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Abstract: Mn(II)-based perovskite materials are being intensively explored for lighting applications;
understanding the role of ligands regarding their photobehavior is fundamental for their development.
Herein, we report on two Mn (II) bromide perovskites using monovalent (perovskite 1, P1) and
bivalent (perovskite 2, P2) alkyl interlayer spacers. The perovskites were characterized with powder
X-ray diffraction (PXRD), electron spin paramagnetic resonance (EPR), steady-state, and time-resolved
emission spectroscopy. The EPR experiments suggest octahedral coordination in P1 and tetrahedral
coordination for P2, while the PXRD results demonstrate the presence of a hydrated phase in P2
when exposed to ambient conditions. P1 exhibits an orange-red emission, while P2 shows a green
photoluminescence, as a result of the different types of coordination of Mn(II) ions. Furthermore, the
P2 photoluminescence quantum yield (26%) is significantly higher than that of P1 (3.6 %), which we
explain in terms of different electron-phonon couplings and Mn-Mn interactions. The encapsulation
of both perovskites into a PMMA film largely increases their stability against moisture, being more
than 1000 h for P2. Upon increasing the temperature, the emission intensity of both perovskites
decreases without a significant shift in the emission spectrum, which is explained in terms of an
increase in the electron-phonon interactions. The photoluminescence decays fit two components
in the microsecond regime—the shortest lifetime for hydrated phases and the longest one for non-
hydrated phases. Our findings provide insights into the effects of linear mono- and bivalent organic
interlayer spacer cations on the photophysics of these kinds of Mn (II)-based perovskites. The results
will help in better designs of Mn(II)-perovskites, to increase their lighting performance.

Keywords: photoluminescence; Mn (II); perovskite; octahedron; tetrahedron; LED; quantum yield;
lifetime; electron-phonon coupling; Mn-Mn interactions

1. Introduction

Researchers have known about perovskites (PSs) since the late 19th century; however,
it was only after the pioneering work by Miyasaka and co-workers [1] that organic-inorganic
perovskites received extraordinary attention, owing to their tremendous success in photo-
voltaic and related optoelectronic devices. One of the interesting features of these structures
is their ability to accommodate large cations, which paves the way for small organic cations
to participate in their framework, leading to organic-inorganic hybridization [2,3]. During
the last five years, hybrid organic-inorganic PS-based solar cells and LEDs have experienced
remarkable and unprecedented achievements [4–9].

Despite reaching important milestones in a short time, lead (Pb)-based perovskites
suffer from unsatisfactory long-term stability due to mobile ionic features, and toxicity,
which in turn reduce the possibility of their commercialization. Therefore, it is desirable
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to develop Pb-free stable and highly luminescent organic-inorganic hybrid perovskites
with larger stability and excellent performance. To this end, a series of environmentally
friendly alternatives, such as tin (Sn2+), copper (Cu2+), bismuth (Bi3+), and antimony (Sb3+)
cations have been explored to replace the toxic Pb2+. Among these alternatives, Sn-based
perovskites showed great potential, but unfortunately, the rapid oxidations of Sn2+ and
Sn4+ drastically hinder their stability and, hence, their applicability [10–12]. However,
for 2D Sn-based Ruddlesden-Popper perovskites, the sizes and configurations of organic
spacer cations have remarkable effects on the properties of these materials [13,14].

Many researchers have turned their attention to Mn (II)-based organic-inorganic hy-
brid perovskites as alternative light emitters owing to their nonlinear optical properties
and tunable luminescence [15–19]. Multiferroics and phase-change memories are also
observed in these materials [20–24], as well as the coexistence of multiple performances.
The emissions of these perovskites depend on the coordination environment of Mn2+ re-
sulting from the 4T1-6A1 transition [15,25,26]. It has been established that octahedrally
coordinated Mn2+ cations show orange or red emissions, whereas tetrahedrally coor-
dinated ones exhibit green photoluminescence. Green emissions are instigated by two
major factors: (i) the absence of an inversion center in the tetrahedral environment and
(ii) increased electric-dipole oscillator strength due to the small crystal field splitting energy
of [MnX4]2−. In the octahedral environment, the red emission is associated with a higher
Mn-Mn coupling interaction resulting from short Mn-Mn distances (3–5 Å) [27,28]. Apart
from the single green or red emission bands, dual emission has also been reported in a few
cases due to the coexistence of both environments and/or from electron-phonon coupling
variation [29–31]. Triboluminescence is another interesting phenomenon that has been
observed in non-centrosymmetric crystals of Mn (II) complexes owing to its great potential
in structural damage sensing, stress sensing, display, and security marking [32–35].

Substitution of halide ions and changing the organic counterions are also effec-
tive in modulating the optical and physical properties of these materials. For example,
(pyrrolidinium)MnCl3 and (pyridine)MnCl3 octahedral coordination were reported to
exhibit red/orange emissions while their bromide counterparts (pyrrolidinium)2MnBr4
and (pyridine)2MnBr4 were found to emit in the green region due to their tetrahedral
coordination [15,36]. Two perovskites, (C5H6N)2MnBr4 and (C5H6N)MnBr3—with differ-
ent crystal structures—have been synthesized by adjusting the amount of the pyridinium
cation. The first one has an isolated mononuclear structure with a tetrahedron [MnBr4]2−

unit, and the second one has a linear chain with an octahedral [MnBr6]4− part to give
green and red emission bands, respectively [17]. Due to their crystal structure-dependent
tunable optical properties and high emission quantum yields, Mn-based perovskites are
now being largely considered in the development of new LED devices and as efficient X-ray
scintillators [37,38]. However, there are still several issues to resolve before these materials
are applied. In this regard, the destabilization of Mn-based perovskites in moisture is worth
mentioning, as they are based on salts. In the presence of water, the ionic coordination
bonds of Mn (II) centers can easily be destroyed or the material can undergo a phase
transformation process, leading to a loss of the emission [39]. By heating or exposing these
structures to aprotic solvent vapors, the photoluminescence can be partially or almost
totally recovered. These characteristics have been exploited for the fabrication of rewritable
PL papers [39] and in the sensing of acetone [40]. Another issue to consider for a better
understanding of Mn-based perovskite spectroscopy is to explore the role played by the
organic ligand on the structure and photobehavior. Few reports have suggested the in-
volvement of electron-phonon interactions in their photochemistry [29–31]. To gain insight
into the electronic structure, the origin of bright photoluminescence, and ferromagnetic
coupling in these kinds of materials, several ab initio models have been proposed [41,42].
Recently, these methods have been applied to predict the band structures and validate the
origin of Mn2+ photoluminescence through spin forbidden 4T1 → 6A1 transitions for some
all-Mn halide perovskite single crystals [16,17,38,40].
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In this work, we synthesized two Mn (II)-based perovskites using a monovalent (ethyl
ammonium (EA) bromide) and a bivalent (ethyl diammonium (EDA) dibromide) interlayer
spacer cation. The resulting perovskites, C2H5NH3MnBr3 (P1) and C2H4(NH3)2MnBr4
(P2), respectively, were characterized by powder X-ray diffraction technique (PXRD,)
electron-spin paramagnetic resonance (EPR), steady-state, and time-resolved emission
spectroscopy. We observed that the P1 perovskite, having monovalent cations, showed
orange-red emissions, while P2, based on bivalent interlayer spacers, exhibits green pho-
toluminescence. This difference results from a distinct Mn-coordination (octahedral in P1
and tetrahedral in P2). Furthermore, we found that P2 showed a higher photoluminescence
quantum yield (26%) compared to 3.6% of P1. The photoluminescence lifetimes for P2 are
0.10 and 0.37 ms, assigned to hydrated and non-hydrated phases in the perovskites, re-
spectively. The emission intensities of both perovskites exhibit large sensitivity to moisture
(air humidity, 50–60%) and significantly improved stability upon encapsulation within a
poly(methyl methacrylate) (PMMA) film. The temperature effect on the emission intensity
of P2 suggests an activation energy barrier, ∆Ea = 4.46 kJ/mol (∆Ea = 1.67 kJ/mol for P1)
for the non-radiative processes, most probably due to electron-phonon interactions. To the
best of our knowledge, this is the first report comparing the effect of mono- and bivalent
spacer cations bounded to the Mn centers in Mn-based perovskites, using the same carbon
chain. We believe that our results will help when designing new Mn(II) perovskites for
further improvement of their photonic performances.

2. Results and Discussion
2.1. Structural Characterization

The synthesized perovskites (Scheme 1) were characterized by powder X-ray diffrac-
tion (PXRD) and EPR techniques (Figure 1).
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Scheme 1. Chemical structures of the units of C2H5NH3MnBr3 (P1) and C2H4(NH3)2MnBr4 (P2) per-
ovskites using monovalent (ethyl ammonium bromide) and bivalent (ethyl diammonium dibromide)
organic spacers, respectively. The dashed bond is an illustration of a possible H-bond between the
organic spacer and the Mn-bromide cluster to produce and maintain the perovskite structure.
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Figure 1. (A) Room temperature powder X-ray diffraction patterns of P1, P2, hydrated (under a
water atmosphere in a desiccator) P2(H1), and P2(H2) perovskites. Note the increase in the peak
intensity of around 8.6◦ for P2, P2(H1), and P2(H2) upon exposure to a water atmosphere. (B) Room
temperature electron-spin paramagnetic resonance (EPR) spectra of P1 and P2 perovskites. The
narrow EPR spectrum of P1 is a typical signal of an octahedral Mn(II) center, while the large one of
P2 suggests a tetrahedral configuration (see text for more details).
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The PXRD patterns of dried P1 and P2, and hydrated P2 (short exposure, P2(H1) and
12-h exposure, P2(H2)) (Figure 1A) are comparable to those reported for similar Mn-based
perovskites, reflecting their crystalline structures. Notably, the PXRD of P1 presented fewer
peaks in comparison with those of P2, P2(H1), and P2(H2), which suggests a higher crys-
tallinity of the former. Additionally, in the PXRD of P2, P2(H1), and P2(H2), we observed
the presence of a peak at ~8.5◦, which increased in intensity when the perovskite crystals
were exposed to ambient conditions and allowed to adsorb water from the environment
(P2(H1)). The PXRD pattern of P2(H2) exposed to the ambient humidity (50–60%) for a
longer time (12 h) showed a notable increase in the intensity of the peak associated with
the hydrated quasi-octahedral phase at 8.5◦. Similar behavior with the appearance of a
peak at around 10◦ of trans-2,5-dimethylpiperazine Mn(II) bromide perovskite was re-
ported upon adsorption and coordination of water molecules [39]. In that perovskite, Mn2+

adopted a quasi-octahedral coordination sphere to produce a secondary, non-emissive
phase along with the green emissive tetrahedrally-coordinated Mn2+ ions. We believe that
upon hydration, a population of Mn(II) in P2 experiences a similar change in the Mn2+ ion
configuration-giving structures, such as P2(H1) and P2(H2).

It should be noted that our attempts to obtain sufficiently large single crystals to
perform X-ray experiments through slow solvent evaporation and antisolvent procedures
were unsuccessful. The inability to obtain a macroscopic single crystal is most probably due
to the flexibility of the linear aliphatic spacers that inhibit the growth of large crystals [43,44].
In a recent work, the impact of the organic A′ site ligand structure on the formation
of MAPbI3 perovskite films was studied in terms of crystallization kinetics, precursor
solutions, and crystal phase compositions [43]. The authors employed n-butylammonium
(n-BA+) and iso-butylammonium (iso-BA+) ligands and found that changing from the linear
n-BA+ to the branched iso-BA+ molecule led to better crystal orientation and improved film
crystallinity. The observed effect was explained in terms of the spontaneous formation of
large clusters (due to lower enthalpies of the accumulation of iso-BA+ versus n-BA+ ligand)
in the precursor solution of iso-BA+, which could act as pre-nucleation sites to accelerate
the crystallization of 2D perovskites [43]. Additionally, for P2, which is synthesized in an
aqueous HBr medium, the precursor (protonated EDA) is highly soluble in water (and
insoluble in almost any other solvent), which further impedes the formation of a single
P2-crystal in this environment. Therefore, we could not obtain direct information about
the structures of P1 and P2, the involved distances between the Mn clusters, and the
types of interactions.

EPR is a suitable technique used to determine the oxidation state, spin state, and local
coordination of paramagnetic ions. To this aim, X-band EPR spectra were registered on
powdered samples of P1 and P2 at room temperature. An ideally resolved EPR spectrum of
isolated Mn2+ ions consists of five signals corresponding to the fine structure (S = 5/2) that
further splits into six lines due to the hyperfine interactions (55Mn, I = 5/2) [45]. However,
in the studied samples, the structures appear to be collapsed (Figure 1B). The observed
resonances are centered at g values very close to the free electron one, as expected for
high-spin Mn2+ ions since orbital contributions to their magnetic moments are not expected
in either octahedral or tetrahedral environments (6A1g and 6A1 terms, respectively) [46].
The EPR spectrum of P1 can be well-fitted by a single Lorentzian line with g = 2.007 and the
peak-to-peak linewidth, ∆Hpp = 12.1 mT. The absence of fine and/or hyperfine structures
and the Lorentzian shape of the curve indicate an exchange narrowing of the spectrum
due to strong magnetic interactions that average the local fields around the Mn2+ ions in
this compound [47,48]. Similar spectra have been found in other hybrid perovskites with
manganese in octahedral environments [49,50].

On the contrary, the EPR spectrum of the P2 sample shows a very broad and slightly
anisotropic line (g = 2.01; ∆Hpp = 140 mT), together with a very weak and narrower signal
that could correspond to a secondary phase. The broadened appearance of the P2 spectrum
can be attributed to either dipole–dipole interactions, incomplete resolution of the fine
structure, or shortening of the spin–lattice and/or spin–spin relaxation times. It is well
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known that dipolar interactions modify the local fields felt by the electron spins leading to
an increase in the linewidth. On the other hand, distortions of the crystalline field remove
the degeneracy of the free Mn2+ ground state 6S5/2 into three Kramer doublets (±5/2,
±3/2, and ±1/2) enabling five allowed EPR transitions for each orientation. In powder
spectra, the averaging and overlapping of these signals often result in broad signals [51].
Moreover, when the distortion is high and leads to zero-field splitting of the same order as
the Zeeman splitting, the EPR spectrum is usually broad because the spin system is strongly
coupled to vibrational modes and. hence, the relaxation times become quite short [52,53].
Therefore, the large difference between line widths shown by the EPR spectra of P1 and P2
suggests that the environment of the Mn2+ ions is different in both cases. The zero-field
splitting appears to be higher for the P2 compound, as expected for manganese (II) in a
distorted tetrahedral environment [54]. Thus, although we do not have a structure based on
single crystal X-ray experiments, from these EPR results, the color of the observed emission
of P1 (orange/red) and P2 (green), and the published reports on Mn-based perovskites,
we believe that Mn2+ ions in the former have octahedral coordination, while in the later
it is a tetrahedral one (Scheme 1). In these proposed structures, where an Mn-bromide
cluster interacts with the ammonium group of protonated EA and EDA spacers, we invoke
the formation of H-bonds to form and maintain the perovskite structure, as it has been
reported in other reports. [15,38,55] Thus, in the following sections, we adopt the molecular
structures of the complexes shown in Scheme 1.

2.2. Photophysical Characterization
2.2.1. Steady-State UV-Visible Spectroscopy

To gain insight into the photobehavior of these perovskites, we recorded solid-state
UV–vis diffuse reflectance, excitation, and emission spectra at ambient conditions (Figure 2).
The diffuse reflectance and the excitation spectra present several strong peaks at the UV
and visible regions. They reflect an electronic transition from the 6A1(S) low-lying state of
Mn2+ ions to the excited states of the MnBrx clusters [28]. We observed no dependence of
the excitation spectra with the emission wavelength.
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Figure 2. Normalized to the maximum intensity of (A) absorption (dashed line), excitation (obser-
vation at 600 nm, red line), and emission (excitation at 430 nm, blue line) spectra of (A) P1 and
(B) P2 perovskites. The dashed line in (B) represents the absorption spectrum of P2(H1) exposed to a
water atmosphere and shows a relative increase in the intensity of the absorption peak at around
470 nm. The insets in both panels show the images of the perovskite under ambient room light (top)
and 365 nm lamp irradiation (bottom).

First, we show and discuss the results for P1. The peaks in the diffuse reflectance and
the excitation spectra are located at around 366, 377 (a shoulder), 427, 438 (a shoulder),
and 524 nm. These arise from the 6A1(S)→ 4E(D), 6A1(S)→ 4T2(D), 6A1(S)→ (4A1, 4E(G)),
6A1(S)→4T2(G) and 6A1(S)→ 4T1(G) transitions of the Mn2+ ions, respectively (Figure 2A).
Most importantly, the peaks at 427 and 524 nm are typical features of octahedrally coor-
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dinated Mn2+ ions [28]. P1 displays a red-light emission upon UV–light irradiation and
its emission spectrum consists of a single band located at 602 nm with a full width at
half maximum (FWHM) intensity of 70 nm (1932 cm−1) that is independent of the exci-
tation wavelength (Figure 2A). Based on previous reports of Mn-based perovskites and
the observed orange/red emission of P1, we suggest octahedral coordination of Mn2+ in
this phase, in agreement with the EPR results [17,28,39]. The measured photoluminescent
quantum yield (PLQY) for P1 gives a value of 3.6%, which is lower than the one for P2
having two ammonia centers to interact with two [MnBr4]2- clusters.

For P2, the intense peaks in the excitation spectrum collected at 545 nm are lo-
cated at around 362, 371, 389, 435, 449, and 465 nm and according to the literature they
arise from the 6A1(S)→ 4T2(P), 6A1(S)→ 4E(D), 6A1(S)→ 4T2(D), 6A1(S)→ (4A1, 4E(G)),
6A1(S)→4T2(G) and 6A1(S)→ 4T1(G) transitions of the Mn2+ ions (such as in P1), respec-
tively (Figure 2B). The positions of these peaks are consistent with the energy states splitting
for Mn2+ in a tetrahedral environment [28]. Notably, the diffuse reflectance spectrum of
P2 shows the presence of additional peaks at 425 and 510 nm that most probably arise
from a secondary population of Mn2+ ions with quasi-octahedral coordination [39]. The
presence of this secondary phase is further supported by the PXRD and EPR results, as
discussed above, and by the diffuse reflectance spectrum of the hydrated P2 (P2(H1)),
where the intensity of these peaks increases (dashed line, Figure 2B). However, contrary to
the reported emissive behavior of Mn2+ with octahedral coordination in other Mn-based
hybrid materials, [28,37,56] for P2 (and P2(H1)), the difference in the relative intensity of
the peaks in the diffuse reflectance and excitation spectra indicates that these hydrated
Mn(II) centers are non- or weakly-emissive. Recently, it was suggested that the emissive
tetrahedral Mn2+ ions in trans-2,5-dimethylpiperazine manganese (II) bromide can be trans-
formed to a non-emissive hydrated phase by adsorbing water molecules and the Mn2+ ions
could adopt a quasi-octahedral coordination sphere [39]. Thus, the peaks observed in the
diffuse reflectance spectra of P2 and P2(H1) at 425 and 510 nm arise from the non-emissive
secondary hydrated phase. The origin of this phase could be due to the recapturing of
water molecules from the ambient atmosphere (humidity of 50–60%). On the other hand,
it could be the result of the synthesis procedure, where water is the used solvent (HBr,
48% aqueous solution) and it could coordinate with Mn2+ to produce the non-emissive
population with octahedral coordination. Under UV–light irradiation (365 nm) P2 emits a
strong green light stemming from the highly localized intra-atomic Mn2+ d-d transitions
(inset of Figure 2B) [28]. The emission spectrum consists of a single band with the max-
imum intensity located at 544 nm and the FWHM at 53 nm (1742 cm−1), which is also
independent of the excitation wavelength (Figure 2B). Next, we measured the PLQY at
ambient conditions. The obtained PLQY value of 26% is large, but lower in comparison
with other green-emissive Mn-based hybrid materials with tetrahedral coordination that
have reported values >80% [15,25,26,36,39,40,57]. The most probable explanation for the
observed discrepancy is the presence of the non-emissive hydrated phase with octahedral
coordination of the Mn2+ ions in our perovskite.

To support this explanation, we recorded the emission intensity of the neat crystals
of P1 and P2 exposed to air and of crystals covered by a PMMA film over long period of
time (Figure 3). While the emission intensity of the neat crystals drastically drops with time
(100% in 6 h for P1 and in 8 h for P2) due to the adsorption of water, upon protection with a
PMMA film, the intensity initially drops by only 25% after 40 h for P2 and 20% after 25 h
for P1. Following this initial drop, the emission intensity of the protected P2 remarkably
remains constant for a long time (1000 h). The initial drop in the emission intensity for
the PMMA-protected samples at the first hours is most probably due to interaction of the
perovskite crystals with the used solvent (toluene) to prepare the PMMA film.
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Figure 3. Change (due to ambient humidity, 50–60%) in the emission intensity maximum (normalized
to 1) with hours of synthesized neat (A) P1 and (B) P2, protected with a PMMA film. Both samples
were stored at ambient conditions. The initial changes in emission intensity of P1/PMMA and
P2/PMMA are most probably due to the interaction of the crystals with toluene used to prepare
the PMMA film. Notice the large stability upon encapsulation by a PMMA film. The excitation
wavelength was 370 nm.

Now, we turn our attention to the differences in the steady-state absorption and emis-
sion spectra of P1 and P2 and compare them with those of other Mn-based perovskites.
Several factors are expected to contribute to the photophysical behavior of the studied
structures, some of which are more specific for Mn2+-perovskites, such as the Mn-Mn
distances and electron-phonon couplings, while others are more general and can be ex-
trapolated from other types of perovskites (such as H-bonding and other non-covalent
interactions or structural arrangement [58–60]). Related to the structure, we believe that
the observed difference in the behavior of P1 and P2 could stem from differences in the
structural arrangement of the Mn-bromide clusters due to the used organic ligand. We
hypothesize that the EA organic monocation in P1 most probably gives rise to either a 3D
hybrid organic–inorganic perovskite (HOIP), BMX3 (B = small organic cation; X = halide
and M = metal) or a structure similar to Ruddlesden–Popper-like 2D layered HOIP [60,61].
In both cases, these allow for shorter distances between the luminescent Mn centers re-
sulting in a stronger coupling. On the other hand, the EDA dication in P2 is expected to
give rise to Dion–Jacobson-like 2D HOIP layered structures. In these, we expect that the
structures exhibit perfect stacking with no offset or displacement between successive layers,
which can be attributed to the single layer of ions between each layer, as has been reported
for other perovskites [61].

The structural organization of P1 and P2 is closely related to the coordination sphere
of Mn2+. It is well established that the linear chain of the octahedron coordination, such
as in the P1 sample, gives rise to a system of exchange-coupled Mn2+ ions since the
nearest Mn-Mn distance is much shorter (3–5 Å) than that of Mn-Mn within the nearest
neighboring chain [18,28,37,56]. This enables intrachain Mn-Mn coupling several orders
of magnitude stronger than the interchain Mn-Mn coupling. Thus, the Mn2+ ions ar-
rangement in these systems provides excitonic confinement giving rise to a substantial
reduction of exciton capture by nonradiative traps. In addition to that, the interaction
between the nearest Mn2+ ions within the linear chain is beneficial for enhancing Mn2+

absorption [28,37,56]. Furthermore, it was suggested that for systems with tetrahedral ar-
rangements, such as P2, the Mn-containing [MnBr4]2− tetrahedron is individually isolated
among the crystal lattice and separated from the other tetrahedrons by the large organic
cation (EDA in the case of P2) [25,37,62]. The longer distance between two neighboring
[MnBr4]2− tetrahedra, which is estimated between ~7 and 10 Å, can reduce the Mn-Mn
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interaction and hence significantly inhibit the concentration quenching effect of Mn2+ by
suppressing the migration/dissipation of excitation energy to adjacent luminescent centers
of Mn2+ [25,27]. As a result, it is possible that longer Mn-Mn distances would enable all
Mn2+ luminescent centers to emit simultaneously under excitation irrespective of crystal
defects thereby achieving a higher PLQY. Furthermore, in previous studies that have re-
ported notably higher PLQY, the used organic cations rendered significantly more rigid
structures [15,25,28,33,37,39,62]. This increased rigidity can reduce the thermal vibration of
the inorganic anions, which in turn can suppress the non-radiative transitions and result
in a significantly higher PLQY. In P1 and P2, the organic cations have linear chains that
render higher flexibility in the resulting lattice, which would enhance the electron-photon
interactions and might in part explain the relatively lower PLQY values.

Independently on whether the obtained structures are 3D or 2D HOIP, the strength of
the non-covalent interactions (H-bonding, halogen bonding, van der Waals, to name a few)
plays a significant role in the structural stability and phase transformation [58–60,63]. In
these structures, the organic cations interact with the surrounding metal clusters through
weak secondary H-bonding, with energies lower than 0.1 eV per bond [58,64]. DFT calcu-
lations on MAPbX3 (MA = methyl ammonium; X = Br or I) have revealed the role of the
different H-bonding interactions in the stability of the perovskite network [65,66]. Due to
these weak interaction energies, the reorientation of the organic cation can be activated
either thermally at a finite temperature or by applying mechanical stimuli. A combined
theoretical and experimental study has demonstrated a dynamical change in the electronic
band structures and ∼60-fold photoluminescence enhancement upon cooling in MAPbBr3
hybrid perovskites. These were explained in terms of a decrease in the degree of rota-
tional freedom of MA due to a change in the H-bonding interactions. H-bonding can
also influence the mechanical properties of perovskite systems [67]. A recent study has
reported on two Mn-based metal-organic framework perovskites [C(NH2)3][Mn(HCOO)3]
and [(CH2)3NH2][Mn(HCOO)3] with the former giving higher Young’s moduli and hard-
ness due to the stronger hydrogen bonding between the framework hosts and the amine
cations [68]. Additionally, in the 2D HOIP, the inorganic and organic layers are connected
via H-bonds, which provide structural stability to the overall geometry. It has been shown
for some Mn (II)-based hybrid perovskites that stronger H-bonding interactions lead to
larger PLQY [15,38,55]. Finally, for the studied samples here, one also needs to take into
consideration the presence of the hydrated non-emissive octahedral phase that can further
reduce the PLQY and affect their excited state dynamics.

To obtain more insight into the emission behavior, we recorded the emission decays,
to be shown and discussed in Section 2.2.2. We first examine the temperature effect on
the emission spectrum of P2. Recent reports have shown that a change in the temperature
induces a conversion from one Mn(II) configuration to another one [31,69–71]. This effect
is reflected in the emission color that switches from green to orange/red when the tem-
perature increases, and the reverse when the temperature decreases [31,69]. The thermal
stability of Mn-based perovskites is well documented, and thermogravimetric analysis
of (CH6N3)2MnCl4 and 1-(2-aminoethyl)piperazine MnBr, for example, has shown large
stability up to 573 K [38,72]. Thus, we explored the effect of the temperature (from 30 to
125 ◦C) on the emission spectrum of P1 and P2. To begin with P2, the results show a clear
gradual decrease in intensity with the increase in temperature that does not vanish at 125 ◦C
(Figure 4). The relatively small observed thermal quenching in the studied temperature
range suggests a relatively long Mn-Mn distance. We also observed a small broadening of
the emission band (inset of Figure 4). These results can be interpreted in terms of the open-
ing of a non-radiative process or by the conversion of the Mn(II) tetrahedral configuration
in P2 to an octahedral one. However, we did not observe any orange/red emission, the
signature of the Mn(II) octahedral environment, as recorded for P1 (Figure 2A). Thus, we
suggest that the decrease in the emission intensity of P2 upon increasing the temperature
is rather due to an increase in the non-radiative processes, which are enhanced when
electron-phonon interactions increase [31,71]. Notice that we did not observe any change in
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the excitation spectra upon increasing the temperature by almost 100 ◦C, which indicates
that the emitters of P2 are originating from the same ground state population (Figure S1).
We also calculated the activation energy barrier for the non-radiative processes for P2, ∆Ea,
following Equation (1) [38]:

I(T) =
I0

1 + Aexp
(
−∆Ea

kBT

) (1)

where I(T) and I0 are the fluorescence intensities at temperatures T and T0 (303 K, 30 ◦C),
respectively, A is the pre-exponential factor, ∆Ea is the activation energy barrier of non-
radiative processes and kB is the Boltzmann constant. The fit to the temperature depen-
dence of the emission intensity maximum gives ∆Ea = 4.46 kJ/mol (Figure S2A). For P1,
∆Ea = 1.67 kJ/mol, which is about 3–4 times lower than that for P2, in agreement with
the trend in the PLQY values of these perovskites (Figure S2B). Note also that the thermal
energy at room temperature (2.45 kJ/mol at 298 K) is slightly larger than ∆Ea for P1 in
agreement with its low PLQY. These energy barriers are lower than the one reported for
(CH6N3)2MnCl4 perovskite (11.74 kJ/mol), having a PLQY of 55.9% [38].
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The excitation wavelength was 430 nm.

2.2.2. Time-Resolved Emission Data

To explore the photodynamical properties of the two Mn-based perovskites, we col-
lected their emission decays in a PMMA matrix at several emission wavelengths upon
excitation at 371 and 433 nm. No notable excitation and emission wavelength dependence
was observed for both samples (Figure S3 and Table S1). The emission decays of both per-
ovskites in the PMMA matrix decay biexponentially with time constants of τ1 = 83 µs (53%)
and τ2 = 250 µs (47%) for P1, and τ1 = 100 µs (9%) and τ2 = 370 µs (91%) for P2 (Figure 5
and Table 1). These values give average lifetimes of τAVE = 212 µs and τAVE = 362 µs for
P1 and P2, respectively. The larger value of τAVE for P2 agrees with its higher PLQY (26%)
when compared to P1 (3.6%).
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a decrease in the shortest component contribution upon PMMA film protection from moisture. The
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Table 1. Values of the time constants (τi), normalized (to 100) pre-exponential factors (ai), and
average lifetimes (τAVE) to fit the emission decays of P1, P1/PMMA, P2, and P2/PMMA samples
upon excitation at 433 nm and observation at the intensity maximum of the photoluminescence band.

Sample a1
(%)

τ1
(µs)

a2
(%)

τ2
(µs)

τAVE
(µs)

P1 62 83 38 250 192
P1/PMMA 53 83 47 250 212

P2 14 100 86 370 358
P2/PMMA 9 100 91 370 362

We assign the longer decay time (τ2) to the emission of not interacting Mn2+ ions,
which eliminates the direct spin−spin interaction. On the other hand, the fastest component
most likely originates from interacting Mn-Mn pairs. Reported PL lifetimes of the Mn-
emission in hybrid materials comparable in structure to the ones in this study vary from a
few nanoseconds to milliseconds depending on the structure, type of halide ions, the local
environment of Mn2+, and most importantly, the Mn−Mn distance [28,56]. For example, in
a study of [(CH3)4N]2MnBr4 and [(CH3)4N]MnBr3, it was reported that the PL lifetime of
the Mn2+ emission decreases by two orders of magnitude when the structure changes from
the tetrahedral to the octahedral coordination [28]. The observed decrease in the PL decay
lifetime was explained in terms of the relatively shorter Mn−Mn distance of 3.25 Å in
[(CH3)4N]MnBr3 compared to 7.89 Å in [(CH3)4N]2MnBr4. Hence, we explain the decrease
in τAVE when the perovskite structure changes from the tetrahedral coordination in P2
(τAVE = 362 µs) to the octahedral one in P1 (τAVE = 212 µs) with the decrease in the Mn-Mn
distance in the latter. This will facilitate the dissipation of the excitation energy resulting in
the increase of non-radiative recombination. Notice the relatively small difference between
the values of the fluorescence lifetimes (τ2 is only 3–4 times longer than τ1) of the same
perovskite, contrary to previous reports where larger changes were observed [28,56]. Thus,
in the present perovskites, the difference in the Mn-Mn distances between the different
emitting centers should not be very large. On the other hand, the possible presence of the
non-emissive hydrated phase might also be the origin of the shorter time component with
a value of 83 µs, shortening the value of τAVE for both samples.

Finally, to evaluate the effect of hydration on the photodynamics of the studied
perovskites, we collected the emission decays of the unprotected, neat samples following
excitation at 371 nm and gating at 600 nm for P1 and at 550 nm for P2. The observed
decays show a notable increase in the contribution of the fast component (83–100 µs), which
is more pronounced for P1 (from 53% in the PMMA matrix to 62% when unprotected,
τAVE = 192 µs) than for P2 (from 9% to 14%, τAVE = 358 µs). These results agree with the
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observed higher sensitivity of P1 to the ambient humidity and with the formation of a
hydrated, non-emissive quasi-octahedral phase that efficiently quenches the emission of
both perovskites (Figure 3).

3. Materials and Methods
3.1. Materials

Manganese (II) bromide tetrahydrate (MnBr2·4H2O, 98%) was obtained from Acros
Organics (Madrid, Spain). Poly(methyl methacrylate) (PMMA, Mw = 996 000 g.mol−1),
ethylenediamine (EDA) (98%), and toluene were purchased from Sigma Aldrich (Madrid,
Spain). Hydrobromic acid (HBr, 48% w/w aq. soln.) was obtained from Alfa Aesar (Madrid,
Spain). The ethylamine (EA) solution (66–72% aq. soln.) was purchased from Sigma
Aldrich (Madrid, Spain). All chemicals were used without further purification.

Preparation of ethylenediamine dihydrobromide (C2H8N2·2HBr, EDA(HBr)2):
First, EDA (0.7 mL, 0.25 M) was dissolved in 20 mL of ethyl acetate in a round bottom
flask. Next, 5 mL of HBr (48% in water) was dropwise added to the previous solution
under a constant stirring at 0–2 ◦C in an ice-water bath for two hours. Finally, the obtained
EDA(HBr)2 salt was washed several times using ethyl acetate, and the solvent evaporated
in a rotatory evaporator at 40 ◦C.

Synthesis of ethyl ammonium bromide (CH3CH2NH3Br, EA(HBr)): EA (0.5 mL,
0.25 M) was first dissolved in 20 mL of ethyl acetate in a round bottom flask and then
2.5 mL hydrobromic acid was added dropwise in a stirring condition at 0–2 ◦C for
two hours. The transparent homogeneous CH3CH2NH3Br solution was then evaporated
at 60 ◦C in a rotary evaporator. A slight yellowish solid was obtained. The solid was
then washed with ethyl acetate and dried in a rotary evaporator at 40 ◦C to obtain a pure
crystalline solid of CH3CH2NH3Br. The washing was repeated several times to ensure the
removal of excess HBr.

Synthesis of ethyl ammonium manganese (II) bromide (C2H5NH3MnBr3, P1): For the
synthesis of ethyl ammonium manganese (II) bromide, 0.14 g of ethyl ammonium bromide
(0.2 M) and 0.28 g of manganese (II) bromide tetrahydrate (0.2 M) were dissolved in 5 mL
methanol at room temperature [15]. The solution was then evaporated at 40 ◦C for several
days until a red emissive solid was obtained.

Preparation of ethylenediammonium manganese (II) bromide (C2H4(NH3)2MnBr4,
P2): The synthesis procedure was a slight modification of the already reported one [16].
Ethylenediamine dihydrobromide (2 mmol, 0.22 g) and MnBr2·4H2O (2 mmol, 0.28 g) were
dissolved in 2.5 mL 48% HBr. The resulting solution was heated to 80 ◦C for 3 h. Finally,
the solvent was slowly evaporated at 60 ◦C for two days. The obtained crystals were stored
in a vial without further drying (P2(H1)) and dried at 120 ◦C in the oven for 12 h (P2).
To obtain the more hydrated P2 (P2(H2)), the sample was exposed to ambient humidity
for 12 h.

3.2. Methods

Powder X-ray diffraction (PXRD): The X-ray diffraction patterns of polycrystalline
perovskite powders were obtained using a PANalytical diffractometer (X’Pert Pro model)
and an X Bruker D8 Advance. The conditions used were 45 kV, 40 mA, CuKα radiation,
and a system of slits (soller-mask-divergence-antiscatter) of 0.04 rad-10 mm-1/8◦-1/4◦ with
an X’celerator detector.

Electron-spin paramagnetic resonance (EPR): EPR spectra were carried out at room
temperature using a Bruker ELEXSYS E500 spectrometer operating at the X-band. The
spectrometer was equipped with a super-high-Q resonator ER-4123-SHQ, the magnetic
field was calibrated by a NMR probe and the frequency inside the cavity (~9.36 GHz) was
determined with an integrated MW-frequency counter.

Steady-state UV−visible spectroscopy: The steady-state UV−visible diffuse reflectance
spectra were recorded using a JASCO V-670 spectrophotometer equipped with a 60 mm
integrating sphere ISN-723. The obtained signals were converted to Kubelka−Munk func-
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tion F(R) = ((1 − R)2/2R), where R is the diffuse reflectance intensity from the sample. The
emission spectra of the perovskites were recorded using a FluoroMax-4 (Jobin-Yvon) spec-
trofluorometer. This system incorporates an integrating sphere setup Quanta from Horiba
coupled to the spectrofluorometer allowing for measurement of the photoluminescence
quantum yield (PLQY).

Time-resolved emission: Picosecond (ps) emission decays were collected using a
time-correlated single-photon counting (TCSPC) system. The samples were excited using
40 ps-pulsed (<1 mW, 40 MHz repetition rate) diode lasers (PicoQuant, Germany) centered
at 371 and 433 nm. The system was equipped with a laser driver (PDL820B, PicoQuant,
Germany) for burst operation that allows the detection of luminescence signals at time
windows of several seconds. The emission decays were collected and analyzed through a
TCSPC and multi-channel scaling board (TimeHarp260 (nano), PicoQuant, Berlin, Germany)
The fluorescence signal was gated at a magic angle (54.7◦) and monitored at 90◦ with respect
to the excitation beam at discrete emission wavelengths. The experimental decays were
analyzed using a multiexponential function and looking for the best residual distribution.

4. Conclusions

In this work, we reported on the photobehavior of two Mn (II) bromide perovskites
using monovalent (C2H5NH3MnBr3, P1) and a bivalent (C2H4(NH3)2MnBr4, P2) alkyl
interlayer spacers. The EPR experiments suggest that the coordination of the Mn(II) center
in P1 is octahedral while in P2, it is tetrahedral. The emission of P1 is orange-red and does
not have a large PLQY (3.6%), while that of P2 is green and has a larger PLQY (26%). The
difference in their photobehavior relies on the distinct Mn(II) coordination, which reflects
different couplings in electron-phonon and Mn-Mn interactions. The stability against
moisture at ambient conditions largely increases upon encapsulation of both perovskites
by a PMMA film. The emission decay does not depend on the observation wavelength
or the excitation one. It shows two components in the microsecond regime—the shortest
lifetime for the hydrated phases and the longest lifetime for the non-hydrated phases.
From the temperature-dependent of P2 emission intensity, we found an activation energy
barrier, ∆Ea = 4.46 kJ/mol, for the non-radiative processes, most probably due to electron-
phonon interactions. To the best of our knowledge, this is the first report comparing
the effect of mono and bivalent spacer cation bounded to the Mn centers in Mn-based
perovskites, using the same alkyl chain. Although in the present study, despite our best
efforts, we were unable to obtain single crystals of P1 and P2, the findings presented here
provide insights for a better structural design of Mn(II)-based perovskites, to increase their
lighting performance and stability. Future efforts should be aimed at resolving the crystal
structure of perovskites with organic ligands with linear chains, as the ones described
here, while theoretical calculations supported by the resolved crystal structure should
provide details about band structure dynamics [63]. Furthermore, successfully controlling
the long-term stability of 2D HOIP advanced time-resolved experimental techniques could
resolve the ultrafast dynamics in these systems, which has been identified as one of the five
fundamental challenges of 2D perovskite materials [44,59].
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