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Abstract

This Thesis deals with the task of detection of different road lane marks, us-
ing signals from the different sensors that a Mobile Mapping System (MMS)
is composed of, namely image sensors (cameras) and LiDAR sensor. MMSs
are the combination of various navigation and remote sensing technologies
on a common moving platform. During the last years, road landmark in-
ventory has raised increasing interest in different areas: the maintenance
of transport infrastructures, road 3d modelling, GIS applications, etc. Sev-
eral commercial sensors are available which include a set of high-resolution
cameras already calibrated in order to generate panoramic images, and a
LiDAR sensor that allows to capture up to 700,000 georeferenced points,
plus other components that provide ancillary information. The lane mark
detection is posed as a two-class classification problem over a highly class
imbalanced dataset. To cope with this imbalance we have applied Active
Learning approaches. This Thesis has been divided into two main com-
putational parts. In the first part, we have evaluated different Machine
Learning approaches using panoramic images, obtained from image sensor,
such as Random Forest (RF) and ensembles of Extreme Learning Machines
(V-ELM), obtaining satisfactory results in the detection of road continuous
lane marks. In the second part of the Thesis, we have applied a Random
Forest algorithm to a LiDAR point cloud, obtaining a georeferenced road
horizontal signs classification. We have not only identified continuous lines,
but also, we have been able to identify every horizontal lane mark detected
by the LiDAR sensor.

Keywords Mobile Mapping System, Active Learning, Random Forest, Ex-
treme Learning Machine, LiDAR, Image Sensor, Panoramic im-
age.
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Chapter 1

Introduction

This chapter provides an overall introduction to the Thesis. First, we
provide a short motivation and context in Section 1.1. A summary of the
Thesis contents and contributions are given in Section 1.2. We comment
on Active Learning in Section 1.3. We provide a summary description of
the works carried oout during the Thesis in Section 1.4. The publications
achieved during the work of the Thesis are listed in section 1.5. Finally, the
main structure of the Thesis is presented in section 1.6.

1.1 Motivation

Mobile Mapping system (MMS) is the combination of various navigation
and remote technologies on a common moving platform. It can be con-
sidered a powerful “tool” to represent and measure the reality. Usually,
this type of systems is composed of an image sensor and a LiDAR sensor.
Common commercial software used with MMS, in case of images, work on
a panoramic image that are the result of stitching together the different
images obtained from each individual camera. Commonly, these images are
not georeferenced. Regarding LiDAR sensors, the raw data coming from the
LiDAR sensor is not coloured. The colour is obtained from a post-process
where each LiDAR point is attributed the colour of the corresponding pixel
in the panoramic image. The optimal situation should be that the image

1



2 CHAPTER 1. INTRODUCTION

and the LiDAR are registered so that a point in the image corresponds uni-
vocally to a point in the LiDAR cloud, but this is not always the case. The
main reason for this lack of registration is that image domains are discrete
integer grids, while point cloud domains are continuous coordiantes in the
3D space. In order to obtain a map as close as possible from discrete data
to continuous data, the solution should be to reduce the image pixel size,
which would lead to increasing the size of our data (remember that we are
dealing with several hundred kilometres). In these cases, no matter how
small the pixel size is, we might have a miscoloured cloud due to systematic
failures in the mutual calibratoin of all the sensors of the MMS system. To
do extraction of road structures, the common approach is to work on the
colour of the cloud points, not touching the colour of the images obtained by
the image sensor or not taking full advantage of the potential of the LiDAR
sensor, that allows to use information other than the of RGB colour values.

The Thesis has been carried out in a collaboration between the University
and a company, which has been covered by a specific grant of the Basque
Government. At the company, I am currently working on a project where
we are extracting road markings for later inventory. The biggest problem we
are facing is poor road marking extraction since most extraction methods
are based on colour based segmentation. These difficulties throughout the
projects have been one of my greatest motivations to start the adventure of
research at the level of PhD Thesis in order to be able to look for alternative
approaches improving the extraction of road lane marks.

1.2 Problem definition

In this chapter we deal with the extraction methodologies of the horizontal
signals drawn on the road: lane limiting lines, arrows, and other horizontal
signalling. We will work with the data collected by the LiDAR sensor as
well as with the panoramic images generated from the Ladybug camera set.
The capture conditions, especially the illumination, is wildly changing from
one traveling capture to another, or during the same trip due to the changes
in the position of the sun, the time of the year, the weather, etc. Besides,
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the road maintenance is often in bad condition, so the road marking may
be fading or interrupted.

The image provides only radiometric information. Although we find that
most of the algorithms are designed for image analysis, we will also focus
on the data collected by the LiDAR sensor. This data does not consist only
of points with X, Y, Z values. A point cloud is created from many returns
with a number of characteristics and attributes that make each return prac-
tically unique. The following LiDAR point attributes are maintained for
each recorded laser pulse, additional information is stored along with each
X, Y, Z value: intensity, return number, number of returns, RGB values
(information that is normally obtained from the image), GPS time, scan
angle and scan direction.

Finally, for supervised classification approaches the construction of the
labelled dataset would be costly so we are extremely interested in exploiting
cheaper alternatives, such as the Active Learning strategy [56].

The task ahead is driven by the industrial exploitation of a car mounted
sensor nicknamed “ladybug” (figure 1.1)

More precisely, the sensor is the IP-S3 HD11 product of Topcon, Japan.
It is composed of a positioning system (wheel encoder, GPS receiver, Inertial
Measurement Unit), five cameras pointing at regular arc intervals of the
circumference, and a sixth one pointing up. With one pointing directly at
the rear of the car, and a LiDAR sensor. The views of the cameras are
composed into panoramas such as the one shown in figure 1.2, where the
central view corresponds to the rear view of the car, so that the front view
is splited left and right of the panorama. At the bottom of the panorama, it
is possible to appreciate the scaffolding supporting the sensors. Notice the
changes in hue and saturation in the image due to the different sensitivities of
the cameras. The LiDAR data and the image capture has a frequency of 1Hz.
The task ahead is to create an inventory of the road signals and landmarks
using both LiDAR and image data. All images are tagged spatially with
coordinates provided by onboard GPS.
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Figure 1.1: The ladybug sensor mounted in a car.

Figure 1.2: An example panorama from the ladybug sensor, obtained by the
composition of the view of the five cameras.
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1.3 Active learning

Classification approaches need careful selection and labelling of training data
samples from the available data. In response to this issue, Active Learning
(AL) [63] tries to achieve the most accurate classification using the smallest
possible training set, minimizing the user interaction needed to label the
training samples. Active Learning starts with a minimal training sample,
adding new labelled samples in an iterative process. Aiming to provide the
greatest increase in classifier accuracy [58], the additional samples are se-
lected according to some classification uncertainty measure which does not
require knowledge of the actual data label. Besides its benefits in economy
of computation and data labelling, Active Learning is also useful when the
underlying data statistics are non-stationary, so that the classifier built at
one time instant may not be optimal later on. Active Learning has been suc-
cessfully applied to classification of remote sensing images[63, 52, 62], and
image retrieval based on semi supervised Support Vector Machines [37]. Act-
ive Learning inspiration for the selection of a minimal collection of training
images is proposed in [40] for the development of combined generative and
discriminative models in the segmentation of CT scans. An active feedback
approach is used in [61] to improve the classification-based annotation of
radiographs.[49]apply AL techniques in order to label Mobile Mapping sys-
tem data reducing the requirements of manually annotated training samples
for labelling point cloud scenes.

1.4 Overall description of works in the Thesis

In this chapter we formulate the road landmark segmentation problem [41]
as classification of MMS data into road landmark and background classes.
On the one hand we will work with the panoramic image obtained from
the image sensor, and on the other hand we will deal with the point cloud
obtained from the LiDAR sensor that is incorporated in the MMS system.
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Image based methods

We collect the input panorama images provided by the so called ladybug
sensor to be described later. The central part of the panorama contains
most of the image useful information given by the rear view of the vehicle,
so this central part is cropped for processing, discarding the remaining parts
of the panorama. Gabor features are computed over the images collecting all
the image features in a unique pool for the training of the classifiers and their
validation. An Active Learning strategy is applied in order select the optimal
training dataset. The classifier trained with the optimal training dataset is
validated over the entire images, producing the performance report for the
specific classifier. The validation task is repeated for the diverse classifiers
and classifier parameters explored. The Active Learning oracle providing
sample labels in the reported experiments is the ground truth provided by
manual segmentation. In the practical application the oracle will be the user
through some graphical interface for the selection of most informative pixels
to be added to the training dataset.

For pixel classification we explore the results of Random Forest (RF)
[17, 16] and Ensembles of Extreme Learning Machines (V-ELM) classifiers
[23] based on texture features computed at pixel level. Specifically, a bank
of Gabor filters is applied, so that the feature vector of each pixel is com-
posed of the Gabor coefficients plus some spatial localization information.
The position referred to are the pixel coordinates of the image. In case of
needing to reference to reality, a conversion from pixel coordinate to terrain
coordinate could be performed.

LiDAR based methods

It is decided to experiment with the LiDAR sensor, as it is considered that
it provides information that the image sensor does not. The image only
gives us RGB information. In a direct way, the image does not give us a
georeferenced position in space, but from the image coordinate, we can ap-
proximate the ground coordinates with the help of the existing sensors in the
vehicle (IMU, GPS/GNSS receiver and wheel encoder). We use The word
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approximate is used because images are discrete data and their georeferen-
cing will be conditioned by the pixel size. LiDAR data does not consist only
of points with X, Y, Z values. A point cloud is created from many returns
with a number of characteristics and attributes that make each return prac-
tically unique. The following LiDAR point attributes are maintained for
each recorded laser pulse, additional information is stored along with each
X, Y, Z value: intensity, return number, number of returns, RGB values
(information that is normally taken from the image), GPS time, scan angle
and scan direction.

The LiDAR based methodology is further divided into two methodo-
logies. On the one hand, orthophotos containing intensity values will be
generated from the intensity data. Gabor features will be computed over
these images. On the other hand, we will deal with LiDAR data directly,
focusing on intensity values.

1.5 Publications

The Thesis is supported by the following achieved publications

1. zquierdo, A., Lopez-Guede, J.M., Graña, M. (2019). Road Lane Land-
mark Extraction: A State-of-the-art Review. In: Pérez García, H.,
Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado
Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019.
Lecture Notes in Computer Science(), vol 11734. Springer, Cham.
https://doi.org/10.1007/978-3-030-29859-3_53

2. Lopez-Guede, Jose, Izquierdo, Asier, Estevez, Julian, Graña, Manuel
Active learning for road lane landmark inventory with V-ELM in highly
uncontrolled image capture conditions (2021) Neurocomputing, Vol.
438 p. 259-269, https://doi.org/10.1016/j.neucom.2020.07.151

3. Izquierdo, A., Lopez-Guede, J.M. (2021). Active Learning for Road
Lane Landmark Inventory with Random Forest in Highly Uncontrolled
LiDAR Intensity Based Image. In: Herrero, Á., Cambra, C., Urda,

https://doi.org/10.1007/978-3-030-29859-3_53
https://doi.org/10.1016/j.neucom.2020.07.151
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D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International
Conference on Soft Computing Models in Industrial and Environ-
mental Applications (SOCO 2020). SOCO 2020. Advances in In-
telligent Systems and Computing, vol 1268. Springer, Cham. https:
//doi.org/10.1007/978-3-030-57802-2_83 p. 862-871.

4. Izquierdo, Asier/Lopez-Guede, Jose/Graña, Manuel ‘Extracción de
Marcas Viales mediante Técnicas de Aprendizaje Activo a partir de
Captura de Imágenes empleando Sensores MMS’ (2021). Virtual Con-
ference of Doctoral Students in MSO 2021

5. Izquierdo, Asier/Lopez-Guede, Jose ‘Active Learning for Road Lane
Landmark Inventory Using Panoramic Images in Highly Uncontrolled
Image Capture Conditions’. (2022) Basque Conference on Cyber Phys-
ical Systems and Artificial Intelligence (https://www.ehu.eus/ccwintco/cybSPEED/bccpsai/)

1.6 Contents of the Thesis

The contents of the Thesis are organised as follows:

• Chapter 2 contains a review of the literature concerning the main
aspects of the Thesis, i.e. detection and extraction of road markings
using different MMS sensors (LiDAR or image) or combining both
sensors for detection and extraction.

• Chapter 3 contains a description of the dataset that has been used
thorugout the Thesis. We comment on the components of the MMS
system.

• Chapter 4 contains our contributions regarding the extraction of lane
marks using different sensors from our MMS system. Active learning
methods are applied successfully to images and LiDAR point clouds
in order to extract road lane marks. For this purpose different meth-
odologies are applied.

https://doi.org/10.1007/978-3-030-57802-2_83
https://doi.org/10.1007/978-3-030-57802-2_83
https://www.ehu.eus/ccwintco/cybSPEED/bccpsai/
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• Chapter 5 contains results obtained using different methodologies and
sensors in order to extract horizontal lane marks.

• Finally, in chapter 6 some conclusions are considered. Achievements
and shortcomings of this Thesis contribution are identified and a draft
of future work is offered as an account for the pending to-do wish list
in the future to cometh.
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Chapter 2

State of the Art

In this Chapter we provide a short overview of the state of the art extract-
ing road marker information from the data that is commonly provided by
mounted monitoring systems used to obtain the inventory of road mark-
ers. Section 2.1 provisdes a short introduction. Section 2.2 reports on some
methods that are based on image data provided by the cameras. Section
2.3 comments on methods based on 3D point clouds provided by the LiDAR
sensor. Section 2.4 comments on methods that fuse 3D point clouds and
RGB images to improve detectection. Section 2.5 gives some conclusions
and motivation for the overall work in the Thesis as a departure from the
state of the art.

2.1 Introduction

In the last few years, the need to elaborate and update road map databases
has rapidly increased. These databases are used for different purposes, such
as advanced driver assistance systems (ADAS), autonomous car navigation
systems, roadway inventory, and any application based on real-time local-
ization. Whatever the required application, an accurate model of the road
is needed. Such an accurate model should contain information about hori-
zontal and vertical road signs. In this paper, we focus on horizontal road
signs, such as lane lines, crosswalks and arrow marks. Methodologies to ex-

11
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tract horizontal lane image landmarks are heavily dependent on the sensor
used to collect the road information. Depending on the sensor signal, dif-
ferent algorithms are used. Currently, it is possible to classify them into
three big groups: high resolution optical image, Light Detection and Ran-
ging (LiDAR) data, and a combination of optical images and LiDAR data.
Regardless of the algorithm or the sensor used, the main classification prob-
lems are the following ones:

• False positives: signal features wrongly classified as road lane marks.
Often the data is very badly balanced, with most of the datapoints
belonging to the background. Most classifiers are biased towards the
majority class, hence they tend to produce many false negatives. Cor-
recting measures may tend to producethe contrary effect, many false
positives.

• Image brightness issues: when the image is too bright, it is difficult
to differentiate between different features. Brightness artifacts tend to
be in the range of the white saturation, which is the range of values
where we find the road markers.

• Lane landmark occlusions created by nearby vehicles. It is impossible
to predict the oclusion by a passing by vehicle. The only solution is
to try to register images in a sequence trying to remove the temporal
effect of the passing by vehicle.

• Poor visibility: Inability to detect road features accurately due to
visibility conditions, such as heavy rain or fog. Under extreme circun-
stances if often impossible to do any meaningful segmentation. Entire
recordings will be lost because of these conditions. This issue falls
completely out othe scope of this Thesis.

• Shadows may create misleading edges and texture on the road. Shad-
ows ar3e another brithness artifact not that create discontinuities that
can be misinterpreted as object contours.
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Imagery LIDAR Imagery+LIDAR
Template matching [20]
Hough transform [10]

SIFT [48]
SURF [13]

NURBS [60]
Otsu thresholding [36]

PCA [15]
RANSAC [27]

Table 2.1: Algorithms summary

In order to be able to extract road lane mark information, conventional com-
puter vision and signal processing algorithms have been proposed depending
on the sensor used. The main goal of the proposed algorithms is to extract
road lane marks from a given road in an efficient way, solving noise and
uncertainty issues. The most commonly used computer vision algorithms
are referred in Table 2.1, according to the typology of the sensor used.

2.2 Processing Image data

Image sensors are routinely used by autonomous car navigation systems
[47, 44]. Segmentation methods usually work on single images, so that the
landmark extraction is repeated de novo for each image every s second,
the time interval chosen between images. A CCD sensor is installed on
the vehicle to obtain high quality images. Some authors think that the
best way to capture the road surface and its lane marks is using vision-
based approaches[45], since other technologies such as LiDAR based sensors
are not capable to detect features in a flat plane accurately, such as road
painted marks. Using imaging sensors to capture road landmarks can face
the following problems:

• Applying a threshold on brightness, may lead to many false negatives
and false positives due to occlusions or brightness artifacts.

• Occluded landmarks by other vehicles on the road.
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Figure 2.1: Shadows in the road due to sun position

• Image clarity issues (cast shadow on the image, saturated images, etc.),
poor visibility conditions due to fog, heavy rain or reflections on wet
roads at night time, or shadows in the road due to sun position in the
sky, as shown in figure 2.1 [11].

• Other problems, such as different lane signs or a change in the width
of the marks may also occur.

Many algorithms can be applied in order to extract horizontal lane
marks. The most popular algorithms are the following ones:

• Template matching: [26] It is a technique in digital image processing
for finding small parts of an image which match a template image
[20]. The technique is widely used in object detection fields such as
for vehicle tracking [12]. The crucial point is to adopt an appropriate



2.2. PROCESSING IMAGE DATA 15

measure to quantify similarity. However, this method also requires ex-
tensive computational cost since the matching process involves moving
the template image to all possible positions in a larger target image
and compute a numerical index which will dictate the most accurate
position of the target image. This results in a significant optimization
problem.

• Hough Transform: The purpose of the technique [? ] is to find imper-
fect instances of objects within a certain class of shapes by a voting
procedure. This voting procedure is carried out in a parameter space,
from which object candidates are obtained as local maximum in a
so-called accumulator space that is explicitly constructed by the al-
gorithm for computing the Hough Transform [10]. Hough transform
has been notoriously used for line detection. The Hough transform is
efficient if a large number of votes fall into the correct cell. For a cell
to be easily detected regardless of errors introduced by noise in the
image, it must stand out among its neighbours. This means that if we
have many possible values for the parameters, the visibility of the cell
could be compromised by its neighbouring cells; but if you have few
values, erroneous results may appear, ignoring figures that are in the
image. If we have many parameters the average number of votes for
each cell is low and the cells corresponding to the real figures in the
image do not necessarily appear to have a higher number of votes than
the neighbouring cells. The complexity of the algorithm increases at
a rate of O(Ap−2), where A is the number of points in the image and
p is the number of parameters. Finally, the efficiency of the Hough
transform depends on the quality of the algorithm’s input data: edges
must appear well delineated for the procedure to be efficient. Using
the Hough transform on images with a lot of noise is usually a problem
and some treatment must be applied to the image to remove it [59].

• SIFT: The Scale-Invariant Feature Transform (SIFT) is a feature de-
tection algorithm in computer vision to detect and describe local fea-
tures in images [48]. The essence of the algorithm is to find key points
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at different scales and calculate the direction of the key points. The
key points found by SIFT are points that are very prominent and
will not change due to factors such as illumination, affine transform-
ation and noise, such as corner points, edge points, bright points in
dark areas and dark points in bright areas. The drawback is that it
is mathematically complicated and computationally heavy. SIFT is
based on the Histogram of Gradients. That is, the gradients of each
Pixel in the patch need to be computed and these computations cost
time.

• SURF: Speeded-Up Robust Features (SURF) is a feature descriptor
that extracts key points from different regions of a given image in
order to find similarities between different images [13]. The SURF
algorithm is similar to the SIFT algorithm explained above, with the
difference that it is computationally faster because of the way it has
been implemented, providing reliable matches among images under
normal conditions [42].

The main issue of template matching is the need for precise templates and
the need to overcome distortions and noise. Being a correlation-based al-
gorithm, it can be robust for some kind of noises, but it is very sensitive
to spatial distortions such as scale or perspective transformations. The
Hough transform is quite robust but limited to specific features, such as
lines. Some generalization has been proposed to detect objects under oc-
clusion which can be useful in our problem given an adequate dataset of
examples. Image feature extraction algorithms, such as SIFT and SURF,
are quite robust against deformations and occlusions, because they extract
salient image points that characterize the objects in the image. In fact, they
were under patent until 2020, and therefore they could not be used freely in
industrial applications until then. Alternative open and free algorithms are
proposed in the literature that have been used extensively.
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2.3 Processing LiDAR 3D data

As mentioned in vision-based sensor methodologies are susceptible to shadow,
weather conditions, and brightness. Therefore, some authors proposed road
lane mapping methods using LiDAR based sensors [51]. These methods are
based on Mobile Mapping Systems (MMS) which use LiDAR technology,
with scanners capable of collecting up to 106 measurements per second.
The data acquired by MMSs is:

• Range and light intensity data from LiDAR scanners.

• Visual data (RGB) from panoramic images.

• Positioning data:

– Absolute positioning by Differential Global Positioning Systems
(DGPS) which are enhancements to the Global Positioning Sys-
tem (GPS) providing improved location accuracy, in the range of
operations of each system, from the 10 ms nominal GPS accuracy
to about 10 cm in the best implementations.

– Inertial data from Inertial Measurement Unit (IMU).

– Vehicle speed provided by odometer.

The data is fused by proprietary software of MMS, requiring the joint cal-
ibration of cameras and LiDAR sensors. The output usually consists of:

• A trajectory file, which contains information in terms of latitude,
longitude, projected coordinates, altitude, sensor intrinsic rotations’
angles (pitch, raw, yawn) and panoramic images information.

• Georeferenced panoramic images obtained from spherical image-based
sensor(s).

• Georeferenced point cloud with RGB and intensity data, as shown in
Figures 2.2 and 2.3.
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Figure 2.2: Intensity of the LiDAR sensor point cloud.

Figure 2.3: RGB image composed by the corresponding RGB pixels to each
sample in the LiDAR point cloud.
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Some studies [14, 57] propose to generate lane level maps by driving along
the centreline of the road and then by analysing the trajectory obtained
by Global Navigation Satellite System (GNSS). However, this approach is
neither efficient nor accurate. Other authors use only georeferenced point
clouds and trajectory file, in spite of the fact that MMS system images are
available [57, 64]. Their methodology consists of a set of processing modules
that allow them to obtain a digital image from the point cloud. This process
is necessary since lane marks will be extracted from a nadir point of view,
obtained by image processing.

Different workflows in order to extract information from the LiDAR point
clouds are proposed. Here we review a couple of them.

2.3.1 Method 1

In order to obtain a digital image from a point cloud, Mancini et al. [51]
proposed the following outline to extract objects that lie on the road surface:

1. Re-project point cloud coordinates from geographical to planar co-
ordinates.

2. Geometric filtering.

3. Interpolation on a regular grid, where the generation of a raster 2D
image is generated, as shown in figure 2.4

4. Apply a threshold to obtain a binary image.

5. Reduce noise applying morphological operations.

6. Isolate objects labelling and calculating morphological indicators.

7. Peak detector for lane line detection, including line validation and
generation of attributes.

8. Apply a template matching for arrow marks.

9. Detect and extract crosswalks applying morphological indicators.
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Figure 2.4: Left: RGB point cloud. Right: generated 2D image

2.3.2 Method 2

On the other hand, [64] proposes a different workflow to improve some prob-
lems such as time-consuming processing of point clouds (noise, unorganized
points, big amount of points, etc.), variability in the reflective intensity val-
ues unevenness caused by dust of the road, intensity of lane marks or vehicle
speed amongst others. As in the previous approach, a 2D image is gener-
ated from the point cloud, via different methods which include the following
steps:

1. After the point cloud is gridded, unexpected changes in the normal
vector are used in order to place the curb grids on both sides of the
trajectory. Road edges are placed between the curb grids and used to
segment the road points. So, to facilitate the following lane extraction,
the inconsistencies of the reflective intensity of the road points are
corrected.

2. Lane-marking extraction: after 3D road points are mapped into a 2D
image, a self-adaptive thresholding method is developed to extract lane
markings from the 2D image.

3. Lane mapping: In order to obtain the 3D lane lines, it is needed to
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Figure 2.5: Left: Point cloud represented as intensity values. Right: Lane
marks extraction

cluster and render points belonging to the same lane line type. To
complement missing lines caused by occlusion, a global post-processing
step that integrates all local extraction is used. Since lane signs are
generally more reflective than the background surface, the intensity
value can be useful to find lane-marking classified points. Some au-
thors use a single-global threshold to extract lane signs [60]. Road
boundaries are detected using a two-step method based on local road
shape. Road sides and main axes are fitted by arc-length paramet-
erised NURBS allowing to compute roads with a curvature at the de-
sired resolution. Using the reflectivity information provided by LiDAR
based sensors, road markings are extracted, as shown in figure 2.5.

• The Otsu thresholding method is proposed by [36] in order to find
an intensity threshold value which maximizes the intracluster variance
of road markings and road-surface LiDAR clusters, optimizing the
segmentation of point clouds into asphalt and road marks.
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2.4 Fusing 3D LiDAR data and RGB data

Only a few papers talk about combining images and 3D point clouds provided
by MMSs to extract lane marks. According to [64] the following challenges
exist using MMS based lane mapping methods;

• Time-consuming processes due to unorganized points or noisy classi-
fied points.

• Inconsistency of the reflective intensity measured point clouds due to
different scanning ranges, incidence angles, surface characteristics, etc.

• Interferences caused by the unevenness due to the dirt or dust on the
road.

• Instrument settings, velocity of the vehicle and quality of the MMS
system.

• Within the lane-marks points surveyed, and particularly those which
are further from the vehicle become sparse and difficult to recognize.

• Work with image texture and reflective intensity of the point cloud.

Generally, MMS-based lane mapping methods are divided in two steps. In
a first stage, the road surface is extracted; in the following step the road
lane-marks are extracted. To extract the road surface, many segmentation
methods have been proposed:

• Planar-surface-based methods [53] generally use fitting algorithms.
Most of them use the normal vectors of points which are usually es-
timated using RANdom SAmple Consensus (RANSAC) [68], Principal
Components Analysis (PCA) [15], Robust and Diagnostic Principal
Components Analysis or Hough transform [32].

• Edge-based methods [71], in a first process, linear road edges are detec-
ted and fitted using those edges in order to segment road surface [65].
Preliminary studies on the fusion of MMS images and point clouds
have been carried out to detect tree species [66], pedestrian [43, 55] or
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facades [33, 31], but not many studies have accomplished to extract
lane marks from image and point cloud fusion.

• A validation method proposed by [64] fuses image texture saliency with
the geometrical distinction of the lane-marking point cloud to improve
the robustness of lane mapping. The proposed methodology is shown
in figure 2.6, where the process mis divided in three sub-processes:

1. Road surface extraction, based on the Normal vector using the
RANdom SAmple Consensus (RANSAC) [54] algorithm, that is
an iterative method to estimate parameters of a mathematical
model from a set of observed data that contains outliers.

2. Lane marking extraction based on a 2D image obtained from the
3D point cloud so as to obtain elevation values. The 2D image
correlates with the 3D point cloud.

3. Lane mapping: Lane markings in a local section are clustered
and fitted into lane lines. Those point are clustered and refined
according to the typology of the lane line belong to; continuous
line, broken line, etc. To fill in the missing lanes caused by local
occlusion, a global post-processing is adopted. In order to im-
prove the robustness of lane mapping, textural saliency analysis
is proposed using images obtained from MMS sensor. It is used
to validate candidate lane lanes.

2.5 Conclusions

The methods exposed in this Chapter are conventional signal processing
techniques which are not trained or learning from the data. Their para-
meters are set a priori in some sample data by manual observation of the
results. There is no way to adapt the algorithms to new incoming data.
For this reason, we approach the problem from a machine learning point of
view, where a classification model is built up from the data available try-
ing to minimize the detection error. This general approach allows to tune
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Figure 2.6: Point cloud and image fusion proposal [64]

the system to the data, and to have a method to carry out corrections or
retuning of the classifier.



Chapter 3

Dataset for the experiments

In this chapter we introduce the actual datasets used for computational
experiments. The scenarios will be divided according to the sensor used
for data acquisition within the MMS system. Section 3.1 gives a short
description of the mobile mapping system that has been used to capture
the data. Section 3.2 describes the experimental dataset extracted from
theRGB cameras. Section 3.3 describes the dataset consisting of images that
have been composed from the intensity component of the LiDAR response.
Section 3.4 describes the 3D LiDAR dataset without intensity information.

3.1 Mobile Mapping System

Mobile mapping is the integration of different methods of data capture
mounted on a vehicle. The sensor used is the IP-S3 HD1 (Figure 3.1) product
of Topcon, Japan. It is composed of a positioning system (wheel encoder,
GPS/GNSS receiver, Inertial Measurement Unit), image sensor and a Lidar
Sensor.

3.1.1 Positioning system

• Wheel encoder: Using an odometer we can calculate accurately the
distance travelled by the vehicle.

25
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• GPS/GNSS receiver: Receiver that collects a signal from the GPS
costing of both GPS and GLONASS satellites, obtaining a vehicle
coordinate at all times.

• Inertial Measurement Unit: An inertial measurement unit or IMU
is an electronic device that measures and reports on the speed, orient-
ation and gravitational forces of an apparatus, using a combination
of accelerometers and gyroscopes. The IMU will calculate the current
position within the trajectory, based on the speed, direction and time
of the vehicle.

3.1.2 Image sensor

Five cameras pointing at regular arc intervals of the circumference, and
a sixth one pointing up. Using the described configuration, the output
is a panoramic image, a sum of the images obtained by the 6 cameras of
the system, where the central view corresponds to the rear view of the
car, so that the front view is split left and right of the panorama. At
the bottom of the panorama, it is possible to appreciate the scaffolding
supporting the sensors. Notice the changes in hue and saturation in the
image due to the different sensitivities of the cameras. All images captured
by the LadyBug are tagged spatially with coordinates provided by onboard
GPS. The frequency used is 1HZ.

3.1.3 LiDAR system

This sensor is capable of measuring up to 700,000 points per second. During
each turn, the 32 internal lasers cover the entire 360 degrees around the
system, each from a slightly different viewing angle, minimizing the gaps in
the cloud of points that arise from obstacles or dead angles. Points are also
tagged spatially with coordinates. The frequency used for data capture is
also 1 HZ.
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Figure 3.1: IP-S3 HD1 Mobile Mapping System
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Figure 3.2: An example panorama image obtained from the ladybug sensor
after stitching the 5 camera images, obtained by the composition of the
views of the five cameras
Figure 3.2: An example panorama image obtained from the ladybug sensor after stitching the 5 camera images, obtained by the composition of the views of the five cameras

3.2 Image sensor based data

In this section we will explain the dataset composed from the data obtained
by the image sensor of the MMS system. The vehicle equipped with the
MMS system made several data recording trips collecting a sequence of
panorama images such as the one shown in Figure 3.2with a frequency of 1
per second, along with the LiDAR readings. We have selected 150 panorama
images from different trips to compose the training and testing dataset. We
extract the central region of the panorama images as the actual images in
the experimental dataset. The left column of Figure 3.3 shows some of
the images in the dataset (each of size 2841 × 489 × 3). We have hand
delineated the ground truth of the images to provide the pixel labelling for
the AL training sample selection and for the validation process computed at
each step of the AL training dataset increment. The right column of Figure
3.3 shows the ground truth of the images in the left column.

The panoramic images are the result of the stitching of the six images (5
in the horizontal plane and one in the vertical plane) obtained as shown in
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Figure 3.3: Some of the experimental images (left column) and
their corresponding manually delineated ground truth (right column)
white=background, black=road signs.

Camera 0 Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Figure 3.4: Individual images captured by the different cameras of the
sensor. Cameras 0 to 4 correspond to the individual plane. Camera 5
corresponds to the zenith plane.

Figure 3.4. The image is only representative, i.e. due to the geometric and
radiometric distortions it undergoes when it is generated, it is not possible
to calculate the terrain coordinates directly from the pixel coordinates. Such
calculation can be done with proprietary software that possess the complete
calibration parameters of the entire system. In this case, as it is not a direct
a direct measure and is not the subject of the Thesis, we do not pursue this
issue any further. The coordinates to be used to reference the image will be
only the pixel coordinates.

For the training and validation process we pool together the pixels from
all selected images, their texture features obtained from the bank of Gabor
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Figure 3.5: Example of filtered images with Gabor filters of various orient-
ation and scales.

filters (that will be introduced formally in Chapter 4) that we can see in
Figure 3.5, and their labels. The Gabor filter bank comprises 36 orientations
(from 0º to 180º in steps of 5º) and 6 wavelength values set following a linear
rule F = w02

k with k = 0, . . . , 5, where w0 = 4/20.5, hence we have 196 Gabor
features per pixel. The dataset contains over 208 million pixels, each one is
associated to a feature vector of dimension 198. The actual class imbalance
ratio of the dataset is IR = 1/39, i.e. we have 39 background pixels per each
road signal pixel. In other words, the target minority class accounts for
2.45% of the dataset, the remaining 97.55% corresponds to the background,
including the road and the environment.
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3.3 LiDAR intensity image dataset

Each car trajectory generates a point cloud of more than 100 million LiDAR
points. With proprietary software, more specifically the MMS system’s own
software, the different paths are extracted in divided point clouds of 10M.
Thanks to the positioning system of the MMS system, the trajectory is
georeferenced. No control-points are taken, so it is not possible to speak of
relative positioning accuracy, but it is estimated that this accuracy is around
30-40 centimetres in real time ( pre-processing). Through post-processing
with the MMS system’s own software, we achieve an average relative pos-
itioning accuracy of less than 10 centimetres. The post-processing consists
of identifying the permanent GNSS stations closest to the route. These sta-
tions will provide us with corrections, which are stored in a file type called
RINEX [30], giving us a file of corrections every 30s or every 1s. In our case
we perform the post-processing tasks with a 1s RINEX file, applying these
corrections to the measurements taken during the trajectory.

On the divided and post-processed point clouds, a dataset of 10 point
clouds has been randomly chosen from which, using the intensity informa-
tion, their respective raster images of intensities have been generated. These
images, in addition to providing information on the reflectivity response,
provide us with a georeferenced image, i.e. each pixel of the image has co-
ordinates with a UTM coordinate system and an ETRS89 reference system.

The left column of Figure 3.6 shows some of the intensity images from
in the dataset . We have hand delineated the ground truth of the images
to provide the pixel labelling for the AL training sample selection and for
the validation process computed at each step of the AL training dataset
increment. The right column of Figure 3.6 shows the ground truth of the
images in the left column.

For the training and validation process we pool together the pixels from
all selected images, their texture features obtained from the bank of Gabor
filters (Image 3.7 , and their labels. The Gabor filter bank comprises 36
orientations (from 0º to 180º in steps of 5º) and 6 wavelength values set
following a linear rule F = w02

k with k = 0, . . . , 5, where w0 = 4/20.5, hence
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Figure 3.6: Left: one of the experimental images, Right: its corresponding
manually delineated ground truth (white is the background)
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we have 196 Gabor features per pixel.
The actual class imbalance ratio of the dataset is IR = 1/117, i.e. we

have 117 background pixels per each road signal pixel. In other words, the
target minority class accounts for 0.85% of the dataset, the remaining 99.15%
corresponds to the background, including the road and the environment.

3.4 LiDAR point clouds dataset

The configuration of the MMS system is as discussed in section ??. Fur-
thermore, the dataset used is the same as the one used in section ?? In
order to provide the point labelling for the AL training sample selection and
for the validation process computed at each step of the AL training dataset
increment, we have hand extract all points that correspond to lane marks
obtaining a ground truth for each of the point clouds to be studied. Figure
3.8 shows some Lidar Point Cloud and respective ground truth images. For
the training and validation process we pool together the the points from all
selected point clouds with their intensity values and their normal and deep
degree, previosly computed, and their labels. The actual class imbalance
ratio of the dataset is IR = 1/28, i.e. we have 28 background points per each
road signal point. In other words, the target minority class accounts for
3.7% of the dataset, the remaining 96.3% corresponds to the background,
including the road and the environment.
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Figure 3.7: Example of filtered images with Gabor filters of various orient-
ation and scales.
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Figure 3.8: Left: one of the experimental LiDAR Point Cloud, Right: its
corresponding manually extracted ground truth.
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Chapter 4

METHODS

Road landmark inventory is a flourishing industry around the world, as the
traffic becomes denser and the drivers must rely on a well-maintained infra-
structure. Specifically, horizontal signals and lane landmarks, such as lines,
arrows or other drawings on the asphalt, are of great public concern. Sev-
eral commercial sensors are available which include optical cameras allowing
to build panoramic images around the vehicle used for road inspection and
LiDAR sensors, being able to collect geo-referenced data with additional in-
formation to planimetric and altimetric coordinates, such as intensity, num-
ber of returns, GPS time, etc. The landmark detection is posed as a two-
class classification problem that may be solved by some approaches, such as
random forest (RF) and ensembles of extreme learning machines (V-ELM).
Besides model parameter selection, a central problem is the construction of
the labeled training dataset due to human labor cost and the highly uncon-
trolled conditions of image capture. We have applied an open-ended Active
Learning (AL) approach with a human operator in the loop who can start
the AL process when detection quality is degraded by the change in imaging
conditions in order to achieve adaptation to the new imaging conditions.

The content of the Chapter is as follows: Section 4.1 presents the schem-
atics of the experimental setups carried out in this Thesis, Section 4.2 gives
the definitions of the classification performance measures employed to as-
sess the quality of the methods. Section 4.3 describes the main classification

37
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training methods applied along the Thesis. Section 4.4 describes the issues
related to active learning strategies. Section 4.5 describes the construction
of the raster image from the LiDAR point clouds. Section 4.6 describes the
features extracted from LiDAR point clouds for classification. Finally, Sec-
tion 4.7 gives a short review of Gabor features also used for texture based
classification.

4.1 Experimental setups

We report performance results over a collection of road images in order to
assess the most adequate classifier and parameter settings. Chapter 3 con-
tains the description of the different experimental datasets extracted from
the MMS system travels. The experimental setup for validation is illustrated
in figure 4.1. For the classification of the points of interest, whatever the
methodology, the results will be explored through Random Forest (RF) clas-
sifiers. The experimental setup for validation using different methodologies
is illustrated in 4.2 and 4.3.

4.2 Performance measures

We report the Sensitivity (SEN), Specificity (SP), Accuracy (AC), Posit-
ive Predictive Value (PPV), and Area Under the receiver operating Curve
(AUC) of the pixel-wise classification of the entire images using the classifi-
ers built over the selected training datasets at the end of the AL process.TP,
TN, FP, and FN stand for true positive, true negative, false positive, and
false negative, respectively.

Sensitivity (SEN): Metric used to detect positive instances (True posit-
ives). A model with high sensitivity will have few false negatives,
which means that it is missing a few of the positive instances. In
other words, sensitivity measures the ability of a model to correctly
identify positive samples. The sum of sensitivity (true positive rate)
and false negative rate would be 1. The higher the true positive rate,
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Figure 4.1: Pipeline of the experimental setup for the Active Learning seg-
mentation process with panoramic images
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Figure 4.2: Pipeline of the experimental setup for the Active Learning seg-
mentation process with LiDAR intensity based images

Figure 4.3: Pipeline of the experimental setup for the Active Learning seg-
mentation process with LiDAR Point Clouds
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the better the model is in identifying the positive cases in the correct
manner. Mathematically, sensitivity is calculated as SEN = TP

TP+FN .

Specificity (SP): It measures the proportion of true negatives that are cor-
rectly identified by the model.This implies that there will be another
proportion of actual negative which got predicted as positive and could
be termed as false positives. This proportion could also be called a
True Negative Rate (TNR). High specificity means that the model
is correctly identifying most of the negative results, while a low spe-
cificity means that the model is mislabelling a lot of negative results as
positive. Mathematically, specificity is calculated as SP = TN

TN+FN .

Positive Predictive Value (PPV): It is defined as the proportion of posit-
ively classified cases that were truly positive. We report the PPV as
PPV = TP

TP+FP .

Accuracy (AC): It is used to quantify the number of correctly predicted
data points out of all the data points. Formally is defined as AC =
TP+TN

N where N = TP + TN + FP + FN .

Area Under the receiver operating Curve (AUC): It is computed by approx-
imate integration of the ROC over the classifier decision threshold.
An ROC curve (receiver operating characteristic curve) is a graph
showing the performance of a classification model at all classification
thresholds. This curve plots two parameters:True Positive Rate False
Positive Rate .

The most valuable metrics are the SEN, PPV, and AUC because they meas-
ure the recognition of the minority class and the overall balance of the re-
cognition of both classes. Due to the strong class imbalance of the dataset
AC is usually biased towards the recognition of the majority class.

The pool of pixels used for the selection of the training dataset is com-
posed of pixels of all labelled images. The sample selection procedure tries
to have pixel representatives from all images, in order to avoid over-training
on one image. To this end, at each AL iteration we compute the classific-
ation uncertainty of all pixels from all images. However we do not ensure
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that the selection picks the same number of pixels from each image to be
added to the training dataset. The separation of training and test data for
validation is ensured as far as we report the performance measures over the
pixels not included in the training set. Classifier training using AL never
uses the labelling information of data not included in the training dataset
[63].

4.3 Classification Methods

4.3.1 Random Forest Classifiers

Random Forest (RF) algorithm is a classifier [17] that encompasses bagging
[16] and random decision forests [18], whose performance has been demon-
strated in a variety of applications [19]. RF became popular due to its
simplicity of training and tuning while offering a competitive performance
to other machine learning approaches, such as support vector machines.
Consider a RF as a collection of decision tree predictors, built so that they
are as much decorrelated as possible, denoted:

{h(x;ψt); t = 1, ..., T} , (4.1)

where x is a d-dimensional random sample of random vector X, ψt are
independent identically distributed random vectors modelling the stochastic
nature of the tree building process. Each tree h(x;ψt); casts a unit vote in
order to decide the class assignment of x. RF appear to capture complex
correlations in data, and are proposed [17] to be resistant to both over-
fitting of data when individual trees are very deep and not pruned, and
under-fitting when individual trees are too shallow. Pruning is applied to
mitigate potential over-fitting that might happen in a single tree. Overfitting
is reduced in RF it is do by two means:

• A bootstrapped training: A statistical concept, that is a resampling
method used to stimulate samples out of a data set using the replace-
ment technique. The process of bootstrapping allows one to infer data



4.3. CLASSIFICATION METHODS 43

about the population, derive standard errors, and ensure that data is
tested efficiently. This technique involves repeatedly sampling a data-
set with random replacement. A statistical test that falls under the
category of resampling methods, this method ensures that the statist-
ics evaluated are accurate and unbiased as much as possible.

• The multitude of random trees using random features allows individual
trees to be strong classifiers but not so correlated with each other to
induce overfitting.

4.3.1.1 RF construction

Given a dataset of N samples, a bootstrapped training dataset is used to
grow a tree h(x;ψt) on a randomly selected subset of data dimensions d̂
such that d̂<< d. Decision tree growing recursively picks the best data split
of each node based on these information measure of each dimension. In
RF pruning is not required. The RF training process picks randomly the
dimension and the dataset bootstrapping according to independent identic-
ally distributed random vectors ψt. This randomness is the source of RF
individual tree diversity ensuring the decorrelation of their outputs. Clas-
sification of a new input x is done by majority voting over the responses
of the trees in the RF Cu(x). The critical parameters of the RF classifier
for the experiments reported below are the number of trees in the forest,
the dimension of the random subspace, and the maximum tree depth. We
report experiments assessing the effect of these parameters in our specific
study. The 4.1 shows the process of Random Forest.

4.3.2 Ensemble of Extreme Learning Machines

Extreme Learning Machine (ELM) [39] was proposed for fast and efficient
training of Single-Hidden Layer Feedfodward neural Networks (SLFN) It is
composed of the random generation of the input-to-hidden layers weights
followed by least squares estimation of the hidden-to-output layer weights.
Random weight generation allows to solve the non-linear training problem
as a linear problem, gaining in speed at the cost of some instability that
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Algorithm 4.1 Random Forest algorithm for Classification.
Imputs
–Initial Dataset N samples.
–Initial training set Xt = {xi, yi}li=1(X ∈ X , t = 1).
–Considered RF: h(x;ψt); t = 1, ..., T .
–Given a dataset of N samples, a bootstrapped training dataset is used to
grow a tree h(x;ψt) on a randomly selected subset of data dimensions d̂
–«d

1: for each tree h(x;ψt) do
2: casts a unit vote in order to decide the class assignment of x
3: end for
4: Classification of a new input x is done by majority voting over the re-

sponses of the trees in the RF Cu(x)

has been shown empirically to be affordable. In general terms, a supervised
classifier is a map from input feature space into a target value space, for the
SFLN this map has the following form:

fL (x)=
L∑
i=1

βi·hi(x) = h (x)β, (4.2)

Where β = [β1, . . . , βL]
T is the matrix composed of the weights of the

connections hidden-to-output units, and the transformation h(x) is the ELM
non-linear transformation from input to hidden space. The hidden units of
ELM may be any piecewise continuous function that satisfies simple uni-
versal approximation conditions [38]. Given a sample of feature vectors
and corresponding labels {(xi, yi)}Ni=1, the estimation of the labels given the
input features can be written in matrix notation as

Hβ = Ŷ, (4.3)

Where H is the matrix of responses of the hidden units to the input
features in the sample, and ŷis the achieved approximate value of the labels
of the samples.

The process of training an SLFN following ELM approach has two stages:
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• Feature mapping implement by random sampling of the hidden units
activation in response to the input features in order to build the feature
kernel matrix H.

• Least square resolution of the following minimization problem:

min
β∈RL×m

∥Hβ − Y∥2 , (4.4)

Whose optimal solution is given by β ̂ = H†L, where H†is the Moore-Penrose
generalized inverse of H. Note that the definition of ELM allows naturally
multivariate SFLN.

Neural network classifiers usually suffer from over-training which might
degrade the generalization performance. During the training phase, all train-
ing samples are categorized into several classes by classifier and the learning
error is used to evaluate the efficiency of training. Minimum training error
is expected, but it cannot guarantee good classification results on unseen
data. It is shown that combining a number of neural networks could solve
the problem [35, 70].

ELMs can be combined very efficiently in ensembles which can be homo-
geneous or heterogeneous [8]. Applications on the prediction of readmissions
in hospital environments [4], remote sensing image processing [7, 5, 6, 9] have
already been reported. The simplest ensemble of ELM is the Voting ELM
(V- ELM) [21], consisting of a collection of ELMs each trained on a boot-
strap of the training dataset. Compared with the original ELM algorithm,
the proposed V-ELM is able not only to enhance the classification perform-
ance and reduce the number of misclassified samples, but also to lower the
variance among different realizations. Every SFLN has the same number
of hidden neurons, and the decision on the class is performed by majority
voting over the responses of the SFLN in the ensemble. Examples of applic-
ations of V-ELM are hyperspectral image classification [9], remote sensing
data classification [34] and natural gas reservoir characterization [2], and
wastewater quality index modelling [29]. It has been proved that accuracy
converges to perfect classification as the size of the ensemble grows under
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the mild assumption that individual classifiers have performance better than
random choice [21]. The V-ELM has spurred some variations in the liter-
ature, such as the use of soft-class dependent voting schemes [22] trying to
increase model reliability. We apply the basic scheme in our work; Given
a learning set L consisting of samples (xn, yn), n = 1, 2, ..., N , where ynis
the class label. It is assumed[46] that x is the input and y is predicted
by φ(x, L). In V-ELM, the aim is to better predict y using multiple ELMs
than a single one. Suppose that φ(x, L) predicts a class label j ∈ 1, 2, ..., C

and the prediction of kth classifier is Dk,j ∈ 0, 1 where k = 1, 2, 3, ...k, the
ensemble can be defined as

φ(x, L) = arg c
max
j=1

k∑
k=1

Dk,j (4.5)

The voting is pure majority version which means that the output is the
value with highest number of votes whether or not the sum of votes exceeds
half.

4.4 Active Learning

The motivation of the Active Learning approach [24, 25, 62] is to facilitate
the task of data labelling for supervised classification. The two objectives
pursued by this approach are to reduce as much as possible the manual effort
of data sample labelling, and the selection of those data samples which are
more informative towards the building a robust and efficient classifier. Data
labelling is a costly process involving manual labour and some interactive
data visualization tool that facilitates the labelling process. In some cases,
data labelling involves quite complex field work, so minimizing the number
of required labelled samples and ensuring that each labelled sample contrib-
utes significantly to the quality of the classifier is of paramount importance.
Moreover, manual data labelling may introduce erroneous classifications,
which further interfere and degrade the training process. Such kind of er-
rors are less likely in small datasets. Additionally, in the case of highly class
imbalanced datasets, the guided selection of balanced training datasets may
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enhance the results as we have found in our experiments reported later. Let
us denote X = {xi, yi}li=1 and U = {xi}l+u

i=l+1 ∈ Rd the training set contain-
ing labelled samples, and the unlabelled samples in the pool of candidates,
respectively. We have that u ≫ l,xi ∈ Rd, and yi ∈ {1, . . . , N}. Active
Learning is an iterative Algorithm. At iteration t, the algorithm selects q
candidates from U t to be added to the current training set Xt, aiming at
maximal gain in performance of the classifier trained with the incrementing
training dataset, while reducing the classification model uncertainty. An or-
acle provides the labels {ym}qm=1 to the selected samples St = {xm}qm=1 ⊂ U

. The oracle can be a human carrying out computational experiences, such
as we do in this chapter. The current training set is increased with the
candidates selected from (U t+1 = U t\St). The process sops when some cri-
terion is met, such as the accuracy over a pre-set threshold θmax. Algorithm
4.2 summarizes the Active Learning process.

Algorithm 4.2 Active learning general algorithm
Imputs
–Initial training set Xt = {xi, yi}li=1(X ∈ X , t = 1).
–Pool of candidates U t = {xi}l+u

i=l+1(U ∈ X , t = 1).
–Number of voxels q to add at each iteration (defining the batch of selected
voxels S ).

1: repeat
2: Train a classifier with current training set Xt

3: for each candidate in U t do
4: Evaluate a user-defined heuristic
5: end for
6: Rank the candidates in U t according to the score of the heuristic
7: Select the q most interesting voxels St = {xk}qk=1

8: The system assigns a label to the selected voxels St = {xk, yk}k=1

9: Add the batch to the training set Xt+1 = Xt ∪ St

10: Remove the batch from the pool of candidates U t+1 = U t\St

11: t = t+ 1
12: until t > T
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4.4.1 Classification uncertainty in ensemble classifiers

RF and V-ELM classifiers implement committee approaches to the decision
of the class corresponding to an unlabelled sample. This distributed cooper-
ative decision can be used for classification uncertainty estimation. Given
a committee of k base classifiers, then we have k labels for each candid-
ate unlabelled samplexi ∈ U . The data sample class label is provided by
the majority voting. Heuristically, the measure of the classification uncer-
tainty of xi can be equated with the standard deviation σ (xi) of the class
labels generated by the committee. The pool of candidates can be ordered
U∗ = {xji}

l+u
i=l+1, according to σ (xji) > σ

(
xji+1

)
.The standard deviation

query-by-bagging heuristic selection of samples to be added to the train set
is stated as the following selection:

St= {xjm}
q
m=1 (4.6)

The standard deviation of the ensemble label predictions is a powerful
heuristic measure of classification uncertainty. A candidate sample that is
classified equally by all ensemble members has a zero prediction standard
deviation, hence its inclusion in the training set does not add any informa-
tion. On the other hand, if a candidate has uniformly distributed responses
from the ensemble, its standard deviation is maximal, hence it contributes
maximal information when included in the training dataset.

4.4.2 Active learning for image segmentation

Image pixels are classified into the target and the background classes [50].
Target pixels correspond to the lane marks and other landmarks in the road.
In a nutshell, an AL system returns to the user an image whose intensity
value corresponds to the degree of uncertainty in the classification of the
pixel. Upon this image, the user, in its role as the oracle will pick some of
the pixels with greatest intensity, and will be assigning labels to them for
their insertion in the training dataset. Then, a new instance of the classifier
is trained [58]. The features of each pixel are the result of the application
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of a bank of Gabor filters, the pixel intensity and its coordinates. Though
the feature vector dimensionality is relatively high, we do not carry out any
feature selection procedure because we prefer to leave open the possibility
that a certain orientation or scale may be meaningful in future images.
The stream of images collected during commercial operation may contain
images that are quite different from the ones used for training. Hence, the
final commercial implementation will allow to restart the AL process when
the human operator detects deviations from optimal segmentation. It is an
open-end learning process with a human in the loop. The computational
exploration reported in this chapter, does not resort to a human oracle.
Instead, it is based on the hand delineated ground truth of a collection of
images. Hence, the labelling process consists in the selection of the pixels
with maximal uncertainty, applying random selection to solve ties.

4.4.3 Active learning for LiDAR point cloud classification

The point clouds are classified as well as the processed images into target and
background classes. The points belonging to target correspond to horizontal
road markings. Using AL techniques, a point cloud is returned classified into
points corresponding to road landmarks and everything that does not belong
to the target class. In order to achieve this classification, the normal to each
point and its deep angle must first be calculated. In addition, the intensity
response obtained by the LiDAR sensor will be taken into account. These
features, as well as the coordinates of each point, are stored in a database.
The computational exploration presented, as described with the image, does
not require manual techniques, but is based on the ground truth manually
segmented in a preprocess. Therefore, the labelling process consists of se-
lecting those points with the highest uncertainty, applying random sampling
to resolve ties.

4.4.4 Active Learning and class imbalance

In supervised classification, a dataset is imbalanced when the a priori prob-
abilities of the classes are significantly different, i.e. there exists a minority
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(positive) class that is under-represented in the dataset in contrast to the
majority (negative) class. Often we want to predict the minority class be-
cause it is related to the highest cost/reward events. Dataset class imbalance
is a strong issue in machine learning because it induces very strong bias ef-
fect towards the majority class in classifier training by almost any modelling
approach, therefore the accuracy performance metric is not adequate. Pre-
ferred performance metrics measure the predictive power on the minority
class. The imbalance ratio (IR) is defined as the ratio of the number of
data samples from the majority class to the number of data samples from
the minority class. Conventional classifier performance deteriorates even
with moderate imbalance ratios. Class imbalance effect has been also re-
cognized in digital mapping applications. There are two basic approaches
to deal with imbalanced data. The first is to manipulate the data, either by
under-sampling the majority class [67] or by oversampling the minority class
(SMOTE is the best known oversampling approach), achieving a balanced
training dataset. Usually, using naive subsampling to produce balanced
training datasets does not achieve competitive test performance results, so
that some kind of modelling is needed to do it correctly. The second kind
of approaches try to tailor the classifier model to cope with the imbalance
data, such as applying conformal transformations to Support Vector Ma-
chines (SVM) [69]. Many approaches rely on ensemble classifiers, such as
the Adaboost and its combinations/variations, or through the decomposi-
tion of multiple class imbalanced problem into one-to-one decision problems.
Recently, AL approaches to deal with class imbalanced data are getting mo-
mentum, for example posing the active sample selection as a constrained
optimization problem. However, this approach does not scale to large data-
sets, such as the one we are dealing with. We have carried out comparative
experiments of balanced versus imbalanced class sample selection for the
incremental additions to the training dataset. The imbalanced selection
preserves the a priori distributions of the class through stratified sampling
of the most uncertain samples. The balanced selection forces that the same
number of samples of each class is added to the training set among, regard-
less of differences in the (order of magnitude of the) uncertainty measure.
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We carried out the comparative on the computational experiments using
RF classifiers, with positive results. On the basis of the RF comparative, we
apply the balanced AL strategy to the V-ELM experiments (Only applies
to panoramic images).

4.5 Raster image from LiDAR point cloud

In our case we generate the raster images from the different point clouds.
The generation is done with proprietary software [3]. Point clouds captured
with laser scanner (LiDAR) have a high information density, but their spatial
distribution is not uniform since they depend on their distance from the
measurement pole, i.e. where the scanner is located at the moment of the
measurement. Thus, areas close to the scanner will have a high information
density, and areas further away will have a lower information density. Point
clouds can also come from a photogrammetric multi-correlation, with similar
densities; but, due to the process of obtaining the cloud from the images,
their homogeneity is greater than for LiDAR point clouds.

If it is desired to obtain a regular information model, i.e. a raster struc-
ture, an interpolation could be performed using various filtering operations
such as lowest, highest, arithmetic mean, weighted, etc. points. This pro-
cess is suitable when the structure is based on a cell size higher than the
density present in the model. In this way, points will always be obtained
for the measurement area.

However, if it is desired to obtain a raster image with a higher density
than the measured one, the process does not solve what happens in those
areas where no points have been found. This is usually the case when obtain-
ing a georeferenced image of the point cloud, in which the pixel information
is some characteristic of the measured points: their intensity, colour, alti-
tude, classification value, etc. In this case, the image would present areas
where there is no information because there are no points nearby.

Therefore, to avoid this situation, a continuous surface must first be cal-
culated that relates all the points measured, avoiding the generation of gaps
in areas where the density of points is lower due to their distance from the
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Figure 4.4: Orthoimage generation process

measurement pole. This surface can be obtained from a triangulation al-
gorithm, such as Delaunay triangulation.The algorithm of this triangulation
is based on the establishment of some points outside the data point cloud
and external to it (fictitious points), marking the limits of action. These
points will generate triangles with the points outside the cloud on the four
sides (north, south, east and west), in such a way that a total surface is gen-
erated that is always convex (convex hull). Using this information, points
that are connected with these fictitious points can be determinate and use
the sides of the triangles generated with these for the formation of the outer
boundary of the point cloud. The result will be a continuous surface divided
by irregular triangles relating neighbouring points. In addition, a maximum
distance can be established, which would avoid generating triangles that join
points that are far apart in reality.

From this continuous surface, a raster structure can be interpolated,
ensuring that no cells without information are generated. The process
takes more computational time, but ensures a continuous image within the
measured area.The process is fully automatic and returns an orthorectified
product with no distortions, neither geometric nor radiometric, as well as a
georeferenced image in space. The 4.4 shows the process of how from a point
cloud we obtain an orthoimage from the digital elevation model (DEM).

4.6 LiDAR Point Cloud features

In a LiDAR file a number of attributes are stored along with each position
value (X, Y, Z) for each recorded laser pulse; intensity, return number,
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number of returns, point classification values, points that are on the edge
of the flight line, RGB values (red, green and blue), GPS time, scan angle
and scan direction. For our study we are only interested in the X, Y, Z
information, plus the intensity, which represents the response of the laser
when bouncing against an object. Depending on the type of scanner used
in the point cloud capture, this parameter will be recorded as an 8-bit or
16-bit field. In the former case, it will appear as a value between 1 and 256
within the return attributes, in the latter case, it will be values between
1 and 65536. In order to have a LiDAR point Cloud features to train our
model, in addition to the coordinates of each point and its intensity value,
we will estimate the normals to the plane of the point cloud and calculate
the slopes.

4.6.1 Surface Normal estimation in a Point Cloud

To calculate the normal vector to a surface, we first approximated the surface
of the point cloud to a plane. This vector is perpendicular to the surface at
a given point. When normals are considered on closed surfaces, the inward-
pointing normal (pointing towards the interior of the surface) and outward-
pointing normal are usually distinguished. The unit vector obtained by
normalizing the normal vector (i.e., dividing a non-zero normal vector by
its vector norm) is the unit normal vector, often known simply as the unit
normal.

The normal vector at a point (x0, y0) on a surface z = f(x, y) is given
by

N =

 fx(x0, y0)

fy(x0, y0)

−1

 , (4.7)

A normal vector to plane specified by

f(x, y, z) = ax+ by + cz + d = 0 (4.8)

is given by
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N = ∇f =

 a

b

c

 , (4.9)

where ∇f denotes the gradient. The equation of a plane with normal
vector n=(a,b,c) passing through the point (x_0,y_0,z_0) is given by

 a

b

c

 .
 x− x0

y − y0

z − z0

 = a(x− c) + b(y − y0) + c(z − z0) = 0. (4.10)

For a plane curve, the unit normal vector can be defined by

N̂ ≡ dT̂

dϕ
, (4.11)

where T̂ is the unit tangent vector and ϕis the polar angle. Give a unit
tangent

T̂ ≡ u1x̂+ u2ŷ (4.12)

with
√
u21 + u22 = 1, the normal is

N̂ ≡ −u1x̂+ u1ŷ (4.13)

For a plane curve given parametrically, the normal vector relative to the
point (f(t), g(t)) is given by

x(t) = − g′√
f ′2 + f ′2

(4.14)

y(t) =
f ′√

f ′2 + f ′2
(4.15)

The actual place for the normal to the curve must be displaced by
(f(t), g(t)). For a curve in space, the normal unit vector is given by:
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N̂ ≡
dT̂
ds∣∣∣dT̂ds ∣∣∣ (4.16)

=
dT̂
dt∣∣∣dT̂dt ∣∣∣ (4.17)

=
1

k

dT̂

ds
, (4.18)

where T̂ is the tangent vector, s is the arc length, and k is the curvature. It
is also given by:

N̂ = B̂ × T̂ , (4.19)

where B̂ is the binormal vector [1]
For a surface with parametrization x(u, v), the normal vector is given by

N =
∂x

∂u
× ∂x

∂v
, (4.20)

Given a three-dimensional surface defined implicitly by F (x, y, z) = 0,

n̂ =
∇F√

F 2
x + F 2

y + F 2
z

. (4.21)

The 4.5 shows a graphical representation of the calculation of the normal
vectors of a small area of one of the point clouds under study.

4.6.2 Point Cloud Slopes computation

Another important data needed to train the model are the slopes to the
planes of the calculated normals that will be used as another parameter
to predict the points classified as road lane marks. Sometimes, elements
that we do not want to classify as horizontal road lane can have the same
response in LiDAR intensity values. This is the case shown in 4.6, in which
we obtain the same intensity values for both the gate and the line marking
the lane delimitation. The slope is calculated from the horizontal, expressing
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Figure 4.5: Graphical representation of the calculation of the normal vectors
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Figure 4.6: Same intensity values between different elements.

the angle in positive values. Thus, all values greater than approximately 5
sexagesimal degrees should be discarded when predicting the classification.

4.7 Gabor texture features

In order to have a systematic characterization of the surroundings of each
pixel we use a bank of Gabor filters, which are used on both the RGB pan-
oramic images and the intensity orthoimages obtained from LiDAR points.
The magnitude of the responses of the Gabor filters are used a the feature
vector for classification. In other words, we use the local texture descriptor
of the image as features [28? ] for classification. Formally, a Gabor filter
is defined by the product of a sinusoidal wave, i.e. a plane wave in 2D, and
a Gaussian function. The Gaussian component modulates the scale of the
filter, while the wave component acts as a selector of the orientation and spa-
tial frequency of the detected objects. In many implementations, Gaussian
scale and wavelength are linked, so only the wavelength is specified. The
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Gabor filter provides a complex valued response, so its magnitude and phase
can be used as features. In this paper we use only the phase. Formally, a
the impulse response of single filter is defined as follows:

g (x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x′2

σ2x
+
y′2

σ2y

)]
exp [2πi (Ux+ V y)] , (4.22)

where we rotate the Euclidean coordinates by x′ = x cos (θ) + y sin (θ), and
y′ = x sin (θ) + y cos (θ). Parameters σx, σy that define the spatial support
and bandwidth of the filter are determined as a function of the wavelength
F so that the Gaussian covers three periods of the sinusoid. The com-
plex exponential factor is a 2D sinusoid wave of frequency F =

√
U2 + V 2

and orientation γ = tan−1 (V/U). Figure 4.7 shows some examples of the
magnitude response of different filters over the same road image. Diverse
orientations highlight different road lane marks, and diverse wavelengths
produce crisp or blurred images, where details are highlighted or removed.
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Filter #34, Wavelength: 22.62, Orientation: 30º

Filter #48, Wavelength: 11.31, Orientation: 45º

Filter #62, Wavelength: 5.65, Orientation: 60º

Filter #120, Wavelength: 45.25, Orientation: 115º

Filter #143, Wavelength: 11.31, Orientation: 140º

Figure 4.7: Examples of filtered images with Gabor filters of various orient-
ations and scales.
Figure 4.7: Examples of filtered images with Gabor filters of various orientations and scales.
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Chapter 5

Experimental Results

In this Chapter we concentrate the results of the computaitonal experiments
carried out over each of the datasets described in Chapter 3. For each
dataset we describe the model parameter exploration methodology, followed
by the tables containing the actual results and some discussion about the
relevance of the results. Sectionn 5.1 provides the results obtained over
the panomic RGB images. Section 5.2 discusses the results achieved over
the rater images obtained from the intensity response of the LiDAR sensor.
Section 5.3 presents the results on the features extracted from the LiDAR
point cloud. Finally, Section 5.4 gives some short conclusions.

5.1 Results on RGB panoramas images

5.1.1 Model parameter exploration.

We have carried out an exhaustive exploration of the model parameter set-
tings in order to assess robustness of the approach and to find out which
parameter is more influential.We can provide some guidance on the best
parameter setting and the most promising model. Regarding RF computa-
tional experiments, we have explored the influence of the number of trees
(NT), the number of variables taken into account at node split (NVS), and
the size of the sample (NS) that is added to the current training dataset.
We have also made the comparative between ensuring that the dataset sub-

61
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RF
Number of images 15
Balanced dataset [0,1]
NS [50,100]
NVS [5,10,15,20]
NT [50,100,150,200]
TPR training threshold 0,8
Number of iterations 10

V-ELM
Number of images 15
Balanced dataset [1]
NELM [50,100,150,200]
NHELM [25,50,100]
NS [50,100]
TPR training threshold 0,8
Number of iterations 10
Activation function Sigmoid

Table 5.1: Summary of the experimental design for RF (left) and V-ELM
(right) for panoramic imagery.

sample added to the current training dataset is class balanced and not ensur-
ing class balance. This experience is not repeated on the ELM experiments
due to the negative results in RF experiments with unbalanced samples.
Regarding ELM computational experiments, we have explored the influence
of the ensemble size (NELM), the number of hidden units (NHELM) and
the size of the sample (NS) added to the current training dataset. We have
used the standard sigmoid activation function. In all reported experiments
we have performed a fixed number of iterations (T=10) of the AL algorithm.
Table 5.1 shows a summary of the configuration of the selected parameters
for both RF and V-ELM experiments.

5.1.2 Experimental Results

For a qualitative appraisal of the results, we show in Figure 5.1 some visual
results of the detections achieved by RF (left) and V-ELM (right) classi-
fiers trained on the final training datasets after an AL processes. Notice
that these results do not include post-processing and noise removal over the
classification results. Removing noisy detections may be easily achieved ap-
plying morphological operators and some standard computer vision tools.
These processes will be asily implemented during the industrial implement-
ation of the approach, and including them here would somehow obscure the
actual contribution of the machine learning approaches. The quantitative
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Figure 5.1: Some visual results of the trained RF (left column) and V-ELM
(right column) ensemble classifiers using balanced training sample incre-
ments. Parameter settings for RF are NT=50, NVS=5, NS=100. Parameter
settings for V-ELM are NELM=50, NHELM=10, NS=50.

analysis of the results have been organized into several research questions.

Impact of the sample selection strategy We compare the performance
achieved by the RF classifiers when the training datasets are increased by
candidate samples with or without ensuring class balancing, as shown in
Table 5.2 and Table 5.3, respectively. Welch’s one-sided t-tests comparing
the performance measures (SEN, SP, PPV, AUC) obtained by the balanced
versus unbalanced selection of samples to be added to the training dataset
confirms that there is a significant increase in performance.Wilcoxon rank
sum tests give even more significant differences(p < 1e − 11 for PPV, p <
1e − 10 for SEN, p < 1e − 9 for SP). For clarity, we have summarized in
Table 5.5 the p values of both tests. Notice that for SP the sign of the
change is negative, because it decreases with the balanced design. This
result provides an alternative approach to the correction of the bias induced
by strong class imbalance in the dataset. In this situation, if we examine the
AC performance, we are mislead for ignoring the minority class lead to very
high AC values However, very poor SEN and PPV values as can be seen in
Table 5.3 where unbalanced training dataset growth lead to high AC and
SP but very low SEN and PPV values. In our computational experiments,
the average PPV in Table 5.3 is 0.051 while in Table 5.2 it is 0.552. There is
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one order of magnitude increase of the PPV value. Consequently, we have
not carried out the comparison on the V-ELM classifiers, which have been
trained only with balanced incremental training datasets.

For clarity, we have summarized in Table 5.5 the p values of both tests.
Notice that for SP the sign of the change is negative, because it decreases
with the balanced design. This result provides an alternative approach to
the correction of the bias induced by strong class imbalance in the dataset.
In this situation, if we examine the AC performance we are mislead, because
ignoring the minority class lead to very high AC values, but very poor SEN
and PPV values as can be seen in Table 5.3 where unbalanced training
dataset growth lead to high AC and SP but very low SEN and PPV values.
In our computational experiments, the average PPV in Table 5.3 is 0.051
while in Table 5.2 it is 0.552. There is one order of magnitude increase of the
PPV value. Consequently, we have not carried out the comparison on the
V-ELM classifiers, which have been trained only with balanced incremental
training datasets.

Effect of parameter settings The size of the sample (NS) that is ad-
ded to the training dataset at each iteration is a global parameter of the AL
process. In Table 5.6 we have summarized the p values from the tests of stat-
istical significance related to NS. In the RF experiments, we find moderate
but significant effect of the sample size 100 versus 50 in Welch’s one-sided t-
test (p < 0.004 for PPV, p < 0.005 for SP) and in non-parametric Wilcoxon
rank sum test(p < 0.02 for PPV, p < 0.007 for SP) on the data of Table
5.2. In the V-ELM experiments reported in Table 5.4 we find even lower
significance in Welch’s one-sided t-test (p < 0.5 for PPV, p < 0.05 for SP)
and in non-parametric Wilcoxon rank sum test(p < 0.5 for PPV, p < 0.09

for SP). However, we think that a greater sample increment is preferable,
for instance, for V-ELM the mean value of PPV for NS=100 is 0.82, while
for NS=50 it is 0.77. Similar values for RF are 0.67 and 0.42.

Regarding the effect of the RF parameters, we find that NT has a
stronger effect than NVS in an analysis of variance (p < 1e − 5 for PPV,
p < 0.005 for SP). It is very interesting to observe a clear over-fitting effect,
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NS NVS NT SEN SP AC PPV AUC
100 5 50 0.901 0.172 0.894 0.981 0.624
100 5 100 0.898 0.168 0.891 0.969 0.616
100 5 150 0.906 0.167 0.899 0.966 0.628
100 5 200 0.919 0.150 0.912 0.957 0.633
100 10 50 0.890 0.174 0.883 0.968 0.608
100 10 100 0.878 0.179 0.871 0.930 0.595
100 10 150 0.870 0.181 0.863 0.949 0.584
100 10 200 0.851 0.194 0.844 0.951 0.569
100 15 50 0.914 0.159 0.907 0.964 0.634
100 15 100 0.917 0.158 0.909 0.958 0.637
100 15 150 0.922 0.153 0.914 0.962 0.640
100 15 200 0.910 0.161 0.902 0.948 0.628
100 20 50 0.870 0.186 0.863 0.956 0.590
100 20 100 0.884 0.176 0.877 0.961 0.600
100 20 150 0.870 0.185 0.863 0.955 0.589
100 20 200 0.856 0.196 0.850 0.963 0.580
50 5 50 0.927 0.154 0.919 0.950 0.651
50 5 100 0.924 0.151 0.917 0.957 0.644
50 5 150 0.910 0.159 0.903 0.952 0.626
50 5 200 0.922 0.150 0.915 0.953 0.638
50 10 50 0.855 0.199 0.849 0.973 0.582
50 10 100 0.870 0.186 0.863 0.955 0.588
50 10 150 0.837 0.205 0.831 0.947 0.563
50 10 200 0.907 0.141 0.900 0.890 0.598
50 15 50 0.904 0.165 0.896 0.964 0.622
50 15 100 0.914 0.159 0.906 0.958 0.632
50 15 150 0.889 0.181 0.882 0.966 0.614
50 15 200 0.912 0.156 0.905 0.951 0.626
50 20 50 0.869 0.185 0.862 0.969 0.587
50 20 100 0.877 0.184 0.870 0.941 0.598
50 20 150 0.887 0.170 0.880 0.948 0.597
50 20 200 0.892 0.165 0.885 0.925 0.600

Table 5.2: AL using RF classifiers ensuring that set of samples added at
each iteration is class balanced. Performance results measured by sensitivity
(SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV),
Area under the ROC (AUC) of RF varying the number of trees (NT), the
number of variables considered for the split at each node (NVS), the number
of samples added in each iteration of the active learning algorithm (NS). The
added set of samples is class balanced.
Table 5.2: AL using RF classifiers ensuring that set of samples added at each iteration is class balanced. Performance results measured by sensitivity (SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV), Area under the ROC (AUC) of RF varying the number of trees (NT), the number of variables considered for the split at each node (NVS), the number of samples added in each iteration of the active learning algorithm (NS). The added set of samples is class balanced.
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NS NVS NT SEN SP AC PPV AUC
100 5 50 0.997 0.012 0.972 0.078 0.692
100 5 100 0.999 0.008 0.973 0.032 0.729
100 5 150 0.996 0.014 0.971 0.108 0.685
100 5 200 0.999 0.020 0.973 0.057 0.739
100 10 50 0.996 0.000 0.970 0.090 0.773
100 10 100 0.998 0.000 0.972 0.043 0.750
100 10 150 0.992 0.011 0.967 0.172 0.575
100 10 200 0.998 0.017 0.973 0.064 0.729
100 15 50 0.998 0.005 0.972 0.059 0.661
100 15 100 1.000 0.000 0.974 0.015 0.750
100 15 150 0.998 0.015 0.973 0.067 0.726
100 15 200 0.996 0.001 0.970 0.079 0.740
100 20 50 0.998 0.012 0.973 0.043 0.718
100 20 100 0.999 0.011 0.974 0.030 0.738
100 20 150 0.999 0.000 0.973 0.039 0.542
100 20 200 0.999 0.018 0.974 0.043 0.742
50 5 50 1.000 0.004 0.974 0.015 0.718
50 5 100 1.000 0.004 0.974 0.009 0.737
50 5 150 0.995 0.032 0.970 0.132 0.716
50 5 200 0.999 0.000 0.973 0.024 0.542
50 10 50 0.999 0.005 0.973 0.037 0.685
50 10 100 0.995 0.008 0.970 0.127 0.595
50 10 150 0.999 0.001 0.973 0.040 0.500
50 10 200 0.998 0.002 0.973 0.040 0.579
50 15 50 0.997 0.007 0.972 0.055 0.655
50 15 100 1.000 0.000 0.974 0.005 0.750
50 15 150 0.998 0.004 0.973 0.046 0.643
50 15 200 1.000 0.000 0.974 0.013 0.750
50 20 50 1.000 0.000 0.974 0.009 0.750
50 20 100 1.000 0.003 0.974 0.014 0.716
50 20 150 0.999 0.000 0.973 0.034 0.750
50 20 200 0.999 0.006 0.973 0.027 0.716

Table 5.3: Performance of AL using RF classifiers without ensuring that set
of samples added at each iteration is class balanced. Performarce results
measured by sensitivity (SEN), specificity (SP), accuracy (AC), Positive
Predictive Value (PPV), Area under the ROC (AUC) of RF varying the
number of trees (NT), the number of variables considered for the split at
each node (NVS), the number of samples added in each iteration of the
active learning algorithm (NS).
Table 5.3: Performance of AL using RF classifiers without ensuring that set of samples added at each iteration is class balanced. Performarce results measured by sensitivity (SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV), Area under the ROC (AUC) of RF varying the number of trees (NT), the number of variables considered for the split at each node (NVS), the number of samples added in each iteration of the active learning algorithm (NS).
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NHELM NELM SEN SP AC PPV AUC
25 50 0.45 0.952 0.94 0.45 0.824
25 50 0.805 0.853 0.852 0.806 0.886
25 100 0.828 0.821 0.82 0.828 0.881
25 100 0.524 0.928 0.919 0.524 0.829
25 150 0.827 0.792 0.827 0.827 0.869
50 50 0.639 0.902 0.895 0.639 0.850
50 50 0.844 0.839 0.84 0.844 0.896
50 100 0.828 0.815 0.815 0.828 0.879
50 100 0.846 0.939 0.937 0.846 0.937
50 150 0.8 0.842 0.841 0.8 0.879
50 150 0.897 0.922 0.922 0.897 0.947
50 200 0.816 0.823 0.823 0.816 0.877
50 200 0.909 0.893 0.893 0.91 0.941
100 50 0.879 0.802 0.804 0.879 0.896
100 50 0.871 0.91 0.909 0.871 0.934
100 100 0.923 0.845 0.846 0.924 0.930
100 100 0.898 0.921 0.92 0.898 0.947
100 150 0.809 0.886 0.884 0.809 0.902
100 150 0.834 0.809 0.809 0.834 0.879
100 200 0.909 0.8764 0.877 0.909 0.935
100 200 0.844 0.818 0.819 0.844 0.887
150 50 0.646 0.924 0.918 0.646 0.866
150 50 0.822 0.897 0.895 0.822 0.911
150 100 0.903 0.721 0.725 0.904 0.879
150 100 0.928 0.878 0.879 0.928 0.943
150 150 0.841 0.785 0.787 0.842 0.872
150 150 0.827 0.885 0.884 0.827 0.908

Table 5.4: Performance of AL using V-ELM ensemble classifiers ensuring
that set of samples added at each iteration is class balanced. Performance
results measured by sensitivity (SEN), specificity (SP), accuracy (AC), Pos-
itive Predictive Value (PPV), Area under the ROC (AUC) of RF varying
the number of ELM components (NELM), the number of hidden units at
each ELM (NHELM), the number of samples added in each iteration of the
active learning algorithm (NS).
Table 5.4: Performance of AL using V-ELM ensemble classifiers ensuring that set of samples added at each iteration is class balanced. Performance results measured by sensitivity (SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV), Area under the ROC (AUC) of RF varying the number of ELM components (NELM), the number of hidden units at each ELM (NHELM), the number of samples added in each iteration of the active learning algorithm (NS).



68 CHAPTER 5. EXPERIMENTAL RESULTS

test SEN SP PPV AUC
Wt < 1e− 8 < 1e− 8 < 1e− 10 p < 1e− 7

WR < 1e− 10 < 1e− 9 < 1e− 11 < 1e− 9

Table 5.5: Assessment of impact of sample selection strategy (Balanced �
unbalanced) over performance results shown in Tables 5.2 and 5.3, we give
the p values of Wt=Welch’s t-test, WR=non-parametric Wilcoxon rank test.

test SEN SP PPV AUC
Wt < 1e− 8 < 1e− 8 < 1e− 10 p < 1e− 7

WR < 1e− 10 < 1e− 9 < 1e− 11 < 1e− 9

Table 5.6: Assessment of impact of the size of training data sampling incre-
ments over performance results shown in Tables 5.2 and 5.4, we give the p
values of Wt=Welch’s t-test, WR=non-parametric Wilcoxon rank test.

i.e. often there is a decrease in performance when NT goes from 150 to 200
all other parameters unchanged. Computing in Table 5.2 the mean values
of PPV for NT values 50, 100, 150, 200 we obtain 0.71, 0.72, 0.60, and 0.16,
respectively.

Regarding the effect of the parameters of V-ELM, namely the number of
hidden units and the number of ELMs in the ensemble, their effect is minor.
An analysis of variance on the data of Table 5.4 reports a minor effect of
NHELM on PPV and SP (p < 0.6). If we look in detail at the performance
for varying NHELM values 25, 50, 100, and 150 we obtain average PPV
values 0.68, 0.81, 0.87, and 0.82, respectively. Therefore, we may have a
big performance increase going from 25 to 100 hidden units, but afterwards
there is a degradation of the classifier performance. Although the number of
ELMs in the ensemble seems to be non significant, it must be noted that the
average PPV for NELM values 50, 100, 150, and 200 is 0.74, 0.83, 0.83, and
0.81, respectively. Therefore, there is significant improvement increasing
the number of ELMs until saturation around 100 ELMs, which leads to
performance degradation at 200 ELMs but not as dramatic as in the case of
RF number of trees.
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Effect of the classifier ensemble When comparing the V-ELM against
the RF, we find a highly significant difference in Welch’s two sample t-test
(p < 1e−4 for PPV and p < 1e−15 for SP) and in non-parametric Wilcoxon
rank sum test (p < 1e − 3 for PPV, p < 1e − 6 for SP). The mean vales of
the TPR and SP for V-ELM over Table 5.4 are 0.80 and 0.86, respectively,
while for the RF in Table 5.2 are 0.55 and 0.20, respectively. The best
PPV and SP values achieved by V-ELM classifiers are 0.92 and 0.95, while
RF achieves 0.89 and 0.50, respectively. Adding up the insensitivity to the
parameter settings and the improved results, V-ELM appears to be a most
promising approach for the full development of the large scale road images
segmentation.

5.2 Results on the intensity images from LiDAR

5.2.1 Model parameter exploration.

In order to assess robustness of the approach and to find out which parameter
is more influential we have studied some model parameter settings.Regarding
RF computational experiments, we have explored the influence of the num-
ber of trees (NT), the number of variables taken into account at node split
(NVS), and the size of the sample (NS) that is added to the current train-
ing dataset. We have also make the comparative between ensuring that the
dataset subsample added to the current training dataset is class balanced
and not ensuring class balance. We show in Table 5.7 a summary of the
configuration of selected parameters.

5.2.2 Experimental Results

For a qualitative appraisal of the results we show in Figure 5.2 two images
of the detections achieved by RF classifiers trained on the final training
dataset of Active Learning processes. On the other hand, for a quantitative
assessment, we also compare the performance achieved by the RF classi-
fiers when the training dataset is increased by candidate samples with or



70 CHAPTER 5. EXPERIMENTAL RESULTS

RF
Number of images 10
Balanced dataset [0,1]
NS [50,100]
NVS [5,10,15,20]
NT [50,100,150,200]
TPR training threshold 0,8
Number of iterations 10

Table 5.7: Summary of the experimental design for RF.

Figure 5.2: Some visual results of the trained RF ensemble classifiers using
balanced training sample increments.



5.2. RESULTS ON THE INTENSITY IMAGES FROM LIDAR 71

without ensuring class balancing. As in 3.2we are not reporting results after
post-processing and noise removal of the classification results. Removing
noisy detections may be easily achieved applying morphological operators
and some standard computer vision tools. We think that these processes
correspond to the industrial implementation of the approach, and including
them here would somehow obscure the intended contribution of the paper.
Regarding the quantitative analysis of the results, we have organized it into
several research questions, to which answers have been obtained by carrying
out a hypothesis test.

About the statistical analysis of the results Before starting, the type
of distribution that our results follow has been studied. For this, we have
studied the distribution of the sample data applying Lilliefors test, which is
a test of normality based on the Kolmogorov-Smirnov test. It is used to test
the null hypothesis that the data come from a population with a normal
distribution, when the null hypothesis does not specify which distribution is
normal. According to the test, the sample data do not follow a normal dis-
tribution tendency, except PPV sample data. Based on the result obtained
in the normality test, it is decided to use the following statistic tests.

• Welch’s t-test: Used for non normal distribution sample data.

t =
ma −mb√
S2
A

nA
+

S2
B

nB

(5.1)

• Student’s t-test: Used for normal distribution sample data.

t =
X − µ

S√
n

(5.2)

• Wilcoxon signed-rank test: Non parametric sample data test.

z =
W − µW
σW

(5.3)

In order to reject or not the null hypothesis we have set up the signi-
ficance level as α = 0.05. In Table 5.8 we show the results obtained after
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 Parameter setting test SEN SP AC PPV AUC
Impact of balanced data set
Balanced vs No Balanced Tt < 3.30e− 22 < 1.16e− 33 < 4.69e− 22 < 1.41e− 77 < 9.50e− 03

WR < 3.23e− 12 < 3.24e− 12 < 3.24e− 12 < 3.24e− 12 < 1.84e− 02

Effect of the size of the sample (NS)

NS=50 vs NS=100 Tt < 1.06e− 10 < 7.96e− 22 < 8.33e− 21 < 2.40e− 03 < 1.32e− 19
WR < 1.92e− 13 < 8.75e− 21 < 9.15e− 21 < 6.09e− 02 < 8.46e− 12

Choice of number of trees (NT)

NT=50 vs NT=100 Tt < 0.2764 < 0.1603 < 0.1597 < 0.1655 < 0.1689
WR < 0.3401 < 0.8532 < 0.8546 < 0.1845 < 0.9953

NT=50 vs NT=150 Tt < 4.16e− 11 < 1.92e− 10 < 2.03e− 10 < 1.73e− 14 < 0.0016
WR < 4.58e− 08 < 1.51e− 08 < 1.51e− 08 < 8.60e− 06 < 8.40e− 04

NT=50 vs NT=200 Tt < 3.02e− 13 < 1.09e− 11 < 1.19e− 11 < 3.38e− 15 < 0.0011
WR < 1.11e− 08 < 1.87e− 08 < 1.94e− 08 < 6.82e− 06 < 8.80e− 04

Number of variables for NVS

NVS=5 vs NVS=10 Tt < 0.2389 < 0.6807 < 0.6798 < 0.5011 < 0.6057
WR < 0.4518 < 0.536 < 0.5374 < 0.093 < 0.5724

NVS=5 vs NVS=15 Tt < 0.0802 < 0.8492 < 0.8483 < 0.0257 < 0.6164
WR < 0.0664 < 0.9784 < 0.9788 < 0.0171 < 0.695

NVS=5 vs NVS=20 Tt < 0.334 < 0.5924 < 0.5917 < 0.0928 < 0.4893
WR < 0.1982 < 0.4925 < 0.4898 < 0.0122 < 0.4089

Table 5.8: Assessment of impact of the parameter setting over results shown
in Tables 5.9, 5.10. We give the p values of Tt = T-test, WR = Wilcoxon
signed-rank test. Significance level α = 0.05

carrying out the hypothesis test on the different variables comparing the dif-
ferent statistics used, which we will organise into several research questions
in order to carry out a quantitative analysis of the results obtained.

Impact of the sample selection strategy We compare the perform-
ance achieved by the random forest classifiers when the dataset is increased
by candidate sample with or without ensuring class balancing, as shown in
Table 5.9 and 5.10 respectively. A one-sided t-test (Welch’s t-test) compar-
ing the sen and AUC of the balanced versus unbalanced increments confirms
that there is a significant increment in performance (ρ < 3.29e− 22 for sen,
ρ < 9.50e − 3 for AUC). Comparing the PPV values, using Welch’s t-test
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(ρ < 1.41e−77 ), also shows an important affluence in the choice of balanced
or unbalanced values. Taking into account PPV This result is meaningful
in the sense that it provides an alternative approach to the resolution of the
bias induced by strong class imbalance. In this situation, if we examine the
AC performance we are mislead, because ignoring the minority class lead
to very high AC values, but very poor PPV values as can be seen in Table
5.10 where unbalanced training dataset growth lead to high AC and SEN
but very poor SP and PPV. In fact, the mean PPV in Table 5.10 is 0.074
while in Table 5.9 it is 0.954

Effect of parameter settings The size of the sample (NS) that is added
to the training dataset at each iteration is a global parameter of the Active
Learning process. In the RF experiments, we find slight effect of the sample
size 100 versus 50 in Welch’s t-test (p < 1.32e− 19 for AUC, p < 7.96e− 22

for SP) on the data of Table 5.9 . However, the effect found when we increase
from 50 to 100 the sample side if we take into account Wilcoxon signed-rank
test is more meaningful (ρ < 8.75e−21 for sen, ρ < 8.46e−12 for AUC).For
RF the mean value of PPV for NS=100 is 0.96, while for NS=50 it is 0.95
for balanced data. Due to the results obtained with unbalanced data, we do
not analyse effect of parameter setting to this data.

The effect of the number of trees chosen is another global parameter of
the Active Learning process. In our experiments, using only balanced data
if we focus only in number of trees, we find a good response in one-sided
t-test when NT=200 (p < 1.09e − 11 for sp, p < 3.38e − 15 for PPV and
p < 0.0011for AUC). If we only look at the number of trees, for the balanced
data sample, as we increase the number of trees, we cannot consider an
overfitting effect. Nor can we speak of a significant improvement, in fact,
there is hardly any improvement at all. Looking at the mean values of
TPR for NT values 50, 100, 150, 200 we obtain 0.96, 0.95, 0.93, and 0.94,
respectively.

Finally, regarding the effect of the number of variables considered for
the division in each node (NVS), we did not find great relevance in the
performance when varying the number of variables neither in one-sided t-
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 NS NVS NT SEN SP AC PPV AUC
100 5 50 0.167 0.906 0.899 0.966 0.628
100 10 50 0.158 0.917 0.909 0.958 0.637
100 15 50 0.15 0.922 0.915 0.953 0.638
100 20 50 0.156 0.912 0.905 0.951 0.626
100 5 100 0.172 0.901 0.894 0.981 0.624
100 10 100 0.153 0.922 0.914 0.962 0.64
100 15 100 0.151 0.924 0.917 0.957 0.644
100 20 100 0.165 0.904 0.896 0.964 0.622
100 5 150 0.15 0.919 0.912 0.957 0.633
100 10 150 0.161 0.91 0.902 0.948 0.628
100 15 150 0.154 0.927 0.919 0.95 0.651
100 20 150 0.181 0.889 0.882 0.966 0.614
100 5 200 0.168 0.898 0.891 0.969 0.616
100 10 200 0.159 0.914 0.907 0.964 0.634
100 15 200 0.159 0.91 0.903 0.952 0.626
100 20 200 0.159 0.914 0.906 0.958 0.632
50 5 50 0.174 0.89 0.883 0.968 0.608
50 10 50 0.176 0.884 0.877 0.961 0.6
50 15 50 0.199 0.855 0.849 0.973 0.582
50 20 50 0.17 0.887 0.88 0.948 0.597
50 5 100 0.194 0.851 0.844 0.951 0.569
50 10 100 0.186 0.87 0.863 0.956 0.59
50 15 100 0.186 0.87 0.863 0.955 0.588
50 20 100 0.165 0.892 0.885 0.863 0.6
50 5 150 0.181 0.87 0.863 0.949 0.584
50 10 150 0.196 0.856 0.85 0.963 0.58
50 15 150 0.141 0.907 0.9 0.89 0.598
50 20 150 0.184 0.877 0.87 0.941 0.598
50 5 200 0.179 0.878 0.871 0.93 0.595
50 10 200 0.185 0.87 0.863 0.955 0.589
50 15 200 0.205 0.837 0.831 0.947 0.563
50 20 200 0.185 0.869 0.862 0.969 0.587

Table 5.9: AL using RF classifiers ensuring that set of samples added at
each iteration is class balanced. Performance results measured by sensitivity
(SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV),
Area under the ROC (AUC) of RF varying the number of trees (NT), the
number of variables considered for the split at each node (NVS), the number
of samples added in each iteration of the active learning algorithm (NS). The
added set of samples is class balanced.
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NS NVS NT SP SEN AC PPV AUC
50 5 50 0.003 0.999 0.989 0.068 0.634
100 5 50 0.001 0.999 0.989 0.06 0.581
50 10 50 0.005 0.999 0.99 0.026 0.717
100 10 50 0.002 0.999 0.99 0.04 0.662
50 15 50 0.005 0.996 0.987 0.119 0.56
100 15 50 0.007 0.998 0.988 0.106 0.67
50 20 50 0.004 0.997 0.987 0.125 0.561
100 20 50 0.003 0.998 0.988 0.078 0.584
50 5 100 0.001 0.999 0.99 0.027 0.592
100 5 100 0.002 0.999 0.99 0.041 0.66
50 10 100 0.002 0.999 0.989 0.033 0.658
100 10 100 0.002 1 0.99 0.02 0.721
50 15 100 0.006 0.998 0.988 0.052 0.649
100 15 100 0.002 0.998 0.988 0.128 0.529
50 20 100 0.003 0.997 0.987 0.108 0.5
100 20 100 0.002 0.998 0.989 0.068 0.5
50 5 150 0.001 0.999 0.989 0.076 0.5
100 5 150 0.002 0.998 0.988 0.094 0.503
50 10 150 0.002 0.998 0.988 0.082 0.545
100 10 150 0.003 0.999 0.989 0.073 0.661
50 15 150 0.005 0.999 0.989 0.06 0.675
100 15 150 0.002 0.999 0.989 0.083 0.626
50 20 150 0.002 0.998 0.989 0.088 0.577
100 20 150 0.002 0.999 0.989 0.075 0.567
50 5 200 0.002 0.999 0.989 0.063 0.636
100 5 200 0.003 0.998 0.988 0.116 0.598
50 10 200 0.001 0.999 0.989 0.075 0.501
100 10 200 0.001 0.999 0.989 0.085 0.5
50 15 200 0.005 0.998 0.988 0.107 0.63
100 15 200 0.004 0.999 0.989 0.066 0.686
50 20 200 0.005 0.998 0.988 0.105 0.629
100 20 200 0.001 1 0.99 0.023 0.701

Table 5.10: Performance of AL using RF classifiers without ensuring that set
of samples added at each iteration is class balanced. Performance results
measured by sensitivity (SEN), specificity (SP), accuracy (AC), Positive
Predictive Value (PPV), Area under the ROC (AUC) of RF varying the
number of trees (NT), the number of variables considered for the split at
each node (NVS), the number of samples added in each iteration of the
active learning algorithm (NS).
Table 5.10: Performance of AL using RF classifiers without ensuring that set of samples added at each iteration is class balanced. Performance results measured by sensitivity (SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV), Area under the ROC (AUC) of RF varying the number of trees (NT), the number of variables considered for the split at each node (NVS), the number of samples added in each iteration of the active learning algorithm (NS).
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RF
Number of Point Clouds 10
Balanced dataset [1]
NS [50,100]
NVS [5,10,15,20]
NT [5,10,25,50,100,150,200]
TPR training threshold 0,8
Number of iterations 10
Number of initializations 3

Table 5.11: Summary of the experimental design for RF.

test, nor the Wilcoxon signed-rank test; ρ < 0.0257 , ρ < 0.0171 for PPV
respectively when NVS goes from 5 to 15 variables considered for the node´s
split.

5.3 Results on the LiDAR sensor Point Cloud data

5.3.1 Model parameter exploration.

In order to assess robustness of the approach and to find out which parameter
is more influential we have studied some model parameter settings.Regarding
RF computational experiments, we have explored the influence of the num-
ber of trees (NT), the number of variables taken into account at node split
(NVS), and the size of the sample (NS) that is added to the current training
dataset. In contrast to the previous experiments in the ?? section, accord-
ance with the results obtained, we have not carried out experiments taking
into account the unbalanced dataset. We show in Table 5.11 a summary of
the configuration of selected parameters.

Experimental Results

For a qualitative results, we show in Fig 5.3 some images showing the detec-
tion achieved using RF classifier with different parameters configurations.
Below we show the images in top view and front-isometric view, where it
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can be seen that the extraction of road lane-marks is done maintaining the
altimetry, unlike the images that are only extracted in planimetry.

For a quantitative assessment, we only compare the performance achieved
by the RF classifiers when the training dataset is increased by candidate
samples ensuring class balancing. We don’t take into account possible noisy
detection and removal. As we explain previously, we consider removing
noisy detections may be easily achieved applying morphological operators
and some standard computer vision tools. As for the quantitative analysis of
the results, we divided them into several research questions, the answers to
which were obtained by conducting a hypothesis test. The results obtained
are shown in Tables 5.12 to 5.16.

Before starting, we have considered the nature of the distribution fol-
lowed by our classification results. For this end, we examined the distribu-
tion of the sample data using the Lilliefors test, a normality test based on
the Kolmogorov-Smirnov test. It is used to test the null hypothesis that the
data come from a population with a normal distribution when the null hypo-
thesis does not specify which distribution is normal. According to the test,
the sample data follows a normal distribution tendency. Based on the result
obtained in the normality test, it is decided to use the following statistic
tests; Student’s t-test and Non parametric Wilcoxon signed-rank test.

To reject the null hypothesis or not, we set the significance level at
α = 0.05. In the table 5.17 we sumarize p values after performing the hypo-
thesis test for the different variables, comparing the different statistics used,
which we will divide into several research questions to perform a quantitative
analysis of the results obtained.

Effect of parameter settings The size of the sample (NS) that is added
to the training dataset at each iteration is a global parameter of the Active
Learning process. In the RF experiments, we find moderate but significant
effect of the sample size 100 versus 50 in one-sided t-test (p < 1.66e − 29,
for sp, p < 6.08e − 07 for PPV and p < 2.47e − 47 for AUC values) and
Wilcoxon rank sum test (p < 7.77e − 21, for sp, p < 3.80e − 03 for PPV
andp < 1.22e− 46 for AUC values) on the data of Table 5.17. However, we
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Figure 5.3: Some visual results of the trained RF ensemble classifiers using
balanced training sample different parameters settings. Left column top-
view, right column front-isometry view
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Table 5.12: AL using RF classifiers ensuring that set of samples added at
each iteration is class balanced. Performance results measured by sensitivity
(SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV),
Area under the ROC (AUC) of RF varying the number of trees (NT), the
number of variables considered for the split at each node (NVS), the number
of samples added in each iteration of the active learning algorithm (NS) and
the number of initialization (INI).

 INI NS NVS NT SEN SP AC PPV AUC
1 50 5 5 0.935 0.913 0.935 0.914 0.956
2 50 5 5 0.960 0.924 0.960 0.925 0.968
3 50 5 5 0.796 0.974 0.796 0.968 0.937
1 100 5 5 0.968 0.947 0.968 0.948 0.977
2 100 5 5 0.959 0.928 0.959 0.929 0.969
3 100 5 5 0.949 0.914 0.949 0.916 0.962
1 50 10 5 0.848 0.962 0.848 0.958 0.947
2 50 10 5 0.814 0.952 0.814 0.947 0.932
3 50 10 5 0.848 0.882 0.848 0.882 0.915
1 100 10 5 0.919 0.956 0.919 0.955 0.965
2 100 10 5 0.894 0.940 0.894 0.938 0.952
3 100 10 5 0.966 0.927 0.966 0.929 0.971
1 50 15 5 0.898 0.978 0.898 0.975 0.967
2 50 15 5 0.979 0.865 0.979 0.869 0.958
3 50 15 5 0.853 0.928 0.853 0.925 0.935
1 100 15 5 0.919 0.964 0.919 0.962 0.968
2 100 15 5 0.956 0.960 0.956 0.960 0.977
3 100 15 5 0.979 0.890 0.979 0.893 0.965
1 50 20 5 0.896 0.953 0.896 0.951 0.957
2 50 20 5 0.964 0.857 0.964 0.861 0.95
3 50 20 5 0.961 0.942 0.961 0.942 0.973
1 100 20 5 0.970 0.923 0.970 0.924 0.971
2 100 20 5 0.944 0.944 0.944 0.944 0.969
3 100 20 5 0.836 0.944 0.836 0.940 0.936
1 50 5 10 0.931 0.891 0.931 0.892 0.948
2 50 5 10 0.875 0.921 0.875 0.919 0.939
3 50 5 10 0.882 0.839 0.882 0.842 0.911
1 100 5 10 0.964 0.913 0.964 0.915 0.966
2 100 5 10 0.944 0.928 0.944 0.929 0.964
3 100 5 10 0.957 0.942 0.957 0.943 0.973
1 50 10 10 0.975 0.872 0.975 0.876 0.958
2 50 10 10 0.910 0.930 0.910 0.929 0.954
3 50 10 10 0.964 0.935 0.964 0.936 0.972
1 100 10 10 0.959 0.933 0.959 0.933 0.97
2 100 10 10 0.916 0.979 0.916 0.977 0.972
3 100 10 10 0.971 0.906 0.971 0.908 0.967
1 50 15 10 0.932 0.964 0.932 0.963 0.972
2 50 15 10 0.972 0.890 0.972 0.893 0.962
3 50 15 10 0.949 0.922 0.949 0.924 0.964
1 100 15 10 0.891 0.977 0.891 0.974 0.964
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Table 5.13: AL using RF classifiers ensuring that set of samples added at
each iteration is class balanced. Performance results measured by sensitivity
(SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV),
Area under the ROC (AUC) of RF varying the number of trees (NT), the
number of variables considered for the split at each node (NVS), the number
of samples added in each iteration of the active learning algorithm (NS) and
the number of initialization (INI).

 INI NS NVS NT SEN SP AC PPV AUC
2 100 15 10 0.958 0.958 0.958 0.958 0.977
3 100 15 10 0.968 0.937 0.968 0.939 0.974
1 50 20 10 0.955 0.852 0.955 0.855 0.945
2 50 20 10 0.913 0.904 0.913 0.905 0.946
3 50 20 10 0.902 0.975 0.902 0.973 0.967
1 100 20 10 0.898 0.983 0.898 0.980 0.969
2 100 20 10 0.963 0.919 0.963 0.921 0.968
3 100 20 10 0.917 0.962 0.917 0.960 0.967
1 50 5 25 0.881 0.852 0.881 0.853 0.916
2 50 5 25 0.863 0.965 0.863 0.962 0.952
3 50 5 25 0.934 0.976 0.934 0.975 0.976
1 100 5 25 0.921 0.970 0.921 0.968 0.97
2 100 5 25 0.880 0.967 0.880 0.964 0.958
3 100 5 25 0.917 0.965 0.917 0.963 0.967
1 50 10 25 0.878 0.980 0.878 0.976 0.962
2 50 10 25 0.969 0.883 0.969 0.886 0.959
3 50 10 25 0.969 0.853 0.969 0.857 0.951
1 100 10 25 0.855 0.947 0.855 0.944 0.943
2 100 10 25 0.905 0.978 0.905 0.975 0.969
3 100 10 25 0.966 0.955 0.966 0.955 0.979
1 50 15 25 0.922 0.950 0.922 0.949 0.964
2 50 15 25 0.918 0.955 0.918 0.953 0.964
3 50 15 25 0.967 0.875 0.967 0.879 0.956
1 100 15 25 0.902 0.962 0.902 0.960 0.962
2 100 15 25 0.978 0.832 0.978 0.838 0.949
3 100 15 25 0.874 0.969 0.874 0.966 0.957
1 50 20 25 0.951 0.932 0.951 0.932 0.967
2 50 20 25 0.904 0.927 0.904 0.926 0.951
3 50 20 25 0.832 0.978 0.832 0.973 0.949
1 100 20 25 0.929 0.974 0.929 0.973 0.974
2 100 20 25 0.908 0.958 0.908 0.957 0.963
3 100 20 25 0.878 0.952 0.878 0.949 0.952
1 50 5 50 0.963 0.936 0.963 0.937 0.972
2 50 5 50 0.968 0.937 0.968 0.938 0.975
3 50 5 50 0.809 0.971 0.809 0.965 0.939
1 100 5 50 0.912 0.975 0.912 0.973 0.969
2 100 5 50 0.967 0.942 0.967 0.943 0.975
3 100 5 50 0.878 0.983 0.878 0.980 0.963
1 50 10 50 0.962 0.906 0.962 0.908 0.963
2 50 10 50 0.891 0.970 0.891 0.968 0.962
3 50 10 50 0.922 0.898 0.922 0.899 0.947
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Table 5.14: AL using RF classifiers ensuring that set of samples added at
each iteration is class balanced. Performance results measured by sensitivity
(SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV),
Area under the ROC (AUC) of RF varying the number of trees (NT), the
number of variables considered for the split at each node (NVS), the number
of samples added in each iteration of the active learning algorithm (NS) and
the number of initialization (INI).

 INI NS NVS NT SEN SP AC PPV AUC
3 50 10 50 0.922 0.898 0.922 0.899 0.947
1 100 10 50 0.972 0.921 0.972 0.923 0.971
2 100 10 50 0.918 0.970 0.918 0.969 0.97
3 100 10 50 0.910 0.960 0.910 0.958 0.964
1 50 15 50 0.847 0.987 0.847 0.982 0.956
2 50 15 50 0.902 0.961 0.902 0.959 0.962
3 50 15 50 0.885 0.863 0.885 0.865 0.921
1 100 15 50 0.917 0.938 0.917 0.937 0.959
2 100 15 50 0.885 0.978 0.885 0.974 0.963
3 100 15 50 0.985 0.878 0.985 0.882 0.964
1 50 20 50 0.967 0.946 0.967 0.947 0.976
2 50 20 50 0.922 0.924 0.922 0.924 0.956
3 50 20 50 0.909 0.951 0.909 0.949 0.96
1 100 20 50 0.896 0.966 0.896 0.963 0.962
2 100 20 50 0.943 0.967 0.943 0.966 0.976
3 100 20 50 0.909 0.982 0.909 0.979 0.971
1 50 5 100 0.903 0.959 0.903 0.957 0.961
2 50 5 100 0.956 0.858 0.956 0.861 0.947
3 50 5 100 0.961 0.939 0.961 0.939 0.973
1 100 5 100 0.957 0.962 0.957 0.961 0.978
2 100 5 100 0.956 0.961 0.956 0.961 0.978
3 100 5 100 0.883 0.986 0.883 0.982 0.966
1 50 10 100 0.927 0.971 0.927 0.970 0.972
2 50 10 100 0.936 0.869 0.936 0.872 0.943
3 50 10 100 0.964 0.879 0.964 0.883 0.956
1 100 10 100 0.874 0.960 0.874 0.957 0.953
2 100 10 100 0.833 0.969 0.833 0.965 0.945
3 100 10 100 0.953 0.967 0.953 0.967 0.979
1 50 15 100 0.942 0.970 0.942 0.969 0.976
2 50 15 100 0.952 0.955 0.952 0.955 0.975
3 50 15 100 0.867 0.984 0.867 0.980 0.961
1 100 15 100 0.966 0.942 0.966 0.943 0.975
2 100 15 100 0.960 0.961 0.960 0.961 0.979
3 100 15 100 0.956 0.947 0.956 0.947 0.973
1 50 20 100 0.866 0.957 0.866 0.954 0.95
2 50 20 100 0.878 0.977 0.878 0.973 0.961
3 50 20 100 0.909 0.965 0.909 0.963 0.965
1 100 20 100 0.968 0.946 0.968 0.947 0.977
2 100 20 100 0.970 0.948 0.970 0.949 0.978
3 100 20 100 0.937 0.931 0.937 0.931 0.963
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Table 5.15: AL using RF classifiers ensuring that set of samples added at
each iteration is class balanced. Performance results measured by sensitivity
(SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV),
Area under the ROC (AUC) of RF varying the number of trees (NT), the
number of variables considered for the split at each node (NVS), the number
of samples added in each iteration of the active learning algorithm (NS) and
the number of initialization (INI).

 INI NS NVS NT SEN SP AC PPV AUC
3 100 20 100 0.937 0.931 0.937 0.931 0.963
1 50 5 150 0.832 0.987 0.832 0.982 0.953
2 50 5 150 0.866 0.962 0.866 0.959 0.952
3 50 5 150 0.909 0.955 0.909 0.953 0.962
1 100 5 150 0.961 0.947 0.961 0.948 0.975
2 100 5 150 0.925 0.953 0.925 0.952 0.966
3 100 5 150 0.965 0.945 0.965 0.945 0.976
1 50 10 150 0.986 0.871 0.986 0.875 0.963
2 50 10 150 0.932 0.976 0.932 0.974 0.975
3 50 10 150 0.903 0.943 0.903 0.942 0.956
1 100 10 150 0.973 0.926 0.973 0.928 0.973
2 100 10 150 0.965 0.953 0.965 0.954 0.978
3 100 10 150 0.983 0.902 0.983 0.905 0.97
1 50 15 150 0.858 0.987 0.858 0.982 0.959
2 50 15 150 0.867 0.984 0.867 0.980 0.961
3 50 15 150 0.954 0.957 0.954 0.957 0.976
1 100 15 150 0.960 0.962 0.960 0.962 0.979
2 100 15 150 0.974 0.936 0.974 0.937 0.976
3 100 15 150 0.980 0.903 0.980 0.906 0.969
1 50 20 150 0.879 0.976 0.879 0.973 0.961
2 50 20 150 0.932 0.963 0.932 0.962 0.971
3 50 20 150 0.790 0.972 0.790 0.966 0.935
1 100 20 150 0.921 0.972 0.921 0.970 0.971
2 100 20 150 0.888 0.972 0.888 0.969 0.962
3 100 20 150 0.898 0.978 0.898 0.976 0.967
1 50 5 200 0.965 0.930 0.965 0.931 0.971
2 50 5 200 0.975 0.913 0.975 0.916 0.97
3 50 5 200 0.858 0.969 0.858 0.965 0.952
1 100 5 200 0.913 0.978 0.913 0.976 0.971
2 100 5 200 0.974 0.928 0.974 0.929 0.974
3 100 5 200 0.957 0.943 0.957 0.943 0.972
1 50 10 200 0.825 0.976 0.825 0.971 0.946
2 50 10 200 0.881 0.962 0.881 0.959 0.956
3 50 10 200 0.952 0.892 0.952 0.895 0.956
1 100 10 200 0.885 0.968 0.885 0.965 0.96
2 100 10 200 0.919 0.976 0.919 0.974 0.972
3 100 10 200 0.918 0.981 0.918 0.979 0.973
1 50 15 200 0.983 0.849 0.983 0.854 0.955
2 50 15 200 0.958 0.929 0.958 0.930 0.969
3 50 15 200 0.927 0.934 0.927 0.934 0.96
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Table 5.16: AL using RF classifiers ensuring that set of samples added at
each iteration is class balanced. Performance results measured by sensitivity
(SEN), specificity (SP), accuracy (AC), Positive Predictive Value (PPV),
Area under the ROC (AUC) of RF varying the number of trees (NT), the
number of variables considered for the split at each node (NVS), the number
of samples added in each iteration of the active learning algorithm (NS) and
the number of initialization (INI).

 INI NS NVS NT SEN SP AC PPV AUC
3 50 15 200 0.927 0.934 0.927 0.934 0.96
1 100 15 200 0.976 0.933 0.976 0.934 0.976
2 100 15 200 0.932 0.964 0.932 0.963 0.972
3 100 15 200 0.930 0.970 0.930 0.968 0.973
1 50 20 200 0.916 0.952 0.916 0.951 0.963
2 50 20 200 0.890 0.969 0.890 0.966 0.961
3 50 20 200 0.949 0.946 0.949 0.946 0.971
1 100 20 200 0.910 0.972 0.910 0.970 0.968
2 100 20 200 0.964 0.954 0.964 0.954 0.978
3 100 20 200 0.964 0.954 0.964 0.955 0.978

think that a greater sample (NS=100) increment is preferable; for RF the
mean value of SP for NS=100 is 0.95, while for NS=50 it is 0.93. Similar
values if we compare AUC values (0.957 for NS=50 and 0.966 for NS=100).
Regarding the effect of the RF parameters, we find that the number of trees
in RF has a very strong effect, especially if we compare the effect with 5
trees or 200 trees, obtaining great p-values performance for t-student test;
p < 6.36E − 277, for sen, and p < 4.24e− 231 for AUC values. Considering
the increase of the trees chosen with different values (5, 10, 25, 50, 100,
150, 200) we notice that as the forest is increased the p-values improve
considerably, especially for the specificity and the AUC values as can be seen
in table 5.18. Turning to the p-values for sensitivity, there is a significant
performance increase when we go from 150 trees to 200. On the effects of
the RF parameters, if we take into account the number of variables added
in each split of the active learning (NS) algorithm we observe there is a very
slight performance in p-values choosing different values as denoted in table
5.18; AUC values of 0.95 and 0.96 for NVS=5 and NVS = 20 respectively.
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 Parameter setting test SEN SP AC PPV AUC
Effect of the size of the sample (NS)
NS=50 vs NS=100 Tt < 6.08e− 07 < 1.66e− 29 < 1.06e− 31 < 6.08e− 07 < 2.47e− 46

WR < 3.80e− 03 < 7.77e− 21 < 4.18e− 23 < 3.80e− 03 < 1.22e− 46

Choice of number of trees (NT)
NT=5 vs NT=10 Tt 0.0511 0.4326 0.4554 0.0511 0.2340

WR 0.2274 0.3794 0.4270 0.2274 0.0467
NT=5 vs NT=25 Tt 0.4204 2.30e− 03 1.99e− 03 0.4204 2.10e− 03

WR 0.6328 1.73e− 03 1.05e− 03 0.6328 8.33e− 03
NT=5 vs NT=50 Tt 0.2960 6.47e− 05 4.54e− 05 0.2960 1.13e− 05

WR 0.4080 5.86e− 06 2.26e− 06 0.4080 1.50e− 05
NT=5 vs NT=100 Tt 0.6973 4.61e− 08 3.15e− 08 0.6973 1.21e− 05

WR 0.8911 7.84e− 08 4.22e− 08 0.8911 6.58e− 05
NT=5 vs NT=150 Tt 0.0836 2.66e− 09 9.01e− 10 0.0836 2.49e− 12

WR 0.1446 1.68e− 08 2.54e− 09 0.1446 1.01e− 11
NT=5 vs NT=200 Tt 6.36e− 277 1.43e− 11 4.84e− 16 1.86e− 09 4.24e− 231

WR 3.23e− 41 9.61e− 15 8.04e− 19 2.21e− 08 3.24e− 41

Number of variables for NVS
NS=5 vs NS=10 Tt < 0.1728 < 3.35E − 03 < 2.38E − 03 < 0.1728 < 3.53E − 04

WR < 0.3346 < 1.32E − 03 < 7.68E − 04 < 0.3346 < 3.03E − 03
NS=5 vs NS=15 Tt < 0.2261 < 1.56E − 02 < 1.22E − 02 < 0.2261 < 2.81E − 03

WR < 0.3554 < 1.96E − 03 < 1.34E − 03 < 0.3554 < 9.15E − 03
NS=5 vs NS=20 Tt < 1.48E − 02 < 0.0760 < 0.0582 1.48E − 02 < 3.42E − 04

WR < 0.0630 < 1.42E − 02 < 9.27E − 03 < 0.0630 < 1.01E − 03

Table 5.17: Assessment of impact of the parameter setting over results shown
in Tables 5.9, 5.10. We give the p values of Tt = T-test, WR = Wilcoxon
signed-rank test. Significance level α = 0.05.
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Parameter settings SEN SP PPV AUC
NS=50 0.917 0.929 0.917 0.957
NS=100 0.928 0.950 0.928 0.966
NT=5 0.920 0.928 0.920 0.957
NT=10 0.926 0.928 0.926 0.958
NT=25 0.920 0.939 0.920 0.961
NT=50 0.922 0.943 0.922 0.963
NT=100 0.917 0.948 0.917 0.963
NT=150 0.926 0.950 0.926 0.966
NT=200 0.926 0.941 0.926 0.963
NVS=5 0.919 0.935 0.919 0.959
NVS=10 0.922 0.943 0.922 0.963
NVS=15 0.922 0.941 0.922 0.962
NVS=20 0.926 0.939 0.926 0.963

Table 5.18: Average performance measures according to the used parameters
(SEN, SP, PPV, AUC).

Comparing the increment between NS=5 and NS=10 we obtain p-values for
AUC p < 3.53e− 4 for the t-student test and AUC values p < 3.03e− 3 for
Wilcoxon rank sum test, while incrementing the values between NS=5 and
NS=10 we obtain p-values for AUC of p < 3.42e − 4 and p < 1.01e − 3 for
the t-student and Wilcoxon rank sum test respectively.

5.4 Conclusions

This Chapter contains a large number of experimental results that have been
computed in different times of th Thesis. Initial results over the panoramic
images were encouraging, but have been improved by the application of
the machine learning approaches over the features extracted from the point
cloud data, achieving average AUC over 0.95, which is an extraordinary
result over such strongly imbalanced data. Overall, the application of active
learning has been quite effective in achieving such excelelnt results.
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Chapter 6

Conclusions

In this final chapter we present the summary and conclusions of the Thesis,
including some comments on future lines of work. The core research effort
of this work is aimed to the solution of a practical problem and therefore the
conclusions are considered from a pragmatical point of view. The accom-
plished goals and some limitations of the work are discussed in section 6.1
and section 6.2, respectively. No conclusions chapter is complete without a
list of future work guidelines that see their place in section 6.3.

6.1 Achievements

The main contribution of the thesis is a collection of methods in order to
extract automatically the existing road markings on a road based on a pre-
vious training by means of AL techniques, whatever their typology (lines,
figures, texts), from the data collected by an MMS sensor. Experimental
validation of real life dataset obtained a highly accurate classification.

In this Thesis we present an AL approach to deal with the labeling of road
landmarks in images obtained by an onboard sensor that includes LiDAR
and image as well as positioning sensors for the purpose of detailed road
signaling inventory that will involve a large volume of images and LiDAR
points taken under very diverse light and atmospheric conditions, as well as
road conditions. The underlying problem is a two class classification problem
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with strong class imbalance. Due to the cost of data labeling (image dataset
or Lidar Point Cloud), the adaptation follows an AL approach, where the
training set is built incrementally with the most informative dataset samples.
We have explored the performance of two ensemble classifiers, namely the RF
and the V-ELM ensemble of extreme learning machines. Our computational
experiments comparing methods (only reported with panoramic images due
to de huge time consu,ing of V-ELM), have found that the V-ELM improves
RF in terms of SEN, PPV and AUC, performance measure that are more
appropriate than the Accuracy for strongly class imbalanced datasets.

Among the analysed data (panoramas, images obtained from the intens-
ity response of the LiDAR sensor, and LiDAR points), the best result in
terms of SEN, PPV and AUC has been achieved from the LiDAR point
clouds data. Not only have excellent performance results with SEN, PPV
and AUC values averaging over 95%, but the computational times have been
relatively fast, compared to the times required for the compuational experi-
ments carried out with panoramic images and intensity images, even running
the experiments on a slower machine (32 gb of Ram compared to the 90 gb
used in the other experiments) and adding more trees to the model. In the
imaging experiments, the average time was in the order of 5 hours, whereas
with the lidar points, the average time was no more than 3 hours.

The different algorithms used, both in the Thesis and presented in the
literature, are capable of extracting road markings with some effectiveness,
but they never give a direct terrain coordinate. Normally, from the im-
age pixel coordinate, the terrain coordinate can be estimated (planimetry
only). In the case of the automatic extraction of road markings using AL
algorithms, we have been able to obtain a good approximation of the hori-
zontal signs coordinates, both in planimetry and altimetry.

As for the typology of the data, by treating the point clouds, we obtain a
model of road markings of the continuous type, unlike the images, which are
of the discrete type. Thanks to this type of model we can vectorise elements
of interest or by means of topology rules help data integrity with vector data
models, network analysis, proximity operations using vector data structures.
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6.2 Limitations

Although the time consumed is not high, even taking into account the point
cloud data, we believe that the computation time could be reduced, even
achieving to perform the calculations in real time, which would be an im-
portant step towards the new autonomous vehicle industry.

Another limitation that we have seen and that we have not been able
to solve directly is the removal of vegetation in the final result when we
treat. Although the aforementioned noise could be eliminated by applying
morphological operators and some standard computer vision tools, it would
have been interesting to be able to eliminate the noise corresponding entirely
to the vegetation. As for the images, we can speak of less noise, especially
in the experiments carried out with the images obtained from the LIDaR
intensity. On the other hand, when we apply the AL techniques on images,
whether panoramic or images obtained from LiDAR point clouds, we are
limited to detect only lines, not being able to detect the rest of the elements
that exist on a road, whether they are texts or symbols.

In our segmentation process, we clearly distinguish two classes; elements
that belong to road markings, and those that do not belong to this class.
Within the road markings, we include all of them in the same typology. It
would have been very interesting to be able to make more than two groups.
In other words, it would not be a problem of two classes, but of as many
classes as groups of road markings are catalogued.

Another limitation is that we are only able to extract horizontal sig-
nalling when dealing with LiDAR data. This is because due to the config-
uration of the MMS system (capture rate, capture mask, number of returns
and other configurable parameters in the data capture) the sensor is mostly
focused on the horizontal plane as we can see in the image 6.1

6.3 Future work

Future work guidelines come naturally from the limitations aforementioned
in the above section. To begin with, it would be really interesting —and
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Figure 6.1: Limitations of the current MMS system configuration. The low
density of points capturing the elements in the vertical plane is marked by
a yellow circle.



6.3. FUTURE WORK 91

equally challenging— to feed the learning algorithms with raw, unlabelled
clouds of candidate points. Such solution would avoid the human operator
the excruciating task of creating manually the input ground truth.

The thesis has worked independently with image data and LiDAR data.
It would be very interesting, since both data, although obtained from differ-
ent sensors, are obtained from the same system, to be able to complement
them. Currently, in most cases, the image is only used to give colour to
the point cloud, since, as we remember, the point cloud itself has no col-
our. The interesting thing about this combination of data would be to be
able to detect and classify vertical signals. With the current configuration,
the LiDAR sensor is only capable of capturing with a certain density the
elements that are in the horizontal plane. On the other hand, the images,
without changing the system configuration, only capture the elements in the
vertical plane. Combining the two sensors, with the image part we could
basically detect the elements, and with the LiDAR sensor we could position
the elements in space.

Another common problem is noise. LiDAR point extraction generates a
lot of noise, most of which is vegetation. Another challenge could be to be
able to detect vegetation without the need of techniques outside the "AL"
and to label it as a class of non-interest. For this purpose, remote sensing
techniques could be used to add some kind of vegetation index to the fea-
tures for corrective labelling. A widely used index is the NDVI (Normalized
Difference Vegetation Index) which works with reflectivity indices and helps
to discriminate between bare areas and the presence of water.
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