This risk occurs when attacks against the production servers affect other users of
the servers. It is considered that it has a relatively unlikely probability of happening,
since different security mechanisms are protecting the servers. At the same time, it is
considered that, if it occurs, the impact would be extreme, since it could affect other
users outside the project. The consequences of this risk could lead to various problems
such as the denial of services or loss of information, among others. To avoid this risk, you
must be careful with the deployment of the components. Designing them in such a way
that they do not pose a real risk. Additionally, an attempt should be made to separate
the production and development environments. To carry out this action, there is the
possibility of creating independent tenants, which have the same objective.

8.1.4 R4: Hardware or physical infrastructure failure

This risk occurs when a hardware or physical infrastructure failure appears, such as
in the electrical network, communications network, or equipment used. These failures
can be derived from specific events such as power outages, a saturation of computing
capacity, etc. The probability of these types of risks happening is very rare. However,
the repercussions of these events could have a major impact. These types of failures
are totally unrelated to the project and, therefore, no action can be taken to reduce the
probability or prevent themfromhappening. Nevertheless, youcan invest in reducing the
high impact they would have. Through backup and redundancy techniques, the impact
of these failures can be minimized and, should they occur, normal production can be
recovered in amatter of a fewmoments.

8.2 Risk probability-impactMatrix

In this section, the risks defined in the previous section will be evaluated using the
impact probability matrix. In this matrix, both the probability and the impact will be
segmented into 5 different classes. In addition, a color code will be used to see in which
risk zone each identified risk falls. The probability-impact matrix is shown in Table 7:

Table 7: Risk probability-impact Matrix

Impact
Trivial Minor Moderate Major Extreme

Rare R2 R4
Unlikely R1 R3
Moderate
Likely

Probability

Very likely

46

9. Description of the solution

As already stated in the Background section [2], this platform is being deployed and
operated in the Horizon 2020 project 5GMETA. In the next section, the high level of the
framework will be presented as well as the general platform operation. In the following
sections, themodules developed during the course of this thesis and the contributions to
the European project will be presented and how they integrate within the architecture.

9.1 High-level architecture

The high-level reference architecture defined in this section defines the main com-
mon layers on which all the framework’s building blocks sit, which will leverage the de-
velopment and deployment of third-party applications. To accomplish the objectives,
this architecture needs, through its design principles, to address the requirements stated
in the previous chapter [6].

Before introducing the high-level architecture, it is important to define some terms
that will be common and repeatedly employed in this chapter:

• Dataflow: is a unique flow/stream of produced data that is shared by Sensors and
Devices (S&D) through a Pipeline in a MEC.

• Data-type: is a type of data that S&D shares and that a Pipeline in a MEC accepts
and handles.

• Pipeline: is a group of Modules (containers) running in a MEC to handle a
specific data-type. Each module can process the data received by subscribing
to a queue/topic and generate output data in a new queue/topic into the MEC’s
message broker.

• Module: is a container running in aMEC that handles a specific data-type or group
of data-type (e.g. C-ITSmessages).

• Third-party application: is an application/service lying outside the platform,
which acts as a third-party, consuming the available data, and optionally pushing
events to the platform (e.g., a CCAM application).

Figure 5 outlines the reference architecture of the framework. It represents on a high-
level the different layers through which the collected data will travel, from the Sensors
and Devices (bottom layer), where it is generated, to reach the third-party applications
and services (upper layer), where it is made available to be used by platform users. The
5G network is the enabler of the general platform. 5G features exploited include network

47

aspects, such as faster communication between nodes in the network and lower latency,
but also a newer software point of view in which the network itself and the network
functions are virtualized. The blocks in red are those that have been developed during
the thesis. The architecture embodies four layers:

Figure 5: High-level architecture of the platform

• Sensors andDevices: This layer revolves around the core idea that at the bottom
of the network lie sensors, devices or equipment that produce data, generally
mounted on autonomous/connected vehicles or on Road Side Infraestructure
(RSI), and which act/mimic the behavior of a regular UE connected to a cellular
network. To that end, vehicles embedding such sensors will rely on On-Board-
Units (OBUs) computers toexchange thegenerateddatawith thesurroundings, and
which allow short-range communicationwith other OBUs (within the same vehicle
or other intelligent vehicles) or with Road Site Units (RSUs) or with the network [74]
[75].

Moreover, within this context RSUs play a major role thanks to their various
capabilities and functionalities, by offering an entry point, or instead by allowing
car data offloading [76], whether to overcome limited vehicle storage or to share
warning messages such as accidents [77]. Furthermore, in some cases, RSUs are
also equipped with sensors (e.g. Laser Imaging Detection and Ranging (LIDAR),
camera) that allow not only to multicast data but also to generate it. Therefore,
RSUs are also considered as Sensors & Devices.

All the data generated by themwill be forwarded to theMEC infrastructure through
a 5G connection.

• 5G Network and MEC infrastructure: Represents the main 5G core functions,
5GNewRadio, and the platform’sMEC system. This layer ismainly based on the 5G
features that allow data to be routed with minimal latency to the edge platform. It
also provides a virtualization Infrastructure connected to the Base Station of the 5G
infrastructure. This layer is directly connected to the cloud platform.

The edge platform plays an intermediary role between the vehicles and the cloud
platform. The edge system is in the proximity of the end-users, collecting raw
data generated by sensors and including secure and private pipelines. Moreover,
it includes some computational capabilities, such as filtering, pre-processing, and

48

data collectionbefore sending themto the cloud. It bringsflexible computationand
privacy capabilities closer to the end-users. The system architecture is composed
of a virtualized infrastructure, amanagement level and a host level as detailed after
in the chapter.

• CloudPlatform: This layer addresses the data and resourcemanagement aspects
and requirements and, allows users to access the data. It also bundles third-
party APIs. The cloud platform provides the necessary computing, network, and
especially storage functionalities for the collected data. It has a twofold objective.
On the one hand, it is the entry point for users that interact with the platform. On
the other end, the platform cooperates with the 5G network and theMEC platform
to create the pipelines thatwill provide the needed data flowswith its given Service
Level Agreement (SLA).

• Third-party services:Where the applications that have authorized access to the
data sit.

Each layer of the platform addresses a set of requirements defined in the previous
chapter. Later in the chapter, a deep dive is taken into the developed module, analyzing
its components and the requirements that the component addresses. The platform is
composedmainly of the MEC and Cloud platforms.

The module stack of the MEC Platform to provide a Virtualization Infrastructure
connected to the Base Station of the 5G infrastructure is composed by:

• VNFmanagement function to manage the different virtual network functions to
be deployed. It is in charge of deploying data pipelines embodied in VNFs. The
pipelines are VNFs specialized in a specific data-type, i.e., the processing of C-ITS
messages. Each of them has different processing, but the objective is the same:
privacy, interoperability, computing, and security functions.

• Broker and data handling function to receive data and register data flows. It
manages the data transition between the S&D and the MEC platform.

• Security function to protect the MEC platform and the deployments that occur
inside.

• Privacy function to anonymize the different data-types.

• Monitoring function togathermetrics, analyzeandmonitor theplatform, evaluate
the platform and optimize the resources and the applicable SLAs. available.

• Databases storing the current data and assets configuration.

The software stack of the cloud platform to host centralized systems, where the
Virtualization management will be based on a commercial solution to facilitate the
integration from third parties and the visibility/reachability fromeachMEC infrastructure,
is composed by:

• VNFmanagement function toorchestrate theVNFs in thedifferentMECplatforms
connected to the Cloud.

• APIs function, where are stored the different APIs to allow third parties ask for data
consumption and to produce events or notifications to S&D connected to a MEC.

49

RSU

Connected
Car

BS

MEC

Core

Cloud Platform
MEC & Data manager

Third Party Service
Data Consumer

Se
n

so
rs

 &
 D

ev
ic

es
D

a
ta

 P
ro

d
u

ce
r D

a
ta

 P
ip

el
in

es

real-time

interoperable

secure & private

scalable & efficient

license ROI

Internet

Figure 6: Platform’s automotive data workflow

• Broker and data handling function to manage the data transition between the
MEC and the cloud platforms. Data filtering.

• Security function toprotect theCloudplatform. Authentication,Authorisationand
Accounting (AAA) protocols. API Gateway to control access to third-party APIs.
User identity management.

• Privacy function to anonymize the data flowing in the cloud.

• Monitoring function togathermetrics, analyze andmonitor theplatform, allowing
the evaluation of the platform and optimization of the resources.

• Databases storing the current data producers’ availability, consumer subscriptions
and assets item inventory. Catalogs to allowproducers to browse and configure the
target data-types and the relevant locations.

9.1.1 General operation of the platform

The proposed approach designs a platform that: i) performs data processing in the
MEC based on consumer demand; ii) enables filtering on geographical and data-types
criteria to get just relevant data; and iii) applies SLA levels to different asset allocation
profiles.

As depicted in Figure 6, the described framework is an open data-centric IoT livemes-
saging platform for CAM services and applications where the security, privacy, scalability,
interoperability, and licensing features are provided by the 5G networks functions exe-
cuted at the edge to gain zero latency, capillarity, and geo-driven networking.

Concerning the dataworkflows and permitted directions, both upload and download
directions are considered.

50

• Upload: This is themain data flowdelivering data fromsensors, vehicles, andRSUs
to CAM services. When a CAMapplication selects a data-type and a ROI (RegionOf
Interest), the containersof apipelineprocessing the specificdata-typearedeployed
in the selected MECs. The data is only processed in the MEC and forwarded to the
Cloud when a CAM service has selected a specific data-type from a serving MEC.

• Download: Spontaneous, discrete, and lightweight alarms and notifications sent
as broadcast messages from CAM applications to Sensors and Devices subscribed
to the notification data-type. This means no need for a specific function or
container to deliver downloadmessages.

So, the upload direction provides continuous live data feeds, while the latter is mainly
designed to broadcast notifications and updates to all subscribed systems in a MEC.

Theaccess level of the third-party application to thedataavailablewithin theplatform
may differ depending on the application requirements.

Applications will mainly access the data through the cloud platform. After allocating
the required computing assets for the pipelines to process raw data from sensors and
devices at the edge resulting data is forwarded to the cloud. However, if a specific
applicationhas strict requirementswhen it comes to latency, data canbedirectly reached
from theMEC platform in real-time.

For handling ROI and geolocations, Microsoft’s Bing Maps Tile System, where each
region is represented by a single tile of the same shape and size, and geographical
indexing with quadkeys is used [78]. A quadkey number, a one-dimensional array that
combines zoom level, column, and row information, uniquely identifies a single tile
position. The tiles and quadkey filtering permit data consumers to browse and quickly
filter the locations where data is being produced. Every MEC also registers the tile
where it is located and serves to data producers so that they can find the serving MEC
infrastructure and do a handover across serving MECs as the vehicle moves.

The deployment of pipelines in the MEC is triggered by data consumers (i) interested
in processing and consuming a specific data-type from a particular location (ii). When
a CAM application selects a data-type and if the SLA of the CAM application supports
the required resources, the containers of a pipeline processing the specific data-type are
deployed in the corresponding MEC(s) (iii). The data is only processed in the MEC and
forwarded to the Cloud when a CAM service has selected a specific data-type from a
serving MEC; otherwise, data pushed to the MEC is immediately discarded.

The platform should aid in delivering real-time data pipelines for car-captured and
generated data through data privacy, interoperability, computing, and security functions
embodied in VNFs deployed in a NFV-enabled architecture.

9.2 Implementation of themodules

In the previous section, the high-level architecture of the platform was presented. In
figure 5 we can see that some of themodules have beenmarked in red and that have an
identifier to be able to be identified in a simple way. In this section, we will analyze and
explain the implementation and technical deployment of each of themodulesmarked in
red.

51

9.2.1 M1: MEC Virtualization infrastructure

In thedesignedarchitecture, containers, specifically, Docker containers, haveapromi-
nent role. Docker runtime technology enables running an application in a lightweight,
standalone, executable software package or container. Secondly, Kubernetes will be
used as container orchestration framework for managing the platform’s workloads and
services. It will handle the scheduling of containers in a compute cluster. and thanks to
horizontal and vertical auto-scaling, the scale of the resources for data pipelines will be
performed, always according to the selected SLA level.

Figure 7 illustrates the MEC platform architecture, where the different industry solu-
tions that build the platform stack are specified.

Figure 7: Architecture of the MEC platform

Kubernetes installation lets you make a lot of decisions. The decisions made to best
fit with the requirements of the platform are the following:

• Ubuntu 18.04 or 20.04 Operating System (OS). The reason for choosing this SO will
be explained in M2 section.

• Docker as the container runtime.

• Flannel for networking. No particular reason, open-source and most widely de-
ployed.

• OpenEBS for storage. Noparticular reason, open-sourceandmostwidely deployed.

• MetalLB for load-balancing. No particular reason, open-source and most widely
deployed.

• Single node. For quick deployment and easier management

52

Ansiblewill be used forMECprovisioning. Ansible is a software tool that provides sim-
ple but powerful automation for application deployment, server provisioning, updates on
servers, configurationmanagement and service orchestration. Thanks to Ansible, all the
components forming the Edge Stack will be easily deployed. An Ansible playbook has
been developed, and through it, the virtualization infrastructure and all the dependen-
cies, components and modules necessary for the functioning of the MEC server will be
installed. Furthermore, every time a change ismade in the stack, it will be reflected in the
playbook and running it again will let to update every MECwithout extra effort.

The only requirement to deploy the stack is a clean Ubuntu 18.04 or 20.04 imagewith
Ansible and some collections installed.

Listing 9.1: Python example

sudo apt -add -repository ppa:ansible/ansible

sudo apt update

sudo apt -get install curl python3 -pip ansible

ansible -galaxy collection install community.general community.docker

kubernetes.core

As for the minimum resources to be able to run the entire stack, 16 GB of RAM, 4
vCPUs and 60 GB of disk is at least necessary. The playbook will deploy the following
components:

• Single-node Kubernetes cluster (v1.20.11)

– Composed by Flannel CNI, OpenEBS Storage andMetalLB Load-balancer

• Docker Engine

• Helm k8s applicationmanager

• Kube-prometheus-stack and Kube-eagle for k8smonitoring

– Prometheus, Grafana and dashboards

• MySQL cluster for storing the databases

• Open Source MANO (OSM): v11 for Ubuntu 20.04 and v10 for Ubuntu 18.04

• Notary and Connaisseur for managing security in the cluster

• DevelopedMEC APIs

The ansible playbook is organized into tasks. First, it will install the necessary system
dependencies and then, the installation of the virtual infrastructure will be performed.
Finally, the rest of the components will be deployed. In the next code block, we can see
the tasks for installing the system packages, docker and Kubernetes binaries, the cluster
initialization and configuring it as a single node cluster.

Listing 9.2: Python example

- name: Install required system packages

become: yes

apt:

name: "{{ packages }}"

53

state: present

update_cache: yes

vars:

packages:

- <packages_list >

- name: Install docker binaries

become: yes

apt:

name: "{{ packages }}"

state: present

update_cache: yes

vars:

packages:

- docker -ce

- docker -ce-cli

- containerd.io

- name: Install kubernetes binaries

become: yes

apt:

name: "{{ packages }}"

state: present

update_cache: yes

vars:

packages:

- kubelet =1.20.11 -00

- kubeadm =1.20.11 -00

- kubectl =1.20.11 -00

- name: Initialize the cluster

become: yes

shell: "{{ item }}"

with_items:

- 'echo "apiVersion: kubeadm.k8s.io/v1beta2\nkind:

ClusterConfiguration\nnetworking :\n podSubnet: 10.244.0.0/16\

napiServer :\n extraArgs :\n service -node -port -range:

"80 -65535"" > {{ ansible_env.HOME }}/5 gmeta/tmp/cluster -config.

yaml '

- kubeadm init --ignore -preflight -errors=SystemVerification --config

{{ ansible_env.HOME }}/5 gmeta/tmp/cluster -config.yaml > {{

ansible_env.HOME }}/5 gmeta/logs/cluster_init

args:

creates: /etc/kubernetes/admin.conf

- name: Taint master

shell: "{{ item }}"

with_items:

- kubectl taint node $(kubectl get nodes | awk '$3~/ master/'| awk '{

print $1}') node -role.kubernetes.io/master:NoSchedule -

- touch {{ ansible_env.HOME }}/5 gmeta/logs/master_tainted

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/master_tainted"

The entire playbook can be found in Annex A.1.

Once deployed, all the virtualization infrastructure and the platform modules will be

54

deployed and accessible for communication with S&D and the cloud platform and its
lifecycle management.

9.2.2 M2: MEC VNFManagement

OSM, the management and orchestration software stack that follows the standards
defined by ETSI for NFV technology, carries out the task of orchestrating the specific data
pipelines.

The default installer of OSM deploys a standalone Kubernetes on a single host, and
OSM on top of it. As already stated, the MEC platform is based on a single node under
Kubernetes technology, and it is not possible to install OSM in an already Kubernetes
cluster. Furthermore, TheMEC platform should be fully configurable and the Kubernetes
scenario that deploys the OSM installer is not configurable. To solve that problem, a
customOSM installer hasbeendeployed,mostly based in theoriginal one. It canbe found
in Annex A.2.

Once the server is installed, it must be linked to the Kubernetes cluster. Both the
installation and the linking to the cluster or other configuration operations are performed
by the Ansible playbook presented in M1 [A.1].

After the installation is finished, the different configuration tasks have been com-
pleted, the platform is ready to orchestrate real-time data pipelines for car-captured and
generated data wrapped in VNFs. As already explained in the section before, the virtu-
alization technology chosen is Kubernetes, for container-basedmicroservices operation.
OSM can onboard and instantiate container-based VNFs, also knowns as Kubernetes-
basedNetwork Functions (KNFs) into aKubernetes cluster usingHelmCharts or JujuBun-
dles.

The design and development of a data pipeline have threemain steps.

1. Development of Docker image(s): For the processing of different data-types,
a Docker image must be developed, which contains all the logic for privacy,
interoperability and computing functions.

2. Development of aHelmchart: AHelm chart is a collection of files that describes
the behavior and configuration of amicroservice in a Kubernetes cluster. The helm
chart will reference theDocker designed in the previous step andwill be configured
for its deployment in the K8s cluster.

3. Development of OSM descriptors: Kubernetes Network Function Descriptor
(KNFD) together with a Network Service Descriptor (NSD) must be designed. The
name of the descriptors is tied to the data-type to be processed. Through these
descriptor packages, the description of the process of deploying, configuring, and
managing a KNF instance is fixed. An example of some descriptors for ”cits” data-
type can be found in Annex A.3.

Once all the steps for pipeline development have been done, each component must
be stored in a repository respectively. Also, OSM descriptors must be added to the
orchestrator. After that, the MEC is ready for pipeline orchestration. All the orchestration
operations will be done through OSMAPI.

In Fig 8 MEC’s OSM interface is shown, which contains different data-type specific
pipelines. Secondly, in Listing 9.3, the API call schema for deploying a data pipeline is

55

outlined. It will be deployed in a unique K8s namespace, belonging to the user making
the call.

Figure 8: OSM interface

Listing 9.3: OSMAPI call to deploy a pipeline

url = 'https ://' + orchestrator_ip + ':9999/ osm/nslcm/v1/

ns_instances_content '

headers = {'Content -Type': 'application/json', 'Authorization ': bearer}

data = '{ "nsName ": "' + payload["data_type"] + '", "nsdId": "' +

datatype_response[datatype_index]["_id"] + '", "vimAccountId ": "' +

vim_response[vim_index]["_id"] + '", "additionalParamsForVnf ": [{

 "member -vnf -index": "1", "additionalParamsForKdu ": [{ "kdu_name ":

 "' + payload["data_type"] + '", "k8s -namespace ": "' + payload["

client_name"] + '", "kdu -deployment -name": "' + payload["

client_name"] + '-' + payload["data_type"] + '-' + str(uuid.uuid1()

)[:8] + '" }] }] }'

requests.post(url , data=data , headers=headers , verify=False)

This API call will come from the cloud platform, when a third-party requests a data-
type in a geographical location, where the MEC is serving. Then the deployment of
pipelines in the MEC is triggered. In the example depicted in Figure 9, we see a deployed
pipeline and the logical container composition of different VNFs providing specialized
data functions.

56

Figure 9: Pipeline deployment at a specific MEC infrastructure

9.2.3 M3: Monitoring

For platform infrastructure and modules monitoring two open-source solutions
will be used. Kube Prometheus Stack and Kube Eagle. Kube Prometheus Stack
is a pre-configured solution to collect metrics from all Kubernetes components. It
includes a collection of Kubernetes manifests, Grafana dashboards, and Prometheus
rules combined with scripts to provide easy-to-operate end-to-end Kubernetes cluster
monitoring with Prometheus using the Prometheus Operator and Grafana visualization
tool.

Additionally, Kube Eagle is a Prometheus exporter that exports variousmetrics of Ku-
bernetes pod resource requests, limits and its actual usage. It provides a better overview
of the Kubernetes cluster resources so that resource allocation can be optimized. It in-
cludes a Grafana dashboard for easier visualization.

Both components have been easily installed through helm charts. For example, for
deploying Kube Prometheus Stack just the following lines of code are needed. These
tasks are alsomade by the Ansible playbook [A.1].

Listing 9.4: OSMAPI call to deploy a pipeline

helm repo add prometheus -community https :// prometheus -community.github.

io/helm -charts

helm repo update

helm install kube -prometheus -stack prometheus -community/kube -prometheus

-stack

Once deployed you can access the different dashboards through a web interface.
Figure 10 and Figure 11 show the dashboards of each component where some cluster
metrics are depicted.

57

Figure 10: Prometheus interface

Figure 11: Grafana interface

As already stated previously in the thesis, the MEC will only deploy the data-type
pipelines for the requested SLA if there are enough resources to comply with it. Thanks
to the API of Prometheus, metrics can be easily obtained to compute the available
resources, and let a pipeline to be deployed. This operation can be done through a bash
script that can be found in Annex A.4. The Listing 9.5 shows how different metrics are
gathered through Prometheus API, just as the script does.

Listing 9.5: Metric gathering through Prometheus API

allocatable_memory=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_allocatable_memory_bytes | jq '.data.result [0].

value [1] | tonumber ')

58

memory_usage=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_usage_memory_bytes | jq '.data.result [0]. value

[1] | tonumber ')

memory_requests=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_requests_memory_bytes | jq '.data.result [0].

value [1] | tonumber ')

memory_limits=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_limits_memory_bytes | jq '.data.result [0]. value

[1] | tonumber ')

9.2.4 M4&M6: MEC and Cloud Broker and data handling

The data pipelines deployed in a MEC server consume raw data samples from IoT
frameworks and transfer them to the cloud infrastructure. For managing all the data
coming from S&D a message broker is needed. The technology chosen for message
handling isActiveMQas specified inSection7. ActiveMQwill be thecentral IoTmessaging
technology in the platform, which has universal support from existing Sensors and IoT
frameworks.

The different data producers will push the data into MEC servers through the AMPQ
protocol. Then the on-demand instantiated pipeline will process the selected data and
put it again into the message broker. Finally, the data will be transferred to the cloud
platform so that a third-party can access it. The solution chosen for operating data in
the cloud is Kafka as it is ideal for working with a huge amount of data, is very scalable
and has very stable performance.

In a nutshell, module M4 will manage the data in the MEC via ActiveMQ and module
M6will be responsible for handling all the data coming from all the servers, thanks to the
Kafka platform.

Both solutionsworkwith publish and subscribemessaging. In a publish and subscribe
message system, producers send messages on a topic. In this model, the producer
is known as a publisher and the consumer is known as a subscriber. One or many
publishers can publish on the same topic, and a message from one or many publishers
can be received by many subscribers. Subscribers subscribe to topics, and all messages
published to the topic are received by all subscribers on the topic.

The platformwill play with the different data-types arriving on the platform and with
the topics created in the both message brokers. When any producer starts pushing a
data-type toaMECserver, a topicwith thedata-typenamewill be created in themessage
broker. When a request coming from a third-party is made, a connection between
the MEC and the cloud will be opened, and through a Kafka connector, AMQP all the
requested data topics will be retrieved and forwarded to the cloud into the same Kafka
topics. Finally, the data from those topics will be aggregated and filtered into a private
topic created exclusively for the user’s request.

For M4 implementation the latest official ActiveMQ has been used. As there was not
any official Helm chart for deploying the message broker, a chart has been developed
for the easy deployment into a Kubernetes cluster. On the other hand, to deploy the M6
or Kafka platform, the Confluent solution has been chosen to deliver the distribution of
Kafka in a customizable way. Again, it has been deployed through the official Confluent
Helm chart. The configurations used can be found in Annex A.5.

59

Five Kafkamodules has been used for building the cloud’s datamanagement system.

1. Kafka Broker and Kafka Zookeper, the basic modules for operating with Kafka.

2. Kafka Connect, the tool for providing a scalable and reliable way to copy data
between Kafka and other datastore. Through this component, a Kafka Connector
is configured for the retrieval of AMQP topics fromActiveMQ and forwarding them
to the same Kafka topics in the Cloud.

3. Kafka Registry, used transparently by the Connector, the consumer and the
producer to validate the schema of the messages in Avro. Avro is the Serialization
and Deserializationmethod for themessages in the platform.

4. KSQLdb, a streaming SQL engine that enables real-time data processing against
Kafka. Is used to provide specific topics after the data has been filtered for data
consumers.

Finally, figure 12 depicts a sequence diagram to clearly understand the functioning of
themodules on how the data flows between the components.

Figure 12: Data handlingmodules sequence diagram

9.2.5 M5: MEC Security

Oneof themain tasks of theMEC is to provide commondata pipelineswhich connect
data producers and consumers. All the pipelines are based on microservices packaged
in Docker images. Every time a third-party request a data-type, a pipeline will be
instantiated in the MEC. Furthermore, the platform offers the possibility to host third-
party CAM services that require real-time processing. For that reason, all the containers
need further verification to be trusted and be deployed inside the infrastructure to avoid
malicious software and to guarantee that a Docker image has not beenmodified.

To verify the containers being deployed in a Kubernetes cluster, a solution called
Connaisseur has been implemented. Connaisseur is an admission controller to integrate
container image signature verification and trust pinning into a K8s cluster. It ensures the

60

integrity and provenance of container images. To do so, it intercepts resource creation
or update requests sent to the Kubernetes cluster, identifies all container images and
verifies their signatures against pre-configured public keys. Based on the result, it either
accepts or denies those requests.

All the containers imaged behind the pipelines must be signed after being built by
employing a pair of private/public certificates. If not, the pipeline deployment will be
denied. All public keys of the repositories permitted by the platform will be added to
Connaisseur. For doing that a validator has to be created in the configuration files of
Connaisseur. An example of a validator can be shown in Listing 9.6.

Listing 9.6: Connaisseur validator schema for trusting a repository

- name: default

type: notaryv1 # or other supported validator (e.g. "cosign ")

host: notary.docker.io # configure the notary server for notaryv1 or

rekor url for cosign

trust_roots:

- name: My repository

key: |

-----BEGIN PUBLIC KEY -----

XXX==

-----END PUBLIC KEY -----

auth:

username: My user

password: My pass

This solution has been installed using the official Helm Chart. Annex A.6 contains the
values files used for the implementation.

From other hand, networking is a vital component of any infrastructure, and having
network policies to control communication is essential. By default, in a Kubernetes
cluster, There are no network restrictions within pods, so every pod can automatically
communicatewith all other pods in the cluster. This isn’t ideal froma security perspective
and an external K8s plugin is needed to add extra networking policies.

This is where Calico comes in. Calico is an open-source networking and network
security solution. It provides network connectivity and IP address management plugins,
as well as additional network policies to control incoming (Ingress) and outgoing (Egress)
traffic. Network policies are applied through Kubernetes manifest files. In the next Code
Listing, an example of a network policy manifest is shown:

Listing 9.7: Calico network policy manifest file

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

name: test -network -policy

namespace: default

spec:

podSelector:

matchLabels:

role: db

policyTypes:

- Ingress

- Egress

ingress:

61

- from:

- ipBlock:

cidr: 172.17.0.0/16

except:

- 172.17.1.0/24

- namespaceSelector:

matchLabels:

project: myproject

- podSelector:

matchLabels:

role: frontend

ports:

- protocol: TCP

port: 6379

egress:

- to:

- ipBlock:

cidr: 10.0.0.0/24

ports:

- protocol: TCP

port: 5978

Regarding the data privacy aspect, there are different modules that anonymize the
data coming from S&D. For example in video streams, faces and vehicular plates are
anonymized. For C-ITS messages, anonymization of specific fields of C-ITS will be
performed. The data privacy feature is one of the main requirements that need to be
guaranteed by the platformand it consists of protecting the sensitive information related
to the user’s identity.

Thanks to thismodule, the integrity of theMEC server and the privacy of the users can
be ensured, allowing only trusted entities to participate actively in the platform, avoiding
any network intrusion and anonymizing all the ingested data.

9.2.6 M7: Cloud APIs

Cloud APIs are the APIs that will be used by developers to directly access the data
flows offered by the different MEC servers. These APIs will be implemented using the
OpenAPI approach, leveraging on its advantages. The accesswill bemanaged by anAAA
module and an API gateway belonging to Cloud’s Security block. The gateway serves as
the single entry point for third-party users of the platform.

There are several key aspects to consider when implementing APIs:

• Quick Integration,meaningeasy anduniversal integrationusingWebTechnologies.

• Documentation, bringing documentation to the features provided, required inputs
and potential outputs and formats.

• Access Control, to prevent unauthorized or unplanned connections are performed
between local or remote systems.

• Web-based testing, providing a visual site to test an API to integrate and check
responses, boosting the learning curve.

62

To satisfy all these requirements the specification of OpenAPIs 3.0 has been followed.
To this end, we agreed on using Swagger tools for the fast prototyping and YAML
declarationof theAPI. ThenFlaskwill provideavisual front-endof theAPI tocheck theAPI
in the development process of the backend and to understand how and anAPI works for
the integration. OAUTH2.0 will be also used for the identification of actors and Keycloak
for controlling and limiting access from other building blocks or systems.

The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to
RESTful APIs. Thanks to the OpenAPI definition, you can understand the capabilities of
the service without access to source code or documentation, or through network traffic
inspection. It gives the possibility to interact with the remote service with a minimal
amount of implementation logic. Furthermore, an OpenAPI definition can then be used
by documentation generation tools to display the API, code generation tools to generate
servers and clients in various programming languages, testing tools, andmany other use
cases. It follows the API First approach. It is an approach to designing every API around
a contract written in an API description language. This contract ensures the robustness,
consistency, reusability and abstraction from specific implementations.

Swagger is a set of open-source software tools to design, build, document, and use
RESTful web services. Swagger includes automated documentation, code generation
(intomany programming languages), and test-case generation.

Flask is a micro web framework written in Python that provides useful tools and
features that make creating web applications in Python easier and accessible for new
developers. It provides only the necessary tools, but it extends its functionality with
additional libraries and frameworks.

The summary of the different stages to be accomplishedwhen designing, developing
and integrating a new API is depicted in Figure 13.

Figure 13: APIs stages and key technologies and formats

The API should use the Status-Line part of the HTTP response to inform the client of
their request’s result. The status codes are divided into five categories:

• 1xx: Informational, communicates transfer protocol-level information.

63

• 2xx: Success, indicates that the client’s request was accepted successfully.

• 3xx: Redirection, indicates that theclientmust take someadditional action inorder
to complete their request.

• 4xx: Client Error, this category of error status codes points the finger at the client.

• 5xx: Server Error, the server takes the responsibility for these error status code.

Different APIs have beendeveloped formoduleM7. Thatmodule contains all theAPIs
that the third-party users will use to make requests to the platform, to get dataflows, or
send events and notifications for example. The API developed during this thesis is for
managing SLAs.

Figure 14: SLA API Swagger User Interface

Before requesting a data-type in the cloud, is necessary to select an SLA level,
depending on the data that is selected. Each data type would need different computing
resources to copewith incoming traffic. The number of assigned resources for a pipeline
dependson theapplicableSLA. For example, aGPU-enabledSLA is available throughGPU
virtualization in the MEC for processing and optimizing capabilities to process live video.
When an SLA is requested, the API will check if there are available resources in the MEC,
using theM3module, to deploy the data-type pipeline for the requested SLA. If available,
the resources are reserved, and the request will be forwarded to the OSM Orchestration
API for the deployment of the pipeline.

64

Endpoints provided by the API:

• /sla POST: Add a new SLA

• /slaGET: Get SLAs

• /sla /{slalevel}GET: Find SLA by ID

• /sla /{slalevel} PATCH: Update a SLA

• /sla /{slalevel} DELETE: Delete a SLA

• /reservation POST: Make a SLA reservation

• /reservationGET: Get reservations

• /reservation /{reservationid} GET: Find reservation by ID

• /reservation /{reservationid} DELETE: Delete a SLA reservation

The OpenAPI definition and the python code of the API controllers can be found in
Annex A.7.

65

10. Validation of the solution

This section covers the checking of different modules of the architecture’s require-
ments (declared in Section 6). In this way, the platform implementation ensures that no
feature or corner is not considered. As the project on which the submitted thesis was
based is still active, the validation will verify compliance with the platform requirements.
With the correct fulfillment, we will finish the validation of the work. In the future, differ-
ent Key Performance Indicator (KPIs) will be defined to demonstrate how effectively the
platform is achieving the objectives, but it is outside the scope of the work.

Table 8: Requeriments validated by the platform

Tier Requirement Req ID
Validated
byModule

Means of verification

MEC

Use of VNF REQ01 M1M2
OSMMANO permits the use of VNFs that will be deployed in
Docker/K8s virtualization technology.

Datatype Pipeline
execution

REQ02 M1M2
OSMmanages the lifecycle of the pipelines.
Different VNF packages tied to specific datatype are
executed using OSMAPI.

Pipeline allocation REQ03
M1, M2,
M3M5

Themonitoringmodule permits the resources and SLA check
before allocating a pipeline. If enough, the security module
guarantees that the signature of the pipeline container is valid.

Data Processing
Scalability

REQ04 M1, M4
Active MQ providse hierarchical messaging structures
to connect multiple live dataflows.

Scalability at
MEC level

REQ05 M1
Kubernetes allows the horizontal scale based on the application
requirements, whichmay change over time.

Uplink and
Downlink
dataflows

REQ06 M4
ActiveMQ dedicated topics permit the uplink and downlink
dataflows

Intra services
flows confidentiality

REQ07 M4 Calico ensures the limited access to internal dataflows.

Specialised
Processing
Capacity

REQ08
M1, M2
M3

The resources reservation of a certain SLA level assures
the VNFs have dedicated resources for the data proccessing.

Cloud

Resources
allocation onMEC

REQ12 M7
The SLA API permits to create the requested
data pipelines.

Data
Interoperability

REQ15 M6

Kafka ecosystem technologies provide a scalable and reliable way
to copy data between the cloud and the MEC. M6module retrieves
AMQP topics from aMEC and forwards all the topics and data into
the same Kafka topics in the Cloud.

Uplink and
Downlink
dataflows

REQ18 M6
Kafka Connector will open the connections for
uplink and downlink dataflows.

API format REQ25 M7
OpenAPI specification standard REST APIs define
the structure and syntax of every API.

API data broker REQ28 M6 Kafka API permits the connection to the broker.

API data gateway REQ29 M7
Kafka API guarantees a single endpoint where all
the dataflows are signaled and provided.

66

11. Description of tasks

This projecthasbeendivided intodifferentworkpackagesorphases thatwill bemade
upofdifferent tasks that, in their global computation,will formtheplanning thathasbeen
followed.

To carry out the tasks detailed below, the work team has been made up of two
positions, with different roles and responsibilities as stated in Table 9:

Table 9:Work team

Name Responsibility Played role
Jasone Astorga Senior Engineer Director of the project
Maider Huarte Senior Engineer Co-director of the project
Mikel Serón Junior Engineer Developer of the project

The project director and co-director will be in charge of the management, direction
and coordination of the project, guiding and supervising the junior engineer while
keeping focused on the objectives set out in this Master’s Final Project. On the other
hand, the junior engineer will be in charge of carrying out the development of work and
its respective report.

The Work Packages (WPs), and their corresponding tasks, into which the thesis has
been divided are detailed below:

• WP1 - Project management, coordination and documentation: This man-
agement phase is essential in any type of project. All the tasks that make up this
WP are executed continuously during the entire development of the project. Writ-
ing of the results and the thesis. WP duration: 180 hours.

– T1.1 -Managementandcoordination: Themanagementandcoordination
of the project is a task that focuses onensuring that the project’s development
complies with the stipulated planning. It seeks to verify that the development
reaches the different milestones set. Another objective of this task is to deal
with or avoid any deviation in the planning. Task duration: 60 hours.

– T1.2 - Project definition: In this task, the definition of the tasks that this
project will fulfill are defined. Task duration: 10 hours.

– T1.3 - Review: In this task, a follow-up is carried out to verify that the
established deadlines and tasks are met. The work done is reviewed. Task
duration: 30 hours.

– T1.4 - Design of the structure of the document and LaTex template: In
this phase, a LaTeX template is designed and created so that thewriting of the
thesis is carried out in a homogeneous and simple way.

67

– T1.5 -Writing of the thesis: This task consists of writing down the progress
and results that are being achieved during the development process of the
other phases. This way, a reliable record can be kept that the requirements are
met, and the objectives are achieved. Additionally, it also consists of writing
the final report during the course of the project and at the end of it.

• WP2 - Analysis of the background and state of the art: This WP involves a
study of the context and the related work. In a nutshell, technologies, projects and
publications whose aim resembles the project’s scope. WP duration: 100 hours.

– T2.1 - Analysis of the background: This task will analyze the context in
which the project is framed. Task duration: 25 hours.

– T2.2 - Analysis of the state of the art in Edge computing: This task
involves a study of the related work, projects and publications whose aim
resembles the project’s scope. Task duration: 25 hours.

– T2.3 - Analysis of open-source Edge computing frameworks: Research
on the existing open-source Edge computing frameworks. Task duration: 25
hours.

– T2.4 - Analysis of the link of the different use cases to existing solu-
tions: Analyze the requirements of the use cases in connected vehicles (input
from the 5GMETA European project) and understand their implications. Task
duration: 25 hours.

• WP3 - Analysis of requirements: In this WP, an exhaustive analysis of the
requirements for the proposed platform is carried out. WP duration: 50 hours.

– T3.1 - Identification of gaps and requirements for the platform solu-
tion: The gaps of the analyzed solutions are analyzed, and different require-
ments that the platform to be developedmustmeet are set. Task duration: 50
hours.

• WP4-Proposalofanopen-sourceEdgecomputingframeworkforautomo-
tive data processing: In this work package, the solution to be developed during
the project is designed, taking into account the results of the analysis of require-
ments and alternatives. WP duration: 250 hours.

– T4.1 - Solutions to the identified gaps and requirements: Analysis
and proposal of different components that aim to resolve all the gaps and
requirements identified. Task duration: 80 hours.

– T4.2 - Design of the architecture: Basic and high-level design of the usage
architecture. Design the architecture, with its components. Task duration: 170
hours.

• WP5 - Implementation and validation of the proposed solution: This work
package is mainly based on the implementation of the solution. Once having
implemented the solution of the project, itmust be checked that the systemworks
properly according to its design and specifications. WP duration: 120 hours.

– T5.1 - Implementation: Implementation of the solution according to the
proposed solution. Configuration of equipment, deployment of infrastructure
and development of modules.

– T5.2 - Validation: Validation of all the requirements identified in WP3. Task
duration: 20 hours.

68

Below is the Gantt chart in which the development of the project is graphically
observed over time and the duration of each task carried out during this project. The
Gantt Chart is a graph that allows a clear and complete visualization of the location of
activities over time. It is in the form of a table, in which each column represents a unit of
time, and each row an activity.

69

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

T1.1 - Management and coordination

T1.2 - Project definition

T1.3 - Review

T1.4 - Desing of the structure of the document and LaTex template

T1.5 - Writing of the thesis

T2.1 - Analysis of the state of the market and technology

T2.2 - Analysis of the implementations of Edge Computing: MEC, Fog Computing & Cloudlet

T2.3 - Analysis of Open Source Edge Platforms

T2.4 - Analysis of the link of the different use cases to existing solutions

T3.1 - Identification of gaps & requeriments for the platform solution

T4.1 - Solutions to the identified gaps & requeriments

T4.2 - Design of the architecture

T5.1 - Implementation

T5.2 - Validation

M1: Thesis final definition
M2: First draft of the proposal
M3: Thesis submission

WP5 - Implementation and validation of the proposed solution

2021

WP1 - Project management and coordination

WP2 - Analysis of the state of the art

WP3 - Analysis of requirements

WP4 - Proposal of an Open-Sorce Edge Computing framework for automotive data processing

December July August September
2022
May JuneJanuary February March April

M1 M2 M3

11.1 Gantt diagram

70

12. Description of the budget

In this section, the costs involved in carrying out this study will be presented in detail.

12.1 Manpower

Tocarry out thismaster’s thesis, two senior engineers anda junior engineer havebeen
necessary as human resources. The hourly rate of each of them is:

Table 10: Human resources

Name Position Hourly Rate (€/h)
Jasone Astorga (JA) Project director, senior engineer 60
Maider Huarte (MH) Project co-director, senior engineer 60
Mikel Serón (MS) Junior engineer 20

The hours worked per person for each work package are detailed below:

Table 11: Cost of human resources

Work Package (WP) Responsible Hours Hourly Rate (€/h) Cost (€)
WP1 - Project management, coordination and
documentation

JA, MH, MS
100 (JA &MH)
80 (MS)

60
20

6000
1600

WP2 - An alysis of the state of the art MS 100 20 2000
WP3 - Analysis of requirements MS 50 20 1000
WP4 - Proposal of an Open-Sorce Edge Computing
framework for automotive data processing

MS 250 20 5000

WP5 - Implementation and validation of the
proposed solution

MS 120 20 2400

TOTAL:
100 (JA &MH)
600 (MS)

18000

As can be seen, the final price of human resources throughout the entire job is
€18,000.

12.2 Amortizable costs

In this section, all the material that has been used in this project will be taken into
account. The time of use of the material has been approximately 9 months. We can
classify amortizablematerial into two categories, software and hardware expenses.

71

• Software expenses: In order to continuewith theOpen-source software philoso-
phy, we have proceeded to use totally free tools available to any developer. There-
fore, the expense of software is non-existent.

• Hardware expenses: We proceed to calculate the expenses incurred in terms of
hardware. For the development of this project, the following hardware has been
used:

Table 12: Amortizable costs

Name Initial value (€) Useful life (Months) Usage time (Months) Cost (€)
Laptop 850 48 9 159,375
Server 3200 48 9 355,555
TOTAL: 514,93

It can be concluded that the cost of amortizable material in relation to this thesis
amounts to 514,96€.

12.3 Non-amortizable costs

In addition to internal hours and materials, expenses that are not directly related to
the project, such as electricity, internet and cloud provider expenses, must be included.
The price per kilowatt hour of the electricity rate contracted at the workplace amounts
to 0,104€/hour. Also an uninterrupted use of the internet has been made. The internet
rate in the workplace amounts to 38€/month. Finally, the costs for deploying the cloud
platform in AWS cloud provider amounts to 90€/month. The solution has been deployed
during 2months.

Table 13: Non-amortizable costs

Description Cost (€)
Office supplies 30
Electricity expenses 72,8
Internet expenses 342
Cloud provider expenses (AWS) 180
TOTAL: 624,8

In summary, the sum of the indirect expenses is 624,8€.

12.4 Total cost

The total cost of the development is the sum of the totals of each subsection, that is,
manpower, amortizable costs and non-amortizable costs.

72

Table 14: Total cost

Expense type Expense incurred
Manpower 18000
Amortizable costs 514,93
Non amortizable costs 624,8
TOTAL: 19139,73

73

13. Conclusions and future work

The CAM applications will benefit from the performance, reliability, and capacity
promised by 5G cellular networks. Furthermore, the connected car data is expected to
unlock new business for traditional actors and new entrants on top of innovative CAM
applications. Here, the MEC architectures from 5G networks can fuel the creation of a
common data marketplace where data owners produce and share their data and data
services consume the available data demanding the processing of common pipelines in
the MECwhich deal with interoperability, privacy, and efficiency.

The most relevant requirements have been analyzed before specifying the reference
architecture, its application interfaces and its network interfaces. Then, a deeper lookwas
provided on how these requirements were addressed through the different layers of the
architecture and their building blocks.

This project proposes an architectural approach designed and implemented to facil-
itate share of automotive data. Furthermore, some novel features provided by the pro-
posed architecture, when compared tomarket solutions, are the separation of data pro-
ducers and consumers through dedicated IoT topics where pipelines read raw samples
and write processed data, the allocation of computing resources adapted to the data
consumption demand and the hosting of services which require low latency in MEC in-
frastructures applying the container-based life cycle management for pipelines to third-
party services.

This work has fed both the European 5GMETA project and a publication [79].

In terms of efficiency, there is a lot of work to do to get themost from the computing
resources used by the running pipelines, reusing processed data for different applications
withdifferent sampling rates fromdifferent SLAs andwithpartially overlappedROIswhile
preventing promiscuous access to data.

Furthermore, the application of Network Slicing technologies to the proposed ar-
chitecture and data workflows will isolate different data flows for specific applications.
Specifically, applying RAN slicing techniques is essential to prioritize data communica-
tions for safety-related CAM applications over non-real-time-sensitive ones.

74

Bibliography

[1] Marconi’s first wireless transmission. https://www.ool.co.uk/blog/

marconis-first-wireless-transmission/. [Online; accessed 17-January-2022].

[2] The invention of mobiles phones. https://www.sciencemuseum.org.uk/

objects-and-stories/invention-mobile-phones. [Online; accessed 18-January-
2022].

[3] How many phones are in the-world? https://www.bankmycell.com/blog/

how-many-phones-are-in-the-world. [Online; accessed 18-January-2022].

[4] ITU. Setting the scene for 5g: opportunities and challenges. Technical report, ITU.,
2018.

[5] What edge computing means for infrastructure and opera-
tions leaders. https://www.gartner.com/smarterwithgartner/

what-edge-computing-means-for-infrastructure-and-operations-leaders.
[Online; accessed 21-January-2022].

[6] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,
Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. All one needs to know about fog
computing and related edge computing paradigms: A complete survey. Journal of
Systems Architecture, 98:289–330, 2019.

[7] Julien Gedeon, Florian Brandherm, Rolf Egert, Tim Grube, and Max Mühlhäuser.
What the fog? edge computing revisited: Promises, applications and future
challenges. IEEE Access, 7:152847–152878, 2019.

[8] Ericsson mobility report. https://www.ericsson.com/en/mobility-report/

reports/november-2019/iot-connections-outlook. [Online; accessed 19-January-
2022].

[9] 5GAA. Toward fully connected vehicles: Edge computing for advanced automotive
communications. White Paper, 5GAA., 2014.

[10] Development in the mobility technology ecosystem—how can 5g help?
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/

development-in-the-mobility-technology-ecosystem-how-can-5g-help. [Online;
accessed 21-January-2022].

[11] M. E. Lesk and B.W. Kernighan. Computer typesetting of technical journals on unix.
pages 879–888, June 1977. 1977 American Federation of Information Processing
SocietiesNational ComputerConference, AFIPS1977 ; Conferencedate: 13-06-1977
Through 16-06-1977.

75

https://www.ool.co.uk/blog/marconis-first-wireless-transmission/
https://www.ool.co.uk/blog/marconis-first-wireless-transmission/
https://www.sciencemuseum.org.uk/objects-and-stories/invention-mobile-phones
https://www.sciencemuseum.org.uk/objects-and-stories/invention-mobile-phones
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.ericsson.com/en/mobility-report/reports/november-2019/iot-connections-outlook
https://www.ericsson.com/en/mobility-report/reports/november-2019/iot-connections-outlook
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/development-in-the-mobility-technology-ecosystem-how-can-5g-help
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/development-in-the-mobility-technology-ecosystem-how-can-5g-help

[12] 5gmeta project’s website. https://5gmeta-project.eu/. [Online; accessed 16-
September-2022].

[13] Salah Eddine Elayoubi, Mikael Fallgren, Panagiotis Spapis, GerdZimmermann, David
Martín-Sacristán, Changqing Yang, Sébastien Jeux, Patrick Agyapong, Luis Campoy,
Yinan Qi, and Shubhranshu Singh. 5g service requirements and operational use
cases: Analysis and metis ii vision. In 2016 European Conference on Networks and
Communications (EuCNC), pages 158–162, 2016.

[14] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

[15] Bo Yi, XingweiWang, Keqin Li, Sajal K. Das, andMinHuang. A comprehensive survey
of network function virtualization. Comput. Networks, 133:212–262, 2018.

[16] T.D. Nadeau and K. Gray. SDN: Software Defined Networks. O’Reilly, 2013.

[17] Iqbal Alam, Kashif Sharif, Fan Li, Zohaib Latif, M. M. Karim, Sujit Biswas, Boubakr
Nour, and Yu Wang. A survey of network virtualization techniques for internet of
things using sdn and nfv. ACM Comput. Surv., 53(2), apr 2020.

[18] ETSI. Etsi gs nfv 002 v1.2.1 (2014-12), “network functions virtualisation (nfv);
architectural framework”. Technical report, ETSI, Tech. Rep., 2014.

[19] ETSI. Network functions virtualisation (nfv) release 3; management and orchestra-
tion; vi-vnfm reference point - interface and informationmodel specification. Tech-
nical report, ETSI, Tech. Rep., 2018.

[20] Rashid Mijumbi, Joan Serrat, Juanluis Gorricho, Niels Bouten, Filip De Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and research chal-
lenges. IEEE Communications Surveys Tutorials, 18, 09 2015.

[21] Openvim. https://osm.etsi.org/gitweb/?p=osm/openvim.git. [Online; accessed
12-April-2022].

[22] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: Toward
an open-source solution for cloud computing. International Journal of Computer
Applications, 55:38–42, 10 2012.

[23] Open infrastructure foundation. https://openinfra.dev/. [Online; accessed 12-
April-2022].

[24] Teodora Sechkova, Michele Paolino, and Daniel Raho. Virtualized infrastructure
managers for edge computing: Openvim and openstack comparison. In 2018 IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), pages 1–6, 2018.

[25] Open source mano (osm). https://osm.etsi.org/. [Online; accessed 13-April-
2022].

[26] Open network automation platform (onap). https://www.onap.org/. [Online;
accessed 13-April-2022].

[27] Christos John Bouras, Panagiotis Ntarzanos, and Andreas Papazois. Cost modeling
for sdn/nfv based mobile 5g networks. 2016 8th International Congress on Ultra
Modern Telecommunications and Control Systems and Workshops (ICUMT), pages
56–61, 2016.

76

https://5gmeta-project.eu/
https://osm.etsi.org/gitweb/?p=osm/openvim.git
https://openinfra.dev/
https://osm.etsi.org/
https://www.onap.org/

[28] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in nfv: A comprehen-
sive survey. IEEE Transactions on Network and Service Management, 13(3):518–532,
2016.

[29] Abderrahime Filali, Amine Abouaomar, Soumaya Cherkaoui, Abdellatif Kobbane,
and Mohsen Guizani. Multi-access edge computing: A survey. IEEE Access,
8:197017–197046, 01 2020.

[30] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innova-
tion in campus networks. Computer Communication Review, 38:69–74, 04 2008.

[31] Rob Enns, Martin Bjorklund, and Juergen Schoenwaelder. Netconf configuration
protocol. Technical report, RFC 4741, December, 2006.

[32] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
ToshioKoide, BobLantz, BrianO’Connor, PavlinRadoslavov,WilliamSnow, andGuru
Parulkar. Onos: Towards an open, distributed sdn os. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, page 1–6,
New York, NY, USA, 2014. Association for Computing Machinery.

[33] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards
a model-driven sdn controller architecture. In Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, pages
1–6, 2014.

[34] FUJITA Tomonori. Introduction to ryu sdn framework. Open Networking Summit,
pages 1–14, 2013.

[35] Ryan Wallner and Robert Cannistra. An sdn approach: Quality of service using
big switch’s floodlight open-source controller. Proceedings of the Asia-Pacific
Advanced Network, 35:14, 06 2013.

[36] Ola Salman, Imad H. Elhajj, Ayman Kayssi, and Ali Chehab. Sdn controllers:
A comparative study. In 2016 18th Mediterranean Electrotechnical Conference
(MELECON), pages 1–6, 2016.

[37] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J. Morrow,
and Paul A. Polakos. A comprehensive survey on fog computing: State-of-the-art
and research challenges. IEEE Communications Surveys Tutorials, 20(1):416–464,
2018.

[38] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dimitrios S.
Nikolopoulos. Challenges and opportunities in edge computing. In 2016 IEEE
International Conference on Smart Cloud (SmartCloud), pages 20–26, 2016.

[39] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies. The
case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[40] Yujin Li and Wenye Wang. The unheralded power of cloudlet computing in
the vicinity of mobile devices. In 2013 IEEE Global Communications Conference
(GLOBECOM), pages 4994–4999, 2013.

[41] Url. https://www.sigmobile.org/mobicom/2011/vanet2011/program.html. [Online;
accessed 30-March-2022].

77

https://www.sigmobile.org/mobicom/2011/vanet2011/program.html

[42] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, MCC ’12, page 13–16, New York, NY, USA,
2012. Association for Computing Machinery.

[43] Koustabh Dolui and Soumya Kanti Datta. Comparison of edge computing imple-
mentations: Fog computing, cloudlet and mobile edge computing. In 2017 Global
Internet of Things Summit (GIoTS), pages 1–6, 2017.

[44] Rehmat Ullah, Muhammad Atif Ur Rehman, and Byung-Seo Kim. Design and
implementation of an open source framework and prototype for named data
networking-based edge cloud computing system. IEEE Access, 7:57741–57759,
2019.

[45] ETSI. Mobile-edge computing – introductory technical white paper. White Paper,
ETSI, 2019.

[46] Multi-access edge computing (mec). https://www.etsi.org/technologies/

multi-access-edge-computing. [Accessed 15-July-2022].

[47] ETSI. Etsi gs mec 003 v2.2.1 (2020-12), “multi-access edge computing (mec);
framework and reference architecture”. Technical report, ETSI, Tech. Rep., 2020.

[48] ETSI. Etsi gs mec 001 v2.1.1 (2019-01), “multi-access edge computing (mec);
terminology”. Technical report, ETSI, Tech. Rep., 2019.

[49] ETSI. Etsi gs mec 002 v1.1.1 (2016-03), “mobile edge computing (mec); technical
requirements”. Technical report, ETSI, Tech. Rep., 2016.

[50] ETSI. Etsi gsmec 009 v2.2.1 (2020-10), “multi-access edge computing (mec); general
principles, patterns and common aspects of mec service apis”. Technical report,
ETSI, Tech. Rep., 2020.

[51] ETSI. Etsi gs mec 010-2 v2.1.1 (2019-11), “multi-access edge computing (mec); mec
management; part 2: Application lifecycle, rules and requirements management”.
Technical report, ETSI, Tech. Rep., 2019.

[52] ETSI. Etsi gsmec013 v2.1.1 (2019-09), “multi-access edge computing (mec); location
api”. Technical report, ETSI, Tech. Rep., 2019.

[53] ETSI. Etsi gr mec 022 v2.1.1 (2018-09), “multi-access edge computing (mec); study
onmec support for v2x use cases”. Technical report, ETSI, Tech. Rep., 2018.

[54] ETSI. Etsi gs mec 030 v2.1.1 (2020-04), “multi-access edge computing (mec); v2x
information service api”. Technical report, ETSI, Tech. Rep., 2020.

[55] What is edge computing? components, examples, andbest practices. https://www.
spiceworks.com/tech/edge-computing/articles/what-is-edge-computing/. [Ac-
cessed 16-July-2022].

[56] YanjunShi, YaohuiPan, ZihuiZhang, YanqiangLi, andYuXiao. A5g-v2xbasedcollab-
orativemotion planning for autonomous industrial vehicles at road intersections. In
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
3744–3748, 2018.

[57] European commission. cooperative, connected and automated mobility (ccam).
https://ec.europa.eu/transport/themes/its/c-its_en. [Accessed 16-July-2022].

78

https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.spiceworks.com/tech/edge-computing/articles/what-is-edge-computing/
https://www.spiceworks.com/tech/edge-computing/articles/what-is-edge-computing/
https://ec.europa.eu/transport/themes/its/c-its_en

[58] Ccam, connected vehicles, c-its. https://www.mobilityits.eu/

ccam-connected-vehicles. [Accessed 16-July-2022].

[59] Yancong Wang, Jian Wang, Yuming Ge, Bingyan Yu, Cheng Li, and Lu Li. Mec
support for c-v2x system architecture. 2019 IEEE 19th International Conference on
Communication Technology (ICCT), pages 1375–1379, 2019.

[60] Claudia Campolo, Antonio Iera, Antonella Molinaro, and Giuseppe Ruggeri. Mec
support for 5g-v2x use cases through docker containers. In 2019 IEEE Wireless
Communications and Networking Conference (WCNC), pages 1–6, 2019.

[61] Tiia Ojanperä, Hans van den Berg, Wieger IJntema, Ramon de Souza Schwartz,
and Miodrag Djurica. Application synchronization among multiple mec servers in
connected vehicle scenarios. In 2018 IEEE 88th Vehicular Technology Conference
(VTC-Fall), pages 1–5, 2018.

[62] Qingyang Zhang, Yifan Wang, Xingzhou Zhang, Liangkai Liu, Xiaopei Wu, Weisong
Shi, and Hong Zhong. Openvdap: An open vehicular data analytics platform for
cavs. In 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pages 1310–1320, 2018.

[63] Zhenyun Zhou, Houjian Yu, Chen Xu, Zheng Chang, Shahid Mumtaz, and Jonathan
Rodriguez. Begin: Big data enabled energy-efficient vehicular edge computing. IEEE
Communications Magazine, 56(12):82–89, 2018.

[64] Wei Duan, Xiaohui Gu, Miaowen Wen, Yancheng Ji, Jianhua Ge, and Guoan Zhang.
Resource management for intelligent vehicular edge computing networks. IEEE
Transactions on Intelligent Transportation Systems, 23(7):9797–9808, 2022.

[65] Jiawen Kang, Rong Yu, Xumin Huang, Maoqiang Wu, Sabita Maharjan, Shengli Xie,
and Yan Zhang. Blockchain for secure and efficient data sharing in vehicular edge
computing and networks. IEEE Internet of Things Journal, 6(3):4660–4670, 2019.

[66] ZhuoxingQin, Supeng Leng, Jihu Zhou, andSunMao. Collaborative edge computing
and caching in vehicular networks. In 2020 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–6, 2020.

[67] Kubeedge. https://kubeedge.io/en/. [Online; accessed 04-February-2022].

[68] Afraino. https://www.lfedge.org/projects/akraino/. [Online; accessed 03-
February-2022].

[69] Edgex. https://www.edgexfoundry.org/. [Online; accessed 07-February-2022].

[70] Kube5g. https://mosaic5g.io/kube5g/. [Online; accessed 08-February-2022].

[71] Starlingx. https://www.starlingx.io/. [Online; accessed 07-February-2022].

[72] Baetyl. https://baetyl.io/. [Online; accessed 08-February-2022].

[73] David Artuñedo Guillen, Bessem Sayadi, Pascal Bisson, Jean Phillippe Wary, Håkon
Lonsethagen, Carles Antón, Antonio de la Oliva, Alexandros Kaloxylos, and Valerio
Frascolla. Edge computing for 5g networks - white paper, March 2020.

[74] Matteo Petracca, Paolo Pagano, Riccardo Pelliccia, Marco Ghibaudi, Claudio Sal-
vadori, and Christian Nastasi. On-board unit hardware and software design for ve-
hicular ad-hoc networks. 2013.

79

https://www.mobilityits.eu/ccam-connected-vehicles
https://www.mobilityits.eu/ccam-connected-vehicles
https://kubeedge.io/en/
https://www.lfedge.org/projects/akraino/
https://www.edgexfoundry.org/
https://mosaic5g.io/kube5g/
https://www.starlingx.io/
https://baetyl.io/

[75] AbdallahDabboussi, RaedKouta, JaafarGaber, Bachar ElHassan,MaximeWack, and
LinaNachabe. A newapproach for the reliability of vehicular ad hoc networks. SSRN
Electronic Journal, 01 2018.

[76] Sony Guntuka, Elhadi M. Shakshuki, Ansar Yasar, and Hana Gharrad. Vehicular
data offloading by road-side units using intelligent software defined network.
Procedia Computer Science, 177:151–161, 2020. The 11th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2020) / The
10th International Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH 2020) / AffiliatedWorkshops.

[77] Javier Barrachina, Piedad Garrido, Manuel Fogue, Francisco J. Martinez, Juan-Carlos
Cano, Carlos T. Calafate, and Pietro Manzoni. Road side unit deployment: A density-
based approach. IEEE Intelligent Transportation Systems Magazine, 5(3):30–39,
2013.

[78] Bing maps tile system. online: [https://docs.microsoft.com/en-us/bingmaps/
articles/bing-maps-tile-system, howpublished = ”https://openinfra.dev/”,
note = ”[accessed 15-july-2022]”].

[79] Mikel Seron, Angel Martin, and Gorka Velez. Life cycle management of automotive
data functions inmec infrastructures. In IEEEFutureNetworksWorldForum(FNWF),
In press.

80

https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
https://openinfra.dev/

A. Annex I: Platform deployment
scripts

Listing A.1: MEC instatiation ansible-playbook

- name: Deploy 5GMETA MEC server

hosts: localhost

vars:

ansible_python_interpreter: /usr/bin/python3

REQUIRED VARS

southbound_ip: "X.X.X.X" #IP for the communication with S&D

northbound_ip: "X.X.X.X" #Public IP for communication with the

Cloud Platform

tiles:

- 031333123201211

- 031333123201033

OPTIONAL VARS

messagebroker_port: 5673 #Default 5673

videobroker_port: 8443 #Default 8443

registrationapi_port: 12346 #Default 12346

organization: Vicomtech

city: San Sebastian

latitude: "43.2922071"

longitude: " -1.987018 ,17"

tasks:

- name: Debug

ansible.builtin.debug:

msg:

- "{{ ansible_env.HOME }}"

- "{{ ansible_env.USER }}"

https :// germaniumhq.com /2019/02/14/2019 -02 -14 - Disabling -Swap -for -

Kubernetes -in-an-Ansible -Playbook/

- name: Save original iptables & fstab

become: yes

shell: "{{ item }}"

with_items:

- sudo cp /etc/fstab /etc/fstab_ORIGINAL

- sudo iptables -save > /etc/iptables/iptables_ORIGINAL.txt

- name: Install required system packages

become: yes

apt:

name: "{{ packages }}"

state: present

81

update_cache: yes

vars:

packages:

- apt -transport -https

- ca-certificates

- curl

- gnupg

- lsb -release

- software -properties -common

- build -essential

- git

- subversion

- python3 -dev

- python3 -docker

- libcurl4 -openssl -dev

- libssl -dev

- name: Upgrade pip

pip:

name: pip

extra_args: --upgrade

- name: Install python pip packages

pip:

name: "{{ packages }}"

vars:

packages:

- kubernetes

- openshift

- pycurl

- pyGeoTile

- prettytable

- click

- name: Create 5gmeta directory

file:

path: "{{ ansible_env.HOME }}/5 gmeta/"

state: directory

recurse: yes

- name: Import needed files for stack deployment from 5gmeta 's

repositories

subversion:

repo: https :// github.com/XXX/orchestrator/trunk/src/

dest: "{{ ansible_env.HOME }}/5 gmeta/"

export: yes

username: XXX

password: XXX

force: yes

- name: Add docker gpg key

become: yes

apt_key:

url: https :// download.docker.com/linux/ubuntu/gpg

state: present

- name: Add docker apt repository

become: yes

82

apt_repository:

repo: deb [arch=amd64] https :// download.docker.com/linux/ubuntu

xenial stable

state: present

- name: Install docker and its dependecies

become: yes

apt:

name: "{{ packages }}"

state: present

update_cache: yes

vars:

packages:

- docker -ce

- docker -ce-cli

- containerd.io

- docker -compose -plugin

notify:

- Docker started

- name: Add current user to docker group

become: yes

user:

name: "{{ ansible_env.USER }}"

groups: docker

append: yes

- name: Modify docker mtu

become: yes

copy:

dest: /etc/docker/daemon.json

content: |

{

"mtu": 1450

}

- name: Add kubernetes gpg key

become: yes

apt_key:

url: https :// packages.cloud.google.com/apt/doc/apt -key.gpg

state: present

- name: Add kubernetes apt repository

become: yes

apt_repository:

repo: deb http ://apt.kubernetes.io/ kubernetes -xenial main

state: present

- name: Remove swapfile from /etc/fstab

become: yes

mount:

name: "{{ item }}"

fstype: swap

state: absent

with_items:

- swap

- none

83

- name: Disable swap

become: yes

shell: swapoff -a

when: ansible_swaptotal_mb > 0

- name: Install kubernetes binaries

become: yes

apt:

name: "{{ packages }}"

state: present

update_cache: yes

vars:

packages:

- kubelet =1.20.11 -00

- kubeadm =1.20.11 -00

- kubectl =1.20.11 -00

1.23.3 -00

- name: Put kubernetes packages on hold

become: yes

shell: apt -mark hold "{{ packages }}"

vars:

packages:

- kubelet

- kubeadm

- kubectl

- name: Initialize the cluster

become: yes

shell: "{{ item }}"

with_items:

- 'echo "apiVersion: kubeadm.k8s.io/v1beta2\nkind:

ClusterConfiguration\nnetworking :\n podSubnet:

10.244.0.0/16\ napiServer :\n extraArgs :\n service -node -

port -range: "80 -65535"" > {{ ansible_env.HOME }}/5 gmeta/tmp/

cluster -config.yaml '

- kubeadm init --ignore -preflight -errors=SystemVerification --

config {{ ansible_env.HOME }}/5 gmeta/tmp/cluster -config.yaml

> {{ ansible_env.HOME }}/5 gmeta/logs/cluster_init

args:

creates: /etc/kubernetes/admin.conf

- name: Create .kube directory

file:

path: "{{ ansible_env.HOME }}/. kube"

state: directory

- name: Copy admin.conf to user 's kube config

become: yes

copy:

src: /etc/kubernetes/admin.conf

dest: "{{ ansible_env.HOME }}/. kube/config"

remote_src: yes

owner: "{{ ansible_env.USER }}"

group: "{{ ansible_env.USER }}"

mode: '0600'

- name: Taint master

84

shell: "{{ item }}"

with_items:

- kubectl taint node $(kubectl get nodes | awk '$3~/ master/'| awk

'{print $1}') node -role.kubernetes.io/master:NoSchedule -

- touch {{ ansible_env.HOME }}/5 gmeta/logs/master_tainted

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/master_tainted"

- name: Install helm

shell: curl https ://raw.githubusercontent.com/helm/helm/master/

scripts/get -helm -3 | bash

args:

creates: /usr/local/bin/helm

- name: Download flannel cni pod network manifest

get_url:

url: https ://raw.githubusercontent.com/coreos/flannel/master/

Documentation/kube -flannel.yml

dest: "{{ ansible_env.HOME }}/5 gmeta/tmp/kube -flannel.yml"

- name: Apply flannel cni pod network manifest

k8s:

state: present

src: "{{ ansible_env.HOME }}/5 gmeta/tmp/kube -flannel.yml"

- name: Add openebs repo

kubernetes.core.helm_repository:

name: openebs

repo_url: https :// openebs.github.io/charts

- name: Deploy openebs

kubernetes.core.helm:

name: openebs

release_namespace: openebs

create_namespace: true

chart_ref: openebs/openebs

chart_version: 3.1.0

1.12.0

update_repo_cache: yes

- name: Define default storageclass

shell: kubectl patch storageclass openebs -hostpath -p '{"metadata

":{" annotations ":{" storageclass.kubernetes.io/is-default -class

":" true "}}}'

register: result

until: result.stdout.find(" storageclass.storage.k8s.io/openebs -

hostpath patched ") != -1

retries: 30

delay: 10

- name: Add metallb repo

kubernetes.core.helm_repository:

name: metallb

repo_url: https :// metallb.github.io/metallb

- name: Deploy metallb

kubernetes.core.helm:

name: metallb

85

release_namespace: metallb -system

create_namespace: true

chart_ref: metallb/metallb

chart_version: 0.11.0

update_repo_cache: yes

values:

configInline:

address -pools:

- name: default

protocol: layer2

addresses:

- '{{ ansible_default_ipv4.address }}/32'

- name: Download kubernetes dashboard manifest

get_url:

url: https ://raw.githubusercontent.com/kubernetes/dashboard/v2

.4.0/ aio/deploy/recommended.yaml

dest: "{{ ansible_env.HOME }}/5 gmeta/tmp/k8s -dashboard.yaml"

- name: Apply kubernetes dashboard manifest

k8s:

state: present

src: "{{ ansible_env.HOME }}/5 gmeta/tmp/k8s -dashboard.yaml"

- name: Download metrics -server manifest

get_url:

url: https :// github.com/kubernetes -sigs/metrics -server/releases/

latest/download/components.yaml

dest: "{{ ansible_env.HOME }}/5 gmeta/tmp/metrics -server.yaml"

- name: Modify metrics -server manifest

lineinfile:

path: "{{ ansible_env.HOME }}/5 gmeta/tmp/metrics -server.yaml"

insertafter: " - --metric -resolution =15s"

line: " - --kubelet -insecure -tls"

state: present

- name: Apply metrics -server manifest

k8s:

state: present

src: "{{ ansible_env.HOME }}/5 gmeta/tmp/metrics -server.yaml"

- name: Add prometheus -community helm repo

kubernetes.core.helm_repository:

name: prometheus -community

repo_url: https :// prometheus -community.github.io/helm -charts

- name: Deploy kube -prometheus -stack

kubernetes.core.helm:

name: prometheus -stack

release_namespace: monitoring

create_namespace: true

chart_ref: prometheus -community/kube -prometheus -stack

update_repo_cache: yes

- name: Expose grafana 's dashboard

k8s:

state: present

86

kind: Service

namespace: monitoring

name: prometheus -stack -grafana

definition:

spec:

ports:

- nodePort: 3000

port: 80

type: NodePort

- name: Expose prometheus 's dashboard

k8s:

state: present

kind: Service

namespace: monitoring

name: prometheus -stack -kube -prom -prometheus

definition:

spec:

ports:

- nodePort: 9090

port: 9090

type: NodePort

- name: Expose alertmanager 's dashboard

k8s:

state: present

kind: Service

namespace: monitoring

name: prometheus -stack -kube -prom -alertmanager

definition:

spec:

ports:

- nodePort: 9093

port: 9093

type: NodePort

- name: Create 5gmeta namespace

k8s:

name: 5gmeta

kind: Namespace

state: present

- name: Add kube -eagle helm repo

kubernetes.core.helm_repository:

name: kube -eagle

repo_url: https ://raw.githubusercontent.com/cloudworkz/kube -eagle

-helm -chart/master

- name: Deploy kube -eagle

kubernetes.core.helm:

name: kube -eagle

release_namespace: monitoring

chart_ref: kube -eagle/kube -eagle

values:

serviceMonitor:

create: true

releaseLabel: prometheus -stack

update_repo_cache: yes

87

- name: Add bitnami repo

kubernetes.core.helm_repository:

name: bitnami

repo_url: https :// charts.bitnami.com/bitnami

- name: Deploy mysql cluster

kubernetes.core.helm:

name: mysql -cluster

release_namespace: mysql

create_namespace: true

chart_ref: bitnami/mysql

update_repo_cache: yes

- name: Add mysql -cluster secret to 5gmeta namespace

shell: "{{ item }}"

with_items:

- "kubectl get secret mysql -cluster --namespace=mysql -o yaml |

sed 's/namespace: .*/ namespace: 5gmeta/' | kubectl apply -f

-"

- touch {{ ansible_env.HOME }}/5 gmeta/logs/secret_copied

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/secret_copied"

- name: Install osm 10 in ubuntu 18.04

script: "{{ ansible_env.HOME }}/5 gmeta/scripts/Osm10Install.sh > {{

ansible_env.HOME }}/5 gmeta/logs/osm_install"

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/osm10_installed"

when:

- ansible_facts['distribution '] == "Ubuntu"

- ansible_facts['distribution_major_version '] == "18"

- name: Install osm 11 in ubuntu 20.04

script: "{{ ansible_env.HOME }}/5 gmeta/scripts/Osm11Install.sh > {{

ansible_env.HOME }}/5 gmeta/logs/osm_install"

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/osm11_installed"

when:

- ansible_facts['distribution '] == "Ubuntu"

- ansible_facts['distribution_major_version '] == "20"

- name: Add k8s cluster to osm

shell: "{{ item }}"

with_items:

- osm vim -create --name 5gmeta -vim --user u --password p --tenant

p --account_type dummy --auth_url http :// localhost/dummy

- "osm k8scluster -add 5gmeta -cluster --creds {{ ansible_env.HOME

}}/. kube/config --vim 5gmeta -vim --k8s -nets '{k8s_net1: null

}' --version 'v1.20.11 ' --description='K8s cluster '"

- touch {{ ansible_env.HOME }}/5 gmeta/logs/osm_cluster_added

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/osm_cluster_added"

- name: Add 5gmeta osm repos

shell: "{{ item }}"

with_items:

- osm repo -add --type osm 5gmeta -osm XXX

88

- osm repo -add --type helm -chart 5gmeta XXX

- touch {{ ansible_env.HOME }}/5 gmeta/logs/osm_repos_added

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/osm_repos_added"

- name: Log into DockerHub to reach 5gmeta 's repositories

docker_login:

username: XXX

password: XXX

- name: Log into DockerHub to reach 5gmeta 's repositories

shell: "{{ item }}"

with_items:

- sg docker -c 'docker login --username XXX --password XXX '

- touch {{ ansible_env.HOME }}/5 gmeta/logs/docker_login

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/docker_login"

- name: Create regcred secret for pulling images from 5gmeta 's

repositories

shell: "{{ item }}"

with_items:

- kubectl create secret generic regcred --from -file=.

dockerconfigjson ={{ ansible_env.HOME }}/. docker/config.json

--type=kubernetes.io/dockerconfigjson -n 5gmeta

- touch {{ ansible_env.HOME }}/5 gmeta/logs/docker_secret

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/docker_secret"

- name: Add 5gmeta helm repo

kubernetes.core.helm_repository:

name: 5gmeta

repo_url: XXX

- name: Deploy message -broker

kubernetes.core.helm:

name: message -broker

release_namespace: 5gmeta

chart_ref: 5gmeta/messagebroker -chart

update_repo_cache: yes

- name: Deploy video -broker

kubernetes.core.helm:

name: video -broker

release_namespace: 5gmeta

chart_ref: 5gmeta/videobroker -chart

update_repo_cache: yes

- name: Deploy registration -api

kubernetes.core.helm:

name: registration -api

release_namespace: 5gmeta

chart_ref: 5gmeta/registrationapi -chart

update_repo_cache: yes

- name: Deploy slaedge -api

kubernetes.core.helm:

name: slaedge -api

89

release_namespace: 5gmeta

chart_ref: 5gmeta/slaedgeapi -chart

update_repo_cache: yes

- name: Get IP geolocation data

community.general.ipinfoio_facts:

- name: Get token for accessing cloud APIs

uri:

url: https ://5 gmeta -platform.eu/identity/realms /5gmeta/protocol/

openid -connect/token

method: POST

return_content: yes

headers:

Content -Type: application/x-www -form -urlencoded

body_format: form -urlencoded

body:

grant_type: password

username: XXX

password: XXX

client_id: 5gmeta_login

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/services_registered"

register: json_response

changed_when: json_response.status | default (0) == 200

- name: "Set token variable"

set_fact:

token: "{{ json_response.json.access_token }}"

when: json_response is changed

- name: Register MEC server in 5GMETA cloud

uri:

url: https ://5 gmeta -platform.eu/discovery -api/mec

method: POST

return_content: yes

headers:

Authorization: "{{ 'Bearer ' + token }}"

body_format: json

body: { "geolocation ": [], "lat": "{{ latitude | default(loc |

split(',') | first) }}", "lng": "{{ loc | split(',') | last

}}", "name": "{{ city | default(city) }}", "organization ":

"{{ organization | default('Null ') }}", "props": {}, "

resources ": { "cpu": "{{ ansible_processor_count | string

}}", "gpu": "true", "memory ": "{{ '{:0.2f}'.format(

ansible_memory_mb.real.total | int / 1024) }}", "storage ":

"{{ '{:0.2f}'.format ((ansible_mounts|selectattr('mount ', '

equalto ', '/')|list)[0]. size_total | int / 1073741824) }}" },

"sb_services ": [{ "description ": "Message Broker", "ip":

"{{ southbound_ip | default(ip) }}", "port": "{{

messagebroker_port | default(5673) }}", "service_name ": "

message -broker" }, { "description ": "Video Stream Broker", "

ip": "{{ southbound_ip | default(ip) }}", "port": "{{

videobroker_port | default(8443) }}", "service_name ": "

video -broker" }, { "description ": "Registration API", "ip":

"{{ southbound_ip | default(ip) }}", "port": "{{

registrationapi_port | default(12346) }}", "service_name ":

"registration -api" }] }

when: token is defined

90

register: json_response

changed_when: json_response.status == 200

- name: "Set mec_id variable"

set_fact:

mec_id: "{{ json_response.json.mec_id }}"

when: json_response.changed

- name: Add tiles to MEC

uri:

url: https ://5 gmeta -platform.eu/discovery -api/mec/{{ mec_id }}/

tile /{{ item }}

method: POST

headers:

Authorization: "{{ 'Bearer ' + token }}"

when: mec_id is defined and token is defined

loop: "{{ tiles }}"

- name: Register message -broker service in 5GMETA cloud

uri:

url: https ://5 gmeta -platform.eu/discovery -api/mec/{{ mec_id }}/

nbservices

method: POST

return_content: yes

headers:

Authorization: "{{ 'Bearer ' + token }}"

body_format: json

body: { "description ": "Message Broker", "ip": "{{ northbound_ip

| default(ip) }}", "port": "61616" , "props": "{}", "

service_name ": "message -broker" }

when: mec_id is defined and token is defined

- name: Register slaedge -api service in 5GMETA cloud

uri:

url: https ://5 gmeta -platform.eu/discovery -api/mec/{{ mec_id }}/

nbservices

method: POST

return_content: yes

headers:

Authorization: "{{ 'Bearer ' + token }}"

body_format: json

body: { "description ": "API to manage the SLAs and reservations

in a 5GMETA MEC Server", "ip": "{{ northbound_ip | default(

ip) }}", "port": "5000" , "props": "{}", "service_name ": "

slaedge -api" }

when: mec_id is defined and token is defined

- name: Log registered services

become: yes

shell: touch {{ ansible_env.HOME }}/5 gmeta/logs/services_registered

args:

creates: "{{ ansible_env.HOME }}/5 gmeta/logs/services_registered"

- name: "Final message"

ansible.builtin.debug:

msg:

- Remember to add users to docker group with "usermod -aG docker

<username >". Use "newgrp docker" to use the group immediately

91

- "MEC stack correctly deployed , server registered in discovery

module with ID {{ mec_id }}"

handlers:

- name: Docker start

service:

name: docker

state: started

- name: Docker restart

service:

name: docker

state: restarted

92

Listing A.2: OSM installer for an already existing K8s cluster

#!/bin/bash

add_repo () {

REPO_CHECK="^$1"

grep "${REPO_CHECK /\[arch=amd64 \]/\\[arch=amd64 \\]}" /etc/apt/sources

.list > /dev/null 2>&1

if [$? -ne 0]

then

need_packages_lw="software -properties -common apt -transport -https"

echo -e "Checking required packages to add ETSI OSM debian repo:

$need_packages_lw"

dpkg -l $need_packages_lw &>/dev/null \

|| ! echo -e "One or several required packages are not installed.

 Updating apt cache requires root privileges." \

|| sudo apt -get -qy update \

|| ! echo "failed to run apt -get update" \

|| exit 1

dpkg -l $need_packages_lw &>/dev/null \

|| ! echo -e "Installing $need_packages_lw requires root

privileges." \

|| sudo apt -get install -y $need_packages_lw \

|| ! echo "failed to install $need_packages_lw" \

|| exit 1

wget -qO - "$REPOSITORY_BASE/$RELEASE/OSM%20 ETSI %20 Release %20Key.

gpg" | sudo APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE apt -key add -

sudo DEBIAN_FRONTEND=noninteractive add -apt -repository -y "$1"

sudo APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE =1 DEBIAN_FRONTEND=

noninteractive apt -get -y update

return 0

fi

return 1

}

clean_old_repo () {

dpkg -s 'osm -devops ' &> /dev/null

if [$? -eq 0]; then

Clean the previous repos that might exist

sudo sed -i "/osm -download.etsi.org/d" /etc/apt/sources.list

fi

}

function install_lxd () {

Apply sysctl production values for optimal performance

sudo cp ${OSM_DEVOPS }/ installers /60-lxd -production.conf /etc/sysctl

.d/60-lxd -production.conf

sudo sysctl --system

Install LXD snap

sudo apt -get remove --purge -y liblxc1 lxc -common lxcfs lxd lxd -

client

sudo snap install lxd --channel $LXD_VERSION/stable

Configure LXD

sudo usermod -a -G lxd `whoami `

cat ${OSM_DEVOPS }/ installers/lxd -preseed.conf | sed 's/^ config: {}/

93

config :\n core.https_address: '$DEFAULT_IP ':8443/ ' | sg lxd -c

"lxd init --preseed"

sg lxd -c "lxd waitready"

DEFAULT_IF=$(ip route list|awk '$1==" default" {print $5; exit}')

[-z "$DEFAULT_IF"] && DEFAULT_IF=$(route -n |awk '$1 ~/^0.0.0.0/ {

print $8; exit}')

[-z "$DEFAULT_IF"] && FATAL "Not possible to determine the

interface with the default route 0.0.0.0"

DEFAULT_MTU=$(ip addr show ${DEFAULT_IF} | perl -ne 'if (/mtu\s(\d

+)/) {print $1;}')

sg lxd -c "lxc profile device set default eth0 mtu $DEFAULT_MTU"

sg lxd -c "lxc network set lxdbr0 bridge.mtu $DEFAULT_MTU"

#sudo systemctl stop lxd -bridge

#sudo systemctl --system daemon -reload

#sudo systemctl enable lxd -bridge

#sudo systemctl start lxd -bridge

}

function install_juju () {

echo "Installing juju"

sudo snap install juju --classic --channel=$JUJU_VERSION/stable

[[":$PATH": != *":/snap/bin:"*]] && PATH="/snap/bin:${PATH}"

sleep 20

update_juju_images

echo "Finished installation of juju"

return 0

}

function update_juju_images (){

crontab -l | grep update -juju -lxc -images || (crontab -l 2>/dev/null

; echo "0 4 * * 6 $USER ${OSM_DEVOPS }/ installers/update -juju -

lxc -images --xenial --bionic") | crontab -

${OSM_DEVOPS }/ installers/update -juju -lxc -images --xenial --bionic

}

function parse_juju_password {

password_file="${HOME }/. local/share/juju/accounts.yaml"

local controller_name=$1

local s='[[: space :]]*' w='[a-zA-Z0 -9_-]*' fs=$(echo @|tr @ '\034')

sed -ne "s|^\($s\):|\1|" \

-e "s|^\($s\)\($w\)$s:$s[\"']\(.*\) [\"']$s\$|\1$fs\2$fs\3|p" \

 -e "s|^\($s\)\($w\)$s:$s \(.*\) $s\$|\1$fs\2$fs\3|p"

$password_file |

 awk -F$fs -v controller=$controller_name '{

 indent = length($1)/2;

 vname[indent] = $2;

 for (i in vname) {if (i > indent) {delete vname[i]}}

 if (length($3) > 0) {

 vn=""; for (i=0; i<indent; i++) {vn=(vn)(vname[i])("_")}

 if (match(vn,controller) && match($2,"password")) {

 printf("%s",$3);

 }

 }

 }'

}

function juju_createcontroller_k8s (){

 cat $HOME/.kube/config | juju add -k8s $OSM_VCA_K8S_CLOUDNAME --

94

client \

 || FATAL "Failed to add K8s endpoint and credential for client in

cloud $OSM_VCA_K8S_CLOUDNAME"

 juju bootstrap -v --debug $OSM_VCA_K8S_CLOUDNAME $OSM_STACK_NAME \

 --config controller -service -type=loadbalancer \

 --agent -version=$JUJU_AGENT_VERSION \

 || FATAL "Failed to bootstrap controller $OSM_STACK_NAME in cloud

$OSM_VCA_K8S_CLOUDNAME"

}

function juju_addlxd_cloud (){

 mkdir -p /tmp/.osm

 OSM_VCA_CLOUDNAME="lxd -cloud"

 LXDENDPOINT=$DEFAULT_IP

 LXD_CLOUD =/tmp/.osm/lxd -cloud.yaml

 LXD_CREDENTIALS =/tmp/.osm/lxd -credentials.yaml

 cat << EOF > $LXD_CLOUD

clouds:

 $OSM_VCA_CLOUDNAME:

 type: lxd

 auth -types: [certificate]

 endpoint: "https :// $LXDENDPOINT :8443"

 config:

 ssl -hostname -verification: false

EOF

 openssl req -nodes -new -x509 -keyout /tmp/.osm/client.key -out /

tmp/.osm/client.crt -days 365 -subj "/C=FR/ST=Nice/L=Nice/O=ETSI/OU

=OSM/CN=osm.etsi.org"

 cat << EOF > $LXD_CREDENTIALS

credentials:

 $OSM_VCA_CLOUDNAME:

 lxd -cloud:

 auth -type: certificate

 server -cert: /var/snap/lxd/common/lxd/server.crt

 client -cert: /tmp/.osm/client.crt

 client -key: /tmp/.osm/client.key

EOF

 lxc config trust add local: /tmp/.osm/client.crt

 juju add -cloud -c $OSM_STACK_NAME $OSM_VCA_CLOUDNAME $LXD_CLOUD --

force

 juju add -credential -c $OSM_STACK_NAME $OSM_VCA_CLOUDNAME -f

$LXD_CREDENTIALS

 sg lxd -c "lxd waitready"

 juju controller -config features =[k8s -operators]

}

function juju_createcontroller () {

 if ! juju show -controller $OSM_STACK_NAME &> /dev/null; then

 # Not found created , create the controller

 sudo usermod -a -G lxd ${USER}

 sg lxd -c "juju bootstrap --bootstrap -series=xenial --agent -

version=$JUJU_AGENT_VERSION $OSM_VCA_CLOUDNAME $OSM_STACK_NAME"

 fi

 [$(juju controllers | awk "/^${OSM_STACK_NAME }[*|]/{ print $1}"|

wc -l) -eq 1] || FATAL "Juju installation failed"

 juju controller -config features =[k8s -operators]

}

95

function juju_createproxy () {

 check_install_iptables_persistent

 if ! sudo iptables -t nat -C PREROUTING -p tcp -m tcp -d

$DEFAULT_IP --dport 17070 -j DNAT --to-destination $OSM_VCA_HOST;

then

 sudo iptables -t nat -A PREROUTING -p tcp -m tcp -d $DEFAULT_IP

 --dport 17070 -j DNAT --to-destination $OSM_VCA_HOST

 sudo netfilter -persistent save

 fi

}

function check_install_iptables_persistent (){

 echo -e "\nChecking required packages: iptables -persistent"

 if ! dpkg -l iptables -persistent &>/dev/null; then

 echo -e " Not installed .\ nInstalling iptables -persistent

requires root privileges"

 echo iptables -persistent iptables -persistent/autosave_v4

boolean true | sudo debconf -set -selections

 echo iptables -persistent iptables -persistent/autosave_v6

boolean true | sudo debconf -set -selections

 sudo apt -get -yq install iptables -persistent

 fi

}

function set_vca_variables () {

 OSM_VCA_CLOUDNAME="lxd -cloud"

 OSM_VCA_HOST=`sg lxd -c "juju show -controller $OSM_STACK_NAME"|grep

 api -endpoints|awk -F\' '{print $2}'|awk -F\: '{print $1}'`

 [-z "$OSM_VCA_HOST"] && FATAL "Cannot obtain juju controller IP

address"

 OSM_VCA_SECRET=$(parse_juju_password $OSM_STACK_NAME)

 [-z "$OSM_VCA_SECRET"] && FATAL "Cannot obtain juju secret"

 OSM_VCA_PUBKEY=$(cat $HOME/.local/share/juju/ssh/juju_id_rsa.pub)

 [-z "$OSM_VCA_PUBKEY"] && FATAL "Cannot obtain juju public key"

 OSM_VCA_CACERT=$(juju controllers --format json | jq -r --arg

controller $OSM_STACK_NAME '.controllers[$controller]["ca-cert"]' |

 base64 | tr -d \\n)

 [-z "$OSM_VCA_CACERT"] && FATAL "Cannot obtain juju CA

certificate"

}

function check_for_readiness () {

 # Default input values

 sampling_period =2 # seconds

 time_for_readiness =20 # seconds ready

 time_for_failure =200 # seconds broken

 OPENEBS_NAMESPACE=openebs

 METALLB_NAMESPACE=metallb -system

 # STACK_NAME=osm # By default , "osm"

 # Equivalent number of samples

 oks_threshold=$((time_for_readiness/${sampling_period })) # No.

96

ok samples to declare the system ready

 failures_threshold=$((time_for_failure/${sampling_period })) # No.

nok samples to declare the system broken

 failures_in_a_row =0

 oks_in_a_row =0

 ###

 # Loop to check system readiness

 ###

 while [[(${failures_in_a_row} -lt ${failures_threshold }) && (${

oks_in_a_row} -lt ${oks_threshold })]]

 do

 # State of OpenEBS

 OPENEBS_STATE=$(kubectl get pod -n ${OPENEBS_NAMESPACE} --no-

headers 2>&1)

 OPENEBS_READY=$(echo "${OPENEBS_STATE}" | awk '$2=="1/1" || $2

=="2/2" {printf ("%s\t%s\t\n", $1, $2)}')

 OPENEBS_NOT_READY=$(echo "${OPENEBS_STATE}" | awk '$2!="1/1" &&

 $2!="2/2" {printf ("%s\t%s\t\n", $1, $2)}')

 COUNT_OPENEBS_READY=$(echo "${OPENEBS_READY}"| grep -v -e '^$'

| wc -l)

 COUNT_OPENEBS_NOT_READY=$(echo "${OPENEBS_NOT_READY}" | grep -v

 -e '^$' | wc -l)

 # State of MetalLB

 METALLB_STATE=$(kubectl get pod -n ${METALLB_NAMESPACE} --no-

headers 2>&1)

 METALLB_READY=$(echo "${METALLB_STATE}" | awk '$2=="1/1" || $2

=="2/2" {printf ("%s\t%s\t\n", $1, $2)}')

 METALLB_NOT_READY=$(echo "${METALLB_STATE}" | awk '$2!="1/1" &&

 $2!="2/2" {printf ("%s\t%s\t\n", $1, $2)}')

 COUNT_METALLB_READY=$(echo "${METALLB_READY}" | grep -v -e '^$'

 | wc -l)

 COUNT_METALLB_NOT_READY=$(echo "${METALLB_NOT_READY}" | grep -v

 -e '^$' | wc -l)

 # OK sample

 if [[$((${COUNT_OPENEBS_NOT_READY }+${COUNT_METALLB_NOT_READY })

) -eq 0]]

 then

 ((++ oks_in_a_row))

 failures_in_a_row =0

 echo -ne ===\> Successful checks: "${oks_in_a_row}"/${

oks_threshold }\\r

 # NOK sample

 else

 ((++ failures_in_a_row))

 oks_in_a_row =0

 echo

 echo Bootstraping ... "${failures_in_a_row}" checks of ${

failures_threshold}

 # Reports failed pods in OpenEBS

 if [["${COUNT_OPENEBS_NOT_READY}" -ne 0]]

 then

 echo "OpenEBS: Waiting for ${COUNT_OPENEBS_NOT_READY}

of $((${COUNT_OPENEBS_NOT_READY }+${COUNT_OPENEBS_READY })) pods to

be ready:"

97

 echo "${OPENEBS_NOT_READY}"

 echo

 fi

 # Reports failed statefulsets

 if [["${COUNT_METALLB_NOT_READY}" -ne 0]]

 then

 echo "MetalLB: Waiting for ${COUNT_METALLB_NOT_READY}

of $((${COUNT_METALLB_NOT_READY }+${COUNT_METALLB_READY })) pods to

be ready:"

 echo "${METALLB_NOT_READY}"

 echo

 fi

 fi

 #------------ NEXT SAMPLE

 sleep ${sampling_period}

 done

 ##

 # OUTCOME

 ##

 if [[(${failures_in_a_row} -ge ${failures_threshold })]]

 then

 echo

 FATAL "K8S CLUSTER IS BROKEN"

 else

 echo

 echo "K8S CLUSTER IS READY"

 fi

}

function generate_docker_images () {

 echo "Pulling docker images"

 sg docker -c "docker pull wurstmeister/zookeeper" || FATAL "cannot

get zookeeper docker image"

 sg docker -c "docker pull wurstmeister/kafka:${KAFKA_TAG}" || FATAL

 "cannot get kafka docker image"

 sg docker -c "docker pull mongo" || FATAL "cannot get mongo docker

image"

 sg docker -c "docker pull prom/prometheus:${PROMETHEUS_TAG}" ||

FATAL "cannot get prometheus docker image"

 sg docker -c "docker pull google/cadvisor:${PROMETHEUS_CADVISOR_TAG

}" || FATAL "cannot get prometheus cadvisor docker image"

 sg docker -c "docker pull grafana/grafana:${GRAFANA_TAG}" || FATAL

"cannot get grafana docker image"

 sg docker -c "docker pull mariadb:${KEYSTONEDB_TAG}" || FATAL "

cannot get keystone -db docker image"

 sg docker -c "docker pull mysql:5" || FATAL "cannot get mysql

docker image"

 echo "Pulling OSM docker images"

 for module in MON POL NBI KEYSTONE RO LCM NG-UI osmclient; do

 module_lower=${module ,,}

 module_tag="${OSM_DOCKER_TAG}"

 echo "Pulling ${DOCKER_USER }/${module_lower }:${module_tag}

98

docker image"

 sg docker -c "docker pull ${DOCKER_USER }/${module_lower }:${

module_tag}" || FATAL "cannot pull $module docker image"

 done

 echo "Finished pulling and generating docker images"

}

function generate_k8s_manifest_files () {

 #kubernetes resources

 sudo cp -bR ${OSM_DEVOPS }/ installers/docker/osm_pods

$OSM_DOCKER_WORK_DIR

 sudo rm -f $OSM_K8S_WORK_DIR/mongo.yaml

sudo rm -f $OSM_K8S_WORK_DIR/light -ui.yaml

}

function generate_docker_env_files () {

 echo "Doing a backup of existing env files"

 sudo cp $OSM_DOCKER_WORK_DIR/keystone -db.env{,~}

 sudo cp $OSM_DOCKER_WORK_DIR/keystone.env{,~}

 sudo cp $OSM_DOCKER_WORK_DIR/lcm.env{,~}

 sudo cp $OSM_DOCKER_WORK_DIR/mon.env{,~}

 sudo cp $OSM_DOCKER_WORK_DIR/nbi.env{,~}

 sudo cp $OSM_DOCKER_WORK_DIR/pol.env{,~}

 sudo cp $OSM_DOCKER_WORK_DIR/ro-db.env{,~}

 sudo cp $OSM_DOCKER_WORK_DIR/ro.env{,~}

 echo "Generating docker env files"

 # LCM

 if [! -f $OSM_DOCKER_WORK_DIR/lcm.env]; then

 echo "OSMLCM_DATABASE_COMMONKEY=${OSM_DATABASE_COMMONKEY}" |

sudo tee -a $OSM_DOCKER_WORK_DIR/lcm.env

 fi

 if ! grep -Fq "OSMLCM_VCA_HOST" $OSM_DOCKER_WORK_DIR/lcm.env; then

 echo "OSMLCM_VCA_HOST=${OSM_VCA_HOST}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/lcm.env

 else

 sudo sed -i "s|OSMLCM_VCA_HOST .*| OSMLCM_VCA_HOST=$OSM_VCA_HOST|

g" $OSM_DOCKER_WORK_DIR/lcm.env

 fi

 if ! grep -Fq "OSMLCM_VCA_SECRET" $OSM_DOCKER_WORK_DIR/lcm.env;

then

 echo "OSMLCM_VCA_SECRET=${OSM_VCA_SECRET}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/lcm.env

 else

 sudo sed -i "s|OSMLCM_VCA_SECRET .*| OSMLCM_VCA_SECRET=

$OSM_VCA_SECRET|g" $OSM_DOCKER_WORK_DIR/lcm.env

 fi

 if ! grep -Fq "OSMLCM_VCA_PUBKEY" $OSM_DOCKER_WORK_DIR/lcm.env;

then

 echo "OSMLCM_VCA_PUBKEY=${OSM_VCA_PUBKEY}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/lcm.env

 else

 sudo sed -i "s|OSMLCM_VCA_PUBKEY .*| OSMLCM_VCA_PUBKEY=${

OSM_VCA_PUBKEY }|g" $OSM_DOCKER_WORK_DIR/lcm.env

 fi

99

 if ! grep -Fq "OSMLCM_VCA_CACERT" $OSM_DOCKER_WORK_DIR/lcm.env;

then

 echo "OSMLCM_VCA_CACERT=${OSM_VCA_CACERT}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/lcm.env

 else

 sudo sed -i "s|OSMLCM_VCA_CACERT .*| OSMLCM_VCA_CACERT=${

OSM_VCA_CACERT }|g" $OSM_DOCKER_WORK_DIR/lcm.env

 fi

 if [-n "$OSM_VCA_APIPROXY"]; then

 if ! grep -Fq "OSMLCM_VCA_APIPROXY" $OSM_DOCKER_WORK_DIR/lcm.

env; then

 echo "OSMLCM_VCA_APIPROXY=${OSM_VCA_APIPROXY}" | sudo tee -

a $OSM_DOCKER_WORK_DIR/lcm.env

 else

 sudo sed -i "s|OSMLCM_VCA_APIPROXY .*| OSMLCM_VCA_APIPROXY=${

OSM_VCA_APIPROXY }|g" $OSM_DOCKER_WORK_DIR/lcm.env

 fi

 fi

 if ! grep -Fq "OSMLCM_VCA_ENABLEOSUPGRADE" $OSM_DOCKER_WORK_DIR/lcm

.env; then

 echo "# OSMLCM_VCA_ENABLEOSUPGRADE=false" | sudo tee -a

$OSM_DOCKER_WORK_DIR/lcm.env

fi

if ! grep -Fq "OSMLCM_VCA_APTMIRROR" $OSM_DOCKER_WORK_DIR/lcm.env;

then

echo "# OSMLCM_VCA_APTMIRROR=http :// archive.ubuntu.com/ubuntu/"

| sudo tee -a $OSM_DOCKER_WORK_DIR/lcm.env

fi

if ! grep -Fq "OSMLCM_VCA_CLOUD" $OSM_DOCKER_WORK_DIR/lcm.env; then

echo "OSMLCM_VCA_CLOUD=${OSM_VCA_CLOUDNAME}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/lcm.env

else

sudo sed -i "s|OSMLCM_VCA_CLOUD .*| OSMLCM_VCA_CLOUD=${

OSM_VCA_CLOUDNAME }|g" $OSM_DOCKER_WORK_DIR/lcm.env

fi

if ! grep -Fq "OSMLCM_VCA_K8S_CLOUD" $OSM_DOCKER_WORK_DIR/lcm.env;

then

echo "OSMLCM_VCA_K8S_CLOUD=${OSM_VCA_K8S_CLOUDNAME}" | sudo tee

-a $OSM_DOCKER_WORK_DIR/lcm.env

else

sudo sed -i "s|OSMLCM_VCA_K8S_CLOUD .*| OSMLCM_VCA_K8S_CLOUD=${

OSM_VCA_K8S_CLOUDNAME }|g" $OSM_DOCKER_WORK_DIR/lcm.env

fi

RO

MYSQL_ROOT_PASSWORD=$(generate_secret)

if [! -f $OSM_DOCKER_WORK_DIR/ro-db.env]; then

echo "MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}" | sudo tee

$OSM_DOCKER_WORK_DIR/ro-db.env

fi

if [! -f $OSM_DOCKER_WORK_DIR/ro.env]; then

echo "RO_DB_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}" | sudo tee

100

$OSM_DOCKER_WORK_DIR/ro.env

fi

if ! grep -Fq "OSMRO_DATABASE_COMMONKEY" $OSM_DOCKER_WORK_DIR/ro.

env; then

echo "OSMRO_DATABASE_COMMONKEY=${OSM_DATABASE_COMMONKEY}" |

sudo tee -a $OSM_DOCKER_WORK_DIR/ro.env

fi

Keystone

KEYSTONE_DB_PASSWORD=$(generate_secret)

SERVICE_PASSWORD=$(generate_secret)

if [! -f $OSM_DOCKER_WORK_DIR/keystone -db.env]; then

echo "MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD}" | sudo tee

$OSM_DOCKER_WORK_DIR/keystone -db.env

fi

if [! -f $OSM_DOCKER_WORK_DIR/keystone.env]; then

echo "ROOT_DB_PASSWORD=${MYSQL_ROOT_PASSWORD}" | sudo tee

$OSM_DOCKER_WORK_DIR/keystone.env

echo "KEYSTONE_DB_PASSWORD=${KEYSTONE_DB_PASSWORD}" | sudo tee

-a $OSM_DOCKER_WORK_DIR/keystone.env

echo "SERVICE_PASSWORD=${SERVICE_PASSWORD}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/keystone.env

fi

NBI

if [! -f $OSM_DOCKER_WORK_DIR/nbi.env]; then

echo "OSMNBI_AUTHENTICATION_SERVICE_PASSWORD=${SERVICE_PASSWORD

}" | sudo tee $OSM_DOCKER_WORK_DIR/nbi.env

echo "OSMNBI_DATABASE_COMMONKEY=${OSM_DATABASE_COMMONKEY}" |

sudo tee -a $OSM_DOCKER_WORK_DIR/nbi.env

fi

MON

if [! -f $OSM_DOCKER_WORK_DIR/mon.env]; then

echo "OSMMON_KEYSTONE_SERVICE_PASSWORD=${SERVICE_PASSWORD}" |

sudo tee -a $OSM_DOCKER_WORK_DIR/mon.env

echo "OSMMON_DATABASE_COMMONKEY=${OSM_DATABASE_COMMONKEY}" |

sudo tee -a $OSM_DOCKER_WORK_DIR/mon.env

echo "OSMMON_SQL_DATABASE_URI=mysql :// root:${

MYSQL_ROOT_PASSWORD}@mysql :3306/ mon" | sudo tee -a

$OSM_DOCKER_WORK_DIR/mon.env

fi

if ! grep -Fq "OS_NOTIFIER_URI" $OSM_DOCKER_WORK_DIR/mon.env; then

echo "OS_NOTIFIER_URI=http ://${DEFAULT_IP }:8662" | sudo tee -a

$OSM_DOCKER_WORK_DIR/mon.env

else

sudo sed -i "s|OS_NOTIFIER_URI .*| OS_NOTIFIER_URI=http ://

$DEFAULT_IP :8662|g" $OSM_DOCKER_WORK_DIR/mon.env

fi

if ! grep -Fq "OSMMON_VCA_HOST" $OSM_DOCKER_WORK_DIR/mon.env; then

echo "OSMMON_VCA_HOST=${OSM_VCA_HOST}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/mon.env

else

sudo sed -i "s|OSMMON_VCA_HOST .*| OSMMON_VCA_HOST=$OSM_VCA_HOST|

g" $OSM_DOCKER_WORK_DIR/mon.env

fi

101

if ! grep -Fq "OSMMON_VCA_SECRET" $OSM_DOCKER_WORK_DIR/mon.env;

then

echo "OSMMON_VCA_SECRET=${OSM_VCA_SECRET}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/mon.env

else

sudo sed -i "s|OSMMON_VCA_SECRET .*| OSMMON_VCA_SECRET=

$OSM_VCA_SECRET|g" $OSM_DOCKER_WORK_DIR/mon.env

fi

if ! grep -Fq "OSMMON_VCA_CACERT" $OSM_DOCKER_WORK_DIR/mon.env;

then

echo "OSMMON_VCA_CACERT=${OSM_VCA_CACERT}" | sudo tee -a

$OSM_DOCKER_WORK_DIR/mon.env

else

sudo sed -i "s|OSMMON_VCA_CACERT .*| OSMMON_VCA_CACERT=${

OSM_VCA_CACERT }|g" $OSM_DOCKER_WORK_DIR/mon.env

fi

POL

if [! -f $OSM_DOCKER_WORK_DIR/pol.env]; then

echo "OSMPOL_SQL_DATABASE_URI=mysql :// root:${

MYSQL_ROOT_PASSWORD}@mysql :3306/ pol" | sudo tee -a

$OSM_DOCKER_WORK_DIR/pol.env

fi

echo "Finished generation of docker env files"

}

#deploy charmed services

function deploy_charmed_services () {

juju add -model $OSM_STACK_NAME $OSM_VCA_K8S_CLOUDNAME

The channel prefix is not always recognized (maybe it should be

cs: not ch:

anyway by default it will get it from the Charm Store)

juju deploy ch:mongodb -k8s -m $OSM_STACK_NAME

juju deploy mongodb -k8s -m $OSM_STACK_NAME

}

#creates secrets from env files which will be used by containers

function kube_secrets (){

kubectl create ns $OSM_STACK_NAME

kubectl create secret generic lcm -secret -n $OSM_STACK_NAME --from -

env -file=$OSM_DOCKER_WORK_DIR/lcm.env

kubectl create secret generic mon -secret -n $OSM_STACK_NAME --from -

env -file=$OSM_DOCKER_WORK_DIR/mon.env

kubectl create secret generic nbi -secret -n $OSM_STACK_NAME --from -

env -file=$OSM_DOCKER_WORK_DIR/nbi.env

kubectl create secret generic ro-db-secret -n $OSM_STACK_NAME --

from -env -file=$OSM_DOCKER_WORK_DIR/ro-db.env

kubectl create secret generic ro-secret -n $OSM_STACK_NAME --from -

env -file=$OSM_DOCKER_WORK_DIR/ro.env

kubectl create secret generic keystone -secret -n $OSM_STACK_NAME --

from -env -file=$OSM_DOCKER_WORK_DIR/keystone.env

kubectl create secret generic pol -secret -n $OSM_STACK_NAME --from -

env -file=$OSM_DOCKER_WORK_DIR/pol.env

}

102

function update_manifest_files () {

osm_services="nbi lcm ro pol mon ng-ui keystone prometheus"

list_of_services=""

for module in $osm_services; do

module_upper="${module ^^}"

if ! echo $TO_REBUILD | grep -q $module_upper ; then

list_of_services="$list_of_services $module"

fi

done

}

function namespace_vol () {

osm_services="nbi lcm ro pol mon kafka mysql prometheus"

for osm in $osm_services; do

sudo sed -i "s#path: /var/lib/osm#path: $OSM_NAMESPACE_VOL#g"

$OSM_K8S_WORK_DIR/$osm.yaml

done

}

#deploys osm pods and services

function deploy_osm_services () {

sudo sed -i 's/nodePort: 3000/ nodePort: 3001/' $OSM_K8S_WORK_DIR/

grafana.yaml

kubectl apply -n $OSM_STACK_NAME -f $OSM_K8S_WORK_DIR

}

function install_k8s_monitoring () {

install OSM monitoring

sudo chmod +x $OSM_DEVOPS/installers/k8s/*.sh

sudo $OSM_DEVOPS/installers/k8s/install_osm_k8s_monitoring.sh ||

FATAL_TRACK install_k8s_monitoring "k8s/

install_osm_k8s_monitoring.sh failed"

}

function install_osmclient (){

CLIENT_RELEASE=${RELEASE#"-R "}

CLIENT_REPOSITORY_KEY="OSM%20 ETSI %20 Release %20Key.gpg"

CLIENT_REPOSITORY=${REPOSITORY#"-r "}

CLIENT_REPOSITORY_BASE=${REPOSITORY_BASE#"-u "}

key_location=$CLIENT_REPOSITORY_BASE/$CLIENT_RELEASE/

$CLIENT_REPOSITORY_KEY

curl $key_location | sudo APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE =1

apt -key add -

sudo add -apt -repository -y "deb [arch=amd64]

$CLIENT_REPOSITORY_BASE/$CLIENT_RELEASE $CLIENT_REPOSITORY

osmclient IM"

sudo apt -get update

sudo apt -get install -y python3 -pip

sudo -H LC_ALL=C python3 -m pip install -U pip

sudo -H LC_ALL=C python3 -m pip install -U python -magic pyangbind

verboselogs

sudo apt -get install -y python3 -osm -im python3 -osmclient

if [-f /usr/lib/python3/dist -packages/osm_im/requirements.txt];

then

python3 -m pip install -r /usr/lib/python3/dist -packages/osm_im

/requirements.txt

fi

103

if [-f /usr/lib/python3/dist -packages/osmclient/requirements.txt

]; then

sudo apt -get install -y libcurl4 -openssl -dev libssl -dev

python3 -m pip install -r /usr/lib/python3/dist -packages/

osmclient/requirements.txt

fi

#sed 's,OSM_SOL005 =[^$]*, OSM_SOL005=True ,' -i ${HOME }/. bashrc

#echo 'export OSM_HOSTNAME=localhost ' >> ${HOME }/. bashrc

#echo 'export OSM_SOL005=True ' >> ${HOME }/. bashrc

echo -e "\nOSM client installed"

echo -e "OSM client assumes that OSM host is running in localhost

(127.0.0.1)."

echo -e "In case you want to interact with a different OSM host ,

you will have to configure this env variable in your .bashrc

file:"

echo " export OSM_HOSTNAME=<OSM_host >"

return 0

}

function add_local_k8scluster () {

/usr/bin/osm --all -projects vim -create \

--name _system -osm -vim \

--account_type dummy \

--auth_url http :// dummy \

--user osm --password osm --tenant osm \

--description "dummy" \

--config '{management_network_name: mgmt}'

/usr/bin/osm --all -projects k8scluster -add \

--creds ${HOME }/. kube/config \

--vim _system -osm -vim \

--k8s -nets '{"net1": null}' \

--version '1.15' \

--description "OSM Internal Cluster" \

_system -osm -k8s

}

function generate_secret () {

head /dev/urandom | tr -dc A-Za-z0 -9 | head -c 32

}

function install_osm () {

["$USER" == "root"] && FATAL "You are running the installer as

root. The installer is prepared to be executed as a normal user

 with sudo privileges."

echo "Installing OSM"

echo "Determining IP address of the interface with the default

route"

DEFAULT_IF=$(ip route list|awk '$1==" default" {print $5; exit}')

[-z "$DEFAULT_IF"] && DEFAULT_IF=$(route -n |awk '$1 ~/^0.0.0.0/ {

print $8; exit}')

[-z "$DEFAULT_IF"] && FATAL "Not possible to determine the

interface with the default route 0.0.0.0"

DEFAULT_IP=`ip -o -4 a s ${DEFAULT_IF} |awk '{split($4,a,"/");

print a[1]}'`

[-z "$DEFAULT_IP"] && FATAL "Not possible to determine the IP

address of the interface with the default route"

104

need_packages_lw="snapd"

echo -e "Checking required packages: $need_packages_lw"

dpkg -l $need_packages_lw &>/dev/null \

|| ! echo -e "One or several required packages are not

installed. Updating apt cache requires root privileges." \

|| sudo apt -get update \

|| FATAL "failed to run apt -get update"

dpkg -l $need_packages_lw &>/dev/null \

|| ! echo -e "Installing $need_packages_lw requires root

privileges." \

|| sudo apt -get install -y $need_packages_lw \

|| FATAL "failed to install $need_packages_lw"

install_lxd

echo "Creating folders for installation"

[! -d "$OSM_DOCKER_WORK_DIR"] && sudo mkdir -p

$OSM_DOCKER_WORK_DIR

check_for_readiness

install_juju

juju_createcontroller_k8s

juju_addlxd_cloud

juju_createcontroller

juju_createproxy

set_vca_variables

OSM_DATABASE_COMMONKEY=$(generate_secret)

[-z "OSM_DATABASE_COMMONKEY"] && FATAL "Cannot generate common db

 secret"

generate_docker_images

generate_k8s_manifest_files

generate_docker_env_files

deploy_charmed_services

kube_secrets

update_manifest_files

namespace_vol

deploy_osm_services

#install_k8s_monitoring

install_osmclient

echo -e "Checking OSM health state ..."

$OSM_DEVOPS/installers/osm_health.sh -s ${OSM_STACK_NAME} -k -f 8

|| \

echo -e "OSM is not healthy , but will probably converge to a

healthy state soon." && \

echo -e "Check OSM status with: kubectl -n ${OSM_STACK_NAME} get

all" && \

add_local_k8scluster

wget -q -O- https ://osm -download.etsi.org/ftp/osm -11.0- eleven/

README2.txt &> /dev/null

return 0

105

}

LXD_VERSION =4.0

JUJU_VERSION =2.9

JUJU_AGENT_VERSION =2.9.22

RELEASE="ReleaseELEVEN"

REPOSITORY="stable"

OSM_DEVOPS="/usr/share/osm -devops"

OSM_VCA_CLOUDNAME="localhost"

OSM_VCA_K8S_CLOUDNAME="k8scloud"

OSM_STACK_NAME=osm

REPOSITORY_KEY="OSM%20 ETSI %20 Release %20Key.gpg"

REPOSITORY_BASE="https ://osm -download.etsi.org/repository/osm/debian"

OSM_WORK_DIR="/etc/osm"

OSM_DOCKER_WORK_DIR="${OSM_WORK_DIR }/ docker"

OSM_K8S_WORK_DIR="${OSM_DOCKER_WORK_DIR }/ osm_pods"

OSM_HOST_VOL="/var/lib/osm"

OSM_NAMESPACE_VOL="${OSM_HOST_VOL }/${OSM_STACK_NAME}"

OSM_DOCKER_TAG =11

DOCKER_USER=opensourcemano

KAFKA_TAG =2.11 -1.0.2

PROMETHEUS_TAG=v2.4.3

GRAFANA_TAG=latest

PROMETHEUS_NODE_EXPORTER_TAG =0.18.1

PROMETHEUS_CADVISOR_TAG=latest

KEYSTONEDB_TAG =10

#ELASTIC_VERSION =6.4.2

#ELASTIC_CURATOR_VERSION =5.5.4

#main

source $OSM_DEVOPS/common/all_funcs

clean_old_repo

add_repo "deb [arch=amd64] $REPOSITORY_BASE/$RELEASE $REPOSITORY devops

"

sudo DEBIAN_FRONTEND=noninteractive apt -get -q update

sudo DEBIAN_FRONTEND=noninteractive apt -get install osm -devops

need_packages="git wget curl tar"

echo -e "Checking required packages: $need_packages"

dpkg -l $need_packages &>/dev/null \

|| ! echo -e "One or several required packages are not installed.

Updating apt cache requires root privileges." \

|| sudo apt -get update \

|| FATAL "failed to run apt -get update"

dpkg -l $need_packages &>/dev/null \

|| ! echo -e "Installing $need_packages requires root privileges." \

|| sudo apt -get install -y $need_packages \

|| FATAL "failed to install $need_packages"

sudo snap install jq

["${OSM_STACK_NAME}" == "osm"] || OSM_DOCKER_WORK_DIR="$OSM_WORK_DIR/

stack/$OSM_STACK_NAME"

OSM_K8S_WORK_DIR="$OSM_DOCKER_WORK_DIR/osm_pods" && OSM_NAMESPACE_VOL="

${OSM_HOST_VOL }/${OSM_STACK_NAME}"

#Installation starts here

wget -q -O- https ://osm -download.etsi.org/ftp/osm -11.0- eleven/README.

106

txt &> /dev/null

install_osm

touch ${HOME }/5 gmeta/logs/osm11_installed

echo -e "\nDONE"

exit 0

Listing A.3: OSM ”cits” pipeline’s KNFD and NSD descriptors

vnfd:

id: cits_knfd

product -name: cits_knfd

description: CITS Pipeline

version: '1.0'

mgmt -cp: knf -cp0 -ext

df:

- id: default -df

kdu:

- helm -chart: 5gmeta/helloworld -chart

name: cits

k8s -cluster:

nets:

- id: mgmtnet

ext -cpd:

- id: knf -cp0 -ext

k8s -cluster -net: mgmtnet

nsd:

nsd:

- id: cits_nsd

name: cits

description: CITS Pipeline

version: '1.0'

vnfd -id:

- cits_knfd

df:

- id: default -df

vnf -profile:

- id: "1"

vnfd -id: cits_knfd

virtual -link -connectivity:

- virtual -link -profile -id: cits_nsd_vld0

constituent -cpd -id:

- constituent -base -element -id: "1"

constituent -cpd -id: knf -cp0 -ext

virtual -link -desc:

- id: cits_nsd_vld0

mgmt -network: true

Listing A.4: Resource introspection script

#!/bin/bash

[-z "$nodeip"] && nodeip=$(kubectl get nodes -o jsonpath="{.items [0].

status.addresses [0]. address}")

107

allocatable_memory ()

{

allocatable_memory=$(curl -s http :// $nodeip :9090/ api/v1/query\?query

\= eagle_node_resource_allocatable_memory_bytes | jq '.data.

result [0]. value [1] | tonumber ')

echo $allocatable_memory | awk '{print $1 /1024/1024/1024} '

}

allocatable_cpu ()

{

allocatable_cpu=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_allocatable_cpu_cores | jq '.data.result [0].

value [1] | tonumber ')

echo $allocatable_cpu

}

schedulable_memory ()

{

allocatable_memory=$(curl -s http :// $nodeip :9090/ api/v1/query\?query

\= eagle_node_resource_allocatable_memory_bytes | jq '.data.

result [0]. value [1] | tonumber ')

memory_usage=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_usage_memory_bytes | jq '.data.result [0].

value [1] | tonumber ')

memory_requests=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_requests_memory_bytes | jq '.data.result [0].

value [1] | tonumber ')

memory_limits=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_limits_memory_bytes | jq '.data.result [0].

value [1] | tonumber ')

max_memory=$(printf '%d\n' $memory_usage $memory_requests

$memory_limits | sort -nr | head -1)

schedulable_memory=$((allocatable_memory -max_memory))

echo $schedulable_memory | awk '{print $1 /1024/1024/1024} '

}

schedulable_cpu ()

{

allocatable_cpu=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_allocatable_cpu_cores | jq '.data.result [0].

value [1] | tonumber ')

cpu_usage=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_usage_cpu_cores | jq '.data.result [0]. value

[1] | tonumber ')

cpu_requests=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_requests_cpu_cores | jq '.data.result [0].

value [1] | tonumber ')

cpu_limits=$(curl -s http :// $nodeip :9090/ api/v1/query\?query\=

eagle_node_resource_limits_cpu_cores | jq '.data.result [0]. value

[1] | tonumber ')

max_cpu=$(printf '%f\n' $cpu_usage $cpu_requests $cpu_limits | sort

-nr | head -1)

schedulable_cpu=$(echo "$allocatable_cpu -$max_cpu" | bc)

echo $schedulable_cpu

}

108

help()

{

echo "Program to get the allocatable and schedulable resources from

a k8s node."

echo

echo "Syntax: introspection [-m|c|g|h]"

echo "options:"

echo "m: Print the allocatable memory."

echo "c: Print the allocatable CPUs."

echo "M: Print the schedulable memory."

echo "C: Print the schedulable CPUs."

echo "g: Print the schedulable GPUs (if available)."

echo "h: Help."

echo

}

[$# -eq 0] && help

while getopts "mcMCgh" option; do

case $option in

m) # Display allocatable memory

allocatable_memory

exit;;

c) # Display allocatable cpu

allocatable_cpu

exit;;

M) # Display schedulable memory

schedulable_memory

exit;;

C) # Display schedulable cpu

schedulable_cpu

exit;;

g) # Display schedulable gcpu

schedulable_gpu

exit;;

h | *) # Display help

help

exit;;

\?) # Invalid option

echo "Error: Invalid option"

exit;;

esac

done

Listing A.5: Confluent Kafka values file

--

Zookeeper

--

cp-zookeeper:

enabled: true

servers: 3

image: confluentinc/cp-zookeeper

imageTag: 7.1.0

Optionally specify an array of imagePullSecrets. Secrets must be

manually created in the namespace.

https :// kubernetes.io/docs/concepts/containers/images /#specifying -

imagepullsecrets -on-a-pod

109

imagePullSecrets:

- name: "regcred"

heapOptions: "-Xms512M -Xmx512M"

persistence:

enabled: true

The size of the PersistentVolume to allocate to each Zookeeper

Pod in the StatefulSet. For

production servers this number should likely be much larger.

##

Size for Data dir , where ZooKeeper will store the in-memory

database snapshots.

dataDirSize: 5Gi

dataDirStorageClass: ""

Size for data log dir , which is a dedicated log device to be

used , and helps avoid competition between logging and snaphots.

dataLogDirSize: 5Gi

dataLogDirStorageClass: ""

TODO: find correct security context for user in this zk-image

securityContext:

runAsUser: 0

resources:

If you do want to specify resources , uncomment the following lines

, adjust them as necessary ,

and remove the curly braces after 'resources:'

limits:

cpu: 100m

memory: 1Gi

requests:

cpu: 100m

memory: 768Mi

--

Kafka

--

cp-kafka:

enabled: true

brokers: 3

image: confluentinc/cp-enterprise -kafka

imageTag: 7.1.0

Optionally specify an array of imagePullSecrets. Secrets must be

manually created in the namespace.

https :// kubernetes.io/docs/concepts/containers/images /#specifying -

imagepullsecrets -on-a-pod

imagePullSecrets:

- name: "regcred"

heapOptions: "-Xms512M -Xmx512M"

persistence:

enabled: true

storageClass: ""

size: 20Gi

disksPerBroker: 1

resources:

If you do want to specify resources , uncomment the following lines

, adjust them as necessary ,

and remove the curly braces after 'resources:'

limits:

110

cpu: 100m

memory: 1Gi

requests:

cpu: 100m

memory: 768Mi

securityContext:

runAsUser: 0

--

Schema Registry

--

cp-schema -registry:

enabled: true

image: confluentinc/cp-schema -registry

imageTag: 6.1.0

Optionally specify an array of imagePullSecrets. Secrets must be

manually created in the namespace.

https :// kubernetes.io/docs/concepts/containers/images /#specifying -

imagepullsecrets -on-a-pod

imagePullSecrets:

- name: "regcred"

heapOptions: "-Xms512M -Xmx512M"

resources: {}

If you do want to specify resources , uncomment the following lines

, adjust them as necessary ,

and remove the curly braces after 'resources:'

limits:

cpu: 100m

memory: 128Mi

requests:

cpu: 100m

memory: 128Mi

--

REST Proxy

--

cp-kafka -rest:

enabled: true

image: confluentinc/cp-kafka -rest

imageTag: 7.1.0

Optionally specify an array of imagePullSecrets. Secrets must be

manually created in the namespace.

https :// kubernetes.io/docs/concepts/containers/images /#specifying -

imagepullsecrets -on-a-pod

imagePullSecrets:

- name: "regcred"

heapOptions: "-Xms512M -Xmx512M"

resources: {}

If you do want to specify resources , uncomment the following lines

, adjust them as necessary ,

and remove the curly braces after 'resources:'

limits:

cpu: 100m

memory: 128Mi

requests:

cpu: 100m

memory: 128Mi

111

--

Kafka Connect

--

cp-kafka -connect:

enabled: true

image: confluentinc/cp-kafka -connect

image: 5gmeta/kafka -connect

imageTag: 6.1.0

Optionally specify an array of imagePullSecrets. Secrets must be

manually created in the namespace.

https :// kubernetes.io/docs/concepts/containers/images /#specifying -

imagepullsecrets -on-a-pod

imagePullSecrets:

- name: "regcred"

heapOptions: "-Xms512M -Xmx512M"

resources: {}

If you do want to specify resources , uncomment the following lines

, adjust them as necessary ,

and remove the curly braces after 'resources:'

limits:

cpu: 100m

memory: 128Mi

requests:

cpu: 100m

memory: 128Mi

--

KSQL Server

--

cp-ksql -server:

enabled: true

image: confluentinc/cp-ksqldb -server

imageTag: 7.1.0

Optionally specify an array of imagePullSecrets. Secrets must be

manually created in the namespace.

https :// kubernetes.io/docs/concepts/containers/images /#specifying -

imagepullsecrets -on-a-pod

imagePullSecrets:

- name: "regcred"

heapOptions: "-Xms512M -Xmx512M"

ksql:

headless: false

--

Control Center

--

cp-control -center:

enabled: false

image: confluentinc/cp-enterprise -control -center

imageTag: 7.1.0

Optionally specify an array of imagePullSecrets. Secrets must be

manually created in the namespace.

https :// kubernetes.io/docs/concepts/containers/images /#specifying -

imagepullsecrets -on-a-pod

imagePullSecrets:

- name: "regcred"

heapOptions: "-Xms512M -Xmx512M"

resources: {}

112

If you do want to specify resources , uncomment the following lines

, adjust them as necessary ,

and remove the curly braces after 'resources:'

limits:

cpu: 100m

memory: 128Mi

requests:

cpu: 100m

memory: 128Mi

Listing A.6: Connaisseur Helm values file

configure Connaisseur deployment

deployment:

replicasCount: 3

image: securesystemsengineering/connaisseur:v2.6.3

imagePullPolicy: IfNotPresent

imagePullSecrets contains an optional list of Kubernetes Secrets ,

in Connaisseur namespace ,

that are needed to access the registry containing Connaisseur image

.

imagePullSecrets:

- name: "my-container -secret"

failurePolicy: Fail # use 'Ignore ' to fail open if Connaisseur

becomes unavailable

Use 'reinvocationPolicy: IfNeeded ' to be called again as part of

the admission evaluation if the object

being admitted is modified by other admission plugins after the

initial webhook call

Note that if Connaisseur is invoked a second time , the policy to be

applied might change in between.

Make sure , your Connaisseur policies are set up to handle multiple

mutations of the image originally

specified in the manifest , e.g. my.private.registry/image :1.0.0 and

my.private.registry/image@sha256:<hash -of -1.0.0 -image >

reinvocationPolicy: Never

resources:

limits:

cpu: 1000m

memory: 512Mi

requests:

cpu: 100m

memory: 128Mi

nodeSelector: {}

tolerations: []

affinity:

podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- podAffinityTerm:

labelSelector:

matchExpressions:

- key: app.kubernetes.io/instance

operator: In

values:

- connaisseur

topologyKey: kubernetes.io/hostname

weight: 100

#annotations: # uncomment when using Kubernetes prior v1.19

113

seccomp.security.alpha.kubernetes.io/pod: runtime/default

uncomment when using Kubernetes prior v1.19

securityContext:

allowPrivilegeEscalation: false

capabilities:

drop:

- ALL

privileged: false

readOnlyRootFilesystem: true

runAsNonRoot: true

runAsUser: 10001 # remove when using openshift or OKD 4

runAsGroup: 20001 # remove when using openshift or OKD 4

seccompProfile: # remove when using Kubernetes prior v1.19,

openshift or OKD 4

type: RuntimeDefault # remove when using Kubernetes prior v1.19,

openshift or OKD 4

PodSecurityPolicy is deprecated as of Kubernetes v1.21, and will be

removed in v1.25

podSecurityPolicy:

enabled: false

name: [" connaisseur -psp"] # list of PSPs to use , "connaisseur -psp"

is the project -provided default

envs: {} # dict of additional environment variables , which will be

stored as a secret and injected into the Connaisseur pods

Extra config

extraContainers: []

extraVolumes: []

extraVolumeMounts: []

configure Connaisseur service

service:

type: ClusterIP

port: 443

VALIDATORS

validators are a set of configurations (types , public keys ,

authentication)

that can be used for validating one or multiple images (or image

signatures).

they are tied to their respective image(s) via the image policy below

. there

are a few handy validators pre -configured.

validators:

static validator that allows each image

- name: allow

type: static

approve: true

static validator that denies each image

- name: deny

type: static

approve: false

the `default ` validator is used if no validator is specified in

image policy

- name: default

type: notaryv1 # or other supported validator (e.g. "cosign ")

host: notary.docker.io # configure the notary server for notaryv1

or rekor url for cosign

trust_roots:

114

the `default ` key is used if no key is specified in image policy

- name: default

key: | # enter your public key below

-----BEGIN PUBLIC KEY -----

XXX==

-----END PUBLIC KEY -----

#cert: | # in case the trust data host is using a self -signed

certificate

-----BEGIN CERTIFICATE -----

...

-----END CERTIFICATE -----

auth: # credentials in case the trust data requires authentication

either (preferred solution)

secret_name: mysecret # reference a k8s secret in the form

required by the validator type (check the docs)

or (only for notaryv1 validator)

username: XXX

password: XXX

pre -configured nv1 validator for public notary from Docker Hub

- name: dockerhub -basics

type: notaryv1

host: notary.docker.io

trust_roots:

public key for official docker images (https ://hub.docker.com/

search?q=&type=image&image_filter=official)

!if not needed feel free to remove the key!

- name: docker -official

key: |

-----BEGIN PUBLIC KEY -----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEOXYta5TgdCwXTCnLU09W5T4M4r9f

QQrqJuADP6U7g5r9ICgPSmZuRHP /1 AYUfOQW3baveKsT969EfELKj1lfCA ==

-----END PUBLIC KEY -----

public key securesystemsengineering repo including Connaisseur

images

!this key is critical for Connaisseur!

- name: securesystemsengineering -official

key: |

-----BEGIN PUBLIC KEY -----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEsx28WV7BsQfnHF1kZmpdCTTLJaWe

d0CA+JOi8H4REuBaWSZ5zPDe468WuOJ6f71E7WFg3CVEVYHuoZt2UYbN/Q==

-----END PUBLIC KEY -----

IMAGE POLICY

the image policy ties validators and images together whereby always

only the most specific rule (pattern)

is applied. specify if and how images should be validated by which

validator via the validator name.

policy:

- pattern: "*:*"

- pattern: "docker.io/library /*:*"

validator: dockerhub -basics

with:

trust_root: docker -official

- pattern: "k8s.gcr.io/*:*"

validator: allow

- pattern: "docker.io/securesystemsengineering /*:*"

115

validator: dockerhub -basics

with:

trust_root: securesystemsengineering -official

in detection mode , deployment will not be denied , but only prompted

and logged. this allows testing the functionality without

interrupting operation.

detectionMode: false

namespaced validation allows to restrict the namespaces that will be

subject to Connaisseur verification.

when enabled , based on namespaced validation mode ('ignore ' or '

validate ')

- either all namespaces with label "securesystemsengineering.

connaisseur/webhook=ignore" are ignored

- or only namespaces with label "securesystemsengineering.connaisseur

/webhook=validate" are validated.

warning: enabling namespaced validation , allows roles with edit

permission on a namespace to disable

validation for that namespace

namespacedValidation:

enabled: false

mode: ignore # 'ignore ' or 'validate '

automatic child approval determines how admission of Kubernetes child

resources is handled by Connaisseur.

per default , Connaisseur validates and mutates all resources , e.g.

deployments , replicaSets , pods , and

automatically approves child resources of those to avoid duplicate

validation and inconsistencies with the

image policy. when disabled Connaisseur will only validate and mutate

pods. check the docs for more

information.

NOTE: configuration of automatic child approval is in EXPERIMENTAL

state.

automaticChildApproval:

enabled: true

debug: true

The "logLevel" configuration option adds a partial redundancy to the

`debug ` setting.

Removing the `debug ` setting is a breaking change though - we are

going to remove the `debug ` setting in the context of a larger

refactoring to avoid multiple breaking releases.

Option to configure the log level. Either one of `DEBUG `, `INFO `, `

WARNING `, `ERROR `, `CRITICAL `. Defaults to `INFO `

logLevel: INFO

alerting is implemented in form of simple POST requests with json

payload

you can use and/or adapt the predefined Slack/OpsGenie/Keybase

templates and the examples below

to channel alert notifications to Slack/OpsGenie/Keybase or create a

custom template for a customized alert

payload to use with a simple POST request to the receiver_url to

receive alerts.

116

Parameters you can use in your templates are "alert_message", "

priority", "connaisseur_pod_id", "cluster",

"timestamp", "request_id" and "images" each one basically meaning

what their names indicate

#

Below is an example config

#alerting:

cluster_identifier: example -cluster -staging -europe # defaults to "

not specified"

admit_request:

templates:

<template > needs to be chosen such that <template >.json

matches one of the file names

in the ./ alert_payload_templates directory

- template: opsgenie #REQUIRED!

receiver_url: https ://api.eu.opsgenie.com/v2/alerts #REQUIRED!

priority: 4 #(defaults to 3)

custom_headers: [" Authorization: GenieKey <Your -Genie -Key >"]

payload_fields:

responders:

- username: "testuser@testcompany.de"

type: user

visibleTo:

- username: "testuser@testcompany.de"

type: user

tags:

- "deployed_an_image"

fail_if_alert_sending_fails: True # (defaults to False ,

turning it to True will make Connaisseur deny your

deployment (even in

detection mode))

- template: slack #REQUIRED!

receiver_url: https :// hooks.slack.com/services/<Your -Slack -

Hook -Path >

priority: 1

reject_request:

templates:

- template: keybase #REQUIRED!

receiver_url: https :// bots.keybase.io/webhookbot/<Your -Keybase

-Hook -Token >

fail_if_alert_sending_fails: True

Listing A.7: SLA API definition and logic

openapi: 3.0.1

info:

title: SLA Edge

description: API to manage the SLAs and reservations in a 5GMETA MEC

Server. The SLA API has the

scope to consent the request of a certain service level agreement

and receive

the confimation or reservation. A request could be deleted. A

reservation cannot

be modified or updated ."

termsOfService: http :// swagger.io/terms/

contact:

name: 5GMETA

117

url: https ://5 gmeta -project.eu/

license:

name: Apache 2.0

url: http ://www.apache.org/licenses/LICENSE -2.0. html

version: 1.0.0

externalDocs:

description: Find out more about 5GMETA

url: https ://5 gmeta -project.eu/

servers:

- url: http :// localhost/

- url: https :// localhost/

tags:

- name: sla

description: Operations about SLAs

externalDocs:

description: Find out more

url: http :// swagger.io

- name: reservation

description: Operations about SLA reservations

paths:

/sla:

post:

tags:

- sla

summary: Add a new SLA

operationId: post_sla

requestBody:

description: SLA object that needs to be added

content:

application/json:

schema:

x-body -name: payload

$ref: '#/ components/schemas/SLA '

required: true

responses:

200:

description: SLA successfully added

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

description: Invalid SLA

401:

description: The SLA level already exists

x-openapi -router -controller: openapi_server.controllers.

sla_controller

get:

tags:

- sla

summary: Get SLAs

description: Get SLAs

operationId: get_sla

responses:

200:

description: Success

content:

application/json:

118

schema:

$ref: '#/components/schemas/SLA '

x-openapi -router -controller: openapi_server.controllers.

sla_controller

/sla/{ sla_level }:

get:

tags:

- sla

summary: Get a SLA

description: Returns a single SLA

operationId: get_sla_item

parameters:

- name: sla_level

in: path

description: Specify the SLA level to get the information

required: true

schema:

type: string

responses:

200:

description: Success

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

description: Invalid SLA

404:

description: SLA not found

x-openapi -router -controller: openapi_server.controllers.

sla_controller

patch:

tags:

- sla

summary: Update a SLA

operationId: patch_sla

parameters:

- name: sla_level

in: path

description: Specify the SLA level to modify the requeriments

required: true

schema:

type: string

requestBody:

content:

application/json:

schema:

x-body -name: payload

$ref: '#/ components/schemas/SLA '

required: true

responses:

200:

description: SLA successfully updated

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

119

description: Invalid SLA

404:

description: SLA not found

x-openapi -router -controller: openapi_server.controllers.

sla_controller

delete:

tags:

- sla

summary: Delete a SLA

operationId: delete_sla

parameters:

- name: sla_level

in: path

description: Specify the SLA level to delete the SLA

required: true

schema:

type: string

responses:

200:

description: SLA successfully deleted

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

description: Invalid SLA

404:

description: SLA not found

x-openapi -router -controller: openapi_server.controllers.

sla_controller

/reservation:

post:

tags:

- reservation

summary: Make a SLA reservation

operationId: post_reservation

requestBody:

content:

application/json:

schema:

x-body -name: payload

$ref: '#/ components/schemas/Reservation '

required: true

responses:

200:

description: Reservation successfully made

content:

application/json:

schema:

$ref: '#/components/schemas/Reservation '

400:

description: Invalid reservation

404:

description: The selected SLA level is not available on this

Edge server

405:

description: The selected datatype is not available on this

Edge server

120

501:

description: There are no enough resources to make the

reservation

502:

description: Error orchestrating the pipeline

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

get:

tags:

- reservation

summary: Get SLA reservations

description: Get reservations

operationId: get_reservation

responses:

200:

description: Success

content:

application/json:

schema:

$ref: '#/components/schemas/Reservation '

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

/reservation /{ reservation_id }:

get:

tags:

- reservation

summary: Get a SLA reservation

description: Returns a single reservation

operationId: get_reservation_item

parameters:

- name: reservation_id

in: path

description: Specify the Reservation ID to get the information

required: true

schema:

type: string

responses:

200:

description: Success

content:

application/json:

schema:

$ref: '#/components/schemas/Reservation '

400:

description: Invalid reservation

404:

description: Reservation not found

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

delete:

tags:

- reservation

summary: Delete a SLA reservation

operationId: delete_reservation

parameters:

- name: reservation_id

in: path

description: Specify the Reservation ID to delete the

121

reservation

required: true

schema:

type: string

responses:

200:

description: Reservation successfully deleted

content:

application/json:

schema:

$ref: '#/components/schemas/Reservation '

400:

description: Invalid reservation

404:

description: Reservation not found

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

components:

schemas:

SLA:

title: SLA

example:

sla_level: medium

total_cpu: 4

total_memory: 4

gpu: false

required:

- total_cpu

- total_memory

- gpu

type: object

properties:

sla_level:

type: string

description: SLA level

total_cpu:

type: integer

description: Total CPUs available in the SLA

format: int64

total_memory:

type: integer

description: Total memory available in the SLA

format: int64

gpu:

type: boolean

description: GPU required True/False

xml:

name: SLA

Reservation:

title: Reservation

example:

data_type: cits

sla_level: medium

client_name: 5gmeta

required:

- data_type

- sla_level

type: object

122

properties:

sla_level:

type: string

description: Requested SLA level

data_type:

type: string

description: Requested data type

client_name:

type: string

description: Client who requested data

responses:

MaskError:

description: When any error occurs on mask

content: {}

ParseError:

description: When a mask can 't be parsed

content: {}

securitySchemes:

auth:

type: oauth2

flows:

authorizationCode:

authorizationUrl: http ://192.168.15.175:8080/ auth/realms /5

gmeta/protocol/openid -connect/auth

tokenUrl: http ://192.168.15.175:8080/ auth/realms /5gmeta/

protocol/openid -connect/token

scopes:

write:pets: modify pets in your account

read:pets: read your pets

uid: Unique identifier of the user accessing the service.

x-tokenInfoFunc: openapi_server.controllers.auth_controller.

check_petstore_auth

x-tokenInfoFunc: openapi_server.controllers.auth_controller.

token_info

x-scopeValidateFunc: openapi_server.controllers.auth_controller.

validate_scope_petstore_auth

openapi: 3.0.1

info:

title: SLA Edge

description: API to manage the SLAs and reservations in a 5GMETA MEC

Server. The SLA API has the

scope to consent the request of a certain service level agreement

and receive

the confimation or reservation. A request could be deleted. A

reservation cannot

be modified or updated ."

termsOfService: http :// swagger.io/terms/

contact:

name: 5GMETA

email: 5gmeta@vicomtech.org

url: https ://5 gmeta -project.eu/

license:

name: Apache 2.0

url: http ://www.apache.org/licenses/LICENSE -2.0. html

version: 1.0.0

externalDocs:

description: Find out more about 5GMETA

url: https ://5 gmeta -project.eu/

123

servers:

- url: http :// localhost/

- url: https :// localhost/

tags:

- name: sla

description: Operations about SLAs

externalDocs:

description: Find out more

url: http :// swagger.io

- name: reservation

description: Operations about SLA reservations

paths:

/sla:

post:

tags:

- sla

summary: Add a new SLA

operationId: post_sla

requestBody:

description: SLA object that needs to be added

content:

application/json:

schema:

x-body -name: payload

$ref: '#/ components/schemas/SLA '

required: true

responses:

200:

description: SLA successfully added

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

description: Invalid SLA

401:

description: The SLA level already exists

x-openapi -router -controller: openapi_server.controllers.

sla_controller

get:

tags:

- sla

summary: Get SLAs

description: Get SLAs

operationId: get_sla

responses:

200:

description: Success

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

x-openapi -router -controller: openapi_server.controllers.

sla_controller

/sla/{ sla_level }:

get:

tags:

- sla

124

summary: Get a SLA

description: Returns a single SLA

operationId: get_sla_item

parameters:

- name: sla_level

in: path

description: Specify the SLA level to get the information

required: true

schema:

type: string

responses:

200:

description: Success

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

description: Invalid SLA

404:

description: SLA not found

x-openapi -router -controller: openapi_server.controllers.

sla_controller

patch:

tags:

- sla

summary: Update a SLA

operationId: patch_sla

parameters:

- name: sla_level

in: path

description: Specify the SLA level to modify the requeriments

required: true

schema:

type: string

requestBody:

content:

application/json:

schema:

x-body -name: payload

$ref: '#/ components/schemas/SLA '

required: true

responses:

200:

description: SLA successfully updated

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

description: Invalid SLA

404:

description: SLA not found

x-openapi -router -controller: openapi_server.controllers.

sla_controller

delete:

tags:

- sla

125

summary: Delete a SLA

operationId: delete_sla

parameters:

- name: sla_level

in: path

description: Specify the SLA level to delete the SLA

required: true

schema:

type: string

responses:

200:

description: SLA successfully deleted

content:

application/json:

schema:

$ref: '#/components/schemas/SLA '

400:

description: Invalid SLA

404:

description: SLA not found

x-openapi -router -controller: openapi_server.controllers.

sla_controller

/reservation:

post:

tags:

- reservation

summary: Make a SLA reservation

operationId: post_reservation

requestBody:

content:

application/json:

schema:

x-body -name: payload

$ref: '#/ components/schemas/Reservation '

required: true

responses:

200:

description: Reservation successfully made

content:

application/json:

schema:

$ref: '#/components/schemas/Reservation '

400:

description: Invalid reservation

404:

description: The selected SLA level is not available on this

Edge server

405:

description: The selected datatype is not available on this

Edge server

501:

description: There are no enough resources to make the

reservation

502:

description: Error orchestrating the pipeline

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

get:

126

tags:

- reservation

summary: Get SLA reservations

description: Get reservations

operationId: get_reservation

responses:

200:

description: Success

content:

application/json:

schema:

$ref: '#/components/schemas/Reservation '

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

/reservation /{ reservation_id }:

get:

tags:

- reservation

summary: Get a SLA reservation

description: Returns a single reservation

operationId: get_reservation_item

parameters:

- name: reservation_id

in: path

description: Specify the Reservation ID to get the information

required: true

schema:

type: string

responses:

200:

description: Success

content:

application/json:

schema:

$ref: '#/components/schemas/Reservation '

400:

description: Invalid reservation

404:

description: Reservation not found

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

delete:

tags:

- reservation

summary: Delete a SLA reservation

operationId: delete_reservation

parameters:

- name: reservation_id

in: path

description: Specify the Reservation ID to delete the

reservation

required: true

schema:

type: string

responses:

200:

description: Reservation successfully deleted

content:

127

application/json:

schema:

$ref: '#/components/schemas/Reservation '

400:

description: Invalid reservation

404:

description: Reservation not found

x-openapi -router -controller: openapi_server.controllers.

reservation_controller

components:

schemas:

SLA:

title: SLA

example:

sla_level: medium

total_cpu: 4

total_memory: 4

gpu: false

required:

- total_cpu

- total_memory

- gpu

type: object

properties:

sla_level:

type: string

description: SLA level

total_cpu:

type: integer

description: Total CPUs available in the SLA

format: int64

total_memory:

type: integer

description: Total memory available in the SLA

format: int64

gpu:

type: boolean

description: GPU required True/False

xml:

name: SLA

Reservation:

title: Reservation

example:

data_type: cits

sla_level: medium

client_name: 5gmeta

required:

- data_type

- sla_level

type: object

properties:

sla_level:

type: string

description: Requested SLA level

data_type:

type: string

description: Requested data type

client_name:

128

type: string

description: Client who requested data

responses:

MaskError:

description: When any error occurs on mask

content: {}

ParseError:

description: When a mask can 't be parsed

content: {}

securitySchemes:

auth:

type: oauth2

flows:

authorizationCode:

authorizationUrl: http ://X.X.X.X:8080/ auth/realms /5gmeta/

protocol/openid -connect/auth

tokenUrl: http ://X.X.X.X:8080/ auth/realms /5gmeta/protocol/

openid -connect/token

from openapi_server.config.config import db

from openapi_server.models.sla import SLA , SLASchema

from sqlalchemy.exc import IntegrityError

def post_sla(payload):

""" Add a new SLA

:param payload: SLA object that needs to be added

:type payload: dict | bytes

:rtype: None

"""

#sla = SLA.query.filter(SLA.sla_level == payload [" sla_level "]).

one_or_none ()

#if sla is None:

try:

schema = SLASchema ()

Deserialize the received data

new_sla = schema.load(payload)

Add the sla to the database

db.session.add(new_sla)

db.session.commit ()

Serialize and return the newly created sla in the response

data = schema.dump(new_sla)

return data , 200

else:

except IntegrityError:

return "The SLA level already exists", 401

def get_sla ():

""" Get SLAs

129

:rtype: None

"""

slas = SLA.query.all()

slas_schema = SLASchema(many=True)

data = slas_schema.dump(slas)

return data , 200

def get_sla_item(sla_level):

""" Find SLA by ID

:param sla_level: Specify the SLA ID to get the information

:type sla_level: string

:rtype: SLA

"""

try:

sla = SLA.query.filter(SLA.sla_level == sla_level).one()

sla_schema = SLASchema ()

data = sla_schema.dump(sla)

return data , 200

except:

return "SLA not found", 404

def patch_sla(payload , sla_level):

""" Updates a SLA

:param payload:

:type payload: dict | bytes

:param sla_level: Specify the SLA ID to modify the requeriments

:type sla_level: string

:rtype: None

"""

try:

old_sla = SLA.query.filter(SLA.sla_level == sla_level).one()

schema = SLASchema ()

new_sla = schema.load(payload)

new_sla.sla_level = old_sla.sla_level

db.session.merge(new_sla)

db.session.commit ()

data = schema.dump(new_sla)

return data , 200

except:

return "SLA not found", 404

130

def delete_sla(sla_level):

""" Deletes a SLA

:param sla_level: Specify the SLA ID to delete the SLA

:type sla_level: string

:rtype: None

"""

try:

sla = SLA.query.filter(SLA.sla_level == sla_level).one()

db.session.delete(sla)

db.session.commit ()

return "SLA successfully deleted", 200

except:

return "SLA not found", 404

import subprocess

import requests

import yaml

import sys

import uuid

from openapi_server.config.config import db

from openapi_server.models.reservation import Reservation ,

ReservationSchema

from openapi_server.models.sla import SLA , SLASchema

from sqlalchemy.sql import func

def post_reservation(payload):

""" Make SLA reservation

:param payload:

:type payload: dict | bytes

:rtype: None

"""

if connexion.request.is_json:

payload = Reservation.from_dict(connexion.request.get_json ())

if SLA.query.filter(SLA.sla_level == payload["sla_level"]).

one_or_none () is None:

return "The selected SLA level is not available on this Edge

Server", 404

try:

Get the reserved resorced from the database

cpu_to_reserve = SLA.query.with_entities(SLA.total_cpu).filter(

SLA.sla_level == payload["sla_level"]).one()

memory_to_reserve = SLA.query.with_entities(SLA.total_memory).

filter(SLA.sla_level == payload["sla_level"]).one()

reserved_total_cpu = 0

131

reserved_total_memory = 0

reserved_sla_types = Reservation.query.with_entities(

Reservation.sla_level.distinct ()).all()

for sla_type in reserved_sla_types:

sla_type_number = Reservation.query.filter(Reservation.

sla_level == sla_type [0]).count()

sla_type_cpu = SLA.query.with_entities(SLA.total_cpu).

filter(SLA.sla_level == sla_type [0]).one()

sla_type_memory = SLA.query.with_entities(SLA.total_memory)

.filter(SLA.sla_level == sla_type [0]).one()

reserved_total_cpu += sla_type_number * sla_type_cpu [0]

reserved_total_memory += sla_type_number * sla_type_memory

[0]

Get the allocatable and schedulable resources from the k8s

node

allocatable_cpu = float(subprocess.check_output (["./

introspection.sh","-c"]))

allocatable_memory = float(subprocess.check_output (["./

introspection.sh","-m"]))

schedulable_cpu = float(subprocess.check_output (["./

introspection.sh","-C"]))

schedulable_memory = float(subprocess.check_output (["./

introspection.sh","-M"]))

Check if there is enough cpu and memory to make the

reservation

cpu_is_avaliable = False

memory_is_avaliable = False

if allocatable_cpu - reserved_total_cpu - cpu_to_reserve [0] > 0

and schedulable_cpu - cpu_to_reserve [0] > 0:

cpu_is_avaliable = True

if allocatable_memory - reserved_total_memory -

memory_to_reserve [0] > 0 and schedulable_memory -

memory_to_reserve [0] > 0:

memory_is_avaliable = True

print(" allocatable_cpu: " + str(allocatable_cpu), file=sys

.stderr)

print(" reserved_total_cpu: " + str(reserved_total_cpu),

file=sys.stderr)

print(" cpu_to_reserve [0]: " + str(cpu_to_reserve [0]), file

=sys.stderr)

print(" schedulable_cpu: " + str(schedulable_cpu), file=sys

.stderr)

print(" cpu_is_avaliable: " + str(cpu_is_avaliable), file=

sys.stderr)

print(" allocatable_memory: " + str(allocatable_memory),

file=sys.stderr)

print(" reserved_total_memory: " + str(

reserved_total_memory), file=sys.stderr)

print(" memory_to_reserve [0]: " + str(memory_to_reserve [0])

, file=sys.stderr)

print(" schedulable_memory: " + str(schedulable_memory),

file=sys.stderr)

print(" memory_is_avaliable: " + str(memory_is_avaliable),

file=sys.stderr)

132

if cpu_is_avaliable and memory_is_avaliable:

try:

orchestrator_ip = subprocess.getoutput ("if [-z

$orchestratorip]; then kubectl get nodes -o jsonpath ='{. items [0].

status.addresses [0]. address}'; else echo $orchestratorip; fi")

orchestrator_ip = subprocess.check_output ("if [-z

$nodeip]; then kubectl get nodes -o jsonpath ='{. items [0]. status.

addresses [0]. address}'; else echo $nodeip; fi", shell=True , text=

True)

orchestrator_ip = subprocess.getoutput("if [-z

$orchestratorip]; then orchestratorip=nbi.osm.svc.

cluster.local && echo $orchestratorip; else echo

$orchestratorip; fi")

Get authorization token

url = 'https ://' + orchestrator_ip + ':9999/ osm/admin/

v1/tokens '

headers = {"Content -Type": "application/json"}

data = '{" username ": "admin","password ": "admin","

project_id ": "admin"}'

response = requests.post(url , data=data , headers=

headers , verify=False)

yaml_response = yaml.safe_load(response.content)

bearer = "Bearer " + yaml_response["id"]

Get pipeline descriptor id

url = 'https ://' + orchestrator_ip + ':9999/ osm/nsd/v1/

ns_descriptors '

headers = {'Authorization ': bearer}

response = requests.get(url , headers=headers , verify=

False)

datatype_response = yaml.safe_load(response.content)

datatype_index = next((index for (index , key) in

enumerate(datatype_response) if key["name"] ==

payload["data_type"]), None)

if datatype_index is None:

return "The selected datatype is not available on

this Edge Server", 405

Get vim id

url = 'https ://' + orchestrator_ip + ':9999/ osm/admin/

v1/vims/'

headers = {'Authorization ': bearer}

response = requests.get(url , headers=headers , verify=

False)

vim_response = yaml.safe_load(response.content)

vim_index = next((index for (index , key) in enumerate(

vim_response) if key["name"] == "5gmeta -vim"), None

)

Request to the orchestrator ip for deploying the

pipeline

url = 'https ://' + orchestrator_ip + ':9999/ osm/nslcm/

v1/ns_instances_content '

headers = {'Content -Type': 'application/json', '

Authorization ': bearer}

data = '{ "nsName ": "' + payload["data_type"] + '", "

nsdId": "' + datatype_response[datatype_index]["_id

133

"] + '", "vimAccountId ": "' + vim_response[

vim_index]["_id"] + '", "additionalParamsForVnf ": [

 { "member -vnf -index": "1", "additionalParamsForKdu

": [{ "kdu_name ": "' + payload["data_type"] + '",

"k8s -namespace ": "' + payload["client_name"] + '",

"kdu -deployment -name": "' + payload["client_name"]

+ '-' + payload["data_type"] + '-' + str(uuid.uuid1

())[:8] + '" }] }] }'

response = requests.post(url , data=data , headers=

headers , verify=False)

yaml_response = yaml.safe_load(response.content)

except:

return "Error orchestrating the pipeline", 502

schema = ReservationSchema ()

Use osm instance id as reservation id

payload["reservation_id"] = yaml_response["id"]

Deserialize the received data

new_reservation = schema.load(payload)

Add the reservation to the database

db.session.add(new_reservation)

db.session.commit ()

Serialize and return the newly created reservation in the

response

data = schema.dump(new_reservation)

return data , 200

else:

return "There are no enough resources to make the

reservation", 501

except:

return "Invalid reservation", 400

def get_reservation ():

""" Get reservations

:rtype: None

"""

reservations = Reservation.query.all()

reservations_schema = ReservationSchema(many=True)

data = reservations_schema.dump(reservations)

return data , 200

def get_reservation_item(reservation_id):

""" Find reservation by ID

:param reservation_id: Specify the Reservation ID to get the

information

:type reservation_id: int

134

:rtype: Reservation

"""

try:

reservation_schema = ReservationSchema ()

reservation = Reservation.query.filter(Reservation.

reservation_id == reservation_id).one()

data = reservation_schema.dump(reservation)

return data , 200

except:

return "Reservation not found", 404

def delete_reservation(reservation_id): # noqa: E501

""" Deletes reservation

:param reservation_id: Specify the Reservation ID to delete the

reservation

:type reservation_id: int

:rtype: None

"""

try:

try:

orchestrator_ip = subprocess.getoutput("if [-z

$orchestratorip]; then orchestratorip=nbi.osm.svc.

cluster.local && echo $orchestratorip; else echo

$orchestratorip; fi")

Get authorization token

url = 'https ://' + orchestrator_ip + ':9999/ osm/admin/v1/

tokens '

headers = {"Content -Type": "application/json"}

data = '{" username ": "admin","password ": "admin","

project_id ": "admin"}'

response = requests.post(url , data=data , headers=headers ,

verify=False)

yaml_response = yaml.safe_load(response.content)

bearer = "Bearer " + yaml_response["id"]

url = 'https ://' + orchestrator_ip + ':9999/ osm/nslcm/v1/

ns_instances/' + reservation_id + '/terminate '

headers = {'Content -Type': 'application/json', '

Authorization ': bearer}

data = '{" autoremove ": true}'

response = requests.post(url , data=data , headers=headers ,

verify=False)

except:

return 400

reservation = Reservation.query.filter(Reservation.

reservation_id == reservation_id).one()

db.session.delete(reservation)

135

db.session.commit ()

return "Reservation successfully deleted", 200

except:

return "Reservation not found", 404

136

	Abstract Laburpena Resumen
	List of Figures
	List of Tables
	Listings
	Terms and Abbreviations
	 Introduction
	 Background
	5G network and technology enablers
	NFV
	SDN

	Edge computing
	Edge computing landscape
	Uses-cases of edge computing

	C-V2X and CCAM

	 Objectives and scope
	 Outcomes
	Technical outcomes
	Economic outcomes
	Social outcomes

	 Edge Computing: State-of-the-art
	MEC technologies for CCAM services
	Open-source Edge computing frameworks

	 Analysis of requirements
	 Analysis of alternatives
	NFV Orchestration Systems
	Virtualization technology
	Monitoring system
	Messaging protocol and data broker

	 Analysis of risks
	Description of the risks and contingency measures
	R1: Deviation from schedule
	R2: Variance against budget
	R3: Attacks affect the production network
	R4: Hardware or physical infrastructure failure

	Risk probability-impact Matrix

	 Description of the solution
	High-level architecture
	General operation of the platform

	Implementation of the modules
	M1: MEC Virtualization infrastructure
	M2: MEC VNF Management
	M3: Monitoring
	M4 & M6: MEC and Cloud Broker and data handling
	M5: MEC Security
	M7: Cloud APIs

	 Validation of the solution
	 Description of tasks
	Gantt diagram

	 Description of the budget
	Manpower
	Amortizable costs
	Non-amortizable costs
	Total cost

	 Conclusions and future work
	References
	 Annex I: Platform deployment scripts

