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ARTICLE INFO ABSTRACT

Keywords: Dryland ecosystems are considered the largest global carbon sink. However, extreme climate phenomena like
Drought the El Nifio events (EN) may change soil respiration (Rs) — the CO, emitted from soils resulting from biological
EN o activity and the largest outgoing flux of carbon from terrestrial ecosystems. Our aim was to study the effect of
Fertility island the EN on Rs in the North Peruvian dryland forest, and its interaction with soil temperature and the tree canopy.
Temperature s q . .

Pern Our results indicate that Rs during the EN years increased by a factor of 100 compared to normal years, but this

Canopy cover

effect was exacerbated by the proximity to trees. Only under trees and during the EN event temperature exerted

a positive control over daily Rs fluctuations. Our results, indicate how in these dryland forests the expected in-
crease in the EN frequency and intensity could affect soil CO, emissions, and hence ecosystem carbon budgets,
but that this effect would very much depend on tree density and tree spatial distribution.

1. Introduction

It has been estimated that soil respiration (Rs), the biogenic CO, flux
from the soil to the atmosphere, is 75 x 10'>gC/yr, which is roughly
similar to the contribution of net primary production (NPP) (60 x 10>
gC/yr) (Schlesinger and Andrews, 2000). Therefore, small relative
changes in Rs might be associated with large changes in absolute emis-
sions of CO, from long-term C pools (soil) to the atmosphere
(Schlesinger and Andrews, 2000). Drylands are considered sinks for CO,
because the lack of precipitation reduce litter decomposition and mi-
croorganism activity (Nolan et al., 2018; Robertson et al., 2018). How-
ever, sudden changes in precipitation regimes may exacerbate soil CO,
emissions during hot moments (Vargas et al., 2018), with the poten-
tial to accelerate the soil C cycle and turn arid systems from sinks into
sources.

In the North Peruvian dryland ecosystems, the high average an-
nual temperature (23-24°C) and low annual rainfall (50-150mm) are
heavily interrupted every 5-7 years by El Nifio events (EN). The in-
crease in precipitation might be 15 times higher compared to the annual
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mean in north Peruvian drylands. This also increases the dry forest’s
NPP manifold (Salazar et al., 2018). In this ecosystem, Prosopis pallida
(Willd.) Kunth, hereafter referred to as Algarrobo, represents 67% of
the total plant cover, and produce a “fertility island effect” that pro-
motes litter decomposition, mineralization and the increase of soil nu-
trients under its canopy (Salazar et al., 2019). Decomposition of lit-
ter by the soil microbial communities results in increasing concentra-
tions of mineral forms of key nutrients in soil (e.g., through nitrogen
mineralization) and emissions of CO2 from their aerobic respiration,
which explains the positive relationship between nitrogen (N) and car-
bon (C) cycles (Manzoni et al., 2006). In this particular arid systems
where water availability limits vegetation cover, physical controls of
soil biochemical cycles dominate over biological controls, resulting in
stoichiometric imbalances that favors soil phosphorus (P) over soil C
and N (Delgado-Baquerizo et al., 2013). Nevertheless, the increase in
water availability during the EN should have a positive effect on soil
microorganism activity and on the emissions of CO, flux to the environ-
ment from their increase in biological activity (Aguilera et al., 2016).
An increased occurrence of the EN has been forecasted, which may
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Fig. 1. Normalized difference vegetation index (MOD13A3) in the North Peruvian dryland forest (UTM) from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data-

base before the EN (December 2016 on the top) and after the EN (March 2017 on the bottom).

change the soil C cycle and plant-soil relationship in the near future (Cai
et al., 2015). In the long term, this could transform dryland ecosystems
from sinks into sources with global repercussions (Melillo et al., 2017).
We took the costal EN of 2017 as an opportunity to measure Rs,
the result of the aerobic activity from autotrophic (roots and rhizos-
phere microorganisms) and heterotrophic (primarily soil microbial com-
munities) soil compartments, and its interaction with the tree canopy.
During this period, precipitation reached 778 mm which corresponds to
a tenfold increase compared to the long-term average. The ecological

impact on NPP was comparable to previous EN events (Wang et al.,
2017). Our objective was to study the effect of the EN on Rs under and
outside the Algarrobo canopy. Specifically, we were interested in an-
swering the following questions: Is the coastal EN significantly modify-
ing Rs? And how does Rs change due to the influence of Algarrobo tree
cover and temperature? We hypothesized that the changes in moisture
resulting from the effect of the coastal EN significantly increase Rs and
the sensitivity of Rs to temperature, and these effects are intensified by
the presence of tree and tree cover size.
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The field work was carried out during a 24-h cycle at the end of sum-
mer (April) and winter (August) in two consecutive years. The first sam-
pling coincided with the Coastal EN (2017). The second sampling was
carried out under ENSO neutral, i.e. dry conditions in the study area
(2018). At the study site, we selected 20 Algarrobo trees randomly. One
permanent plastic quadrant was placed at 2m from each tree base, un-
der the tree canopy. To measure Rs outside the canopy influence, we ad-
ditionally marked ten randomly selected points which had to be located
more than 10 m away from any tree or understory plant.

The Rs measurements were taken at the center of each plastic quad-
rant, 5 times a day (5:00, 9:00, 13:00, 16:00 and 21:00h). The Rs

and soil temperature measurements were made on the top soil without
any understory plant in it using a CI-340 Handheld Photosynthesis Sys-
tem connected to a cylinder chamber of 73.5cm? and 0.58 L, with an air
flow rate programmed at 0.5L/s. Figures and Pearson correlation analy-
ses were carried out with the open source software R 3.5.0 to analyze
the effect of temperature and canopy area on Rg (R Core Team, 2019).
The coastal EN increased NPP as can be seen from the NDVI satel-
lite image from the MODIS database (Fig. 1). Likewise, Rs was sig-
nificantly higher during the EN (Fig. 2A), and then became lower
again over time (Fig. 2B). The same effects might be also observed
in other areas equally affected by EN, e.g., the entire South American
coast, Australia, Southern India and West Africa (Poulter et al., 2014).
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In these ecosystems, heterotrophs are adapted to water limitations and
respond quickly to sudden rain pulses, when they meet their optimal
conditions to decompose soil organic matter and increase the net CO,
emissions (Lépez-Ballesteros et al., 2015). In 2018, a year after the EN,
Rs was as low as the error range of the measurement device. Thus, Rs
was either extremely low or virtually zero, and CO, was not emitted.

The observed differences in Rs between years and between degree
of tree influence (Fig. 2a and b) suggest that tree proximity exacerbated
the positive effect of EN over soil biological activity resulting in an
EN-induced increase in Rs emissions of more than two folds under trees
with respect to open areas. Independent of the year and condition, the
high temperatures experienced by the studied ecosystem during winter
and summer may explain the overall low Rs with respect to the mean
global Rs when compare to the mean annual temperature (Fig. 2C and
D) (Bond-Lamberty and Thomson, 2010). This is because at high tem-
peratures enzyme efficiency of soil microorganisms decreases once they
overpass their optimal temperature (Ye et al., 2019). It is well known
that vegetation, and trees in particular, exert a strong positive control
over soil biological activity, which has been particularly observed in the
generally positive effect of tree proximity on Rg (Hogberg et al., 2001;
Tang et al., 2005). This influence of trees over soil metabolic activity
is multidimensional: e.g. autotrophic activity (roots and associated mi-
crobes) is maximal under trees, trees litter production increases soil or-
ganic matter content, soil microbial decomposition and nutrient miner-
alization. Moreover, tree canopy provides a nursery effect for soil micro-
biota, resulting in bigger microbial biomass (Bashan et al., 2012). Trees
may also actively stimulate microbial decomposition (priming) through
exudates production (Kuzyakov et al., 2000). Hence, when water is not
limiting in this arid ecosystems (EN years) trees maximize the potential
effect of climate over soil metabolic activity and hence soil CO, emis-
sions.

Besides rates, canopy cover also transforms the drivers of Rs, espe-
cially during EN years (Fig. 3). In this regard, we here show that the
relationship between diel variations in soil temperature, soil moisture,
and tree canopy size seem to shape patterns of Rs-derived CO, emissions
under trees, while no effects of temperature or moisture over Rs could
be detected outside the canopy. Canopy tree size, soil temperature and
soil moisture had a positive effect on Rs under the tree canopy during
the EN, (Fig. 3A-C). Tree size has a positive effect on soil carbon and
nutrients because tree size is generally correlated with leaf litter pro-
duction (Geesing et al., 2000; Salazar et al., 2019) whereas it is well
known that both, autotrophic and heterotrophic activities are generally
positively influenced by temperature and moisture (Curiel Yuste et al.,
2007). A year after the EN, when soil moisture decreased to very low
values, only a slight (but significant) negative effect of soil temperature
over Rs persisted under tree canopy (Fig. 3D-F).

In conclusion, the EN is an environmental force able to shape soil C
in arid ecosystems, but the effect may strongly depend on the distribu-
tion and size of the trees. Changing climate conditions will have differ-
ent effects on biogeochemical reactions controlling key ecosystem func-
tions and services in drylands, from local to global scales.
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