The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985
https://doi.org/10.1007/500170-022-10601-9

APPLICATION ")

Check for
updates

Dynamic mosaic planning for a robotic bin-packing system based
on picked part and target box monitoring

Ander Iriondo'?® . Elena Lazkano? © . Ander Ansuategi' © . Ane Fernandez' © . IAaki Maurtua’

Received: 15 June 2022 / Accepted: 24 November 2022 / Published online: 12 January 2023
© The Author(s) 2023

Abstract

This paper describes the dynamic mosaic planning method developed in the context of the PICKPLACE European project.
The dynamic planner has allowed the development of a robotic system capable of packing a wide variety of objects without
having to adjust to each reference. The mosaic planning system consists of three modules: First, the picked item monitoring
module monitors the grabbed item to find out how the robot has picked it. At the same time, the destination container is
monitored online to obtain the actual status of the packaging. To this end, we present a novel heuristic algorithm that, based
on the point cloud of the scene, estimates the empty volume inside the container as empty maximal spaces (EMS). Finally, we
present the development of the dynamic IK-PAL mosaic planner that allows us to dynamically estimate the optimal packing
pose considering both the status of the picked part and the estimated EMSs. The developed method has been successfully
integrated in a real robotic picking and packing system and validated with 7 tests of increasing complexity. In these tests, we
demonstrate the flexibility of the presented system in handling a wide range of objects in a real dynamic packaging environment.
To our knowledge, this is the first time that a complete online picking and packing system is deployed in a real robotic
scenario allowing to create mosaics with arbitrary objects and to consider the dynamics of a real robotic packing system.

Keywords Bin-packing - Logistics - Manipulation - Online mosaic planning - Pick and place

1 Introduction approaches, object placing methods try to find the best
location to leave the picked part. One of the well-known
applications of object placing algorithms is bin-packing,
that tries to fit the picked parts in tight spaces with the
goal of optimising the space inside the bin. In industrial
>4 Ander Iriondo environments such as warehouses or distribution centres,

ander.iriondo@tekniker.cs efficient and automated bin-packing methods are highly

Elena Lazkano demanded, due to the cost of storage and transportation of

e.lazkano @ehu.eus oversized containers. Currently, in most of those centres, the
packing operations are carried out only by humans, leading
to error-prone and inefficient packing solutions.

This work is focused on the packing system developed
Ane Fernandez in the context of the PICKPLACE! European project which
ane.fernandez @tekniker.es seeks to develop a flexible, safe and dependable picking
and packing system considering the real use-cases of ULMA
Handling Systems (UHS) and Tiirk Otomobil Fabrikasi
A.S.(TOFAS) end-users.

In the distribution centres installed by UHS, the order
Department of Autonomous and Intelligent Systems,

Tekniker-Basque Research and Technology Alliance (BRTA), plck-and-packaglng (the P rocess (?f collecting items to
Ifiaki Goenaga, 5, Eibar, 20600, Gipuzkoa, Spain create a package for shipment) is the last and most
challenging task in the warehouse automation. Depending

on the type of installation, the warehouse operator takes

Object placing is one of the most challenging tasks in
robotic manipulation and contrary to simple pick-and-drop

Ander Ansuategi
ander.ansuategi @tekniker.es

Inaki Maurtua
inaki.maurtua @tekniker.es

Robotics and Autonomous Systems group (RSAIT), Department
of Computer Science and Artificial Intelligence, University
of the Basque Country (UPV/EHU), P2 Manuel Lardizabal, 1, -
Donostia-San Sebastidn, 20018, Gipuzkoa, Spain 'PICKPLACE:https://pick-place.eu/

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-10601-9&domain=pdf
http://orcid.org/0000-0003-2760-435X
http://orcid.org/0000-0002-7653-6210
http://orcid.org/0000-0001-9777-9564
http://orcid.org/0000-0002-6825-6294
http://orcid.org/0000-0001-8476-4929
mailto: ander.iriondo@tekniker.es
mailto: e.lazkano@ehu.eus
mailto: ander.ansuategi@tekniker.es
mailto: ane.fernandez@tekniker.es
mailto: inaki.maurtua@tekniker.es
https://pick-place.eu/

1966 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

multiple types of goods at the end of the line and places
them in target boxes. In the automotive sector, TOFAS deals
with more than 63.000 different spare parts that are sent
to different dealers in manually prepared packages. This
monotonous packing process is currently held in 90% by
humans due to the difficulty of replacing human dexterity to
handle parts with high variability in size, shape, weight and
material.

The feasibility of fully automated systems is currently lim-
ited by many factors such as the huge variability of items,
system robustness and industrial throughput requirements.
Human-robot collaboration seeks to combine the robot’s effi-
ciency and the human dexterity to optimise the packing process.

Bin-packing solutions are mainly differentiated depend-
ing on the level of knowledge available in the application.
Traditionally, bin-packing methods deal with ideal condi-
tions in simulation and the identity and the set of items
to be packed, as well as their properties are known. These
ad hoc solutions assume that the parts can be packed in
any orientation and omit the presence of automatic pick-
ing/packing systems such as robots. In other approaches that
consider automatic picking/packing systems, they assume
that the objects are known and that are always grasped in
the same way. Thus, in both cases, the packing order of the
items and the mosaic can be calculated offline. The main
disadvantage of this kind of methods is that they ignore the
uncertainties introduced by a real picking/packing system
and assume that the process is ideal. In fact, in dynamic sce-
narios such as big warehouses where thousands of known
and even unknown references need to be managed, those
solutions fail, and more flexible systems are required.

Taking into account the high variability of the objects
considered in the project as well as the need to handle
unknown objects, an affordance-based flexible grasping
system was developed in the context of the project [1].
Following this approach, the system predicts grasping
points without relying on the identity of the parts but only
focusing on the shape, colour and texture of them. Having
such a flexible grasping system implies that items are not
identified before being picked, and thus the grasping point
prediction varies in each execution of the algorithm. Indeed,
the way that each object is picked has a big effect in
the place operation and, therefore, the grasped item has
to be monitored online. Additionally, when dealing with a
huge amount of references with highly variable shapes and
textures, small movements in the outbound box produced
by the human or the warehouse system itself may cause
the products to drop. Therefore, online monitoring of the
outbound box becomes necessary to avoid collisions.

The patented palletising solution of UHS, dubbed IK-
PAL, is composed of a palletising robot and the algorithm
that calculates the palletisation mosaic. This system has
been successfully deployed in warehouses of big companies

@ Springer

such as EROSKI.2 However, this first version of the mosaic
planning algorithm was thought to work with regular items
and assuming that the parts would remain static after being
packed in the mosaic. Nevertheless, the increasing market
of the e-commerce nowadays demands flexible solutions
to handle a high variety of items with highly variable
shapes. Introducing irregular items to the system makes it
impossible to assume that the items will remain in the ideal
position once they have been packed, and arises the need for
monitoring the outbound box.

In this work, several novelties are introduced to evolve
IK-PAL’s mosaic planning algorithm into a flexible and
dynamic planner. As the grasping point detection system
developed in the project is agnostic to the objects’ identity
and the predicted grasping points are not predefined, we
first developed a system to estimate online the dimensions
and the orientation of the picked parts. Second, we designed
a polynomial-order heuristic method to monitor online
the empty volume inside an outbound box. This method
computes the free volume in the form of empty maximal
spaces (EMSs), which serves as input to the dynamic IK-
PAL mosaic planner. With this new method, the grabbed
items and outbound containers are monitored online, and the
packing pose for each picked part is estimated considering
the actual status of the packaging. Therefore, introducing
these novelties to the system, we are able to dynamically
handle dropped objects and to avoid collisions when items
move around inside the bin.

The developed dynamic mosaic planner was finally
integrated with an automatic picking system in a real robotic
scenario. To the best of our knowledge, this is the first time
that a complete online picking and packing robotic system
is developed that allows creating mosaics with arbitrary
objects and considering the dynamics of a real robotic
packing system.

2 Literature review

Object placing, along with picking, have been core
problems since early days of robotics. Particularly, the
problem of fitting a set of objects inside a destination bin
optimising the used space has traditionally attracted a lot
of interest. Most of the proposed solutions try to pack
regular shaped objects such as boxes with non-overlapping
constraints.

Traditionally, the majority of the approaches assume that
the set of items to be packed is known, and therefore, the
packing mosaic is calculated offline. Currently, there are
exact solutions that optimally solve the 3D bin-packing
problem offline. A popular method was presented by

ZEROSKI: https://www.eroski.es/

https://www.eroski.es/

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985 1967

Martello et al. in [2] and [3]. It uses a branch-and-bound
algorithm to optimally solve the problem. This algorithm
was subsequently optimised by Boef et al. in [4]. The bin-
packing problem belongs to the class of NP-hard methods
and, therefore, it cannot be solved in polynomial time.
Consequently, much research has been done in approximate
methods to solve the problem to near optimality [5]. To
mention some, Jakobs et al. first introduced the well
known bottom-left heuristic in [6]. The best-fit decreasing
algorithm was developed and analysed by Johnson et al. in
[7]. However, these methods were designed to work in 1D
or 2D.

The use of metaheuristic-based algorithms led to
good approximate solutions for the orthogonal 3D bin-
packing problem [8]. In [9], Crainic et al. efficiently
solved the orthogonal 3D bin-packing problem applying
a two-level tabu-search method. Additionally, Faroe et al.
applied the guided local search (GLS) to solve the same
problem [10]. Furthermore, genetic algorithms were also
successfully applied in [11] to solve orthogonal 2D and
3D bin-packing problems. State-of-the-art learning-based
approximate strategies used deep reinforcement learning
(DRL) to optimise the packing of orthogonal parts [12].
Nevertheless, these methods were only designed for the
orthogonal bin-packing and are only practical when dealing
with boxes. Moreover, in these works, it was assumed
that the parts could be packed without restrictions in the
orientation. Nonetheless, when the items are packed by a
robot, the picking location of the parts limits the placing and
not all orientations are feasible.

More recently, the bin-packing of both regular and
irregular multi-reference parts has become a need in
intralogistic applications, particularly caused by the growth
of the e-commerce. When the shape of the items is
irregular, it is not feasible to find an optimal solution to
the problem as the search space is infinite, and only can
be solved with approximate solutions. For instance, Zhao
et al. used a metaheuristic algorithm to estimate a near-
optimal packing mosaic for irregular objects [13]. In this
work, the items were represented as meshes and the empty
space as a bounding box of the bin. However, the mosaic
was calculated offline and it was not considered that objects
could fall, which is likely to occur in the real system using
irregular parts. Besides, the method was time demanding
and could not be used in real time. In [14], the authors
proposed an heuristic-based method that considered the
offline packing of geometrically complex 3D objects with
stability constraints. On the one hand, the picked part was
represented as a 2D heightmap that was generated using ray-
casting. On the other hand, the availability of the outbound
box was monitored using a second 2D heightmap that was
updated whenever a new object was placed. Although the
packing method checked the status of the outbound box

heightmap to look for a stable packing pose, falls were not
considered since this process was executed offline, before
picking any item. Besides, the system was only assessed in
simulation.

The stability of the packed mosaic is guaranteed
dealing with regular mono-reference items under controlled
scenarios. However, this is not the case when it comes
to multi-reference applications, particularly when irregular
parts are also considered. Therefore, when each object is
packed, it cannot be assumed that the constructed tote will
remain constant and hence, the mosaic must be calculated
online. Indeed, it is required to analyse the status of both the
picked part and the packaging at each iteration due to the
following reasons:

1. When picking a huge number of multi-reference items
ad hoc grasping solutions usually fail and flexible
solutions are needed. Flexible grasping systems are not
able to guarantee that the items will always be picked in
the same way. Therefore, the packing position cannot be
calculated until the object is picked. The picking pose
limits the possible packing orientations.

2. When dealing with irregular parts, objects are likely to
fall off or move around after being packed. Thus, the
theoretical and real mosaics differ and the destination
boxes need to be monitored online whenever a new
product is packed.

Regarding online bin-packing methods, Ha et al. pro-
posed a bin-packing heuristic algorithm to pack orthogonal
objects online at arrival time without any prior knowledge
about the items to be packed [15]. This work, however, did
not consider a picking system that would restrict the pack-
ing orientations. In fact, it was only implemented for ideal
setups in simulation. For instance, the framework developed
by Wang et al. [16] dealt with the packing of a known set
of objects arriving in a non-deterministic order. The pro-
posed solution was composed of an offline planner and a
verification algorithm that checked the feasibility of all per-
mutations of arrival orders. Although the system handled
both regular and irregular objects, in that work object falls
were not considered, and the status of the destination box
was not monitored. Additionally, authors claim that their
work was only practical with a small subset of objects.
Hong et al. went one step further and solved the irregu-
lar 3D object bin-packing in an online manner [17]. In that
approach, a depth camera was used to estimate the area
(highest contour) of the picked object. To that end, the depth
camera was located below the picked part and it was aligned
with the end effector of the robot. Concerning the destina-
tion box monitoring, the status of the bin was represented as
a 2D depth-map and an analysis of the available contact-free
2D positions was performed, using the contour information
of the picked part. Additionally, some other criteria such as

@ Springer

1968 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

placing the objects in the lowest possible position or bring-
ing things together were applied. However, the authors did
not use a real picking and packing system (only simulated
some manipulation error) which could have a large effect
on the structure of the final mosaic. Recently, learning algo-
rithms such as DRL have been successfully applied to solve
the online bin-packing problem with orthogonal parts, for
instance, in [18]. This approach, however, only dealt with
orthogonal items, it lacked an automatic picking system and
it was only tested under ideal simulated conditions. Zhao
et al. also propose a DRL-based packing system for orthog-
onal objects that has been tested in a real robotic system
[19]. In that work, once the robot left the picked object in
the target box, they did not monitor it online and assumed
that the object would be ideally placed.

Summing up, most of the works in the literature used
orthogonal items, assumed that the packing process was
ideal and, therefore, they did not provide online monitoring
of the status of both the picked part and the outbound box.
However, this is crucial particularly in real unstructured
scenarios where the packing conditions are variable and
when irregular multi-reference parts are considered in the
system. Additionally, the fact that a huge amount or even
unknown items need to be handled in intralogistic centres
requires to have a flexible grasping system. Indeed, the
grasping pose has a large effect in how the part can be
packed, but none of the analysed works uses a real picking
system. In this work, we present the online packing solution
developed in the context of the PICKPLACE European
project that is able to pack both regular and irregular
items considering the packing status at each iteration. The
contributions of the paper are as follows:

e Firstly, we develop an online monitoring system for the
picked part. In PICKPLACE, a flexible grasping system
is used to handle a wide variety of parts. Therefore,
the grasping points are not predefined, and thus, it is
necessary to monitor the object in order to know how
the robot has picked it up.

e We also implement an algorithm to dynamically
monitor the destination box and heuristically estimate
the free volume as EMSs. When packing a wide
variety of different shaped objects, it is necessary to
dynamically monitor the destination box to take into
account the uncertainties (e.g. drops, movements) that
may occur once placed in the box.

e Finally, we develop a dynamic version of IK-PAL
mosaic planner that considering the picked part and the
destination box monitoring heuristically calculates the
packing pose for the picked part.

® The grasping point detection algorithm developed in
[1], the dynamic picked part and destination box

@ Springer

P 4
(b) TOFAS pilot.

Fig. 1 Pilots in the PICKPLACE project

monitoring methods and the dynamic IK-PAL planner
are integrated in a real pick-and-place system.

In this manuscript, we show that the developed packing
system is practical to generate mosaics in an online manner
using a real robot, with a wide variety of items and being
able to also consider uncertainties such as falls in the
outbound box.

3 System overview

In PICKPLACE, three pick-and-packing scenarios are
considered, which are implemented both in the UHS and
TOFAS pilots (Fig. 1):

1. Order preparation in UHS: Mono-reference to multi-

reference.

2. Order return in UHS: Multi-reference to mono-
reference.

3. Order preparation in TOFAS: Multi-reference to multi-
reference.

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985 1969

In the first case, after the system receives an order from
the warehouse management system (WMS), it determines
the arrival order of the mono-reference bins to the picking
area. The WMS generates the sequence for a new order
preparation or for an order return process, and is used in
both prototypes. Once the robot picks the required object,
it packs the item in the bin of the corresponding order,
creating a multi-reference mosaic. In the second use case,
the returned multi-reference bin goes directly to the picking
area of the UHS pilot. Items are picked according to the
order determined by the flexible picking system, until no
more items are left inside the bin. Once each object has been
picked, its dimensions are estimated and, at the same time,
the product is identified. Finally, each product is returned
to the corresponding bin of the product’s reference, creating
a mono-reference mosaic. The third and last use case is
implemented in the TOFAS pilot and tackles the multi-
reference to multi-reference picking and packing problem.
Once each product is picked from the picking box, it is
identified with a bar-code reader and it is finally placed in
the corresponding multi-reference mosaic.

In practice, almost the same workflow is followed
in all the use-cases due the following reasons: (1) The
flexible grasping system lets us abstract from the type of
inbound box (mono/multi-reference). (2) With both known
and unknown items, the dimensions and orientation of the
picked items need to be estimated online, since those are
dependent on how the parts have been picked. Furthermore,
the online mosaic generation system abstracts from the
category and is able to handle novel parts. The main
difference, indeed, is that in the use case 1, the items do
not need to be identified after being grasped, as the system
knows the category of the mono-reference bin. However, in
the use cases 2 and 3, the parts are grasped from a multi-
reference bin using a flexible grasping system and therefore,
an identification step is required to decide the target bin for
the grasped item.

3.1 UHS and TOFAS pilots

Both UHS and TOFAS pilots are composed of 3 main areas
(see Fig. 2): (1) The inbound area, (2) the picked part
monitoring area and (3) the outbound area. In both cases,
the inbound area contains a single input bin from which the
objects are picked. However, the outbound area contains up
to three containers in UHS and two containers in TOFAS.
The robot used in the UHS prototype is the 6-DoF
Fanuc m10ia/10M industrial robot equipped with a suction
end effector. In the case of TOFAS, the 7-DoF URI10
collaborative robot is used, also with a suction end effector.
In the first case, the robot is fixed on a base, from which
it is able to reach the 3 areas. In the latter, however, the

RealSense D435 §

cameras

Photoneo Phoxi L
cameras

\ ¢ ¥ % ‘
(b) Components of the TOFA

S pilot.

Fig.2 Main components of UHS and TOFAS pilots. (1) Inbound area,
(2) part monitoring area, (3) outbound area

manipulator is attached to a mobile track which enables the
robotic arm to move from one area to another.

In both pilots, over the inbound and outbound areas, there
are two Photoneo Phoxi L cameras that are used to estimate
the grasping points and to monitor the outbound container
respectively. In the first case, the camera is fixed as there
is only a single bin in the inbound area. In the second case,
however, the camera is attached to a linear track that enables
the monitoring of up to two/three outbound bins with a
single camera, depending on the prototype. As far as the
picked part monitoring area is concerned, three extrinsically
calibrated RealSense D435 cameras are used, both in UHS
and TOFAS, all of them with a fixed location in the layout.
This enables the system to have a full view of the item
leading to a better estimation of the dimensions and the
orientation. The TOFAS layout is covered with a housing to

@ Springer

1970 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

reduce the impact of external light on the cameras. All the
software runs in an Intel i7-8700@3.2GHz x 12 CPU, with
32GB of RAM and a Nvidia GeForce RTX 2080 Ti GPU
with 11GB of memory.

3.2 Software architecture

The application and all its submodules are developed on
the Robot Operating System (ROS) framework [20]. Indeed,
our implementations are based on the layered control
architecture dubbed Robotframework, which lets us easily
develop robotic applications reusing functionalities that are
common in many robotic applications [21]. This framework
is divided into the following four layers: user interface,
application, abilities and drivers (see Fig. 3).

® Driver layer: This layer implements all the commu-
nication interfaces for data exchange between robots,
tools and sensors in simulated environments and real
setups.

e Abilities layer: It includes the modules that provide the
system with high-level functionalities such as manip-
ulation, grasping or perception. It is the middleware
between the application level and the drivers.

[
%)
S
I
o
=
=)
1o
(=]

Grasping Manip

Robot Manager
Operation Modes

e Application layer: This level contains the robotic appli-
cations that provide a solution to the multi-reference
random bin picking problem, defined as one of the main
goals in PICKPLACE. In our case, each use case is
implemented as an operation mode. The robot manager
is the module in charge of controlling the overall sys-
tem, maintaining its status all the time. In addition, it
offers all the functionalities through a REST API.

e User interface layer: It includes the modules in charge
of the interaction between the human and the robotic
system, such as the WMS or the Graphical User
Interface (GUI).

The diagnostics module collects information from the
drivers and the abilities layers and is used to check the status
of all the modules, to collect historical data or to make
decisions based on the type or errors. The Logger module is
responsible for offering log capabilities to all the layers in
the architecture.

Among the different functionalities developed in the
context of the project, this paper focuses on the packing
system. The core of that system is composed of three main
modules that are part of the perception and packing mosaic
planning abilities:

User Interface

Application

Abilities

Perception Packing mosaic

planning

i 1
Reactive grasping traHel::Toan aware

lannin,

Diagnostics

Grasping point detection |Object identification

Picked part monitoring Human tracking | IK-PAL |

Destination bin
monitoring

Drivers

m

Robot Arm End effector

Fig.3 Robotframework

@ Springer

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985 1971

1. Picked part monitoring.
2. Destination bin monitoring.
3. Dynamic IK-PAL mosaic planning.

These modules are explained in more detail in Sections 3.3,
3.4 and 3.5 respectively.

3.3 Picked part monitoring

The flexible grasping system is capable of handling a large
variety of items, and thus the way objects are picked is not
predefined. Therefore, the dimensions and the orientation
of each picked item need to be estimated online. In this
work, the object’s bounding box is used as an estimate of the
dimensions of the picked part. The bounding box is defined
by its origin bbox, = [orig,,orig,, orig , orig,,,] (the
xyz coordinates and the rotation in z axis of a specific corner
of the bounding box with respect to the end effector) and the
dimensions bboxy = [dimy, dimy, dim.].

The bounding box is estimated using three extrinsically
calibrated RealSense D435 cameras. The use of three
viewpoints lets us have a full view of the picked item,
vital to properly estimate the dimensions of the part. Then,
the following steps are performed before estimating the
bounding box:

1. Combine the point clouds of the 3 RealSense cameras
using extrinsic calibrations.

2. Downsample the combined point cloud with a voxel-
downsampling algorithm with a voxel-size of Vb3mm3.

3. Define a monitoring volume of dimensions M; with
respect to a predefined pose in the space. The robot’s
end effector moves to a fixed position inside the volume
to show the picked part to the cameras.

4. Remove the end effector from the point cloud. Since its
dimensions and its position in the monitoring volume
are known, a simple point cloud crop is done.

5. Apply aradius filter to remove the noise from the point
cloud, with a filtering radius F; and considering F;, points.

At this point, it is assumed that all the remaining points
inside the monitoring volume belong to the item.

The calculated bounding box is finally optimised in the
vertical z axis, as it is the most critical orientation during
the packing process. The bounding box is not optimised in
the x and y axes, as it is assumed that the error in these axes
disappears due to gravity when the item is packed.

To optimise the bounding box in the z axis, the origin of
the point cloud is translated to its centroid and the cloud is
rotated N discrete times with respect to the z axis, checking
at which rotation the bounding box is smaller. The bounding
box is always estimated following the axes of the origin
of the cloud. Finally, the estimated bounding box with the
smallest volume is transformed again from the translated

coordinate frame into the end effector’s coordinate frame
(see Fig. 4).

3.4 Heuristic method for destination bin monitoring

The heuristic algorithm to monitor the empty space in the des-
tination box is based on the EMS concept that has been
previously used in multiple works [11, 15, 22, 23]. Gener-
ally speaking, this concept was applied to 2D and 3D bin-
packing problems, always with orthogonal objects assum-
ing ideal conditions in simulated worlds. Moreover, these
works assumed that the generated mosaics were static and,
therefore, the EMSs were estimated in the theoretical rep-
resentation of the mosaic. However, this cannot be assumed
when irregular multi-reference elements are considered in
the system as the uncertainty this introduces to the system
generally causes the theoretical and real mosaics to differ.
Thereby, our heuristic method tries to estimate the EMSs
after each new item has been packed with the aim of having
a faithful representation of the real status of the bin.

The system gets as input the point cloud of the scene
(CL) and the localisation of the bin (bin,), and outputs
the empty usable volume represented as a list of 3D empty
cubes (S) of maximum possible size. Figure 5 depicts a
sample scene and its point cloud. Each solution cube s € S
is defined by its origin coordinates with respect to the origin
of the bin s, = [orig,, orig,, orig] and its dimensions
sq = [dimy,dimy, dim;]. The origin of the bin is located
in a lower corner of it. A representation of the generated
EMS:s is depicted in Fig. 6.

Fig. 4 Bounding box estimation of the picked part. The monitoring
volume and the bounding box are represented as red and green cubes
respectively. The blue sphere indicates the origin of the bounding box

@ Springer

1972 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

Fig.5 Original scene image and
point cloud

(a) Original scene.

The process runs as follows. First, the bin is localised
in the point cloud of the scene with the aim of discarding
the points that lay outside of it. To that end, a previously
developed 3D model matching algorithm is used [24].
As the dimensions of the bin (bing) are known, the bin
localisation algorithm creates the 3D model of the upper
edges of the bin and matches it with the point cloud of the
scene, finally to obtain its pose (bin,). In both pilots, a
Photoneo Phoxi L 3D industrial camera is used to monitor
the destination bins.

Once the bin is localised, the point cloud of the scene is
transformed into the bin’s coordinate frame and the points
that are outside of it are discarded. This process is followed
by a filtering step in which two methods are applied to
reduce the noise in the cloud, both of them available in
the PCL library [25]. First, a clustering-based filtering
helps to remove small groups of points, not attached to
the main cloud, that are due to the sensor noise and light
reflections. Then, a statistical outlier filter removes the noise
attached to the main cloud that prevents regular surfaces.
The designed heuristic method uses a 3D occupancy grid
O as a representation of the occupied space inside the

X

Fig. 6 Side view of the empty cubes generated in an example scene.
Green items represent already packed objects and s1, 52, 53, 54 are the
generated EMSs for that scene

@ Springer

_gil?:;!.
(b) Point cloud of the
scene.

outbound box. O is represented as a 3D array, where each
position belongs to a voxel in the space. To fill it, we divide
the space inside the bin in voxels of size V,>mm? using
octrees. This data structure lets us efficiently check the
status of each voxel and fill @. An example of the generated

X
(b) Occupancy grid after the stabilization phase with
H =5.

X

(c) Occupancy grid after square generation phase with
Q = 20.

Fig.7 Occupancy grid after each processing phase

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985 1973

occupancy grid is shown in Fig. 7a. The method occupied
indicates the occupancy of a voxel v; ; on the occupancy
grid and is defined in Eq. (1).

true, if Q[i, j, k] ==
occupied(0, i, j, k) = | "¢ TOL /A (1)
false, if O[i, j,k]==0

When the items are cubic and the mosaic representations
used are ideal and not based on real observations, the
candidate EMSs are finite. However, the possible EMSs
are infinite in real 3D scans of the scene, particularly with
irregular and rounded items. Thus, the problem is simplified
by representing the space as voxels. The smaller the voxels,
the higher the resolution but also the system load.

At this point, the algorithm first processes @ and then
calculates the empty cubes with the remaining free space
on it. The idea behind this method is to smooth and to fill
holes in the occupancy grid with the goal of creating regular
surfaces and removing not usable space. The processing
done at occupancy grid level is parameterised with two
thresholds, H and Q that are explained in detail later on. At
the end of the voxel-level processing of O, the empty cubes
are generated using all the remaining space inside the box.
Indeed, each point in the empty space must belong to one
and only one cubic solution. Finally, if J is enabled, a cube-
level processing is applied to join neighbour cubes that are
at the same height, to maximise their size.

The proposed heuristic method is shown in Algorithm 1
and is composed of four main steps. As explained before,
the first processing steps are performed at voxel-level,
directly modifying the occupancy grid. However, the final
step is performed at the cube level.

The second step of the proposed heuristic method,
dubbed the heightmap stabilisation phase, makes use of a
height threshold H to smooth O (see Algorithm 2).This
method starts from the highest occupied voxel v; j and

Fig.8 Square formed by the
voxels vi g, j—p.k and viyy j sk
at height k of the occupancy

D Occupied inside threshold

grid. In blue, the occupied
voxels at height k. In yellow, the
voxels where D, < H, which
are updated to height k. In red,
the voxels that are not occupied
at height k and D, > H

Inmput: CL, Vs, H, Q,J, bing, bin,

Result: List of empty cubic volumes S

initialisation;

Function Main (CL, Vi, H, Q, J, bing, binp):

// Step 1: Preprocessing

O «~

preprocessPointCloud (CL, Vs, bing, biny) ;

// Step 2: Heightmap stabilisation
O «
stabiliseOccupancyGrid (O, H, Vg, bing) ;

// Step 3: Square generation

O <«

squareOccupancyGrid (O, Q, Vs, bing) ;
// Step 4: Generate solutions

S < generateSolutions (O, Vg, bing);
if J then

| S < joinSolutions (S);

end

return S;

Algorithm 1 Calculate the list of empty cubes S.

finds the values «, 8, y, 8§ > 0 to update the occupancy of
the neighbour voxels from v; ¢, j gk 10 Vi, jts.k and set
them as occupied if:

D.(a,b, k) < Hwhere,a = {i — «, ..., i + B},
b={j—v,..j+3} 2

The function D, measures the distance in voxels from a
voxel v;, j x to the closest occupied voxel below it and in the

. Not occupied at height k . Occupied at height k

. Updated to height k

@ Springer

1974 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

same column i, j, and is defined in Eq. (3).

k
D.(Gi. j. k) =1+) lif=occupied(Q,i, j.k —w) (3)
w=1
The values «, 8, y, 6 are calculated in such a way that
in the square formed by the corner voxels v; 4, ;g and
Vi 4y, j+8,k» in €ach row and column at least one voxel is at
height k or can be updated to height k (see Fig. 8).

The voxel columns whose occupancy has been changed
are marked as modified and this process is executed
iteratively until all the voxel columns are analysed. An
example of the status of the occupancy grid after the
stabilisation phase is depicted in Fig. 7b.

Input: O, H, Vi, bing

Result: Stabilised occupancy grid O.

Function

stabiliseOccupancyGrid (0, H, Vs, bing) :
x_voxels < bing[0]/Vy;

y_voxels < bing[1]/Vy;

z.voxels < bing[2]/Vs;

modified < false;

// bool_array(x_voxels, y_voxels)

for k € {z_voxels — 1, ..., 0} do
for j € {0, ..., y_voxels — 1} do
fori € {0, ..., x_voxels — 1} do

if occupied(Q, 1, j, k) &
—modified[i][j] then
Geta, B,y,6;
for ae{i—a,...i+8},be
{j—vy,....,j+6}do
if D (a, b, k) < H then
// Update the
height of the
column a,b to k
updateHeight (O, a, b, k)

>

modifiedla, b] < true;

end
end

end
end

end

end
return O;

Algorithm 2 Occupancy grid stabilisation method.

The third processing step, called the square generation
phase, is in charge of filling holes and giving squared shape

@ Springer

to the planes generated in the stabilisation step with the
intuition of removing not usable space. As the final empty
cubes have a square floor plan and are generated only over
occupied planes using all the remaining free space, it is
important to fill the occupancy grid creating planes with
regular shape. To that end, a second threshold Q is used.
This threshold is applied in the x and y axes and is used to
determine the maximum size of the holes that will be filled
in each plane, without considering the vertical distance D,
to the closest occupied voxel. Therefore, the maximum
number of consecutive empty voxels that are filled in each
axis is Q, which could lead to filling holes up to an area of
0? voxels, considering both x and y axes. The main goal of
filling small holes in the planes generated in the stabilisation
phase is to reduce unusable small volumes and to generate
bigger planes that will contribute to the generation of bigger
empty cubic volumes.

This method also starts in the highest occupied voxel v; ; x
in O, and finds the values €, ¢, n,0 > 0 in such a way that
from v; ¢ j—¢k 10 Vi, j16,k there is no hole with a larger
dimension (x or y) than Q (Fig. 9). The analysed voxels are
marked as visited and the same process is executed until all
the voxels are processed (see Algorithm 3). An example of
the result of this process is shown in Fig. 7c.

After executing the voxel-level operations, all the remain-
ing free space above the occupied zone is assumed to be
usable space. At this point, cubic solutions are generated and
those are further processed to create solutions as big as possible.

The solution generation method starts in the highest
empty voxel that is over an occupied plane, and computes
the dimensions of the plane that it belongs to. The height of
the cube is determined by the distance between each plane
and the bin’s top. The solutions are generated in such a way
that (1) all the voxels under the floor of each cubic solution
must be occupied and, (2) each empty voxel inside the bin
must belong to one solution only. The procedure to generate
the cubic solutions is described in Algorithm 4.

As the cubic solutions are generated in a non-optimal
way, joining them can lead to maximised size solutions.
Therefore, in a final step, the neighbour solutions with the
origin at the same height in the z axis are combined in pairs
by following these criteria:

1. If the cubic solutions have the same origin in axes x or
y and have the same dimensions in the corresponding
axis, the cubes are joined to generate a bigger cube (see
Fig. 10a).

2. If the cubic solutions have the same origin in axes x or
y but not the same dimension in the corresponding axis,
then two new cubes are generated if the union of both
cubes results in a bigger cube than every single one (see
Fig. 10b).

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985 1975

Fig.9 Example with Q = 2.
The voxels in the square formed
by Vi—c,j—¢.k and vy j+o.k are
updated to height & without
considering the distance D,

. Not occupied at height k . Occupied at height k . Updated to height k

3. If the cubic solutions are neighbours but they do not
share a common origin on any axis, then three new
cubes are generated if the union of both cubes results in
a bigger cube than any original one (see Fig. 10c).

Input: O, Q, Vi, bing

Result: Squared occupancy grid O.

Function

squareOccupancyGrid (Q, Q, Vs, bing) :
x_voxels < bing[0]/ Vs;

y_voxels < bing[1]/ Vy;

zvoxels < bing[2]/ Vy;

modified < false;

// modified : bool_array(x_voxels, y_voxels)

for k € {z_voxels — 1, ..., 0} do
for j € {0, ..., y_voxels — 1} do
fori € {0, ..., x_voxels — 1} do

if occupied(Q, i, j, k) &
—modified[i][j] then
Gete, ¢, n, 0 considering Q;
for ac{i—¢,..,.i+¢},be
{j—n,...,j+06}do
// Update the height
of the column a,b
to k
updateHeight (0, a, b, k) ;
modifiedla, b] < true;
end

end

end
end

end
return O;

Algorithm 3 Occupancy grid square generation method.

z

(a) Cubes s; and sp with common origin and dimen-
sion in y axis are joined to generate s3.

A Y

(b) Cubes s; and s with same origin in y axis are
combined if the combination (s3) is bigger than s; and
s2. As a result s3 and s, are generated.

AY

(c) Cubes s1 and sg are neighbours and are combined
if the combination (s3) is bigger than s; and s2. As a
result s3, s4 and s5 are generated.

Fig. 10 Joining criteria for the cubic solutions

@ Springer

1976 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

Input: O, Vy, bing

Result: List of empty cubic volumes S.

Function generateSolutions (O, V, bing) :

// occupied: Whether voxel wv; i is
occupied

// hasObstacleAbove: Whether voxel
Vi jk has any higher occupied
voxel in column i,j

// isInSolution: Whether voxel
v, jk already belongs to a
solution

// isAboveObstacle: Whether voxel
v jk has any lower occupied
voxel in column i,j

x_voxels < bing[0]/ Vy;

y_voxels < bing[1]/ Vy;

zvoxels < bing[2]/ Vy;

S<I[L

inSolution < false ;

// inSolution :
bool _array(x_voxels, y_voxels)

for k € {z_voxels — 1, ..., 0} do
for j € {0, ..., y_voxels — 1} do
fori € {0, ..., x_voxels — 1} do

if —occupied(O, 1, j, k) &

—hasObstacleAbove(Q, i, j, k) &

—inSolution[i, j] &

isAboveObstacle(Q, i, j, k) then

So < i, j, kI

// Calculate the
dimensions of the
cube

sq < getSolDims(Q, i, j, k);

S.insert(s);

inSolutionli, j] < true;

end

end

end
end
return S;

Algorithm 4 Cubic solution generation method.

The projection of the generated 3D cubic solutions is
depicted in Fig. 11.

3.5 Dynamic IK-PAL mosaic planning
IK-PAL is the proprietary mosaic planner algorithm

developed by UHS. The first version of this algorithm
was an offline mosaic planner that was able to plan full

@ Springer

mosaics with regular parts. This offline planner assumed
that the items were picked and packed always in the
same way, using the same grasping points and that the set
of items to be packed was previously known. Moreover,
this method was designed to be used with regular parts
only, assuming that after each object was placed in the
destination box, the mosaic would remain static. In fact, a
manual intervention of the operator was needed whenever
an unexpected movement occurred or any item fell off.
However, this static mosaic assumption does not hold when
irregular items are introduced in the system. Thus, the
mosaic has to be created online considering the packing
status after each packing operation.

Therefore, in the context of the project, a new
dynamic version of the algorithm has been designed and
implemented. The new version of the mosaic planner gets
as input the list of estimated EMSs in the destination bin, as
well as the bounding box of the picked item. As a result, it
returns the 3D coordinate inside the destination bin where
the origin of the bounding box has to be located, besides to
the required rotation of the picked item on the z axis. Since
the picked parts are represented as boxes, the rotation in z
axis is defined by a binary variable, where a rotation of 90°
is applied when it is enabled.

The dynamic IK-PAL is an heuristic-based mosaic
planner that only considering the current packing status
estimates the next optimal packing pose with the following
criteria:

1. First, the EMSs where the bounding box fits in are
extracted. In each selected empty volume, there are two
possible poses for the bounding box: As it is or with the
rotation enabled.

2. A tree data structure is generated with all possible
solutions.

3. Criteria such as the degree of filling, compactness or the
size of the remaining empty volumes are considered to
give a rating to them.

4. The solution with the highest rating is selected.

As this module is a proprietary software of UHS that is
under license, the implementation details are not available.
4 Experimentation

This section explains the details of the experimentation
carried out to validate the developed algorithms.

4.1 Picked part monitoring

The main objective of the experimentation with the picked
part monitoring algorithm was to select the appropriate

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985 1977

Fig. 11 Projections of the cubic
solutions that represent the
empty space inside the bin

parameters for the calculation of the dimensions of the
picked object. In addition, we measured the accuracy of
the proposed system by comparing its estimates with the
measured dimensions of several objects.

As previously explained in Section 3.3, three RealSense-
D435 cameras were used to estimate the dimensions of
the object picked up. As expected, the quality of the 3D
information they provide was not comparable to industrial
cameras such as the Photoneo Phoxi L which were used both
to detect grasping points and to monitor the destination bin.
In fact, such cameras were very sensitive to ambient light
conditions. Therefore, the selection of the parameters was
done experimentally and taking into account the lighting
conditions of the real environment, and these can be seen in
Table 1.

To measure the error made by the algorithm, 10
representative objects with different materials and shapes
were selected. For each object, once the robot picked it up
and once at the monitoring station, a measurement of the
object’s dimensions was performed. In addition, keeping the
robot static in the monitoring volume, the algorithm was run
10 times (since the point cloud of the scene changed slightly
at each acquisition), and the average dimensions estimated
by the algorithm were calculated. Figure 12 depicts the
measurements process with one of the objects used.

As it can be seen in Table 2, the error committed on each
axis was approximately 1 cm on average. According to the
camera specifications, the error that these cameras make in
estimating depth information is 2%. In our case, the objects
were approximately 50 cm far from each camera, and thus,

Table 1 Tuning parameters for the picked part monitoring algorithm

Picked part monitoring

Vi 2mm

F, 10mm

F, 5

My 600 x 600 x 300mm
N 64

the error could be up to 1 cm per axis. Although there were
other factors that could introduce noise into the estimation,
such as the extrinsic calibration of the cameras or reflections
caused by certain materials such as shiny metals or semi-
transparent objects, it was concluded that the measurements
of the algorithm were accurate and in accordance with the
camera specifications.

4.2 Destination bin monitoring

At this experimental step, the goal was to find the
combination of parameters that best adapted on average to
highly variable scenes. For this purpose, the algorithm was
evaluated with a set of 168 scenes taken from the dataset
published in [1], where the number, type and placement of
objects were random. The dataset was composed of scenes,
similar to the one showed in Fig. 5, where the localisation
of the bin in each scene was also available. To carry out
the search for the optimal parameters, we opted for a grid-
search approach, where the possible values for each variable
were manually defined, and were as follows:

10 30 50
Vs =1[1,5,101H = [False, —, —, —
Vs Vi Vs
0 = [Fal 10 50 IOO]J [False. True] @
= [False, —, —, —]J = [False, True
Ve Vi Vs

The False option in the parameters H, Q and J
indicates that the heightmap stabilisation, square generation
or/and solution joining processing phases were disabled
respectively. In all the tests, both the clustering-based and
the statistical outlier filters were enabled to remove the
noise from the point cloud scenes. Thus, per each scene 96
combinations were tested, which gave a total of 96 - 168 =
16128 trials. In each test, the following metrics were used
to measure the quality of the generated solutions:

e Usable volume ratio: One of the objectives of the
algorithm was to maximise the total usable volume (i.e.
the sum of the volume of all the estimated EMSs that
represent usable free space). To do so, we measured the

@ Springer

1978 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

Fig. 12 Bounding box error
measurements

ab@sailabé: ~/pickplace_ws/src/object_bounding_box/object_bbox/src/o!
/pic... x [sailab@sailat ic... x | sailab@sailal i + 0

484775 Dim z: ©.083724!

36

267 Din z: 0.135600820184

ratio of estimated usable space to total space, which
told us what percentage of the actual free space was
estimated as usable space.

e Execution time: The second objective was to optimise
the algorithm’s execution time (i.e. given a point cloud
of the scene the time needed to estimate the EMSs),
which was vital to guarantee the application’s cycle time.

e Number of EMSs: The last aspect to optimise was the
number of estimated EMSs. Specifically, the aim was to
minimise the number of EMSs that represent the usable
space inside the box.

Finally, for each of the 96 parameter combinations,
the average values of the previously defined metrics were
estimated. Since we were interested in optimising the
parameters based on three different criteria, following the
general approach, we tried to find a balance between them.

Figure 13 represents the mean values of all the combinations
available in the grid-search process. In red are represented
the non-dominated combinations that belong to the Pareto
front, which are considered as equally good solutions.
Conversely, the combinations shown in blue are dominated
solutions that do not belong to the Pareto front. In our case,
we selected the parameter combination that is represented by
the green star among the non-dominated candidate solutions.
The selected combination of parameters and the estimated
mean scores per each criteria are shown in Table 3.

To have a clearer view on the behaviour of the algorithm
using the selected combination of parameters, we evaluated
it in scenes with different complexity. To that end, the
validation scenes were divided into three degrees of
complexity in which the heuristic was run. Figure 14 shows
the execution times, usable volume ratios and the generated
EMSs in scenes with low, medium and high complexities.

Table 2 Errors in the bounding box estimation during the picked part monitorisation

Item Measured (cm) Estimated (cm) Error (cm)
X y z X z X y z

1 10 12 10.5 13.8 6 0.5 1.8 0

2 14 12.5 12 16.3 14.6 13.5 23 2.1 1.5

3 20.5 20.5 16.5 22.2 21.8 18.1 1.7 1.3 1.6

4 39 18.5 6 40.3 18.7 7.6 1.3 0.2 1.6

5 14.6 23 14 14.1 22 12 0.5 1 2

6 32 20 24.5 31.5 19.7 23.2 0.5 0.3 1.3

7 16.5 21.5 10 17.3 22.1 9.4 0.8 0.6 0.6

8 10 6.5 5 11.6 7.8 5.7 1.6 1.3 0.7

9 17 18 13 17 17.2 13.9 0 0.8 0.9

10 35.5 11 13 37.5 12 13.5 2 1 0.5

x 1.12 1.04 1.07

@ Springer

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985 1979

- N
10 1.0
N

1072 Q/__e(’

Fig. 13 The scores of the 96 parameter combinations considering the
average usable volume ratio, average execution time and the average
number of generated EMSs. In red, the non-dominated parameter
combinations that belong to the Pareto front. The green star represents
the scores of the selected parameter combination

The scenes with less than 10 objects were categorised as
of “low complexity”, scenes with 10 to 20 objects as of
“medium complexity” and the scenes with more than 20
objects as of “high complexity”.

As far as execution times are concerned (see Fig. 14a),
although it can be seen that on average there was a slight
increase as the complexity of the scene increased, we can
see that between the best case of “low complexity” and the
worst case of “high complexity”, there was an increase of
approximately three times. The same occurred within the
“high complexity” scenes that although there was not much
variation between the number of objects, the execution time
did vary. This happened because the computational cost was
not directly related to the number of objects in the scene but
rather to the regularity of the scene. Despite the scene itself,

Table 3 Tuning parameters and estimated mean scores for the
destination bin monitoring heuristic

Selected parameters

Vs Smm
H 2

(0] 20

J True
Estimated mean scores

Usable volume ratio 83.67%
Execution time 0.074s
EMSs 26.9

it did not have any effect on the processing steps performed
at the occupancy grid level, the more irregular the scene
was, the higher was the number of EMSs generated (see
Fig. 14c). An increase in the number of EMSs generated
had an effect on the solution joining phase where adjacent

0.18 .
0.16 -
— A
< 2
© 0.14 v
£
= —A
S 0124 I
5 |
3 1
9]
& 0.10 0 !
0.08) i._ ! %
Low MEDIUM HIGH
Complexity
(a) Execution times.
“TEEEEE T
q I !
< 80 ~ ; Lo ——
2 - i :
g i ;
o 701 o
S y
2 1
2 60 ~ :
@
g :
2 50 —— |
i
40 -
Low MEDIUM HIGH
Complexity
(b) Usable volume ratios.
140
120 ~ :
100
5 o] |
= A |
w & |

LOW MEDIUM HIGH
Complexity

(c) Generated EMSs.

Fig. 14 Execution times, usable volume ratios and generated EMSs
with respect to scenes with low, medium and high complexity

@ Springer

1980 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

solutions were exhaustively searched for in order to join
them, causing an increase of the execution time. In general,
scenes with more objects tended to be more irregular, which
also affected the usable volume ratio. This was due to the
fact that in irregular scenes, there were many gaps that
were not usable and were eliminated in the stabilisation and
square generation phases (see Fig. 14b).

As we have seen, as the complexity of the scenes
increased, the number of EMSs generated also increased.
Therefore, we also measured the average volume of the
generated EMSs among the 168 scenes to see how it
changed as the complexity of the scene incremented. In
order to get an idea of their size, we compared them
with the smallest, the medium-sized and the largest objects
among the representative objects selected in Section 4.1,
and split them into 4 groups. In addition, we also measured
the percentage of the total volume each of the groups
represented. Figure 15 shows the percentage of EMSs
generated in each of the 4 groups and the percentage of the
total volume they represent for scenes with low, medium and
high complexity.

As it can be seen in Fig. 15, the average percentage
of EMSs with a volume smaller than the smallest object
ranged from 36 to 63% as the complexity of the scenes
increased. Although these were relatively high percentages
since these volumes were not usable, the total volume
they represented ranged from 0.8 to 6% in the worst case.
In the opposite case, the percentage of EMSs generated
with a higher volume than the largest object ranged from
36.5% in the simplest scenes to 4.3% in complex scenes.
This indicates that when the scenes were less complex,

% of EMSs with a lower volume than the smallest object

% of EMSs with a volume between the smallest and median object
% of EMSs with a volume between the median and biggest object
% of EMSs with a volume higher volume than the biggest object
% of covered volume

80 1

60

%

40 4

20 A

Low MEDIUM HIGH
Scene complexity

Fig. 15 Size and covered volume of the generated EMSs with respect
to the smallest, median and biggest objects in scenes with low, medium
and high complexity

@ Springer

the algorithm was able to generate large volumes, which
on average represented the 86.8% of the total volume.
However, as complexity increased, the number of large
EMSs decreased to 4% but still represented 34.3% of the
space. In summary, we can say that the size of the EMSs
generated was directly related to the complexity of the
scene. Although the algorithm had the tendency to generate
small solutions, they represented a small percentage of the
total volume. In general, these were small unusable spaces
that could not be joined with larger EMSs due to the current
configuration of the algorithm, but this effect could be
reduced by increasing the H and Q thresholds. Figure 16
shows an example where due to the rounded shape of the
bottle, a solution with a very small volume was generated.

5 Validation in the real robotic system

The validation of the complete packing system was carried
out in the TOFAS pilot. To that end, the developed modules
were deployed in the real system and those were integrated
with the automatic picking system previously mentioned.
We selected the multi-reference to multi-reference use-case
as it is the most complex and provides a clear view of the
strengths and weaknesses of the system. For the sake of
simplicity, we only used a single bin in both inbound and
outbound areas.

To validate the system, we performed 7 different tests
which were divided in three blocks (easy, medium and
complex). The main goal of these tests was to show the
flexibility and usefulness of the system to create mosaics
with several types of objects and configurations inside the
inbound bin, without the need of ad-hoc configurations.
Since there was no similar online bin-packing system
publicly available, we recorded the tests performed to
demonstrate the usefulness of the system. The tuning
parameters used during the validation of the complete
packing system are those that were selected during the
experimentation, detailed in Section 4. Note that we used
the same configuration in all the tests.

We performed the following tests:

e Easy:

1. Test 1: Mono-reference boxes were placed in
the inbound box, all of them with the same
orientation.

2. Test 2: Multi-reference boxes were manually
thrown inside the inbound box, ordered from big to
small considering their volume.

e Medium:

1. Test 3: Multi-reference boxes were mixed in the
inbound box, all of them in the most stable

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

Fig. 16 Example of the

generation of a small not usable
space due to the rounded shape
of the bottle

Y
Z
X

(b) Estimated EMSs.

(a) Image of the scene.

orientation. Once the algorithm was unable to pack
more objects in that orientation, the orientation of
the remaining objects was manually changed.

2. Test 4: Multi-reference cans and bottles were
placed in the inbound box, ordered from big to
small considering their volume.

e Complex:

1. Test 5: Multi-reference boxes were placed in the
inbound box, with random order and orientation.

2. Test 6: A reference of boxes and another reference
of bottles were mixed in the inbound box.

3. Test 7: Random objects were randomly thrown into
the inbound box.

Figure 17 shows the flow of the bin-packing application
during the tests, which were conducted in the following
way:

1. The number of objects for each test was selected based
on the requirements of the test and the availability of the
type of objects required.

2. All the items were put in the inbound box at the
beginning of the test except in test 2 and test 4, where
items were manually placed (ordered from big to small).

3. At each iteration, the grasping point detection module
decided which object to pick. If the grasp failed, the
next grasping point was selected and a new grasp was
executed. This procedure was repeated N = 3 times,
and if the system was not able to pick any object, the
test was concluded.

4. The objects were packed in the same order that had been
picked. We did not perform any object identification
since a single destination bin was used and all the
picked items were packed in the same bin.

5. The test ended when there were not objects left in the
input bin, when the robot was not able to pick more
objects or when the system was not able to pack the
picked item.

[Capture inbound scene +]

grasping point detection
(GPD)

No ml

1981

Y
Yes Y
Capture outbound scene Move robot to inbound
+ EMS estimation zone (zone 1)
[e]
| Execute grasp
No after N

trials

\Z

A

Move robot to part
monitoring zone (zone 2)
I

grasping point detection

\ 2
{Capture inbound scene +]
(G?D)

v

E:apture picked part sceneJ

+ Estimate bounding box

\7 N4
Dynamic IK-PAL packing Move robot to outbound
pose estimation zone (zone 3)

v
[Execute pack J

Packed? Success

Failure

Y

Fig. 17 Flowchart of the complete bin-packing application. Red boxes
indicate tasks related to the grasping of the objects. Green boxes
belong to tasks related to the packing of the picked part. In orange the

tasks that imply the motion of the robot

@ Springer

1982 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

The tests were recorded and the videos are publicly
available at the following link: https://bit.ly/3aWcOke.

In the recorded videos, it can be observed that the main
strength of the system was the flexibility, being able to
pack online a wide variety of items. The analysis of the
destination bin at each iteration let us consider fallen objects
or unexpected movements inside the bin that happened after
releasing the parts.

Concerning the first test, the aim was to see how the
system behaves with single reference boxes placed in their
most stable orientation. Although due to their low weight
some objects moved/rotated slightly during placement,
these movements were taken into account in each iteration,
thanks to the monitoring of the target box. However, as
a consequence of these rotations, the separation between
objects increased. The constructed mosaic was stable due to
the orientation of the products in the inbound bin.

In the second and third tests, the system was assessed
with multi-reference boxes. Although in both cases the
system was able to generate a mosaic in a flexible way
and taking into account the variations caused by the robotic
packing system, as expected the packing order had a great
effect on the final result. In both tests, it can be appreciated
that, when certain objects were packed, they sometimes
touched nearby objects. This happened due to the error
introduced in the monitorisation of the picked part, since
the dimension estimates were smaller than the real ones.
Although this caused the movement of nearby objects inside
the box, the system took this uncertainty into account when
packing the next object.

Although we have seen that the system generates stable
mosaics with multi-reference boxes placed in their most
stable pose, this is not the case when the orientation of the
boxes is random (test 5). In this case, the generated mosaic
was unstable, which caused some objects to fall when they
were packed on top of other unstable objects. Although
the system successfully considered such movements in
the target box, the quality of the final mosaic decreased
considerably.

In a similar way to test 2, in test 4, we also tried to
evaluate the behaviour of the system when the objects were
ordered from bigger to smaller, but this time using cans
and bottles. The system worked correctly, and although
some small friction occurred when placing an object, which
modified the final pose of the object to be left, the system
took it into account correctly in the following iteration. As
can be guessed, it is also key the cans and bottles to be
ordered from larger to smaller the constructed mosaic to be
stable.

In test 6, a box reference was mixed with a bottle
reference in the inbound box, and the picking system
determined the packing order. As can be seen, the generated
mosaic was irregular and sometimes unstable, particularly

@ Springer

when objects of different sizes were packed. This caused
some objects to fall after placing an object, making it even
harder to generate a stable mosaic. Although the separation
between objects and, in general, the use of space could be
improved, it is clear that the strong point of the system is the
ability to adapt to unforeseen situations and to plan online
taking into account these uncertainties.

Finally, in test 7, we sought to demonstrate the ability of
the system to pack a wide variety of objects without the need
to configure the system for each reference. It can be seen
that the system showed great flexibility and was capable
of dynamically packing objects taken in random order. Of
course, with such a variety of objects which are totally
unknown to the system until the moment they are picked, it
is difficult to build a stable and space-efficient mosaic.

5.1 Timeliness analysis

As mentioned above, the system has been developed on
the ROS framework, which does not guarantee real-time
execution of robotic applications. The aim of this test
is to evaluate the timely execution of our system and
to demonstrate that although we do not use a real-time
framework, the system maintains a cycle time without major
variations.

For this, the application was run 10 times following the
flow shown in Fig. 17. In each run, 10 objects that were
easily picked with the suction tool (boxes and cans) were
selected and randomly dropped into the input container. In
each picking/packing cycle, the execution times of each
main component of the application were recorded, which
are shown in Table 4. The measurement of the average total
execution time has been made taking into account that not
all tasks are executed sequentially. As can be seen in Fig. 17,
while the robot is moving from one area to another, other
tasks are carried out in parallel, thus reducing the cycle time.
The target cycle time was set at 25 s.

A total of 10 - 10 = 100 picking/packing cycles
were executed with an average execution time of 22.32s.
Considering the worst case, the cycle time was 24.70s,
which supposes an increase of 2.38s compared to the
average. However, we can see that even in the worst case
scenario, the system meets the cycle time. It should be noted
that the maximum execution times for each phase may not
have been obtained in the same run.

As can be seen, the most time-consuming phases were
especially those that required the movement of the robot
(i.e. phases 3, 4, 5, 8 and 9). Especially, the most time-
consuming phase was the execution of grasping, as the
robot makes several grasping attempts in case it is not able
to grasp an object the first time. The phases of grasping
point identification and EMS estimation were executed in
parallel while the robot is moving between zones, thus not

https://bit.ly/3aWc0ke

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

Table 4 Average, standard deviation and maximum duration of each phase of the application

Phase Task 1(s) o(s) Max.(s)
1 Capture inbound scene 0.8151 0.0545 0.9437
GPD 0.3018 0.0210 0.3555
2 Capture outbound scene 0.8248 0.0492 0.9736
EMS estimation 0.071 0.0302 0.1819
3 Move to zone 1 2.9987 0.0212 3.0680
4 Execute grasp 4.711 1.1455 7.3174
5 Move to zone 2 4.8324 0.0200 4.8899
6 Capture bbox scene 0.3002 0.0435 0.3814
Estimate bbox 0.1169 0.0365 0.1836
7 Packing pose estimation 0.2089 0.0915 0.4638
8 Move to zone 3 5.4005 0.0198 5.4445
9 Execute pack 3.9558 0.2968 4.7045
Total - 22.326 1.1689 24.7017

influencing the cycle time. This was possible because the
computation time required for these two phases, even in the
worst case, was considerably less than the duration of the
robot’s movement. However, the monitoring of the grasped
object did take place online, and in the worst case, it could
take up to 0.56s.

The cycle times obtained for our system show that there
is little variation in time. Furthermore, it can be seen that even
in the worst case our system meets the target cycle time.

6 Conclusion and further work

This work describes the dynamic bin-packing system
that was developed and validated in the context of
the PICKPLACE European project. To the best of our
knowledge, this is the first time a complete online bin-
packing system has been deployed to a real scenario
which allows creating mosaics with arbitrary objects and
considering the dynamics of a real robotic packing system.

The software architecture is based on ROS and follows
the layered architecture proposed in Robotframework. In
this work, three main modules of the packing system
are presented that let us pack a wide variety of objects
in an online manner and without the need of ad
hoc configurations. The developed system has been;
successfully deployed and validated in the real robotic
environment, where 7 tests were performed and recorded in
video.

In the recorded videos, it can be observed that the main
strength of the system was the flexibility, being able to
pack online a wide variety of items. The analysis of the
destination bin at each iteration let us consider fallen objects
or unexpected movements inside the bin that happened after

releasing the parts. In spite of the fact that the system had
shown to be useful and flexible, there were some limitations
that led to a sub-optimal space utilisation in the destination
bin:

Picking order and part orientation As expected, the picking
order had a large effect in the final mosaic. As can be seen
in tests 2 and 4, when the products were manually ordered
from big to small forcing the robot to pick them in order,
the quality of the final mosaic improved. In addition, the
orientation of the products in the inbound box had a big
impact in the stability of the mosaic. Nevertheless, those are
aspects that directly affect both the quality/stability of the
mosaic and the space utilisation, but are difficult to improve
in a multi-reference to multi-reference setup. The grasping
system has the capability to decide to some extent the
picking order, but this is limited to the visible and graspable
objects in the inbound bin.

Inaccurate bounding box estimation Although very accu-
rate industrial cameras were used for both grasping point
estimation and outbound box monitoring, this was not
the case for the bounding box estimation, where cheaper
RealSense D435 cameras were used. The depth quality of
those cameras was not good enough (up to 1 cm of error in
our bounding box estimation region) and usually led to big-
ger estimations. This caused the object to be released in an
inaccurate pose and this had a direct effect in the separation
between objects.

Product’s weight On the one hand, depending on the weight
of the product, the movement of the robot towards the
bounding box estimation area sometimes caused the product
to oscillate. This oscillation led to inaccuracies in the

@ Springer

1984 The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

estimation of the bounding box. On the other hand, if the
height of the product was not properly estimated and the
product was released further than expected, the weight of
the dropped product could cause the object to end in an
unexpected final position. Although the online outbound
container monitoring considered these movements for the
next iterations, the quality of the mosaic was negatively
affected.

Occlusions The online mosaic planner decided the optimal
release position for the picked part at each iteration, only
based on the outbound box monitoring and the bounding
box estimation. Due to several criteria that are used to
determine the release position, many times object towers
were created which increased the likelihood to create
occlusions.

External lighting The changing lighting conditions had a
large effect on the 3D depth cameras. Although the pilot was
covered with a housing and some noise filtering algorithms
were used, this caused an increase in the sensor noise. This
led to inaccurate depth estimations, particularly with shiny
objects, which could cause collisions in the destination box.

Regarding the timeliness of the system, the experimenta-
tion carried out shows that there is very little variation in the
cycle times. However, we are aware that in order to industri-
alise such an application and guarantee a fixed cycle time,
a real-time implementation in a framework such as ROS2
[26] would have to be used.

In this article, we only considered the suction end effector
to pick and place the items; nonetheless, it would be
interesting to also consider other end effectors such as
grippers. The gripper, compared to suction, needs at least
two contact points to manipulate the items and this would
introduce more complexity to the system. Furthermore,
those contact points are usually located on the perimeter of
the parts, which complicates the packing of objects close to
each other.

The online mosaic planner plays a key role in the mosaic
generation process since it is in charge of deciding the final
position for each picked object. This work was conditioned
by the UHS’s dynamic IK-PAL planner. Although in most
cases it offered coherent results, sometimes it was difficult
to understand the reason behind some decisions made by the
planner. Therefore, the use of an open source planner would
improve the traceability of the system. To the best of our
knowledge, there is no planner with the requirements of our
system, and this would require the implementation of a new
planner from scratch.

Author contribution Conceptualisation: AL, A.F. and I.M.; method-
ology: A.L, ELL. and A.A.; implementation: A.l. and A.F.; original
draft preparation: A.1L; review and editing: E.L. and A.A.; supervision:
LM.

@ Springer

Funding This article has been funded by the European Union’s
Horizon 2020 research and Innovation Programme under grant
agreement No. 780488, and the project “SR- Red Cervera de
Tecnologias robdticas en fabricacién inteligente”, contract number
CER-20211007, under “Centros Tecnoldgicos de Excelencia Cervera”
programme funded by “The Centre for the Development of Industrial
Technology (CDTI)”.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Iriondo A, Lazkano E, Ansuategi A (2021) Affordance-
based grasping point detection using graph convolutional net-
works for industrial bin-picking applications. Sensors 21(3):816.
https://doi.org/10.3390/521030816

2. Martello S, Vigo D (1998) Exact solution of the two-dimensional
finite bin packing problem. Manag Sci 44(3):388-399. https://doi.
org/10.1287/mnsc.44.3.388

3. Martello S, Pisinger D, Vigo D (2000) The three-dimensional
bin packing problem. Oper Res 48(2):256-267. https://doi.org/
10.1287/opre.48.2.256.12386

4. Den Boef E, Korst J, Martello S, Pisinger D, Vigo D (2005)
Erratum to the three-dimensional bin packing problem: robot-
packable and orthogonal variants of packing problems. Oper Res
53(4):735-736. https://doi.org/10.1287/opre.1050.0210

5. Coffman EG, Garey MR, Johnson DS (1984). In: Ausiello G,
Lucertini M, Serafini P (eds) Approximation algorithms for bin-
packing—an updated survey. Vienna: Springer Vienna; p 49-106.
Auvailable from. https://doi.org/10.1007/978-3-7091-4338-4_3

6. Jakobs S. (1996) On genetic algorithms for the packing of
polygons. Eur J Oper Res 88(1):165-181. https://doi.org/10.1016/
0377-2217(94)00166-9

7. Johnson DS, Demers A, Ullman JD, Garey MR, Gra-
ham RL (1974) Worst-case performance bounds for simple
one-dimensional packing algorithms. J Comput 3(4):299-325.
https://doi.org/10.1137/0203025

8. Ali S, Ramos AG, Carravilla MA, Oliveira JF (2022) On-
line three-dimensional packing problems: a review of off-line
and on-line solution approaches. Comput Ind Eng. p 108122.
https://doi.org/10.1016/j.cie.2022.108122

9. Crainic TG, Perboli G, Tadei R (2009) TS2PACK: a two-level tabu
search for the three-dimensional bin packing problem. Eur J Oper
Res 195(3):744-760. https://doi.org/10.1016/j.ejor.2007.06.063

10. Faroe O, Pisinger D, Zachariasen M (2003) Guided local search
for the three-dimensional bin-packing problem. INFORMS J

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030816
https://doi.org/10.1287/mnsc.44.3.388
https://doi.org/10.1287/mnsc.44.3.388
https://doi.org/10.1287/opre.48.2.256.12386
https://doi.org/10.1287/opre.48.2.256.12386
https://doi.org/10.1287/opre.1050.0210
https://doi.org/10.1007/978-3-7091-4338-4_3
https://doi.org/10.1016/0377-2217(94)00166-9
https://doi.org/10.1016/0377-2217(94)00166-9
https://doi.org/10.1137/0203025
https://doi.org/10.1016/j.cie.2022.108122
https://doi.org/10.1016/j.ejor.2007.06.063

The International Journal of Advanced Manufacturing Technology (2023) 125:1965-1985

1985

14.

15.

16.

17.

18.

19.

Comput 15(3):267-283. https://doi.org/10.1287/ijoc.15.3.267.160
80

. Gonc¢alves JF, Resende MG (2013) A biased random key genetic

algorithm for 2D and 3D bin packing problems. Int J Prod Econ
145(2):500-510. https://doi.org/10.1016/j.ijpe.2013.04.019

. Hu H, Zhang X, Yan X, Wang L, Xu Y (2017) Solving a new 3d

bin packing problem with deep reinforcement learning method.
ArXiv.1708.05930

. Zhao Y, Rausch C, Haas C (2021) Optimizing 3D irregular object

packing from 3D scans using metaheuristics. Adv Eng Inform
47:101234. https://doi.org/10.1016/j.2ei.2020.101234

Wang F, Hauser K (2019) Stable bin packing of non-convex 3D
objects with a robot manipulator. In: International conference on
robotics and automation (ICRA). IEEE; p 8698-8704 Available
from. https://doi.org/10.1109/ICRA.2019.8794049

Ha CT, Nguyen TT, Bui LT, Wang R (2017) An online packing
heuristic for the three-dimensional container loading problem in
dynamic environments and the physical internet. In: European
conference on the applications of evolutionary computation.
Springer; p 140-155. Available from. https://doi.org/10.1007/978-
3-319-55792-2_10

Wang F, Hauser K (2020) Robot packing with known items and
nondeterministic arrival order. Trans Autom Sci Eng 18(4):1901—
1915. https://doi.org/10.1109/TASE.2020.3024291

Hong YD, Kim YJ, Lee KB (2020) Smart pack: online
autonomous object-packing system using RGB-D sensor data.
Sensors 20(16):4448. https://doi.org/10.3390/s20164448

Duan L, Hu H, Qian Y, Gong Y, Zhang X, Wei J et al
(2019) A multi-task selected learning approach for solving 3D
flexible bin packing problem. In: Proceedings of the international
conference on autonomous systems and multiagent systems
(AAMAS) Available from. https://www.ifaamas.org/Proceedings/
aamas2019/pdfs/p1386.pdf

Zhao H, Zhu C, Xu X, Huang H, Xu K. (2022) Learning
practically feasible policies for online 3D bin packing. Sci China
Inf Sci 65(1):1-17. https://doi.org/10.1007/s11432-021-3348-6

20.

21.

22.

23.

24.

25.

26.

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J et al
(2009) ROS: an open-source robot operating system. In: ICRA
workshop on open source software. vol 3. Kobe, Japan. p 5.
Available from. http://robotics.stanford.edu/ang/papers/icraoss09-
ROS.pdf

Martin J, Ansuategi A, Maurtua I, Gutierrez A, Obregén D,
Casquero O et al (2021) A generic ROS-based control architecture
for pest inspection and treatment in greenhouses using a mobile
manipulator. IEEE Access 9:94981-94995. https://doi.org/10.
1109/ACCESS.2021.3093978

Parrefio F, Alvarez-Valdés R, Oliveira JF, Tamarit J. M. (2010) A
hybrid GRASP/VND algorithm for two-and three-dimensional bin
packing. Ann Oper Res 179(1):203-220. https://doi.org/10.1007/
$10479-008-0449-4

Gongalves JF, Resende MG (2012) A parallel multi-population
biased random-key genetic algorithm for a container loading prob-
lem. Comput Oper Res 39(2):179-190. https://doi.org/10.1016/j.
cor.2011.03.009

Susperregi L, Fernandez A, Molina J, Iriondo A, Sierra B,
Lazkano E, et al. (2020) RSAII: flexible robotized unitary
picking in collaborative environments for order preparation in
distribution centers. In: Bringing innovative robotic technologies
from research labs to industrial end-users. Springer; p 129-151.
Auvailable from. https://doi.org/10.1007/978-3-030-34507-5_6
Rusu RB, Cousins S (2011) 3d is here: point cloud library (pcl). In:
International conference on robotics and automation. IEEE; p 1-
4. Available from. https://pointclouds.org/assets/pdf/pcl_icra2011.
pdf

Macenski S, Foote T, Gerkey B, Lalancette C, Woodall W
(2022) Robot Operating System 2: design, architecture, and uses
in the wild. Sci Robot 7(66):eabm6074. https://doi.org/10.1126/
scirobotics.abm6074

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1287/ijoc.15.3.267.16080
https://doi.org/10.1287/ijoc.15.3.267.16080
https://doi.org/10.1016/j.ijpe.2013.04.019
http://arxiv.org/abs/1708.05930
https://doi.org/10.1016/j.aei.2020.101234
https://doi.org/10.1109/ICRA.2019.8794049
https://doi.org/10.1007/978-3-319-55792-2_10
https://doi.org/10.1007/978-3-319-55792-2_10
https://doi.org/10.1109/TASE.2020.3024291
https://doi.org/10.3390/s20164448
https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p1386.pdf
https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p1386.pdf
https://doi.org/10.1007/s11432-021-3348-6
http://robotics.stanford.edu/ ang/papers/icraoss09-ROS.pdf
http://robotics.stanford.edu/ang/papers/icraoss09-ROS.pdf
https://doi.org/10.1109/ACCESS.2021.3093978
https://doi.org/10.1109/ACCESS.2021.3093978
https://doi.org/10.1007/s10479-008-0449-4
https://doi.org/10.1007/s10479-008-0449-4
https://doi.org/10.1016/j.cor.2011.03.009
https://doi.org/10.1016/j.cor.2011.03.009
https://doi.org/10.1007/978-3-030-34507-5_6
https://pointclouds.org/assets/pdf/pcl_icra2011.pdf
https://pointclouds.org/assets/pdf/pcl_icra2011.pdf
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074

	Dynamic mosaic planning for a robotic bin-packing system based on picked part and target box monitoring
	Abstract
	Introduction
	Literature review
	System overview
	UHS and TOFAS pilots
	Software architecture
	Picked part monitoring
	Heuristic method for destination bin monitoring
	Dynamic IK-PAL mosaic planning

	Experimentation
	Picked part monitoring
	Destination bin monitoring

	Validation in the real robotic system
	Timeliness analysis

	Conclusion and further work
	Picking order and part orientation
	Inaccurate bounding box estimation
	Product's weight
	Occlusions
	External lighting

	Declarations
	References

