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Abstract: Multi-material structure fabrication has the potential to address some critical challenges
in today’s industrial paradigm. While conventional manufacturing processes cannot deliver multi-
material structures in a single operation, additive manufacturing (AM) has come up as an appealing
alternative. In particular, laser-directed energy deposition (L-DED) is preferred for multi-material
AM. The most relevant applications envisioned for multi-material L-DED are alloy design, metal
matrix composites (MMC), and functionally graded materials (FGM). Nonetheless, there are still
some issues that need to be faced before multi-material L-DED is ready for industrial use. Driven by
this need, in this literature review, the suitability of L-DED for multi-material component fabrication
is first demonstrated. Then, the main defects associated with multi-material L-DED and current
opportunities and challenges in the field are reported. In view of the industrial relevance of high-
performance coatings as tools to mitigate wear, emphasis is placed on the development of MMCs and
FGMs. The identified challenges include—but are not limited to—tightly controlling the composition
of the multi-material powder mixture injected into the melt pool; understanding the influence of
the thermal history of the process on microstructural aspects, including the interactions between
constituents; and studying the in-service behaviours of MMCs and FGMs with regard to their
durability and failure modes.

Keywords: multi-material; additive manufacturing; laser directed energy deposition; metal matrix
composites; functionally graded materials

1. Introduction to Metal Additive Manufacturing

According to the International Standard ISO/ASTM 52900:2021, additive manufactur-
ing (AM) is the “process of joining materials to make parts from 3D model data, usually
layer upon layer, as opposed to subtractive manufacturing and formative manufacturing
methodologies” [1]. Multiple materials can be processed through AM, namely polymers
and resins [2], ceramics [3], and metals [4].

1.1. Industrial Context of Metal AM

In terms of the industrial relevance and market data, metal AM is experiencing
significant growth, having reached turnover of 1.51 billion EUR in 2018 [5]. Moreover,
according to SmarTech and General Electric, it is expected to reach 5.4 billion USD in
2027 [6]. The rapid development of the metal AM market has been mainly driven by the
medical, dental, and aerospace industries, where the popularity of additive technologies
is major, and additively built-up components are already being employed for end-use
purposes. Even if AM has been widely adopted for prototyping applications, functional
component manufacturing is gradually establishing itself in the industry too. Moreover,
AM has been demonstrated to provide great benefits in repair applications [7], on-demand
spare part manufacturing, or low-run and custom production.
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In short, AM has emerged as a state-of-the-art technology and it is quickly gaining
momentum in the industry, owing to the significant research efforts and advances made
during the last decades. Nowadays, it is considered to be a reliable and efficient technol-
ogy for manufacturing fully dense structural components. Additionally, it has become
an industrially-viable technology on account of the lower cost of industrial lasers, the
availability of high-performance computing software, and the high-quality feedstock tech-
nology. Most AM technologies, and particularly metal AM processes, have reached a
critical acceptance level in the industry. Moreover, some of them have reached a fully
certified production stage in terms of the technology readiness levels (TRL) [8]. Nowadays,
AM technologies are completely immersed in many industries such as the manufacture of
medical implants or high-performance components in the aerospace sector [9].

However, there is still a great need for AM, more specifically metal AM, to be included
in additional industrial fields for high-end parts manufacturing, as it is many times stuck
in the research phase. For instance, the capabilities of AM in the automotive and machine
tool sectors have been widely demonstrated in many research papers [10–13]. Nevertheless,
companies have not included such advances yet. Due to the disruptive character of metal
AM processes, many manufacturers still identify their integration as a potential risk. Indeed,
an adaptation of the current supply chain is required to fully benefit from AM’s potential
for high-end part production. Lastly, the standardisation of processes is required rather
than the certification of the individual components. Although AM is considered to be part
of the Fourth Industrial Revolution [14], making it an essential part of industry 4.0 [15],
the business strategies and certification policies have not kept pace with the growth of
the technology [14]. Consequently, there is still a lot of work in progress in the area of
standardisation, which will contribute to AM being integrated into the whole industry.

The main AM process categories currently employed for metal AM are powder bed
fusion (PBF) and directed energy deposition (DED) processes [16]. Many others have the
potential for metal manufacturing, e.g., sheet lamination (SL) or binder jetting (BJT). For
instance, BJT is slowly gaining relevance in metal AM, and several potential applications
are envisioned. Nonetheless, this technology is still far from obtaining fully dense parts.
Therefore, it cannot be considered a valid technology for high-responsibility applications
yet. In short, these technologies have lower industrial relevance. Consequently, they are not
discussed in this review and only PBF and DED process categories are further described.

1.2. Metal AM Materials and Properties

The main characteristics and applications of typical metal AM materials are shown
in Table 1. The available material range is continuously expanding due to the exhaustive
research in metal AM, whilst multi-material AM is also being explored.

The main limitation of metal AM is the fact that fusion is involved in the building
process; hence, non-weldable and non-castable materials are difficult to process using fusion
AM methods [17]. However, much research is being carried out to face this challenge, and
non-weldable materials have been successfully deposited [18–20]. AM strategies based on
the precise control of the energy input and the tuning of the thermal history of the parts
during build-up seem to be the key aspects for tackling this issue [21].

Additionally, metallurgical differences have been found between additively and con-
ventionally manufactured components. The high residual stresses and lack of integrity
are critical for high-performance applications, particularly for those that require good
resistance to high-temperature fatigue [9]. This is crucial in aerospace applications, where
injectors and other complex parts are now reaching the certification stage, but other critical
components, e.g., turbine blades, are still in the early development phase [8].
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Table 1. Most industrially extended materials for AM [22–24].

Material Main Characteristics Application

Tool steels

− High toughness
− High ductility
− Good resistance to deformation

Tooling for cutting,
forming, or shaping

processes

Stainless steels

− Corrosion resistance
− High ductility
− High strength

Structural and
corrosion-resistant

applications

Titanium alloys

− High specific strength
− Exceptional corrosion resistance
− High fracture toughness
− Excellent fatigue resistance
− Good mechanical properties at high T
− Low coefficient of thermal expansion
− Good biocompatibility

Aerospace, automotive,
naval and biomedical

applications

Aluminium alloys

− Low density
− High specific strength
− High ductility and toughness
− High thermal and electrical

conductivities

Aerospace, automotive,
construction and
consumer goods

Nickel-based alloys

− Excellent tensile and creep strengths
− Good mechanical properties at high T◦

− High-temperature oxidation resistance
− High hardness and toughness
− Low coefficient of thermal expansion
− Good weldability and formability

Aerospace and jet
engine, steam turbine,
petrochemical, energy,

and cryogenic
applications

Cobalt-based alloys

− High hardness
− Exceptional wear resistance
− Good corrosion resistance
− Good high-temperature performance

Aerospace and jet
engines, petrochemical,

oil and gas, medical
implants, wear-

resistant applications

Copper alloys

− High electrical conductivity
− High thermal conductivity
− Good mechanical properties

Fusion reactors, rocket
engine, microelectronics

Historically, single materials and well-defined commercial metal alloys have domi-
nated the engineering market. However, the multi-material ability of AM processes has
unlocked a new research direction concerning the build-up of multi-material structures [25].
In terms of metal and metal–ceramic multi-material component production, the presence
of AM in the industrial market is still minor. In this regard, several challenges remain
unsolved, which inhibit its widespread industrialisation [26]. Therefore, the occurrences in
the industrial field of 3D-printed metal–ceramic multi-materials remain anecdotal. More-
over, most appearances of metal–ceramic additively manufactured parts have been in the
context of mining and oil and gas industries.
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1.3. Main Metal Additive Manufacturing Processes

In this section, the main metal AM categories, namely PBF and DED, are discussed.
The fundamentals of the most popular metal AM processes are briefly explained, and a
critical comparison is provided, with an emphasis on multi-material AM.

1.3.1. Powder Bed Fusion

The powder bed fusion (PBF) term refers to the “additive manufacturing process in which
thermal energy selectively fuses regions of a powder bed” [1]. This category comprises several
technologies, which include but are not limited to laser PBF (L-PBF) and electron beam PBF
(EB-PBF). However, they are all based on the same working principle.

PBF processes are currently widely accepted in the industry and well-established in
the aerospace and medical fields. In particular, L-PBF (popularly referred to as selective
laser melting or SLM) is probably the most extended metal AM process. In Figure 1, a
typical L-PBF system is schematically illustrated. On the left-hand side, the main system
components are shown. On the right–hand side, the typical feedstock required for this
process and an example of its application are also included.

The L-PBF process can be described as follows:

1. The powder delivery piston pushes the powder reservoir up and the recoater spreads
a layer of fresh powder onto either the building platform (first layer) or the previously
deposited layers (next layers) to form the powder bed. This powder bed should be
properly distributed to ensure the densification of the manufactured parts;

2. The laser delivery system irradiates a laser beam, which is guided by the scanning
system, along the path predefined by the sliced 3D model data. As shown in Figure 1,
the feedstock powder is quite fine and the typical diameter range for the powder is
10–60 µm [27,28]. During this process, a melt pool is generated, whose depth needs to
exceed the layer thickness to guarantee proper bonding of the layers (Figure 2);

3. Once the layer is finished and the pattern is solidified, the build platform goes down
and steps 1 and 2 are repeated. By overlapping subsequent layers (typically 30- to
90-µm-thick) and iteratively repeating this cycle, the AM part is formed, achieving
results similar to the aerospike nozzle shown in Figure 1 [29]. Note that the whole
process is carried out in an enclosed build chamber with an inert gas atmosphere to
avoid the oxidation and cross-contamination of the parts.
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1.3.2. Directed Energy Deposition

Directed energy deposition (DED) processes are those “additive manufacturing pro-
cesses in which focused thermal energy is used to fuse materials by melting as they are
being deposited” [1]. In these processes, the feedstock is typically in the form of a powder
or wire, and the thermal source is a laser or an electric arc, although an electron beam can be
employed too. Three processes are traditionally included in this category: laser-directed en-
ergy deposition (L-DED), in which powder or wire is used as feedstock and a laser as a heat
source; electron beam free-form fabrication (EBF3), in which wire is used as the feedstock
and an electron beam as the heat source; and wire and arc additive manufacturing (WAAM),
in which a plasma arc is used as the energy source and wire as the feedstock. Owing to the
higher popularity of L-DED and WAAM, they are further described in this section.

Laser-directed energy deposition (L-DED) is the most extended DED process in the
industry. The typical set-up of an L-DED system is illustrated in Figure 3.

Most of the time, the feedstock material is provided in powder form, and it is fully
melted and well-densified in order to produce high-quality components [30]. In terms
of the multi-material ability, one of the main advantages of powder L-DED is the wider
material availability as compared to wire feedstock. Another advantage of powder L-DED
is the possibility for in situ alloy design, as various elemental powders can be fed to produce
the desired alloy. Due to the ease of dynamically modifying the resulting composition
of the powder mixture during the build-up, powder L-DED is the preferred solution for
multi-material AM research. Indeed, wire L-DED does not share such flexibilities [31].
Consequently, in this review, the focus is placed on powder L-DED. The powder L-DED is
described as follows:

1. A laser beam is focused onto a substrate where a melt pool is created;
2. Simultaneously, powder particles are injected into the melt pool and the material

is progressively added to the substrate (Figure 4). The powder diameter range is
typically 40–150 µm [32,33], as shown in Figure 3 [34];

3. The powder particles are supplied by the powder feeder and dragged by an inert
gas to the nozzle. Additionally, a shielding gas is supplied by the nozzle, typically
argon, to create a local protective atmosphere, where the fusion and solidification
process takes place. In this manner, oxidation of the added material is avoided,
or at least minimised;

4. There is a relative movement between the laser head or powder nozzle and the
substrate, thereby depositing a thin layer corresponding to the cross-section of the
desired geometry;

5. After a layer is completed, the deposition of the following layer starts, hence building
a three-dimensional component layer-by-layer. In this manner, not only can whole
components be built, but also additional features can be added to a preform, as is the
case of the part shown in Figure 3 [35].



Materials 2023, 16, 1746 6 of 33
Materials 2023, 16, x FOR PEER REVIEW 6 of 34 
 

 

 
Figure 3. L-DED system, feedstock, and example application [34,35]. 

 
Figure 4. L-DED working principle. 

Considering the growing interest of the industry and researchers in multi-material 
structures, the greatest advantage of the L-DED process seems to be its peerless multi-
material ability and its capability for in situ modification of the feedstock composition. 
Additional nozzles or hoppers can be introduced into the feeding system to feed several 
alloys simultaneously [36]. In this manner, a gradual switch from one material to another 
is possible and the manufacturing of functionally graded materials (FGM) is unlocked. In 
addition, considering that the feedstock is in the form of powder, the in situ alloy design 
can also be achieved by directly mixing the elemental constituents [37]. Lastly, being a 
point-by-point manufacturing process, the material microstructure and composition can 
be tailored and specific location-dependent physical properties can be attained. For 
instance, graded deposition has been employed to combine dissimilar materials by 
matching the coefficients of thermal expansion (CTEs) between them. Additionally, the 
build-up of components aiming for novel mechanical properties through new alloy 
designs or composite materials has been demonstrated [38]. 

Wire arc additive manufacturing (WAAM) is nowadays gaining popularity in both 
industry and research owing to its capability to deliver defect-free and structurally sound 
large components, which cannot be manufactured through other metal AM processes. 

Figure 3. L-DED system, feedstock, and example application [34,35].

Materials 2023, 16, x FOR PEER REVIEW 6 of 34 
 

 

 
Figure 3. L-DED system, feedstock, and example application [34,35]. 

 
Figure 4. L-DED working principle. 

Considering the growing interest of the industry and researchers in multi-material 
structures, the greatest advantage of the L-DED process seems to be its peerless multi-
material ability and its capability for in situ modification of the feedstock composition. 
Additional nozzles or hoppers can be introduced into the feeding system to feed several 
alloys simultaneously [36]. In this manner, a gradual switch from one material to another 
is possible and the manufacturing of functionally graded materials (FGM) is unlocked. In 
addition, considering that the feedstock is in the form of powder, the in situ alloy design 
can also be achieved by directly mixing the elemental constituents [37]. Lastly, being a 
point-by-point manufacturing process, the material microstructure and composition can 
be tailored and specific location-dependent physical properties can be attained. For 
instance, graded deposition has been employed to combine dissimilar materials by 
matching the coefficients of thermal expansion (CTEs) between them. Additionally, the 
build-up of components aiming for novel mechanical properties through new alloy 
designs or composite materials has been demonstrated [38]. 

Wire arc additive manufacturing (WAAM) is nowadays gaining popularity in both 
industry and research owing to its capability to deliver defect-free and structurally sound 
large components, which cannot be manufactured through other metal AM processes. 

Figure 4. L-DED working principle.

Considering the growing interest of the industry and researchers in multi-material
structures, the greatest advantage of the L-DED process seems to be its peerless multi-
material ability and its capability for in situ modification of the feedstock composition.
Additional nozzles or hoppers can be introduced into the feeding system to feed several
alloys simultaneously [36]. In this manner, a gradual switch from one material to another
is possible and the manufacturing of functionally graded materials (FGM) is unlocked. In
addition, considering that the feedstock is in the form of powder, the in situ alloy design can
also be achieved by directly mixing the elemental constituents [37]. Lastly, being a point-by-
point manufacturing process, the material microstructure and composition can be tailored
and specific location-dependent physical properties can be attained. For instance, graded
deposition has been employed to combine dissimilar materials by matching the coefficients
of thermal expansion (CTEs) between them. Additionally, the build-up of components
aiming for novel mechanical properties through new alloy designs or composite materials
has been demonstrated [38].

Wire arc additive manufacturing (WAAM) is nowadays gaining popularity in both
industry and research owing to its capability to deliver defect-free and structurally sound
large components, which cannot be manufactured through other metal AM processes.
WAAM has been investigated since the 1990s [39]. However, at that time, it did not receive
as much attention as compared to the rest of the metal AM processes [40].
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WAAM is, as the name implies, a wire-based metal AM process, in which an electric
arc acts as the heat source [39]. Therefore, traditional arc welding processes are the basis of
WAAM, and gas metal arc welding (GMAW), plasma arc welding (PAW), or gas tungsten
arc welding (GTAW) are commonly employed. Nevertheless, GMAW is the preferred choice
for WAAM. In Figure 5, a scheme of a WAAM system is shown. However, alternative
configurations are also possible, as WAAM is an open architecture process. Examples of a
wire used for WAAM [41] and a titanium wing spar manufactured using WAAM for BAE
systems [42] are also shown in Figure 5.
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The GMAW-based WAAM process is described as follows [43]:

1. An electric arc is struck between the substrate and the consumable wire, leading to
the formation of a melt pool, as shown in Figure 6. This fusion process occurs under
the protection of a shielding gas, typically argon or helium [44];

2. Then, as the wire is pushed into the melt pool, the material is fused and solidified. The
consumable wire is continuously supplied. Simultaneously, the robotic arm moves
the welding head and a clad is formed;

3. By properly overlapping clads and by overlaying subsequent layers, the AM compo-
nent is generated.
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1.3.3. Critical Comparison of the Main Metal AM Processes

To conclude, qualitative and quantitative comparisons of the above processes are
shown in Figure 7 and Table 2, respectively.
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Table 2. L-PBF, L-DED, and WAAM comparison [45–57].

Feature L-PBF L-DED WAAM

Part dimensions [mm] max. 600 × 600 × 600 Virtually unlimited Virtually unlimited
Surface finish, Ra [µm] 9–16 5–30 200
Dimensional accuracy [mm] 0.05–0.1 0.5–1.0 1.0–2.0
Build rate [g·min−1] 3–4 6–50 300–400
Densification >99% >99% >99%

From a qualitative perspective, nine different aspects are considered, namely the
economical aspect (“cost competitiveness”), the material processability or material range
that they can be applied to (“material selection”), the efficiency in terms of the material
consumption (“material efficiency”), the ability (or lack thereof) to mitigate residual stresses
(“residual stress mitigation”), the quality in terms of the mechanical properties of the AM
components (“mechanical properties”), the geometric flexibility of the process (“geometrical
complexity”), the amount of post-processing needed after the AM process (“near-net-
shape”), the capability for material addition in different geometrical surfaces (“free-form
ability”), and the straight-forward ability to produce multi-material structures (“multi-
material ability”).

In Table 2, a summarised comparison between the three main metal AM processes
is presented. This comparison relies on key indicators of the quality and applicability of
metal AM processes. Namely, the maximum part dimension, the typical surface finish
and dimensional accuracy attainable, the productivity in terms of the build rate, and the
densification of each process are assessed.

Based on Figure 7 and Table 2, it is concluded that while good mechanical properties
and fully dense components can be achieved using all processes, each process has its specific
field of application. Firstly, the employment of L-PBF has an inherent part dimension
restriction. Indeed, it is limited by the volume of the enclosed chamber where the building
process takes place, while L-DED and WAAM have no such limitation. Additionally,
WAAM permits much higher deposition rates, meaning better efficiency can be achieved in
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terms of productivity. Nonetheless, as far as the part complexity is concerned, WAAM is
only suited for medium-low complexity geometries, while both L-PBF and L-DED have
the capability for manufacturing more complex components. However, the L-PBF process
is better suited for high-precision applications, where a good surface finish, dimensional
tolerances, and reduced post-processing are required.

Another relevant aspect that differentiates metal AM processes is whether they have
a straight-forward multi-material ability or not. While potentially all L-PBF, L-DED, and
WAAM processes can be used for multi-material structures, only powder L-DED offers the
required flexibility for the in situ modification of the feedstock composition as an additional
process variable [25].

2. Additive Manufacturing of Multi-Material Structures

Conventional manufacturing processes cannot yield multi-material components in a
single operation. Indeed, single-material parts must be separately produced and joined
in a latter fabrication step to create a composite assembly. Conversely, multi-material
AM unlocks the processing of composite structures with either a graded or sharp tran-
sition between materials, in a continuous step and in a single machine [26]. Hence, the
manufacturing chain can be significantly shortened and simplified.

Furthermore, multi-material structures allow for locally tailored material properties.
In this manner, different functionalities can be integrated into a single component and the
performance can be subsequently enhanced [58]. Moreover, multi-material structures build
on the strengths of each of their constituents [59]; thus, they outperform monolithic or
single-material solutions. In this manner, a new material-centric fabrication paradigm was
made available, characterised by point-wise control of the composition and the material
structure [60].

Since the inception of AM, there has been a strong focus on free-form ability and
design freedom in terms of geometry [61]. In contrast, material-wise design freedom has
gained momentum lately. For instance, the optimisation of the material distribution and
the composition to maximise its utilisation has been investigated [62,63]. The emerging
research in the multi-material AM field includes the processing of functionally graded
structures, bimetallic structures, or metal–ceramic composite materials [64–66].

Within the seven AM process categories covered by the ISO/ASTM standard [1], five
of them have been identified as having potential viability for multi-material manufactur-
ing [26]. According to Bandyopadhyay and Heer, binder jetting, material jetting, material
extrusion, directed energy deposition, and sheet lamination processes have an inherent abil-
ity for multi-material AM. However, recent studies have also investigated multi-material
powder bed fusion processes, meaning that the multi-material ability of AM processes is
still being explored. In Figure 8, the mechanisms of multi-material manufacturing using
different AM processes are depicted. In terms of the multi-material ability, a decisive
differentiation must be made. Indeed, all of the AM processes mentioned can process
mixed materials. However, just a few AM processes can control the material composition
locally, meaning that the feedstock composition can be thought of as an additional process
variable, which can be adjusted during the build-up. This distinction is made in Table 3.

Table 3. Differentiated multi-material ability of AM processes.

Can Process Mixed Feedstock Can Control the Composition of the Feedstock Locally

Powder Bed Fusion, Binder Jetting Directed Energy Deposition, Sheet Lamination 1, Material
Extrusion, Material Jetting

1 The ability of sheet lamination processes to control the feedstock composition locally is restricted to a layer-wise
discrete variation.
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Although many AM processes are potentially valid for multi-material fabrication,
powder-blown L-DED is considered to have a higher potential for heterogeneous multi-
material structures, as it is rather easy to modify the composition of the feedstock during
the deposition process [36]. Indeed, a unique feature of the L-DED process is its ability for
the in situ production of multi-material structures [68,69]. Such is the superiority of L-DED
in this regard that the ASTM reported its multi-material ability in their recently developed
standards [70]. Among the various advantages of this technology, the ability to process
multi-material structures, composites, and functionally graded materials was also listed.
Consequently, L-DED is undoubtedly the prevailing technology for multi-material AM.

The tight control of the chemical composition of the melt pool is the key feature,
which enables multi-material fabrication via L-DED [62]. In fact, the L-DED system can be
designed towards multi-material manufacturing. For instance, different powder materials
can be premixed prior to the L-DED process [61]. If higher flexibility is needed, multiple
hoppers can be employed to facilitate the in situ modification of the composition of the
feedstock [22]. By individually adjusting the powder mass flow rate of each constituent,
the composition of the melt pool can by precisely tuned [71]. This latter solution is much
more versatile, as the composition of the feedstock can be modified at any time during
fabrication [72]. Hence, the composition of the deposited material can be easily adjusted to
target the material properties required in each region, wherever a specific functionality is
desirable. Commercial solutions with up to 16 synchronised hoppers have already been
proposed, with the aim of finely controlling the composition of the fed material [59].

On the other hand, on account of the rapid solidification and high cooling rates of
L-DED, the non-equilibrium synthesis of novel materials can be accomplished. Hence,
the scope of the possible material systems and structures that are fabricable is further
broadened [73]. Consequently, L-DED is being uplifted as a result of its increased material-
wise design freedom [74].
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In short, the multi-material ability of L-DED unlocks several opportunities con-
cerning the development of advanced materials [8,69,75]. Nowadays, the most rele-
vant multi-material L-DED applications include (i) alloy design, (ii) the processing of
high-performance composites, and (iii) functionally graded material manufacturing [74].
Driven by the motivation of this literature review and the advantageous position of L-DED
for processing complex multi-material structures, the next sections focus on this process.

Main Applications of Multi-Material Laser-Directed Energy Deposition

Although most existing alloys were developed decades ago, they are still the pre-
ferred solution in the industry. The prevalence of legacy alloys is due to their reliability
and suitability for specific applications [59], but also because developing new alloys is
extremely resource-consuming. In this regard, the additive-based alloy design approach
is substantially cheaper and faster, which boosts the development of new alloys with
enhanced performance.

The prospect of outperforming legacy alloys and pure metals is the driver for inno-
vation in alloy engineering. Such is the case for high-entropy alloys (HEAs), which were
recently developed [76]. The concept of HEAs involves a design based on multiple elements
in equimolar or near-equimolar ratios [77]. As a result, the possible combinations for the
alloy design are exponentially increased [22]. It has been reported that HEAs are capable
of providing a distinct combination of properties including high strength, hardness, wear,
and corrosion or thermal resistance [78]. Most popular HEA materials mainly involve Al,
Co, Cr, Fe, Mn, and Ni elements [79], although HEAs combining refractory metals, e.g.,
Nb, W, or Ta, and other transition metals, e.g., Ti, have also been explored [80–82]. Just re-
cently, scientists of the Lawrence Berkeley National Laboratory and the Oak Ridge National
Laboratory discovered the toughest alloy known so far, which is, interestingly enough, a
CrCoNi HEA [83]. Needless to say, alloy design is now a new R&D topic of AM. Whilst still
in its infancy, it is a solution to address the ever-changing demands in materials science.

The production of metal–ceramic composite materials by L-DED has been thoroughly
investigated too. This matter involves an inherent difficulty with regard to metal–ceramic
interactions. Indeed, a good bond between the constituents must be sought, whilst macro-
scopically distinct phases should remain. Therefore, the tight control of the energy input
needs to be guaranteed to produce a hybrid multi-material system [59]. In this regard,
L-DED is a promising solution, as the thermal cycle during the manufacturing process can
be precisely controlled while tuning the composition of the feedstock at the same time.
The deposition of ceramic particle-reinforced metal matrix composite (MMC) coatings is
a prominent application in this field [22]. Various objectives motivate the development
of composite materials, including lightening the weight of components without compro-
mising their mechanical capabilities [84], extending their lifespan [85], or enabling the safe
operation of components exposed to aggressive environmental conditions, such as high
temperatures or corrosive atmospheres [86].

Much attention has been also devoted to the development of functionally graded materials
(FGMs). The concept of FGM was first devised in 1987 for aerospace applications [87].
FGMs are characterised by having a gradual variation of the microstructure, which re-
sults in gradient properties. These kinds of advanced materials can be used to overcome
challenging material combinations, such as transitions between incompatible or immisci-
ble alloys. To this end, compositional gradients can be designed to avoid the formation
of intermetallic phases or brittle microstructures [88]. Furthermore, site-specific tailored
material properties can be attained by using FGMs [65,89]. Lastly, FGMs also facilitate
the fabrication of multi-material structures. Indeed, the sharp material transitions can
be substituted by gradual interfaces. Hence, the stress concentrations present in sharp
transitions can be avoided [90], while still achieving a good bonding strength in the diffuse
interface [72]. For instance, eliminating the sharp transitions in thermal barrier coatings
(TBCs) results in the enhanced mechanical performance of high-pressure turbine blades
(Figure 9). The production of FGMs through conventional methods is hardly achievable.
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Fortunately, the multi-material ability of AM processes, and more specifically the fine
control and dynamic tuning of the composition of the feedstock in the L-DED process,
have enabled the deposition of graded materials. Consequently, the maturation of L-DED
processes has brought the focus back to FGMs.
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Figure 9. Functionally graded thermal barrier coatings (TBC): (a) a high-pressure turbine blade (TBC),
courtesy of the German Aerospace Centre (DLR), Institute of Materials Research; (b) a conventional
TBC; (c) a functionally graded TBC. Adapted from [91,92].

Although promising, the field of multi-material L-DED is still in its infancy and
many issues need to be addressed before this solution reaches a mature stage. While some
challenges are related to the L-DED process itself, additional issues due to the multi-material
character of these components need to be faced. The most relevant defects associated with
multi-material L-DED are reported in Table 4. Moreover, the origin of such defects and
some mitigation strategies are also summarised. In Figure 10, two examples of cracking
due to the formation of hard intermetallic phases in multi-material structures are shown.

Table 4. Main defects associated with multi-material L-DED [25,26,36].

Defect Origin of Defect Proposed Mitigation Strategy

Microstructure and
property heterogeneity

The inhomogeneous distribution of the multi-material mixture
constituents due to differences in material densities (heavier
particles may sink) and the liquid surface tension.

Careful material selection (composition and
powder size) and control of the solidification
rate (faster solidification) will inhibit heavy
particles from sinking.

Selective
vaporisation of elements

Differences in thermal properties (i.e., thermal conductivity,
melting temperature) and laser absorptivity levels of constituents
make the distribution of the heat input challenging, and there is a
risk of causing preferential vaporisation of low-melting elements.

Careful control of the thermal cycle of the
process and adjustment of the mixture
composition to account for this vaporisation
preventively.

Deviation from
target multi-material
composition

Differences in the inertial properties of the multi-material
feedstock constituents (i.e., density and powder granulometry)
may cause in-flight segregation of the materials during the
injection. If materials are concentrated differently by the nozzle,
the composition of the powder mixture entering the melt pool
might differ from that being fed by the powder feeder.

New nozzle concepts, where the design agrees
with the powder flow behaviour of each
material. Conversely, if the concentration of
the powder can be anticipated, the
concentration of the powder provided by the
powder feeder can be modified to target the
nominal composition in the melt pool.

Cracking–alloy
incompatibility

Certain elemental compositions and the thermal cycle of the
process may promote the formation of intermetallics and
undesired hard phases, which at the same time may cause
cracking of the built part.

Conflicting compositions should be avoided
when there is a risk of formation of
intermetallics. This can be prevented based on
phase diagrams derived from CALPHAD
(Calculation of Phase Diagrams) simulations.

Cracking–residual stresses

Differing thermomechanical properties (i.e., CTE, elastic
modulus) or differences in the crystal structures of the
constituents may cause additional residual stresses during
processing or in-service operation. When high residual stresses
are generated, the material will suffer a catastrophic failure as a
result of cracking.

Preheating has been reported to reduce
residual stresses. Conversely, FGM strategies
can be implemented to mitigate the formation
of residual stresses.
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Figure 10. (A) Macroscopic cracking in FGM from Ti6Al4V to Invar, promoted by the formation of
FeTi and Fe2Ti intermetallics, identified by EBSD (reproduced from [93]). (B) Macroscopic cracks in
FGM from Ti6Al4V to 304L steel as a result of the formation of Fe-V-Cr intermetallics, as evidenced in
SEM observations (reproduced from [94]).

In this review, the focus is placed on metal matrix composite coatings and func-
tionally graded material deposition, given their industrial relevance and suitability for
wear-resistant coating applications. Nonetheless, the reader is referred to previous stud-
ies for comprehensive literature reviews on alloy design using L-DED [59,95] and the
production of high-entropy alloys (HEAs) [96,97].

3. Laser-Directed Energy Deposition of Metal Matrix Composites

Composite materials are defined as those hybrid materials consisting of two or more
materials, with clearly distinct interfaces between the constituents. More specifically,
the term composite is restricted to those materials that are composed of a continuous
matrix, which binds together the discrete phases corresponding to the reinforcement
constituent [98]. Different types of reinforcements can be employed to constitute composite
materials, namely discrete and continuous (Figure 11). The final properties of the composite
materials differ substantially from the properties of their constituents [99,100]. Indeed, the
final properties of the composite materials are derived from the individual attributes of the
constituents [101].
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3.1. Origin of Metal Matrix Composites

Metal matrix composites (MMC) refer to those composites constituted by a metallic
matrix and typically reinforced by a ceramic phase [103]. In MMC material systems, the
metallic phase serves as a binder to the composite, while the ceramic phase acts as the
reinforcement. MMCs emerged in the 1960s to further improve the mechanical properties of
structural superalloys for applications related to defence and aerospace [104,105]. Later, in
1991, the suitability of these materials for the surface modification of components exposed
to critical erosion and wear conditions was established [106]. At that time, the synthesis
of MMCs was barely possible, which is why not as many extensive and comprehensive
studies have been carried out in this field. However, owing to the rapid development of
AM and the recent popularity of multi-material AM, the research interest in MMCs has
risen accordingly.

In terms of the industrial requirements, the development of MMCs has been driven by
the need for complex materials with a higher hardness to produce wear-resistant coatings
for high-end applications [68,107]. This problem has been traditionally addressed through
alloy design, i.e., by developing adequate alloys to meet the requirements set by the indus-
try. In this regard, hardfacing with Fe-, Ni-, and Co-based alloys using L-DED for wear-
and corrosion-resistant coating applications have been broadly investigated [108–110]. Fur-
thermore, alloying with elements such as niobium, vanadium, and tungsten has been
demonstrated to extend the tooling lifetime [111]. However, every so often, monolithic
materials fail to provide a suitable solution for industrial problems [112], and when an
additional improvement of the wear resistance of metal alloys is required without compro-
mising their toughness, composite materials are typically considered. In fact, in monolithic
alloys, increasing the hardness of materials typically comes at the expense of a loss in
ductility [113]. Conversely, ceramic-reinforced MMCs yield superior material properties
provided by the individual contributions of their constituents, e.g., the high hardness and
high strength-to-weight ratio of the ceramic phase, in combination with the high toughness
and ductility of the metal matrix [114]. Therefore, surface engineers often resort to ceramic
hard metal coatings to increase the resistance to wear [115]. Fortunately, laser processing
technologies enable a localised dispersion of ceramic particles [116] or the deposition of
ceramic particle-reinforced MMC coatings [117].

3.2. Advantages and Applications of Metal Matrix Composites

MMCs benefit from the high hardness, strength, and wear resistance of the ceramic
phase, but also from the high ductility and good electric and thermal properties of the
metallic phase [59]. Overall, ceramic-reinforced MMCs have been proven to offer superior
properties in terms of their strength, hardness, wear, and corrosion resistance, and also to
behave well even when exposed to high-temperature conditions [118]. The reinforcement
phase can strengthen the metal binder in many ways, with coating applications being
in the spotlight [26]. On the one hand, when the composite material is subjected to an
external load, it is transferred from the metal matrix to the ceramic particles in an efficient
manner [119]. On the other hand, the discrete particles inhibit the movement of dislocations
and restrict plastic deformation. As a consequence, the metallic phase is retained and the
wearing out is prevented [118]. This is the reason behind the higher wear resistance of
MMCs over monolithic alloys [120].

Owing to the outstanding behaviour of MMCs, they have been widely proposed to
improve the surface properties of highly demanded components, as an alternative to con-
ventional metallic alloy systems [121]. They are of particular interest in those applications
where conventional alloys lack sufficient hardness and wear resistance [122], such as in
aerospace [73], die and mould [123], agricultural [124,125], mining [126], automotive [127],
and oil and gas applications [128]. In Figure 12a, an application example of MMC coat-
ings is shown, involving the wear-resistant coating of a brake disk. In short, they are an
interesting solution for those applications where wear, erosion, and corrosion are the main
mechanisms responsible for the failure of components [69].
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3.3. Production of Metal Matrix Composites

Back when the potential of MMCs was barely glimpsed, their production was strongly
limited by the processing techniques available at the time, as their manufacture by con-
ventional methods is complicated [118]. The low ductility and low fracture toughness
are extremely challenging and limit their processability using casting or powder met-
allurgy techniques [22]. In the last decade, and owing to the rise of AM technologies,
namely L-DED, a significant effort has been invested into researching this topic. According
to Bandyopadhyay et al., if the challenges related to the production of MMCs are over-
come, high-performance components with good behaviour could certainly be attained [26].
Despite the production of these material systems remaining problematic, according to
Mostafei et al., L-DED is a reliable method for manufacturing MMCs, and it is particularly
suitable for the deposition of MMC coatings [131]. As a matter of fact, the high flexibility
in terms of the materials and the tight control of the composition of the multi-material
mixtures place L-DED in a highly competitive position for the production of MMC parts
and coatings [68,132].

MMC structures are typically fabricated through powder-based processes, where the
ceramic and the metallic powders are premixed in ratios ranging from 1 to 20 wt. % [133].
Nonetheless, mixtures containing higher amounts of the ceramic phase are also frequently
reported. The L-DED of MMCs can be approached in two different ways, depending on
the mechanism for the formation of the reinforcement phase (Figure 13) [22].

1. Ex situ production of MMC (Figure 13a): The first approach consists of the projection
of a powder mixture with a precise volumetric fraction of the ceramic phase into the
melt pool. In either case, the reaction between the ceramic and the metallic phase
is limited and controlled. To this end, the process parameters and the feedstock
morphology and granulometry should be selected so as to guarantee that no excessive
dissolution of the ceramic phase occurs. In addition, the process parameters should
be selected so as to guarantee proper bonding between phases.

2. In situ production of MMC Figure 13b): In the second approach, a mixture of ele-
mental powders is introduced into the melt pool. The high processing temperatures
used in L-DED allow chemical reactions between elements to occur, resulting in
the formation of disperse carbides or intermetallics. Conversely, a ceramic–metallic
powder mixture can be fed but the complete decomposition of the ceramic phase
must be ensured so that the in situ synthesis of dispersed carbides takes place. In
this manner, MMCs may be in-situ-synthesised. In both cases, the process parame-
ters and the powder morphology should be carefully selected to facilitate the in-situ
synthesis of carbides.
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According to the formal definition of the composites, the material systems obtained
through the second approach do not correspond to MMCs but rather to alloys with dis-
persed hard phases, as no macroscopic phases could be distinguished. However, these
complex alloys are often referred to as MMCs in the literature. In addition, controlling
the dissolution of the ceramic phase in ex-situ-produced MMCs is not a trivial matter. In
ceramic-reinforced MMCs produced via L-DED, the ceramic particles often suffer partial
dissolution, which promotes interfacial reactions between the ceramic and metallic mate-
rials, as shown in Figure 14 [136]. As a result, complex hierarchical structures are often
observed. This phenomenon has been investigated in the literature; hence, the factors
governing it and its consequences are more extensively discussed in Section 3.4.
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In essence, L-DED is a highly competitive technology that has the potential to form
MMC structures, owing to the high flexibility when processing the multi-material struc-
tures [137]. At the same time, L-DED enables the deposition of high-quality surface coatings,
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which is the main application of ceramic-reinforced MMCs. Driven by this motivation,
several aspects of the production of MMCs through L-DED have been investigated. Ac-
cordingly, the most relevant studies in the literature are summarised.

3.4. Most Relevant Literature on L-DED of Metal Matrix Composites

The research carried out in this field has focused on the analysis of different material
systems and their performance. For instance, Nurminen et al. compared various material
systems consisting of a metal binder and disperse carbides [138]. They focused on address-
ing material compatibility issues and their effect on the performance from a tribological
perspective. They concluded that the properties of MMCs were strongly linked to the
material selection and the chemical affinity between the constituents. Indeed, material
systems with high affinity would promote the decomposition of the ceramic phase, which
eventually was found to be detrimental to the performance of the coating. Jiang and
Kovacevic fabricated MMC coatings containing TiC and AISI H13 tool steel and compared
the tribological behaviour of this material system to other material systems previously
reported in the literature [139]. Adam et al. investigated the performances of different
material systems for ballistic applications and studied the suitability of L-DED for the
production of MMC coatings [140]. Zhang and Kovacevic investigated the tribological
performance of MMC coatings composed of an AISI 420 steel matrix and different carbides
with the aim of providing some insights on material selection [128] (Figure 15). These
studies demonstrated the adequacy of MMC coatings manufactured by means of L-DED
for the surface modification of components exposed to severe operating conditions and
outlined some guidelines to facilitate material selection. However, a limited focus was
placed on understanding how the processing conditions affect the performance of MMC
coatings within a sole material system. Hence, generic conclusions may be drawn, but no
deep understanding was gained concerning the specific microstructures that should be
targeted and no methodologies were proposed to materialise it.
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Other studies focused on the microstructural evolution of MMC coatings due to the
high-temperature processing of L-DED. As mentioned above, the dissolution of the ceramic
particles in ex-situ-produced MMCs is hardly avoidable, and this phenomenon affects both
the microstructural aspects and mechanical properties. Li et al. investigated (Cr, W)23C6-
and WC-reinforced Fe-based composite coatings. They reported the phase transformations
occurring as a result of the L-DED process. Disperse eutectic carbides were found in
the matrix structure, but fine carbides also precipitated in the interdendritic phase [122].
Along the same line, Zhao et al. investigated the dissolution of the reinforcement phase
for WC-Ni material systems in [141] and WC-Fe in [142]. In their studies, a thorough
characterisation process of the microstructure generated as a result of the interaction
between the reinforcement phase and the matrix phase was carried out. They observed that
carbides with different morphologies were dispersed in the metal matrix, while retained
particles were also encountered. In addition, the main mechanisms responsible for the
decomposition of the ceramic particles were reported, namely dissolution, diffusion, partial
or complete fragmentation, and precipitation. From a processing perspective, Muvvala et al.
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investigated the metal–ceramic interface in a WC-reinforced Ni-based alloy. They found
that the decomposition of the reinforcement particles played a major role in the bonding
type. Moreover, they measured the melt pool lifetime and correlated it with the thickness
of the reaction layer surrounding the ceramic particles, as shown in Figure 16 [126].
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These studies have brought to light the importance of the interactions between the
constituent phases in MMC composites, especially considering the high temperatures
inherent to L-DED processing. However, few studies have been carried out involving a
thorough investigation and discussion of the effects of the process parameters and the
thermal cycle of the manufacturing process. In fact, none of the previous authors found a
correlation between the process parameters, microstructure, and resulting properties of the
coatings. Hence, the role of the processing parameters in the metal–ceramic interactions
and the microstructures and properties of MMC coatings has been neglected, especially
in the formation of unexpected microstructural phases. It is out of the question that the
L-DED parameters are responsible for the thermal cycle generated during processing. Thus,
the process parameters affect the dissolution of the reinforcement particles, and presumably
the mechanical properties, such as the hardness, of MMC coatings.

In this line, another aspect that has attracted the attention of researchers is the hardness
of MMC coatings and the correlation between the hardness and the volumetric fraction of
the reinforcement phase. Most authors report that increasing the volumetric fraction of the
reinforcement phase results in a substantial enhancement of the hardness. Li et al. observed
a gradual increase in hardness with increasing volumetric fractions of WC from 0% to 20%.
They ascribed this to the formation of carbides and the solid–solution strengthening due to
lattice distortion [122]. Xie et al. and Raahgini et al. reported a nearly linear correlation be-
tween the hardness and the volumetric fraction of the reinforcement phase for Co-WC [144]
and Ni-VC [120] material systems, respectively. Deschuytenner et al., on the other hand,
characterised the multi-scale hardness of a WC-reinforced Ni-based alloy. In short, they
studied the normalised hardness of the composite samples, but also the hardness achieved
by the metal matrix as a result of the microstructural modification [145]. Ostolaza et al.
investigated the effect of the processing parameters and the feedstock composition on the
hardness of the matrix and on the hardness of the composite in WC-Co coatings through
statistical regression methods [146]. It was concluded that longer interaction times pro-
moted the decomposition of the ceramic particles, which resulted in an increase in the W
content in the matrix. At the same time, different mechanisms responsible for the hardening
of the MMC coatings were reported, namely grain refinement and carbide precipitation, de-
pending on the feedstock composition and processing conditions. Zhao et al., on the other
hand, quantified the loss in hardness when the dilution of the substrate increased [141].
As expected, the higher the amount of substrate material that was melted, the lower the
hardness of the coating material. Ultimately, having higher substrate dilution alters the
composition of the coating. If the substrate material is softer than the coating material, then
the overall hardness of the coating will decrease.
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Lastly, many authors have tried to demonstrate the suitability of MMCs for high-
performance coating production by studying their wear resistance. Li et al. investigated
the tribological behaviour of (Cr, W)23C6-WC-reinforced, Fe-based coatings. They obtained
good results in terms of the wear resistance of the MMC samples. More interestingly, they
found that the surface properties were maximised for an optimal coating composition [122].
Xie et al. studied the wear resistance of WC-Co MMCs and reported a positive correlation
between the wear resistance and the WC content of the MMC [144]. Similar conclusions
were reached by Zhao et al. for WC-Fe [142] and WC-Ni [141] MMC coatings. Their
experimental results suggested that a significant gain in tribological performance could be
obtained by increasing the WC content. They ascribed this effect to two phenomena, namely
the retained WC particles that remained unmelted and the dispersed carbides throughout
the matrix. Bartkowski and Kinal achieved increased wear resistance by embedding WC
particles into a Stellite 6 matrix as compared to the monolithic Stellite 6 coatings [124]. They
concluded that the excess WC content or insufficient hardness of the matrix could promote
a more intensive wear mechanism in MMC coatings. In a later publication, they obtained
promising results when testing the behaviour of the designed coating in real conditions
when applied to an agricultural tool (Figure 17). They reported a 25% increase in the life of
the tooling [125].
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Figure 17. (a) An agricultural tool coated with Stellite 6 and WC and (b) microstructure of the applied
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In this regard, Muvvala et al. carried out a comprehensive investigation on the contri-
bution of the ceramic phase to wear resistance [126]. They concluded that the uncontrolled
dissolution of the ceramic particles caused the embrittlement of the matrix phase. As
a result, the fracturing and spalling of the surface during wear testing were promoted;
hence, these samples suffered a higher wear rate. It can be concluded that increasing
the reinforcement content does contribute to a higher wear resistance of MMC coatings,
provided that the ceramic particles do not fracture and that the third body mechanism is
avoided [120]. Similar conclusions were previously reached by Fernández et al. [147]. In
MMC coatings, the discrete reinforcement particles rule the plastic flow of the metal matrix.
Hence, increasing the reinforcement phase changes the main wear mechanism; indeed, it
switches from severely adhesive to mildly adhesive and abrasive wear [148].

The high-temperature wear resistance of Co- and Ni-based MMC coatings has also
been investigated. Erfanmanesh et al. studied the high-temperature tribological behaviour
of WC-reinforced Ni- and Co-based matrices [149]. The reinforced samples showed su-
perior wear resistance and they found that soft abrasive and adhesive mechanisms were
responsible for the wear damage. Wang et al. also tested the high-temperature wear resis-
tance of WC-Co MMC coatings and confirmed the previously reported good behaviour
of this material system [123]. In addition, the experimental results showed a positive
correlation between the wear resistance with respect to the WC content. However, they
reported a significant drop in the thermal fatigue life when increasing the WC content over
20% wt. Lastly, Karmakar et al. investigated the abrasive wear of WC-Co- and Co-coated
AISI H13 tool steel substrates at high temperatures [109]. The ceramic-reinforced coatings
yielded greater resistance to wear up to 650 ◦C as compared to the un-coated substrates.
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The superior surface properties of the reinforced coatings were more evident the higher the
temperature of the abrasive test.

Although the behaviour of MMC coatings in terms of wear has been thoroughly
studied, other aspects that tightly limit their performance have been completely neglected.
For instance, little effort has been devoted to the evaluation of the interfacial strength
between the MMC coating and the substrate, which will directly affect the durability of
the surface-treated components. Indeed, the flexural strength of coated parts and the
residual stresses induced during processing are key aspects that limit the life and the safe
operation of coated components [150]. It is without question that the surface properties and
mechanical behaviour of MMC coatings are ruled by the strength of the interfacial bonds
between the macro-constituents, as has been stated by several researchers [151,152]. On the
one hand, the reaction layer guarantees a metallurgical bond; therefore, the cohesion of the
composite is ensured and one should expect proper load transfer between the macroscopic
constituents [152]. Conversely, the dispersion of discrete carbides throughout the matrix
may cause a loss in ductility, which is detrimental to the structural behaviour of the
composites [153]. Thus, the key lies in finding a balance in the extent of the metal–ceramic
interaction. Metallurgical bonding between the matrix and the reinforcement should be
sought, but the embrittlement of the metal matrix should be prevented to preserve the good
mechanical properties of the matrix. This issue may be solved by optimising the process
parameters and by tuning the thermal cycle during processing [126].

In Table 5, a summary of the most relevant publications regarding the L-DED of MMC
coatings is provided.

Table 5. Most relevant publications concerning the L-DED of MMC coatings.

Publications Materials Application Main Results Limitations/Observations

Jiang and
Kovacevic, 2007
[139]

AISI H13 and TiC Die and mould
industry

MMCs containing less TiC exhibited
higher erosion resistance.

No comprehensive discussion of
the mechanisms behind this
phenomenon was provided.

Nurminen, Näkki
and Vuoristo,
2009 [138]

Various matrix and
reinforcement
materials

Miscellaneous
The abrasion resistance of the MMC does
not depend solely on the reinforcement
but also on the matrix.

The study focused only on the
material selection and no
importance was given to the
processing conditions.

Bartkowski and
Bartkowska, 2017
[125]

Stellite 6 and WC Oil and gas
The massive difference in hardness
between the reinforcement and matrix
promoted severe wear mechanisms.

Preliminary results on the effects
of different process parameters
were provided, but no
comprehensive analysis of the
underlying phenomena was given

Muvvala, Patra
Karmakar, and
Nath, 2017 [126]

Inconel 718 and WC Aerospace
industry

The longer melt pool lifetime promotes
the decomposition of the reinforcement
phase and is detrimental to the wear
resistance of MMC coatings.

The hardness of the coatings and
subsequent hardening
mechanisms are not evaluated.

Li et al., 2021 [122] Fe60 self-fluxing
alloy and WC Miscellaneous

The phase evolution of the multi-material
coating was formulated and supported
by microstructural observations.

The effect of the processing
conditions was not considered and
the performance of the proposed
coatings was not evaluated
comparatively.

Zhao et al., 2022
[141]

Ni-based alloy and
WC Miscellaneous

WC particles suffer from dissolution,
diffusion, fragmentation, and
precipitation mechanisms when exposed
to high temperatures.

The study only focused on
microhardness and not on the
hardness of the composite. The
influence of the thermal cycle of
the process was not considered.

Raahgini and
Verdi, 2022 [120] Inconel 625 and VC Miscellaneous

Though showing higher hardness, MMC
coatings with high reinforcement
contents suffered a loss in wear
resistance due to the appearance of the
third body wear mechanism.

The effect of the processing
conditions was not considered.
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In terms of the processability of MMCs through L-DED, the realisation of good-quality
coatings is still a challenge. For instance, material incompatibility is an issue that needs to
be tackled [36]. Moreover, defects related to the metallurgical integrity (pores or cracking)
are frequently encountered [131].

The cracking of MMCs deposited by L-DED has been widely studied in the litera-
ture [118]. Cracks in these coatings originate from the high residual stresses generated
during the deposition process [131]. As a process based on the fusion and rapid solidifi-
cation of materials, parts manufactured by L-DED withstand high temperature gradients;
thus, high thermal stresses can be produced if specific care is not taken [118]. In addition,
the interaction between the particles and the matrix tends to provoke matrix embrittlement.
The loss of ductility prevents the metal matrix from absorbing the residual stresses of
the manufacturing process. Additionally, the reinforcement particles act as stress concen-
trators [109], which further exacerbate cracking. Consequently, it has been stated in the
literature that these materials often suffer not only from cracking phenomena but also
other sorts of catastrophic failures due to high residual stresses and material property
mismatches, such as delamination [154].

Multiple methods have been proposed to eliminate cracking, namely substrate pre-
heating, the addition of rare earth oxides, or the elimination of the sharp transition between
substrates and coatings through the use of functionally graded materials (FGMs) [117].
Driven by this requirement, in Section 4, the origin of FGM structures is described and the
implementation of the FGM strategy for the fabrication of high-quality MMCs is explored.

4. Laser-Directed Energy Deposition of Functionally Graded Materials
4.1. Origin and Definition of Functionally Graded Materials

In short terms, FGM materials are a class of advanced materials in which spatial
variation of the material properties occurs within a single structure [155]. Different criteria
can be established to differentiate FGM structures. One could classify FGMs based on the
method followed to obtain such variable properties. Indeed, variable material properties
can be achieved through compositional or microstructural modifications [62] (Figure 18A).
Conversely, a classification criterion based on the gradient type has also been proposed,
i.e., discrete and continuous gradients [22] (Figure 18B). Either way, location-dependent
material properties without sharp transitions can be attained using FGM structures [155].
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The first record of functionally graded materials (FGM) corresponds to the develop-
ment of this concept to overcome the limitation of conventional composite materials in
thermal barrier coatings (TBC) for aerospace applications [87,156]. As a matter of fact, the
discovery was driven by the requirement of a TBC that would withstand a temperature
gradient higher than 1000 K [157]. Before coming up with the FGM concept, conven-
tional laminate composites were tested with little success. It was observed that the sharp
interface was responsible for the failure of the composites. Owing to the difference in
the CTEs between the metal and ceramic constituents, the conventional composites were
unable to endure the high thermal gradients [36,62]. Nowadays, FGMs are present in many
other applications, as a tool for tailoring mechanical, thermal, or electrical properties in a
location-dependent manner within one sole component [22,26].

In Figure 19, an FGM rocket nozzle is shown, which was developed by InssTek as a
case study to demonstrate the capability of L-DED to build AISI 316L to Al-bronze FGM
components at real industrial scales.
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4.2. Production of Functionally Graded Materials

The low processability of FGM structures through conventional manufacturing meth-
ods has limited their development to date. FGMs can certainly be produced through vapour
deposition, powder metallurgy, or centrifugal casting [62]. However, these processes have
little flexibility and are resource- and time-consuming. AM processes, on the other hand,
have demonstrated their suitability for the production of FGM structures [159]. Indeed, the
PBF technology can be used to achieve a layer-wise variation of the microstructure of a
single material by modifying the grain orientation [160], via the controlled vaporisation of
certain elements [161], or via the controlled modification of the porosity [162]. In contrast,
compositional gradients can be attained using DED owing to the unprecedented design
freedom and multi-material ability [22]. Many authors agree that L-DED is the preferred
solution for the fabrication of FGM structures [22,36,62], which is only logical, considering
that the production of FGM structures requires tight control of the chemical composition
and the flexibility to fabricate multi-material components, while allowing the modification
of the feedstock composition within one single build-up [163].

In addition to the potential for the production of location-dependant material proper-
ties, FGMs have been proven beneficial in mitigating residual stresses [164] or substituting
sharp interfaces, with a high risk of delamination failure [22]. In terms of the operational be-
haviour, sharp material transitions are considered stress concentration zones and complex
loading conditions may cause a catastrophic failure.
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4.3. The Most Relevant Literature on L-DED of Functionally Graded Materials

Driven by the benefits of FGM structures, much research has been carried out with the
aim of attaining a controlled grading between different metal alloys. In particular, gradients
between Ni-based alloys and different grades of stainless steels have been extensively
reported, due to the interest from the power generation and aerospace industries in this
material system. For instance, Zhang et al. studied the microstructure, hardness, and tensile
fracture values of AISI 316L to Inconel 625 functionally graded structures. Firstly, they
observed a hardness gradient along the graded region, which matched the microstructure.
Additionally, the fracture in the tensile testing occurred in the AISI 316L section, while
the interfaces survived the testing owing to the graded transition [165]. Su et al. studied
the microstructure of AISI 316L to Inconel 718 graded samples and found that austenitic
formation was promoted in the graded region, leading to the loss of hardness in certain
areas [166]. Carrol et al. analysed AISI 304L to Inconel 625 gradient samples, and they
found cracks of several microns due to the formation of carbides in the graded region [167].
In Figure 20, the compositional design of the sample built by Carroll et al. and the evolution
of the Fe and Ni elemental contents in contrast with the variation in hardness values are
shown. Li et al. just recently developed a multi-physics model to better understand the
governing phenomena in the L-DED of 316L to Inconel 718 FGM structures. They found
that the composition of the feedstock substantially affected the melt pool size as a result of
the differing thermal properties. Indeed, increasing the Inconel 718 content reduced the
heat dissipation and resulted in a larger melt pool. Moreover, they found that layers that
had the same nominal composition contained a non-uniform distribution of Inconel 718,
which they attributed to the varying melt pool sizes and thermal gradients [168].
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In contrast, other material combinations and systems have been studied too. In this
regard, Fan et al. investigated Invar to MnCu FGM samples. They reported a non-linear
variation of the hardness values, which was attributed to the solid–solution strengthening
mechanism being promoted in the gradient region, where the highest hardness was mea-
sured. Moreover, they studied the tensile behaviour of the graded structures and found
that the deformation behaviour was not homogeneous due to the stress concentrations.
They concluded that the strain was directly correlated to the hardness evolution, and that
the softer regions contributed the most strain [169]. In contrast, Ji et al. fabricated Ti6Al4V
to Inconel 718 graded coatings and they compared the expected microstructures and phase
transformations based on computationally derived phase diagrams and experimental
observations. They concluded that the Ti-Ni combination resulted in the generation of
Ti2Ni and TiNi intermetallics, based on both the experimental and computational results.
Moreover, they studied the high-temperature behaviour of these materials and they found
that the diffusion zone between the graded layers increased with increasing exposure to
high temperatures [170]. In addition, Nam et al. compared the deposition of AISI 316 onto
a mild steel substrate with the Fe/AISI 316 gradient deposition and found that while many
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pores and cracks were observed in the sharp transition, no cracking was detected in the
graded sample [171].

Although promising, the production of FGM structures based on multiple ceramic
phases is still a challenging matter. Based on the reviewed literature, some critical issues
are described herein. The high-temperature processing and mixing behaviour of different
alloys highlight the need to consider metallurgical aspects. Indeed, the correlation between
the composition, microstructure, and mechanical properties is not linear, especially when
phase transformations and intermetallic formation occur. Therefore, from a material science
perspective, a computational approach appears to be the most efficient method to anticipate
such issues and to design the FGM structure accordingly. From the processing perspective,
the effects of the feedstock composition on the thermal aspects of the process need to be
further understood. Indeed, it has been demonstrated that the differences in the thermal
properties of the graded alloys significantly affect the formation of the melt pool and the
thermal history of the process. In this regard, Zhang et al. reported instability and shaking
of the melt pool during the deposition of 316L onto Inconel 718, which happened only in
certain compositions. They proposed that this effect could be governed by the different
inertial properties of the powders employed to fabricate the sample [172]. However, more
research is needed to really understand which phenomena affect the production of FGMs
and their roles and significance.

Some publications related to FGM structures have tackled metal–ceramic material
systems, and more specifically the fabrication of functionally graded MMCs. For instance,
Wang et al. fabricated FGM composites that ranged from 100% Ti6Al4V alloy to 60%Ti6Al4V
and 40% Ni-coated graphite. They reported a nearly linear correlation between the hardness
and the composition of the powder mixture [173]. On the other hand, Ramakrishnan
and Dinda employed the FGM strategy to deposit MMC coatings consisting of Haynes
282 superalloy and SiC [174]. In this regard, Wei et al. also focused on introducing a
composition gradient in MMC parts and they manufactured a TiC/Ti6Al4V functionally
graded composite, reaching similar conclusions to those previously reported [175].

In Table 6, the most relevant publications on the fabrication of FGM structures through
L-DED are summarised.

With the aim of exploring the novel applications of FGM structures and going back
to the production of MMC coatings, one of the main issues in the L-DED of MMCs is
the lack of metallurgical integrity, high crack sensitivity, and delamination, which can be
mitigated by implementing an FGM strategy. On this basis, Xu et al. investigated the crack
sensitivity of mono-compositional and functionally graded MMC samples. They concluded
that functionally graded transitions could significantly contribute to mitigating cracking in
MMC coatings, as shown in Figure 21 [176].
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Table 6. Most relevant publications concerning the L-DED of FGM structures.

Publications Materials Application Main results Limitations/ Observations

Carrol et al.,
2016 [167]

100% AISI
3104L to 100%
Inconel 625

Aerospace and
nuclear power
generation

Cracking at a precise
composition was due to the
formation of carbides, and
CALPHAD simulations were
able to predict it

A crack-free sample could be probably
fabricated, avoiding the composition
where hard carbides are stable and
prone to form.

Nam et al.,
2018 [171]

100% Fe to 100%
316L Miscellaneous

Directly depositing 316L onto
mild steel resulted in cracking,
while the FGM sample had no
apparent defects.

No analysis of the evolution of the
mechanical properties or behaviour of
the samples was provided. FGM
samples still showed a significant
amount of pores.

Zhang, Chen,
and Liou,
2019 [165]

100% AISI 316L
to 100% Inconel
625

Die and mould

Defect-free FGM samples were
successfully deposited and
gradual hardness was observed.
The tensile behaviour of the
FGM samples was in-between
pure AISI 316L and Inconel 625.

It would be interesting to compare the
behaviour of the FGM sample to that
of a sample having a sharp transition
between AISI 316L and Inconel 625.

Su et al.,
2020 [166]

100% AISI 316L
to 100% Inconel
718

Nuclear power
plants and oil
refineries

The compositional step to form
the gradient affects the hardness
and tensile properties of the
FGM sample.

The variability in FGMs designed with
different discretisation steps was
ascribed to the thermal cycle and
processing conditions. The actual
effect of the FGM design was not
properly tested, as samples having
different sizes and amounts of layers
are used for comparison.

Ostolaza et al.,
2021 [177]

100% AISI 316L
to 100% AISI
H13

Die and mould

The compositional gradient did
not guarantee a gradual
variation of the material
properties, namely the hardness
and the corrosion resistance.

The FGM sample shows severe
cracking, which is ascribed to the
formation of the sigma phase. The
CALPHAD methodology could be
employed to design an FGM sample
in which the formation of such hard
phases is minimised.

Wang et al.,
2021 [173]

100% Ti6Al4V
to 40% graphite
60% Ti6Al4V

Armour, gear,
and cutting
tools

Ti-Ni-C graded samples showed
a gradual hardness and
microstructure as a result of
in-situ TiCx reinforcement
formations.

Further investigations should focus on
evaluating the mechanical properties
of FGM structures as compared to
sharp transitioned samples.

5. Conclusions

The ability of L-DED to manufacture multi-material components is one of the most
compelling aspects of this technology, and so it has been acknowledged by industry
and research bodies. The current challenges related to joining dissimilar materials, for
instance, can be overcome through the use of multi-material L-DED, as components
composed of different materials can be built up in a single operation. The prevalent
applications of multi-material L-DED are alloy design, metal matrix composites, and
functionally graded materials.

With respect to alloy design, L-DED permits much faster and more cost-efficient
experimental trials when testing new alloys. This is key in the development of new
high-entropy alloys, where the possible compositions to be tried out are manifold and
simplifying the experimental testing is absolutely necessary. On the other hand, surface
engineers can obtain major benefits from metal matrix composite coatings, as they behave
outstandingly well in terms of wear. Lastly, the use of functionally graded materials seems
to be a key strategy to enable the joining of a priori incompatible material combinations.
The straightforward ability of L-DED to control the feedstock composition and modify it as
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an additional process parameter has provided evidence of the suitability of this process
for multi-material fabrication, and it is already considered the prevailing technology for
forming multi-material structures. However, some issues need to be addressed before
this technology is ready for industrial use. Some of these challenges concern process
engineering and materials science, which are summarised below.

In terms of process engineering, the composition of the feedstock injected into the
melt pool needs to be tightly controlled. If the L-DED system involves several powder
hoppers, then the individual mass flow rate of each one of the hoppers needs to be precisely
controlled, and the dynamic behaviour when varying the composition of the feedstock
during the build-up should be carefully understood. Downstream, the fluid dynamic
behaviour of multi-material powder mixtures needs to be known. Indeed, the concentration
of the powder mixture by the nozzle depends on the material properties. This is especially
troubling when working with metal–ceramic powder mixtures, as the inertial properties of
ceramic and metallic materials differ significantly. Failure to understand and predict the
behaviour of the powder feeding system from the powder feeder to the injection of the
powder mixture into the melt pool will inevitably cause deviations between the nominal
composition and the real one.

Moreover, in view of the impact of the thermal cycle during processing on the prop-
erties and integrity of multi-material L-DED, the effect of the process parameters on the
thermal history should be investigated. Eventually, the process parameters will be tuned
to target a specific thermal cycle. Moreover, in the case of MMCs, the thermal history will
be defined and controlled to find a balance in the interactions between the ceramic and
the metallic phases. With regard to materials engineering, a deeper understanding should
be gained of how the thermal cycle affects the interactions between the constituents in a
multi-material powder mixture. Considering that the non-equilibrium synthesis prevails
in L-DED, extensive databases should be developed to ease the set-up process and target
or avoid specific microstructures. In addition, the in-service behaviour of multi-material
structures needs to be tested, whether it be the tribological performance or the structural
behaviour. Based on that knowledge, generic guidelines should be drawn so that the
material selection and the choice of processing conditions are facilitated.
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