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communities re-arrange in response to changes in species
ains a key challenge in ecology. Migratory species, which
communities across latitudinal gradients, offer us a unique
evaluate community and species-level responses to a shift
show higher niche overlap in more diverse communities,
t species to compensate for the loss of the migrant in provid-
services. Contrastingly, in less diverse communities, the
s as a specialist, monopolizing abundant resources. In its
e is not fully covered by resident species, resulting in a
ruit set of the migrant’s preferred plant species. These results
tand the potential impacts of biodiversity loss and have
cations for community persistence given expected changes
behaviours of some species.

ffering from the pressures of on-going global change, including
2] and habitat loss [3]. One of the main consequences of ecosys-
the local extinction of species, yet we have little understanding
es of these extirpations for ecological interactions, community
system functions. To predict how ecosystems, which are natu-
ill react to these pressures, we first need to understand how
t to the natural dynamics that lead to changes in their compo-
with special emphasis on changes in species interactions and
ommunity to re-arrange itself and maintain its functioning.
understanding community-level rearrangements following
s composition has proved elusive, given the great complexity
ms, which feature high levels of species diversity, interactions
environmental variability. The use of network analyses to rep-
e biotic interactions has allowed us to address part of this
However, many network studies have used temporally and
ed data of observed interactions representing a snapshot of a
Aggregating data omit important information regarding the
ecological interactions [6], and in particular concerning species
which can change due to competition for resources [9], the
tes and pathogens [10] or changes in species composition [11].
in species composition have been primarily assessed through
n species extinctions or invasions. Some of them have used
Published by the Royal Society. All rights reserved.
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sia encliandra; Onagraceae, Lobelia laxiflora; Lobeliaceae, Rubus
adenotrichos; Rosaceae and Salvia iodantha; Lamiaceae), and
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experimental set-ups to explore community level dynamics
following species extinctions [11–13]. For example, Brosi &
Briggs [11] temporarily removed the most abundant bumble-
bee species and analysed how the rest of the pollinator
community responded. They found that in manipulated
sites, floral fidelity decreased, with consequences for plant
reproductive success, and also that the loss of a single polli-
nator species changed pollination network structure [12].
One unresolved question is whether communities harbouring
different diversity levels might respond differently. In other
words, does biodiversity have a modulating role in these
responses to changing species composition? We need to
remove the same species from different background commu-
nities to see how responses differ across a diversity gradient.
Given the complexity of these experiments, it is easy to see
why such studies are not commonly done.

Migratory species and the communities that harbour them
represent an ideal natural experiment in which the same
species temporarily leaves ecosystems across latitudinal and
diversity gradients. We surveyed communities of plants and
the hummingbirds that pollinate their flowers along a latitudi-
nal gradient from central Mexico to southern Alaska. We
focused on communities that harbour the migratory rufous
hummingbird Selasphorus rufus and evaluated the foraging
niches and the functional role of hummingbirds in the presence
and the absence of the migratory species. We further explored
the consequences of the removal of this species for plant repro-
ductive success. Our study aims to answer three main
questions: (1) How does the role of a single pollinator species
change throughout its distribution range, (2) how do the
roles of the rest of the hummingbird pollinators in the commu-
nity change in response to a temporary species loss and
(3) what are the consequences for the functions they perform.
Given its widespread distribution, we expect that the
migratory hummingbird will be a generalist species feeding
on a diverse set of resources across all the range. Further, we
expect resident species to change their feeding preferences
when the migratory species is present or absent. In particular,
we expect them to specialize on a small set of resources in
the presence of the migratory competitor and then to expand
their diet in its absence. Finally, we expect there to be changes
on reproductive success particularly for those species of plants
on which resident species specialized during the period in
which the migratory species was present, but that will poten-
tially receive heterospecific pollen during the period in which
the migrant is absent as a consequence of an expansion in the
diets of resident hummingbirds following [11].

2. Methods
(a) Study species and sites
Selasphorus rufous (Gmelin, 1788), the rufous hummingbird,
undertakes spring and autumn migrations between wintering
areas in Central Mexico and breeding areas in southern Alaska
and Canada [14]. We evaluated whether the functional role of
this species changes within three communities along its
migratory route: western Mexico, central California and southern
Alaska, USA. In addition, at two sites (California and Mexico),
we were able to compare time periods when the migratory
species was present and absent to evaluate how the loss of one
species changes the functional roles of the remaining species,
with implications for plant reproductive success.
RSPB20200649—17/6/20—15:48–Copy Edited by: Not Mentioned
Las Joyas Biological Station is a 1245-ha natural reserve
located in the Sierra de Manantlan within the states of Jalisco
and Colima in Mexico (19°350 N; 1040°160 W, at 1952 m.a.s.l).
Las Joyas experiences a mean annual temperature of 14.6°C
and mean annual precipitation of 1610 mm, concentrated
between June and October. The area hosts a complex mosaic of
vegetation, including pine-oak forests, coniferous and cloud
forests [15].

Landels-Hill Big Creek Reserve (36°40000 N 121°350000 W,
0–1,067 m.a.s.l) is a 1752-ha natural reserve in the Santa Lucia
Mountains along the Big Sur coast in California. Big Creek Reserve
experiences a mean annual temperature of 12.8°C and mean
annual precipitation of 620 and 1020 mm at coast and upper
peaks, respectively, concentrated between November and
March. Vegetation includes an heterogenous mixture of coastal
scrub, redwood forests, coastal grasslands, oak woodlands and
pine-oak forests [16].

In the area of Prince William Sound, Alaska, we conducted
surveys at either side of the sound, at the localities of Valdez
and Seward (61°07’50.9900 N −146°20’53.9900 W and 60°06’15.3400

N −149°26’36.6000 W and 30 and 0 m.a.s.l. respectively). Average
precipitation in this area is 1520 mm while mean annual temp-
erature is 5°C. Vegetation includes a mixture of closed
needleleaf forest of mountain helmock, Sitka spruce, red and
yellow cedar and open heath and bog areas.

(b) Hummingbird and plant surveys
Surveys were carried out during the year 2019. At each site, we
selected six 1-km transects separated by at least 500 m from
each other. Each transect was surveyed seven times per period
during two periods: when the migrant species was present
(January in Mexico, March in California and June in Alaska)
and again after the migrant departed (April in Mexico and
April–May in California). Between three and four transects
were surveyed per day. The time at which transects were carried
out was randomized every day. No surveys were done in Alaska
during the absence period as no resident hummingbirds occur in
this area. Along each transect, we recorded all the feeding inter-
actions observed between every species of hummingbird present
in the study area and every flowering plant species. In addition,
we recorded flower availability of the different hummingbird-
visited plants once for each period as the total sum of flowers
observed per species.

In addition, in order to evaluate the impact of species
removal on plant reproductive success, we further recorded sev-
eral measures of plant reproductive success for a subset of plant
species that were flowering in both periods: four in Mexico (Fuch-
three in California (Ribes sanguineum, Ribes menziesii; Grossularia-
ceae and Castilleja affinis; Orobanchaceae). These plants were
selected because they were preferred resources by hummingbirds
in the area and because they had two flowering periods, one
when the migratory species was present and one in its absence.
In Mexico, we counted the total number of seeds per fruit and
measured fruit length and width in 30 fruits from five individ-
uals per plant species. In California, we recorded fruit set for
10 individuals per plant species (only four individuals in the
case of Ribes menziesii). For two of the species (Ribes sanguineum
and Ribes menziesii), given the large number of flowers produced,
we marked three branches within each of the 10 individuals per
species and counted the number of flowers and three weeks later
the number of fruits produced at each of the two periods
(migrant present and absent). For the third species, Castilleja
affinis, we recorded fruit set for the whole plant. In addition,
we measured fruit length, width and wet weight for a subset



of 10 fruits per branch for each of the two Ribes species and for all
fruits for C. affinis individuals.

(c) Species functional roles and interaction networks
To determine species functional roles, we extracted a series of
metrics from plant–hummingbird interaction networks. For
each transect within each period, we constructed a weighted
bipartite interaction network [17] by pooling the data for the
seven rounds of sampling. We then calculated a series of relevant
metrics for the whole hummingbird community and for each of
the hummingbird species in particular.

(d) Community-level metrics
At the community level, we focused on two metrics that provide
parallel information on niche occupancy for the hummingbird
guild. First, we calculated niche overlap using Horn’s index
[18], which estimates the similarity in interaction partners
between hummingbird species. Second, we calculated functional
complementarity. This metric, not correlated with the previous
one (electronic supplementary material, table S1), presents
additional information on the diversity of roles or niches occu-
pied by hummingbird species. It is calculated as the total
branch length of a functional dendrogram based on the Eucli-
dean distance between hummingbirds in plant assemblages
visited [19,20].

(e) Species-level metrics
At the species level, we focused on metrics that provide infor-
mation on the functional role of each hummingbird species
within the community. In particular, we calculated normalized
degree, species-level specialization (d0), and strength for each
species at each transect and period. Normalized degree gives
an idea of the diversity of plant species visited by each hum-
mingbird species. It is calculated by dividing a hummingbird
species’ degree by the total number of plant species. In this
case, we used the total number of flowering plant species
found within our independent flower availability surveys as
the denominator. d0 provides information on the level of special-
ization of each hummingbird species based on discrimination
from a random selection of partners [21]. In calculating this
metric, we included abundance data as the flower availability
for each plant species from our independent surveys. Strength
provides complementary information on the dependence of
plant species on a particular hummingbird species. It is calcu-
lated as the sum of the dependencies on that species of the
plant species visited by a focal hummingbird [22]. All network
metrics were calculated using package bipartite [17].

In addition, we focused on changes in the role of migratory
species through the indirect interactions it engages in by using
motif analyses [26]. To this end, we compared the motif role
signatures of S. rufus in Mexico and California (Alaska was not
included in this analysis as there is only one hummingbird species
there). Additionally, we compared the signatures of S. rufus to
those of two other abundant species, Hylocharis leucotis in
Mexico and Calypte anna in California. Motif role signatures were
calculated using package bmotif [27]. Motif frequencies were nor-
malized by dividing the position counts for each node by the total
number of times that node appears in any of the positions [27].
Statistical comparisons were done using permutational multi-
variate analysis of variance (PERMANOVA) using Bray–Curtis
as the dissimilarity distance. Visual comparisons were done by
means of non-metric multidimensional scaling plots.

To answer our second question, related to how the roles of
the other hummingbird species in the community shift when
the migratory species is removed, we ran analyses at the whole
community and at the species level. At the community-level,
we evaluated whether niche overlap and functional complemen-
tarity varied across periods by running general linear mixed
models (GLMMs) with period, plant species richness and floral
resource availability as explanatory variables, and transect
nested within site (California and Mexico) as a random factor.
At the species level, we evaluated whether normalized degree,
d0, and strength varied across periods by running GLMMs that
included period and its interaction with hummingbird species
as explanatory variables. Transect nested within site was
included as a random factor. For these species-level analyses,
we removed the migratory species to focus on how the roles of
the rest of the species change.

Finally, to answer our last question related to how changes in
community structure and species functional roles might affect
plant reproductive success, we ran separate GLMMs for the
two sites (Mexico and California) as we were able to collect
different measures of reproductive success. In the case of
Mexico, response variables were fruit length, fruit weight and
the number of seeds per fruit, scaled prior to analysis (i.e. we
subtracted column means and divided by standard deviation)
to allow meaningful comparisons across species with contrasting
life histories. For California, response variables were fruit set,
fruit length, width and weight. In both cases, models included
period (migratory species present or absent) and its interaction
with plant species as well as the plant’s normalized degree, a
measure of the diversity of pollinators visiting it, as explanatory
variables. Plant individual was included as a random factor. We
used a normal distribution to fit all models except in the case of
fruit set where data were fitted to a binomial distribution. All
statistical analyses were done using R [25] and all GLMMs
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( f ) Data analyses
First, we evaluated sampling completeness within our study by
estimating the asymptotic number of plant and pollinator species
present, as well as plant–pollinator links [23]. This is a non-para-
metric estimator of species richness for abundance data which
includes non-detected species (or links), allowing us to calculate
the proportion of species (or links) detected with our original
sampling data. We used Chao 1 asymptotic species richness esti-
mators [23] and estimated the richness of pollinators, plants and
plant–pollinator links accumulated as sampling effort increased
up to 100% sampling coverage using package iNEXT [24]
within the R environment [25].

Then, to answer our first question related to how the role of a
single species changes throughout its distribution range, we eval-
uated how the migratory species’ normalized degree changed
along its migratory pathway by fitting a general linear model
including site as the explanatory variable.
RSPB20200649—17/6/20—15:48–Copy Edited by: Not Mentioned
were fitted using package lme4 [28].

3. Results
An analysis of the completeness of our sampling revealed that
with our survey we were able to capture very high levels of
hummingbird and plant species diversity at all sites ranging
from 88 to 100% in hummingbird species, 56–100% in plant
species and 55–100% in plant–hummingbird interactions
(electronic supplementary material, figure S1).

As demonstrated by our analysis of foraging niches for the
migratory hummingbird, the role of the migratory species
S. rufus changed substantially throughout its distribution
range. In particular, normalized degree, a measure of the
number of plant species visited divided by all possible plant
species, is much smaller in California than in either Alaska or
Mexico (figures 1 and 2a). However, the difference is only
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significant between California and Alaska (z-ratio = 2.64,
p < 0.01, marginal R2 = 0.32), because inter-transect variability
is high in Mexico. Despite there being a similar number of
available plant resources in California and Alaska (three to
four species), in California the migratory species feeds almost
exclusively on one resource, Ribes sanguineum.

Our motif approach analyses to species roles shows that

bird species, light blue: resident species, dark blue: migratory species. Flagge
Calypte anna in California and Hylocharis leucotis in Mexico. Lower yellow po
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Figure 2. Boxplots showing (a) normalized degree for the migratory species
niche overlap and (c) pollinator functional complementarity change across per
eralization. (Online version in colour.)
S. rufus has very different roles at two of the locations sampled
(electronic supplementary material, figure S2A, F = 6.43,

p < 0.001). While the species occupies mostly specialist roles
in California, in Mexico it engages in interactions involving
more than one plant species (electronic supplementary
material, figure S2A). When comparing the role of the migrant
species with that of two abundant species at each of the sites,
Hylocharis leucotis in Mexico and Calypte anna in California
(see Results section), our results show a certain overlap
between S rufus and each of the two species when they co-
RSPB20200649—17/6/20—15:48–Copy Edited by: Not Mentioned
occur (F = 7.12, p < 0.001), while the overlap of their motif
signatures is smaller in the absence of the migratory species.

In relation to the response of the hummingbird commu-
nity to species removal, we focused our analyses on two
different levels: at the level of the whole community and at
the level of each of the hummingbird species. At the commu-
nity level, when the migratory species leaves the area the
niche overlap between different resident species decreases
(figure 2b, marginal R2 = 0.31). This effect is greatest in
California (table 1a). In addition, we find that functional com-
plementarity, i.e. niche complementarity of the hummingbird
species, decreases in Mexico when the migrant leaves (table 1
and figure 2c, marginal R2 = 0.37).

At the species level, all three variables evaluated change
between periods before and after the removal of the migratory
species. However, resident hummingbird species vary strongly
in the magnitude and direction of these changes (figure 3;

ry species absent

t three sites across a latitudinal gradient, (a) Alaska, (b,c) California and (d,e)
and (e) show periods when it is absent. Upper polygons represent humming-
d are the two species that show largest changes between the two periods,
represent plant species. (Online version in colour Q.)
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electronic supplementary material, figure S3). In the case of
California, we see particularly large changes in these variables
for the species Calypte anna, which becomes more generalized
(larger d0, electronic supplementary material, figure S4, model
marginal R2 = 0.5) and more important for the plant species
that depend on it (greater strength, model marginal R2 = 0.52)
in the absence of the migratory species. In Mexico, the species
whose role changesmost isHylocharis leucotis, which also diver-
sifies the number of plant species it visits (larger normalized
degree, model marginal R2 = 0.53) and becomes more impor-
tant for plant species in the community (greater strength) in
the absence of the migratory species (figure 3).

As for our third question regarding the effect of species
removal on plant reproductive success, the loss of the
migratory hummingbird is associated with negative effects
in California and positive effects in Mexico (electronic sup-
plementary material, figure S5). In the case of California,
Ribes sanguineum shows decreased fruit set after the loss of
the migratory hummingbird (figure 4b, model marginal
R2 = 0.24), and all three plant species show slightly decreased
fruit weight (electronic supplementary material, figure S8,
model marginal R2 = 0.03). Castilleja affinis shows a decrease
in fruit length (model marginal R2 = 0.64) and width (model
marginal R2 = 0.64) with loss of the migrant hummingbird
(electronic supplementary material, figures S9 and S10).

By contrast, in Mexico the number of seeds per fruit
increases with the loss of the migratory species for three of
the four plant species sampled (electronic supplementary
material, figure S5; figure 4a, model marginal R2 = 0.29). In
addition, two of the species show an increase in fruit length
and fruit width (electronic supplementary material, figures
S6 and S7, marginal R2 = 0.87 and 0.93, respectively).

prove that the temporary local removal of a species can
lead to important changes in the functional roles covered
by the remaining species, and that these changes have an
effect on the functions they perform. Here, we see the greatest
changes in the niches occupied by one hummingbird species
in Mexico (H. leucotis) and one in California (C. anna). In both
cases, the species expand their niches and become more
important in the community (greater strength values and
thus greater dependence of plants on them) with the loss of
the migrant from the community. However, these changes
entail different consequences across the biodiversity gradient.
In Mexico, the larger diversity of hummingbird species
allows for another species (H. leucotis) to take over the role
of the lost migrant, maintaining and even improving on the
function performed by the latter. Conversely, in California,
where hummingbird species diversity is lower, the role of
the migratory species is not fully covered in its absence,
leading to a reduced function.

Previous experimental research has suggested that species’
functional roles shift in response to changes in community
compositionwith differing consequences for the functions per-
formed [11,13]. While Brosi & Briggs [11] found a negative
effect of the loss of an abundant bumblebee for the reproduc-
tive success of Delphinium barbeyi (Ranunculaceae), Hallet
et al. [13] found that the exclusion of bumblebees did not com-
promise the success of Asclepias verticillate (Apocynaceae). In
this second case, the role of the lost species was taken over
by another species (Polistes wasps). However, these studies,
although highly valuable, were both carried out at small spatial
scales and for relatively short periods of time, and focused on
the reproductive success of just one species of plant. By con-
trast, our use of migratory species as a proxy for species loss
allows us to evaluate the consequences of whole-landscape
removals of the same species on natural communities along
latitudinal gradients and to focus on the consequences for a
larger subset of the plant species in the community. Of
course, the continental scale of our approach and the fact that
we have data for just 1 year also present some caveats, such
as the confounding effect of latitude and diversity. By using a
landscape-level natural removal of a species, we are able to
show how species loss has large negative effects on some
plant species, no effect on others, and in some cases produces
effects that are over-compensated by changes in the roles of
remaining species. Although our systems is not exactly a
replica of a species extinction, since the communities we
study have evolvedwith the presence of this migratory species,
it clearly shows that understanding the consequences of species
loss for ecosystem persistence requires of a community-level
approach that focuses on the combined responses of multiple
species and that takes into account the possible behavioural
changes of the remaining species.

Our results provide evidence of the role of biodiversity as
insurance against species loss [29]. As the migratory species

Table 1. Results of GLMMs showing the effect of period (migratory
hummingbird species present or absent) on resident community (a) niche
overlap and (b) functional complementarity. Italic letters indicate variables
with large and significant effects.

estimate s.e. t-value

(a) niche overlap

(intercept) 0.39 0.12 3.34

period −0.18 0.07 −2.51

plant species richness −0.01 0.01 −0.47
floral availability 0.00 0.00 0.37

(b) functional complementarity

(intercept) 12.58 21.21 0.59

period −18.82 8.19 −2.30

plant species richness 6.75 2.69 2.52

floral availability 0.00 0.00 0.08
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4. Discussion
Our results show that the foraging niches and functional roles
of individual hummingbird species are dynamic and shift
across their distribution areas. In particular, in the case of
S. rufus its role changes from generalist to highly specialist
in the community, and these niche shifts have a direct effect
on its effectiveness as a pollinator. Moreover, our results
RSPB20200649—17/6/20—15:48–Copy Edited by: Not Mentioned
disappears, we find that in the more diverse community
the functions it performs are covered by other species that
compensate for the loss and even improve the function of
the lost species, thus ensuring the stability of the system.
However, in the less diverse community, lower hummingbird
diversity precludes the function of the migratory species from
being covered by other hummingbird species and leads to a
greater than 10% decrease in the reproductive success of the
migrant’s preferred plant species. It is important to note
that although the species Hylocharis leucotis seems to take
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over the role as pollinator for most plant species visited by
S. rufus in its absence, our analyses of the motif signatures
of both species show some disparities suggesting that
the resident species is not fully able to cover the role of the
migrant. Nevertheless, the functional consequences of chan-
ging the indirect interactions captured by motif analyses are
still far from being fully understood.

Insect pollinators, present during both periods, may also
be important pollinators in these systems, yet their activity
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Figure 3. Boxplots showing how species-level metrics (a) normalized degree a
the resident hummingbird species in the community. (Online version in colo
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present absent

present absent
iod

Mexico
Selasphorus platycercus

Calypte annaLampornis amethystinus
is apparently not able to compensate for the loss of this one
species from our observations. However, including insect
species would have allowed us to evaluate the structure of
the whole network of interactions involving plant species
which could potentially reveal interesting results.

We also show how this species’ foraging niche can dramati-
cally change along its distribution range. In particular, we find
that S. rufus behaves as amore generalist species at its wintering
and breeding areas, while it becomes a specialist during part of

strength change across periods (migratory species present–absent) for each of
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functional impacts that these changes could have within
the natural communities that support them [34]. Indeed,
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conservation value with key roles in the communities could
have indirect negative impacts on many other species, includ-
ing plants and other pollinators, given the interdependencies
of species within natural ecosystems.
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