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Abstract 

Dental implants are a widely used option to replace a single tooth as well as 
several teeth. The simplest screw-retained dental restoration consists of a dental 
implant, that is inserted into the bone, and a crown, that is cemented on an 
abutment, and all together is assembled on the implant by means of a prosthetic 
screw. The screw is properly tightened so that the structural integrity of the 
dental restoration is achieved. 

Even though the use of dental implants is a highly predictable treatment with a 
high success rate, any case could result in either biological or mechanical 
complications. The most common mechanical problems are the fatigue failure 
of either the prosthetic screw or the dental implant, microgap formation in 
implant-abutment connection, leading to bacterial colonization and possible 
implant loss, and self-loosening of the prosthetic screw. 

A dental restoration is, indeed, a screwed joint, that is, a mechanical element 
that has been widely studied over the years in the field of mechanical 
engineering. In fact, the aforementioned three mechanical faults that may be 
found on dental restorations are also common in screwed joints used for more 
general purposes. Consequently, many studies analyze these phenomena in 
screwed joints attempting to predict the mechanical behavior in order to 
eliminate, or at least reduce, the problems caused by these phenomena. 

This PhD Thesis brings together a significant part of the expertise acquired 
over the years by the industry regarding screwed joints and transfers it to the 
field of dental implantology, creating predictive methodologies and in-depth 
studies that help provide better understanding of these phenomena and to be 
able to predict and avoid them in future dental implant designs. As a result, the 
fatigue behavior of dental restorations has been studied, distinguishing 
between, on the one hand, those in which the critical component is the 
prosthetic screw and, on the other hand, those in which the critical component 
is the dental implant. For both cases, fatigue life prediction methodologies have 
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been developed, providing very accurate predictions in the experimental 
verification tests carried out. Moreover, some changes in the machining process 
of the prosthetic screw have been proposed after experimentally proving its 
benefits in terms of fatigue behavior. In addition, the microgap formation in 
the implant-abutment connection has been studied experimentally and some of 
the parameters which had the most significant effects were analyzed. Finally, 
the loosening phenomenon of the prosthetic screw has been studied and a 
methodology to predict screw loosening on dental restorations has been 
developed and experimentally validated. 
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Resumen 

Las restauraciones dentales son una opción muy utilizada para sustituir tanto 
una como varias piezas dentales. La restauración dental atornillada más sencilla 
está compuesta por un implante dental, que se inserta en el hueso, y una corona, 
que se cementa sobre un pilar, y juntos se colocan sobre el implante. Finalmente 
se inserta un tornillo protésico, que apretado al par de apriete adecuado, aporta 
una integridad estructural a la restauración dental. 

Aunque el uso de restauraciones dentales es un tratamiento muy predecible y 
con una alta tasa de éxito, cualquier caso es susceptible de sufrir complicaciones 
biológicas o mecánicas. Los problemas mecánicos más comunes son el fallo por 
fatiga del tornillo protésico o del implante dental, la formación de microgaps en 
la conexión poste-implante, que pueden conducir a la colonización bacteriana 
y a una posible pérdida del implante, y el aflojamiento del tornillo protésico. 

Una restauración dental es, en efecto, una unión atornillada, es decir, un 
elemento mecánico ampliamente estudiado a lo largo de los años en el campo 
de la ingeniería mecánica. De hecho, los tres fallos mecánicos ya mencionados 
que pueden encontrarse en las restauraciones dentales son también comunes en 
las uniones atornilladas utilizadas para fines más generales. En consecuencia, 
son muchos los estudios que analizan estos fenómenos en las uniones 
atornilladas intentando predecir el comportamiento mecánico, y eliminar, o al 
menos reducir, los problemas causados por estos fenómenos. 

Esta Tesis Doctoral recoge gran parte del conocimiento adquirido a lo largo de 
los años sobre las uniones atornilladas por la industria y lo traslada a la industria 
de la implantología dental, creando metodologías predictivas y estudios en 
profundidad que ayudan a comprender mejor estos fenómenos para poder 
predecirlos y evitarlos en los futuros diseños de restauraciones dentales. Como 
resultado, se ha estudiado el comportamiento a fatiga de las restauraciones 
dentales, diferenciando, por un lado, aquellas en las que el componente crítico 
es el tornillo protésico y, por otro, aquellas en las que el componente crítico es 
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el implante dental. Para ambos casos, se han desarrollado metodologías de 
predicción de la vida a fatiga, proporcionando predicciones muy precisas en los 
ensayos de verificación experimentales realizados. También, se han propuesto 
ciertos cambios en el proceso de mecanizado del tornillo protésico después de 
comprobar experimentalmente sus beneficios en el comportamiento a la fatiga. 
Además, se ha estudiado la formación de microgap en la conexión poste-
implante y se han analizado algunos de los parámetros que más afectan. Por 
último, se ha estudiado el fenómeno de aflojamiento del tornillo protésico y se 
ha desarrollado y validado experimentalmente una metodología para predecir el 
aflojamiento del tornillo en restauraciones dentales. 
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Context, objectives, and 
document structure 

Context and motivation 

Dental restorations are a widely used option to replace a single tooth as well as 
several teeth.1 The simplest screw-retained dental restoration (see Figure 1) 
consists of a dental implant, that is inserted into the bone, and a crown, that is 
cemented on an abutment, and all together is assembled on the implant by 
means of a prosthetic screw. The screw is properly tightened so that the 
structural integrity of the dental restoration is achieved. 

 

Figure 1. Implant-supported restoration inserted in mandibular bone. 

Even though the use of dental implants for teeth replacement is a highly 
predictable treatment with a high success rate, any case could result in either 
biological or mechanical complications. The most common mechanical 
problems, in which this PhD Thesis is focused on, are self-loosening of the 
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prosthetic screw, fatigue failure of some of its components, and microgap 
formation in implant-abutment connection (IAC). There is a large amount of 
works that analyze the behavior of the restoration in patients' mouths (in-vivo) 
by means of retrospective studies. In those studies, success ratios of different 
dental restorations and clinical cases may be found. Besides this, there are other 
studies that analyze the mechanical behavior of dental restorations through 
experimental tests in laboratories (in-vitro) or by simulations by means of Finite 
Element Analysis (FEA). Nevertheless, these studies are usually focused on 
making comparisons among various cases (implant geometries, connection 
types, implant arrangement in the mouth, and so on) and obtaining direct 
clinical conclusions, without more extensive investigation into the phenomena 
or aiming to predict or avoid them. This may be explained by the fact that most 
of these works are published in journals whose target readers are clinicians, with 
works scarcely published in journals aimed to engineers or, at least, with an 
engineering approach. 

It must be kept in mind that a dental restoration is, in fact, a screwed joint, that 
is, a mechanical element that has been extensively studied over the years in the 
field of mechanical engineering. Moreover, the aforementioned three 
mechanical faults that may be found on dental restorations are also common in 
screwed joints used for more general purposes. 

Therefore, this PhD Thesis aims to bring together all the expertise acquired 
over the years by the industry regarding screwed joints and transfer it to the 
industry of dental implantology, creating predictive methodologies and in-
depth studies that help provide better understanding of these phenomena and 
to be able to predict and avoid them in future dental implant designs. 

Aim and scope 

Based on the aforementioned, the main objective of this PhD Thesis is, first, to 
explain the phenomena that cause the most common mechanical failures in 
dental restorations (fatigue, screw loosening and microgap formation) from a 
theoretical point of view, based on relevant literature. 

Once understood the phenomena, experimental tests are carried out to see how 
these phenomena affect the behavior of dental restorations. After observing 
and understanding the mechanical behavior of dental restorations in depth, 
those with the biggest impact are identified and the keys by which to reduce 
such failures are provided. Furthermore, in the case of fatigue failure and 
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prosthetic screw loosening, theoretical methodologies, based on simple 
expressions fed by FEA, capable of predicting the occurrence of such faults are 
developed. These methodologies will allow R&D engineers to compare 
different designs without the need for extensive experimental test campaigns to 
optimize the design. In addition, the methodologies presented in this PhD 
Thesis have a didactic component as they allow for the understanding of the 
performance of dental restorations and to identify the key parameters to delay 
or even avoid the restoration fault. 

Therefore, the target audience for this PhD Thesis are mechanical engineers 
and R&D teams, unlike the majority of publications in the field of implant 
dentistry, focused on clinicians. 

In addition to the benefit of the in-depth study of the various mechanical 
phenomena and methodologies mentioned, clinical conclusions derived from 
the various studies performed will also be presented in this PhD Thesis. These 
conclusions may be of interest to engineers or R&D teams as well as to 
clinicians. 

Document structure 

As explained throughout the chapter, this PhD Thesis studies the mechanical 
behavior of different dental restorations and develops various prediction 
methodologies that allow for the optimization of the design of a dental implant 
and its prosthetic components against different types of mechanical faults. In 
particular, it is focused on the study of the three most common mechanical 
problems suffered by dental implants: fatigue fracture of some of its 
components, the gradual loss of preload (loosening) suffered by the prosthetic 
screw due to masticatory loads, and the opening of small cavities called 
microgaps in the IAC that, over time, can cause infections due to bacterial 
colonization. In order to develop all the content in a structured way, this PhD 
Thesis document has been divided into 8 chapters which are briefly described 
as follows. 

Chapter 1 explains what a dental restoration is, presents the elements that it 
consists of and explains that, in essence, it behaves like a screw-retained joint. 
Next, the necessary theoretical foundations concerning screw connections, 
microgap (or leakage), fatigue phenomena, and screw loosening are explained 
for the correct understanding of the methodologies and tools used and 
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developed in this PhD Thesis. Finally, a state of the art of fatigue, loosening 
and microgap phenomena in dental restorations is presented. 

For the study of the mechanical behavior of dental restorations, different 
numerical models and experimental tests have been performed in this PhD 
Thesis. Chapter 2 initially describes the types of dental restorations studied. 
Then, the Finite Element (FE) models used are explained. The simplifications 
assumed in the geometry, meshing, boundary conditions, and so on, are 
defined. Although each model will undergo small variations depending on the 
particular case being analyzed (geometry, prosthetic screw preload and load 
application), the basis of the FE models will always be the same. In addition to 
this, this chapter presents the test benches used for the various experimental 
tests. Finally, an innovative fatigue test bench prototype developed within the 
scope of this PhD Thesis is presented, which is capable of testing up to 8 dental 
restorations simultaneously. 

Chapter 3 presents a methodology for predicting the fatigue life of dental 
restorations where the critical component is the prosthetic screw. First, the 
methodology is defined, and the theoretical analyses and experimental tests 
performed for the fitting of the methodology parameters are detailed. Then, the 
accuracy of the methodology is tested for a wide range of dental restorations 
apart from the one used to create the methodology. Finally, taking advantage 
of the numerous experimental tests carried out to validate the fatigue life 
prediction methodology in different dental restorations, the effect on fatigue 
behavior of different parameters is determined. These parameters are the 
tightening torque of the prosthetic screw, different geometric parameters of the 
dental implant (diameter of the implant body, diameter of the platform and 
connection type) and the use of transepithelial-supported restorations instead 
of the use of classic implant-supported restorations. In conclusion, a 
methodology that allows for the estimation of the fatigue life of dental 
restorations in which the critical component is the prosthetic screw is 
presented, giving rise to a powerful design tool that allows for the study of the 
effect of different parameters on the restoration life in a versatile and efficient 
way. 

Continuing with the fatigue analysis of the prosthetic screw, Chapter 4 explores 
improvements that are beyond the scope of the fatigue life prediction 
methodology presented in Chapter 3, such as manufacturing methods. On the 
one hand, the option of milling the screw head socket where the torque wrench 
tip is inserted is studied, in order to avoid broaching, a much more aggressive 
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manufacturing process. On the other hand, the alternative of manufacturing the 
threads of the prosthetic screw by rolling instead of cutting has been studied, 
considerably improving the fatigue behavior of the screw and, therefore, of the 
whole dental restoration. 

Chapter 5 is focused on the fatigue behavior of the implant, setting aside the 
prosthetic screw. First, the effect of stress concentration on the fatigue behavior 
of the material the implants are made of is studied. Then, in order to apply the 
Theory of Critical Distances (TCD), a linear model that relates the normalized 
stress gradient at the root of the notch versus the critical distance is defined. 
After this research, a fatigue life prediction methodology is presented for dental 
restorations in which the critical component is the dental implant. The accuracy 
of the methodology is then tested for various dental restorations. 

In Chapter 6 the microgap formation in IAC is experimentally analyzed on 
different dental restorations under in-situ loading. To carry out the 
experimental measurements, a portable tooling capable of applying static loads 
on any dental restoration has been developed. Due to its portability, the tooling 
can be inserted into a Micro-CT cabin so that X-ray images can be obtained 
while a load is applied to the implant in-situ. From these tests, the effect on the 
microgap of varying the diameter of the implant body, the diameter of the 
platform and the use of a transepithelial-supported restoration instead of the 
classical implant-supported restoration has been quantified. 

Chapter 7 studies the loosening phenomenon of the prosthetic screw. A 
methodology is presented to predict whether or not loosening will occur in a 
dental restoration under certain loading conditions. This methodology 
combines FEA, to determine the forces acting on the screw when an external 
load is applied, with a mathematical formula to estimate if screw loosening will 
occur. The methodology is then validated by experimental testing on dental 
restorations under alternating transverse loading. 

Finally, Chapter 8 provides the final conclusions of this PhD Thesis as well as 
the proposed future work. In addition, the publications and congress 
presentations derived from this work carried out are shown.





 

7 
 

1 Introduction and background 

The objective of this PhD Thesis, as explained in the ‘Context, objectives, and 
document structure’ section, is to study the phenomena that cause the most 
common mechanical faults in dental restorations. In order to carry out this work 
rigorously, this chapter aims to explain the theoretical principles on which the 
studies and methodologies developed throughout this PhD Thesis are based. 

First, in section 1.1 it is explained what a dental implant is, the main 
components that form a dental restoration are identified and the basic surgical 
concepts are explained. 

Since, from a mechanical point of view, a dental restoration is, to all intents and 
purposes, a screwed joint, it has the advantage that the most common faults in 
dental restorations have already been the subject of studies on screwed joints 
for decades. Accordingly, in section 1.2, the fundamentals of screwed joints are 
explained: the screwed joint preload concept, why preload is a critical aspect of 
the screwed joint, and its relationship to screw torque. Based on this, it is 
explained how a screwed joint works under axial and transverse loads. The most 
frequent faults in screwed joints are also explained: fatigue failure, self-
loosening of the screw and microgap formation or leakage. 

Having understood how screwed joints work and having presented the most 
frequent faults, sections 1.3, 1.4, and 1.5 provide in-depth explanations of each 
of the three phenomena and their existing theories and analysis models. 

Finally, a literature review of how fatigue, screw loosening and microgap affect 
dental restorations is provided in section 1.6. 

1.1 Dental restorations: an overview 

Dental implants are a widely used option to replace a single tooth as well as 
several teeth.1 The simplest screw-retained dental restoration consists of a 
dental implant, that is inserted into the bone, and a crown, that is cemented on 
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an abutment, and all together is assembled on the implant by means of a 
prosthetic screw (see Figure 1). The screw is properly tightened so that the 
structural integrity of the dental restoration is achieved. 

Before further explanation of prosthetic components, it must be briefly 
explained how a dental implant is applied. Figure 1 shows a mandibular bone; 
that is, the restoration shown is replacing a lower tooth. Upper teeth, instead, 
are found in the maxilla. 

Both the maxillary and mandibular bones are composed by an inner less dense 
bone called the trabecular bone and covered by a shell of a denser bone known 
as the cortical bone as can be seen in Figure 2. Depending on the combinations 
of these two bones, the maxilla or the mandible of the patient may be harder to 
drill, likely providing better stability to the implant (left, in Figure 2), or may be 
easier to drill, likely providing poor stability (right, in Figure 2).2 

 

Figure 2. Different bone densities due to proportions of cortical and trabecular bone. 
Denser bone in the left side and less dense in the right side.2 

The surgery starts with a crestal incision in the keratinized mucosa (Figure 3A). 
Then, the drilling process begins with an initial drill that will establish the 
direction for the rest of the drilling performed afterwards (Figure 3B). The 
location for the implant is, then, prepared with a pilot drill (Figure 3C). 
Depending on the bone density and the implant size, further drills may be 
performed after these two mentioned ones (Figure 3D). Figure 3E shows an 
example of a complete drilling procedure for a specific implant and bone 
density. Next, the implant is inserted by means of a surgical motor, completing 
the insertion to the desired level manually by means of a surgical torque wrench 
(Figure 3F). Finally, the implant mount (blue part in Figure 3F) is removed. 
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A) B) 

C) D) 

 
E) F) 

Figure 3. Step by step drilling process and implant positioning. A, Incision. B, Initial 
drill. C, Pilot drill. D, Further drilling after pilot drilling. E, Example of a complete 
drilling procedure for a specific implant. F, Implant insertion.2 

Once the implant is inserted, 3 different techniques may be used, as long as the 
patient has no pathological parafunctional habits.2 

In one-stage surgery, as soon as the implant is placed, a healing abutment is 
assembled on the implant and the mucosa is sutured around the healing 
abutment (see Figure 4A). No complementary surgical techniques are 
performed. Once the implant is osseointegrated and the implant stability is 
ensured, the rest of prosthetic components are assembled on the implant. 
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In case correct primary stability of the implant is not achieved and/or additional 
surgeries are required, two-stage surgery must be performed. In the first stage, 
the implant is inserted, a healing cap is positioned on the implant, and the flap 
is sutured over it (see Figure 4B). It shall be reopened (second stage) after a 
healing period of 3-5 months depending on the bone quality, and either a 
healing abutment (see Figure 4A) or the rest of the prosthetic components (see 
Figure 4C) are applied, depending on the case. 

If sufficient primary stability is achieved in the implant directly after the 
insertion, immediate loading is allowed, i.e., the prosthetic elements can be 
assembled on the implant after the insertion (or within the first week after 
insertion) as can be seen in Figure 4C. 

   
A) B) C) 

Figure 4. A, Inserted implant with a healing abutment and sutured mucosa around 
it. B, Inserted implant with a healing cap and sutured mucosa over it. C, Inserted 
implant with a transepithelial element and sutured mucosa around it.2 

There are also monobloc or monotype implants that are composed of a single 
element and the crown is cemented on it. Nevertheless, once shown how 
complex surgeries are, it may be understood why screw-retained dental 
restorations are more versatile. They are able to adapt to each one of the three 
surgeries presented, they allow the clinician to remove the prosthetic 
components to make any correction or for cleaning purposes and, finally, in the 
event of further dental loss, they allow for new planning of the mouth 
restoration, taking advantage of the implant already fitted and changing only 
the prosthetic components. 

Following with the screw-retained dental restorations, in the beginning of this 
section a simple restoration consisting of an implant, an abutment and a 
prosthetic screw was presented. This restoration is known as an implant-
supported restoration, directly attached restoration or direct-to-implant 
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restoration (Figure 5A). Besides this, a transepithelial element can also be added 
to the restoration between the implant and the abutment as can be seen in 
Figure 5B. The main advantage of a transepithelial element is that it may be 
placed (between the implant and the healing abutment) in one-stage surgery 
immediately after placing the implant, allowing for further restoration steps to 
be performed at tissue level rather than at bone level, considerably reducing 
clinical complications (see Figure 5C). 

 
       A) B)              C) 

Figure 5. A, Implant-supported restoration. B, Transepithelial-supported restoration. 
C, One-stage surgery using a transepithelial component.2 

After explaining the most common basic components that form a dental 
restoration, the most important geometric parameters - not only from a 
mechanical but also from a clinical point of view - must be presented. 

IAC is one of the most important parameters of a dental restoration since, along 
with the screw, it determines the structural integrity of the assembly.3–6 Besides 
this, the connection must ensure correct sealing so that bone health is not 
compromised by possible bacterial colonization in connection with cavities or 
mismatches.7–11 The most common connections are the external and internal 
butt-joint, and the external and internal conical ones (see Figure 6). There are 
other connections derived from them or even combining some of them. 
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A) B) 

  
C) D) 

Figure 6. Most common IACs. A, External butt-joint. B, Internal butt-joint. C, 
Internal conical. D, External conical. Contact surfaces marked in red. 

Implant body diameter also plays an important role12 because, evidently, the 
thicker an implant is, the better mechanical performance it will have. The same 
occurs with implant platform diameter: the larger the platform diameter the 
more robust connection.13 Nevertheless, the size of the implant is often limited 
by the bone dimensions of the patient. Implant length is assumed to be a 
negligible parameter from a mechanical point of view as long as the stability of 
the implant in the bone is ensured. From a clinical point of view, instead, 
implant length may have a slight influence.14,15 However, the use of short and 
extra-short implants has increased in recent years due to their high success rate 
shown in several retrospective studies.16–20 Some other parameters such as 
surface treatments, implant external thread geometry or material 
biocompatibility were not included this PhD Thesis since they are not related 
to the mechanical behavior of the restorations. 

Even though the use of dental implants for teeth replacement is a highly 
predictable treatment with a high success rate, all cases are prone to either 
biological or mechanical complications. The most common mechanical 
problems, that this PhD Thesis is focused on, are briefly presented hereafter. 

Microgaps may appear at the IAC,21 being a proper environment for bacterial 
colonization.7–11 The bacteria may spread to peri-implant tissues, leading to 
chronic inflammation22–24 and crestal bone resorption.8,25–29 This is the prelude 
of peri-implantitis,30 the main cause of implant loss.31–33 
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Moreover, implants and prosthetic components are subjected to variable 
loading during their life span.34,35 This cyclic loading may lead to structural 
failure in two different ways: on the one hand, fatigue failure of either the 
implant or the prosthetic screw (with abutment failure very uncommon);36 on 
the other hand, preload loss (loosening) of the screwed joint between the 
implant and the prosthetic components.4,37–40 

As mentioned before, a dental implant can be considered a screwed joint. For 
this reason, the basic theory of screwed joints, the concept of preload and its 
importance in mechanical behavior, its relation to the tightening torque of the 
screw, and how a screwed joint works under axial and transverse loads are 
explained in the following section. 

1.2 Mechanical behavior of screwed joints 

A screwed joint is used to join two or more parts reversibly, unlike welded joints 
that are permanent. The main function of the assembly process of a screwed 
joint is to apply a tensile load on the screw, generating a clamping force 
(preload) between the joined elements and, therefore, ensuring the structural 
integrity of the assembly.41–43 The screw preload therefore plays an important 
role in the mechanical behavior of the assembly. 

1.2.1 Screw preload 

In the screwed joint shown in Figure 7, the screw is subjected to a preload 
related to the applied tightening torque. The joined elements are subjected to a 
compression load while the screw is subjected to a tensile load. Since the joint 
is statically balanced, the magnitudes of the tensile load (screw) and the 
compression load (joined elements) are the same. In fact, the joint can be 
studied as an assembly where the screw and the joined elements are springs (as 
shown in Figure 8), the first loaded under tension and the second under 
compression, in equilibrium. 
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Figure 7. Two sheets joined by a preloaded screwed joint.3 

 

Figure 8. Representation of the stiffnesses of the screw and elements to be joined in 
the screwed joint in Figure 7.3 

The stiffness of the joined elements is usually greater than the stiffness of the 
screw. Hence, since the forces are balanced, the tensile deformation suffered by 
the screw must be larger than the compressive deformation suffered by the 
joined elements. Nevertheless, this difference is not always that notable. For 
example, in dental restorations shown in Figure 6, the resistant sections of the 
prosthetic screws are closer to the ones of the joined elements, and this is the 
same for stiffness. 

The next equation establishes the balance condition for a screwed joint in the 
absence of external loads.44 

𝐹௣ = 𝐹௘ = 𝐹௦ = 𝑘௘ · 𝛿௘ = 𝑘௦ · 𝛿௦ (1) 
Where 𝐹௣ is the preload force on the screwed joint, 𝐹௘ is the compression load 
on the joined elements, 𝐹௦ is the tensile load on the screw, 𝑘௘ is the compression 
stiffness of the joined elements, 𝛿௘ is the deformation of the joined elements, 
𝑘௦ is the tensile stiffness of the screw, and 𝛿௦ is the deformation of the screw. 
The balance status is often represented by a so-called joint diagram, shown in 
Figure 9. In the diagram, force magnitude is represented on the vertical axis 
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(always upwards, regardless of whether the force is tensile or compressive) 
while deformation is represented on the horizontal axis (to the left, 
compressive, 𝛿௘, and to the right, tensile, 𝛿௦). By means of this joint diagram it 
can be seen how the force is the same for both the screw and the joined 
elements and, since the stiffnesses are different, so are the deformations. 

 
Figure 9. Joint diagram of the screwed joint in Figure 7. 

1.2.2 External axial loading 

Once understood the behavior of a balanced screwed joint in absence of 
external loading, in Figure 10 an external axial load is applied to the screw of 
the joint. 

 
Figure 10. Preloaded joint under external axial load.3 

When the axial load  𝑃 is applied, it is split between the screw and the joined 
elements. The percentage of the 𝑃 load withstood by the screw and the joined 
elements is determined by their stiffnesses. Assuming that the 𝑃 load does not 
generate a contact loss between the screw and the joined elements, the 
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deformation increase Δ𝛿 suffered by the screw (increasing the initial tension) 
must be equal to deformation detriment suffered by the joined elements 
(releasing part of the initial compressive load). Hence, the 𝑃 load may be defined 
as the deformation Δ𝛿 multiplied by the total stiffness of the joint: 

𝑃 = (𝑘௦ + 𝑘௘) · Δ𝛿 (2) 
Thus, the total forces assumed by both the screw and the joined elements in 
the presence of an external axial load are: 

𝐹௘ = 𝐹௣ − 𝑘௘ · Δ𝛿 = 𝑘௘ · 𝛿௘ − 𝑘௘ · Δ𝛿 = 𝑘௘ · (𝛿௘ − Δ𝛿) (3) 

𝐹௦ = 𝐹௣ + 𝑘௦ · Δ𝛿 = 𝑘௦ · 𝛿௦ − 𝑘௦ · Δ𝛿 = 𝑘௦ · (𝛿௦ − Δ𝛿) (4) 
The load factor 𝐶 of the screwed joint is defined by: 

𝐶 =
𝑘௦

𝑘௦ + 𝑘௘
 (5) 

Substituting in (3) and (4): 

𝐹௘ = 𝐹௣ − (1 − 𝐶) · 𝑃 (6) 

𝐹௦ = 𝐹௣ + 𝐶 · 𝑃 (7) 
The joint diagram in Figure 11, shows that starting from the initial preload 𝐹௣, 
the screw axial load increases up to 𝐹௣ + 𝐶 · 𝑃 (upwards, in the diagram), while 
the force assumed by the joined elements decreases down to 𝐹௣ − (1 − 𝐶) · 𝑃 
(downwards, in the diagram). It must be noted that, in the diagram, the amount 
of the external load assumed by the joined elements is higher than the amount 
of load assumed by the screw, because commonly the joined elements are stiffer 
than the screw. In other words, the screw only withstands the 𝐶-th part of the 
axial load 𝑃, rather than the total amount. This is beneficial for mechanical 
behavior since the screw is usually the critical component of the joint. If the 
axial load 𝑃 is high enough to generate contact loss among joined elements 
(when 𝐹௘ = 0; that is, when 𝑃 > 𝐹௣/(1 − 𝐶)), the total amount of the external 
load 𝑃 will be assumed by the screw, with the axial load withstood by the screw 
equal to 𝑃. This occurs either when the axial load 𝑃 is very high or when the 
preload is very low. At this point, the importance of the preload arises. The 
preload should be high enough so that the contact among the screw and 
elements joined is guaranteed but not too high such that the screw does not 
have enough margin to withstand the 𝐶-th part of the axial load 𝑃 without 
collapsing. 
Regarding deformations, the joint diagram shows that the screw deformation 
increases by the same amount as the amount by which joined elements 
deformation decreases, Δ𝛿. To sum up, in absence of external loads, the 
common variable is the preload 𝐹௣ with the deformations 𝛿௘ and 𝛿௦ being 
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different. When an axial external load is applied, the common variable is the 
deformation increment Δ𝛿 with the load assumed by each component 
proportional to their stiffnesses. 

 
Figure 11. Joint diagram of the screwed joint in Figure 10. 

1.2.3 External shear loading 

When a screwed joint is subjected to shear or transverse loading (see Figure 12), 
it may be classified as ‘friction type’ or ‘bearing type’, depending on its 
behavior.3 The screwed joint will operate as ‘friction type’ when the transverse 
load 𝑃௧ does not overcome the friction force generated between the joined 
elements (see Figure 13) as established in equation (8). If this condition is 
fulfilled, the friction force does not allow the joined elements to slip between 
themselves, whereby the screw is not affected by the transverse load 𝑃௧ and the 
screwed joint has structural integrity (see Figure 14). 

 

Figure 12. Screwed joint subjected to shear loading. 

𝑃௧ < 𝜇 · 𝐹௘ · 𝑚 (8) 
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Where 𝑃௧ is the transverse load applied, 𝜇 is the coefficient of friction between 
the joined elements, 𝐹௘ is the axial force assumed by the elements joined, and 𝑚 
is the number of element surfaces in contact. 

 

Figure 13. Screwed joint working as a ‘friction type’ joint. 

 

Figure 14. Stress transmission lines on a friction type screwed joint. 

By contrast, the screwed joint will operate as ‘bearing type’ when the transverse 
load applied 𝑃௧ exceeds the friction generated between the joined elements, that 
is: 

𝑃௧ > 𝜇 · 𝐹௘ · 𝑚 (9) 
Hence, the joined elements will suffer slippage between them and the screw will 
suffer shearing as shown in Figure 15. Nevertheless, bearing type operating 
conditions is not desirable and can be considered a malfunction due to relative 
displacements between the screw and the joined elements. 
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Figure 15. Screwed joint working as ‘bearing type’ joint. 

Once understood how a screwed joint behaves under an external force and 
once observed the importance of the preload, it is necessary to understand the 
relationship between the preload and the tightening torque applied on the 
screw. 

1.2.4 Tightening torque-preload relationship 

Even though the importance of the preload on mechanical behavior of a 
screwed joint has been highlighted in sections 1.2.2 and 1.2.3, how the preload 
is achieved in the screwed joint has not been explained yet. Commonly, also on 
dental implants, the preload is exerted by applying a tightening torque on the 
screw. The relationship between the applied screw tightening torque and the 
obtained preload can be explained by using the analogy of a block on an inclined 
plane, as illustrated in Figure 16. The block represents the moving threads that 
try to climb the inclined plane, that represents the fixed thread, when a force 𝐹் 
caused by a tightening torque is applied. The angle of the inclined plane 
represents the helix angle of the thread 𝛽 (directly related to the thread pitch, 
𝑝), and 𝛼 is the half angle of the thread section. The force 𝐹் should overcome 
the existing preload (if so) 𝐹 · sin (𝛽) (always against tightening) and the friction 
force 𝜇 · 𝑁 (always against the movement). When the tightening torque ceases, 
𝐹் disappears and the friction force 𝜇 · 𝑁 changes its direction to avoid the block 
going downwards; i.e., to avoid loosening of the joint. If the coefficient of 
friction was null, the screwed joint would loosen as soon as the tightening 
torque ceases.41–43 
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Figure 16. Screw preload and the analogy with a block over an inclined plane. 

The analogy of the block on an inclined plane is useful for understanding the 
forces generated by the preload and the friction forces on thread contact. 
Nevertheless, there is another friction not considered hitherto, the friction 
generated on screw head contact. Figure 17 shows the free body diagrams of a 
screw during both tightening and untightening processes. 

 
Figure 17. Free body diagram of a tightened screw. A, Tightening process. B, 
Untightening process. 

Where 𝑇௛ is the resistant moment due to friction under the screw head, 𝑇௧ is the 
resistant moment due to friction between thread surfaces and 𝑇௣ is the pitch 
torque generated by the preload 𝐹௣ acting on the helix surface of the threads. 
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Both 𝑇௛ and 𝑇௧ act against movement, since they are friction moments; i.e., they 
will change the direction depending on whether the screw is being tightened or 
untightened. By contrast, 𝑇௣ always acts in the loosening direction. Equations 
(10) and (11) show the balance conditions for tightening and untightening 
processes, respectively.45 

𝑇் = 𝑇௛ + 𝑇௧ + 𝑇௣ (10) 

𝑇௅ = 𝑇௛ + 𝑇௧ − 𝑇௣ (11) 
Based on the equilibrium condition established in equation (10), equation (12) 
relates the tightening torque 𝑇் with the preload 𝐹௣.41 

𝑇் = 𝐹௣ · 𝜇௛ · 𝑟௛ + 𝐹௣ ·
𝜇௧ · 𝑟௧

(𝑐𝑜𝑠𝛼 − 𝜇 · 𝑡𝑎𝑛𝛽)
+ 𝐹௣ ·

𝑡𝑎𝑛𝛽 · 𝑐𝑜𝑠𝛼 · 𝑟௧

(𝑐𝑜𝑠𝛼 − 𝜇 · 𝑡𝑎𝑛𝛽)
 (12) 

Where 𝜇௛ and 𝜇௧ are respectively the coefficients of friction of the screw head 
and thread contacts and 𝑟௛ and 𝑟௧ are respectively the screw head and thread 
effective contact radii obtained by considering the preload to be uniformly 
distributed under the screw head and on the thread surface: 

𝑟௛ =
2

3
·

𝑟௛௠௔௫
ଷ − 𝑟௛௠௜௡

ଷ

𝑟௛௠௔௫
ଶ − 𝑟௛௠௜௡

ଶ ≈
𝑟௛௠௔௫ + 𝑟௛௠௜௡

2
 (13) 

𝑟௧ =
2

3
·

𝑟௧௠௔௫
ଷ − 𝑟௧௠௜௡

ଷ

𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ ≈
𝑟௧௠௔௫ + 𝑟௧௠௜௡

2
 (14) 

Where 𝑟௛௠௔௫ and 𝑟௛௠௜௡ are, respectively, the maximum and minimum radii of 
the screw head contact surface, and 𝑟௧௠௔௫ and 𝑟௧௠௜௡ are the maximum and 
minimum radii of the screw thread contact surface, respectively, as shown in 
Figure 18. 

Motosh simplified equation (12) by assuming 𝑐𝑜𝑠𝛼 ≫ 𝜇 · 𝑡𝑎𝑛𝛽, obtaining 
equation (15).41,46 In the same way, equation (16) can be shown as a 
simplification of equation (12) for the untightening process. 

𝑇் = 𝐹௣ · 𝜇௛ · 𝑟௛ + 𝐹௣ · 𝜇௧ ·
𝑟௧

𝑐𝑜𝑠𝛼
+ 𝐹௣ · 𝑡𝑎𝑛𝛽 · 𝑟௧ (15) 

𝑇௅ = 𝐹௣ · 𝜇௛ · 𝑟௛ + 𝐹௣ · 𝜇௧ ·
𝑟௧

𝑐𝑜𝑠𝛼
− 𝐹௣ · 𝑡𝑎𝑛𝛽 · 𝑟௧ (16) 

Moreover, equations (15) and (16) are particularized for a flat screw head 
contact with equations (17) and (18) being the general expressions that can be 
used for the case of countersunk head screws, where 𝜌 is the angle of the screw 
head contact surface. 
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𝑇் = 𝐹௣ ·
𝜇௛ · 𝑟௛

cos 𝜌
+ 𝐹௣ · 𝜇௧ ·

𝑟௧

𝑐𝑜𝑠𝛼
+ 𝐹௣ · 𝑡𝑎𝑛𝛽 · 𝑟௧ (17) 

𝑇௅ = 𝐹௣ ·
𝜇௛ · 𝑟௛

cos 𝜌
+ 𝐹௣ · 𝜇௧ ·

𝑟௧

𝑐𝑜𝑠𝛼
− 𝐹௣ · 𝑡𝑎𝑛𝛽 · 𝑟௧ (18) 

Surprisingly, the main part of the energy provided when tightening a screw 
contributes to overcome friction (the first two summands in equations (10), 
(15), and (17)). 𝑇௛ consumes approximately 50% of the energy, 𝑇௧ consumes 
another 40% and 𝑇௣ receives only 10% of the applied torque 𝑇் as shown in 
Figure 19.3 

Besides this, the coefficient of friction is the factor that has more influence in 
preload scatter, with its value virtually impossible to predict and leading to a 
discrepancy between the theoretical value of the preload and the real one. There 
are several variables that affect the coefficient of friction. The most important 
ones are surface hardness, surface finishes, type of material, lubricant (if used), 
tightening speed, thread fit, hole clearance, surface pressures, presence or 
absence of washers, cut versus rolled threads, and so on.3 

Figure 18. Geometrical parameters of a screwed joint. 
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A) B) 

Figure 19. Energy consumed by the resistance torques under the screw head 𝑻𝒉, the 
resistance torque in the thread 𝑻𝒕, and the pitch torque 𝑻𝒑. A, Torque versus turn 
diagram.3 B, Pie chart of the consumed energy during the tightening process. 

Hence, for the same tightening torque there is an unavoidable scatter on the 
obtained preload that may be distributed as in the example in Figure 20. As can 
be seen, that distribution is not Gaussian or normal but skewed to the right.47 
Nevertheless, this is a specific case, whilst as a guide value, a scatter of ±30% 
in preload can be assumed for a specific tightening torque.3 

 

Figure 20. Initial preloads obtained for a large number of specimens tightened at the 
same torque.3 

Apart from coefficient of friction scatter, variables such as thread pitch 𝑝, half-
angle 𝛼, or effective contact radii 𝑟௛ and 𝑟௧ between parts are not constant in 
real life. Small variations, even within the tolerances imposed, may alter the 
preload obtained. 

Finally, unlike coefficient of friction or geometric variables that are at least 
visible in the torque-preload equation (see equations (15)(16)(17)(18)), there are 

Tt
40%

Th
50%

Tp
10%
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some sources of error that the torque-preload equation is oblivious to. On the 
one hand, interferences among threads or between the screw and the hole 
require energy from the tightening torque to be overcome but this torque does 
not contribute to screw preload. On the other hand, the torque-preload 
equation assumes the screw and the elements to be joined as rigid solids (apart 
from the evident elastic deformation on the screw shank). Nevertheless, when 
preloaded, some parts of the screw or joined elements may suffer high stresses, 
leading to yield and material flow until the equilibrium is reached. This 
phenomenon is known as relaxation and causes preload loss due to joint 
embedment. Figure 21 provides an illustrative example, where it can be seen 
that a significant part of relaxation occurs immediately after the tightening 
process ends. Subsequently, relaxation continues with a much lower ratio to a 
third stage where the relaxation may be considered negligible.48 For this reason, 
a retightening torque is generally recommended after various weeks.3 

 

Figure 21. Relaxation process over time.3 

1.2.5 Screwed joint faults 

In section 1.1, it was explained that dental restorations are liable to suffer 
microgap formation in IAC, loosening of the prosthetic screw, or fatigue failure 
of some of their elements. These phenomena have been widely studied in 
screwed joints in the industrial sector. 

Regarding microgap, this phenomenon can make the joint operate incorrectly. 
This phenomenon allows any liquid to pass through the screwed joint, causing, 
for example, leakage in a pipe or allowing bacterial penetration in a dental 
restoration. This problem is caused either by an excessive external load and/or 
an insufficient tightening torque49,50 or in absence of loads if there is a mismatch 
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among the joined elements.22 Further information regarding microgap 
phenomenon will be provided in section 1.5. 

An excessive static load may cause the collapse of the screw, leading to a 
mechanical failure of the joint. Besides this, lower loads but repeated through 
time, may lead to a failure of the screwed joint as well,34,35 in this case, due to 
fatigue.36 The fatigue phenomenon is complex and will be explained in detail in 
section 1.3. There, the theoretical principles will be detailed in order to manage 
the fatigue failure of the screw as well as on the joined elements (the dental 
implant, in this PhD Thesis). 

External loads (especially transverse loads) may cause displacement among the 
elements joined and the screw in such a way that the friction is overcome, and 
the screw may loosen, considerably reducing the preload of the joint.4,37–40 Screw 
self-loosening will be explained extensively in section 1.4. Besides this, it should 
also be noted that the preload reduction due to self-loosening may stimulate 
either of the two phenomena that have already been presented: fatigue failure 
or microgap formation. 

1.3 Fatigue analysis 

According to ASTM E-1823,51 ‘fatigue is the process of progressive localized 
permanent structural change occurring in a material subjected to conditions that 
produce fluctuating stresses and strains at some point or points that may 
culminate in cracks or a complete fracture after a sufficient number of 
fluctuations’. Thus, any mechanical component subjected to variable loads is 
liable to fail after a certain amount of load cycles. 

Fatigue phenomenon starts as a result of the initiation of one or more cracks 
and their subsequent propagation until they cross most of the resistant section 
of the component, leading to the collapse of the part. Figure 22 shows the 3 
stages that can be observed in a failure section due to fatigue. 

Stage I is the initiation of microcracks due to the cyclic plastic deformation 
followed by crystallographic propagation extending from 2 to 5 grains around 
the origin. This stage cannot be seen by the naked eye. Stage II progresses from 
microcracks to macrocracks forming parallel plateau-like fracture surfaces 
separated by longitudinal ridges. These plateaus are normally smooth and 
normal to the direction of maximum tensile stress. These surfaces are also 
known as ‘beach marks’. Finally, stage III occurs during the final stress cycle 
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when the remaining material cannot support the load, resulting in a sudden and 
fast fracture.43 

Fatigue is the cause of most of the operating machine failures. There are studies 
confirming that 50-90% of the mechanical failures are caused by fatigue.52 
These failures are, generally, caused by stresses much lower than the ultimate 
stress level and even lower than the yield strength. These relatively low stresses, 
combined with a stress concentration factor such as a pore or a notch, will lead 
to crack initiation and gradual propagation until the effective section cannot 
resist the load and collapses statically, as explained before.53 

 

Figure 22. Failure section of a bolt due to fatigue.54 

Fatigue analysis methods aim to estimate the life span of a component suffering 
variable stresses/deformations. Nevertheless, statistical dispersion inherent to 
fatigue55 and the lack of accurate analytical models reproducing fatigue 
phenomenon makes fatigue analysis valid only for the early stages of the design 
process, whereby experimental validation is required. 

In the following sections, the background on these analysis procedures will be 
outlined. First, uniaxial fatigue analysis will be described, including the effect of 
mean stress and stress concentration effects (due to fillets, notches, or grooves), 
and the most common uniaxial experimental fatigue tests. This background will 
be used to analyze the fatigue behavior of the prosthetic screw in Chapter 3, 
since it works under uniaxial stress conditions. Then multiaxial fatigue analysis 
will be described, with an explanation of the most used methods (classic 
method, invariant-based methods, and critical plane methods), the effect of 
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stress concentration, and the most common multiaxial experimental fatigue 
tests. This will be used for the analysis of the fatigue behavior of the dental 
implant in Chapter 5, since it works under multiaxial stress conditions. 

1.3.1 Uniaxial fatigue analysis 

A component can be affirmed to work uniaxially when only one principal stress 
can be considered non-negligible. There are components such as screws that 
are assumed to work uniaxially in real working conditions. The simplicity of this 
approach enables engineers to make calculations very easily. 

1.3.1.1 S-N curve for the pure-alternating stress case 
As mentioned, fatigue analysis methods aim to estimate the life span of a 
component subjected to a variable load. The simplest working case is the 
uniaxial pure-alternating stress case, in which the estimation of the number of 
life cycles before fracturing is related to the amplitude of the alternating stress. 
This association between stress amplitude and duration is normally presented 
in a chart known as the S-N chart/curve, also known as the Wohler curve, 
which is based on experimental fatigue tests performed on standardized 
specimens. 

Figure 23 shows a Zwick/Roell UBM 200tC rotating bending fatigue machine. 
On this type of fatigue test benches, the specimen is subjected to a constant 
bending moment. The specimen is clamped by 2 grips. On the right side, the 
specimen is clamped by a fixed support ‘C’ where no displacement is allowed 
but the rotation on the longitudinal axis of the specimen is by means of a 
bearing. On the left side, the free support ‘B’ allows for free movement along 
the plane of the bench as well as the rotation of the specimen by means of 
another bearing. Moreover, the rotating movement is generated by an electric 
motor and transmitted to the support on the right side ‘C’ by means of a belt. 
The dimensions of the specimens are determined by DIN 50113,56 ISO 1143,57 
and ASTM E2948-16a.58 
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Figure 23. Zwick/Roell rotating bending fatigue machine. 

Figure 24 shows the force and bending moment in the specimen rotating 
bending fatigue test. In addition to a constant bending moment, an axial force 
is also applied on the specimen. Nevertheless, the stresses caused by this axial 
force are negligible since: 

𝜎ௐ =
4𝑊

𝜋𝑑ଶ
≪ 𝜎ெ = 32

𝑊𝐿

𝜋𝑑ଷ
 (19) 

Where 𝜎ௐ is the stress caused by the axial force 𝑊, 𝜎ெ is the stress caused by 
the bending moment 𝑀, 𝑑 is the diameter of the specimen neck (failure section), 
and 𝐿 is the arm that causes the bending moment 𝑀. As a result, the specimen 
is mainly subjected to an alternating axial peak stress caused by the constant 
bending moment along with the rotating movement, leading to pure-alternating 
stress cycles. This is why it is known as the rotating bending fatigue test. 

 

Figure 24. Schematic of the Zwick/Roell rotating bending fatigue machine. 
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Apart from the rotating bending fatigue machine, there are direct stress fatigue 
machines where a non-rotating specimen is subjected to axial stress. These 
machines are more versatile for two main reasons. First, since the axial load is 
generated by a linear actuator, loads can vary in such a way that mean 
components of the load can be applied (the effect of the mean stress will be 
discussed in section 1.3.1.2) or even load cases with variable amplitude can be 
applied. Second, the fact that the specimen is not rotating, allows the machine 
to be used for fatigue test of specimens with other geometries rather than the 
axisymmetric ones tested in rotating bending tests (i.e. flat-sheet specimens). 
Moreover, real components may also be tested as long as proper tooling is used 
and the dimensions fit the test bench. Figure 25A shows an Instron 8801 servo-
hydraulic direct stress fatigue machine. This machine has two grips that hold 
the specimen (Figure 25B) from each end, whereby the desired force function 
can be transmitted. Female threads instead of grips can be used to hold the 
specimen. The specimen dimensions are determined by ASTM E466,59 ISO 
1099,60 and DIN 50100,61 being similar to the ones used for rotating bending 
machine. 

  
A) B) 

Figure 25. A, Instron 8801 servo-hydraulic direct stress fatigue machine. Image 
courtesy of Instron. B, Grips used for cylindrical specimens. 

In this way, a certain number of specimens may be tested, either in the rotating 
bending fatigue machine or in the direct stress fatigue machine, at different 
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alternating load magnitudes obtaining their corresponding durations. This data 
is usually shown by using the S-N chart, where duration 𝑁 (horizontal axis) of 
each test versus the alternating stress applied 𝜎௔ (vertical axis) is plotted. Figure 
26 shows an S-N chart with three clearly distinguished zones: low cycle fatigue 
(LCF), high cycle fatigue (HCF) and very high cycle fatigue (VHCF) or giga-
cycle fatigue (GCF). LCF normally refers to fatigue tests where the maximum 
applied force causes a stress higher than the cyclic yield strength. Thus, the 
specimens will show not only elastic but also plastic deformations. Hence, the 
best approach is a strain-life method that uses the local deformation rather than 
the stress level, setting aside the S-N chart and using the 𝜀-N (strain-life) chart. 
In HCF the stresses lie in the elastic stress-range and the fatigue analysis is 
performed by considering the stresses (stress-cycles approach). VHCF also uses 
the stress-cycles approach but including (for some materials such as Titanium 
and Titanium alloys) the fatigue limit concept, i.e., a stress value below which 
the specimen is assumed to survive (infinite life). In this PhD Thesis the stress-
cycles approach for HCF is used.3 

 
Figure 26. S-N chart with the three duration ranges: LCF, HCF and VHCF. 

The characterization of fatigue behavior of a material in HCF can be divided in 
two parts. First, the finite life is determined by performing fatigue tests on 
different specimens at different load levels aiming at failure of the specimens. 
Then, the fatigue limit is obtained by performing fatigue tests at lower load 
levels pursuing the survival of the specimens. For a proper fatigue campaign 
planning, an ASTM manual62 determines the number of specimens and the 
number of different load levels needed for finite life part determination 
depending on the test type. Table 1 presents the percent replication for each 
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test purpose, with the percent replication determined by equation (22), and the 
minimum number of specimens provided in Table 2. 

Table 1. Percent of replication depending on the type of test.62 

Type of test Percent replication 
Preliminary and exploratory 17-33% 

Research and development testing of components and specimens 33-50% 
Design allowable data 50-75% 

Reliability data 75-88% 
 

% 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 100 ൥1 −

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௗ௜௙௙௘௥௘௡௧
௦௧௥௘௦௦ ௟௘௩௘௟௦ ௨௦௘ௗ ௜௡ ௧௘௦௧௜௡௚

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙
௦௣௘௖௜௠௘௡௦ ௧௘௦௧௘ௗ

൩ (20) 

 

Table 2. Number of specimens for finite life determination depending on o the type 
of test.62 

Type of test Number of 
specimens 

Preliminary and exploratory 6-12 
Research and development testing of components and specimens 6-12 

Design allowable data 12-24 
Reliability data 12-24 

As mentioned before, Titanium and Titanium alloys have a fatigue limit63 that 
is usually obtained by calculating the average value of the points obtained 
through the well-known staircase method (also known as the up-and-down 
method).62 Using this method, the specimens are tested sequentially. The first 
specimen shall be tested at a load based on preliminary data. If this specimen 
survives a specified number of cycles (run-out) the next specimen is tested at a 
higher stress level. Otherwise, it is tested at a lower stress level. The run-out is 
a value assumed as the boundary of infinite life. If the tested specimen reaches 
that number of cycles, it is assumed that it will never brake regardless of the 
number of cycles the test would last. Run-out value is normally set as 106 or 
2·106 but it may vary for each case. Note that the first values must be neglected, 
with the first considered test being the first change from either survival to 
failure or failure to survival. The same manual recommends the use of 30 
specimens for fatigue limit determination even though an expert in 
experimental fatigue should know that this value may be conservative, and 7-
15 specimens should be enough.62 
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Figure 27. Staircase method (or the up-and-down method). 

Once the test campaign is completed, the results can be plotted in an S-N chart 
that relates the stress level with number of cycles obtained in each test. 
According to ASTM E-73964 the results corresponding to the finite-life region 
are modelled by a straight line in log 𝜎-log 𝑁 scale (or less commonly in 𝜎-log 𝑁 
scale). log 𝑁 is used as the dependent variable in analysis and is called Y. The 
stress level 𝜎 or log 𝜎 is the independent variable and is called X. 

𝑌 = 𝐴 + 𝐵 · 𝑋 ൜
       log 𝑁 = 𝐴 + 𝐵 · log 𝜎

log 𝑁 = 𝐴 + 𝐵 · 𝜎
 (21) 

The maximum likelihood estimators of A and B are: 

𝐴መ = 𝑌ത − 𝐵෠ · 𝑋ത

𝐵෠ =
∑ (𝑋௜ − 𝑋ത) · (𝑌௜ − 𝑌ത)௞

௜ୀଵ

∑ (𝑋௜ − 𝑋ത)௞
௜ୀଵ

ଶ
ቑ 𝑤ℎ𝑒𝑟𝑒

⎩
⎨

⎧𝑋ത =
∑ 𝑋௜

௞
௜ୀଵ

𝑘
=

∑ log(𝜎௜)
௞
௜ୀଵ

𝑘

𝑌ത =
∑ 𝑌௜

௞
௜ୀଵ

𝑘
=

∑ log(𝑁)௞
௜ୀଵ

𝑘

 (22) 

Where the ‘caret’ symbol (^) denotes estimation and the ‘overbar’ symbol 
denotes average. 𝑘 is the total number of specimens tested and included in the 
curve fitting process. The recommended equation for estimating the variance 
of the normal distribution for log 𝑁 is: 

𝜎ොଶ =
∑ ൫𝑌௜ − 𝑌ప

෡൯
ଶ௞

௜ୀଵ

𝑘 − 2
 (23) 

And the standard deviation: 

𝜎ො = ඨ∑ ൫𝑌௜ − 𝑌ప
෡൯

ଶ௞
௜ୀଵ

𝑘 − 2
 (24) 
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Hence, the linear model for the finite-life region of the S-N curve is defined as: 

𝑌ప
෡ = 𝐴መ + 𝐵෠ · 𝑋௜ (25) 

Regarding the staircase method, Dixon and Mood65 proposed statistical analysis 
to obtain the fatigue limit 𝜎௙௠ and the standard deviation 𝑆௙. 

𝐴 = ෍ 𝑚௜

௜ಾ

௜ୀ଴

;       𝐵 = ෍ 𝑖 · 𝑚௜

௜ಾ

௜ୀ଴

;      𝐶 = ෍ 𝑖ଶ · 𝑚௜

௜ಾ

௜ୀ଴

 (26) 

 
 

𝜎௙௠ = 𝜎௙଴ + ∆𝑠 · ൬
𝐵

𝐴
± 0.5൰ 

𝑖𝑓
𝐴 · 𝐶 − 𝐵ଶ

𝐴ଶ
≥ 0.3 → 𝑆௙ = 1.62Δ𝑠 · ቆ

𝐴 · 𝐶 − 𝐵ଶ

𝐴ଶ
+ 0.029ቇ 

𝑖𝑓
𝐴 · 𝐶 − 𝐵ଶ

𝐴ଶ
< 0.3 → 𝑆௙ = 0.53Δ𝑠 

(27) 

Where 𝑖 is a counter from 0 to 𝑖ெ that is the number of stress levels used -1. If 
the majority of specimens in the staircase method fail, then the lowest stress 
level at which one or more specimens survived corresponds to 𝑖 = 0 and 𝑚௜ will 
represent the number of specimens that survive at each stress level 𝑖. Otherwise, 
if the majority of the specimens in the staircase method survive, the lowest 
stress level at which one or more failures occurred will be 𝑖 = 0 and 𝑚௜ will 
correspond to the number of specimens that fail at each stress level 𝑖. 

In fatigue, surface finish, specimen size, and working conditions, among other 
factors, have significant effects on both finite life and the fatigue limit. The S-
N curve obtained corresponds to fatigue tests performed on specimens 
prepared carefully and tested under closely controlled conditions while the end 
product has a rougher surface finish and more unfavorable working conditions. 
Hence, if the fatigue behavior of the mechanical component (end product) is 
pursued, the S-N curve must be modified. Marin identified factors that 
quantified the effects of surface condition, specimen size, working conditions 
(load case), temperature, etc.53 Figure 28 shows the S-N curve obtained through 
fatigue testing of standardized specimens, the modified ones obtained through 
some of Marin’s modification factors and the S-N of the end product. 
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Figure 28. S-N curve for material (specimens) and S-N curve for mechanical part 
(end product) obtained by using modification factors. 

Where 𝜎௘ is the fatigue limit (or endurance limit) of the end product, 𝜎௚ is the 
stress value at 𝑁௚ cycles (generally 103 cycles), and 𝑁௘ is the number of cycles at 
which the slope part and the fatigue limit intersect. 𝑐௠௢ௗ

௚  and 𝑐௠௢ௗ
௘  are the result 

of the multiplication of all the modification factors in 𝑁௚ and 𝑁௘ cycles. Note 
that the changes in fatigue limit due to Marin’s modification factors may change 
the value of 𝑁௘. 

As mentioned, Marin identified factors that quantified the effects of surface 
condition, size, loading, temperature, and miscellaneous items. Hence, the 
fatigue limit of the end product can be calculated as: 

𝜎௘ = 𝑐௦
௘ · 𝑐௅

௘ · 𝑐ௌ
௘ · 𝑐ோ

௘ · 𝑐௠
௘ · 𝜎ିଵ

ᇱ  (28) 
Where 𝑐௦

௘ is the surface modification factor, 𝑐௅
௘ is the load modification factor, 

𝑐ௌ
௘ is the size modification factor, 𝑐ோ

௘ is the reliability modification factor, and 𝑐௠
௘  

is the mechanical treatment modification factor; all of them for infinite life. For 
a certain number of cycles 𝑁 in the finite-life region of the S-N: 

𝜎ே = 𝑐௦
ே · 𝑐௅

ே · 𝑐ௌ
ே · 𝑐ோ

ே · 𝑐௠
ே · 𝜎ே

ᇱ  (29) 
Regarding the factors considered above, surface roughness plays an important 
role in crack propagation. The rougher the surface, the higher probability of 
crack initiation due to small stress concentrations. Average roughness 𝑅௔ and 
mean roughness depth 𝑅௭ are the most used parameters for determining surface 
roughness, and they can be determined by ISO 428766 and ASME B46.1.67 Many 
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studies can be found providing values of surface condition modification factors 
obtained experimentally.41–43,68,69 Even though most of these values may be 
reliable, the surface roughness obtained through each manufacturing process is 
unique and, to properly determine this factor, experimental fatigue tests of 
specimens under same conditions must be performed. Negligible effects of the 
surface modification factor may be assumed for low cycles range since stress 
concentration does not affect ductile materials under static loads. Fatigue limit, 
though, has to be modified by this factor since its effect is not negligible. 

The load case also affects the fatigue behavior of specimens and mechanical 
components. For same maximum axial stress level applied, a specimen 
subjected to axial loading (direct stress fatigue machine) will present a poorer 
fatigue behavior than the same specimen subjected to a bending moment 
(rotating bending fatigue machine). Regarding crack initiation, if it occurs at the 
surface the stress status will be the same for both cases. Nevertheless, if it 
occurs inside the parts, i.e., due to a pore, in the axial load case failure it is more 
likely to occur and occur faster than in the bending load case. Regarding crack 
propagation, nominal stress decreases as the crack propagates in the bending 
load case while it remains constant in the axial load case. 

Under static loading, size has a negligible effect. Hence, for low cycles 𝑐ௌ
௚

= 1 

can be assumed. Nevertheless, for higher fatigue cycle range, size effect must 
be considered due to the following reasons. A large-sized part is more likely to 
have defects, notches, pores, and inclusions. A big part may have more high 
stress points (critical sections) for the same applied load level. Manufacturing 
processes for big parts are more complicated and usually less precise. 

Besides this, the S-N curve obtained directly from the specimens assumes a 
reliability of 50%. If another reliability curve is pursued, the S-N curve must be 
modified by the reliability modification factor 𝑐ோ

ே. 

Finally, with regards to fatigue analysis, mechanical treatments that create 
compression stresses on surfaces are the most interesting ones such as shot 
peening,70,71 laser shock-peening,72 low plasticity burnishing,73–76 and others73,77–

79 since they hinder crack initiation. Unlike the other factors, whose 
modification factors may be between 0 and 1, i.e., they reduce fatigue life, these 
factors may considerably enhance fatigue life. Hence, these factors are usually 
higher than 1. 

There are other factors such as impacts, working temperature, or fretting that 
also affect fatigue behavior but are not included within the scope of this PhD 
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Thesis. Even for the factors mentioned in this section, and therefore considered 
in this PhD Thesis, which have been briefly described, no specific values of the 
factors are given since they will not be used in this PhD Thesis. 

1.3.1.2 Effect of the mean stress 
Thus far, only pure alternating stresses have been considered. Nevertheless, 
withstanding non-null mean stresses is quite common for mechanical 
components. If the mean stress is tensile, the fatigue life of the component 
against alternating stresses will be reduced. If the mean stress is compressive 
instead, the fatigue life against alternating stresses may be generally enhanced, 
but in some cases it may be even worsened or remain equal (depending on the 
material). Figure 29 shows how the S-N curve is affected by the effect of the 
mean stresses. 

 

Figure 29. Effect of mean stress in S-N curve. 

Where 𝑁௖௢ is the estimated life of a component subjected to a mean stress of 
compression, 𝑁௧௘௡ is the estimated life of the same component subjected to a 
mean tensile stress and, 𝑁 is the estimated life of the component subjected only 
to pure alternating stresses. Stress cycles in fatigue are determined by the mean 
and alternating components as follows: 

𝜎௠ =
1

2
(𝜎௠௔௫ + 𝜎௠௜௡)

𝜎௔ =
1

2
(𝜎௠௔௫ − 𝜎௠௜௡)

 (30) 

Where 𝜎௠௔௫ is the maximum stress, 𝜎௠௜௡ is the minimum stress, 𝜎௠ is the mean 
component of the stress, and 𝜎௔ is the alternating component of the stress. The 
shape of variation between the stress peaks and valleys as well as the frequency 
have no effect on fatigue behavior below 200Hz in metals.52 The type of fatigue 
test regarding the load case is defined by the stress ratio, 𝑅: 
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𝑅 =
𝜎௠௜௡

𝜎௠௔௫
 (31) 

Figure 30 shows different cases of stress ratios 𝑅. 

 
Figure 30. Different stress cycles corresponding to different stress ratios. A, 𝑹 = −𝟏. 
B, 𝑹 = 𝟎. C, 𝟎 < 𝑹 < 𝟏. D, 𝟎 > 𝑹 > −𝟏.53 

In Figure 31, the diagram proposed by Haigh80 is shown, where the effect of 
mean stress is considered. The diagram is divided into 4 zones depending on 
the sign (positive for tension and negative for compression) of both maximum 
and minimum stresses. 𝐴 zone corresponds to positive stresses, i.e., both 
maximum and minimum stresses are tensile stresses. 𝐵 and 𝐶 zones represent 
positive maximum stress and negative minimum stress, but different signs for 
the mean value (tension in 𝐵 and compression in 𝐶). In zone 𝐷 zone, finally, 
both the maximum and minimum stresses are compressive (negative). In this 
zone no fatigue failure is expected to occur because the stress is compressive 
all the time. 

To sum up: 

𝐴 ൝

𝜎௠௔௫ > 0
𝜎௠௜௡ > 0
𝜎௠ > 0

      𝐵 ൝

𝜎௠௔௫ > 0
𝜎௠௜௡ < 0
𝜎௠ > 0

       𝐶 ൝

𝜎௠௔௫ > 0
𝜎௠௜௡ < 0
𝜎௠ < 0

       𝐷 ൝

𝜎௠௔௫ < 0
𝜎௠௜௡ < 0
𝜎௠ < 0

 (32) 
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Figure 31. Different stress ratios in the Haigh diagram. 

1.3.1.2.1  Criteria for the tensile region of the Haigh diagram 
Both the S-N chart and the Haigh diagram can be easily related as shown in 
Figure 32. As previously shown in Figure 29, the different curves in the S-N 
chart show the effect of the mean stress on fatigue life. That is, each line 
corresponds to a certain value of the mean component of the stress. In the same 
way, each curve in the Haigh diagram shows a certain number of cycles that the 
specimen or the component will last (or infinite life in the case of the fatigue 
limit). This fatigue life can be achieved using different combinations of mean 
and alternating stresses. 

In the same way the S-N curve is determined using experimental data obtained 
from pure-alternating stress fatigue tests, each iso-duration line in the Haigh 
diagram is obtained by performing fatigue tests at different stress ratios 𝑅. Once 
fatigue behavior under different combinations of alternating and mean stresses 
has been observed, the most suitable criteria is determined. These suitable 
criteria may be a straight line, a parabola or other curves. In Figure 33 and 
equations (33)-(39), the most used criteria in the Haigh diagram for the mean 
tensile region are shown, even though some other criteria may be found.53 



1. Introduction and background  39 

 

 

Figure 32. S-N curve and Haigh diagram correlated. 

 

Figure 33. Most used criteria for tensile mean stress consideration.81 

The Gerber method consists of a symmetric (ordinate-axis, alternating stress) 
parabola that considers the tensile strength 𝜎௨௧ as the static failure: 

𝜎௔

𝜎௘
+ ൬

𝜎௠

𝜎௨௧
൰

ଶ

= 1 (33) 

Goodman proposed a straight line that also considers tensile strength 𝜎௨௧. It is 
widely used (especially in the automotive industry) even though the criterion is 
quite conservative: 

𝜎௔

𝜎௘
+

𝜎௠

𝜎௨௧
= 1 (34) 
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There is a more conservative version known as the modified Goodman version 
that considers the yield strength 𝜎௬௣ and it consists of the original Goodman 
criterion combined with a line that connects the yield strength of the mean 
stress axis and the alternating stress axis. 

The Soderberg criterion considers the yield strength 𝜎௬௣ as a failure and its 
criterion is formed by a line that connects the yield strength with the fatigue 
limit. This criterion is conservative in most cases and will lead to part over-
dimensioning. 

𝜎௔

𝜎௘
+

𝜎௠

𝜎௬௣
= 1 (35) 

The Dietmann criterion is formed by a parabola like Gerber but, in this case, 
the symmetric axis is the abscissa-axis (mean stress) rather than the ordinate-
axis. 

൬
𝜎௔

𝜎௘
൰

ଶ

+
𝜎௠

𝜎௨௧
= 1 (36) 

Morrow is a widely used criterion (especially in the aeronautic industry) also 
formed by a straight line like Goodman but, in this case, considering the true 
fracture strength 𝜎௨௥. 

𝜎௔

𝜎௘
+

𝜎௠

𝜎௨௥
= 1 (37) 

Walker is a well-known criterion specially used for high resistance steels. Unlike 
the other criteria, the Walker82 equation has an adjustable fitting parameter 𝛾 
that calls for the fatigue behavior of the material to be known to calculate its 
value.83 

𝜎௘ = 𝜎௠௔௫ ൬
1 − 𝑅

2
൰

ఊ

 (38) 

SWT84 is a particular case of the Walker criterion where 𝛾 = 0.5, resulting in: 

𝜎௘ = 𝜎௠௔௫ඨ
1 − 𝑅

2
 (39) 

Finally, Smith is a more suitable criterion for brittle materials, similar to SWT: 

𝜎௔

𝜎௘
=

ቀ1 −
ఙ೘

ఙೠ೟
ቁ

ቀ1 +
ఙ೘

ఙೠ೟
ቁ
 (40) 
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As an illustrative example, Figure 34A shows the fatigue behavior of different 
steels, where it can be seen how Goodman is suitable for steels 1 and 2 (AISI 
1045) while Dietmann or Morrow are more suitable for steel 3 (S45C with 
hardening and tempering). Figure 34B shows different performances for ductile 
materials suitable for Goodman, Dietmann, and Gerber criteria (among others). 

 
 

A) B) 

Figure 34. Fatigue behaviors of different ductile materials and their most suitable 
criteria in the Haigh diagram. A, Fatigue behavior of different steels.53 B, Fatigue 
behavior of different ductile materials.85 

1.3.1.2.2  Criteria for the compressive region of the Haigh diagram 
As mentioned above, compressive mean stresses are less restrictive since they 
usually have a positive effect on fatigue behavior. In Figure 35, the criteria for 
the compressive region of the Haigh diagram are shown. The JK line 
corresponds to static failure by compression, and it is formed by connecting the 
ultimate compression strength 𝜎௨௖ with its equivalent on the pure alternating 
stress axis (vertical axis). In the same way, the yield line (EF line) is obtained by 
connecting the compressive yield strength 𝜎௬௣ with its equivalent on the pure 
alternating stress axis (vertical axis). The OJ line is determined by the 𝑅±ஶ line. 
The criterion shown in blue in Figure 35, for simplification purposes, assumes 
that the compressive mean stress does not affect fatigue life. This criterion is 
represented by a horizontal line from fatigue limit 𝜎௘ (or from 𝜎ே in the case of 
a certain finite duration). The line is extended up to the yield line, with the 
criterion continued by the yield line up to E. Other less conservative criterion 
is shown in green in Figure 35 too. It assumes that the purely compressive zone 
(D zone in Figure 31) is completely secure. In this way, the 𝐶𝐹𝐷෣ triangle and 
EFJK zone are considered secure. 
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Figure 35. Criteria for compressive mean stress. 

To conclude the analysis of the effect of mean stresses on fatigue behavior, 
Pallarés et al.86 compiled the results of different work obtaining the following 
conclusions (see Figure 36). All the fatigue results fell in between the ellipse and 
Smith criterion. The fatigue behavior of ductile materials follows a concave 
curve while brittle materials follow a convex curve. For most treated structural 
steels and non-treated aluminum, performance in the Haigh diagram is not 
symmetric; i.e., compressive mean stresses have a positive effect on fatigue 
behavior up to a mean stress value where it starts to have a negative effect. Most 
ductile steels fall above the Goodman criterion and more than half of them fall 
in between the Goodman and the Gerber criteria. Extra-ductile materials 
showed an elliptical relationship, demonstrating symmetric performance; i.e., 
tensile mean stress has the same effect as compressive mean stress. Finally, 
brittle materials follow the Smith criterion (convex curve), indicating non-
symmetric material; i.e., compressive mean stress has a positive effect on fatigue 
behavior. 

It should be mentioned that the effect of compressive mean stresses on fatigue 
behavior is not explained more deeply since the prosthetic screw always 
operates under tensile mean stresses and, therefore, it falls outside the scope of 
this PhD Thesis. 
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Figure 36. Normalized Haigh diagram showing the experimental results on 11 ferritic 
materials together with the Smith line for brittle materials and the Elliptical 
relationship for ductile materials.86 

1.3.1.3 The effect of stress concentration on fatigue life 
The existence of geometrical irregularities or discontinuities such as holes, 
grooves, or notches increases stresses significantly in the immediate vicinity of 
the discontinuity. Under variable loads, in both ductile and brittle materials the 
effect of stress concentration must be considered for to estimate fatigue life.87 

Figure 37 represents a notched component subjected to an axial load. The 
nominal stress status can be easily calculated by dividing the applied lateral load 
by the transversal section (𝜎 = 𝐹/𝐴) in both IJ and EF sections. Higher nominal 
stress may be expected in EF since lower area remains. Nevertheless, the real 
shape of the stress status along the transverse section EF will be different than 
the constant value obtained use classical formulae from the Theory of Elasticity 
(𝜎 = 𝐹/𝐴), suffering a peak stress in the stress concentration point and having 
a lower stress value than the nominal stress in points sufficiently far away from 
the stress concentration point. Hence, the peak stress can be calculated using 
the following equation: 

𝜎௣௞ = 𝑘௧ · 𝜎௡௢௠ (41) 
Where 𝜎௣௞ is the peak value of the stress, 𝜎௡௢௠ is the nominal stress, i.e. the 
value of the stress not taking account of the effect of the stress concentration 
(but considering the reduction of the area after the notch/groove), and 𝑘௧ is 
known as the notch factor. 
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Figure 37. Notched sheet subjected to axial loading. 

Under cyclic loading, the use of the peak stress 𝜎௣௞  for the calculation to 
calculate the fatigue life in the S-N curve will lead to conservative results, while 
the use of the nominal stress 𝜎௡௢௠ will lead to an overestimated life. Hence, the 
need for another factor for fatigue calculations resulted in the definition of the 
fatigue notch factor 𝑘௙, that can be calculated by using the following expression: 

𝑘௙ = 1 + 𝑞(𝑘௧ − 1) (42) 
Where 𝑞 is the notch sensitivity factor, with 𝑞 = 0 being a non-notch-sensitive 
material and 𝑞 = 1 a high notch-sensitive material. Hence, the effective stress 
used for fatigue calculation purposes  is obtained as: 

𝜎௘௙௙ = 𝑘௙ · 𝜎௡௢௠ < 𝜎௘ (43) 
To sum up, in order to obtain the value of the fatigue notch factor 𝑘௙, the notch 
factor 𝑘௧ and notch sensitivity 𝑞 must be calculated. 

1.3.1.3.1  Notch factor calculation, 𝑘௧ 
Even though there are a number of works88,89 that provide tabulated values of 
the notch factor 𝑘௧ for typical structural details, generally there will be no such 
table for the specific case under study due to complex geometry and/or the 
load case. Thus, if the value of 𝑘௧ for a specific case is to be calculated, equation 
(44) (derived from equation (41)) must be used. 

𝑘௧ =
𝜎௣௞

𝜎௡௢௠
 (44) 

Peak stress 𝜎௣௞ can be obtained by performing an FEA and obtaining the stress 
value known as ‘pseudo-stress’; that is, the maximum stress considering linear-
elastic material and thus neglecting eventual local plastic deformations. Besides 
this, the nominal stress 𝜎௡௢௠, i.e. the stress that would exist if there was no effect 
of the stress concentration but considering the section reduction (net section), 
can be calculated in some cases by using classic formulae from the Theory of 
Elasticity. Otherwise, the nominal stress may be calculated by extrapolating the 
stresses from stress status in zones nearby. Then, 𝑃ଵ and 𝑃ଶ points in Figure 38 
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are calculated representing the stress status assuming no stress concentration; 
i.e., nominal stress. This may not be very thorough unless performed according 
to a standard or with a well-known procedure.53 

 

Figure 38. Nominal stress shape extrapolation from nearby sections.53 

1.3.1.3.2  Notch sensitivity calculation, 𝑞 
Once the notch factor 𝑘௧ is known, notch sensitivity 𝑞 must be obtained in 
order to calculate 𝑘௙ according to equation (42). In the previous section, it could 
be deducted that notch sensitivity 𝑞 depends only on material, however, it also 
depends on notch geometry (stress gradient). There are several approaches by 
which to obtain notch sensitivity 𝑞. Figure 39 shows Neuber curves90 for steels, 
that relate notch radius 𝑟, material strength 𝜎௨௧ and notch sensitivity 𝑞. This 
means that notch sensitivity 𝑞 does not depend on notch factor 𝑘௧ but on notch 
radius 𝑟. Consequently, the small part in Figure 40 will have the same notch 
factor 𝑘௧ than the large one since both sizes are proportional, but notch 
sensitivity 𝑞 of each part will be different. 

 

Figure 39. Notch sensitivity 𝒒 versus notch radius 𝒓.90 
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Figure 40. Parts with the same notch factor 𝒌𝒕 but different notch sensitivity 𝒒. 

Peterson88 proposed a formula to obtain the notch sensitivity 𝑞 based on 𝑅ିଵ 
fatigue tests performed on notched specimens. 

𝑞 =
1

1 + 𝑎∗/𝑟
 (45) 

Where 𝑎∗ depends on material strength and is obtained from the chart in Figure 
41.52,55 

 

Figure 41. 𝒂∗value versus material strength.52,55 

Neuber,91 Kuhn and Hardrath92 proposed the following formula based on 
empirical results. 

𝑞 =
1

1 + ඥ𝐴/𝑟
 (46) 

Where √𝐴 is obtained from the chart in Figure 42. 
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Figure 42. √𝑨 value versus material strength.52,88 

Nevertheless, pure alternating stresses have only been considered, thus far. In 
order to take account of the effect of mean stresses, several methods may be 
used. In (47)-(49), three methods are presented, which consider the Goodman 
criterion and the positive (tensile) mean stress component.53 These expressions 
may be considered as a generalization of equation (43). 

Ductile material, mean nominal stress method→   
௞೑ఙೌ

ఙ೐
+

ఙ೘

ఙೠ೟
< 1 (47) 

Ductile material, residual stress method→   
௞೑ఙೌ

ఙ೐
+

௞೑ఙ೘

ఙೠ೟
< 1 (48) 

Brittle material→  
௞೑ఙೌ

ఙ೐
+

௞೟ఙ೘

ఙೠ೟
< 1 (49) 

For ductile materials, the mean nominal stress method is generally used. It is 
less conservative because it does not increase the mean stress. Nevertheless, its 
use is not recommended with less conservative criteria, such as Morrow or 
Dietmann, since it would lead to double non-conservativeness. For the same 
reason, using the residual stress method with Goodman leads to double 
conservativeness.  

In Figure 43 Haigh diagrams for both unnotched and notched specimens made 
out of different materials can be seen, showing different behavior depending 
on the material (aluminum in Figure 43A and ductile steel in Figure 43B). 
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A) B) 

Figure 43. High diagrams of different materials (notched and unnotched). A, 
aluminum. B, ductile steel.63 

Finally, there are other criteria such as the one proposed by Fatemi in Figure 44 
using a line parallel to Morrow’s criterion starting from a D point determined 
by material properties (𝑆௖௔௧).52 

 

Figure 44. Approach proposed by Fatemi for considering mean stresses with stress 
concentration.52 

So far, only infinite life has been considered for the calculation of fatigue 
behavior of parts with stress concentrations. For finite life, the notch factor 𝑘௙ 
varies in relation to cycles. Therefore, it will be necessary to calculate this value 
experimentally by performing fatigue tests on notched and unnotched 
specimens. Then, to perform a fatigue calculation to estimate the cycles that a 
part will withstand, the following steps shall be followed: 

1. First, the expected number of cycles must be assumed.  
2. Then, the corresponding notch factor 𝑘௙ must be calculated. 
3. Next, the number of cycles must be calculated by entering the S-N curve. 
4. Finally, if the number of cycles obtained in the result does not coincide 

with the assumed one, this calculation shall be repeated iteratively using 
as an assumption the number of cycles of the last result. The problem 
will be solved when both number of cycles match. 
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1.3.1.3.3  The Theory of Critical Distances 
As mentioned, when there is stress concentration, neither the peak stress nor 
the nominal stress can be used for fatigue calculations. The previous approach 
consisted of calculating a fatigue notch factor 𝑘௙ so that the nominal stress 𝜎௡௢௠ 
is multiplied by it, obtaining an effective stress 𝜎௘௙௙ (see equation (43)) for 
fatigue calculations for the pure alternating load case. By contrast, the Theory 
of Critical Distances (TCD) focuses on directly obtaining an effective stress 
𝜎௘௙௙ to be used for fatigue calculations without the need to calculate either the 
fatigue notch factor 𝑘௙ or the nominal stress 𝜎௡௢௠.93,94 This effective stress 𝜎௘௙௙ 
is obtained at a certain distance (critical distance) from the notch root and its 
value is equivalent to the effective stress obtained by the previous approach 
(Figure 45). Starting with the easiest method, the Point Method uses the stress 
value of a point located at a certain distance, known as the critical distance 𝑑௉ெ 
(Figure 46A) and compares it with the fatigue limit (equation (50)).  

Peterson→ 𝜎௘௙௙ = 𝜎(𝑑௉ெ) < 𝜎௘ோ (50) 
Where the critical distance 𝑑௉ெ, in the case of infinite life, depends on the stress 
ratio 𝑅 and the material, and therefore so does the effective stress 𝜎௘௙௙. It must 
be pointed out that the effect of the mean stress is not neglected since the 
fatigue limit used in equation (50) 𝜎௘ோ must be the one at the same stress ratio 
𝑅 as the critical section of the part under study. The critical distance (𝑑௉ெ) can 
be obtained by using equation (51). 

𝐿ோ =
1

𝜋
൬

Δ𝐾ூ௧௛ோ

Δσୣୖ
൰

ଶ

 
(51) 

Where Δ𝐾ூ௧௛ோ is the threshold stress intensity factor for a certain stress ratio 𝑅 
and Δσୣୖ is the fatigue limit range at the same stress ratio 𝑅. In the case of the 
Point Method, the critical distance will be 𝐿ோ/2. 

Once the critical distance 𝑑௉ெ is calculated, the value of the effective stress 𝜎௘௙௙ 
can be easily obtained at this distance by performing a linear elastic FEA of the 
part under study and considering only the alternating component of the stress. 

In addition to the Point Method, there are other methods based on the TCD 
such as the Line Method, that uses the elastic stress average through a line, the 
Area Method, that uses the stress average through a half circle centered in the 
notch root, and the Volume Method, that uses a spherical volume also centered 
in the notch root. Figure 46 shows each method and their corresponding critical 
distance using equation (51). 
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Figure 45. Point method applied on a notched specimen. 

 
𝑑௉ெ = 𝐿ோ/2 𝑑௅ெ = 2𝐿ோ 𝑑஺ெ = 𝐿ோ 𝑑௏ெ = 1.54𝐿ோ 

A) B) C) D) 

Figure 46. Methods based on the TCD A, Point Method. B, Line Method. C, Area 
Method. D, Volume Method. 

Even though, thus far, the TCD has been developed for infinite life (see 
equation (50)), Susmel94 suggested its use also for finite life. Hence, the critical 
distance would follow a straight line (in log-log scale): 

𝐿(𝑁) = 𝐴 · 𝑁஻ (52) 
With A and B being material parameters. These parameters are said to also be 
dependent of the stress ratio 𝑅. Nevertheless, Susmel94 suggests considering 
them only as material properties (regardless of 𝑅) so that the values of A and B 
can be obtained from 𝑅ିଵ fatigue tests whatever the load case of the mechanical 
part is. The finite life estimation may be solved iteratively.  

1. First, a certain fatigue life (number of cycles N) is assumed. 
2. The effective stress 𝜎௘௙௙ is obtained at the critical distance determined by 

𝐿(𝑁) = 𝐴 · 𝑁஻. 
3. The number of cycles N are obtained by entering the S-N curve with the 

effective stress 𝜎௘௙௙. 
4. Finally, the number of cycles obtained in the third step is compared with 

the number of cycles assumed in the first step. If both number of cycles 
match, the iterative process can be stopped. Otherwise, it must continue 
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from the first step assuming a number of cycles equal to the estimation 
obtained in the third step. 

1.3.1.3.4  FKM Method 
Another way of considering the stress concentration effect is by using the 
methodology followed in FKM Guideline69 on a section where the fatigue life 
is assessed by considering local stresses. The methodology that is valid for steel, 
cast steel, cast iron, aluminum alloys and cast aluminum alloys, uses FEA 
assuming fully reversed loading. The local stress is recorded at the critical point 
(Figure 47) as well as at a neighboring point (∆𝑠) so that the normalized stress 
gradient 𝐺ఙ

തതത is obtained as shown in equation (53). 

 

Figure 47. Example of a meshed part (nodes numbered) and the critical distance ∆𝒔 
considered.69 

𝐺ఙ
തതത =

1

𝜎ଵ
·

∆𝜎௔

∆𝑠
 (53) 

Where 𝜎ଵ is the local or peak stress (maximum principal stress) at the critical 
point, ∆𝑠 is the distance at which the second stress is recorded and ∆𝜎௔ is the 
stress gradient. Then, the 𝑘௧/𝑘௙ ratio (that depends on both the normalized 
stress gradient 𝐺ఙ

തതത and the tensile strength 𝜎௨௧ is obtained from the chart in 
Figure 48 and used to modify the fatigue limit of the unnotched specimens. 

𝜎௘௙௙ = 𝜎௣௞ < 𝜎௘ ·
𝑘௧

𝑘௙
 (54) 

If the component under study is subjected to mean stresses, the procedure 
remains the same; that is, the stress gradient 𝐺ఙ

തതത and the 𝑘௧/𝑘௙ ratio are also 
obtained from a fully reversed FEA. In order to take account of the effect of 
mean stresses, the same methods from equations (47)-(49) are used. In this case, 
𝑘௙ shall be found from Figure 48. 
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Figure 48. 𝒌𝒕/𝒌𝒇 versus the normailzed stress gradient 𝝌 and material properties.69 

Finally, in the case of finite life, FKM assumes a slope −1/𝑘, with 𝑘 being a 
parameter that depends on the material and is provided by the guideline. 

It must be pointed out that dividing the peak stress 𝜎௣௞ by the 𝑘௧/𝑘௙ ratio is 
equivalent to multiplying the nominal stress 𝜎௡௢௠ by the fatigue notch factor 𝑘௙. 
In other words, the effective stress obtained for fatigue calculations will be the 
same regardless of the three approaches used. 

Everything mentioned so far corresponds to uniaxial fatigue, which will be used 
in Chapter 3 to analyze the mechanical behavior of the prosthetic screw. 

1.3.2 Multiaxial fatigue analysis 

In previous section, uniaxial stress was only considered, as is the case with the 
prosthetic screw. Nevertheless, crack initiation points can instead be subjected 
to multiaxial (biaxial or more rarely, triaxial) stress conditions. This is the case 
with dental implants, that cannot be assumed to operate uniaxially and, 
therefore, a multiaxial fatigue approach is needed. 

Multiaxial fatigue analysis is more difficult to perform since, generally, there are 
6 stress components (equation (55)) that can vary independently, which 
complicates experimental testing, results interpretation, and the development 
of methodologies for fatigue life estimation compared to uniaxial fatigue: 
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[𝜎(𝑡)] = ቎

𝜎௫௫(𝑡) 𝜏௫௬(𝑡) 𝜏௫௭(𝑡)

𝜏௫௬(𝑡) 𝜎௬௬(𝑡) 𝜏௬௭(𝑡)

𝜏௫௭(𝑡) 𝜏௬௭(𝑡) 𝜎௭௭(𝑡)

቏ (55) 

1.3.2.1 Experimental testing 
Multiaxial fatigue testing is more challenging than uniaxial fatigue testing (where 
an axial load or a bending moment is enough) since more complex and 
expensive fatigue test benches are needed to introduce controlled multiaxial 
stresses. The most typical multiaxial tests are the ones performed on cruciform 
and cylindrical specimens.  

Cruciform specimens are subjected to biaxial force by means of two linear 
actuators (Figure 49A). The problem with stress concentration in the center 
may be avoided by a large fillet radius and applying an hourglass-like thickness 
reduction (Figure 49B). As a drawback, the stress status must be calculated 
using an FEA since, for example, a force applied in one direction does not 
generate a uniaxial stress status on the specimen. 

 

 

A) B) 

Figure 49. Multiaxial fatigue testing of cruciform specimens. A, Biaxial force fatigue 
test bench.95 B, Specimen with fillets and thickness reduction.96 

Cylindrical specimens can be subjected by axial-torsion loading by a typical 
direct stress fatigue test bench equipped with a rotational actuator (Figure 50A 
and B) or by a torsion-bending gripping system (see Figure 50C and D). 
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(A) 

 

(B) 

 

(C) 

 

(D) 

Figure 50. A, Axal-torsion fatigue test bench.97 B, Specimen for axial-torsion test.98 C, 
Torsion-bending fatigue test bench.99 D, Specimen for torsion-bending test.99 

Another way to apply multiaxial stresses is by subjecting tubular specimens to 
axial loading (or bending moment) and internal or external pressures (Figure 
51). 

 

Figure 51. Tubular specimen for multiaxial fatigue (axial loading and internal 
pressure cycling).53 

1.3.2.2 The effect of mean shear stress 
The effect of the mean shear stress component is controversial. According to 
some authors, the mean shear stress does not affect the fatigue limit when the 
maximum shear stress is lower than the yield strength.100–102 However, there are 
also numerous studies documenting a non-negligible effect of the mean shear 
stress,103,104 even though, some other studies affirm that the effect of mean 
torsional stress is always lower than that of mean axial stress. There are also 
authors that state that mean shear stress does not affect standardized specimens 
but does affect components due to some factors such as surface finish, stress 
concentrations, among others.42 More recently, Pallarés et al. compiled the 
results from other studies concluding that the effect of the shear mean stress is 
lower than the axial mean stress for ductile materials, with the effect of both 
axial and shear mean stresses being stronger for brittle materials such as cast 
irons.86 Consequently, the most advanced multiaxial fatigue methods study 
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mean shear stress separately, so that some of them consider it in the calculation 
and others do not. 

1.3.2.3  Stress proportionality 
A multiaxial stress status is said to be proportional when all the components of 
the stress tensor have proportional relationships with each other, and these 
proportions remain invariant over time. This happens, for example, when all 
stresses are caused by the application of a single force (a rather common case). 
As a consequence, the principal stresses (𝜎ଵ, 𝜎ଶ, 𝜎ଷ) will also vary proportionally, 
any equivalent stresses (e.g., von mises) will also be proportional and, finally, 
the principal directions will remain fixed. 

 
             A)                      B) 

Figure 52. Multiaxial stress cycles. A) Proportional, B) Non-proportional. 

In addition to this, cycles can be defined as constant amplitude cycles if they 
vary only between a maximum and a minimum (in other words, they can be 
defined by a mean and alternating stress components). Otherwise, cycles should 
be defined as variable amplitude cycles. 

 
            A)                  B) 

Figure 53. Proportional multiaxial stress cycles. A) Constant amplitude, B) Variable 
amplitude. 

1.3.2.4 Multiaxial fatigue methods 

1.3.2.4.1 Classic method 
The classic method establishes an equivalence between a multiaxial stress status 
and a uniaxial status by means of static failure theories such as Von Mises for 
ductile materials. In the case of a proportional multiaxial stress status with 
constant amplitude (𝜎(𝑡)), separating the mean components (𝜎௠భ

, 𝜎௠మ
, 𝜎௠య

) 
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from the alternating ones (𝜎௔భ
, 𝜎௔మ

, 𝜎௔య
) is proposed, so that the mean (𝜎௏ெ೘

) 
and alternating (𝜎௏ெೌ

) Von Mises uniaxial equivalent stresses are obtained. 
Thus, the Haigh diagram may be easily used as if it was a simple uniaxial case 
(𝜎௏ெ೘

, 𝜎௏ெೌ
), as explained previously. 

𝜎௏ெ೘
= ඨ
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· ቂ൫𝜎ଵ೘

− 𝜎ଶ೘
൯
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+ ൫𝜎ଶ೘
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൯

ଶ
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൯

ଶ
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𝜎௏ெೌ
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Where 𝜎௏ெ೘
 may be positive (if 𝜎ଵ೘

+ 𝜎ଶ೘
+ 𝜎ଷ೘

> 0) or negative (if 𝜎ଵ೘
+ 𝜎ଶ೘

+

𝜎ଷ೘
< 0).53 

By contrast, for a variable amplitude stress status, the analysis becomes more 
complicated, and it is necessary to use cycle counting methods (such as 
Rainflow)105 and cumulative damage rules (such as Miner)106. However, these 
procedures will not be explained in depth since they will not be used in this 
PhD Thesis. 

To conclude, it should be mentioned that this method does not consider mean 
shear stress separately. In addition, it should be noted that this method uses 
static failure theories for fatigue, which, in theory, does not seem reasonable. In 
practice, however, the method has been found to work reasonably well for 
fatigue calculations, since a lot of components have been designed by means of 
this method, showing proper performance. 

1.3.2.4.2  Invariant-based methods 
Invariant-based methods use an equivalent stress based on stress tensor 
invariants. They are suitable for a proportional stress status of constant 
amplitude, and, unlike the classical method (Von Mises), they separately study 
the effect of mean shear stresses and are suitable for quasi-hydrostatic stress 
status. Generally, they are simple to apply, but they include material-dependent 
parameters. These parameters are usually estimated by means of various simple 
failure tests such as torsional, pulsating or alternating stress tests. The most 
common global approach methods are Sines and Crossland methods. 

The Sines method uses the amplitude of the octahedral shear stress and the 
mean value of the hydrostatic stress at the point under study. This criterion, 
therefore, considers that the mean shear stress can be neglected and that only 
the mean component of the normal stresses has influence. Since it is based on 
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the octahedral stress, this method, to some extent, takes over the Von Mises 
criterion, but in contrast to the von Mises criterion, quasi-hydrostatic stress 
statuses are now detected, due to the effect of the corresponding hydrostatic 
stress. 

The mean hydrostatic stress is defined as: 

𝜎௛೘
(𝑡) =

𝜎ଵ೘
(𝑡) + 𝜎ଶ೘

(𝑡) + 𝜎ଷ೘
(𝑡)

3
 (58) 

While the alternating octahedral stress is defined as: 

𝜏௢௖௧ೌ
(𝑡) =

1

3
൤ቀ𝜎ଵೌ

(𝑡) − 𝜎ଶೌ
(𝑡)ቁ

ଶ
+ ቀ𝜎ଵೌ

(𝑡) − 𝜎ଷೌ
(𝑡)ቁ

ଶ
+ ቀ𝜎ଶೌ

(𝑡) − 𝜎ଷೌ
(𝑡)ቁ

ଶ
൨

଴.ହ

 (59) 

As mentioned above, this method is only useful for constant amplitude 
proportional stress status, where the mean and alternating components can be 
defined separately. Thus, the equivalent Sines alternating stress is expressed as 
follows and proposes that the specimen will survive if it is verified that: 

𝜎௘௤ೄ
= 𝜏௢௖௧ೌ

+ 𝛼ௌ · 𝜎௛௠
< 𝛽ௌ (60) 

Where 𝛼ௌ and 𝛽ௌ are material-dependent parameters. Since octahedral shear 
stress and equivalent Von Mises stress are very similar (they differ only in the 
value that multiplies the square root as shown in equation (61)) the Sines 
criterion is usually also expressed as a function of the Von Mises stress, as 
shown in equation (62). 

𝜎௏ெ =
3

√2
𝜏௢௖௧ (61) 

𝜎௘௤ೄ
=

√2

3
𝜎௘௤ೌ

 + 𝛼ௌ · 𝜎௛௠
> 𝛽ௌ 

(62) 

The Sines criterion is also frequently expressed by using the square root of the 
second invariant of the stress tensor, obtaining the expression shown in 
equation (63). 

𝜎௘௤ೄ
= ට𝐽ଶೌ

+ 𝛼ௌ
ᇱ · 𝜎௛௠

> 𝛽ௌ
ᇱ  (63) 

Being: 

ඥ𝐽ଶ(𝑡) =
1

√2
ቂ൫𝜎ଵ(𝑡) − 𝜎ଶ(𝑡)൯

ଶ
+ ൫𝜎ଵ(𝑡) − 𝜎ଷ(𝑡)൯

ଶ
+ ൫𝜎ଶ(𝑡) − 𝜎ଷ(𝑡)൯

ଶ
ቃ

଴.ହ

 
(64) 

Where 𝛼ௌ and 𝛽ௌ parameters are obtained from 2 experimental tests performed 
on specimens. 𝛽ௌ is obtained either from an alternating rotating bending test or 
from an alternating torsional test while 𝛼ௌ may be obtained either from a 
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pulsating axial test or from a static tensile test. Table 3 shows the values of 𝛼ௌ 
and 𝛽ௌ depending on the equation used for the Sines method. 

Table 3. Values of 𝜶𝑺 and 𝜷𝑺 depending on the equation used for the Sines method.53 

Octahedral stresses 
(equation (60)) 

Von Mises stresses 
(equation (62)) 

Second invariant square 
root (equation (63)) 

𝛼ௌ = √6 ·
𝜏௘

𝜎ோబ

− √2 𝛼ௌ
ெ =

3

√2
· 𝛼ௌ 𝛼ௌ

ᇱ =
3

√6
· 𝛼ௌ 

𝛽ௌ = ඨ
2

3
· 𝜏௘ 

𝛽ௌ
ெ =

3

√2
· 𝛽ௌ 𝛽ௌ

ᇱ =
3

√6
· 𝛽ௌ 

The Crossland method procedure is similar to the Sines one (with the only 
difference being that it uses the maximum hydrostatic stress instead of the mean 
one) and it can also be expressed in the 3 aforementioned forms: octahedral 
stresses, second stress invariant square root, and Von Mises stress. 

The octahedral stress-form may be expressed as: 

𝜎௘௤಴
= 𝜏௢௖௧ೌ

+ 𝛼஼ · 𝜎௛೘ೌೣ
= 𝜏௢௖௧ೌ

+ 𝛼஼ · ൫𝜎௛೘
+ 𝜎௛ೌ

൯ > 𝛽஼ (65) 
The square root of the second stress tensor invariant-form is expressed as 
follows: 

𝜎௘௤಴
= ට𝐽ଶೌ

+ 𝛼஼
ᇱ · 𝜎௛೘ೌೣ

= ට𝐽ଶೌ
+ 𝛼஼

ᇱ · ൫𝜎௛೘
+ 𝜎௛ೌ

൯ > 𝛽஼
ᇱ  (66) 

Finally, the Von Mises stress-form is expressed as: 

𝜎௘௤಴
= 𝜎௘௤ೌ

+ 𝛼஼
ெ · 𝜎௛೘ೌೣ

= 𝜎௘௤ೌ
+ 𝛼஼

ெ · ൫𝜎௛೘
+ 𝜎௛ೌ

൯ > 𝛽஼
ெ (67) 

Where 𝛼஼ and 𝛽஼ parameters are different from the ones used for the Sines 
method (𝛼ௌ and 𝛽ௌ). Unlike for the Sines criterion, 𝛼஼ and 𝛽஼ parameters are 
different depending on the tests performed to determine them. The following 
values are the ones for the expression in equations (65) and (66): 

𝛼஼
ᇱ = 3

𝜏௘

𝜎௘
− √3 (68) 

𝛽஼
ᇱ = 𝜏௘ (69) 

1.3.2.4.3  The critical plane methods 
The classical and invariant-based methods explained in previous sections are 
based on principal stresses and they do not consider possible variations of 
principal directions along time. Critical plane methods, by contrast, are based 
on the hypothesis that fatigue behavior of a certain point is defined by the most 
affected plane of that point (critical plane). Hence, possible variations of 
principal directions are considered in these methods. The damage is usually 



1. Introduction and background  59 

 

calculated as a linear combination of normal and shear stresses on the critical 
plane, establishing whether that stress status will lead to a fatigue failure at this 
point. 

Since these methods study the stress status on a certain plane, the first step 
consists of determining the stress components on a certain plane Π determined 
by its normal vector {𝑛} as shown in Figure 54 and determined as: 

{𝜎(𝑡)} = [𝜎(𝑡)]{𝑛} (70) 
While the vectors of the normal and shear components are: 

{𝜎(𝑛, 𝑡)} = ({𝑛}்[𝜎(𝑡)]){𝑛} (71) 
{𝜏(𝑛, 𝑡)} = {𝜎(𝑡)} − {𝜎(𝑛, 𝑡)} (72) 

The modules of the normal and shear components are defined by: 

𝜎(𝑛, 𝑡) = {𝑛}்[𝜎(𝑡)] (73) 
𝜏௨(𝑛, 𝑡) = {𝜎(𝑡)}்{𝑢} (74) 
𝜏௩(𝑛, 𝑡) = {𝜎(𝑡)}்{𝑣} (75) 

 

Figure 54. Stresses at a point 𝑷 according to plane 𝜫.53 

Over time, the stress vector of plane Π, {𝜎(𝑡)}, will trace a trajectory Ψ௡ such as 
the one marked with a thick line in Figure 55. Accordingly, a multiaxial stress 
cycle is defined by a closed trajectory Ψ௡, where the period 𝑇 is the time it takes 
to complete the cycle. For any moment, the stress vector {𝜎(𝑡)} can be 
decomposed into a normal stress contained on the n-axis {𝜎(𝑛, 𝑡)} and a shear 
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stress contained on the plane itself, whose components on two arbitrary axes 𝑢 
and 𝑣 will be {𝜏௨(𝑛, 𝑡)} and {𝜏௩(𝑛, 𝑡)} respectively. 

 

Figure 55. Normal and shear stress components for a plane 𝜫.53 

If, during this multiaxial cycle (or closed trajectory Ψ௡), there is only one 
maximum and minimum of the 3 components {𝜎(𝑛, 𝑡)}, {𝜏௨(𝑛, 𝑡)}, and {𝜏௩(𝑛, 𝑡)}, 
the definition of multiaxial cycle and fatigue cycle will match and, therefore, it 
is possible to work with the mean and alternating components of the stress. If, 
by contrast, there is more than one maximum or minimum in any of the 3 
components, the definition of the multiaxial cycle and fatigue cycle will not 
match, and the problem must be treated from a cumulative damage approach 
since average and alternating stress components cannot be defined. This 
approach will not be explained in this section since it falls outside the scope of 
this PhD Thesis. 

Therefore, in cases where multiaxial cycle and fatigue cycle match, the mean 
and the alternate of the normal component of the in-plane stress is defined as: 

𝜎௡೘
=

1

2
(𝜎௡೘ೌೣ

+ 𝜎௡೘೔೙
)

𝜎௡ೌ
=

1

2
(𝜎௡೘ೌೣ

− 𝜎௡೘೔೙
)

 (76) 

As the normal stress always maintains the same direction, defined by the vector 
{𝑛}, the definition of its mean and alternating components is straightforward, 
using the same expressions as for the uniaxial case (equation (30)). However, 
calculating the mean and alternating components of the shear stress is more 
complex, since the shear stress does not maintain a constant direction over time, 
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but rather traces a trajectory Ψஈ, which is the projection of Ψ௡ onto plane 𝛱 (see 
Figure 55). Therefore, the definition of the mean and alternating shear stress is 
performed using methods such as the Minimum Circumscribed Circumference 
(MCC) method, the Minimum Circumscribed Ellipse (MCE) method, the 
maximum variance method, the longest chord method, etc.94 

The MCC method uses the circumference of the minimum radius 
circumscribed to the trajectory Ψஈ. The mean component of the shear stress 𝜏௠ 
is defined as the modulus of the vector that joins points P and Q (Figure 56) 
while the alternating component 𝜏௔ is defined by the value of the circumference 
radius.94 The MCE method does the same with an ellipse instead of a 
circumference, with the mean components of the shear stress 𝜏௠ again defined 
by the modulus of the vector that joins points P and Q while the alternating 
component 𝜏௔ is defined by the square root of the sum of the squares of semi-
axes (the hypotenuse of the triangle whose sides are the semi-axes of the ellipse). 

 

 

 
A) B) 

Figure 56. Mean and alternating components of shear stress calculations. A) 
Minimum Circumscribed Circumference method (MCC), B) Minimum 
Circumscribed Ellipse method (MCE).53 

Once known how to calculate the mean and alternating components of normal 
and shear stresses, the critical plane methods are based on calculating these 
components on various planes, finding the most unfavorable plane (critical 
plane) and calculating the damage on that plane with a damage function. This 
damage function uses an equivalent stress function of the mean and alternating 
components of the normal and shear stresses. Critical plane methods can be 
basically divided into two types, depending on whether or not they use the same 
function to find the critical plane and to calculate damage. On the one hand, 
Maximum Shear Stress Range (MSSR) methods identify the critical plane as the 
one with the maximum alternating shear stress and calculate the damage 
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function on that plane. On the other hand, Maximum Damage (MD) methods 
identify the critical plane with the damage function itself by searching for the 
plane for which the damage function is at a maximum. 

The steps to follow, whichever critical plane method is selected, are: 

1. Obtain the stress status 𝜎(𝑡) at the critical points of the part 
2. Choose p planes for each point 
3. Calculate the mean and alternating components of the normal and shear 

stresses (𝜎௠, 𝜎௔ , 𝜏௠, 𝜏௔) 
4. Find the critical plane and calculate the damage 
5. Calculation of fatigue behavior (finite or infinite life) of the point and plane 

with the most damage 

There are many critical plane methods, each with its own damage function.107 
In this PhD Thesis, two methods will be used, the Findley and Dang Van 
methods, which are explained below. 

The Findley method (MD) is one of the most cited in literature and identifies 
the critical plane as the one that meets: 

𝑚𝑎𝑥௡ୀଵ
௣

(𝜏௔ + 𝛼(𝜎௠ + 𝜎௔)) (77) 
It uses the following damage function: 

𝜏௔೐೜ୀ𝜏௔ + 𝛼(𝜎௠ + 𝜎௔) < 𝛽 (78) 
The parameters are obtained from the cases of alternating axial stress and 
alternating torsion tests:53 

𝛼 =
2 −

ఙషభ

ఛషభ

2ට
ఙషభ

ఛషభ
− 1

 (79) 

𝛽 =
𝜎ିଵ

2ට
ఙషభ

ఛషభ
− 1

 (80) 

 

This method will only be valid if ఛషభ

ఙభ
> 0.5. 

The Dang Van method (MD) is based on the study of stresses at the 
microscopic level of crystals, relating microscopic stresses to macroscopic 
stresses by means of the Lin-Taylor hypothesis.108,109 It is usually used directly 
with macroscopic stresses, although in theory one should transform the 
macroscopic stresses into their microscopic equivalents and use the method 
with the latter. Unlike previous methods, Dang Van does not rely on calculating 
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the mean and alternating components of normal and shear stresses but 
evaluates the stress status at each moment to find the critical plane and calculate 
the damage, so that it can be used for cases of cumulative damage in infinite life 
calculations. The cost of this method is an order of magnitude higher than the 
previous one, since as well as studying several critical points with their various 
critical planes, it also studies them for several moments. The critical plane in 
the Dang Van method is identified as: 

𝑚𝑎𝑥௡ୀଵ
௣ (𝜏௔(𝑡) + 𝛼 · 𝜎௛(𝑡)) (81) 

Being, evidently, the damage function: 

𝜏௔೐೜
= 𝜏௔(𝑡) + 𝛼 · 𝜎௛(𝑡) < 𝛽 (82) 

Where: 

𝛼 = 3 ൬
𝜏ିଵ

𝜎ିଵ
− 0.5൰ (83) 

𝛽 = 𝜏ିଵ (84) 
In this method, the alternating components of the shear stress 𝜏௔(𝑡) is calculated 
for each moment 𝑡 (see Figure 56) by means of MCC or MCE methods as the 
distance that joins the center of the circumference or the ellipse and the point 
of the trajectory at moment 𝑡. That is that 𝜏௔(𝑡) will always have a positive value 
while 𝜎௛(𝑡) may be either positive or negative. 

The methods explained so far are useful, as they have been explained, to 
determine whether or not infinite life will exist. For finite life, Socie proposes 
using the equivalent alternating stress calculated with any of the multiaxial 
fatigue methods presented and, with that, enter the S-N curve to estimate the 
fatigue life. In particular, Socie proposes using the equivalent alternating shear 
stress 𝜏௔೐೜

 which is calculated by using the Findley damage function (see 

equation (78)) and entering the S-N curve corresponding to the alternating 
torsion test.110 

Regarding stress concentrations, Susmel proposes to use the TCD (Point 
Method), hence, using the alternating equivalent stress at an 𝐿/2 distance from 
the notch root to calculate fatigue life. Note that, according to Susmel, the 
critical distance depends on the number of cycles (see equation (52)). Hence, 
this problem shall be used by iteration as explained in section 1.3.1.3.3.94 

The methods explained throughout this section will be used for fatigue analysis 
of the dental implant that will be discussed in Chapter 5. 
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1.4  Screw loosening analysis 

As seen in section 1.2, when a screwed joint is preloaded, the screw is tensioned 
while the elements to be joined are compressed, so the system stores energy. 
As long as the friction of the screw head plus the friction of the threads can 
maintain this energy, the preload will not be lost. 

The loosening torque-preload relationship (16), shows the value of the 
loosening torque 𝑇௅ required to loosen the screw. However, this equation does 
not consider the effect of external actions (beyond the untightening torque) on 
the screw preload. This is a limitation, since it is known that external static or, 
especially, dynamic loads can alter this equilibrium, leading to loosening of the 
screw.3,111 In effect, an external load may overcome the friction forces in the 
screw thread and head, causing slippage and, therefore, loss of preload, i.e., 
screw loosening. Therefore, other theories or approaches that include the effect 
of an external action (apart from the tightening or untightening torque) are 
needed. 

Junker112 developed the first machine to test the ability of screws to resist 
loosening under cyclic lateral loading. This machine became very popular and 
was widely used in research work.113–116 The test consists of an eccentric cam 
that transforms the rotating movement provided by an electric motor into a 
linear alternating transverse displacement of one of the two plates that the 
screwed joint is connecting. The other plate as well as the nut (or female thread) 
is fixed. As can be seen in Figure 57, there are rollers between the movable plate 
and the fixed plate. Due to the nature of the machine, the test is controlled by 
an imposed movement, rather than force, even though the force is measured 
by load cells. As a consequence of the transverse alternating displacements of 
the upper plate, the screw may rotate and lose preload. 

 

Figure 57. Junker test machine.3 
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In this sense, Junker112 mentions that transverse dynamic loads cause greater 
loosening than axial loads, since they produce an oscillating movement between 
threads and among joined elements, which favors relative movement, while 
axial dynamic loads produce a much smaller and less critical relative movement. 
Figure 58 shows the sliding process between the screw and the fasteners under 
this transverse loading. 

 

Figure 58. Transverse relative displacement among the elements of a screwed joint 
that may cause self-loosening.3 

There are many theories that study the screw loosening phenomenon, and they 
all agree that a screwed joint subjected to dynamic loads does not lose all its 
preload immediately, but gradually over the external load cycles. However, 
although this phenomenon has been extensively studied, today there are still 
various theories that attempt to predict this gradual loss of preload due to the 
great complexity and dispersion of the phenomenon itself. 

According to Junker,112 if there is relative movement between the threads and 
on the joined element contact faces due to an external load, the screwed joint 
will lose part of its preload because the external load together with the normal 
force of the threads that favor loosening exceeds the frictional forces that 
maintain the screw preload. Nichols et al.117 proposed an approach for detecting 
non-linearities, amongst them loosening of bolted structures. Sakai118 proposed 
a theoretical model that considers the slippage between screw contact surfaces. 
Haviland119 stated that loosening takes place due to the ratcheting action of the 
nut, even though no mathematical model or experimental data were provided 
to support this theory. Yamamoto et al.120 assumed screw loosening to be the 
result of the accumulation and the release of elastic energy due to torsional 
screw deformation. In their FE study, Tanaka et al.121 adopted the same 
loosening process as Yamamoto et al.120 Vinogradov et al.122 presented a 



66  Mikel Armentia 

 

dynamic model that simulates the self-loosening of screwed joints under very 
high frequencies, skipping the operation range of most screwed joints. Zadoks 
et al.123,124 also presented a dynamic model that simulates the self-loosening of 
the screw, but, in this case, in a tapped hole. Finally, Nassar et al.125,126 proposed 
an experimentally validated mathematical model and experimental procedure to 
study the threaded fastener loosening phenomena under cyclic transverse loads. 
They used a linear model that resulted in a linear correlation between the clamp 
load loss and the number of cycles. Nevertheless, subsequently Nassar et al. 
developed a more accurate nonlinear model that is based on the relative slippage 
between friction surfaces. In these studies, the elastic beam theory is applied to 
the bolt bending under transverse load with certain hypotheses, such as uniform 
or linear varying contact pressure distributions under the bolt head, under the 
nut and in the threads. Fort et al.127 found some limitations in these 
mathematical models such as the difficulty to analytically obtain the bending 
stiffness under the bolt head and nut, and further developed a model that 
includes the effect of plate thickness on self-loosening. 

In any case, both Nassar et al.125,126 and Fort et al.127 aim to calculate the value 
of external force and moment needed in both the head and the threads of the 
screw for friction to be overcome, and therefore to initiate the screw loosening 
process. The differences between their models lie in the way they deal with the 
deformation of the screw and in how they model the process of progressive 
preload loss. In any case, this PhD Thesis is going to be based precisely on the 
common points; that is, on the analysis of the external forces acting to 
overcome the friction on the screw head and threads, since what is sought is to 
avoid the conditions that initiate the loosening process, not to calculate the 
loosening speed once the phenomenon has already started. The following 
section explains this previous approach on which this PhD Thesis is based, as 
it will be later explained in Chapter 7 where the self-loosening phenomenon of 
the prosthetic screw is analyzed. 

As mentioned, the loosening torque-preload relationship shown in equation 
(16) does not consider the effect of external loads affecting the screwed joint 
other than the loosening torque itself. In this equation 𝑇௅ is the external 
loosening torque that must be applied in order to overcome the friction torques 
in the screw head and thread contact surfaces (first and second terms in 
equation (16), respectively), while the pitch torque (third term in equation (16)) 
favors loosening. In the absence of external loading, the friction torques will be 
larger than the pitch torque, so 𝑇௅ in equation (16) will be greater than 0, 
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indicating that a loosening torque will be needed to loosen the screw, whereby, 
under this condition no self-loosening will take place. 

As mentioned, Nassar et al.125,126 included the effect of transverse loads in the 
loosening torque of screwed joints. An external transverse load 𝐹௧  acting on the 
screw will help to overcome the friction forces, thus reducing the value of 𝑇௅ 
needed to loosen the screw. Consequently, for a given critical value of 𝐹௧, 𝑇௅ 
may become null and, therefore, the screw will loosen without the need for an 
external loosening torque, i.e., the screw will self-loosen. This model will next 
be explained in detail. 

1.4.1 Analysis of the screw head contact 

Figure 59 shows the screw head seen from below (from the shank). The torque 
𝑇௛ (acting in the direction of rotation of the screw loosening) is the torque 
required to overcome the friction of the screw head when a transverse load 𝐹௧೓

 
is acting. This torque produces a differential force 𝑑𝐹்೓

on a contact area 
differential. Additionally, the transverse force 𝐹௧೓

, produces a differential force 
𝑑𝐹ி೟೓

 on the same contact area differential. These forces are opposed by a 

frictional differential force 𝑑𝐹௙೓
= 𝜇𝑝 · 𝑑𝐴. For the screw to loosen in this 

contact zone of the screw head, the entire contact surface must slide. This 
condition implies that the surface must rotate with respect to point 𝑐௛  in Figure 
59, which is at a distance of 𝑟௖೓

 from the screw axis. 

 
Figure 59. Force balance on the contact surface of the screw head (seen from below). 
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Angle 𝛾 is defined by the angle formed by the 𝚥 axis and the center of the 
differential area under study review in Figure 59, being: 

𝑐𝑜𝑠𝛾 =
𝑟௖೓

+ 𝑟𝑠𝑖𝑛𝜃

ට൫𝑟௖೓
+ 𝑟𝑠𝑖𝑛𝜃൯

ଶ
+ (𝑟𝑐𝑜𝑠𝜃)ଶ

=
𝑟௖೓

+ 𝑟𝑠𝑖𝑛𝜃

ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃

 (85) 

𝑠𝑖𝑛𝛾 =
𝑟𝑐𝑜𝑠𝜃

ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃

 (86) 

Considering the torque balance with respect to the point 𝑐௛: 

𝑇௙೓
= 𝑇௛ + 𝐹௧೓

𝑟௖೓
 (87) 

Where 𝑇௙೓  is the torque generated by the fractional forces 𝑑𝐹௙೓
with respect to 

𝑐௛: 

𝑇௙೓
= න 𝑟 ·  𝑑𝐹௙೓

= න 𝜇𝑝ට൫𝑟௖೓
+ 𝑟𝑠𝑖𝑛𝜃൯

ଶ
+ (𝑟𝑐𝑜𝑠𝜃)ଶ 𝑑𝐴 (88) 

Assuming constant pressure and with the differential area being: 

𝑑𝐴 = 𝑟 · 𝑑𝑟 · 𝑑𝜃 (89) 
Equation (88) can be expressed as: 

𝑇௙೓
= 𝜇𝑝 ඵ ට൫𝑟௖೓

+ 𝑟𝑠𝑖𝑛𝜃൯
ଶ

+ (𝑟𝑐𝑜𝑠𝜃)ଶ𝑟𝑑𝑟𝑑𝜃 = 𝜇𝑝 ඵ ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃𝑟𝑑𝑟𝑑𝜃 (90) 

Moreover, considering the equilibrium of forces in the 𝚤 direction: 

𝐹௧೓
= න 𝑑𝐹௙೓

· 𝑐𝑜𝑠𝛾 = 𝜇𝑝 ඵ
𝑟௖೓

+ 𝑟𝑠𝑖𝑛𝜃

ට൫𝑟௖೓
+ 𝑟𝑠𝑖𝑛𝜃൯

ଶ
+ (𝑟𝑐𝑜𝑠𝜃)ଶ

𝑟𝑑𝑟𝑑𝜃 =

= 𝜇𝑝 ඵ
𝑟௖೓

+ 𝑟𝑠𝑖𝑛𝜃

ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃

𝑟𝑑𝑟𝑑𝜃 

(91) 

Equations (89) and (90) must be integrated numerically between 𝑟௛೘೔೙
< 𝑟 <

𝑟௛೘ೌೣ
 (maximum and minimum screw head contact radii) and 0 < 𝜃 < 2𝜋. 

Substituting equations (90) and (91) inequation (87) the value of 𝑇௛  as a function 
of 𝑟௖೓

: 

𝑇௛ = 𝑇௙೓
− 𝐹௧೓

𝑟௖೓
=  𝜇𝑝 ඵ

𝑟 + 𝑟௖೓
𝑠𝑖𝑛𝜃

ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃

𝑟ଶ𝑑𝑟𝑑𝜃 (92) 

Where 𝑝 is the axial pressure generated by the axial load 𝐹௔ acting on the screw: 
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𝑝 =
𝐹௔

𝜋 · ൫𝑟௛೘ೌೣ
ଶ − 𝑟௛೘೔೙

ଶ൯
 (93) 

It is to be noted that equations (91) and (92) coincide with expressions 20 and 
18 of the study of Nassar et al.125 

Substituting equation (93) in equations (91) and (92): 

𝐹௧೓
=

𝜇𝐹௔

𝜋 · ൫𝑟௛೘ೌೣ
ଶ − 𝑟௛೘೔೙

ଶ൯
න න

𝑟௖೓
+ 𝑟𝑠𝑖𝑛𝜃

ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃

𝑟𝑑𝑟𝑑𝜃
ଶగ

଴

௥೓೘ೌೣ

௥೓೘೔೙

 (94) 

𝑇௛ =
𝜇𝐹௔

𝜋 · ൫𝑟௛೘ೌೣ
ଶ − 𝑟௛೘೔೙

ଶ൯
න න

𝑟 + 𝑟௖೓
𝑠𝑖𝑛𝜃

ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃

𝑟ଶ𝑑𝑟𝑑𝜃
ଶగ

଴

௥೓೘ೌೣ

௥೓೘೔೙

 
(95) 

From equation (94), the value of 𝑟௖೓
 corresponding to a given external 𝐹௧೓

 force 
can be obtained and, entering this 𝑟௖௛value in equation (95), the value of 𝑇௛ 
needed to generate slippage in this contact is calculated. 

To provide a specific case, when the transverse force 𝐹௧೓
 is null, 𝑟௖೓

 is zero and 
𝑇௛ is calculated by: 

𝑇௛൫𝐹௧೓
= 0൯ = 𝜇𝐹௔ ·

2

3
∙

𝑟௛೘ೌೣ
ଷ − 𝑟௛೘೔೙

ଷ

𝑟௛೘ೌೣ
ଶ − 𝑟௛೘೔೙

ଶ
 (96) 

Equation (96) coincides with expression 10 from the work of Nassar et al.126 

For relatively small ratios of 𝑟௛೘ೌೣ
/𝑟௛೘೔೙

, it can be assumed that: 

2

3
∙

𝑟௛೘ೌೣ
ଷ − 𝑟௛೘೔೙

ଷ

𝑟௛೘ೌೣ
ଶ − 𝑟௛೘೔೙

ଶ
≈

𝑟௛೘ೌೣ
+ 𝑟௛೘೔೙

2
 (97) 

Hence, equation (96) can be expressed as: 

𝑇௛൫𝐹௧೓
= 0൯ = 𝜇𝐹௔ ·

𝑟௛೘ೌೣ
+ 𝑟௛೘೔೙

2
 (98) 

This expression obviously coincides with the first term of equation (16) and 
with expression 1 from the work of Nassar et al.126 

Another specific case is when no untightening torque is applied; that is, 𝑇௛ = 0 
and 𝑟௖೓

= ∞. In this case, equations (94) and (95) leads to equation (99) showing 
that, in the absence of torque, a transverse force 𝐹௧೓

 equal to 𝜇𝐹௔ is needed to 
cause slippage of the screw head. 

𝐹௧೓
(𝑇௛ = 0) = 𝜇𝐹௔  (99) 
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These expressions are valid even when there is a bending moment on the 
contact surface, since the pressure variation due to a bending moment is linear 
and, therefore, the pressure increase of one half of the surface is compensated 
by the pressure decrease of the other half, giving the same results as there would 
be in the absence of bending moment (uniform pressure). This is valid if, as is 
the usual case, there is no contact loss at any point on the surface. 

1.4.2 Analysis of the screw thread contact 

Figure 60 shows the screw thread seen from below. A local coordinate system 
(𝑢ሬ⃗ , 𝑣⃗, 𝑤ሬሬ⃗ ) is defined. The 𝑢ሬ⃗  and 𝑣⃗ axes are contained on the horizontal plane (in 
true magnitude in Figure 60) formed by the global 𝚤 and 𝚥 axes so that local axis 

𝑤ሬሬ⃗  coincides with global axis 𝑘ሬ⃗ . The plane of the thread surface is not horizontal, 
but has a double incline, 𝛼 in the radial direction (negative slope as the radius 
increases) and 𝛽 in the tangential direction, as shown in Figure 61 (screw seen 
from above). 

 
Figure 60. Force balance on the contact surface of the screw thread (seen from 
below). 

For this reason, a local coordinate system (𝑢ሬ⃗ ௥ , 𝑣௧ሬሬሬ⃗ , 𝑤ଵሬሬሬሬ⃗ ) is also defined which shares 
its origin with the system (𝑢ሬ⃗ , 𝑣⃗, 𝑤ሬሬ⃗ ) but with a double rotation: 𝛼 with respect to 
the 𝑣⃗ axis, and – 𝛽 with respect to the 𝑢ሬ⃗  axis (see Figure 61). Hence, 𝑢௥ሬሬሬሬ⃗  axis 
forms an 𝛼 angle with respect to the 𝑢ሬ⃗  axis, and the 𝑣௧ሬሬሬ⃗  axis forms an 𝛽 angle 
with respect to the 𝑣⃗ axis. Thus, the 𝑢௥ሬሬሬሬ⃗  and 𝑣௧ሬሬሬ⃗  axes are contained in the plane 



1. Introduction and background  71 

 

of the thread surface, with 𝑤ଵሬሬሬሬ⃗  being normal with it, i.e., the direction in which 
the contact pressure acts. 

 
Figure 61. Pressure on the screw thread surface and the resulting loosening force 𝒅𝑭𝑻𝒑

 
(seen from above). 

According to Figure 62, extracted from Figure 61, the pressure forms an 𝜓 angle 
with the vertical axis, whereby: 

𝑐𝑜𝑠𝜓 =
1

ඥ1 + 𝑡𝑔ଶ𝛼 + 𝑡𝑔ଶ𝛽
=

1

ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽
 (100) 

Different torques and forces act on the screw thread contact. Torque 𝑇௧ is the 
torque necessary to overcome the friction on the screw threads (torque towards 
the screw loosening rotation direction) through a differential force 𝑑𝐹

೟்
 when a 

transverse force 𝐹௧೟
 is applied. Additionally, the contact pressure due to the axial 

load 𝐹௔ of the screw generated due to the inclination of the thread generates a 
differential force 𝑑𝐹

೛்
 that causes a torque of 𝑇௣, also towards the screw 

loosening rotation direction. Moreover, there is a transverse force of 𝐹௧೟
, which 

generates a differential force of 𝑑𝐹ி೟೟
 in Figure 60. These differential forces are 

opposed by the frictional differential force 𝑑𝐹௙೟
. This force develops on the 

plane of the thread, i.e., on the plane (𝑢௥ሬሬሬሬ⃗ , 𝑣௧ሬሬሬ⃗ ) in Figure 62, following vector 𝑢௙ሬሬሬሬ⃗ . 
That is, in Figure 60 the differential force 𝑑𝐹௙೟

 is not being viewed in true 
magnitude, but rather its projection on the horizontal plane (𝑢ሬ⃗ , 𝑣⃗) of value 𝑑𝐹௙೟

·

𝑐𝑜𝑠𝜆 in 𝑢ሬ⃗ ௙೛
 direction in Figure 63. 
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Figure 62. Vertical component of pressure. 

 

Figure 63. Friction force on the screw thread surface (seen from above). 

According to Figure 64(screw viewed from below), where all axes and vectors 
are contained on the horizontal plane and are, therefore, seen in their true 
magnitude, the unit vector 𝑢ሬ⃗ ௙೛

 is: 

𝑢௙೛
= −𝑐𝑜𝑠𝛾 𝑖 + 𝑠𝑖𝑛𝛾 𝑗 = (𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜃)𝑢 + (𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜃)𝑣 =

= −𝑐𝑜𝑠(𝛾 + 𝜃) 𝑢 + 𝑠𝑖𝑛(𝛾 + 𝜃)  𝑣 (101) 
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Figure 64. Vector on horizontal plane (𝒖ሬሬ⃗ , 𝒗ሬሬ⃗ ) (screw seen from below). 

The vector 𝑢ሬ⃗ ௙ contained on the plane (𝑢௥ሬሬሬሬ⃗ , 𝑣௧ሬሬሬ⃗ ) of the thread surface is obtained 
in Figure 65 from the projected vector 𝑢ሬ⃗ ௙೛

. Considering that as seen in equation 

(96) the vector 𝑢ሬ⃗ ௙೛
 is unitary, its modulus ห𝑢௙ห is: 

ห𝑢௙ห = ඥ1 + (𝑐𝑜𝑠(𝛾 + 𝜃)𝑡𝑔𝛼 − 𝑠𝑖𝑛(𝛾 + 𝜃)𝑡𝑔𝛽)ଶ (102) 

 

Figure 65. 𝒄𝒐𝒔𝝀 determination. 

Thus: 

𝑐𝑜𝑠𝜆 =
1

ඥ1 + (𝑐𝑜𝑠(𝛾 + 𝜃) ∙ 𝑡𝑔𝛼 + 𝑠𝑖𝑛(𝛾 + 𝜃) ∙ 𝑡𝑔𝛽)ଶ
 (103) 
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In addition, according to Figure 64: 

𝑐𝑜𝑠(𝛾 + 𝜃) =
𝑟௖೟

𝑐𝑜𝑠𝜃

ට𝑟௖೟
ଶ + 𝑟ଶ + 2𝑟௖೟

𝑟𝑠𝑖𝑛𝜃

 (104) 

𝑠𝑖𝑛(𝛾 + 𝜃) =
𝑟 + 𝑟௖೟

𝑠𝑖𝑛𝜃

ට𝑟௖೟
ଶ + 𝑟ଶ + 2𝑟௖೟

𝑟𝑠𝑖𝑛𝜃

 (105) 

So, substituting equations (104) and (105) in (103): 

𝑐𝑜𝑠𝜆 =
1

ඨ1 +
ቀ௥௧௚ఉା ೎೟

(௖௢௦ఏ௧௚ఈା௦௜௡ఏ௧௚ఉ)ቁ
మ

௥೎೟
మା௥మାଶ௥೎೟

௥௦௜௡ఏ

 
(106) 

Assuming 𝑐𝑜𝑠𝜃 · 𝑡𝑔𝛼 ≫ 𝑠𝑖𝑛𝜃 · 𝑡𝑔𝛽 and 𝑠𝑖𝑛𝜃 ≫ 𝑡𝑔𝛽 · 𝑐𝑜𝑠𝜃 · 𝑡𝑔𝛼: 

𝑐𝑜𝑠𝜆 =

ට𝑟௖೟
ଶ + 𝑟ଶ + 2𝑟௖೟

𝑟𝑠𝑖𝑛𝜃

ට𝑟௖೟
ଶ ∙ (1 + 𝑡𝑔ଶ𝛼𝑐𝑜𝑠ଶ𝜃) + 𝑟ଶ ∙ (1 + 𝑡𝑔ଶ𝛽) + 2𝑟௖೟

𝑟 ∙ 𝑠𝑖𝑛𝜃

 (107) 

For the screw to loosen in this thread contact zone, the entire contact surface 
must slide. Therefore, all frictional differential forces 𝑑𝐹௙೟

= 𝜇𝑝𝑑𝐴 are in the 
opposite direction to the sliding motion. This implies that in this condition the 
surface must rotate with respect to point 𝑐௧ in Figure 60. Proposing the balance 
of torques with respect to 𝑐௧: 

𝑇௙೟
= 𝑇௧ + 𝑇௣ + 𝐹௧೟

𝑟௖೟
 (108) 

Where 𝑇௙೟
 is the torque corresponding to the frictional differential forces 𝑑𝐹௙೟

 
with respect to 𝑐௧, according to Figure 60 and Figure 62, where 𝑑𝐹௙೟

= 𝜇𝑝𝑑𝐴. 
Therefore: 

𝑇௙೟
= න 𝜇𝑝𝑐𝑜𝑠𝜆 ∙ ට𝑟௖೟

ଶ + 𝑟ଶ + 2𝑟௖೟
𝑟𝑠𝑖𝑛𝜃 𝑑𝐴 (109) 

In this case, the area differential is, as can be obtained from Figure 65: 

𝑑𝐴 = ඥ1 + 𝑡𝑔ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ 𝑟𝑑𝑟𝑑𝜃 = ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ 𝑟𝑑𝑟𝑑𝜃 (110) 
So, substituting equation (110) in (109): 

𝑇௙೟
= 𝜇𝑝ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ඵ 𝑐𝑜𝑠𝜆 ∙ ට𝑟௖೟

ଶ + 𝑟ଶ + 2𝑟௖೟
𝑟𝑠𝑖𝑛𝜃𝑟𝑑𝑟𝑑𝜃 (111) 
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In addition, considering the equilibrium of forces in the 𝚤 direction: 

𝐹௧೟
= න 𝑑𝐹௙೟

𝑐𝑜𝑠𝜆𝑐𝑜𝑠𝛾 = 𝜇𝑝ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ඵ 𝑐𝑜𝑠𝜆 ∙
𝑟௖೟

+ 𝑟𝑠𝑖𝑛𝜃

ඥ𝑟௖೟
ଶ + 𝑟ଶ + 2𝑟௖೟

𝑟𝑠𝑖𝑛𝜃
𝑟𝑑𝑟𝑑𝜃 (112) 

Substituting equation (107) into equation (112) matches expression 32 of the 
work of Nassar et al.125 

Thus, the value of 𝑇௧ = 𝑇௙೟
− 𝐹௧೟

𝑟𝑐௧ from equation(108) is: 

𝑇௧ = 𝑇௙೟
− 𝐹௧೟

𝑟௖೟
=  

= 𝜇𝑝ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ඵ 𝑐𝑜𝑠𝜆

⎝

⎛ට𝑟௖೟
ଶ + 𝑟ଶ + 2𝑟௖೟

𝑟𝑠𝑖𝑛𝜃 − 𝑟௖೟
∙

𝑟௖೟
+ 𝑟𝑠𝑖𝑛𝜃

ට𝑟௖೟
ଶ + 𝑟ଶ + 2𝑟௖೟

𝑟𝑠𝑖𝑛𝜃
⎠

⎞ 𝑟𝑑𝑟𝑑𝜃 =

= 𝜇𝑝ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ඵ 𝑐𝑜𝑠𝜆 ∙
𝑟ଶ + 𝑟௖೟

𝑟𝑠𝑖𝑛𝜃

ට𝑟௖೟
ଶ + 𝑟ଶ + 2𝑟௖೟

𝑟𝑠𝑖𝑛𝜃

𝑟𝑑𝑟𝑑𝜃 

(113) 

Substituting equation (107) in (113): 

𝑇௧ = 𝜇𝑝ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ඵ
൫𝑟 + 𝑟௖೟

𝑠𝑖𝑛𝜃൯𝑟ଶ𝑑𝑟𝑑𝜃

ට𝑟௖೟
ଶ ∙ (1 + 𝑡𝑔ଶ𝛼𝑐𝑜𝑠ଶ𝜃) + 𝑟ଶ ∙ (1 + 𝑡𝑔ଶ𝛽) + 2𝑟௖೟

𝑟 ∙ 𝑠𝑖𝑛𝜃

 (114) 

Equation (114) coincides with expression 34 from the work of Nassar et al.125 

Moreover, the torque 𝑇௣ (acting towards loosening) caused by the 
circumferential component of the pressure 𝑝 · 𝑐𝑜𝑠𝜓 · 𝑡𝑔𝛽 (see Figure 61 and 
Figure 62) is: 

𝑇௣ = න 𝑟 𝑥 𝑑𝐹்௣ = න 𝑟𝑝𝑐𝑜𝑠𝜓𝑡𝑔𝛽 𝑑𝐴 (115) 

Substituting equation (102) and (110) in (115), operating and integrating 
between 𝑟௧೘೔೙

< 𝑟 < 𝑟௧೘ೌೣ
 (maximum and minimum screw thread contact radii) 

and 0 < 𝜃 < 2𝜋𝑛 (n is the number of thread coils in engaged): 

𝑇௣ = 𝑝𝑡𝑔𝛽 න 𝑟ଶ𝑑𝑟𝑑𝜃 = 𝑝n𝑡𝑔𝛽 ∙
2𝜋

3
(𝑟௧௠௔௫

ଷ − 𝑟௧௠௜௡
ଷ) (116) 

Finally, the pressure 𝑝 is obtained as a function of the axial load of the screw 
𝐹௔. By proposing the balance of forces in the vertical direction (𝑘 axis), the axial 
load 𝐹௔ is balanced by the vertical components of the contact pressure and the 
friction force. Proposing the balance of forces and substituting equations (100) 
and (110): 

𝐹௔ = න(𝑝𝑐𝑜𝑠𝜓 − 𝜇𝑝𝑠𝑖𝑛𝜆) 𝑑𝐴 = 𝑝 ඵ ቀ1 − 𝜇𝑠𝑖𝑛𝜆ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽ቁ 𝑟𝑑𝑟𝑑𝜃 = 

= 𝑝 ∙ ൬𝑛𝜋(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ) − 𝜇ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ඵ 𝑠𝑖𝑛𝜆𝑟𝑑𝑟𝑑𝜃൰ 
(117) 
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Assuming 𝑐𝑜𝑠𝜃𝑡𝑔𝛼 ≫ 𝑠𝑖𝑛𝜃𝑡𝑔𝛽: 

𝑠𝑖𝑛𝜆 =
𝑟𝑡𝑔𝛽 + 𝑟௖௧𝑐𝑜𝑠𝜃𝑡𝑔𝛼

ඥ𝑟௖௧
ଶ + 𝑟ଶ + 2𝑟௖௧𝑟𝑠𝑖𝑛𝜃

∙ 𝑐𝑜𝑠𝜆 =

=
𝑟𝑡𝑔𝛽 + 𝑟௖௧𝑐𝑜𝑠𝜃𝑡𝑔𝛼

ඥ𝑟௖௧
ଶ ∙ (1 + 𝑡𝑔ଶ𝛼𝑐𝑜𝑠ଶ𝜃) + 𝑟ଶ ∙ (1 + 𝑡𝑔ଶ𝛽) + 2𝑟௖௧𝑟 ∙ 𝑠𝑖𝑛𝜃

 
(118) 

Substituting equation (118) in (117): 

𝐹௔ = 𝑝 ∙ ቆ𝑛𝜋(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ) − 𝜇ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽

· ඵ
𝑟𝑡𝑔𝛽 + 𝑟௖௧𝑐𝑜𝑠𝜃𝑡𝑔𝛼

ඥ𝑟௖௧
ଶ ∙ (1 + 𝑡𝑔ଶ𝛼𝑐𝑜𝑠ଶ𝜃) + 𝑟ଶ ∙ (1 + 𝑡𝑔ଶ𝛽) + 2𝑟௖௧𝑟 ∙ 𝑠𝑖𝑛𝜃

𝑟𝑑𝑟𝑑𝜃ቇ 
(119) 

Finally, substituting equation (107) in (112): 

𝐹௧೟
= 𝜇𝑝ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 

· ඵ
𝑟௖௧ + 𝑟𝑠𝑖𝑛𝜃

ඥ𝑟௖௧
ଶ ∙ (1 + 𝑡𝑔ଶ𝛼𝑐𝑜𝑠ଶ𝜃) + 𝑟ଶ ∙ (1 + 𝑡𝑔ଶ𝛽) + 2𝑟௖௧𝑟 ∙ 𝑠𝑖𝑛𝜃

𝑟𝑑𝑟𝑑𝜃 
(120) 

From these expressions, equation (108) can be used to calculate the torque 𝑇௧ 
required to cause slippage at the thread contact, and thereby promote loosening 
of the screw, as a function of the transverse force 𝐹௧೟  and the axial force 𝐹௔. 

As a specific case, when the transverse force 𝐹௧೟  is null, according to equation 
(32), 𝑟௖೟  is also null. Then, according to equation (119): 

𝐹௔ = 𝑝 ∙ ቆ𝑛𝜋(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ) − 𝜇ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ඵ
𝑡𝑔𝛽

ඥ1 + 𝑡𝑔ଶ𝛽
𝑟𝑑𝑟𝑑𝜃ቇ 

= 𝑝𝑛𝜋(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ) ∙ ቀ1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽ቁ 

(121) 

Equation (121) coincides with expression 19 from the work of Nassar et al.126 

Now, the value of 𝑇௧ can be expressed as a function of the axial load 𝐹௔ by 
isolating 𝑝 from equation (121) and substituting it in (114), obtaining: 

𝑇௧ =

𝜇𝐹௔ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ∬
൫௥ା௥೎೟

௦௜௡ఏ൯௥మௗ௥ௗఏ

ට௥೎೟
మ∙(ଵା௧௚మఈ௖௢௦మఏ)ା௥మ∙(ଵା௧௚మఉ)ାଶ௥೎೟

௥∙௦௜௡ఏ

𝑛𝜋(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ) ∙ ൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯
 

(122) 

And equation (120) can be expressed as: 

𝐹௧೟
=

𝜇𝐹௔ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ∬
௥೎೟ା௥௦௜௡ఏ

ඥ௥೎೟
మ∙(ଵା௧௚మఈ௖௢௦మఏ)ା௥మ∙(ଵା௧௚మఉ)ାଶ௥೎೟௥∙௦௜௡ఏ

𝑟𝑑𝑟𝑑𝜃

𝑛𝜋(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ) ∙ ൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯
 (123) 
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Doing the same and isolating 𝑝 from equation (121) and substituting it in 
equation(116): 

𝑇௣ =
𝐹௔

൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯
𝑡𝑔𝛽 ∙

2

3

൫𝑟௧೘ೌೣ
ଷ − 𝑟௧೘೔೙

ଷ൯

൫𝑟௧೘ೌೣ
ଶ − 𝑟௧೘೔೙

ଶ൯
 (124) 

Equation (124) coincides with expression 21 from the work of Nassar et al.126 

If in equations (124) it is assumed that 1 ≫ 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 and 𝑠𝑒𝑐ଶ𝛼 ≫

𝑡𝑔ଶ𝛽, and considering equation (97): 

𝑇௣ = 𝐹௔𝑡𝑔𝛽 ∙
𝑟௧௠௔௫ + 𝑟௧௠௜௡

2
 (125) 

Equation (125) coincides with the third term of equation (16) and with 
expression 1 from the work of Nassar et al.126 

Continuing with the particular case of null 𝐹௧೟
, and therefore also null 𝑟௖೟

, 𝑇௧ 
from equation (114) can now be expressed as: 

𝑇௧ = 𝜇𝑝ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙
1

ඥ1 + 𝑡𝑔ଶ𝛽
∙ ඵ 𝑟ଶ𝑑𝑟𝑑𝜃 =

= 𝜇𝑝𝑐𝑜𝑠𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽
2𝜋𝑛

3
(𝑟௧௠௔௫

ଷ − 𝑟௧௠௜௡
ଷ) 

(126) 

Substituting 𝑝 from equation (121) in (126): 

𝑇௧ =
𝐹௔𝜇𝑐𝑜𝑠𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽

൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯

2

3

(𝑟௧௠௔௫
ଷ − 𝑟௧௠௜௡

ଷ)

(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ)
 (127) 

Equation (127) coincides with expression 25 from the work of Nassar et al.126 

If in equation (127)it is assumed that 1 ≫ 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽, 𝑠𝑒𝑐ଶ𝛼 ≫ 𝑡𝑔ଶ𝛽 
and 𝑐𝑜𝑠𝛽 ≈ 1, and considering equation (97): 

𝑇௧ =
𝜇𝐹௔

𝑐𝑜𝑠𝛼

𝑟௧௠௔௫ + 𝑟௧௠௜௡

2
 (128) 

Equation(128) coincides with the second term of equation (16) and with 
expression 1 from the work of Nassar et al.126 

Another particular case is when torque 𝑇௧ is null; that is, 𝑟௖೟  is ∞. In this case, 
according to equations (114), (116), (120) and (121): 
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𝐹௧೟
=

𝜇𝐹௔ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽

2𝑛𝜋 ∙ ൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯
∙ න

1

ඥ1 + 𝑡𝑔ଶ𝛼𝑐𝑜𝑠ଶ𝜃
𝑑𝜃

≈
𝜇𝐹

2𝑛𝜋 ∙ ൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯
∙

1

𝑐𝑜𝑠𝛼
∙ න

1

ඥ(1 + 𝑡𝑔ଶ𝛼𝑐𝑜𝑠ଶ𝜃)
𝑑𝜃

=
2𝜇𝐹

൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯(1 + 𝑐𝑜𝑠𝛼)
 

(129) 

The integral of 𝐹௧೟
 of equation (129) must be solved numerically. From which 

it is deducted that the pure transverse force (with 𝑇௧ = 0) to cause loosening in 
the threads is always greater than 𝜇𝐹 (because 𝑐𝑜𝑠𝛼 < 1). 

As in the case of the screw head, these expressions are valid even when there is 
a bending moment on the contact surface, since the pressure variation due to a 
bending moment is linear, and therefore the pressure increase on one half of 
the surface is compensated by the pressure decrease on the other half, giving 
the same results as when there is no bending moment (uniform pressure). This 
is valid as long as there is no loss of contact at any point on the surface. 

1.4.3 Equilibrium condition of the screw 

Therefore, the loosening torque 𝑇௅ can be calculated by adding the three 
calculated torques (𝑇௛ from equation (95), 𝑇௧ from equation (122), and 𝑇௣ from 
equation (125)), following the same structure as the torque-preload relationship 
(in its loosening version) of equation (11), except that, in this case, the effect of 
the transverse loads reaching the screw is considered. 

𝑇௅ = 𝑇௛ + 𝑇௧ − 𝑇௣ = 

=

⎝

⎛
𝜇𝐹௔

𝜋 · ൫𝑟௛೘ೌೣ
ଶ − 𝑟௛೘೔೙

ଶ൯
ඵ

𝑟 + 𝑟௖೓
𝑠𝑖𝑛𝜃

ට𝑟௖೓
ଶ + 𝑟ଶ + 2𝑟௖೓

𝑟𝑠𝑖𝑛𝜃

𝑟ଶ𝑑𝑟𝑑𝜃

⎠

⎞ + 

+

𝜇𝐹௔ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽 ∙ ∬
൫௥ା௥೎೟

௦௜௡ఏ൯௥మௗ௥ௗఏ

ට௥೎೟
మ∙(ଵା௧௚మఈ௖௢௦మఏ)ା௥మ∙(ଵା௧௚మఉ)ାଶ௥೎೟

௥∙௦௜௡ఏ

𝑛𝜋(𝑟௧௠௔௫
ଶ − 𝑟௧௠௜௡

ଶ) ∙ ൫1 − 𝜇𝑠𝑖𝑛𝛽ඥ𝑠𝑒𝑐ଶ𝛼 + 𝑡𝑔ଶ𝛽൯
 

+𝐹௔𝑡𝑔𝛽 ∙
𝑟௧௠௔௫ + 𝑟௧௠௜௡

2
 

(130) 

Where 𝑟௖೓
 and 𝑟௖೟

 values shall be obtained from equations (94) and (123), 
respectively. This equation can be graphically represented by means of the 
normalized graph in Figure 66 which relates the torque and transverse force, 
both normalized with respect to the axial force. The graph shows the three 
terms of equation (127), with resisting torques 𝑇௛ and 𝑇௧ being non-constant 
and pitch torque 𝑇௣ constant. In short, the combinations of transverse force 𝐹௧ 
and loosening torque 𝑇௅ that fall above the 𝑇௅/𝐹௔ curve will cause relative 
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displacement between the screw and the elements joined and, therefore, will 
cause self-loosening. The trend shift of the 𝑇௅/𝐹௔ curve for high values of 𝐹௧/𝐹௔ 
should be mentioned. Note that this occurs when 𝑇௛/𝐹௔ drops to zero, and only 
𝑇௧ and 𝑇௣ are affecting 𝑇௅/𝐹௔. 

The markers in the graph show points where the curves intersect the axes, 
corresponding to the values of the specific cases in which the resisting torque 
is overcome only with a transverse force or only with a torsional moment. 

  

Figure 66. Torque versus transverse load: slip limit curves. 

This model to predict self-loosening in screwed joints under transverse cyclic 
loading was validated experimentally for the case of two sliding plates, similar 
to the Junker test described at the beginning of section 1.4. This model forms 
the basis of the mechanical foundations of the self-loosening phenomenon and 
quantifies the effect of the different design, manufacturing and operational 
variables involved, thus enabling the designer to select the appropriate screw 
head and thread geometry, coefficient of friction, tightening torque, and other 
relevant parameters. One drawback is the fact that its applicability is not 
straightforward because the equations must be solved by means of numerical 
integration. 

The methodology explained in this section is used in Chapter 7, where the 
loosening phenomenon of the prosthetic screw mounted on a dental 
restoration will be analyzed. 

To
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1.5 Microgap in screwed joints 

Microcap, unlike fatigue or self-loosening phenomena, has less theoretical 
background. Nevertheless, the Oil and Gas industry has endeavored to study 
and prevent microgaps on pressure vessels and pipelines (used for gas or fluid 
storage and transportation) in order to avoid leakages.128–132 In the case of 
pipelines, bolted joints are used to join several parts, forming the entire pipeline. 
In this case, in order to avoid leakages, several standards provide various 
recommendations to perform the assembly process as efficiently as 
possible.128,133,134 A sound surface finish must be guaranteed to avoid 
mismatches, contact surfaces must be cleaned to ensure there is no dust that 
prevents proper sealing, contact surfaces must be aligned in parallel to ensure 
uniform load distribution, and so on. Besides this, a gasket is usually used in 
these bolted joints to ensure sealing. 

 

Figure 67. Bolted joint in a pipeline.135 

Furthermore, the preload must be enough to ensure no service leakage but, at 
the same time, it cannot be excessive so that other phenomena such as fatigue 
is not compromised or even bolt damage is caused. The American Society of 
Mechanical Engineers (ASME) provides two different procedures to calculate 
target load of the joint.128 On the one hand, there is a simple method that 
defines the minimum load on the bolts to avoid leakage. On the other hand, 
there is another method that calculates the bolt load to ensure structural 
integrity of the joined elements. 

Finally, when tightening several bolts on a joint, the tightening sequence plays 
an important role. Usually, star pattern or alternating bolts patterns are used, 
sometimes followed by a final circular pattern.135 

Unfortunately, this phenomenon is highly dependent on the surface finish and 
geometrical tolerances. Hence, it is not easy to reproduce microgap formation 
by means of FEA. Accordingly, this phenomenon is usually studied 
experimentally using various techniques such as the negative pressure wave 
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method,136 the acoustic method,137,138 the magnetic flux method,139 the fiber 
optic sensor method,140 etc. 

Evidently, dental restorations do not suffer leakage as pipelines do in the Oil 
and Gas industry. However, as briefly mentioned in section 1.2.5, the IAC of 
dental restorations are subjected to microgaps due to insufficient torque, 
excessive external loading or inadequate manufacturing tolerances, and 
therefore cavities are generated that can harbor bacteria and cause clinical 
problems. The causes of microgap formation at IAC and the factors of dental 
restorations that have an effect on microgap size will be analyzed in depth in 
Chapter 6. 

1.6 Mechanical of dental implants: a literature 
review 

Since a screw-retained dental restoration is essentially a screwed joint, the same 
mechanical problems may arise, namely microgap formation, self-loosening or 
fatigue failure, as explained in section 1.2.5. In this section, first, a literature 
review of fatigue failure on screw-retained dental restorations is presented as 
well as an explanation of the ISO 14801 standard141 that establishes the 
requirements for dental restoration fatigue testing. This is followed by a 
literature review of screw-loosening problems on dental restorations. Finally, a 
state of the art of microgap in IAC is presented, analyzing not only the microgap 
problem but also the methodologies used to detect it. 

1.6.1 Fatigue behavior on dental restorations 

Clinical studies report that most failures on dental restorations are caused by 
fatigue.36 Depending on the load case and implant position in the mouth, these 
failures can occur either on the implant, the prosthetic screw, or very seldomly, 
the abutment. Nevertheless, screw failures are more common,142,143 especially 
when mounted on regular or wide implants, usually occurring at the root of the 
first engaged thread.144 Implant failures can also occur, especially if the implant 
is narrow and/or the screw has a high metric value. 

Prosthetic screws are generally made of pure or alloyed Titanium, as these are 
less expensive than gold alloy screws while having excellent biocompatibility, 
corrosion resistance, machinability, and desirable mechanical and physical 
properties.145,146 Machining processes and coatings have a significant effect on 
the performance of the prosthetic screw and the whole dental restoration. 
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Darshith et al. stated that rolled threads provide higher fatigue resistance than 
cut threads.147 Gil et al. studied the effects of shot blasting on fatigue behavior 
of Commercially Pure (CP) Titanium, concluding that this treatment leaves a 
layer of compressive residual stress that improves fatigue life.148 Park et al. 
studied the effect of the Tungsten Carbide Carbon (WCC) coating of prosthetic 
screws on implant preload experimentally obtaining higher preloads than for 
non-coated screws.149 Higher preloads have been proven to have a positive 
effect on the fatigue behavior of dental implants as stated in various studies.150–

152 Evidently, screw metric has a significant effect on fatigue behavior since the 
higher the screw metric the larger resistant section the screw will have, and, 
therefore, a longer fatigue life. 

Regarding dental implants, these are also commonly made of Titanium or 
Titanium alloys. In this sense, several publications experimentally characterize 
the endurance limit,153 the effect of the mean stress154,155 and the effect of 
notches.94,156–159 Other materials used in dental implants such as zirconia, cobalt 
alloys or stainless steel were also studied.160–162 Besides material characterization, 
some publications study dental implant fatigue from a probabilistic 
approach,144,163,164 considering the randomness of some variables such as defects 
in dental implants and different load conditions that vary depending on the 
patient.  

The fatigue behavior of dental restorations has been studied experimentally as 
well. Various studies analyzed implant geometrical parameters. The most 
studied ones have been implant body diameter, implant length, platform 
diameter and IAC type. 

Implant body diameter has been reported to be one of the most important 
factors with regards to the biomechanical performance of dental restorations. 
A wider implant is beneficial12 since it increases the contact surface with the 
surrounding bone, thus improving stress distribution165–168 and providing 
enhanced initial stability.169,170 In addition to this, with large implant diameters, 
stresses in the implant are reduced, especially around the implant neck,171 
improving the static and fatigue response of dental restorations.172,173 However, 
it should be mentioned that these in vitro studies focused on implant failure 
while no studies analyzed the effect of implant body diameter on the mechanical 
performance of the prosthetic screw. This is of extreme importance when the 
screw is the failing component (when the implant body diameter is medium or 
large). 
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Implant length has been a controversial topic, with some authors reporting 
lower success rates for short and extra short implants,16–20 whereas others have 
reported higher survival rates.174–177 These discrepancies may be explained by 
the fact that short and extra short implants are mainly used in clinical situations 
with reduced bone height, where the experience and skills of the clinician are 
critical. Nevertheless, the effect of implant length has been reported to be much 
lower than that of other parameters such as implant body diameter.169,171,178 In 
fact, in the implant-bone interface, where excessive strain may lead to bone loss, 
stress is mainly distributed along the first 6 threads of the implant,179 the peak 
stress being at the bone crest level.14,180,181 Consequently, unnecessarily 
increasing the length of the implant may result in limited improvements, even 
though a longer implant may improve primary stability in situations where 
cancellous bone is predominant.14,15 

The diameter of the implant-abutment platform is also a key geometrical 
parameter, both clinically and mechanically. From a clinical point of view, the 
reduction of the contact diameter of the IAC is widely used in the platform 
switching concept,182 where an abutment narrower than the implant is used. 
Platform switching can lead to reduced peri-implant bone loss.183 Nevertheless, 
mechanical performance is negatively affected by the reduction of the contact 
diameter of the IAC because the platform plays a primary role in joint strength, 
joint stability, and rotational and locational stability.13 As reported by Minatel et 
al.,183 a reduction in the IAC diameter (by using the platform switching concept) 
can result in higher stress in the retaining screw. In addition to this, Nicolas-
Silvente et al.184 performed experimental fatigue tests where the retaining screws 
were the failing components and concluded that a higher fatigue limit was 
obtained with wider platforms, even though this conclusion might be limited 
by the fact that the specimens tested had different connection types. 

External and internal butt-joint connections have also been compared in 
various studies.185–190 From a clinical point of view, internal butt-joint 
connections improve both sealing against microbial ingress185 and esthetics 
while providing more platform switching options.186 From a mechanical point 
of view, IAC type may determine not only the maximum load of the restoration 
but also its failure mode.187 Thus, FEA and experimental studies have 
determined that internal butt-joint connections have better fatigue performance 
than external connections.188–190 However, these studies are focused on implant 
failure rather than on prosthetic screw failure. 
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Most of studies cited in this section performed experimental fatigue tests on 
various dental restorations in order to obtain the mentioned conclusions. The 
ISO 14801141 standard establishes the testing conditions for dental restoration 
fatigue testing. It should be mentioned that the standard does not intend to 
simulate realistic in-vivo conditions, where the load and boundary conditions 
may significantly vary for each patient. Hence, the obtained fatigue behavior is 
not useful for predicting the in-vivo performance of a dental restoration, but 
rather for comparing dental restorations of different designs, size, assembly 
conditions, and so on. In short, the implant of the restoration must be fixed in 
a specimen holder in such a way that it protrudes 3mm±0.5mm. The implant 
can be fixed by using an embedding material as long as it has a modulus of 
elasticity higher than 3GPa. The specimen holder must provide a 30º ±2º 
inclination to the restoration with respect to the load application direction. A 
hemispherical device shall be mounted on top of the restoration, ensuring that 
the center of its circumference is placed at 8 mm from the implant connection 
(11mm from the specimen holder upper surface). In contact with the 
hemispherical device, the loading device must apply the testing load in such way 
that no lateral restrictions occur. Figure 68 shows a schematic of the 
experimental set-up. The load must vary sinusoidally between the maximum 
load (not exceeding ±5%) and 10% of that value at a maximum frequency of 
15Hz. In case of dental restoration including materials where corrosion fatigue 
has been reported, the fatigue tests shall be performed in a saline medium. The 
fluid must be kept at 37ºC ±2ºC and the maximum testing frequency must be 
2Hz. At least two and preferably three specimens shall be tested at each load 
level, and at least four load levels must be tested. The lowest load will be 
considered as the fatigue limit if at least three specimens survive a specified 
number of cycles. This number of cycles (also known as run-out) must be 5 
million cycles if the test is performed at up to 15Hz or 2 million cycles if the 
test is performed at up to 2Hz. Staircase method (see section 1.3.1.1) is also 
allowed for fatigue limit determination. 

As a result, a complete F-N curve is obtained that relates the fatigue life of a 
dental restoration with the number of cycles and this can be used to compare 
different dental restorations under exactly the same conditions. 
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Legend: 
1-Loading device 
2-Nominal bone level 
3-Abutment 
4-Hemispherical device 
5-Implant body 
6-Specimen holder 
7-Force application 

Figure 68. Schematic of the test set-up for non-angulated dental restorations 
according to ISO 14801 standard.141 

1.6.2 Self-loosening of the prosthetic screw 

As mentioned, during their life span, dental restorations are subjected to 
variable loads due to mastication, bruxism, and so on. Axial loads are generally 
predominant but are always accompanied by lateral forces.191 As seen in section 
1.4, these loads can cause the screw to untighten or preload loss. This is known 
as the screw self-loosening phenomenon and is mainly produced by the lateral 
external forces that generate a rotational movement of the screw. As a result, 
gradual preload loss may occur, leading to micro-movements and eventual 
structural failure of the dental restoration.3,4,37–40 

Screw loosening is one of the major mechanical cause of dental implant 
replacement192 (along with fatigue failures), affecting between 4.3% and 12.7% 
of dental restorations according to specialized literature.193–195 It is well 
established that screw loosening depends on a large number of parameters, such 
as tightening torque, preload, occlusal forces, thread embedment and 
geometrical misfits.39,196,197 In this sense, screw loosening is generally the result 
of an inadequate tightening torque, incorrect implant design, manufacturing 
defects or unexpected load conditions, amongst other factors.198–200 

Many investigations have studied the effect of different parameters on screw 
self-loosening. Wu et al. concluded that lubrication reduces friction and 
consequently increases clamping force, but loosening torque is also reduced.201 
Elias et al. studied the effect of screw coatings that decreases the coefficient of 
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friction, agreeing with Wu et al. in terms of preload and untightening torque.202 
Park et al. recommend the clinical use of gold-plated screws to prevent screw 
loosening. Teflon coating is also recommended by these authors as well as 
avoiding repeated tightening.203 In several studies, a significant reduction of 
removal torque after cyclic loading was noticed, demonstrating that screw 
preload decreases in line with the number of cycles due to screw self-
loosening.38,204 Siamos et al. studied the effect of screw tightening torque and 
consequently screw preload level and recommended a tightening torque higher 
than 30 Ncm to minimize screw self-loosening.205 In this sense, Lang et al. 
stated that the preload should be 75% of the yield strength of the screw.5 
Aboyoussef et al. concluded that anti-rotation strategies may be used to reduce 
screw self-loosening problems.196 In the same vein, Arshad et al. proposed 
adding an adhesive to the screw joint interface.199 

1.6.3 Microgap formation at implant-abutment connection 

As mentioned in section 1.1, dental implants are subjected to microgap 
formation in the IAC. These microgaps may be caused by irregularities on the 
contact surfaces of the IAC21,22 and/or by the application of occlusal loads.49,50 

Microgaps can seriously compromise the success of dental restoration. An 
excessive microgap creates a cavity that favors the colonization of bacteria or 
even allows them to pass inside the implant and proliferate there.7–11 These 
bacteria can move into the peri-implant tissues, leading to inflammation22–24 and 
crestal bone resorption.8,25–29 This can lead to peri-implantitis,30 the main cause 
of implant loss.31–33 

In this literature review, a classification will be made according to the way the 
microgap at the IAC is detected or studied. On the one hand, those methods 
that study whether a fluid or gas is capable of leaking through the connection 
or not will be called Leakage Detection Methods. On the other hand, Microgap 
Measurement Methods will refer to methods that can directly quantify the size 
of the microgap in the IAC. 

Among Leakage Detection Methods, the Gas Flow Method consists of drilling 
a hole in the implant and introducing pressurized gas inside the implant.206,207 In 
this way, a seal loss would be detected when the gas passes through the 
connection, which would correspond to a gap large enough for the outside and 
inside of the implant to be connected. In addition to this, this same group 
includes the Bacterial Colonization Methods. This technique is one of the most 
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used among the bibliography. In short, a fluid with bacterial contamination is 
deposited inside the implant and the abutment and screw are assembled.9,31,208–

222 Once the required tests have been carried out (application of cycles, static 
load, no load, etc.), the assembly is placed in a sterile medium and checked for 
bacterial filtration to the outside of the implant. The same technique can be 
used in the opposite manner, i.e. assemble the dental restoration in a sterile 
environment, immerse the assembly in an environment with bacterial 
contamination and, finally, apply the appropriate tests. Bacterial leakage is 
checked by disassembling the dental restoration and observing the inside of the 
implant.10,210,223–232 Finally, the Ink Leakage Method29,233–235 consists of 
depositing ink inside the implant and assembling the abutment and screw at the 
recommended tightening torque. Afterwards, the assembly is generally 
immersed in a transparent fluid such as water, the dental restoration is subjected 
to the appropriate test conditions, and leakage is confirmed if the ink escapes 
to the outside. 

Additionally, the Microgap Measurement Methods include the Optical/SEM 
Measurement Method, in which the microgap at the IAC is measured by 
viewing it under an optical microscope236–239 or a Scanning Electron Microscope 
(SEM).21,22,210,227,240–249 These microgap measurements are performed after the 
corresponding loads (if any) have been applied. Finally, X-Ray Measurement 
Methods, like the previous technique, are used to measure the gap, rather than 
to detect the leakage event. In this method, the implant is subjected to X-ray 
exposure.250–257 The sample will act as a filter between the X-ray source and the 
receptor so that the thickest areas will allow less radiation to pass through and 
will appear clearer on the X-ray. If a microgap appears, there will be a minimal 
thickness wedge that should be detected on the X-ray. For the measurements 
to be accurate, the energy source must be powerful enough as is the case with 
hard X-Ray and synchrotron.250–258 

Most of the studies found investigated microgap formation either in the 
absence of loads9,10,21,22,29,31,206–215,217–222,224,225,228,229,231–233,235,237,238,240,242,243,245,248,258–

260 or after applying a cyclic load223,226,227,230,234,236,239,241,244,246,247,249,251,256,257,261,262 on 
the restoration. However, few studies have been found that investigate the 
microgap under in-situ loading250,252–255,257,263,264 due to the difficulty of the 
method which requires measuring the microgap at the same time as the load is 
applied. However, this type of microgap can also host bacteria inside it. In 
addition to this, the intermittent nature of chewing forces can cause a suction 
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and pumping process that can send these bacteria to the area surrounding the 
implant. 

Regarding the variables under review and the conclusions of various studies, 
many of the latter analyze the effects of the IAC type (e.g., butt joint versus 
tapered) on the microgap formation. Gil et al. concluded that internal butt-joint 
connections present smaller microgaps than external ones.248 Despite high 
expectations, even tapered connections cannot prevent the risk of bacterial 
leakage.222,232,265 In addition to this, their microgap is hard to measure since the 
IAC is located inside the implant.252 The effect of the tightening torque applied 
to the screw on the structural integrity of the restoration and the formation of 
the microgap has also been studied.3 Gehrke et al. found that greater torque 
reduces the IAC microgap.266 Tonin et al. reached the same conclusion. Their 
study applies larger screw preloads (by means of a stronger screw tightening 
torque).267 Smith et al. also agreed with this conclusion.210 Yet, a high tightening 
torque does not completely close the IAC microgap and thus cannot prevent 
bacterial leakage.209,227 
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2 Tools used for simulations and 
experimental tests 

Beyond analytical developments, in this PhD Thesis, two analysis methods are 
used to study the mechanical behavior of dental restorations. On the one hand, 
the Finite Element Method (FEM) and, on the other hand, experimental 
methods. Therefore, this chapter aims to serve as a guide to understand and 
reproduce both the FEA and the experimental tests that have been carried out 
during the PhD Thesis for two purposes. Firstly, to simulate and understand 
the performance of dental restorations under the phenomena of fatigue and 
screw loosening. Secondly, to develop, based on these, methodologies by which 
such behavior can be predicted efficiently, whereby they serve as a design tool 
to obtain dental restorations with improved mechanical performance. 

Before describing the FE models and the experimental test setups, the chapter 
begins with a description of the types of dental restorations to be analyzed and 
tested, identifying their components and detailing the characteristics of the 
materials they are made of. 

Furthermore, the experimental tests carried out to obtain the friction 
coefficients between the contact surfaces of the elements that compose the 
dental restorations are also described. The measured values will be used to feed 
the FE model. 

Next, the FE model will be described in depth in terms of geometry, materials, 
meshing, loading and boundary conditions, etc. Although there are many FEAs 
throughout the PhD Thesis, most of them are structured in a similar way with 
little variation from one to another, except the FE models used in Chapter 5 
that have some specific features that are explained in a different subsection. 
Moreover, specimen FEAs were also performed in Chapter 5, that are also 
described in this chapter. 
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Regarding the experimental tests carried out, this chapter also details the test 
benches used, as well as the set-up and preparation of the tests and specimens. 

Finally, at the end of the chapter, a prototype of an innovative fatigue test bench 
developed in this PhD Thesis is presented, which is capable of testing 8 dental 
restorations at the same time for a very low cost. This test bench therefore 
represents an important advance in the technology available for fatigue testing 
of dental restorations. 

2.1 Geometries, materials, and coefficients of 
friction of dental restorations 

2.1.1 Geometries and materials 

In this PhD Thesis various implant geometries and prosthetic components will 
be analyzed, which can be grouped into two main groups as we have already 
seen in the section 1.1: implant-supported restorations and transepithelial-
supported restorations. The first ones are the simplest and consist of an implant 
and an abutment, both joined by a prosthetic screw. The second ones, which 
are more complex, are composed of the implant, a transepithelial element 
composed of a sleeve that is attached to the implant by means of a first screw 
and an abutment that is attached to the rest of the assembly by means of a 
second screw. In this way, the second screw threads onto the first screw, which 
has a female thread on its head. Figure 69 shows the main elements of an 
implant-supported restoration and a transepithelial-supported restoration. 

All the dental restorations analyzed in this PhD Thesis were manufactured and 
provided by Biotechnology Institute (BTI),268 whose facilities are located in 
Vitoria (Spain). As mentioned in section 1.6.1, most of implants and prosthetic 
components are made of Titanium or Titanium alloys. In the case of BTI 
restorations, all implants, transepithelial sleeves and abutments are made of 
Commercially Pure Grade 4 (CP4) Titanium, which is more biocompatible than 
alloyed Titanium. In contrast, the prosthetic screws of BTI are made of 
Ti6Al4V Extra Low Interstitial (ELI), also known as Grade 5 (GR5) Titanium, 
which provides better mechanical performance and does not require such a high 
degree of biocompatibility, since it is not in contact with any human tissue. The 
chemical composition of both materials is described in Table 4, meeting the 
requirements of ISO5832-2269 and ASTM F67270 for CP4 Titanium and 
ISO5832-3271 and ASTM F136272 for GR5 Titanium. 
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    A)                          B) 

Figure 69. Main elements of a screw-retained dental restoration. A, Implant-
supported restoration. B, Transepithelial-supported restoration. 

Table 4. Chemical composition of materials used in implant and prosthetic 
component manufacturing process. 

Ti 6Al 4V ELI (GR5 Titanium) CP4 Titanium 
Composition Wt. % Composition Wt. % 

Al 5.5–6.5 N(max) 0.05 
V 3.5–4.5 C(max) 0.08 

Fe(max) 0.25 Fe(max) 0.5 
O(max) 0.13 O(max) 0.4 
C(max) 0.08 H(max) 0.0125 
N(max) 0.05 - - 
H(max) 0.012 - - 

2.1.2 Coefficients of friction 

Measurements of coefficients of friction of contact surfaces between the 
implant and the prosthetic components were performed in order to properly 
characterize the contact behavior in the FE models that will be explained in 
section 2.2.2. Moreover, torque-preload equation3,46 must be also fed by the 
values of these coefficients of friction so that the screw preload is properly 
determined as described in section 2.2.5. Both contact behavior and screw 
preload were used in the FEA explained further below. 

Two types of contacts were analyzed. On the one hand, the contact between 
the screw surfaces, that are made of Ti6Al4V ELI with a WCC coating, with 
the inner part of the implant and abutment, that are made of CP4 Titanium. On 
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the other hand, the contact between the implant, made of anodized CP4 
Titanium, and the abutment, made of non-anodized CP4 Titanium. 

The tests were performed in the MicroTest SMT-A/0200 pin-on-disk 
tribometer shown in Figure 70A. The disks were made of CP4 Titanium 
(representing both the inner part of the implant and the abutment) while the 
pins were made of WCC coated Ti-6Al4V ELI (representing the prosthetic 
screw) and anodized CP4 Titanium (representing the implant connection). As 
shown in Figure 70B, the end of the pin used is rounded (3mm diameter). 1N 
load was applied on the pin in order to obtain a pressure value similar to the 
one that the prosthetic components are subjected to according to the FEA 
results obtained in this study.273 

A) B) 

Figure 70. Pin-on-disk test. A, pin-on-disk tribometer MicroTest SMT-A/0200. B, 
Detail view of the test. 

Table 5 shows the coefficient of friction values obtained in each test, with 0.17 
being the mean value for the screw-implant and screw-abutment contacts, and 
0.21 the mean value in the case of the implant-abutment contact surface. These 
values are the ones used to define the contacts as well as for preload 
determination in section 2.2. 
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Table 5. Coefficients of friction values measured in the pin-on-disk test. 

Implant-abutment contact Screw-implant and screw-abutment 
contacts 

Test Number Coefficient of friction Test Number Coefficient of friction 
1 0.220 1 0.162 
2 0.208 2 0.237 
3 0.237 3 0.151 
4 0.189 4 0.134 
5 0.196 5 0.175 
6 0.197 6 0.162 
7 0.201 7 0.237 
8 0.224 - - 
9 0.181 - - 

Mean value: 0.21 Mean value: 0.17 
Std Dev: 0.02 Std Dev: 0.04 

2.2 Finite Element models of dental restorations 

As mentioned at the beginning of the chapter, various FEAs were carried out 
throughout this PhD Thesis, studying different phenomena, with different FE 
models of dental restorations used for this purpose. However, all of them are 
similar, with small variations between one model and another. These variations 
can be the geometry of the dental restoration, the preload of the screw, the 
external load applied, and similar aspects. 

Regarding the output obtained from the FEA, in Chapter 3 and 7 only the 
contact moment and force reactions are recorded from the FEA performed, 
while in Chapter 5 a more finely meshed FE model is used to obtain, in a very 
precise way, the effective stress at the notch where the failure begins. 

As a whole, this section serves as a guide to explain the FEA performed on 
dental restorations by using Ansys Workbench 19 R1 software that will be used 
throughout the document. 

2.2.1 Geometry and materials 

In the FE models used in this PhD Thesis, it was decided to model only half 
geometry (see Figure 71) taking advantage of the symmetry of the load and 
geometry, which saves computational cost. Indeed, the threads are helical, and 
therefore the geometry is not fully symmetrical. However, it was decided to 
model the threads of the prosthetic screw and the internal threads of the 
implant as cylindrical (axisymmetric) rather than helical, since preliminary 
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analyses showed that this simplification resulted in an error of less than 5% in 
terms of force and moment reactions in the prosthetic screw. 

The materials mentioned in section 2.1.1 were assigned to the implants and 
prosthetic components modelled. The materials were modelled as linear elastic 
materials, with E=103 GPa, ν=0.35 for CP4 Titanium and ν=0.31 for Ti6Al4V 
ELI. 

Regarding dental restoration geometry, the implant must be embedded in a 
specimen holder made of steel according to ISO 14801141 (see section 1.6.1). 
This specimen holder must have a hole with the same diameter as the implant 
body diameter plus 0.05mm. The specimen holder is 10mm high so that the 
implant protrudes 3mm as required by the standard (since all the implants tested 
will be 13mm long). 

The external threads of the implant are the only ones that are not modified with 
respect to the original geometry, i.e. they remain helical. 

Regarding the abutment, the only simplification that is carried out is to cut it at 
a height of 8mm from the IAC (or 11mm from the specimen holder) in order 
to apply the load directly at that height specified in the above mentioned ISO 
14801141 (see section 1.6.1), avoiding the use of a hemispherical device, which is 
used in the experimental tests that will be explained later on. Finally, the 
prosthetic screw receives two horizontal cuts in the shank. This will serve to 
apply the preload as will be explained in section 2.2.5. Figure 71A shows the 
modeled geometry for an implant-supported restoration. 

Finally, if a transepithelial component is added to the restoration, the 
transepithelial sleeve will not undergo any simplification while the 
transepithelial screw undergoes the same simplifications mentioned for the 
screw used in implant-supported restorations, these being, cylindrical threads 
and two horizontal cuts in the shank for preload introduction. In the same way, 
the second prosthetic screw used in transepithelial-supported restorations will 
undergo the same two simplifications as well. Figure 71B shows the modeled 
geometry for a transepithelial-supported restoration. 
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A) B) 

Figure 71. FE models of dental restorations. A, Implant-supported restoration. B, 
transepithelial-supported restoration. 

2.2.2 Contacts 

Contacts are modelled as frictional, using the coefficients of friction obtained 
in section 2.1.2. Hence, a coefficient of friction of 0.17 is set for contacts 
between the prosthetic screw and the inner part of the implant and abutment 
and a coefficient of friction of 0.21 is set for the IAC contact surface. In the 
experimental setup, the specimen holder is filled with an embedding material 
(Loctite 401) as suggested in ISO 14801.141 This boundary condition is modelled 
as a frictional contact (with a coefficient of friction of 0.5 and adjust to touch 
restriction) so that vertical movement is allowed, allowing material deformation 
when preloaded and compressed, but not allowing lateral movement. 

2.2.3 Mesh 

The mesh presented in this section (see Figure 72) has been determined using 
sensitivity analysis, so that it provides very similar results, in terms of moment 
and force reactions on the screw, to finer meshes, but with an optimal 
computational cost. 

The specimen holder is meshed with 1mm second order tetrahedra with a 
refinement of up to 0.15mm element size on the implant contact face. The rest 
of the parts are meshed with second order hexahedra. The implant is meshed 
with 0.1mm elements, with a refinement of 0.05mm on the surface of the 
internal threads. The abutment is meshed with 0.15mm elements, taking 
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advantage of the simplicity of the geometry. The screws, except for the threads, 
are meshed with 0.13mm elements. Finally, the screw threads are meshed with 
0.1mm elements and with a refinement of 0.05mm on the contact surfaces. In 
the case of transepithelial-supported restorations, the body of transepithelial 
components should be meshed with 0.13mm elements (see Figure 73). Figure 
74 shows closer views of both meshes presented in this section. 

 

Figure 72. Mesh of a FE model of an implant-supported restoration. 
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Figure 73. Mesh of a FE model of a transepithelial-supported restoration. 
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A) B) 

Figure 74. Close views of meshes of the FE models. A, Implant-supported 
restoration. B, Transepithelial-supported restoration. 
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2.2.4 Boundary conditions 

Fixed support is applied to the model at the base and side of the specimen 
holder as well as at the base of the implant (see Figure 75). In addition to this, 
since only half geometry is modeled, the symmetry condition is applied by 
imposing a zero-displacement condition on the axis perpendicular to the 
symmetry plane (red axis in Figure 75) and free on the other two axes. 

 

Figure 75. Boundary conditions of the model. 

2.2.5 Screw preload and external loads 

FEAs consist of two load steps (three steps in the case of transepithelial-
supported restorations). In the first step, the screw (the lower screw in the case 
of transepithelial-supported restorations) is preloaded by using a pretension 
section, creating an initial axial load that corresponds to its tightening torque. 
The preload values 𝐹௣ are calculated from the torque-preload relationship in 
equation (15), obtaining equation (131). For screws with a countersunk head, 
equation (132) must be used. 

𝐹௣ =
𝑇்

𝜇௛ · 𝑟௛ + 𝜇௧ ·
௥೟

ୡ୭ୱ ఈ
+ tan 𝛽 · 𝑟௧

 (131) 

𝐹௣ =
𝑇்

ఓ೓·௥೓

௖௢௦ఘ
+ 𝜇௧ ·

௥೟

ୡ୭ୱ ఈ
+ tan 𝛽 · 𝑟௧

 (132) 

Where, as already explained in section 1.2.4, 𝐹௣ is the screw preload, 𝑇் is the 
screw tightening torque, 𝜇௛ and 𝜇௧ are respectively the coefficients of friction 
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of the screw head and thread contacts, 𝛼 is the half-angle of the thread profile, 
𝛽 is the helix angle, 𝜌 is the screw head contact surface angle, and finally, 𝑟௛ and 
𝑟௧ are respectively the screw head and thread mean contact radii that may be 
obtained from equations (13) and (14). When a transepithelial-supported 
restoration is to be analyzed, a second step is used to preload the upper screw. 
Note that both screws cannot be preloaded in the same load step since this is 
not a realistic situation. In experimental tests, first the lower screw is tightened 
and then the upper one will interact, during its tightening, with the lower one, 
altering its preload. Hence, applying the preloads in different load steps will 
reproduce the real performance in a more accurate fashion. It must be 
mentioned that since half geometry was modelled, half the preload shall be 
applied as well. Finally, in a last load step the external load is applied. This step 
will vary depending on the phenomenon that is to be analyzed. In short, when 
aiming to reproduce fatigue tests as will be seen in Chapter 3 and 5, the load 
will be applied at 30º on the top of the sectioned abutment (at 8mm from the 
platform, as shown in Figure 76A). An increasing load slope must be applied 
from zero to the maximum testing load needed, so that intermediate values are 
also available for further calculations. If screw loosening is to be reproduced as 
explained in Chapter 7, an increasing transverse load is applied at the bottom 
of the abutment from zero to the maximum testing load needed. To ensure load 
application at the desired point, a ring was modelled surrounding the abutment 
at 1mm from the implant-abutment platform and the load was applied on it 
(see Figure 76B). Again, a half load must be applied since half geometry is 
modelled. 

 
             A)                    B) 

Figure 76. Load application. A, Fatigue load case. B, Screw loosening load case. 
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2.2.6 Specific Features of the Finite Element models used in 
Chapter 5 

As mentioned in the introduction of section 2.2, most FE models in this PhD 
Thesis are used to obtain the moment and force reactions on the prosthetic 
screw, either to analyze the fatigue of the screw itself (Chapter 3) or to analyze 
the self-loosening phenomenon (Chapter 7). In these cases, since the FEA 
output is the same, the FE models differ minimally. However, in Chapter 5, the 
fatigue behavior of the dental implant is analyzed and, for this purpose, the 
effective stress at the notch where implant failure occurs is obtained. Therefore, 
there are some elements that differ from the FE model explained so far, which 
are discussed below. 

First, the whole geometry of the dental restoration must be modeled, since the 
external thread of the implant is not simplified (is not assumed to be cylindrical), 
with the notch of the thread being the critical point at which the stresses are 
studied. 

Secondly, the mesh also undergoes some modifications. The abutment and the 
screw-pretension section are the only bodies in which second order hexahedra 
are used. On the rest of the bodies, second order tetrahedra are used to favor 
transitions between different element sizes. The specimen holder is meshed 
with 1mm element size with a refinement up to 0.15mm element size on the 
implant contact surface. The abutment is meshed with 0.1mm elements. The 
screw is entirely meshed with 0.1mm elements with a refinement of 0.025mm 
on the thread contact faces. The implant is meshed with 0.1mm elements, with 
a refinement of 0.025mm on the surface of the internal threads. Moreover, the 
implant has a progressive spherical refinement in 4 phases with the center of 
the spheres located at the root of the notch where the crack starts. The 
refinement starts with a first sphere with a radius of 0.3mm and an element size 
of 0.03mm, followed by a second sphere with a radius of 0.2mm and an element 
size of 0.008mm, continuing with a third sphere with a radius of 0.08mm and 
an element size of 0.004mm, and concluding with a final sphere with a radius 
of 0.02mm and an element size of 0.001mm. Figure 77 shows the meshed 
model presented in this section. 

Regarding boundary conditions, evidently, since the whole geometry is 
modeled, no symmetry conditions are necessary and only a fixed support is 
applied to the model at the base and side of the specimen holder as well as at 
the base of the implant. In the same way, both the entire external load and entire 
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screw preload shall be applied, rather than the half load. The external load is 
applied as shown in Figure 76A, following the ISO 14801 standard.141 

 
A) B) 

Figure 77. Model of an implant-supported restoration with a sphere refinement. A, 
section view. B, Detail of the progressive spherical refinement. 

2.3 Finite Element model of standardized 
specimens 

In Chapter 5, FEA are performed on CP4 Titanium standardized specimens. 
These FEAs simulate the conditions of experimental uniaxial fatigue tests on 
hourglass specimens. It is, therefore, a relatively simple FEA with the only 
complication being a progressive spherical refinement that is applied to obtain 
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accurate stresses at the notch at which the crack occurs, as was performed on 
the implants in the previous section. 

This section serves as a guide to explain the FEAs performed on standardized 
specimens by using Ansys Workbench 19 R1 software that will be used in 
Chapter 5. 

2.3.1 Geometry and materials 

Regarding the geometry, only a quarter of the specimen is modeled, taking 
advantage of the axisymmetry of the geometry and the axial load. The 
axisymmetric 2-dimensional model was not used since it would be incompatible 
with the Volume Method (sphere) applied to obtain the effective stress for 
fatigue calculations, explained in detail in Chapter 5. Figure 78 shows the 
modeled geometry of a specimen. Regarding the material, as the goal is to 
characterize the material from which the implants are made, the specimens have 
been manufactured from the same CP4 Titanium bars used to manufacture the 
implants as well, whose properties are presented in Table 4 and are modeled by 
using a linear elastic material of E=103 GPa and ν=0.35. 

 

Figure 78. FE model of quarter of the specimen geometry. 

2.3.2 Mesh 

Model mesh is performed by means of second order tetrahedra. Specimen 
shoulders are meshed by using an element side of 0.3mm while specimen neck 
is meshed by using an element size of 0.1mm. As was done for implants in 
section 2.2.6, the specimen has a progressive spherical refinement in 4 phases 
with the center of the spheres located at the root of the notch where the failure 
starts. The refinement starts with a first sphere with a radius of 0.3mm and an 
element size of 0.03mm, followed by a second sphere with a radius of 0.2mm 
and an element size of 0.008mm, continuing with a third sphere with a radius 
of 0.08mm and an element size of 0.004mm, and concluding with a final sphere 
with a radius of 0.02mm and an element size of 0.001mm. Figure 79 shows the 
meshed model. 
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(A) 

 

(B) 

 

(C) 

Figure 79. Mesh of a notched specimen FE model. A, Complete model. B, Closer 
view of the notch. C, Detail of the progressive sphere refinement. 

2.3.3 Boundary conditions and external load 

Fixed support is applied to the specimen model at the base of one of the 
shoulders while the fourth part of the desired external axial load is applied at 
the base of the opposite shoulder. Moreover, since a quarter of the geometry is 
modelled, two symmetry conditions are applied by imposing a zero-
displacement condition on the axes perpendicular to the longitudinal sections 
and free on the other two axes (see Figure 80). 

 

Figure 80. Boundary conditions of the model and external load application. 
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2.4 Test Benches 

In addition to the tribometer used to measure the coefficients of friction among 
dental restoration contact surfaces (see section 2.1.2), several test benches have 
been used for the different experimental tests carried out throughout this PhD 
Thesis. On the one hand, all the fatigue and static fracture tests on implants 
were performed on an INSTRON E3000 Electropuls test bench. On the other 
hand, screw loosening tests on dental restorations and fatigue tests on 
cylindrical specimens were performed on an INSTRON 8801 test bench. 

2.4.1 INSTRON E3000 Electropuls for fatigue tests 

All fatigue tests of all dental restorations tested throughout this PhD Thesis 
(which will figure in Chapters 3, 4 and 5) have been performed on the 
INSTRON E3000 Electropuls fatigue test bench (see Figure 81A) located at 
BTI facilities. All fatigue tests have been performed according to ISO 14801 
standard,141 the requirements of which are explained in section 1.6.1. The bench 
is equipped with a specimen holder capable of imposing different angles to the 
implant (see Figure 81B). In order to fulfill the requirements of the ISO 14801 
standard,141 the tooling was always set at 30º. The dental restoration will mount 
a hemispherical device on the top that will transmit the load coming from the 
actuator block (see Figure 81B). The block is able to transmit the vertical load 
avoiding lateral restrictions thanks to a slide composed of rollers. This load is 
generated by a linear motor capable of producing a force of up to 3kN measured 
at any time by means of a DYNACELLTM 2527-153 load cell with a load range 
of ±5kN. 

To perform the test, the implant is positioned in the hole of the specimen 
holder and glued with an embedding material (Loctite 401). Then, the abutment 
is mounted and, finally, the prosthetic screw is tightened to the corresponding 
tightening torque. Finally, the hemispherical device is positioned and the 
corresponding fatigue load is applied. 
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A) B) 

Figure 81. INSTRON E3000 Electropuls. A, General view with a generic set-up. 
Image courtesy of Instron B, Set-up for dental implant testing according to ISO 
14801.141 

2.4.2 INSTRON 8801 for screw loosening and standardized 
specimens fatigue tests 

The INSTRON 8801 hydraulic test bench (see Figure 25A), with a higher 
capacity (loads up to 100kN) and higher versatility than the previous one, is 
located in the laboratory of the Mechanical Engineering Department of the 
University of the Basque Country UPV/EHU in Bilbao (Spain) and has been 
used to perform two types of tests. On the one hand, loosening tests have been 
performed on dental restorations, which will be discussed in Chapter 7. On the 
other hand, fatigue tests have been performed on standardized specimens for 
the analysis of implant fatigue, which will be discussed in Chapter 5. 

2.4.2.1 Dental restoration screw loosening tests 
As will be demonstrated in Chapter 7, the experimental screw loosening tests 
performed on dental restorations aim to apply a transverse displacement 
between the elements joined by the prosthetic screw (implant and abutment). 
For this purpose, a special fixture tooling was designed so that the specimen 
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holder (along with the dental restoration) is positioned horizontally (see Figure 
82). 

  
A) B) 

 
C) 

Figure 82. A, Assembly of the fixture tooling designed for self-loosening tests. B, 
Drawing of the fixture tooling. C, Section view. 

As explained in section 2.4.1, the implant is inserted into the specimen holder 
and fixed by using an embedding material (Loctite 401). Then, the abutment is 
positioned and clamped into the implant by means of a properly tightened 
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prosthetic screw. A steel ring was installed around the abutment outside surface 
at 1mm from the IAC and was held by the loading block without clearance so 
that the imposed alternating external load is transmitted properly to the bottom 
of the implant. Finally, the specimen holder is mounted on the fixture tooling. 

As previously mentioned, the INSTRON 8801 test bench is able to perform a 
load of up to 100kN. Nevertheless, the loads needed for dental restorations 
tests are much lower. Hence a special load cell, DYNACELL 2527-129, with a 
load range of ±2kN was mounted to measure the applied load more precisely. 

2.4.2.2 Standardized specimen fatigue tests 
As will be seen later in Chapter 5, several experimental tests have been carried 
out on CP4 Titanium standardized specimens to characterize the fatigue 
behavior of the material of dental implants and to study the influence of stress 
concentration caused by different notches. These results have been used in the 
multiaxial fatigue study carried out to analyze the fatigue of dental restorations 
where the critical component is the implant. Figure 83 shows the hourglass 
geometry chosen for the specimens obtained from the same bars of material 
from which dental implants are made, which have been axially tested according 
to the ASTM E-739 standard.64 The specimens are clamped by means of grips 
(see Figure 84) which distribute the forces along the shoulders of the specimen. 
Since the specimens are very thin (6.9mm diameter since they are manufactured 
from 7mm diameter bars), they are more likely to incur non-negligible damage 
due to small misalignments. 

 
 

A) B) 

Figure 83. Hourglass shaped specimens made of CP4 Titanium. A, Whole specimen. 
B, View of the notch. 
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A) B) 

Figure 84. Test bench set-up for specimen fatigue tests. A, General view. B, View of 
the specimen and grips. 

In a preliminary experimental test campaign performed along with the DUMAS 
research team at the ENSAM University, whose facilities are located in 
Bordeaux-Talence (France), it was found that a small misalignment between 
specimen and axial force can cause unpredictable fatigue life values, making the 
correct characterization of the material difficult. Figure 85A, shows the failure 
of a specimen in a Zwick/Roell Amsler 150 HFP 5100 where, after failure, the 
stresses are released and each half of the specimen is aligned to a different side. 
This indicates that initially the specimen (whole) was supporting a bending 
moment along with a transverse load. To correct this, it was decided to use the 
INSTRON 8801 from the UPV/EHU facilities, taking special care to choose a 
frame and actuator position so that the specimen is positioned as closely as 
possible to the load application. Preliminary tests showed that in this case the 
alignment of the two halves of the specimen does not change when the stresses 
due to the rupture are released (see Figure 85B). To ensure that this alignment 
does not change throughout the test campaign, a tooling was installed to limit 
the degree of rotational freedom that the lower head (actuator) had since it was 
assumed that a possible twist could result in an eccentricity in the assembly. 
Figure 86 shows the assembly of the tooling that limits the rotation of the lower 
head by means of a guide and bearings. 



110  Mikel Armentia 

 

  
A) B) 

Figure 85. Specimen failures. A, Specimen with a non-negligible misalingment. B, 
Aligned specimen. 

A) B) 

Figure 86. Designed tooling to limit the rotation of the lower head (actuator). A, 
General view. B, Close up view. 
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2.5 Development of an innovative fatigue test 
bench prototype 

Throughout this PhD Thesis, numerous experimental fatigue tests have been 
performed on dental restorations using commercial test benches such as those 
described in section 2.3. These machines are powerful and very versatile test 
benches, as they can be adapted to a multitude of different tests: automotive 
mechanical components, material specimens, dental implants, or even the 
damping of sport shoes or computer keyboards, among many other varied 
applications. Usually, these machines are equipped with hydraulic actuators or 
linear motors capable of generating very high loads and different waveforms 
adapting to the specific requirements of each particular test. This is why generic 
commercial test benches of this type are technologically complex and expensive 
to purchase and maintain. On the other hand, these machines are normally 
capable of testing only one implant at a time. Taking into account that ISO 
14801141 does not allow testing at a frequency of more than 15Hz, a fatigue test 
on a single implant can take up to almost 4 days (setting a 5 million cycles run-
out as specified in the standard). Therefore, if the frequency of testing cannot 
be increased, different implants need to be tested at the same time if the 
timescales are to be shortened. 

Therefore, within the framework of this PhD Thesis, a simple and, therefore, 
affordable to acquire and maintain test bench design was developed that allows 
for various implants to be tested at the same time in compliance with the 
requirements of the ISO 14801 standard.141 The bench presented in this section, 
instead of using hydraulic actuators or linear motors, uses a mechanism based 
on the cam-follower concept (see Figure 87A), inspired by the radial engines 
used in aviation (see Figure 87B). 
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A) B) 

Figure 87. A, Schematic of a cam-follower mechanism. B, Schematic of a radial 
engine used in aviation. 

2.5.1 Mechanism description 

The bench is governed by a cam that rotates by means of a 1100W electric 
motor. This cam has three lobes and a sinusoidal profile with a distance between 
peak and valley of 20mm. A follower (see Figure 88) will be responsible for 
transforming the rotary motion of the cam into alternating linear displacement. 
This follower, together with the loading block, which will be presented later, is 
assembled on a linear guide so that the displacement is limited to a single 
direction. Since the cam has 3 lobes, the follower will impose three cycles of 
linear displacement with a total amplitude of 20mm for each rotation of the 
cam. 

A calibrated compression spring is attached to the follower (see Figure 88). This 
spring will exert a force proportional to the displacement imposed by the 
follower. Note that the stiffness of the spring remains constant over the range 
of displacement. Therefore, if the displacement imposed by the cam is 
sinusoidal, the function of the force generated by the spring will also be 
sinusoidal. On the other side of the compression spring, there is a DDEAI-
450N-002-000 load cell from Applied Measurements with a ±450N force range. 
This is followed by the loading block, whose sole function is to transmit the 
load to the implant in an appropriate manner. According to ISO 14801,141 the 
restoration must be able to deform in the direction perpendicular to the load 
application without force restrictions. To achieve this, the block has a movable 
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plate that moves freely in the vertical direction and rollers that reduce the 
friction to a negligible value (see Figure 89). 

 

Figure 88. Detail of the mechanism of one arm of the test bench. 

The tested restoration may be found in contact with the loading block, which 
is housed in a specimen holder (see Figure 89) embedded 10mm and fulfilling 
the distances set out in ISO 14801 standard141(see section 1.6.1). 

Lastly, the removable inclined plane (see Figure 88 and Figure 89) imposes the 
30º inclination at which the dental restoration must be with respect to the load, 
in addition to allowing disassembly of its base to make it easier to remove the 
specimen once it has been tested and to fit a new one. This base is screwed to 
the table so that the total distance of the assembly can be varied to adapt to the 
length of the dental restoration. 

 
A) B) 

Figure 89. A, Loading block with the removable plate in contact with the specimen. 
B, Detailed view of the removable plate and the rollers. 
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2.5.2 Mechanical considerations 

In the design stage of the fatigue test bench, various mechanical analyses were 
performed to ensure that the bench works properly. One critical aspect is the 
choice of the spring. As seen before, the spring, and specifically its stiffness, is 
responsible for applying the final force of the test. For this reason, it must be 
ensured that it works properly. On the one hand, springs were designed to have 
infinite fatigue life. On the other hand, bearing in mind that the working 
frequency is 15Hz, it was checked that their first natural frequency is 15 to 20 
times higher in order to ensure quasi-static working conditions. These 
calculations have been performed according to reference literature.43 

As required by the ISO 14801 standard,141 the load must vary between the 
maximum load and 10% of that value. Therefore, the compression spring when 
the follower passes through the cam valley (0mm displacement) must apply a 
force of 10%; i.e., the springs must start the test pre-compressed. Hence, an 
initial compression of approximately 2.22mm is applied (it is compressed until 
the load cell marks 10% of the test load) and during the test the aforementioned 
20mm are applied, giving a total of 22.2mm of total compression of the spring. 
As mentioned above, the base on which the inclined plane is bolted to the 
bench, so it can be untightened and moved by pushing the restoration until 
adequate precompression is achieved, and then, tightened again. 

The bench has been designed to characterize the fatigue behavior of 
restorations over narrow and medium implants, such as those used to replace 
incisors and canines. Therefore, springs capable of applying test loads between 
100 and 350N have been chosen. Table 6 shows the springs designed for this 
test bench and their stiffness and maximum working loads. If dental 
restorations requiring a higher load range are to be tested, it will probably be 
necessary to vary the dimensions of the bench to accommodate larger springs 
or to vary the dimensions of the cam. 

Table 6. Stiffness and maximum working loads of the springs used on the test bench. 

 Load [N] 100 150 200 250 300 350 
Spring stiffness [N/mm] 4.5 6.8 9.0 11.3 13.5 15.8 

In addition to the spring calculations, the rigid body dynamics of the 
mechanism have been studied. Figure 90 shows that the resultant force (red) of 
the sum of the follower inertial force (blue) and the spring reaction force (green) 
is always directed towards the cam. For this reason, there is no gap at any time 
during the test between cam and follower. Moreover, the contact between the 
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specimen and the loading block is also ensured since the displacement of the 
block is negligible (less than 1mm) as are the inertial forces.274 

  
A) B) 

Figure 90. Rigid body dynamics of the mechanism of one arm of the test bench. A, 
Diagram. B, Schematic with force directions. 

Finally, the effect of friction of the linear guides on the test force has been 
analyzed. This friction occurs on the two components attached to the guide: 
the follower and the loading block. On the one hand, the frictional force 
between the guide and the follower is absorbed by the rotating motor, since this 
displacement is applied by the cam, so this friction does not affect the test load. 
On the other hand, the friction between the guide and the loading block affects 
the load reaching the restoration. Therefore, the friction force of the block has 
been measured by means of a load cell, obtaining a maximum value of 5N. For 
the lowest test load designed for this bench, i.e. 100N, this friction force value 
is lower than 5%, complying with ISO 14801141 specifications. 

2.5.3 Overall description of the test bench 

Now that the elements that compose each arm of the bench and the mechanical 
considerations are understood, the complete bench is presented (see Figure 91). 
As can be seen, the bench is made up of 8 arms controlled by the same cam 
(and, therefore, by the same rotary motor). 
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Figure 91. Top view of the test bench. 

As previously mentioned, the cam was designed with 3 lobes, in accordance 
with a study carried out to minimize the resistant torque received by the rotating 
motor. In this study it was seen that, for the 8-arm design, with the 3-lobe cam 
the reaction forces generated in the cam were more balanced. As a result, the 
engine will be subjected to less resistant torque. It is worth mentioning that if 
different test loads are used on each arm, as discussed below, these forces will 
be less balanced. Whatever the case, the power of the motor (1100W) is more 
than enough to not have to worry about this problem. 

Regarding signal processing, the bench is equipped with a Beckhoff C6920-
0060 industrial PC that receives the signal from the load cells, the signal from 
the rotary motor encoder and the signal from the limit switches. The software 
displays the current number of cycles of the test, the test frequency, and the 
revolutions per minute of the cam. In addition to this, it shows whether each 
dental restoration has failed or is still functional. In the event of a failure, it 
records the number of cycles until failure (see Figure 92). 
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Figure 92. Software interface of the test bench. 

The ISO 14801141 standard recommends testing at least 2 and preferably 3 
specimens at each of at least 4 load levels. Besides this, to obtain reliable data, 
the ASTM62 standard recommends the use of 12 to 24 specimens and at least 4 
specimens and 4 load levels (75% replication) to determine the finite life of a 
material or component (as explained in section 1.3.1.1). Therefore, with the test 
strategy presented in Figure 93, a finite life curve of 16 points could be obtained 
with the duration of only two tests. We would therefore be reducing the time 
by 8 times compared to a conventional fatigue bench. 

 

Figure 93. Example of testing to obtain 16 experimental results. 
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2.5.4 Validation of the new test bench 

To verify that the bench presented works correctly, experimental tests have 
been carried out on the notched pins of Figure 94, which emulate a dental 
restoration, but for a cheaper price. In addition to its lower cost, using a single 
piece which concentrates its failure in the notch offers clearly less dispersion in 
fatigue life than dental restorations with all their components and the dispersion 
introduced by the preloading of the screw(s). 

A) B) 

Figure 94. Notched pins for test bench validation. A, General view. B, Notch view. 

The pins serve to obtain the F-N (load versus cycles) curve of the pins on 
different machines, two MTS-858 Mini Bionix II (from BTI facilities), the 
INSTRON 8801 (see section 2.4.2), and the fatigue bench presented. Figure 95 
shows the fatigue results (points) of each fatigue test bench along with the linear 
F-N models obtained according to the ISO 14801 standard.141 Moreover, 95% 
confidence bands of the F-N model of the new test bench are provided. It can 
be seen how all the linear models fall within the confidence bands of the new 
test bench and, therefore, they can be assumed to be equal. As a result, it can 
be confirmed that the performance of the new test bench presented is 
comparable to other test benches on the market. 

This bench is a prototype that was made at the beginning of the PhD Thesis, 
since fatigue testing was expected to bottleneck in this research. However, the 
complete availability of test benches by the Mechanical Engineering 
Department of UPV/EHU with the INSTRON 8801 and by BTI with the 
INSTRON E3000 and the MTS-858 finally made use of the prototype 
unnecessary. 

The patented prototype (Patent number: P201830801)275 is currently pending 
certification by a certified organization and is also awaiting a company 
interested in its commercial exploitation. 
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Figure 95. Fatigue data points and linear regression models of all tests benches 
compared. 
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3 Fatigue behavior of the 
prosthetic screw: life 

prediction methodology 

As explained in section 1.6, there are numerous studies in specialized literature 
that evaluate the fatigue behavior of dental restorations from different 
approaches. On the one hand, there are studies that evaluate the performance 
of the restorations in patients' mouths (in-vivo) by means of retrospective 
studies. These studies do not provide much information beyond whether or not 
the restoration has satisfactorily withstood the particular conditions that the 
patient has imposed on it over a more or less prolonged period of use. Secondly, 
many studies perform experimental in vitro fatigue tests according to 
ISO14801.141 As a result of these tests, the F-N curve of the dental restoration 
is obtained, which provides the number of cycles N supported by the implant 
as a function of the cyclic load F applied according to the test conditions of the 
standard (see section 1.6.1). Thus, in these studies, F-N curves are obtained for 
different types or models of dental restorations (or more usually the N duration 
for a single F value), and the comparison establishes which restoration performs 
better under fatigue. Based on this, these publications attempt to infer which 
material, type of IAC, preload level, platform diameter, etc. provides the best 
fatigue performance in dental restorations. This type of work, based exclusively 
on simply comparing fatigue durations, is of interest to clinicians when deciding 
on a particular dental restoration model, and is therefore very well received in 
journals whose target audience are these professionals. Finally, there are studies 
that, in an attempt to go a step further than purely experimental studies, 
perform FE structural analyses (sometimes exclusively or, in the best of cases, 
supplementing it with experimental fatigue tests). These FEAs make it possible 
to see the stress status of the dental restoration and therefore detect the critical 
component and its potential failure section based on where the peak stress 
occurs under the maximum load state. However, these studies are not very 
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rigorous, since in fatigue the load is cyclic and therefore fatigue behavior is not 
determined by the maximum stress at a point, but by the stress variation. In 
addition to this, aspects such as notch sensitivity should also be considered if 
there is a concentration of stresses in the critical section, as is the case in dental 
restorations. 

In short, the literature is full of retrospective in-vivo and experimental in-vitro 
studies comparing the fatigue behavior of different dental restorations to 
determine which has a longer fatigue life. Although, as mentioned above, these 
studies may be interesting (and perhaps sufficient) for clinicians, they far from 
explain why the failure occurs on one component or another, and which 
parameters relating to design (geometry, material, etc.), assembly (screw 
preload) or operation (nature of the loads) have the greatest effect on fatigue 
behavior. A study of this type would make it possible to understand fatigue 
failure in dental restorations, and on this basis generate knowledge and even 
develop analysis and design tools that would make it possible to optimize 
existing designs to achieve dental restorations with enhanced fatigue behavior. 
Consequently, the aim of this chapter is specifically to study the fatigue 
phenomenon in dental restorations from a mechanical perspective that 
provides an answer to these questions. As a main contribution, a methodology 
capable of predicting the fatigue life of dental restorations in which the critical 
element is the prosthetic screw is described, which happens on many occasions 
as we have seen in section 1.6.1. As a secondary contribution of this chapter, 
some conclusions on the effect of the most important geometrical parameters 
on the fatigue behavior of dental restorations in which the critical component 
is the prosthetic screw have been derived from the experimental tests carried 
out throughout this PhD Thesis. These same conclusions, and other additional 
ones, can be drawn from the prediction methodology developed without having 
to resort to experimental tests, thus making the methodology an efficient and 
versatile tool for designing dental implants under fatigue.  

Accordingly, section 3.1 presents the aforementioned methodology for 
estimating the fatigue life of dental restorations where the critical component is 
the prosthetic screw. This is the case, within the BTI catalog that we will use, 
of dental restorations with a regular and wide implant body diameter. In dental 
restorations with narrow implants, by contrast, the implant itself will be the 
critical component, calling for another approach for fatigue calculation, which 
is presented in Chapter 5. Once the methodology has been developed, its 
accuracy in estimating the fatigue life of different dental restoration designs is 
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verified in section 3.2. In section 3.3, conclusions regarding the presented 
methodology are discussed. Finally, in section 3.4, the experimental tests 
performed for the validation of the fatigue life prediction methodology have 
been used to determine the effect of different variables on fatigue behavior: 
tightening torque applied on the prosthetic screw, implant body diameter, 
implant platform diameter, connection type (internal versus external) and the 
addition of a transepithelial element to the restoration (the use of 
transepithelial-supported restoration versus implant-supported restoration). It 
should be mentioned that these same conclusions, and many others, could have 
been reached using only the fatigue prediction methodology. However, as these 
experimental tests have been necessary to validate the methodology, these tests 
have also been used to obtain conclusions regarding the effect of the different 
variables. 

3.1 Development of a fatigue life prediction 
methodology 

As mentioned in the introduction of this chapter, to develop the fatigue 
prediction methodology, on the one hand, a set of experimental fatigue tests of 
a particular dental restoration were carried out, applying different torque values 
on the prosthetic screw. On the other hand, FEAs were carried out to 
reproduce the conditions of these experimental tests from which the reaction 
forces and moments in the contact of the screw head have been obtained. Using 
simple calculations of the Theory of Elasticity, the nominal stresses in the screw 
failure section were obtained. Finally, both the durations obtained 
experimentally and the nominal stresses calculated from the reactions obtained 
by FEAs (mean and alternating components) were taken into account and it 
was found that Walker criterion could represent the behavior correctly. 
Therefore, a curve fitting procedure was performed to obtain Walker 
parameters for an optimal performance of the methodology. As a result, at the 
end of this section the methodology is presented in a more comprehensive 
manner. 

3.1.1 Experimental Fatigue Tests 

Several fatigue tests were performed on a BTI INTERNA IIPSCA4513 dental 
implant joined with an INPPTU44 prosthetic abutment by means of an 
INTTUH prosthetic screw (see Figure 96), from the BTI product catalogue. 
The assembly (from now on called IN-I4.5-P4.1) has an implant body diameter 
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of 4.5mm, a platform diameter of 4.1mm, and an internal butt-joint connection, 
everything joined by means of an M1.8 prosthetic screw. As explained in section 
2.4.1, the implant was placed in a specimen holder and fixed by means of an 
embedding material (Loctite 401). Then, the abutment was placed on the 
implant and the prosthetic screw was positioned and tightened. To ensure a 
wide range of mean stress characterization, three different tightening torque 
magnitudes were tested: 15, 25, and 35Ncm, with the last one being the value 
that BTI recommends. Finally, a hemispherical device was placed on the top of 
the abutment. The tests were carried out on an INSTRON E 3000 Electropuls 
fatigue test bench, following the ISO 14801 standard141 requirements, as 
explained in section 2.4.1. 

 

Figure 96. IN-I4.5-P4.1 dental restoration used for experimental tests. 

46 dental restorations were tested experimentally, with 13 failures occurring on 
the screw head (see Figure 97A), 30 in the first thread in contact (see Figure 
97B), and 3 survivals (runout of 5 million cycles). Figure 98 shows the fatigue 
results on an F-N curve (applied load versus fatigue cycles). Each marker color 
represents a different tightening torque while each marker shape corresponds 
to a different failure mode/survival. Screw head failures were found to be easily 
avoidable by changing the manufacturing process of the screw head socket as 
will be explained in detail in section 4.1. Thus, this work was only focused on 
the failures on the screw thread. Additionally, the runouts indicate that the 
tested load levels are not far from the fatigue limit, so it may be considered that 
the experimental tests are representative of the whole finite life of the screw 
and, consequently, of the whole dental restoration under study. Thus, Figure 99 
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shows again the experimental fatigue results of Figure 98 excluding both the 
survivals and the screw head failures, along with their corresponding linear 
regressions according to the ASTM E-739 standard.64 

 

(A) 

(B) 

Figure 97. Fatigue failure sections on the prosthetic screws of IN-I4.5-P4.1. A, Screw 
head. B, First thread in contact. 

 

Figure 98. Fatigue results of all fatigue tests performed on the IN-I4.5-P4.1 dental 
restoration. 
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Figure 99. F-N linear models of the IN-I4.5-P4.1 dental restoration at each of the 
three tightening torques (lines) along with the experimental fatigue results 
(markers). 

3.1.2 Finite Element Analysis 

Once the fatigue F-N curve of the IN-I4.5-P4.1 dental restoration has been 
obtained experimentally according to ISO14801,141 the next step is to obtain 
the stresses associated with each tested load 𝐹 from an FEA (see Figure 100A). 
As expected, it has been proven in preliminary analyses that under the test 
conditions of ISO 14801,141 the screw is subjected to a uniaxial nominal stress 
status, which is easy to calculate with the Theory of Elasticity formulations. This 
makes it possible to work with these nominal stresses instead of using the peak 
linear elastic stresses from the FEA. 

The nominal stresses have been calculated by considering the contact reactions 
at the screw head, i.e., the axial force 𝐹௔, the transverse force 𝐹௧, and the bending 
moment 𝑀 on section A of Figure 100B. 
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A) B) 

Figure 100. A, FE model of IN-I4.5-P4.1 dental restoration. B, Contact reactions on 
the screw head contact surface (section A) and fatigue failure section (section B). 

In order to obtain these contact reactions, a FEM of the IN-I4.5-P4.1 dental 
restoration was performed by following the procedure explained in section 2.2, 
that is, assuming half geometry, cylindrical screw threads, sectioning the 
abutment so that the 30º load shall be applied at 8mm from the implant 
platform, embedding the implant in a specimen holder, etc. Three different 
FEAs were performed varying the tightening torque: 15, 25 and 35Ncm as in 
the experimental tests. The screw preloads obtained for the INTTUH 
prosthetic screw (flat screw head) according to equation (131) were 349N for 
15Ncm, 581N for 25Ncm, and 814N for 35Ncm. As explained in section 2.2, 
since half geometry was modelled, half values of preloads were also applied; 
these are 174.5N, 290.5N, and 407N for 15Ncm, 25Ncm, and 35Ncm, 
respectively. In a second load step, the external load F was increased from 0 to 
400N. Again, half load must be applied for half geometry. Finally, the force 
reactions on the contact surface under the screw head were recorded (section 
A in Figure 100B). Figure 101 shows these moment and force reactions under 
the screw head for the three tightening torques under study. 
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A) 

B) 

C) 

Figure 101. Force reactions under the screw head (section A in Figure 100B). A, Axial 
force 𝑭𝒂. B, Transverse force 𝑭𝒕. C, Bending moment 𝑴. 

As mentioned in section 3.1.1, the failure section of the screw is the first 
engaged thread (section B of Figure 100B). Therefore, the next step is to 
transfer the forces from section A to section B. In this section, the axial 𝐹௔ and 
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transverse 𝐹௧ forces remain the same, unlike the bending moment that increases 
up to 𝑀 + 𝐹௧ · ℎ.  Figure 102 shows these forces transferred to the failure section 
(section B in Figure 100B) for the three tightening torques analyzed. The shear 
stresses generated by the transverse force 𝐹௧ were not considered in section B 
since their values are negligible compared to the values of the normal stresses 
(necessary condition to assume uniaxial behavior). 

A) 

 
B) 

Figure 102. Forces in the failure section (section B in Figure 100B). A, Axial force 𝑭𝒂. 
B, Bending moment 𝑴. 

Hence, the nominal uniaxial stress for each applied load 𝐹 in this critical section 
B is calculated by using equation (133). 

𝜎௡௢௠(𝐹) =
𝐹௔

𝐴
+

(𝐹௧ · ℎ + 𝑀) · 𝑟

𝐼
 (133) 
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Where 𝐴 and 𝐼 are the area and inertial moment of the critical section, 
respectively. The calculation of resistant area 𝐴 and inertial moment 𝐼 of a 
threaded part is slightly more complex than on a part with a constant section. 
For these cases, Bickford111 recommends an equation that assumes the nominal 
measurements of a metric. As is usual in metric standards, there are nominal 
dimensions of the threads but also maximum and minimum values, setting a 
range within metric dimensions may vary. These variations may be negligible 
for a large metric screw but in the case of a prosthetic screw (M1.8), any minimal 
variation in thread geometry may affect the value of the effective area, leading 
to an error in the calculation of the nominal stress. To avoid this, instead of 
using the equation proposed by Bickford,111 two simple FEAs were performed 
applying an axial load and a bending moment (vertical load that generates a 
bending moment) on an M1.8 threaded cylinder (with has exactly the same 
metric dimensions as the screw thread) as shown in Figure 103. Then, the values 
for the resistant area 𝐴 and inertial moment 𝐼 were obtained from the following 
classical expressions: 

𝜎 =
𝐹

𝐴
= 𝐸 ·

𝛿

𝐿
→ 𝐴 =

𝐹 · 𝐿

𝐸 · 𝛿
 (134) 

𝛿 =
𝐹 · 𝐿ଷ

3 · 𝐸 · 𝐼
 (135) 

Where 𝐸 is the Young modulus, 𝐿 is the initial length, 𝛿 is the deformation and 
𝜎 is the nominal stress. 

  
A) B) 

Figure 103. FEA performed to asses the parameters in equations (134) and (135). A, 
Axial case to calculate the effective area 𝑨. B) Bending case to calculate the inertia 𝑰. 

Then, the nominal stresses were worked out by means of equation (133). Figure 
104 shows the resulting nominal stress 𝜎௡௢௠ versus the applied load 𝐹 
calculated. Moreover, the stresses caused by the axial force and bending 
moment are also shown (the sum of both is the nominal stress). 
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Figure 104. Nominal normal stress (with axial and bending components) in the screw 
thread according to equation (133). 

As has been seen, the nominal stress of the prosthetic screw depends on the 
force 𝐹 applied on the top of the dental restoration. As explained in section 
1.6.1, after tightening the prosthetic screw, in the fatigue test according to 
ISO14801141 a cyclic load 𝐹 varying between a maximum value and 10% of that 
value is applied. As the goal of these FEAs is to reproduce these experimental 
tests, from the values of Figure 104, the mean and alternating nominal stresses 
are obtained as a function of external load 𝐹, by calculating the half-sum and 
half-subtraction of the nominal stresses (equation (30)) of the fatigue cycle that 
varies between the maximum value of 𝐹 and 10% of that value of 𝐹 (minimum 
value), the results of which are shown in Figure 105. 

 

Figure 105. Mean and alternating components of the nominal stress in the screw 
thread versus the external load 𝑭. 
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3.1.3 Model fitting 

Finally, the mean and alternating nominal stress components in the previous 
section were correlated with the F-N linear models obtained from the 
experimental fatigue tests in section 3.1.1. Thus, the Haigh diagram80 in Figure 
106 was plotted, which relates mean and alternating stresses with the 
experimental fatigue life. As can be seen, the Walker82 criterion fits well the 
results with the parameters indicated in equation (136), obtained by following 
the procedure described by Dowling,276 giving the following expression: 

𝑁௕ =
𝜎௔௟௧௘௥௡௔௧௜௡௚

ఊ

𝜎଴
· ൫𝜎௠௘௔௡ + 𝜎௔௟௧௘௥௡௔௧௜௡௚൯

ଵିఊ
; 𝑤ℎ𝑒𝑟𝑒 ൝

𝛾 = 0.21
𝑏 = −0.18

𝜎଴ = 3039 𝑀𝑃𝑎
 (136) 

Please note that the characterization was focused on the 0 < 𝑅 < 1 zone of 
Figure 106, which provides a proper representation of the actual operating area 
of the screw since it always operates with high mean stress due to preloading. 

 

Figure 106. Haigh diagram and Walker fitting curves. 

3.1.4 Use of the methodology 

The equation (136) obtained in the previous section, with the calculated specific 
values of adjustment of Walker parameters, should be considered as an equation 
that serves to predict the fatigue life of the specific prosthetic screw studied 
here. In other words, it is valid for any dental restoration that applies that 
specific screw geometry, with that specific material, manufacturing process, 
size, surface finish, thread profile, etc. If one wants to predict the fatigue life of 
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3.1.1 should be repeated so that new values of the fitting parameters of equation 
(136) are obtained. 

Nevertheless, the daily use of this methodology once it has been fitted is much 
simpler and straightforward. As can be seen in Figure 107, it is sufficient to 
perform an FEM of the dental restoration to be studied, obtain the force 
reactions at the contact under the screw head, calculate the mean and alternating 
nominal stresses in the critical section and enter them in equation (136) to 
estimate the fatigue life. To obtain the F-N curve of the dental restoration, the 
process must be repeated obtaining the nominal stresses for various values of 
external load F and calculating their corresponding number of cycles. 

 

Figure 107. Steps of the methodology proposed to predict the fatigue life of dental 
restorations in which the critical component is the prosthetic screw. 

3.2 Validation of the methodology on different 
dental restorations 

In the previous section, a fatigue life prediction methodology was presented for 
dental restorations in which the failure component is the prosthetic screw. In 
addition to this, it has been pointed out that the equation for the methodology 
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is applicable for the case of a specific model of prosthetic screw, with the 
methodology being valid for any dental restoration that mounts that screw. In 
the case of BTI, all implant-supported restorations mount the same prosthetic 
screw, with the exception of some restorations that mount a slightly larger 
metric screw (M2 instead of M1.8). Therefore, this section intends to verify the 
effectiveness of the methodology on other implant-supported restorations that 
mount the same prosthetic screw, on the aforementioned restorations that 
mount a slightly larger screw, and on transepithelial-supported restorations. To 
this end, on the one hand, experimental fatigue tests were performed on the 
dental restorations to be studied and, on the other hand, the procedure 
explained in the previous section was followed to predict the fatigue life using 
the methodology presented. Finally, the results have been compared to see if 
the methodology was able to perform the predictions accurately. 

3.2.1 Implant-supported restorations 

Apart from the dental restoration tested in the previous section (IN-I4.5-P4.1), 
three other implant-supported restorations of the same BTI catalogue were 
tested experimentally (see Figure 108) so that the results could be compared 
with the ones obtained from the methodology. Again, as the methodology is 
focused on the failure of the prosthetic screw, regular and wide implants were 
chosen, not using narrow restorations where the implant is expected to be the 
failing component. The aim of these fatigue tests was to cover a wide implant 
parameter range. IN-I5.5-P4.1 has a 1mm larger implant body diameter than 
IN-I4.5-P4.1, but the same platform. IN-I5.5-P5.5 has a 1.4mm larger implant 
platform than IN-I5.5-P4.1 and the same implant body diameter. Finally, EX-
I4.5-P4.1 has the same implant body and platform diameters as IN-I4.5-P4.1, 
but the connection is external rather than internal butt-joint and the mounting 
prosthetic screw has a slightly larger metric (M2 instead of M1.8). The most 
important information about each dental restoration is summarized in Table 7. 
As in IN-I4.5-P4.1, all implants and abutments were made of CP4 Titanium 
and all prosthetic screws were made of Ti6Al4V ELI with the chemical 
composition provided in Table 4. Fatigue tests were carried out on the E 3000 
Electropuls fatigue testing machine explained in section 2.4.1, following the 
ISO 14801 standard141 requirements, explained in section 1.6.1. For each new 
dental restoration, 3 to 4 specimens were tested at each of the 3 to 5 load levels 
covering a wide life range. Some further tests were also performed for the IN-
I4.5-P4.1 so that a wider cycle range was characterized. 
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IN-I4.5-P4.1 EX-I4.5-P4.1 IN-I5.5-P4.1 IN-I5.5-P5.5 

Figure 108. Dental restorations under study. 

Table 7. All the implant-supported restorations under study, including the previously 
studied IN-I4.5-P4.1. 

Restoration IN-I4.5-P4.1 IN-I5.5-P4.1 IN-I5.5-P5.5 EX-I4.5-P4.1 
Implant IIPSCA4513 IIPSCA5513 IIPACA5513 IRPS4513 

Abutment INPPTU44 INPPTU44 INPPTA54 PPTU44 
Screw INTTUH INTTUH INTTUH TTUH 

Body Ø (mm) 4.5 5.5 5.5 4.5 
Platform Ø (mm) 4.1 4.1 5.5 4.1 

IAC Internal Internal Internal External 
Screw Metric M1.8 M1.8 M1.8 M2 

Torque (Ncm) 35 35 35 35 
Figure 109 shows the F-N curves from the experimental fatigue tests of all the 
dental restorations in Figure 108. In the case of IN-I4.5-P4.1, the tests 
performed in section 3.1.1 (only the ones tightened at 35Ncm) are marked with 
rhombus while the additional tests performed for this validation process are 
marked with points. 
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Figure 109. F-N curves of the dental restorations under study: experimental tests 
(markers) and linear model (lines). Data points with  rhombus markers were obtained 
in the previous test campain (section 3.1.1). 

Once the experimental results were obtained, the next step was to use the 
methodology to predict the fatigue life of IN-I5.5-P4.1, IN-I5.5-P5.5, and EX-
I4.5-P4.1 at the same load range used in the experimental fatigue test campaign. 
FEAs for IN-I4.5-P4.1 were already performed in section 3.1.2. In short, FEAs 
were performed following the recommendations in section 2.2, applying the 
load at 30º on the top of the abutment (sectioned at 8mm from the implant 
platform) and recording the force and moment reactions on the contact surface 
under the screw head as explained in section 3.1.2. The preload for IN-I5.5-
P4.1 and IN-I5.5-P5.5 was 814N for a 35Ncm tightening torque (407N for a 
half model) while for EX-I4.5-P4.1 the preload was 761N for a 35Ncm 
tightening torque (380.5N for a half model), according to equation (131). Then, 
mean and alternating stresses were calculated in the critical section of the 
prosthetic screw for each load level and each restoration model. Figure 110 
shows the geometry of each restoration model. Finally, the nominal stresses 
were included in equation (136) obtaining the fatigue life prediction for a 
specific load level. F-N curves for each dental restoration were obtained by 
following this procedure for the desired load range. Thus, Figure 111, Figure 
112, Figure 113, and Figure 114 show the fatigue data obtained experimentally 
(points), the linear model of these points (solid blue line), 95% confidence 
bands (dotted lines), 95% prediction intervals (dashed lines) and, finally, the 
fatigue life prediction obtained using the methodology (solid red line). 
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As can be seen in Figure 111, the prediction (solid red line) coincides with the 
linear model of the experimental results (solid blue line). This is to be expected 
in this case, since the IN-I4.5-P4.1 restoration is the one used for curve fitting 
for this methodology (in section 3.1). Obviously, it does not fit perfectly 
because 3 different preloads (15, 25, and 35Ncm) were used to obtain Walker 
parameters (via curve fitting). Figure 111 shows how the new tests (points) 
follow the trend of the old ones (rhombus), so the methodology fit is still 
perfectly valid. 

Figure 112 corresponds to the implant with a diameter 1mm larger than the 
previous one (IN-I4.5-P4.1); i.e. IN-I5.5-P4.1. It can be seen how the model 
almost overlaps the experimental one, remaining within the limits marked by 
the 95% confidence curves. Therefore, in this case there is also no doubt that 
the fit of the methodology is correct. 

Figure 113 shows the behavior of the IN-I5.5-P5.5, which has a 1mm larger 
implant diameter and a 1.4mm larger platform diameter than the implant used 
for the methodology fitting (IN-I4.5-P4.1). In this case, it can be seen that the 
experimental models differ slightly. However, it is worth mentioning the 
extensive scatter of the experimental tests, which may result in the linear 
regression not being as accurate as desired. This is reflected in the 95% 
confidence interval, which is considerably wider than in the other cases. 
Whatever the case, since the prediction falls within the confidence interval, it 
can be assumed that the prediction is perfectly valid in terms of statistics. 

Figure 114 shows the fatigue behavior of the implant with external connection 
(EX-I4.5-P4.1) which has the same implant diameter and platform as IN-I4.5-
P4.1. As can be seen, there was a great deal of dispersion in these tests due to 
the fact that components from different batches had to be used. To compensate 
for this dispersion, the decision was made to perform more tests. Whatever the 
case, it can be seen that the prediction of the methodology falls within the 95% 
confidence bands of the experimental model, so the prediction is valid. 



138  Mikel Armentia 

 

A) B) C) 

Figure 110. FE models. A, IN-I5.5-P5.5 (2,365,587 DoF). B, IN-I5.5-P4.1 (2,202,267 
DoF). C, EX-I4.5-P4.1 (1,671,387 DoF). 

 

Figure 111. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the prediction methodology (solid red line) for IN-I4.5-P4.1. 
Data points with rhombus markers were obtained in a previous test campaign 
(section 3.1.1). 
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Figure 112. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the prediction methodology (solid red line) for IN-I5.5-P4.1. 

 

Figure 113. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the prediction methodology (solid red line) for IN-I5.5-P5.5. 

 

Figure 114. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the prediction methodology (solid red line) for EX-I4.5-P4.1. 
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For a more visual comparison, Figure 115 shows all the experimental test results 
(vertical axis) versus the corresponding fatigue life estimated by the 
methodology (horizontal axis). The 45-degree blue line represents a perfect 
methodology-experimental match (experimental life equal to the life predicted 
by the methodology). Even though a perfect correlation is virtually impossible 
because of the inherent dispersion of the fatigue phenomenon,55 as well as the 
scatter of the torque-preload ratio in screwed joints3,45 it can be seen how the 
trend of the points is perfectly aligned with the 45-degree line. 

Figure 116 may be more useful than Figure 115 for obtaining conclusions 
concerning the reliability of the methodology. It shows the mean value of the 
experimental life at each load level for each dental restoration versus the 
methodology prediction. Now, it can be seen that despite the considerable 
scatter seen in Figure 115, the average values in Figure 116 fall within the ±20% 
bands, expect for the case of EX-I4.5-P41, that fall close to them. 

 

Figure 115. Experimental results versus methodology life prediction (all tests). 
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Figure 116. Experimental results versus methodology life prediction (using average 
life values). 

Of course, one can take advantage of all the tests performed in this validation 
process to readjust the parameters in equation (136), which were obtained 
exclusively from the tests performed on IN-I4.5-P4.1 dental restorations. Thus, 
equation (137) shows the new values for the parameters once fitted for all the 
cases studied up to now. Figure 117 (IN-I4.5-P4.1), Figure 118 (IN-I5.5-P4.1), 
Figure 119 (IN-I5.5-P5.5) and Figure 120 (EX-I4.5-P4.1) show the 
experimental F-N curves along with the new fatigue life estimation by means 
of the readjusted methodology. Moreover, Figure 121 updates Figure 116, 
showing a slightly better match as it is clear that the accuracy of the 
methodology increases as more experimental tests are used to fit the life 
prediction equation. 

𝑁௕ =
𝜎௔௟௧௘௥௡௔௧௜௡௚

ఊ

𝜎଴
· ൫𝜎௠௘௔௡ + 𝜎௔௟௧௘௥௡௔௧௜௡௚൯

ଵିఊ
; 𝑤ℎ𝑒𝑟𝑒 ൝

𝛾 = 0.18
𝑏 = −0.16

𝜎଴ = 2512 𝑀𝑃𝑎
 (137) 
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Figure 117. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the theoretical prediction methodology with the new fitting 
parameters (solid red line) for IN-I4.5-P4.1. 

 

Figure 118. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the theoretical prediction methodology with the new fitting 
parametres (solid red line) for IN-I5.5-P4.1. 

 

Figure 119. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the theoretical prediction methodology with the new fitting 
parametres (solid red line) for IN-I5.5-P5.5. 
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Figure 120. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the theoretical prediction methodology with the new fitting 
parametres (solid red line) for EX-I4.5-P4.1. 

 

Figure 121. Experimental results versus life prediction with the new fitting 
parameters (average values). 
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3.2.2 Transepithelial-supported restorations 

Finally, the fatigue prediction methodology is to be tested on transepithelial-
supported restorations. As discussed in section 2.1.1, the transepithelial 
component is mounted between implant and abutment, and consists of two 
parts: a sleeve and a screw that attaches the sleeve to the implant. Although the 
screw is different, its metric is still M1.8, so it is assumed that the behavior can 
also be predicted using the methodology. The abutment is then mounted and 
attached to the assembly by means of a second, generally smaller, screw which 
is threaded over the first screw, which has a female thread at the head. 

Three different transepithelial-supported restorations have been tested (Figure 
122), all of them mounted on the IIPSCA4513 implant, previously used in the 
IN-I4.5-P4.1 restoration (section 3.1.1). In short, UNIT-H2 restoration mounts 
a 2mm high transepithelial component designed for single restorations; i.e., it 
has a tetralobular connection that does not allow rotation of the transepithelial 
component with respect to the implant. UNIT-H4 restoration is virtually equal 
to the previous one with the only difference being the height that is 4mm 
instead of 2mm. Finally, MULTI-IM-H2 restoration also applies a 2mm high 
transepithelial component as well as UNIT-H2, but, in this case, it has no 
tetralobular connection so that the rotation with respect to the implant is 
permitted. Finally, their corresponding abutments are added by means of a 
second screw. All components are included in Table 8. 

Table 8. All the transepithelial-supported restorations under study, all of them 
mounting a different transepithelial component on the IIPSCA4513 dental implant. 

Restoration UNIT-H2 UNIT-H4 MULTI-IM-H2 
Implant IIPSCA4513 IIPSCA4513 IIPSCA4513 

Transepithelial component INTMIUPU20 INTMIUPU40 INTMIPU20 
Transepithelial height(mm) 2 4 2 

Screw Metric (trans) M1.8 M1.8 M1.8 
Torque (trans) (Ncm) 35 35 35 

Abutment CPMIUPU CPMIUPU CPMIPEU 
Prosthetic screw TTMIR TTMIR TTMIR 

Screw Metric M1.4 M1.4 M1.4 
Torque (Ncm) 20 20 20 
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UNIT-H2 UNIT-H4 MULTI-IM-H2 

Figure 122. Transepithelial-supported restorations under study: UNIT-H2, UNIT-
H4, and MULTI-IM-H2. 

Figure 123 shows all the experimental fatigue tests performed on the 
restorations in Figure 122. Then, the methodology was used to predict the 
fatigue life at the same load range used in the experimental fatigue tests. The 
procedure explained in section 3.1.2 was followed with the only specificity being 
that two preloads had to be added instead of one. Hence, as explained in section 
2.2, three load steps were used for the FEA of transepithelial-supported 
restorations. First, the preload of the lower prosthetic screw was applied (688N 
corresponding to 35Ncm in a 45-degree countersunk screw head, 344N for half 
model) according to equation (132). Then, the preload of the upper prosthetic 
screw was applied in a second load step (572N corresponding to 20Ncm for a 
flat head screw, 286N for a half model), according to equation (131). Finally, in 
a third load step, an increasing 30º load was applied from 0 to the maximum 
load tested experimentally. Figure 124 shows the FE models of the 
transepithelial-supported restorations analyzed. Further details of the FEA may 
be found in section 2.2. 
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Figure 123. Experimental tests performed on the restorations in Figure 122. 

Figure 125 shows the homolog of the chart in Figure 115 (experimental versus 
fatigue life estimation according to equation (136)) for transepithelial-supported 
restorations in Table 8. It can be seen that equation (136) (with its parameters) 
does not provide a good estimate compared to the case of implant-supported 
restorations in section 3.2.1. It is seen that the points fall above the 45º line, 
with the slope maintained but displaced upwards. In other words, equation 
(136) underestimates the fatigue life of all transepithelial-supported restorations 
studied in this PhD Thesis, thus resulting in a very conservative life prediction. 

A) B) C) 

Figure 124. FE models of the transepithelial-supported restorations under study. A, 
UNIT-H2. B, UNIT-H4. C, MULTI-IM-H2. 
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Figure 125. Experimental results versus life prediction for transepithelial-supported 
restorations (all tests). 

Obviously, the first task performed after seeing that the prediction was not as 
accurate as in the case of implant-supported restoration was to look at the 
possible reasons for this. After discarding possible errors when simulating the 
FEA, the next step was to find out more about the manufacturing process. It 
was found that the screws used for transepithelial-supported restorations are 
manufactured in a different place than those used for implant-supported 
restorations whereby the machine used is different. Using different tools, 
machines, and machining conditions may affect the end product finish and 
dimensions. Regarding dimensions, the threads of both types of screws pass the 
same dimensional controls, complying with the tolerance restrictions imposed 
by the manufacturer, so this could not be related to this reason. However, 
surface roughness could be an uncontrolled variable. Hence, surface roughness 
has been measured at the valley of the first thread in contact on the screw, 
where the breakage of both bolts occurs. 

Figure 126 shows the surface aspect of both screws (transepitelial-supported 
restoration in Figure 126A and implant-supported restoration in Figure 126B) 
obtained by SEM using a Thermo Scientific Phenom ProX located at BTI 
facilities. SEM shows that the finish of the screws used for transepithelial-
supported restorations is smoother than the screws used for implant-supported 
restorations. The results were provided after Gaussian filtering 
(microroughness filter 𝜆௦=20nm and waviness filter 𝜆௖=20μm). Table 9 
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provides the results of surface roughness average 𝑅௔ and mean roughness depth 
𝑅௭ for the different paths shown in Figure 126. 

  
A) B) 

Figure 126. Surfaces at the valley of the first engaged thread of the screw. A, Screw 
used in one of the transepithelial-supported restorations studied. B, Screw used in 
one of the implant-supported restorations studied. 

Table 9. Surface roughness average 𝑹𝒂 and mean roughness depth 𝑹𝒛 in the different 
paths shown in Figure 126 of two screws used in: transepithelial-supported 
restoration and implant-supported restoration. 

Screw type: Transepithelial-supported Implant-supported 
Path Rz (nm) Ra (nm) Rz (nm) Ra (nm) 

1 571 137 1050 176 
2 566 125 977 169 
3 625 145 861 158 
4 554 144 1020 195 
5 651 142 807 161 

It can be concluded that the screws used in transepithelial-supported 
restorations are smoother than the screws used in implant-supported 
restorations. As was explained in section 1.3.1.1, a smoother surface finish has 
a positive effect on fatigue behavior. Hence, a different fitting than the one used 
for equation (136) is necessary, to properly suit this enhanced fatigue behavior. 
Repeating the curve fitting procedure shown in 3.1.3, in this case using only the 
transepithelial-supported restorations studied in this section, equation (138) was 
obtained, providing a more accurate life estimate for all cases as can be seen in 
Figure 127, that shows the experimental life of each test versus its methodology 
prediction. Moreover, Figure 128 only shows the mean values and adds the 
±20% bands. 
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Figure 127. Experimental results versus theoretical life prediction for transepithelial-
supported restorations with the new fitting parameters (all tests). 

 

Figure 128. Experimental results versus theoretical life prediction for transepithelial-
supported restorations with the new fitting parameters (using average life values). 

Figure 129, Figure 130, and Figure 131 show the experimental fatigue data 
points (markers), F-N linear regression models (solid blue line), 95% confidence 
bands (dotted lines), 95% prediction intervals (dashed lines), and the F-N 
predictions using the methodology with the new fitting parameters shown in 
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equation (138) (solid red line) for UNIT-H2, UNIT-H4, and MULTI-IM-H2, 
respectively. 

It must be mentioned that all the fatigue life predictions fall within the 95% 
prediction interval range and, therefore, the prediction can be assumed to be 
accurate. Nevertheless, greater dispersion was noticed among transepithelial-
supported restorations as shown in Figure 127, so more restorations should be 
tested for more accurate results. This dispersion may be caused by the 
aforementioned use of two prosthetic screws, instead of one as is the case with 
implant-supported restorations. As mentioned in section 1.2.4, there is a 
dispersion in the preload obtained for all screwed joints. Hence, greater 
dispersion is expected when using two screwed joints on the assembly. Finally, 
despite this dispersion, the methodology is more accurate for transepithelial-
supported restorations when equation (138) is applied. 

𝑁௕ =
𝜎௔௟௧௘௥௡௔௧௜௡௚

ఊ

𝜎଴
· ൫𝜎௠௘௔௡ + 𝜎௔௟௧௘௥௡௔௧௜௡௚൯

ଵିఊ
; 𝑤ℎ𝑒𝑟𝑒 ൞

𝛾 = 0.05
𝑏 = −0.13
𝜎଴ = 2705

 𝑀𝑃𝑎

 (138) 

 

Figure 129. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the prediction methodology with the new fitting parameters 
in equation (138) (solid red line) for UNIT-H2. 
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Figure 130. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the prediction methodology with the new fitting parameters 
in equation(138) (solid red line) for UNIT H4. 

 

Figure 131. Experimental fatigue data points (markers), F-N linear regression (solid 
blue line), confidence bands (dotted lines), prediction intervals (dashed lines) and 
the F-N obtained using the prediction methodology with the new fitting parameters 
in equation (138) (solid red line) for MULTI-IM H2. 

3.3 Conclusions 

This chapter has presented a prediction methodology to estimate the fatigue life 
of dental restorations based on FEAs and classical formulae for fatigue and 
Theory of Elasticity. First, the process of developing the methodology and 
adjustment has been explained with experimental tests carried out on a single 
type of implant-supported restoration (with three different tightening torques). 
In addition to this, the steps to follow for the regular use of the methodology, 
which is much simpler than the developing the methodology and adjustment 
process, have been explained, as well as the uses it has been indicated for. 
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Once the methodology has been developed and explained, its validity has been 
tested first on implant-supported restorations, on which it has been shown to 
predict fatigue life accurately. In addition, it has been proven that the 
methodology is made more accurate by readjusting Walker expression of the 
methodology taking into account the new experimental tests of all the implant-
supported restorations studied. In other words, it has been proven that the 
methodology becomes more accurate as it is fed with more experimental tests. 

In addition to this, the methodology has been validated in transepithelial-
supported restorations. Once it was found that these screws had different 
surface finishes than the previous ones, it was considered appropriate to use a 
readjusted methodology. The methodology then provided accurate results for 
the case of transepithelial-supported restorations. 

Therefore, this methodology is capable of accurately estimating the fatigue life 
of all restorations in the BTI catalog in which the failing component is the 
prosthetic screw. As demonstrated throughout this chapter, the fatigue life of 
all implant-supported restorations may be accurately estimated by the 
methodology using a single expression (equation (136)). In the same way, 
fatigue life of all transepithelial-supported restorations may also be accurately 
estimated with another expression (equation (138)). In this way, the 
methodology covers practically the entire BTI catalog. If a different screw is to 
be analyzed (different material, size, manufacturing process, surface finish, 
thread profile...), the parameters will have to be readjusted by repeating the 
application procedure with new experimental tests. 

As a result, using this methodology, the manufacturer can compare the fatigue 
behavior of all restorations quickly and cost-effectively, without the need for 
time-consuming fatigue testing campaigns. This allows the manufacturer to 
obtain an estimate of fatigue life not only for existing restoration designs, but 
also for new restoration designs even before a prototype is manufactured. Thus, 
this methodology is a powerful design tool that can be used to compare 
different dimensions, loading rates, torques, coefficients of friction, etc., in 
terms of fatigue behavior. 

Finally, it must be pointed out that this methodology is only valid when the 
failing component is the prosthetic screw. A different approach is presented in 
Chapter 5 when the implant is the critical component. 
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3.4 Clinical implications derived from 
experimental fatigue tests 

In this section the results obtained from all the experimental fatigue tests 
performed for both the application and the validation of the methodology 
presented were analyzed in order to obtain interesting conclusions for 
clinicians. First, the effect of prosthetic screw tightening torque on the fatigue 
behavior of an implant-supported restoration is evaluated. Secondly, the effect 
of various geometrical parameters of the implant on the fatigue behavior of the 
dental restoration is evaluated: implant body diameter, platform diameter and 
type of connection (internal versus external). Finally, the effect on fatigue 
behavior of using a transepithelial-supported restoration instead of the classical 
implant-supported restoration has been evaluated. 

3.4.1 Effect of the tightening torque of the prosthetic screw 

Taking advantage of the experimental tests on IN-I4.5-P4.1 at three different 
tightening torques (15, 25 and 35Ncm) performed to apply with the fatigue 
prediction methodology in section 3.1.1, the influence on fatigue behavior of 
the tightening torque applied to the prosthetic screw has been analyzed based 
on experimental results. 

From the graph in Figure 99, it can be deduced that the optimum tightening 
torque is 35Ncm, which coincides with the tightening torque recommended by 
the manufacturer. The negative effect of an insufficient tightening torque on 
fatigue behavior can also be seen, as has already been demonstrated in other 
studies.150–152 In the event of an insufficient torque, the mean stress component 
generated by the preload will be lower, but since structural integrity is not 
achieved, the alternating stress component (and also mean, although these have 
less of a fatigue effect) generated by the external load will be very large, causing 
premature failure. This is explained in detail in section 1.2.2. 

3.4.2 Effect of different implant geometry parameters on fatigue 
behavior 

As was performed in the previous section with the screw preload, the 
experimental fatigue tests performed in section 3.2.1 have been used to evaluate 
the effect of different geometrical implant parameters on the fatigue behavior 
of dental restorations. There are numerous studies that evaluate these 
parameters and their influence on the mechanical behavior on the implant itself. 
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However, as we have seen in section 1.6.1, most of these studies do not take 
account of the performance of restorations in which the critical component is 
the prosthetic screw. This is why it was considered necessary to make this 
comparison in order to complement the results of the aforementioned works. 

The restorations will be compared in pairs, in order to perform the comparisons 
indicated in Figure 132. An Analysis of Covariance (ANCOVA) will be used to 
compare the F-N curves of each comparison in Figure 132. In short, ANCOVA 
sets an initial null hypothesis that assumes the same slope for both linear 
regression models and, if accepted, a second null hypothesis that assumes the 
same fatigue behavior (negligible statistical differences between 2 linear 
regressions). To this end, 95% linear regression confidence bands and 95% 
prediction intervals were added to the experimental points and linear models 
according to the ASTM E-739 standard.64 Thus, Figure 133 compares IN-I4.5-
P4.1 and IN-I5.5-P4.1 to study the effect of increasing the implant body 
diameter by 1mm, Figure 134 compares IN-I5.5-P4.1 and IN-I5.5-P5.5 to 
obtain the effect of increasing the implant platform diameter by 1.4mm, and, 
finally, in Figure 135, EX-I4.5-P4.1 and IN-I4.5-P4.1 F-N curves were plotted 
to evaluate the effect of the IAC type (external versus internal butt-joint). In all 
the cases, fatigue failure occurred in the first engaged thread of the prosthetic 
screw, as expected (see Figure 97B).55,144,277 

 

Figure 132. All implant-supported restorations coupled isolating one variable in each 
case. 

Regarding Figure 133, ANCOVA was used to compare both linear models, 
accepting the first null hypothesis that the slopes were equal (P=.615) and 
rejecting the second null hypothesis (P<.001); that is, the mean fatigue life was 
statistically different. Furthermore, once the slopes of both models were 
determined to be equal, the fatigue life was calculated to be enhanced by 3.5 
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times when the implant diameter was increased from 4.5 to 5.5mm. This 
beneficial effect is consistent with Shemtov-Yona et al.172 and Fan et al.,173 who 
also reported improved fatigue response with larger implant diameters. This, 
together with the reduction of the surrounding bone stresses165–168 and the 
enhancement of the initial stability,169,170 determined that increasing the body 
diameter will improve the overall performance of the dental restoration. 
However, even though a large implant body diameter is recommended from a 
mechanical point of view, horizontal crestal bone atrophy and restricted 
edentulous area often limit the use of large diameters.278 By contrast, narrower 
implants decrease the need for bone augmentations, reducing surgical 
invasiveness.279 

 

Figure 133. IN-I4.5-P4.1 versus IN-I5.5-P4.1: effect of increasing implant body 
diameter by 1mm. 

IN-I5.5-P4.1 and IN-I5.5-P5.5 could not be tested in the same load range 
(Figure 134). Thus, the linear model of IN-I5.5-P4.1 was extrapolated to allow 
a comparison of both models. ANCOVA was used to compare the linear 
models, accepting the first null hypothesis that the slopes were equal (P=.541) 
and rejecting the second null hypothesis (P<.001). Moreover, the fatigue life 
was calculated to be 7 times larger when the platform diameter was increased 
from 4.1 to 5.5mm. This value resulted from a linear extrapolation and this 
factor may be even larger because of possible non-linear behavior of the 
material approaching the LCF domain. Hence, a major improvement in fatigue 
life was achieved when the platform diameter was increased. These results are 
consistent with Nicolas-Silvente et al.,184 who reported lower stresses on the 
prosthetic screw with larger platform diameters. 
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Figure 134. IN-I5.5-P4.1 versus IN-I5.5-P5.5: effect of increasing implant platform 
diameter by 1.4mm. 

Finally, ANCOVA accepted the hypothesis that the slopes are equal (P=.120) 
for the models compared in Figure 135, and rejected the second null hypothesis 
(P<.001); where the mean fatigue life was statistically different. Moreover, the 
fatigue life was calculated to be 2 times larger when using an external butt-joint 
connection. Nevertheless, before assuming that external connections behave 
better than internal ones, it should be clarified that, unlike the other two 
comparisons made in this section (implant body diameter and implant platform 
diameter) that had only one different parameter, the implants used for internal 
versus external comparison had two different parameters. Besides the IAC type, 
EX-I4.5-P4.1 has a larger prosthetic screw (M2) than IN-I4.5-P4.1 (M1.8). It 
seems reasonable to think that, for the same screw metric the performance of 
both restorations may be similar or even better in the case of internal butt-joint 
connections, as suggested by other studies.188–190 Nevertheless, the effect of the 
IAC type on the fatigue life of the prosthetic screw was significantly smaller 
than the other 2 parameters studied, and internal butt-joint connections have 
other advantages including improved esthetics, sealing capacity on the IAC, and 
platform switching options.185,186 
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Figure 135. IN-I4.5-P4.1 versus EX-I4.5-P4.1: effect of using an external instead of an 
internal butt-joint connection. 

3.4.3 Influence of the transepithelial component 

In this case, the experimental tests carried out in section 3.2.2 have been used 
to evaluate the effect of using a transepithelial component on the fatigue 
behavior of dental restorations. The three transepitelial-supported restorations 
were compared to implant-supported restoration IN-I4.5-P4.1, and among 
them, since they all use the same implant. UNIT-H2 restoration mounts a 2mm 
high transepithelial component designed for single restorations; i.e. it has a 
tetralobular connection that does not allow any rotation of the transepithelial 
component with respect to the implant. UNIT-H4 restoration is virtually 
identical to the previous one with the only difference being the height, that is 
4mm instead of 2mm. Finally, MULTI-IM-H2 restoration also mounts a 2mm 
high transepithelial component as well as UNIT-H2, but, in this case, it has no 
tetralobular connection so that rotation with respect to the implant is permitted. 
IN-I4.5-P4.1 components are detailed in Table 7, while the components of 
transepithelial-supported restorations are detailed in Table 8. 

The restorations will be compared in pairs; an ANCOVA was performed to 
compare the pairs shown in Figure 136. Therefore, Figure 137 shows the effect 
of adding a transepithelial component between the implant and the abutment 
by comparing the F-N curves of IN-I4.5-P4.1 and UNIT-H2. Figure 138 shows 
the effect of using a rotational transepithelial instead of a non-rotational one by 
comparing the fatigue behavior of UNIT-H2 versus MULTI-IM-H2. Finally, 
Figure 139 shows the effect of transepithelial heigh on the fatigue behavior of 
the dental restoration by comparing the curves of UNIT-H2 and UNIT-H4.  
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Figure 136. Transepithelial-supported restorations under study: UNIT-H2, UNIT-
H4, and MULTI-IM-H2. 

Figure 137 shows the F-N curves of IN-I4.5-P4.1 and UNIT-H2. It can be 
easily seen how the fatigue behavior of both restorations is almost identical 
since the regression models overlap. Whatever the case, an ANCOVA was used 
to compare the linear models, accepting both the first (P=.865) and second 
(P=.964) null hypotheses. That is, the regression models can be assumed to be 
statistically identical. It is worth mentioning that the 95% confidence bands are 
slightly wider, indicating that there is more dispersion in the UNIT-H2 tests. 
As discussed above, introducing a second screw causes a larger scatter in terms 
of fatigue behavior. 

Although the UNIT-H2 and MULTI-IM-H2 regression models in Figure 138 
do not overlap as in the previous case, their confidence bands and 95% 
prediction intervals do. An ANCOVA was used to compare the linear models, 
accepting both the first (P=.507) and second (P=.566) null hypotheses and 
proving that there are no statistical differences between both regression models. 
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Figure 137. IN-I4.5-P4.1 versus UNIT-H2: effect of using a transepithelial-supported 
restoration instead of an implant-supported restoration. 

 

Figure 138. UNIT-H2 versus MULTI-IM-H2: effect of using a non-rotational or 
rotational connection on fatigue behavior of transepithelial-supported dental 
restorations. 

The same occurs in Figure 139 with UNIT-H2 and UNIT-H4 dental 
restorations. That is, even though the linear regression models do not overlap, 
their confidence bands and prediction intervals do. Nevertheless, in this case 
the ANCOVA does not show that the curves can be assumed to be parallel as 
clearly as in the two previous cases as it is difficult to accept the first null 
hypothesis (P=.077). Hence, the comparison here cannot be performed by 
means of an ANCOVA. In any case, it can be deduced that the behavior is very 
similar based on the overlapping of the confidence bands and the 95% 
prediction interval. 
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Figure 139. UNIT-H2 versus UNIT-H4: effect of transepithelial heigh on fatigue 
behavior of dental restorations. 

For all these reasons, it can be concluded that an implant such as the 
IIPSCA4513 has similar fatigue behavior whether mounting an abutment 
directly onto the implant (IN-I4.5-P4.1) or mounting a transepithelial 
component between the implant and abutment (UNIT-H2). Likewise, it can be 
concluded that there is no significant difference in terms of fatigue behavior 
between using a non-rotating transepithelial (UNIT-H2) and a rotating one 
(MULTI-IM-H2). Finally, it was found that the transepithelial height does not 
significantly affect the fatigue behavior of the restoration (UNIT-H2 versus 
UNIT-H4). An increase in dispersion was also noticed in the tests performed 
on all transepithelial-supported restorations. It can be assumed that the addition 
of the second screw could be the reason. Nevertheless, further research may be 
performed to confirm this assumption. 

These conclusions are the first basis for the study of transepithelial-supported 
restorations since published information is very scarce. Further studies are 
needed to confirm that these findings are applicable to more dental restoration 
designs.
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4 Fatigue behavior of the 
prosthetic screw: 

improvement of the 
manufacturing process 

In Chapter 3 the fatigue behavior of the prosthetic screw was studied by 
presenting a fatigue life prediction methodology for dental restorations in which 
the critical component is the prosthetic screw. In addition to this, analysis has 
been performed on how factors such as screw preload, different geometric 
parameters, or the inclusion of a transepithelial between implant and abutment 
affect the fatigue life of the dental restoration. As a way of complementing the 
design study on the prosthetic screw in this chapter, certain improvements in 
its manufacturing process are studied in order to further improve its fatigue 
behavior. On the one hand, in section 4.1, the screw head socket, where the 
torque tip is inserted to tighten the screw, is proposed to be manufactured by 
milling instead of broaching. On the other hand, in section 4.2, the screw 
threads are proposed to be manufactured by rolling instead of cutting. Finally, 
the conclusions of this manufacturing upgrades are discussed in section 4.3. 

4.1 Screw head socket 

As already mentioned in section 3.1.1, although the INTTUH screw used in 
IN-I4.5-P4.1, IN-I5.5-P4.1, and IN-I5.5-P5.5 restorations generally failed 
under fatigue in the first engaged thread (and, therefore, the fatigue life 
prediction methodology developed in Chapter 3 focuses on that section), failure 
sometimes occurred in the head section (see Figure 97A). Observing the stress 
status of the screw in FEA, it was found that in the failure section of the screw 
head the stress status was much less critical than in the first engaged thread, 
and, therefore, the failure in the head was not justified. Consequently, this 
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failure was assumed to be due to the effect of the broaching used in the 
manufacturing process of the screw head socket where the tip of the torque 
wrench is inserted, since this is an aggressive process for the part. Although 
measurements could not be performed due to the difficulty of accessing that 
point of the screw (at the bottom of the head socket), a simple inspection using 
an optical microscope confirmed that the surface finish left by the broaching is 
very improvable, and residual stresses are also likely to be high. This would 
justify worse fatigue behavior of this section compared to the section of the 
first engaged thread despite having lower stresses. To avoid this fatigue failure 
of the screw head, and thereby improve the performance of the dental 
restoration, the proposal was made to machine the prosthetic screw head socket 
by milling it instead of broaching. First of all, it was considered that, by milling, 
the hexagonal geometry of the socket should be different since milling requires 
larger fillet radii. Figure 140 shows the original shape (A) and the proposed one 
(B), compatible with the milling process. 

  
A) B) 

Figure 140. Screw head socket. A, Shape obtained by broaching. B, Shape obtained 
by milling. 

To test the validity of the design, cylinders as shown in Figure 141 were 
machined with both socket designs and maximum torque tests were performed. 
Table 10 shows that both designs are equally valid since in both cases the critical 
component is the torque tip, which fails at the same maximum torque. 

 

Figure 141. Cylinders with the socket compatible with milling process used in 
maximum torque tests. 



4. Fatigue behavior of the prosthetic screw: imp. of the mfg. process 163 

 

Table 10. Maximum torque test results for both socket designs: original design (can 
only be produced by broaching) and new design (compatible with milling). 

 Test 1 Test 2 Test 3 Average Failure 
Original design 62 62 64 62.7 Screwdriver tip 

New design 62 64 62 62.7 Screwdriver tip 
The next step was to transfer this design to the screws. Hence, the same screw 
was now designed and manufactured with the proposed socket design (see 
Figure 142), and, after applying the same treatments and coatings as the stock 
prosthetic screw (end product), some fatigue tests were performed on the 
already extensively-studied IN-I4.5-P4.1 dental restoration. 

  
A) B) 

Figure 142. A, Original prosthetic screw (INTTUH). B, Proposed screw design with 
a milling compatible head socket. 

A few fatigue tests were necessary to prove that the breakage always occurred 
on the first thread in contact in the new design (see Figure 143), rather than the 
screw head as shown in Figure 97A. In this way, it was possible to optimize the 
design of the prosthetic screw by eliminating the possibility of the screw head 
being a potential fatigue failure section. Consequently, fatigue failure of the 
prosthetic screw will always occur on the first engaged thread when tested 
according to ISO 14801,141 as seen in Chapter 3. 

 

Figure 143. Fatigue failure of the new design of the screw at the first engaged thread. 
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4.2 Screw thread: rolling versus cutting 

Having solved the problem of head failure of the prosthetic screw by modifying 
the manufacturing process of the screw head socket, thus ensuring that, under 
the load conditions studied, the failure will always occur on the first thread 
section, focus was put on the screw thread manufacturing process. 

Two processes are widely used for screw thread manufacturing in industry: 
cutting and cold rolling. In the thread cutting process, material is removed from 
a cylindrical blank by machining, whereas, in thread rolling, a matching set of 
dies displaces the material to produce external threads on the cylindrical blank 
in a cold forming operation with no material losses.280 

Thread rolling offers many benefits in terms of manufacturing and mechanical 
performance. The rolling process is less time consuming because the thread 
may be obtained in a single pass281,282 with no need for secondary operations,283 
which significantly increases productivity284 and reduces unit product cost.281 
Regarding mechanical performance, the thread rolling process introduces 
compressive residual stresses285 on the thread surface, increasing hardness from 
strain hardening.286 Furthermore, since no material is removed, good grain flow 
is obtained,147,281 improving surface quality.282,287 Consequently, rolled threads 
have been shown to provide better fatigue results than cut threads.288–290 

Returning to the field of dental implantology, there are studies analyzing 
different surface treatments or coatings on the threads of prosthetic screws (see 
section 1.6.1) but, surprisingly, no information has been found regarding the 
thread rolling process. Even with the wide acceptance of thread rolling in the 
industry,281,284,288 as far as the author has been able to find out, most 
manufacturers produce the prosthetic screw by means of thread cutting. 

The purpose of this section is to transfer the proven better fatigue behavior of 
thread rolling versus cutting in the industry for dental implantology. Then, both 
fabrication techniques are compared in the extensively-studied INTTUH 
prosthetic screw in terms of thread profile, residual stresses, surface finish, and 
finally regarding the fatigue and static behavior. 

4.2.1 Sample preparation 

In order to analyze the difference between thread rolling and cutting in relation 
with the performance of the prosthetic screw when assembled on a dental 
restoration, two batches of the well-known INTTUH prosthetic screw were 



4. Fatigue behavior of the prosthetic screw: imp. of the mfg. process 165 

 

manufactured: one with cut threads and the other with rolled threads. Most 
machining operations were the same for both batches, except for the diameter 
of blank material before threading, the turning speed, the feed rate, and the 
number of passes during the thread manufacturing process. For the cut threads, 
a Ø1.8-mm blank was used, and 20 passes were made at 5000rpm with a 1750 
mm/min feed rate. For the rolled threads, a Ø1.5-mm blank was used, and the 
final profile was obtained by means of 1 pass at 200rpm with a 70mm/min feed 
rate. In both operations, the same commercially available lubricant was used 
(Blasomill 10; Blaser Swisslube). 

4.2.2 Thread profile, surface roughness, and residual compressive 
stresses 

Cutting and rolling operations may cause slight dimensional differences in the 
thread profile. Therefore, a multi-sensor measuring machine (Zeiss O-Inspect 
322) was used to examine both thread profiles and to measure the thread 
parameters for one specimen of each batch. Figure 144 shows the profiles of 
the cut and rolled thread and Table 11 shows the dimensions obtained from 
both manufacturing processes: the external diameter ∅௘௫௧, the internal diameter 
∅௜௡௧, the thread pitch 𝑝, and the angle of the thread profile 𝛼. Unlike cut threads, 
where thread crests were parallel to the longitudinal axis of the screw, rolled 
thread crests showed a different shape. Thus, 2 values of the external diameter 
were measured in this case: maximum and minimum. The equivalent stress area 
𝐴, which is the effective resistance area for threaded sections, was calculated as 
explained in section 3.1.2. Cut threads showed an equivalent tensile stress area 
of 1.37mm2, while rolled threads showed 1.50mm2. 

A B 

Figure 144. Thread profile. A, Cut thread. B, Rolled thread. 
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Table 11. Dimensions of thread profile. 

 Ø𝒆𝒙𝒕 (mm)  Ø𝒊𝒏𝒕 (mm)  Pitch (mm)  𝜶 (degrees)  
Cut thread  1.74 1.24 0.35 60.5 

Rolled thread  1.69/1.60 1.30 0.35 58.8 
Moreover, differences between the surface finishes left by each manufacturing 
process were expected. As shown in section 1.3.1.1, a slightly different surface 
roughness may alter the fatigue behavior of the screw. To control this, the 
surface roughness of one specimen of each batch was measured by using SEM 
(Thermo Scientific Phenom ProX). Surface analyses were performed for a field 
of view of 53.7μm, and the results were provided after Gaussian filtering 
(micro-roughness filter 𝜆௦=20nm and waviness filter 𝜆௖=20μm). Figure 145 
shows the surface roughness obtained from both manufacturing processes. The 
cutting process removed material, leaving transverse lines from the irregular 
shape of the turning insert caused by wear and the several passes used in this 
manufacturing process. In contrast, material flow was seen with the rolling 
process, indicating that material was formed rather than removed. Table 12 
gives the results of the surface roughness measurements: area roughness 
average 𝑆௔ was obtained for the whole field of view, while roughness average 
𝑅௔ and mean roughness depth 𝑅௭ of a path perpendicular to the cutting or 
rolling direction were calculated. 

A B 

Figure 145. Surface roughness measurements. A, Cut thread. B, Rolled thread. 

Table 12. Surface roughness parameters. 

 𝑺𝒂 (nm)  𝑹𝒂 (nm)  𝑹𝒛 (µm)  
Cut thread  430 446 1.95 

Rolled thread  333 434 1.83 
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Thread rolling is assumed to apply higher residual stresses on thread surface. 
Hence, the residual compressive stresses on the screw thread surface were 
measured on 3 specimens for each manufacturing technique (thread rolling and 
cutting) by using a diffractometer (Bruker D8 Discover; Bruker) equipped with 
a Chromium Point or Line Focus X-ray tube, V filter (𝜆=2.2911 Å), 
PolyCapTM (1-μm single crystal cylinders) system for parallel beam generation 
(divergence of 0.25 degrees), and a 1-D detector (LynxEye; Bruker) with active 
length on 2𝜃 2.7 degrees. The twist X-ray tubes allowed for the quick selection 
change between point and line focus.291–293 The prosthetic screws were mounted 
on a Eulerian Cradle with an automatically controlled X-Y-Z stage. Data was 
collected from 59 to 64.2 degrees 2𝜃 (step size=0.05 and time per step=7.5 
seconds). Strain values in the side inclination mode were recorded for different 
specimen tilt angles (0, 18.4, 26.6, 33.2, 39.2, 45.0, 50.8, and 56.8 degrees) at 
constant azimuth angles phi. Strain - Sin2 𝜓 was plotted to estimate the stress 
values. In order to obtain a complete evaluation, at least 6 measurements were 
needed on Strain- Sin2 𝜓 plot by using 3 different values of phi, and 0, 45, and 
90 degrees were chosen in negative and positive values. Stress was evaluated 
from strain values by using the Young modulus 𝐸 (111 982 MPa) and Poisson 
ratio 𝜈 (0.330) and by taking into consideration the elastic constants s1 (-
2.947×10-6) and ½ s2 (1.188×10-5) of the material. A single peak (101), 
available at 61.4 value of 2𝜃, was used for the analysis. The obtained results 
were adjusted by using software (Leptos 7.03; Bruker AXS GmbH). The data 
was corrected for absorption, background (5 points at edges), polarization, 
smoothness, and 𝐾 alpha2 subtraction, and the peak evaluation was applied 
with the Pearson VII function. The determined values were obtained by using 
a biaxial mode with the Psi splitting function because of the shear stress 
components. Figure 146 shows the experimental set up of the diffractometer. 

Table 13 shows the compressive residual stresses in the longitudinal direction 
of the screw. The specimen geometry (screw thread) and the material 
absorption generated high standard errors in the measurements, as a 
consequence of a high dispersion of the measured data. Nevertheless, the 
measurements confirmed, at least qualitatively, that thread rolling resulted in 
considerably higher compressive residual stresses than thread cutting. 
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Figure 146. Diffractometer: general view and detail of the specimen. 

Table 13. Mean values and standard errors of compressive residual stresses in 
threaded area. 

Residual stresses (MPa) 
N=48 (per test) Cut Thread Rolled Thread 

Test 1  281.5 ±136.1 569.5 ±87.7 
Test 2  264.9 ±119.3 480.0 ±103.6 
Test 3  297.0 ±124.8 496.0 ±87.2 

Note that for the measurements of the thread profile, surface roughness, and 
compressive residual stress, the coating normally applied in the INTTUH 
prosthetic screw was not added. Concerning the thread profile measurement, 
because the objective is to measure the dimensions of the resistant part, without 
including the possible scatter of the coating treatment, although it is presumed 
to be small. Regarding the surface roughness measurement, because it is 
obvious that the coating would alter the results of the surface roughness of the 
part. Finally, with regard to the compressive residual stress measurements, the 
coating would completely distort the values obtained by the diffractometer. 

To sum up, rolled threads showed a moderately higher equivalent stress area, 
slightly lower surface roughness values, and considerably higher compressive 
residual stresses than cut threads. 



4. Fatigue behavior of the prosthetic screw: imp. of the mfg. process 169 

 

4.2.3 Mechanical behavior 

Finally, the effects, in terms of mechanical behavior, of mounting a roll 
threaded prosthetic screw instead of a cut threaded one on an implant-
supported restoration was also characterized. The INTTUH prosthetic screw 
was coated with WCC (as in the end product), mounted on the IN-I4.5-P4.1 
restoration (IIPSCA4513 with INPPTU44), and tightened at 35 Ncm. As 
mentioned in section 2.1, the prosthetic screw was made of Ti 6Al 4V ELI 
(GR5 Titanium), while the implant and the abutment were made of CP4 
Titanium. The chemical composition is provided in Table 4. The dental implant 
assembly (Figure 96) was tested under static and cyclic loading conditions to 
evaluate its mechanical strength by means of the previously-described direct 
stress fatigue test bench E 3000 Electropuls (see section 2.4.1), following the 
requirements of the ISO 14801 standard141 (see section 1.6.1). 

The experimental fatigue tests performed on the IN-I4.5-P4.1 in section 3.1.1 
were used to determine the fatigue behavior of the cut threaded INTTUH 
prosthetic screw (3 specimens per load level at 3 load levels, making a total of 
9 tests). In this section, 15 tests at the same 3 load levels (5 specimens per load 
level) were performed on the same IN-I4.5-P4.1 but mounting the roll threaded 
prosthetic screw. Moreover, the fatigue tests performed on IN-I4.5-P4.1 with 
cut threaded screws performed in section 3.2.1, were also added to the 
comparison, even though these tests were performed in a posterior test 
campaign, making a total of 15 tests at 5 different load levels for cut threaded 
screws. Figure 147 shows the experimental results along with the linear models 
log(F)-log(cycles) and 95% confidence bands according to the ASTM E-739 
standard.64 

Figure 148A shows the failure section of the screws manufactured by means of 
thread cutting. The rolled screws, after eliminating the failures mentioned in 
section 4.1, should also break at the first thread in contact. Nevertheless, as can 
be seen in Figure 148B, the failure occurs under the screw head, initiating at the 
fillet and propagating perpendicular to the screw axis. It is therefore deduced 
that the improvement brought about by the rolling process on the threads is 
such that the critical section moves from the first thread in contact to the next 
weaker zone. This new failure section is not to be confused with the one shown 
in Figure 97A where the failure section is not perpendicular to the axis, because 
that was affected by the manufacturing process of the head shank mentioned 
in section 4.1. The failure section in Figure 148B is perpendicular to the screw 
axis, as may be expected once the head shank is not critical anymore. 
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ANCOVA was used to compare both linear models, accepting the first null 
hypothesis that the slopes were equal (P=1) and rejecting the second null 
hypothesis (P<.001); i.e. the mean fatigue life was statistically different. 
Furthermore, once the slopes of both models were determined to be the same, 
the fatigue life was calculated to be 9 times larger for roll threaded screws. 

 

Figure 147. Fatigue data, linear models (F-N curves), and 95% confidence bands for 
IN-I-4.5P-4.1 dental implants assemblies mounting cut- and roll-threaded screws. In 
the case of cut-threaded screws, data with rhombus markers were obtained in section 
3.1.1 while those marked with points were obtained in section 3.2.1. 

  
A) B) 

Figure 148. Fatigue failure of the prosthetic screw. A, First engaged thread in cut-
threaded screw. B, Head-shank transition in roll-threaded screw. 

Regarding the static tests, the same set up was used as for fatigue tests. The load 
was quasi-statically increased until collapsing occurred, and the maximum load 
was reported as a result. Five specimens were tested for both cut and rolled 
threads, with the results provided in Table 14. In this case, the failure on both 
cut and rolled threads occurred in the first engaged thread (Figure 148B). T test 
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was carried out for the static loads recorded in Table 14. The null hypothesis 
was accepted (P=.54); i.e. the static load was assumed to be statistically the same 
for both manufacturing processes. 

Table 14. Maximum loads measured in static tests. 

Maximum static loads (N) 
 Cut Thread Rolled Thread 
Test 1  676 602 
Test 2  622 656 
Test 3  568 705 
Test 4  600 593 
Test 5  689 704 

Mean value: 631 652 
Std Dev: 51 54 

4.3 Conclusions 

In this chapter, the study carried out in Chapter 3 has been complemented by 
studying the manufacturing processes of the INTTUH prosthetic screw. 

On the one hand, broaching has been shown to result in damages to the screw 
head socket that causes some screws to fail in an unexpected region during 
fatigue tests performed on implant-supported restorations. Hence, the 
proposition has been made to replace broaching with a milling process, which 
is less aggressive on the part. Experimental tests have confirmed that the 
aforementioned failure no longer occurs when the broaching is eliminated, with 
the first engaged thread being the only failure section. 

On the other hand, the manufacturing process of the threads of the prosthetic 
screw has been analyzed. The same screw was manufactured by thread rolling 
and cutting, and their shape and surface was analyzed, with experimental 
mechanical tests also carried out. The rolled threads had lower surface 
roughness parameter values, i.e. better surface finish and quality, consistent with 
previous studies.281,287,294,295 The surface finish was mainly affected by the 
residual compressive stresses on the thread surface caused by the rolling 
process,285,290 even though the obtained residual compressive stress values 
showed a high degree of scatter. Using synchrotron radiation to evaluate surface 
properties should improve the quality of the data and allow for more accurate 
stress extrapolation.296–298 Regarding thread geometries, even though both the 
thread shapes obtained by rolling and cutting were similar and functional, the 
crests of the rolled thread poorly reproduced the desired geometry. This shape 
was obtained because of grain flow caused by the rolling process.299,300 Some 
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manufacturing parameters such as blank diameter or speed should be optimized 
so that the rolled thread shape is improved. Finally, the prosthetic screws 
showed significantly better fatigue response with thread rolling, consistent with 
roll threaded screws used in industry.288–290 Linear regression models showed a 
fatigue life 9 times higher for roll threaded screws. In fact, the performance of 
the rolled thread is so superior to the cut thread that the roll threaded screws 
did not even fail at the thread but rather at the head-shank transition section. 
Presumably, the improved fatigue behavior of rolled threads was mainly a result 
of the larger compressive residual stresses, since differences in the surface 
roughness and tensile stress area were small. The static load at failure was 
statistically similar for both manufacturing processes. 

Two possible options for future lines of action are proposed to further optimize 
screw fatigue performance. On the one hand, the study of different rolling 
parameters such as the optimum value of thread blank diameter so that the 
thread geometry is as desired while the residual stresses are as high as possible 
to make the rolled threads even stronger. On the other hand, the improvement 
of the shank-head section by, for example, increasing the fillet radius of the 
section, something that is very simple and is expected to improve fatigue 
response by reducing stress concentration on the section. 



 

173 
 

5 Fatigue behavior of the dental 
implant: life prediction 

methodology 

In Chapter 3, a methodology for fatigue life prediction of dental restorations in 
which the critical component is the prosthetic screw was presented. This is the 
case for restorations with regular and wide implants. However, the dental 
implantology industry is focusing its efforts on making narrower implants. 
Although the ideal scenario would be for the prosthetic screw to always be the 
critical restoration element, since it is an economical and easy-to-replace 
element; in the case of dental restorations with narrow implants the implant is 
precisely the element that suffers the most. Therefore, it is expected to be the 
critical element. 

Prosthetic screw analysis is relatively straightforward, since this undergoes a 
uniaxial stress status and this allows the engineer to obtain the nominal stress 
of the critical section by means of the simple Theory of Elasticity formulation. 
For this purpose, as already explained in section 3.1.2, it is only necessary to 
obtain the reactions on the prosthetic screw by means of a simple FEA. 

Analysis of the implant, however, is more complex. Due to its complex 
geometry and thin section, in addition to the loads it is subjected to, it 
undergoes a multiaxial stress status. For this reason, advanced multiaxial fatigue 
calculation methods must be used, such as critical plane methods, to obtain an 
equivalent stress value. Moreover, since the stress concentration in the failure 
section of the implant varies among the different models, the TCD must be 
used to obtain an effective stress value for fatigue life estimation. 

This chapter develops a fatigue life prediction methodology for dental 
restorations in which the critical element is the dental implant. To develop the 
methodology, in section 5.1 the fatigue behavior of CP4 titanium - the material 
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the implants studied in this PhD Thesis are made of - is studied on standardized 
specimens. The effect of the notches, i.e., the stress concentration zones, on 
the fatigue behavior of the material is determined. In section 5.2, FEA of the 
same, tested specimens are performed and the critical distances whose effective 
stresses result in the theoretical fatigue calculations matching the experimental 
tests are determined, according to the TCD. Once these studies have been 
completed, section 5.3 provides the proposed fatigue prediction methodology 
and explains the steps to be followed for the life estimation of dental 
restorations whose critical element is the dental implant. 

Finally, the methodology is validated on two dental restorations. First, the 
dental restorations are experimentally tested in section 5.4.1. Then, the 
methodology is applied and the fatigue life of the restorations is predicted in 
section 5.4.2. Finally, conclusions about this methodology are provided in 
section 5.5. 

This study was devised by, and some experimental tests were carried out at, the 
ENSAM University (in Bordeaux-Talence, France) in collaboration with 
Professor Nicolas Saintier, head of DuMAS. 

5.1 Determination of the notch effect on fatigue 
behavior 

Specimens of CP4 titanium were tested under axial load- this material being 
what the implants of the BTI catalog are made of, which included those studied 
in this PhD Thesis. Figure 149A shows the geometry of the hourglass specimen 
tested, with a diameter in the critical section (neck) of 3.5mm. In addition to 
this specimen, specimens of the same material with different notches were 
tested in order to analyze the effect of stress concentration on fatigue behavior. 
On these specimens, a diameter after the notch of 3 mm was left, with only the 
radius of the notch root changing. Three different radii were tested: 0.137mm 
(see Figure 149B), 0.164mm (see Figure 149C), and 0.650mm (see Figure 
149D). 
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A) 

B) C) D) 

Figure 149. A, Unnotched hourglass specimens used for fatigue characterization of 
CP4 Titanium. B, Detail of R0.137 notched specimen. C, Detail of R0.164 notched 
specimen. D, Detail of R0.650 notched specimen. 

The fatigue tests were performed at pure alternating axial stress (𝑅ିଵ) on the 
INSTRON 8801 hydraulic test bench, in section 2.4.2.2. The specimens were 
clamped by means of grips (see Figure 84) which distribute the forces along the 
shoulders of the specimen. For each type of specimen tested, the finite life part 
was obtained by testing 2-3 specimens at each of the 4-5 load levels. Figure 150 
shows the experimental fatigue results (markers) together with the linear 
regression models according to ASTM E73964 determined by equations (139)-
(142). 

 

Figure 150. Fatigue data (markers) and linear regression models (lines) of all tested 
specimens. 
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Unnotched: log(𝑁) = 29.96 − 9.75 · log (𝜎) (139) 
R0.134mm: log(𝑁) = 22.54 − 7.88 · log (𝜎) (140) 
R0.164mm: log(𝑁) = 22.20 − 7.66 · log (𝜎) (141) 
R0.650mm: log(𝑁) = 25.27 − 8.44 · log (𝜎) (142) 

As can be seen from the linear models in Figure 150, the slopes of the finite life 
are virtually parallel. This indicates that, despite expectations, the effect of the 
stress concentration of each of the notches on fatigue behavior is practically 
constant throughout the cycles. The ratios of the nominal stresses of the 
notched specimens with respect to the unnotched specimen have been obtained 
for 10,000, 50,000, and 100,000 cycles and are given in Table 15. 

Table 15. (𝝈𝒏𝒐𝒎)𝒖𝒏𝒏𝒐𝒕𝒄𝒉𝒆𝒅/(𝝈𝒏𝒐𝒎)𝒏𝒐𝒕𝒄𝒉𝒆𝒅 ratio versus the number of cycles. 

(𝝈𝒏𝒐𝒎)𝒖𝒏𝒏𝒐𝒕𝒄𝒉𝒆𝒅

(𝝈𝒏𝒐𝒎)𝒏𝒐𝒕𝒄𝒉𝒆𝒅
 10,000 cycles 50,000 cycles 100,000 cycles 

R0.134 Notch 2.04 2.12 2.16 
R0.164 Notch 1.93 2.01 2.06 
R0.650 Notch 1.39 1.43 1.44 

It is found, again, that the difference between the ratios obtained over the cycles 
is practically constant. Whatever the case, the ratios for 50,000 cycles are used, 
since they represent a midpoint in the finite life range.  

It should be mentioned that, although the results of Table 15 show that the 
ratios obtained between the nominal stresses of notched and unnotched 
specimens virtually do not vary throughout the cycles, this is not always the 
case. Evidently, stress concentration has a negative effect on fatigue behavior 
causing the S-N curve to decrease with respect to its equivalent without stress 
concentration. Authors usually ensure that both curves (notched and 
unnotched) coincide at 1 or 1000 cycles.53 However, this is simply a calculation 
recommendation, with it being more thorough to perform experimental tests 
and obtain real fatigue behavior, as has been done in this section. 

5.2 Determination of critical distances via Finite 
Element Analyses 

Once the effect of stress concentrations of 3 different notches on the fatigue 
performance of CP4 Titanium has been obtained experimentally, the next step 
is to select a method by which to obtain the stress value to assign the 
experimental results in terms of fatigue life.  

For this purpose, TCD has been used which, as explained in section 1.3.1.3.3, 
focuses on obtaining an effective stress level at a specific distance (critical 
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distance) from the root of the notch (or stress concentration element) 
equivalent, in theory, to that which would be reached using other methods, such 
as the method using nominal stresses multiplied by the fatigue notch factor 𝑘௙ 
explained in section 1.3.1.3.1. As shown in Figure 45, both effective stresses 
will be equal regardless of the chosen method. 

As explained in section 1.3.1.3.3, there are various methods that use the TCD 
and are classified according to the geometry of the part they cover to calculate 
effective stress (see Figure 46). The Point Method uses the stress value at a 
single point located at a specific distance 𝑑௉ெ. This is the case shown in Figure 
45. The Line Method, by contrast, calculates effective stress by averaging the 
elastic strain along the line between the root of the notch and the critical 
distance 𝑑௅ெ. The Area Method also obtains the average of the elastic stresses, 
but, in this case, along a half circle whose center is located at the notch root and 
the radius is equal to the critical distance 𝑑஺ெ. Finally, the Volume Method does 
the same as the previous method, but with a sphere of radius 𝑑௏ெ rather than a 
circle. 

Again, it must be taken into account that the methodology will be used on 
dental implants where the direction of the failure section is difficult to predict, 
i.e., the breakage will not be perpendicular to the longitudinal axis of the 
implant. Generally, it will follow an irregular path in a poorly defined direction 
(the weaker route in each case). For this reason, the Volume Method has been 
chosen because this volume contains, and therefore considers, all possible crack 
spreading directions, instead of other methods, that consider a single direction 
or, at most, a single plane. 

Even though the TCD was developed for infinite life (fatigue limit), it can also 
be used for finite life, as explained in section 1.3.1.3.3. Susmel,94 which proposes 
a critical distance as a function of cycles following equation (52). However, as 
seen in the previous section, the S-N curves of the notched specimens tested 
can be assumed to be parallel with respect to the S-N curve of the unnotched 
specimen. Hence, it can be guaranteed that the stress concentration is constant 
along the cycle range studied and, therefore, the critical distance does not vary 
with respect to finite life cycles. 

Therefore, FEA has been performed on the same specimens tested 
experimentally, following the indications set out in section 2.3. In each FEA an 
axial load has been applied so that the specimen undergoes the stress 
corresponding to the 50,000 cycles obtained from its S-N curve shown in the 
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previous section. Figure 151 shows how the nominal stresses corresponding to 
the 50,000 cycles are obtained for each of the S-N curves previously shown in 
Figure 150. In addition to this, Table 16 shows the values of these nominal 
stresses obtained from Figure 151 (or equations (139)-(142)) as well as the axial 
loads required to produce these stresses. 

 

Figure 151. Nominal stresses corresponding to 50,000 cycles for each specimen under 
study. 

Table 16. Nominal stresses (at 50,000 cycles) and their corresponding axial loads. 

 Nominal stress (MPa) Axial load (kN) 
Unnotched 389.65 3.749 

R0.134 Notch 183.60 1.298 
R0.164 Notch 193.08 1.365 
R0.650 Notch 273.12 1.931 

As mentioned at the beginning of this section, the effective stress for fatigue 
calculations was obtained by means of the Volume Method. Therefore, the FE 
models were meshed with a progressive spherical refinement in 4 phases with 
the center of the spheres located at the root of the notch where the crack starts, 
as explained in section 2.2.6. Figure 152 shows the case with the R0.137mm-
notched specimen. 

From the FEA, the elements of a sphere with a radius of 0.2mm whose center 
is located at the root of the notch are selected. Then, the X, Y, and Z 
coordinates of the centroid of each element, its associated volume, and their 6 
stress components are obtained. The FEA results were post-processed in 
Matlab R2019b, obtaining the equivalent Findley and Dang Van alternating 
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stresses of each element (see section 1.3.2.4.3). Then, the averaged value of the 
stress, i.e., the effective stress, was obtained as a function of the critical distance 
(radius of sphere) for the Volume Method (see Figure 153). It is seen, as 
expected, that both methods provide similar results. 

  
A) B) 

Figure 152. EF model of the R0.137mm notched specimen. A, Complete model. B, 
Closer view of the notch. C, Detail of the progressive sphere refinement. 

Once the value of the effective stress has been calculated according to both 
methods as a function of the sphere radius for the three-notched specimens in 
Figure 153. The next step is to determine the value of the critical distance to be 
used for fatigue calculations. As already discussed in section 1.3.1.3.3, the TCD 
and, in particular the Volume Method, obtains an effective stress value at a 
certain critical distance (sphere radius) which can be used in the S-N curve of 
the material (equation (139), that corresponds to the unnotched specimen S-N 
curve). As seen in Table 16, for 50,000 cycles, the stress in the absence of stress 
concentration (unnotched specimen) is 389.65MPa. Therefore, the effective 
stress on the other three notched specimens will also be the same at 50,000 
cycles and the critical distance will be the one that gives a stress of 389.65MPa 
in Figure 153. Table 17 provides the values of Findley and Dang Van critical 
distances for the three notched specimens under study. 
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A) 

 
B) 

 
C) 

Figure 153. Findley and Dang Van effective stresses versus the sphere radius (critical 
distance) and the critical distances corresponding to effective stress at 50,000 cycles. 
A, R0.137mm notched specimen. B, R0.164mm notched specimen. C, R0.650mm 
notched specimen. 
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Table 17. Findley and Dang Van critical distances for the three notched specimens 
under study. 

 Findley critical distance (mm) Dang Van critical distance (mm) 
R0.134 Notch 0.054 0.062 
R0.164 Notch 0.061 0.069 
R0.650 Notch 0.138 0.158 

It can be seen that the critical distance is not constant along the different 
notches in contrast to what was initially assumed. According to the theory 
explained in section 1.3.1.3.3, the critical distance is, in principle, a property of 
the material (and of the load ratio 𝑅), and should therefore have a single value 
for the 3 notches tested.94 However, several studies show that the notch type 
and size have an effect on critical distance.159,301 In this sense, the normalized 
stress gradient appears to be a suitable parameter to characterize the notch 
geometry’s effect on critical distance, rather than the notch radius or the notch 
factor.302–305 

Therefore, the decision was made to calculate the normalized stress gradient at 
the notch root for each of the three notched specimens from the effective stress 
already obtained in Figure 153. Figure 154 shows how the stress gradient is 
obtained, whose value is then divided by the maximum stress for normalization 
purposes. Table 18 shows the normalized stress gradient obtained from Figure 
154 for both methods, Findley and Dang Van. As a result, an approximate linear 
relationship was found between the normalized stress gradient and critical 
distance. Figure 155 shows the critical distance values obtained as a function of 
the normalized stress gradient (for both methods) at the notch root for the 
three specimens and the linear relationship obtained by a least-squares fit. The 
linear model equations of the normalized stress gradient versus critical distance 
for Findley and Dang Van are shown in equations (149) and, (148) respectively. 
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A) 

 
B) 

 
C) 

Figure 154. Findley and Dang Van effective stresses versus the sphere radius (critical 
distance) and their corresponding stress gradients at the root of the notch. A, 
R0.137mm notched specimen. B, R0.164mm notched specimen. C, R0.650mm 
notched specimen. 
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Table 18. Normalized stress gradients for Findley and Dang Van methods for the 
three notched specimens under study. 

 Findley normalized stress 
gradient (mm-1) 

Dang Van normalized stress 
gradient (mm-1) 

R0.134 Notch 7.360 6.517 
R0.164 Notch 6.191 5.494 
R0.650 Notch 1.580 1.406 

 

Figure 155. Critical distance (sphere radius) versus normalized stress gradient for the 
three notched specimens, along with the linear models proposed. 

Findley:   ∇𝜎ி௜௡ = −65.1 · 𝑑௏ெಷ೔೙
+ 10.5 (143) 

Dang Van:  ∇𝜎஽௏ = −50.1 · 𝑑௏ெವೇ
+ 9.3 (144) 

In short, the TCD is used to consider the notch effect on fatigue behavior of 
CP4 Titanium, by using the Volume Method in which, for this specific case, the 
critical distance is not cycle dependent, but rather stress gradient dependent. 

5.3 Fatigue life prediction methodology for dental 
implants 

Based on what has been studied so far, a methodology is proposed to predict 
the fatigue life of dental restorations in which the critical component is the 
dental implant, with the steps to follow described below and briefly presented 
in Figure 156. 

First, it is necessary to follow sections 5.1 and 5.2 in order to characterize the 
material making up the implants under study. Therefore, the S-N curve of the 
implant material to be analyzed (unnotched specimen, 𝑅ିଵ) is obtained as well 
as the model that relates the normalized stress gradient at the root of the notch 
versus the value of the critical distance to be used for fatigue calculations. 
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Once these previous steps have been carried out on standardized specimens, in 
order to predict the fatigue life of dental implants, the first step is to perform 
an FEA of the model of the dental restoration to be studied at the desired load. 

The FE model needed is similar to those seen in Chapter 3 (following the 
instructions in section 2.2) but with some specifics indicated in section 2.2.6, 
i.e., a progressive spherical volume refinement whose center is located at the 
root of the notch, i.e., at the point where the crack starts. Obviously, it is 
recommended that a previous experimental test be performed on the dental 
restoration to verify that the crack starts at the expected point. 

From the FEA, the elements of the aforementioned sphere with a radius of 
0.2mm are selected. Then, the X, Y, and Z coordinates of the centroid of each 
element, its associated volume, and their 6 stress components are obtained. 
Note that this data should be recorded for the maximum and minimum fatigue 
cycle force value (as specified in ISO 14801).141 Once the FEA data has been 
collected, the equivalent Findley or Dang Van alternating stresses should be 
calculated for each finite element selected. These methods transform, for each 
element, the multiaxial stresses at a given stress ratio R into a uniaxial equivalent 
alternating stress 𝑅ିଵ as explained in section 1.3.2.4.3.  

Then, the Volume Method is used to determine the effective stress for each of 
these methods (Findley and Dang Van) as a function of the critical distance 
(radius of sphere), obtaining a graph similar to the one shown in Figure 153 for 
standardized specimens, but now for the dental implant under study. 

Next, the normalized stress gradient at the root of the notch must be 
determined. With the value of the normalized stress gradient, the critical 
distance is determined by means of the linear model obtained in section 5.2. In 
the case of the CP4 Titanium analyzed, the models in Figure 155 are obtained, 
also expressed in equations (143) and (144). 

Then, the effective stress for the calculated critical distance must be obtained. 
With this stress, fatigue life is calculated according to the S-N curve of the 
unnotched specimen; in this case expressed in equation (139). 

This methodology can be used for any geometry and working conditions 
(external load, screw preload, among others) as long as the material of the dental 
implant is maintained. If an implant made of another material needs to be 
analyzed, the methodology should be readjusted by repeating the steps 
explained in sections 5.1 and 5.2. 
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Figure 156. Steps of the methodology proposed to predict fatigue life of dental 
restorations whose critical component is the dental implant. 

5.4 Validation of the methodology 

Having developed and presented the methodology for fatigue life prediction of 
dental restorations in which the implant is the critical component, the 
prediction accuracy of the methodology is tested in this section. 

For this purpose, three dental restoration models were first tested 
experimentally. Then, the methodology was used to predict their fatigue life and 
the difference between the experimental and predicted values was analyzed to 
verify the accuracy of the methodology presented in this chapter. 

5.4.1 Experimental validation 

Three dental restoration models were tested. All of them were mounted on 
narrow implants, to ensure that breakage occurred at the implant rather than 
the prosthetic screw. The first dental restoration, hereinafter IN-I3.3-P4.1, 
consists of a BTI INTERNA IIPUCA3313 implant with a 3.3mm body 
diameter and a 4.1mm platform diameter, and the already known INPPTU44 
abutment and INTTUH prosthetic screw. The second dental restoration, 
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hereinafter IN-I3.0-P3.0, consists of a BTI INTERNA IIP3CA3013 implant 
with a 3mm body diameter and a 3mm platform diameter, a INPPT3B34 
abutment, and INTTUH prosthetic screw. The third dental restoration, 
hereinafter EX-I2.5-P3.5, consists of a BTI EXTERNA IRTCA2513 implant 
with a 2.5mm body diameter and a 3.5mm platform diameter, a PPATEB44 
abutment, and TTTH prosthetic screw. All dental restorations are shown in 
Figure 157 and most important information about each dental restoration is 
summarized in Table 19. As is the case with all dental restorations studied so 
far, both the implant and the abutment are made of CP4 Titanium while the 
prosthetic screw is made of Ti6Al4V ELI, and the chemical composition of 
these materials is provided in Table 4. 

Table 19. All the narrow implant-supported restorations under study. 

Restoration IN-I3.3-P4.1 IN-I3.0-P3.0 EX-I2.5-P3.5 
Implant IIPUCA3313 IIP3CA3013 IRTCA2513 

Abutment INPPTU44 INPPT3B34 PPATEB44 
Screw INTTUH INTTUH TTTH 

Body Ø (mm) 3.3 3.0 2.5 
Platform Ø (mm) 4.1 3.0 3.5 

IAC Internal Internal External 
Screw Metric M1.8 M1.8 M2 

Torque (Ncm) 35 35 35 
Experimental fatigue tests were carried out on the INSTRON E3000 
Electropuls, as explained in section 2.4.1 and following the recommendations 
of ISO 14801,141 explained in detail in section 1.6.1. In short, the abutment was 
placed on the implant and the prosthetic screw was tightened at 35Ncm, as 
recommended by the manufacturer. The whole assembly was embedded in a 
specimen holder and placed at 30º to the vertical axis. Then, vertical load cycles 
were applied up to the fatigue failure of the restoration. 

In preliminary tests, it was found that the range of loads that result in finite life 
failure is relatively narrow for the implants under study. For this reason, a 
complete fatigue curve for the finite life of each dental implant was not 
obtained, since this would mean covering both very low and very high cycles, 
which could distort the results. Note that the case of low cycles corresponds to 
non-common load values that are not very representative in the habitual use of 
dental implants, and besides this, in this range a strain-stress approach (LCF) is 
usually employed, as explained in section 1.3.1.1, and in the case of high cycles, 
high dispersion in tests is expected. Therefore, a single load level located in the 
middle range of the finite life was chosen: 220N for IN-I3.3-P4.1, 140N for 
IN-I3.0-P3.0, and 130N for EX-I2.5-P3.5. Figure 158 shows the fatigue results 
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of all implant models under the aforementioned loads. The Anderson-Darling 
test was performed in all cases to verify that there is not enough evidence that 
the sample data departs significantly from log-normal distribution for a 
significance level of 0.05, whereby log-normality cannot be rejected (p=0.5938 
for IN-I3.3-P4.1, p=0.2243 for IN-I3.0-P3.0, and p=0.3219 for EX-I2.5-P3.5). 
Figure 159, shows that the implant failure occurs at the thread immediately 
below the limit of the embedment of the implant with the specimen holder. 

 

   
A) B) C) 

Figure 157. Dental restorations under study. A, IN-I3.3-P4.1. B, IN-I3.0-P3.0. C, EX-
I2.5-P3.5. 
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(A) 

 

(B) 

 

(C) 

Figure 158. Experimental fatigue results of each dental implant tested along with 
their normal distribution function, and the mean value. A, IN-I3.3-P4.1 tested at 
220N. B, IN-I3.0-P3.0 tested at 140N. C, EX-I2.5-P3.5 tested at 130N. 

Figure 159. Crack initiation section located at the thread notch immediately below 
the limit of the embedment of the implant with the specimen holder (IN-I3.0-P3.0). 
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5.4.2 Methodology prediction 

Once known the loads applied in the experimental tests that gave rise to the 
fatigue failure of each dental restoration, the FEA of these dental restorations 
were carried out under the same loads. The FE models are similar to those seen 
in Chapter 3 (following the indications in section 2.2) but with some specifics 
indicated in section 2.2.6. First, the whole geometry of the dental restoration is 
modeled, since the external thread of the implant is not simplified (is not 
assumed to be cylindrical), with the notch of the thread being the critical point 
at which the stresses are studied. Secondly, the implant has a progressive 
spherical refinement in 4 phases with the center of the spheres located at the 
root of the notch where the crack starts. Moreover, the elements of a sphere 
with a radius of 0.2mm are selected whose centers are located at the root of the 
notch, i.e., at the crack initiation point. Then, the X, Y, and Z coordinates of 
the centroid of each element, the associated volume, and their 6 stress 
components are obtained. Note that this data should be recorded for the 
maximum (220N in the case of IN-I3.3-P4.1, 140N in the case of IN-I3.0-P3.0, 
and 130N in the case of EX-2.5-P3.5) and minimum (22N in the case of IN-
I3.3-P4.1, 14N in the case of IN-I3.0-P3.0, and 13N in the case of EX-I2.5-
P3.5) load values of the fatigue cycle (as specified in ISO 14801).141 Figure 160 
shows the models of the three restorations analyzed and the details of the 
refinements in the thread root immediately below the embedment limit of the 
specimen holder. 

Then, Findley and Dang Van methods were applied to obtain the equivalent 
alternating stresses of the selected elements using the aforementioned sphere. 
With these alternating stress values, the effective stress of the Volume Method 
is calculated for a sphere with its center at the root of the notch and an 
increasing radius from 0 to 0.2mm. Figure 161 shows the Findley and Dang 
Van effective stresses as a function of the critical distance (sphere radius) in the 
cases of IN-I3.3-P4.1 (at 220N), IN-I3.0-P3.0 (at 140N), and EX-I2.5-P3.5 (at 
130N). From the same graph, the stress gradient was also obtained at the root 
of the notch for all dental restorations under review. Table 20 shows the 
normalized stress gradient obtained for Findley and Dang Van effective stresses 
at the root of the notch of all restorations. Once the normalized stress gradient 
is obtained, the linear model determined in section 5.2 (Figure 155 and 
equations (143)and (144)) provides the critical distance that must be used for 
fatigue calculations. Figure 162 shows that the normalized stress gradient 
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obtained at the root of the implant notches falls within the range of the 
normalized stress gradients obtained on the standardized specimens. 

  
A) B) C) 

 
D) E) F) 

Figure 160. FE models and details of the mesh of the crack initiation point. A, IN-
I3.3-P4.1 model section. B, IN-I3.0-P3.0 FE model section. C, EX-I2.5-P3.5 model 
section. D, Crack initiation point mesh refinement of IN-I3.3-P4.1. E, Crack 
initiation point mesh refinement of IN-I3.0-P3.0. F, Crack initiation point mesh 
refinement of EX-I2.5-P3.5. 
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A) 

B) 

C) 

Figure 161. Findley and Dang Van effective stress versus the sphere radius (critical 
distance) and the stress gradients at the root of the notch. A, IN-I3.3-P4.1. B, IN-
I3.0-P3.0. C, EX-I2.5-P3.5. 
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Table 20. Findley and Dang Van stress gradient values at the root of the notch for all 
dental restorations under study. 

 Findley normalized stress 
gradient (mm-1) 

Dang Van normalized 
stress gradient (mm-1) 

IN-I3.3-P4.1 5.420 3.636 
IN-I3.0-P3.0 4.914 3.607 
EX-I2.5-P3.5 4.449 3.486 

 

Figure 162. Critical distance (sphere radius) versus normalized stress gradient for the 
dental restorations under study with the linear models proposed. 

Table 21 shows the critical distance values obtained from the linear models of 
Figure 162. With these values of critical distance, Figure 161 is consulted, which 
shows the equivalent Findley and Dang Van stresses as a function of the critical 
distance (radius of the sphere). This figure is updated in Figure 163, showing 
the effective stress values obtained for all the cases studied. The obtained values 
of the effective fatigue stress are shown in Table 22. 

Table 21. Findley and Dang Van critical distance values for all dental restorations 
under study. 

 Findley critical 
distance (mm) 

Dang Van critical 
distance (mm) 

IN-I3.3-P4.1 0.079 0.113 
IN-I3.0-P3.0 0.086 0.114 
EX-I2.5-P3.5 0.092 0.115 
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A) 

B) 

C) 

Figure 163. Findley and Dang Van effective stress values obtained for fatigue 
calculations. A, IN-I3.3-P4.1. B, IN-I3.0-P3.0. C, EX-I2.5-P3.5. 
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Table 22. Findley and Dang Van effective stress values for all dental restorations 
under study. 

 Findley effective 
stress (MPa) 

Dang Van effective 
stress (MPa) 

IN-I3.3-P4.1 405.6 380.1 
IN-I3.0-P3.0 429.0 412.5 
EX-I2.5-P3.5 407.4 389.1 

Finally, the fatigue life predictions for IN-I3.3-P4.1, IN-I3.0-P3.0, and EX-I2.5-
P3.5 are obtained using equation (139) with the values of effective stresses from 
Table 22. Figure 164 shows the values of the predictions using the Findley 
method, the S-N of the material (unnotched specimen, 𝑅ିଵ) which, obviously, 
passes through the three prediction points, and the different values of fatigue 
life obtained experimentally (including the mean value and its log-normal 
probability function). Similarly, Figure 165 shows the predictions obtained with 
the Dang Van method. In both cases, it is shown how the predictions of the 
methodology fit the experimental results very well for all the dental restorations 
under study, with Findley being more conservative than Dang Van. 

 

Figure 164. Experimental fatigue results of each dental implant tested and the fatigue 
life prediction by using the proposed methodology and Findley effective stresses. 
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Figure 165. Experimental fatigue results of each dental implant tested and the fatigue 
life prediction by using the proposed methodology and Dang Van effective stresses. 

Finally, Figure 166 shows all the experimental test results (vertical axis) versus 
the corresponding fatigue life estimated by the methodology (horizontal axis) 
using Findley method. Figure 167 does the same for Dang Van method. The 
45-degree blue line represents a perfect methodology-experimental match 
(experimental life equal to the life predicted by the methodology). As it was 
concluded in Chapter 3, a perfect correlation is virtually impossible because of 
the inherent dispersion of the fatigue phenomenon,55 as well as the scatter of 
the torque-preload ratio in screwed joints.3,45 However, taking into account the 
aforementioned dispersion sources, the prediction can be considered to be 
appropriate. 
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Figure 166. Experimental results versus methodology life prediction (Findley). 

 

Figure 167. Experimental results versus methodology life prediction (Dang Van). 
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5.5 Conclusions 

In this chapter, a methodology is presented to predict the fatigue life of dental 
restorations in which the critical component is the dental implant. This 
methodology is based on two well distinguished steps. 

First, the fatigue behavior of the material the implants studied are made from 
is analyzed. In addition to this, the effect of stress concentrations on fatigue 
behavior is evaluated. This study has shown that the relationship between the 
fatigue behavior of a notched and an unnotched specimen remains constant 
throughout the cycles in the case of the analyzed CP4 Titanium. This does not 
have to be so; in some books it is assumed that this ratio is equal to one in the 
first cycle and then increases until reaching the fatigue limit. Other studies 
suggest that the ratio is equal to one at 1000 cycles and then it increases. 
However, these are assumptions to use with theoretical S-N curves, with it 
being more thorough to make - as has been done in this chapter - a campaign 
of experimental fatigue tests and determining real behavior. In this particular 
case, the curves were parallel, but the behavior could be very different for any 
other material. 

Second, the 6 stress components in the vicinity of the notch of the same 
specimens experimentally tested are obtained by FEA. Then, the FEA results 
were post-processed, obtaining the equivalent stresses from Findley and Dang 
Van critical plane methods for each of the elements selected in the vicinity of 
the notch. Then, the TCD is used, applied at the volume of a sphere (Volume 
Method), and a linear model that relates the critical distance to be used in fatigue 
calculations with the normalized stress gradient at the root of the notch is 
proposed, following the same direction as recent investigations.302–305 Once the 
normalized stress gradient has been calculated, the proposed model provides 
the critical distance to be used for fatigue calculations. Then, the effective 
stresses corresponding to the experimental fatigue life are obtained.  

Regarding the TDC, Susmel94 proposes also using it for finite life by using a 
linear model that relates the critical distance and the number of cycles (in log-
log scale). However, in the case of the material studied in this chapter, the stress 
concentration effect is virtually constant throughout the number of cycles, as 
demonstrated in section 5.1 and reiterated at the beginning of this section. 
However, if the methodology is to be used to predict the fatigue life of dental 
implants made from another material, there is the possibility that this constant 
stress concentration effect cannot be assumed and the procedure proposed by 
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Susmel94 must be followed, resulting in a more complex process. Regarding 
multiaxial fatigue methods, as explained in section 1.3.2.4.3, these are normally 
used for infinite life; i.e., to determine whether a part will survive or not. 
Socie,110 however, proposes using any of the critical plane methods in section 
1.3.2.4.3 and applying the S-N curve to calculate finite life as well. 

Regarding the accuracy of the methodology, a fatigue life prediction very close 
to the average of the experimental tests was obtained, taking into account the 
scatter inherent to the fatigue phenomenon, the difference in results from the 
multiaxial fatigue methods themselves due to the complexity of the 
phenomenon, and the effect on fatigue behavior of the surface treatments 
performed only on dental implants but not on standardized specimens, even 
though the experimental results proved to be very minor if not negligible. 
Taking all of this into account, it would appear that there is little room for 
improvement in the results, beyond validating them with other dental implant 
models. In any case, the consideration of other critical plane methods in this 
methodology is established as a future line. 
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6 Microgap at the Implant-
Abutment Connection 

As already mentioned in section 1.6.3, screw-retained dental restorations are 
subjected to microgap formation at the IAC. These microgaps are cavities in 
which bacteria can colonize or even pass into the implant, proliferate, and 
seriously compromise the success of the dental restoration. Therefore, the goals 
of dental implant manufacturers are to design a connection that minimizes the 
value of this microgap to avoid possible complications over the lifetime of 
dental restorations. 

This chapter analyzes the microgap of different dental restorations under 
different loads applied in-situ. For this purpose, a portable device capable of 
applying static loads on any dental restoration has been developed. Since it is 
portable, the device could be placed in a Micro-CT cabin, so radiographs of the 
microgap at the IAC could be taken on different implants under different 
applied loads. The purpose of this chapter is to compare microgap values on 
different dental restorations and to evaluate the effect of parameters such as 
implant body diameter, platform diameter and the use of a transepithelial 
element between the implant and the abutment on microgap formation. The 
study was experimental, rather than numerical, in order to realistically consider 
the effects of torque-preload scatter and manufacturing tolerances. This study 
was carried out entirely at the University of Würzburg (Germany) in 
collaboration with Professor Simon Zabler and his X-ray microscopy team 
(Lehrstuhl für Röntgenmikroskopie). 

6.1 Introduction 

As mentioned in section 1.6.3, dental restorations are subject to microgap 
formation at the IAC, which may be caused by irregularities in the IAC contact 
surfaces21,22 and/or by the application of occlusal loads49,50 along with an 
inappropriate tightening torque.3,266,267 
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After a preliminary observational study, it has been determined that different 
types of microgaps can be distinguished among butt-joint connections, 
depending on the load applied and the size of the gap generated in the 
connection. Elastic microgaps are caused by low to moderate occlusal loads, 
which are usually the most frequent. This microgap disappears when the force 
does too, resulting in a large and intermittent microgap. Plastic microgaps occur 
as a result of high or very high occlusal loads, which are less frequent. When 
the load is applied, the deformation will have an elastic and a plastic component, 
leading to a very high microgap. When the force ceases, the elastic component 
disappears but the plastic component remains. This microgap is usually small 
but permanent unless the dental restoration has collapsed, in which case the 
microgap will be large and would be called a macrogap. Finally, microgaps 
resulting from a mismatch in the IAC appear when the prosthetic components 
are mounted on the implant and are caused by inappropriate tolerances, an 
irregular surface finish or, directly by a poor design. They are therefore very 
small but permanent microgaps. 

As explained in the literature review in section 1.6.3, microgaps can seriously 
compromise the success of dental restorations by creating a cavity that favors 
bacterial colonization.7–11 This can lead to peri-implantitits,30 the main cause of 
implant loss.31–33 

This review has also explained that most of investigations study microgaps in 
the absence of occlusal loads,9,10,21,22,29,31,33,206–215,217–222,224,225,228,229,231–

233,235,237,238,240,242,243,245,248,258–260 which would be equivalent to measuring (or 
detecting) microgaps caused by implant and abutment mismatches. This may 
be caused by surface irregularities or poor tolerances. Other investigations study 
microgaps after having applied an external cyclic 
load,223,226,227,230,234,236,239,241,244,246,247,249,251,256,257,261,262 in which case, what is being 
measured is the aforementioned residual plastic gap. However, elastic gaps have 
been investigated much less since the load must be applied at the time the 
measurement is made (in-situ). This type of elastic microgap can seriously 
compromise the restoration as intermittent microgaps that open and close 
occur as masticatory loads are applied, creating a suction and pumping sequence 
that can project bacteria to the areas surrounding of the dental restoration. 

Therefore, this chapter studies this type of microgap at IAC in different dental 
restorations. The microgap in the IAC was measured by using hard X-ray 
radiography obtained at the same time as the load was applied (in-situ). From 
the tests, the effect of the diameter of the implant body, the diameter of the 



6. Microgap at the Implant-Abutment Connection 201 

 

platform or the use of a transepithelial abutments on microgap formation 
instead of a directly attached implant-supported restoration is analyzed. 

6.2 Experimental tests 

As mentioned in the previous section, the effect of implant body diameter, 
platform diameter, and the use of transepithelial-supported instead of implant-
supported restoration on microgap formation at IAC is investigated in this 
chapter. For that purpose, four dental restorations were studied: IN-I5.5-P5.5, 
IN-I5.5-P4.1, IN-I4.5-P4.1, and MULTI-IM-H2 (see Figure 168), whose 
chemical composition is provided in Table 4. Further information about these 
dental restorations may be found in section 3.2. Microgaps were compared by 
grouping the restorations in pairs as illustrated in Figure 168, thereby isolating 
the variables of interest: implant body diameter (IN-I4.5-P4.1 versus IN-I5.5-
P4.1), implant platform diameter (IN-I5.5-P4.1 versus IN-I5.5-P5.5), and the 
use of a transepithelial-supported restoration instead of an implant-supported 
restoration (IN-I4.5-P4.1 versus MULTI-IM-H2). 

 
Figure 168. All dental restorations under study coupled isolating one variable in each 
case: Platform diameter, implant body diameter, and the use of a transepithelial-
supported restorion versus an implant-supported restoration. 

As mentioned in the previous section, the aim of this study was to evaluate the 
in-situ microgap; i.e. while the load is being applied. For that reason, a special 
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portable device (see Figure 169) was designed and manufactured to perform a 
static load meeting the requirements of ISO 14801,141 described in section 1.6.1. 
Due to the small dimensions and weight of the portable device, unlike bigger 
testing machines, it can be easily placed into the cabin of the MicroCT to obtain 
the X-ray images. The device consists of two fixed plates (upper and lower) and 
two cylindrical guides. Static load is applied by tightening a bolt that compresses 
a spring, which in turn transmits this load to the movable plate (in the middle) 
and then to the dental restoration. The load applied to the movable plate is 
measured by load cell Interface INF-USB2-C10-2, capable of measuring loads 
of up to 900N. On the other side of the movable plate, i.e., between the plate 
and the implant, there is a linear bearing so that the implant can be deformed 
without any lateral restrictions on the contact. The movable plate is guided on 
the vertical axis (and powered by the tightened bolt) by means of two linear 
bearings and the cylindrical guides. The friction on the guides was proved to be 
negligible while the weight of the movable plate (that has influence on the load 
transmitted to the implant but not measured by the load cell) was also 
considered and added to the load cell recordings. Each dental restoration was 
placed in the specimen holder and tightened at the torque recommended by the 
manufacturer (35Ncm for the prosthetic screws attached to the implant and 
20Ncm for the screw attached to the transepithelial). Next, a hemispherical 
device was assembled on the top of the dental restoration so that the load is 
applied normal to the hemisphere, at 30° to the restoration axis as established 
in ISO 14801.141 

Finally, the loading device (see Figure 170) was placed in the Micro-CT cabin 
of Lehrstuhl für Röntgenmikroskopie (Würzburg University, Germany) to 
measure the IAC microgap with an applied load (in-situ). The X-ray cone-beam 
was thereby orthogonal to the restoration and to the load axis, and parallel to 
the microgap opening forming at the IAC. 

The X-ray parameters were 180kV anode voltage with a target power of 
approximately 4W (transmission target in micro-focal mode). The X-rays were 
pre-filtered by 2mm of copper and 1mm of steel, the detector was at a focus-
detector distance of 550mm, which yielded 18.75 geometric magnification, 
hence 4µm/pixel sampling at the IAC level (detector pixel-size was 
74.8µm/pixel). Transmission images of the loaded IAC were taken with 500ms 
exposure time and 20-times averaging, hence 10s total exposure time. All 
images were normalized with respect to pixel dark current and detector 
brightfield intensity (both 250 times averaged). 
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Figure 169. Portable device able to perform a static load meeting the requirements in 
ISO 14801.141 

 
Figure 170. Experimental setup in the Micro-CT cabin. 

In this investigation, specimens were loaded up to 400N or 500N, depending 
on the restoration, with load level increases of 50N. A radiography was obtained 
for every load step, and the IAC microgap was computed from the normalized 
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X-ray radiographs by measuring the angle formed between the three points 
marked in Figure 171, with the following expression: 

Microgap = sin(𝛼) · ∅௣௟௔௧௙௢௥௠ (145) 

A) B) 

Figure 171. Radiograph of loaded implant at 4µm/pixel sampling. Gap measurement. 
A, General view. B, Detail of the IAC microgap. Measurements were taken manually 
using ImageJ2 software. 

Figure 172, Figure 173, Figure 174, and Figure 175 show the microgap 
measurement results for IN-I4.5-P4.1, IN-I5.5-P4.1, IN-I5.5-P5.5, and 
MULTI-IM-H2, respectively. 4 specimens (plotted with different markers) were 
tested for each dental restoration under study, with load steps of 50N. 
Measurements below the indicated range were not considered because the 
microgap size was lower than the resolution of the images obtained. Besides 
this, the maximum load level was set to 400N or 500N depending on the dental 
restoration, as plastic collapses were reported for higher loads. A power 
regression function was assigned to the results of each dental restoration, 
shown as solid lines. The scatter among the microgap results of each of the 4 
tests for each restoration is understood to be mainly due to the dispersion in 
the prosthetic screw preload. In effect, although the same tightening torque was 
applied to all the specimens, scatter in the resulting screw preload is 
unavoidable, mainly due to the coefficient of friction scatter.3 The preload is 
responsible for joining the abutment to the implant, thereby providing 
structural integrity to the IAC,306 therefore a smaller preload will result in a 
larger IAC microgap for the same external load.23,185 To a lesser extent, 
manufacturing tolerances on the abutment and implant contact surfaces also 
lead to scatter in the microgap results. Both sources of scatter are not only 
unavoidable but also representative of actual dental restoration performance 
since they will also exist in-vivo. Other small sources of dispersion are 
attributable to the experimental setup, such as errors in specimen positioning 
(small deviations with respect to the nominal inclination of 30º, already 
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considered in ISO 14801141) or in the load cell measurements. Finally, for 
comparison purposes, Figure 176 shows all the power regression models 
together. 

 
Figure 172. IAC microgap measurements versus applied load and the power 
regression model for IN-I4.5-P4.1. Each marker corresponds to a different sample. 

 
Figure 173. IAC microgap measurements versus applied load and the power 
regression model for IN-I5.5-P4.1. Each marker corresponds to a different sample. 

 

Figure 174. IAC microgap measurements versus applied load and the power 
regression model for IN-I5.5-P5.5. Each marker corresponds to a different sample. 
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Figure 175. IAC microgap measurements versus applied load and the power 
regression model for MULTI-IM-H2. Each marker corresponds to a different 
sample. 

 

Figure 176. Power regression models of microgap value versus external applied load 
for each dental restoration under study. Solid lines correspond to the tested load 
range. Dashed lines correspond to model extrapolation. 

In order to analyze the effect of each variable, the experimental results were 
converted into a logarithmic scale and compared via ANCOVA. In addition to 
this, the microgap values obtained experimentally were compared by means of 
t tests (α=.05) and the differences between the means were calculated. 

Regarding the effect of using a transepithelial-supported restoration instead of 
an implant-supported restoration on microgap formation, the performance of 
IN-I4.5-P4.1 and MULTI-IM-H2 (Figure 172 and Figure 175) were compared. 
The first null hypothesis of the ANCOVA was accepted (P=.767); i.e., it can be 
assumed that the slopes were equal, and the second null hypothesis was rejected 
(P=.038) therefore assuming that the microgaps obtained in these two dental 
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restorations were statistically different. A microgap reduction of 12% between 
IN-I4.5-P4.1 and MULTI-IM-H2 was identified at 300N. Nevertheless, the null 
hypothesis of the t test was rejected (P=.527); i.e., the values of both 
restorations cannot be guaranteed to be statistically different. In contrast, at 
400N microgap reduction increased up to 20% and the t test accepted the null 
hypothesis (P=.044). 

Regarding the 1mm diameter increase of the implant body, the microgaps of 
IN-I4.5-P4.1 and IN-I5.5-P4.1 (see Figure 172 and Figure 173) were compared. 
In this case, ANCOVA could not guarantee that the slopes of both models 
were statistically equal (P=.113) and therefore the difference in terms of 
microgaps cannot be studied in this way. A 14% reduction between IN-I4.5-
P4.1 and IN-I5.5-P4.1 was identified at 300N. Again, the t test rejected the null 
hypothesis (P=.395). However, at 400N, a 22% microgap reduction was 
identified and the null hypothesis was accepted (P=.024). 

Finally, IN-I5.5-P4.1 and IN-I5.5-P5.5 (see Figure 173 and Figure 174) were 
compared to quantify the effect of increasing implant platform diameter by 
1.4mm. ANCOVA accepted the first null hypothesis that the slopes were equal 
(P=.973) and rejected the second null hypothesis (P<.001) guaranteeing a 
difference in terms of microgaps. A 51% reduction between IN-I5.5-P4.1 and 
IN-I5.5-P5.5 was identified at 300N and 54% at 400. In both cases the null 
hypothesis was accepted (P=.031 and P<.001, respectively). 

6.3 Conclusions 

Increasing implant body diameter by 1mm reduced IAC microgaps between 14 
and 22% in the load range studied. To the author´s knowledge, no other studies 
analyzed the effect of the implant body diameter on microgap size. However, 
various studies demonstrated that increasing the implant body diameter 
significantly improves the overall mechanical performance of dental 
restorations. The reason for this is that, from a mechanical point of view, the 
stresses on the implant decrease,171 which improves the static and fatigue 
response of the restoration.172,173 In parallel, from a clinical point of view, 
increasing the implant diameter increases the implant-bone contact surface, 
thus reducing bone stresses165–168 and enhancing initial stability.169,170 As a 
drawback, this recommendation is limited by horizontal crestal bone atrophy 
and a restricted edentulous area.278 Furthermore, narrower implants decrease 
the need for bone augmentations, reducing surgical invasiveness.279 
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Increasing platform diameter led to the most remarkable IAC microgap 
reduction. A 51-54% reduction was found when the platform diameter was 
increased by 1.4mm. Again, no studies were found to directly agree with this 
conclusion, even though some studies proved that IAC platform diameter plays 
an important role on other mechanical aspects such as joint strength, joint 
stability and fatigue behavior.13 Nevertheless, from a clinical point of view, the 
platform switching concept, where an abutment narrower than the implant is 
used, can reduce peri-implant bone loss.182,183 

The use of a transepithelial-supported restoration instead of an implant-
supported restoration significantly reduced microgaps, with 12-20% gap 
reduction in the load range tested. Thus, this may be a simple and effective 
strategy to reduce microgaps since no invasive actions are required by the 
clinician. Nevertheless, further research is necessary to ensure that using a 
transepithelial element does not compromise other mechanical aspects of 
dental restorations. 

Finally, it also has been seen that under lower loads the differences among the 
dental restorations under study were small, except for the wide platform that 
showed a big difference, with the scatter being more relevant than the possible 
differences among the mean microgap values. Moreover, in this study, 
microgaps below 200N were not measured due to experimental testing 
limitations. Even though it may be assumed that the conclusions obtained for 
high loads can be extrapolated to lower loads, if more confident microgap 
measurements under lower loads are pursued, further experimental tests would 
be necessary, using more advanced experimental technologies, such as a 
synchrotron hard X-ray radiography, which provides greater precision.252 
Another limitation of this study is that only one connection type was 
investigated. Other connection designs such as external butt joints or conical 
connections could be analyzed in further research.  
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7 Self- loosening of the 
prosthetic screw 

As discussed in section 1.4, dental restorations are subjected to variable 
masticatory forces throughout their life span. These forces can cause relative 
displacement between the abutment, the screw and the implant, overcoming 
existing frictional forces and allowing the screw to slip, leading to a progressive 
loss of preload. As seen in sections 1.6.1, 1.6.3, and 3.4.1, a proper preload is 
crucial for optimum fatigue behavior and to reduce microgap formation. 
Therefore, it is of vital importance to avoid self-loosening of prosthetic screw 
in dental restorations as far as is possible. 

In section 1.6.2, an explanation was provided as to how there are numerous 
studies analyzing the phenomenon of self-loosening in the prosthetic screw of 
a dental restoration. These studies are carried out from different perspectives. 
On the one hand, there are retrospective studies, which indicate how frequent 
the prosthetic screw loosening problem occurs in clinical cases (in-vivo). On 
the other hand, most of the studies found are in-vitro experimental studies that 
analyze the effect of different parameters of the restorations on the loosening 
of the prosthetic screw such as the effect of lubricants or saliva contamination, 
different screw materials and coatings, effect of re-tightening, etc. 

Similar to the published studies on fatigue of dental restorations (see Chapter 
3), these studies are useful for clinicians to consider the importance of the 
phenomenon, in this case the loosening phenomenon, and to take account of 
the keys to choose an appropriate dental restoration. However, in the dental 
implantology field, no studies have been found that go any further and analyze 
the screw loosening phenomenon in depth. 

Beyond the field of dental implantology, there are numerous studies on screwed 
joints subjected to transverse loads that provide models by which to predict not 
only the conditions under which the screw loosening phenomenon occurs but 
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also the process of progressive preload loss. This PhD Thesis is based on the 
numerical model of Nassar, explained in detail in section 1.4, which can be used 
to calculate the loosening (or untightening) torque 𝑇௅ necessary to loosen a 
screw subjected to a given transverse force 𝐹௧, and can even be used to calculate 
the critical value at which screw self-loosening occurs in the absence of an 
external untightening torque (value for  𝐹௧ for which 𝑇௅ = 0). However, the 
Nassar model requires numerical integration, which makes its use tedious. 
Moreover, this model requires the value of the transverse load 𝐹௧  the screw is 
subjected to be known, and often, as is the case with dental restoration, 
obtaining this value from the external load applied on the screwed joint is not 
straightforward. 

For all of the above, this chapter develops a methodology by which to predict 
the loosening phenomenon on prosthetic screws in dental restorations based 
on an existing analytical model (explained in section 1.4). To make its 
application more direct and simpler, simplifying the model by means of a 
parabola obtained by curve fitting is proposed, thereby avoiding numerical 
integration. This equation will be fed with the axial 𝐹௔ and transverse force 𝐹௧ 
reactions acting on the screw head contact as a consequence of the external 
load applied to the dental restoration, which will be obtained by means of a 
simple FEA. As a result, the methodology will predict whether or not the screw 
will loosen under the conditions studied. Finally, the methodology is 
experimentally validated against various tightening torque cases. 

Therefore, the purpose of this chapter is to transfer current knowledge 
regarding the loosening phenomenon in the field of screwed joints to the dental 
implantology industry, adapting and simplifying an existing and proven model 
for direct, simple and versatile application. 

Accordingly, section 7.1 provides details of the simplification process of the 
Nassar et al.125,126 model by means of curve fitting, obtaining the equation for a 
parabola. Following that, section 7.2 presents the methodology for predicting 
screw loosening. In section 7.3, the methodology is validated by means of 
various case studies in which the predictions made using the methodology are 
compared with experimentally obtained results. Finally, section 7.4, draws 
conclusions about the methodology and highlights various clinical implications 
obtained using the methodology itself. 
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7.1 Simplified model for loosening torque 
determination under external loading 

As mentioned in the introduction of this chapter, the self-loosening prediction 
methodology which will be detailed in section 7.2 is based on the analytical 
model of Nassar,125,126 explained in section 1.4. It should be remembered that 
an external transverse load may help overcome the friction resistance on the 
screw head and thread contacts. Consequently, resistance torques under the 
screw head and on the thread contact surface 𝑇௛ and 𝑇௧ become smaller and 
therefore a lower loosening torque 𝑇௅ is needed to untighten the screw, as can 
be deducted from equation (11). 

The resistant torque under screw head 𝑇௛ (calculated in the first term of 
equation (16) in the absence of external loads) can be calculated by using 
equation (95) when a transverse load 𝐹௧೓

 is acting under the screw head. 
Similarly, the resistant torque on the screw thread 𝑇௧ (calculated in the second 
term of equation (16) in the absence of external loads) can be calculated using 
equation (120) when a transverse 𝐹௧೟

 is acting on the threads. Finally, the value 
of the pitch torque 𝑇௣ remains constant and can be calculated as shown in the 
third term of equation (16), regardless of the transverse load acting on the 
screw. 

Accordingly, the loosening torque 𝑇௅ can be finally calculated by updating 
equation (16) by substituting the values of 𝑇௛ and 𝑇௧ obtained from equation 
(95) and equation (120), obtaining equation (130). The relationship can be 
plotted in the normalized graph shown in Figure 66, with 𝑇௛/𝐹௔  − 𝐹௧/𝐹௔ and 
𝑇௧/𝐹௔ − 𝐹௧/𝐹௔ and the resulting 𝑇௅/𝐹௔ − 𝐹௧/𝐹௔. Note that, in the absence of 
transverse load (𝐹௧=0), the untightening torque values are those in equation 
(16), which correspond to the point indicated with a white triangle in the graph 
in Figure 66. In contrast, screw self-loosening occurs when the transverse load 
𝐹௧ reaches a critical value for which the external loosening torque 𝑇௅ needed to 
untighten the screw is null, which corresponds to the point indicated with a 
black triangle in Figure 66, as explained in section 1.4.3. 

This numerical model forms the basis of the mechanical foundations of the 
self-loosening phenomenon and quantifies the effect of different parameters. 
As a drawback, its application is not straightforward because the equations must 
be solved by using numerical integration. 
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To overcome this problem, the expressions 𝑇௛/𝐹௔  − 𝐹௧/𝐹௔ and 𝑇௧/𝐹௔ − 𝐹௧/𝐹௔ and 
the resulting 𝑇௅/𝐹௔ − 𝐹௧/𝐹௔ (previously shown in Figure 66) were approximated 
by parabolic curves by means of curve fitting so that the loosening torque 𝑇௅ 
can be predicted in a straightforward manner, obtaining equations (146) and 
(147), shown in Figure 177. The parabolas are defined by setting the vertex at 
the values of 𝐹௧/𝐹௔ where 𝑇௛ and 𝑇௧ drop to zero (horizontal axis) and forcing 
them to pass the values of 𝑇௛/𝐹௔ and 𝑇௧/𝐹௔ where 𝐹௧ falls to zero (vertical axis): 

൬
𝑇௛/𝐹௔

𝜇௛ · 𝑟௛
൰

ଶ

+
𝐹௧/𝐹௔

𝜇௛
= 1 (146) 

൭
𝑇௧/𝐹௔

𝜇௧ ·
௥೟

௖௢௦ఈ

൱

ଶ

+
𝐹௧/𝐹௔

ఓ೟

ఋ

= 1 (147) 

 

 

Figure 177. Torque versus transverse load: slip limit curves. Nassar model125,126 and 
new equations approximated by parabolic curves. 

Even though other geometrical curves, such as a rotated ellipse, provide a better 
overall approximation, there are two main advantages to using a parabola. First, 
its formulation is simpler, and leads to simple mathematical expressions for 
estimating screw self-loosening. Secondly, even though the parabola does not 
fit well for low values of 𝐹௧/𝐹௔, the error for high values of 𝐹௧/𝐹௔, where self-
loosening occurs, is small since there is a good fit in that zone as shown in 
Figure 177. A wide parameter range was studied (with µ௛=µ௧=0.02-0.50, 𝛼=0-
45°, 𝛽=2-12°) comparing both models (the numerical equation by Nassar and 
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the parabolic curve proposed here) with a maximum difference of 1.4% 
obtained. 

Hence, equations (95) and (120) can be rewritten as: 

𝑇௛ = 𝜇௛ · 𝐹௔ · 𝑟௛ · ඨ〈1 −
𝐹௧

𝜇௛ · 𝐹௔

〉 (148) 

𝑇௧ = 𝜇௧ ∙ 𝐹௔ ·
𝑟௧

𝑐𝑜𝑠𝛼
· ඨ〈1 − 𝛿 ∙

𝐹௧

𝜇௧ · 𝐹௔

〉 (149) 

It must be mentioned that the values of 𝑇௛ and 𝑇௧  cannot be negative and, 
therefore, once the expression between the Macaulay brackets becomes 
negative, the term is set to zero. Accordingly, the equation (130) can be 
simplified as follows: 

𝑇௅ = 𝜇௛ · 𝐹௔ · 𝑟௛ · ඨ〈1 −
𝐹௧

𝜇௛ · 𝐹௔

〉 + 𝜇௧ ∙ 𝐹௔ ·
𝑟௧

𝑐𝑜𝑠𝛼
· ඨ〈1 − 𝛿 ∙

𝐹௧

𝜇௧ · 𝐹௔

〉 − (𝐹௔ · 𝑡𝑎𝑛𝛽 · 𝑟௧) 
(150) 

It can also be noted that the three terms in equation (150) correspond to the 
ones in equation (16). Hence, a generalized Motosh equation can be considered 
to calculate the torque required to loosen a screw. Its main advantage is that, 
unlike the Motosh equation, this new expression also considers the effect of 
transverse forces 𝐹௧, and can even be used to calculate the value of this 
transverse force 𝐹௧ at which loosening phenomenon occurs (𝐹௧ at which 𝑇௅=0). 
Unlike the Nassar model, in this case numerical integration is not needed. 

7.2 Methodology to predict self-loosening of 
prosthetic screws on dental restorations 

The previous section presented a simplified equation for calculating the 
loosening torque 𝑇௅ that considers the transverse forces acting on the screw. 
Unlike in the case of some simple screwed joints, when it comes to dental 
restoration, it is difficult to estimate the forces acting on the prosthetic screw 
due to the complex geometry of the assembly and the load conditions. Hence, 
the most suitable way to obtain the axial 𝐹௔ and transverse 𝐹௧ forces acting on 
the screw (required to feed equation (150)) is by performing an FEA of the 
dental restoration. Section 2.2 explains how the FE model must be prepared. 
In short, dental restoration is modelled assuming half geometry and screw 
cylindrical threads. Screw preload is applied in a first load step while external 
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load is applied in a second load step. As explained, since half geometry is 
modelled, half values of preload and external load must be applied. 

Once the FEA has been solved, the axial 𝐹௔ and transverse 𝐹௧ forces under the 
screw head are recorded. It should be noted that, as mentioned above, the axial 
load 𝐹௔ may be different to the screw preload 𝐹௣, because both the axial and 
transverse components of the external force 𝐹  may alter the initial preload of 
the screw. 

Accordingly, 𝐹௧ and 𝐹௔ obtained from the FEA are entered in equation (150). If 
𝑇௅>0, the dental restoration under study, assembled with tightening torque 𝑇் 
and subjected to masticatory load 𝐹 will not suffer screw self-loosening. 
Therefore, this methodology can be used either to compare two different dental 
restoration designs to find out which design will perform better against self-
loosening (the one with a larger value of 𝑇௅) or to optimize the design of a dental 
restoration by analyzing the effect of each parameter on its performance against 
self-loosening (only focusing on the ones that have the greatest effect on 𝑇௅). 
In other words, this methodology can be used to evaluate improvements in the 
design of the dental restoration in order to improve performance against 
prosthetic screw loosening. Figure 178 provides a brief explanation of the steps 
the proposed methodology consists of. 

 

Figure 178. Steps of the methodology proposed. 
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7.3 Validation of the methodology 

Having described the methodology, its accuracy will be tested in this section by 
analyzing the loosening phenomenon of a prosthetic screw when mounted on 
a previously known implant-supported restoration IN-I3.3-P4.1. This narrow 
dental restoration, already fatigue-tested in Chapter 5, comprises a BTI 
INTERNA IIPUCA3313 implant with a body diameter of 3.3mm and a 
platform diameter of 4.1mm, INPPTU44 abutment, and INTTUH prosthetic 
screw (see Figure 157A), whose chemical composition is included in Table 4. 

In a preliminary study, it was seen that in IN-I3.3-P4.1 dental restoration under 
moderate external loads applied at 30° and following ISO 14801 standard,141 
the tightening torque recommended by the manufacturer (35 Ncm) is sufficient 
to prevent self-loosening. Higher load values might bring about self-loosening, 
but they are not permitted since they may structurally damage the dental 
implant, as seen in Chapter 5. As the purpose of this section is to validate the 
screw loosening methodology, some modifications were applied to promote the 
self-loosening phenomenon on the dental restoration under study. First, the 
screw tightening torque was reduced to 10, 15 and 20 Ncm. Then, the thickness 
of the abutment tetralobular connection was reduced by 0.19mm in diameter 
to allow bigger lateral movements of the abutment (see Figure 179). Finally, the 
cyclic external load 𝐹 was applied in both directions (pure alternating sinusoidal 
force) on the bottom of the abutment perpendicular to the axis of the dental 
implant (i.e., with an inclination of 90°) rather than applying it at 30° as 
indicated in ISO 14801 standard.141 

 
A) B) 

Figure 179. IN-I3.3-P4.1 dental restoration. A, Original tetralobular connection. B, 
Modification on abutment tetralobular connection to bring about self loosening. 
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The validation process started by applying the methodology to the three cases 
under study; i.e. 10, 15, and 20Ncm tightening torques applied to the IN-I3.3-
P4.1 dental restoration. First, an FEM of the restoration was created following 
the recommendations in section 2.2. Then, the preloads corresponding to each 
of the three tightening torques were calculated according to equation (131), with 
232N, 349N, and 465N for 10Ncm, 15Ncm, and 20Ncm, respectively. Since 
half geometry is modelled, half preload was applied to the FEM. In a second 
load step, an increasing external load was applied from 0 to a high enough value 
of 𝐹 (half load since half geometry is modelled). The load was applied to the 
abutment through the ring shown in Figure 180 in order to reproduce the 
experimental conditions described before. Further information regarding 
materials, contacts, and meshing is explained in section 2.2. Finally, once the 
three FEA were solved, axial load 𝐹௔ and transverse load 𝐹௧ acting under the 
screw head contact were recorded for the wide range of applied external load 
𝐹. 

 

Figure 180. FE model of IN-I3.3-P4.1. 

Once the values of the axial load 𝐹௔ and the transverse load 𝐹௧ were recorded 
for each value of the external load 𝐹, equation (150) must be fed to obtain the 
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value of the loosening torque 𝑇௅. This process must be repeated by increasing 
the external load 𝐹 (more precisely, its corresponding axial load 𝐹௔ and the 
transverse load 𝐹௧ recorded) until 𝑇௅ falls to zero. Table 23 shows the value of 
the external force 𝐹 at which the 𝑇௅ falls to zero; i.e. when the screw self-
loosening process starts. The corresponding axial load 𝐹௔ and transverse load 𝐹௧ 
under the screw head for each of the three tightening torques analyzed is also 
shown. 

Table 23. Predicted external load values that cause self-loosening in the dental 
implant under study at each tightening torque: 10, 15, and 20 Ncm. 

𝑻𝑻 (Ncm) 𝑭𝒑𝒓𝒆𝒅 (N) 𝑭𝒂 (N) 𝑭𝒕 (N) 
10 64.5 217.7 36.1 
15 96.7 326.1 53.7 
20 128.3 433.9 72.6 

Then, the next step was to experimentally verify the predicted values of the 
external forces 𝐹௣௥௘ௗ that cause self-loosening for the three initial tightening 
torques. First of all, a criterion must be established to determine experimentally 
whether loosening has occurred on the dental restoration. Experimentally, 
loosening is usually detected and quantified by measuring the change of axial 
load on the screw by means of gauges.307 Unfortunately, screws in dental 
implants are very small and barely accessible, so the option of installing strain 
gauges was discarded. As a well-established alternative in dental implant 
literature, the untightening torque after a number of external load cycles can be 
measured, since torque is proportional to preload.38,112,125–127,308 Accordingly, 30 
tightening and untightening operations were performed before testing (without 
applying external load cycles between both operations) in each preload case in 
order to set the mean value of the loosening torque 𝑇௅௜ (hereinafter referred to 
as initial untightening torque) and its standard deviation 𝜎, inherent to the 
tightening operation.3 𝑇௅௜ values of 7.45, 11.6 and 16.0Ncm with standard 
deviations of 0.4, 0.5 and 0.6Ncm for the 10, 15 and 20Ncm tightening torques 
were obtained, respectively. Figure 181 shows the scatter of untightening 
torques measured for each tightening torque. 

Subsequently, the self-loosening experimental tests were carried out by applying 
a cyclic load on the implant using the INSTRON 8801 test bench as explained 
in section 2.4.2.1. In short, the dental restoration was positioned horizontally 
using a special fixture tooling designed and manufactured specifically for these 
tests. This tooling transmits the external load 𝐹 applied by the test bench 
vertically to the bottom of the abutment as shown in Figure 82. A steel ring is 
installed around the abutment outside the surface at 1mm from the IAC to 



218  Mikel Armentia 

 

ensure a point load application on the bottom of the abutment. Under these 
deliberately unfavorable conditions, screw self-loosening occurs under 
reasonable external load magnitudes, whereby the methodology can be 
experimentally validated. 

 

Figure 181. Box and whisker plot of all untightening operations performed before 
cyclic loading. 

The cyclic load was applied to the tested dental restoration. Preliminary results 
indicated that, for the dental restoration tested in this study, when self-
loosening occurs, 1000 cycles were enough to bring about significant loosening. 
Accordingly, in each experimental test, the final untightening torque 𝑇௅ was 
measured after applying 1000 load cycles and compared with 𝑇௅௜. Self-loosening 
was considered to take place if 𝑇௅௙ < 𝑇௅௜ − 2𝜎. The 2𝜎 criterion was established 
assuming normal distribution of the untightening torque values3 and assuming 
that the probability of fulfilling such criterion without self-loosening occurring 
is only 2.1%. This procedure was repeated in the 30 tests for each of the three 
initial tightening torques. Furthermore, in order to experimentally obtain the 
critical external load value that causes self-loosening 𝐹௘௫௣ and compare it with 
the theoretical one 𝐹௣௥௘ௗ, a method similar to the staircase method under fatigue 
was used.62 This procedure, as explained in section 1.3.1.1, is widely used in 
fatigue testing to obtain the fatigue limit value. Accordingly, an initial arbitrary 
external load F is applied in the first test; if the screw self-loosens, the external 
load is decreased by 5N; if it does not, the external load is increased by 5N. 
Figure 182 shows the experimental results: tests where self-loosening occurred 
are marked with an ‘x’, while ‘o’ indicates tests with no loosening. Finally, the 
external load which causes self-loosening experimentally 𝐹௘௫  is calculated as the 
average of the values indicated with black marks in Figure 182 while the grey 
marks are not regarded. Table 24 summarizes the values of 𝐹௘௫௣, their 
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corresponding standard deviations 𝜎௘௫௣ and the difference between the 
experimental 𝐹௘௫௣ and predicted 𝐹௣௥௘ௗ results. 

 
A) 

 
B) 

 
C) 

Figure 182. External load values that cause self-loosening obtained by using the 
staircase method at three tightening torques. A, 10Ncm. B, 15Ncm. C, 20Ncm. 
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Table 24. External load values that cause self-loosening in the dental implant under 
study: methodology prediction versus experimental results. 

𝑻𝑻 (Ncm) 𝑭𝒑𝒓𝒆𝒅 (N) 𝑭𝒆𝒙𝒑 (N) 𝝈𝒆𝒙𝒑 (N) Error (%) 
10 64.5 67.9 5.9 5 
15 96.7 100.8 9.9 4.1 
20 128.3 138.9 6.2 7.6 

The sound correlation between the theoretical 𝐹௣௥௘ௗ and experimental 𝐹௘௫௣ 
results validate the proposed methodology. Moreover, the theoretical results 
obtained by using the simplified approach 𝐹௣௥௘ௗ were compared with the results 
of the numerical model of Nassar et al.125,126 with a difference of less than 1% 
obtained in all the cases studied in this investigation. 

7.4 Conclusions and clinical implications 

The experimentally validated methodology developed in this PhD Thesis can 
be used to predict self-loosening of dental restorations. In this sense, it is an 
extremely useful, efficient and versatile design tool for dental implant 
manufacturers and designers to select the appropriate geometry, thread 
configuration, coefficient of friction, or screw tightening torque in order to 
minimize screw self-loosening problems and consequently guarantee the long-
term stability and clinical success of dental implant fixation. 

The proposed methodology is able not only to predict self-loosening under 
certain working conditions, but it can also be used to understand how each 
variable affects the screwed joint performance against self-loosening. From 
equation (150) it can be deducted that a high preload is recommended to avoid 
screw loosening. This conclusion agrees with Siamos et al.205 and Guda et al.309 

Coefficients of friction of the screw head and thread contacts 𝜇௛ and 𝜇௧ are 
also found to have a significant effect on performance against self-loosening. 
Therefore, for a given preload, a high coefficient of friction is recommended to 
avoid screw loosening according to the presented analytical tool and in 
accordance with Wu et al. and Elias et al.201,202 There are some other studies in 
which the coefficient of friction is reduced in the screwed joint contact by a 
coating or lubrication, obtaining better performance against self-loosening.310,311 
This seems to disagree with the last statement. Nevertheless, in those studies 
different coefficients of friction are studied for the same tightening torque, 
rather than the same preload. Hence, the results are not comparable since the 
coefficient of friction also affects the obtained preload.5,312 Evidently, a higher 
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tightening torque will lead to a higher preload and, therefore, to a better 
response against self-loosening. 

The amount of transverse load withstood by the screw head also plays an 
important role in self-loosening.38,191,196,204 From equation (150) it can be 
concluded that a robust design where the screw head suffers the least transverse 
load possible is desired since transverse slippage causes rotation, preload loss 
and, therefore, screw loosening. Interesting future research would be to find an 
optimal IAC design to ensure the best performance against self-loosening. 

Finally, thread parameters also affect the performance of screwed joints against 
self-loosening. On the one hand, for the same preload value, a small thread 
pitch helps to prevent self-loosening. According to Nassar et al., screws with 
coarse threads would require less loosening torque than those with fine 
threads.126 This statement also agrees with Fort et al.127 and Yang et al.313 On 
the other hand, and also for the same preload value, it is recommended that the 
half angle of the thread profile be as high as possible according to Nassar et 
al.126 From equation (150), it can be concluded that a high angle of thread profile 
will lead to a higher frictional force on the threads, improving the screw-
loosening response. 

It must be noted that modifying some of the parameters mentioned in this 
conclusion, i.e. coefficients of friction, thread pitch, thread profile angle or the 
screw head and thread mean contact radii will alter the obtained preload. In 
view of this, their value should be carefully modified and checked with the 
presented methodology to ensure optimum dental restoration performance 
against self-loosening. 
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8 Conclusions 

8.1 Conclusions and further research 

This PhD Thesis brings together a significant part of the knowledge the 
screwed joints industry has amassed over the years and transfers it to the field 
of dental implantology, creating predictive methodologies and in-depth studies 
that help to better understand the phenomena that cause the most common 
mechanical problems in dental restorations: fatigue failure, microgap formation, 
and loosening of the prosthetic screw. The knowledge and methodologies 
presented in this PhD Thesis are intended to allow engineers and R&D 
departments to predict these phenomena and prevent them in future dental 
restoration designs. 

Regarding prosthetic screw fatigue behavior, a prediction methodology to 
estimate the fatigue life of dental restorations in which the critical component 
is the prosthetic screw has been developed. This methodology is based on FEA, 
classical formulation of uniaxial fatigue, and the Theory of Elasticity. The 
methodology was experimentally validated obtaining accurate results for both 
implant-supported restorations and transepithelial-supported restorations. In 
this way, the methodology can predict the most common types of fatigue 
failure, that usually correspond to regular and wide implants. The best-fit 
methodology was established by performing experimental fatigue tests on 
dental restorations since the prosthetic screw, or at least its failure section, 
generally does not vary considerably across the whole product catalog. 
Accordingly, the methodology can be fitted in a straightforward manner by 
characterizing the behavior of a single dental restoration model (whose critical 
component is the prosthetic screw). Nevertheless, if the product catalog 
consists of various, and very different, prosthetic screws, characterization of 
fatigue behavior by performing experimental tests on standardized specimens 
is recommended; as performed for the methodology used for the fatigue life of 
dental restorations whose critical component is the implant. 

Beyond the fatigue life prediction methodology, some modifications of the 
prosthetic screw manufacturing processes were proposed in order to improve 
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fatigue performance. On the one hand, manufacturing the screw head socket 
using a milling procedure was proven to be less harmful than broaching, 
preventing unexpected fatigue failures on the screw head. On the other hand, 
it was shown that manufacturing the screw threads using a rolling procedure 
rather than cutting results in less surface roughness, a better surface finish, and 
higher residual compressive stresses on the thread surface, enhancing the 
fatigue life of the prosthetic screw by one order of magnitude. The 
improvement is so impressive that the critical section is moved from the first 
engaged thread to the screw head, which can be easily improved by increasing 
the radius of agreement. 

Regarding dental implant fatigue performance, there is a wide variety of 
dimensions in dental implant manufacturers' catalogs. This renders it unfeasible 
for the methodology to be based on experimental tests performed on dental 
restorations, as was performed for the previous methodology focused on the 
screw. Instead of this, the methodology is based on tests performed on 
standardized specimens with notches that result in different stress gradients, 
accordingly characterizing the effect of the stress concentration of the material. 
Thereafter, combining multi-axial fatigue critical plane methods and the TCD 
(Volume Method), a specific methodology has been developed to predict the 
fatigue life of dental restorations in which the critical component is the implant. 
Even though the methodology predictions were proven to be accurate by 
means of experimental validation, with a view towards the future, the 
methodology is yet to be validated on more dental restorations and use of the 
Point Method must be investigated with a view towards saving computational 
cost. In the same way, the authors consider that the mechanical performance 
of dental implants could be improved by varying, in some way, the 
manufacturing processes of the external surface, looking for ways of applying 
compressive residual stresses using methods such as shot peening or 
sandblasting and by means of thread rolling.  

As a result, using both methodologies, manufacturers can compare the fatigue 
behavior of all dental restorations quickly and cost-effectively, without the need 
for time-consuming fatigue testing campaigns. 

Moreover, an experimental study was performed on different dental 
restorations by using highly magnified X-ray projections while applying 
different static loads on various dental restorations. In this way, the effect of 
different implant parameters on microgap size at the implant-abutment 
connection was analyzed. With a view towards the future, the precision of the 
method should be improved under low masticatory loads (very small 
microgaps) by using synchrotron as the energy source. In this way, more 
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complex connections, such as conical connections, could also be studied in a 
precise manner. 

Finally, a semi-analytical methodology by which to predict self-loosening of 
prosthetic screws when mounted on a dental restoration under masticatory 
loads is proposed. This methodology is based on a mathematical expression 
similar to the widely known formulation of Motosh, which generalizes it to 
include the effect of transverse forces acting on the screw. Although the 
experimental results of the model have proven its validity, further research will 
aim to generalize this model for dynamic loading conditions. 

8.2 Research work dissemination 

The research work performed in this PhD Thesis has given rise to various 
publications and congress presentations. 

Publications: 

 Armentia M, Abasolo M, Coria I, Bouzid AH. On the use of a simplified 
slip limit equation to predict screw self-loosening of dental implants 
subjected to external cycling loading. Applied Sciences. 2020;10:6748. 
https://doi.org/10.3390/app10196748 

 Armentia M, Abasolo M, Coria I, Albizuri J. Fatigue design of dental 
implant assemblies: a nominal stress approach. Metals (Basel). 
2020;10:744. https://doi.org/10.3390/met10060744 

 Armentia M, Abasolo M, Coria I, Sainitier N. Effect of the geometry of 
butt-joint implant-supported restorations on the fatigue life of prosthetic 
screws. Journal of Prosthetic Dentistry. 2022;127(3):477.e1-477.e9. 
https://doi.org/10.1016/j.prosdent.2021.12.010 

 Armentia M, Abasolo M, Coria I, Albizuri J, Aguirrebeitia J. Fatigue 
performance of prosthetic screws used in dental implant restorations: 
Rolled versus cut threads. Journal of Prosthetic Dentistry. 
2021;126(3):406.e1-406.e8. 
https://doi.org/10.1016/j.prosdent.2021.06.035 

 Armentia M, Abasolo M, Coria I, Zabler S. Evaluation of implant body 
diameter, platform diameter and the use of a transepithelial component 
on IAC microgap: an in-vitro study with in-situ hard X-ray radiography. 
The International Journal of Oral & Maxillofacial Implants. 2022 
(Accepted: 7/10/22. Publication pending). 
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Congress presentations: 

 Armentia M, Abasolo M, Coria I, Heras I, Vallejo J, Aguirrebeitia J. 
Design of an innovative fatigue test bench for dental implants. In: 
Mechanisms and Machine Science. Springer Science and Business Media 
B.V.; 2019. p. 103–11. 

 Armentia M, Abasolo M, Coria I, Cosgaya R. Fatigue Life Estimation of 
Dental Implants Using Classical Fatigue Methods. In: Abstracts from the 
44th Annual Conference of the European Prosthodontic Association 
(EPA) 30th September - 2 October 2021 Athens, Greece. European 
Journal of Prosthodontics and Restorative Dentistry. 2021; 29(3):14. 

 Armentia M, Abasolo M, Coria I, Cosgaya R. Fatigue Life Estimation of 
Dental Implants Using Classical Fatigue Methods (Part II): Influence of 
Different Geometry Parameters and the Importance of the Screw 
Tightening Torque on Fatigue Life. In: Abstracts from the 44th Annual 
Conference of the European Prosthodontic Association (EPA) 30th 
September - 2 October 2021 Athens, Greece. European Journal of 
Prosthodontics and Restorative Dentistry. 2021; 29(3):14. 
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