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Abstract: Cancer is dangerous and one of the major diseases affecting normal human life. In this paper,
a fractional-order cancer model with stem cells and chemotherapy is analyzed to check the effects of
infection in individuals. The model is investigated by the Sumudu transform and a very effective
numerical method. The positivity of solutions with the ABC operator of the proposed technique is
verified. Fixed point theory is used to derive the existence and uniqueness of the solutions for the
fractional order cancer system. Our derived solutions analyze the actual behavior and effect of cancer
disease in the human body using different fractional values. Modern mathematical control with
the fractional operator has many applications including the complex and crucial study of systems
with symmetry. Symmetry analysis is a powerful tool that enables the user to construct numerical
solutions of a given fractional differential equation in a fairly systematic way. Such an analysis will
provide a better understanding to control the of cancer disease in the human body.

Keywords: cancer model; existence; uniqueness; Sumudu transform; fractional operator; Atangana–
Toufik method

MSC: 37M05; 92B05

1. Introduction

Cancer is considered to cause different diseases with different characteristics for a
complex system. To better understand the dynamics of cancer, many researchers are
attempting to use a variety of methodologies to investigate the relationships between
immune cells and tumor cells [1,2]. Diseases are categorized; cancer is one of them which
represents out-of-control cell growth. When two things arise, malignant tumors or extra
hazards appear in the human body. The first one is when cancer cells move through the
blood or lymph system through the body and destroy flourishing tissues, which is known
as invasion. The second issue is when cancerous cells try to split and proliferate to nourish
themselves in a practice producing new blood vessels, which is known as angiogenesis.
Hence a tumor destroys the other healthy tissues and can spread throughout the body in a
process called metastasizing. This phase is more difficult to treat, and this process is called
metastasis [3].

Because of its significance, fractional calculus is useful to depict dynamic processes
in several fields together with physics, economics and finance [4,5], engineering, biology
and medicine, and plenty of other current fields [6]. The inclusion of reminiscence and
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genetic markers, which give a extra rational approach to the cancer remedy epidemic
version, highlights the requirement of managing fractional order outputs. This was in
part assisted by Saeedian et al. who built the epidemic model and learning [7], which
study the behavior and the effect of memory on the disease’s spread. Considering the ABC
fractional operators, the power of the smoking model type and its community was given
by Ucar et al. [8]. The famous German chemist Paul Ehelich began to develop therapeutic
drugs for infectious diseases in the early 1900s. He began to use the term “chemotherapy”,
which he described as the use of chemicals to treat cancer of its powerful anti-inflammatory
chemicals. He was the first person to do so. Although Ehrlich was not optimistic about
the future, he was particularly interested in cancer treatment, including aniline dyes and
early alkylating agents. He wrote “Give up hope you who enter”. In the 1960s surgery and
radiotherapy dominated in the field of cancer treatment until the standard of treatment
after all local therapies had stabilized when the 33A statistical fractional-order model
protective test method for the body became clear by using the framework of fractional
differential equations (FDEs) [9]. Mathematical models are used to analyze the interaction
between different tumor cells and antibodies and dengue based on the system of fractional
differential equations [10]. FDEs and a partial mathematical model have been used as
an alternative operator to discuss the clinical effects of diabetes and the coexistence of
tuberculosis [11].

The fractional derivative is initially divided into two major types. The fractionals
with a singular kernel are Riemann–Liouville (RL) and Caputo [12]. The fractionals with-
out singular kernels are ABC (Mittag–Leffler) and Caputo–Fabrizio (exponential) [13,14].
Fractional calculus is used in finance, chemical, biological, pharmaceutical, physical, and en-
gineering fields as it has many application in our daily life [15,16]. Furthermore, several ap-
plications are given in [17–22] for fractional order versions. With the aid of Caputo–Fabrizio,
fractional-order equal-width equations were solved using the homotopy perturbation trans-
form approach in [23,24]. At both of the fractional-order epidemic model’s steady states,
local and global stability are examined. After analytical treatment, the fractional-order
epidemic model is numerically solved using a template that preserves the structure [25,26].

This paper aims to examine the fractional order cancer model with stem cells and
chemotherapy. Furthermore, we verified the results using the advanced technique of
Atangana–Toufik. Positivity of the proposed model was also derived. In terms of unique-
ness of our study, one important point was the stability analysis of a scheme furnished with
the aid of fixed point theorem.

2. Basic Concepts

Definition 1 (Ref. [27]). Atangana–Baleanu in the Liouville–Caputo sense (ABC) derivative is
as follows

ABC
γ Dγ

t { f (t)} = AB(γ)
1− γ

∫ t

γ

d
dw

f (w)Eγ[−γ
(t− w)γ

1− γ
]dw, n− 1 < γ < n, (1)

where Eγ represents the function as Mittag–Leffler, and AB(γ) represents the function as normal-
ization and AB(0) = AB(1) = 1. The Laplace transform is given for above as

[ABC
γ Dγ

t f (t)](s) =
AB(γ)
1− γ

sγL[ f (t)](s)− sγ−1 f (0)
sγ + γ

1−γ

. (2)

By applying the Sumudu transform (ST), we obtain the following result:

ST[ABC
γ Dγ

t f (t)](s) =
AB(γ)
1− γ

(γΓ(γ + 1)Eγ(−
1

1− γ
νγ))× [ST( f (t))− f (0)]. (3)
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3. Materials and Method

In order to treat the majority of cancers by using the handiest stem cellular therapy,
we developed a fractional order mathematical model that considered three populations:
T(t) tumor cells, E(t) effector cells, and S(t) stem cells. Furthermore, we added an amplifi-
cation A at the realization of the simplified ODEs that described the interaction among all
three populations. M(t) is a chemotherapeutic attention medication, and specifics of the
parameters and their values are given in [28,29]. The subsequent equations deliver an ABC
derivative-based fractional order version for cancer.

ABC
0 Dγ

t S(t) = γ1S− kSMS,

ABC
0 Dγ

t E(t) = α− µE+
p1ES

(S+ 1)
− p2(T+M)E,

ABC
0 Dγ

t T(t) = r(1− bT)T− (p3E+ kTM)T,

ABC
0 Dγ

t M(t) = −γ2M + V(t), (4)

with beginning conditions as

S0(t) = S(0),E0(t) = E(0),T0(t) = T(0),M0(t) = M(0). (5)

By applying Sumudu transform operator on both sides, we obtain

OγEγ(−
1

1− γ
ωγ)

(
ST[S(t))− S(0)]

)
= ST[γ1S− kSMS],

OγEγ(−
1

1− γ
ωγ)

(
ST[E(t))− E(0)]

)
= ST[α− µE+

p1ES

(S+ 1)
− p2(T+M)E],

OγEγ(−
1

1− γ
ωγ)

(
ST[T(t))− T(0)]

)
= ST[r(1− bT)T− (p3E+ kTM)T],

OγEγ(−
1

1− γ
ωγ)

(
ST[M(t))−M(0)]

)
= ST[−γ2M+ V(t)], (6)

where Oγ = B(γ)γΓ(γ+1)
1−γ system (7) becomes

ST[S(t)] = S(0) +
1

OγEγ(− 1
1−γ ωγ)

× ST[γ1S− kSMS],

ST[E(t)] = E(0) +
1

OγEγ(− 1
1−γ ωγ)

× ST[α− µE+
p1ES

(S+ 1)
− p2(T+M)E],

ST[T(t)] = T(0) +
1

OγEγ(− 1
1−γ ωγ)

× ST[r(1− bT)T− (p3E+ kTM)T],

ST[M(t)] = M(0) +
1

OγEγ(− 1
1−γ ωγ)

× ST[−γ2M+ V(t)]. (7)

Using inverse Sumudu Transform, we have

S(t) = S(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[γ1S− kSMS]

}
,

E(t) = E(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[r(1− bT)T− (p3E+ kTM)T]

}
,
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T(t) = T(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[r(1− bT)T− (p3E+ kTM)T]

}
,

M(t) = M(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[−γ2M+ V(t)]

}
. (8)

Therefore, we obtain

S(j+1)(t) = Sj(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[γ1Sj(t)− kSj(t)Mj(t)Sj(t)]},

E(j+1)(t) = Ej(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[α− µEj(t) +

p1Em(t)Sj(t)
(Sj(t) + 1)

−p2(Tj(t) +Mj(t))Ej(t)]},

T(j+1)(t) = Tj(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[r(1− bTj(t))Tj(t)

−(p3Ej(t) + kTj(t)Mj(t))Tj(t)]},

M(j+1)(t) = Mj(0) + ST−1{ 1
OγEγ(− 1

1−γ ωγ)
× ST[−γ2Mj(t) + V(t)]}. (9)

The solution of system (4) is represented as

S = lim
j→∞

Sj; E = lim
j→∞

Ej; T = lim
j→∞

Tj(t); M = lim
j→∞

Mj. (10)

Positivity of Solutions with ABC Operator

All solutions are positive if all of the beginning conditions are true for nonlocal
operators. We need to define the norm

‖Π‖∞ = Supt∈DΠ
|Π(t)|, (11)

such that DΠ is the domain of Π. By applying this norm, we obtain for the Atangana–
Baleanu derivative

S(t) ≥ S0 Eγ

(
− γkS‖M‖∞ − γ1

AB(γ)− (1− γ)(kS‖M‖∞ − γ1)

)
t , ∀t > 0 (12)

E(t) ≥ E0 Eγ

(
−

γµ− p1‖S‖∞
‖S‖∞+1 + p2(‖T‖∞ + ‖M‖∞

AB(γ)− (1− γ)(µ− p1‖S‖∞
‖S‖∞+1 + p2(‖T‖∞ + ‖M‖∞)

)
t , ∀t > 0 (13)

T(t) ≥ T0 Eγ

(
− γp3‖E‖∞ + kT‖M‖∞

AB(γ)− (1− γ)(p3‖E‖∞ + kT‖M‖∞)

)
t , ∀t > 0 (14)

M(t) ≥ M0 Eγ

(
− γγ2

AB(γ)− (1− γ)(γ2)

)
t , ∀t > 0 (15)

Theorem 1. Assume (X, | · |) to be a Banach space and consider H to be a self-map of X satisfying

‖Hr1 −Hx‖ ≤ θ‖X−Hr1‖+ θ‖r1 − x‖, (16)

for every r1, xεX, where 0 ≤ θ < 1.
Suppose that the system (4), and we obtain the following result as

1− γ

B(γ)γΓ(γ + 1)Eγ(− 1
1−γ ωγ)

. (17)
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Proof. Defining K as a self-map, we may then write this as

K[S(j+1)] = S(j+1) = Sj(0) + ST−1[
1

OγEγ(− 1
1−γ ωγ)

× ST[γ1Sj(t)− kSj(t)Mj(t)Sj(t)],

K[E(j+1)] = E(j+1) = Ej(0) + ST−1[
1

OγEγ(− 1
1−γ ωγ)

×ST[α− µEj(t) +
p1Ej(t)Sj(t)
(Sj(t) + 1)

− p2(Tj(t) +Mj(t))Ej(t)],

K[T(j+1)(t)] = T(j+1)(t) = Tj(0) + ST−1[
1

OγEγ(− 1
1−γ ωγ)

×ST[r(1− bTj(t))Tj(t)− (p3Ej(t) + kTj(t)Mj(t))Tj(t)],

K[M(j+1)(t)] = M(j+1)(t) = Mj(0) + ST−1[
1

OγEγ(− 1
1−γ ωγ)

×ST[−γ2Mj(t) + V(t)]. (18)

Using the norm’s aspects along with triangular inequality,

‖K[Sj(t)]−K[Si(t)]‖ ≤ ‖Sj(t)− Si(t)‖+ ‖ST−1{ 1− γ

BEγ(− 1
1−γ ωγ)

×ST[γ1Sj(t)−KSj(t)Mj(t)Sj(t)]} − ST−1{ 1− γ

BEγ(− 1
1−γ ωγ)

×ST[γ1Si(t)−KSi(t)Mi(t)Si(t)]}‖,

‖K[Ej(t)]−K[Ei(t)]‖ ≤ ‖Ej(t)− Ei(t)‖+ ‖ST−1[
1− γ

BEγ(− 1
1−γ ωγ)

×ST[α− µEj(t) +
p1Ej(t)Sj(t)
(Sj(t) + 1)

− p2(Tj(t) +Mj)(t)Ej(t)]

−ST−1[
1− γ

BEγ(− 1
1−γ ωγ)

× ST[α− µEi(t) +
p1Ei(t)Si(t)
(Si(t) + 1)

− p2(Ti(t) +Mi(t))Ei(t)]}‖,

‖K[Tj(t)]−K[Ti(t)]‖ ≤ ‖Tj(t)− Ti(t)‖+ ‖ST−1[
1− γ

BEγ(− 1
1−γ ωγ)

×ST[r(1− BTj(t))Tj(t)− (p3Ej(t) + KTj(t)Mj(t))Tj(t)]} − ST−1[
1− γ

BEγ(− 1
1−γ ωγ)

×ST[r(1− BTi(t))Ti(t)− (p3Ei(t) + KTi(t)Mi(t))Ti(T)]}‖,

‖K[Mj(t)]−K[Mi(t)]‖ ≤ ‖Mj(t)−Mi(t)‖+ ‖ST−1[
1− γ

BEγ(− 1
1−γ ωγ)

×ST[−γ2Mj(t) + V(t)]} − ST−1[
1− γ

BEγ(− 1
1−γ ωγ)

×ST[−γ2Mi(t) + V(t)]}‖, (19)

where B = B(γ)γΓ(γ + 1) K satisfied when
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θ = (0, 0, 0, 0) =



‖Sj(t)− Si(t)‖ × ‖ − Sj(t) + Si(t)‖
+γ1‖Sj(t)− Si(t)‖ − k‖Sj(t)− Si(t)‖‖Mj(t)−Mi(t)‖‖Sj(t)− Si(t)‖,
×‖Ej(t)− Ei(t)‖ × ‖ − Ej(t) + Ei(t)‖
+α− µ‖Ej(t)− Ei(t)‖+

p1‖Ej(t)−Ei(t)‖‖Sj(t)−Si(t)‖
(‖Sj(t)−Si(t)‖+1) ,

−p2(‖Tj(t)− Ti(t)‖+ ‖Mj(t)−Mi(t)‖)‖Ej(t)− Ei(t)‖
×‖Tj(t)− Ti(t)‖ × ‖ − Tj(t) + Ti(t)‖
+r(1− b‖Tj(t)− Ti(t)‖)‖Tj(t)− Ti(t)‖ − (p3‖ − Ej(t) + Ei(t)‖
+k‖Tj(t)−Ti(t)‖‖Mj(t)−Mi(t)‖)‖Tj(t)− Ti(t)‖,
×‖Mj(t)−Mi(t)‖ × ‖ −Mj(t) +Mi(t)‖
−γ2‖Mj(t)−Mi(t)‖+ V(t),

(20)

and we find that K is Picard K-stable.

Theorem 2. System (9) is a unique and distinct solution found by utilizing the iteration method

Proof. Let us consider the Hilbert space,

H = L2((q, p)× (0, T))

h : (q, p)× [0, T]→ R,
∫ ∫

ghdgdh < ∞. (21)

For this purpose, the following operators are used

θ = (0, 0, 0, 0) =


γ1S− kSMS,
α− µE+ p1ES

(S+1) − p2(T+M)E,

r(1− bT)T− (p3E+ kTM)T,
−γ2M+ V(t).

(22)

We have

T(S11(t)− S12(t),E21(t)− E22(t),T31(t)− T32(t),M41(t)−M42(t), (v1, v2, v3, v4), (23)

where (S11(t)− S12(t),E21(t)− E22(t),T31(t)−T32(t),M41(t)−M42(t), which displays the
system’ S special solutions. We may obtain this by using the inner function and norm.

{γ1 A− kADA, v1} ≤ γ1‖A‖‖v1‖ − k‖A‖‖v1‖‖D‖‖v1‖‖A‖‖v1‖,

{α− µB +
p1 A

(A + 1)
− p2(C + D)B, v2} ≤ α− µ‖B‖‖v2‖

+
p1‖B‖‖A‖‖v2‖
(‖A‖‖v2‖+ 1)

− p2(‖C‖‖v2‖+ ‖D‖‖v2‖)‖B‖‖v2‖,

{r(1− bC)C− (p3(B + kC‖D)C, v3} ≤ r(1− b‖C‖‖v3‖)C‖v2‖ − (p3‖B‖‖v3‖

+k‖B‖‖v3‖‖D‖‖v2‖)‖C‖‖v3‖,

{−γ2D + V(t), v4} ≤ −γ2‖D‖‖v4‖+ V(t)‖v4‖,

where A = S11(t)− S12(t), B = E21(t)− E22(t), C = T31(t)− T22(t) and D = M41(t)−
M42(t). In the case of a large number E1, E2, E3, and E4, all of the results converge to an
exact solution. By utilizing four positive and very small parameters and the topology
concept, we have χE1, χE2, χE3, χE4.
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‖S(t)− S11(t)‖, ‖S(t)− S12(t)‖ <
χE1
ω

,

‖E(t)− E21(t)‖, ‖E(t)− E22(t)‖ <
χE2

ς
,

‖T(t)− T31(t)‖, ‖T(t)− T32(t)‖ <
χE3
ϑ

,

and
‖M(t)−M41(t)‖, ‖M(t)−M32(t)‖ <

χE4
$

,

where
ω = 4(γ1‖A‖ − k‖A‖‖v1‖‖D‖‖A‖)‖v1‖,

ς = 4(α− µ‖B‖+ p1‖B‖‖A‖
(‖A‖‖v2‖+ 1)

− p2(‖C‖+ ‖D‖)‖B‖)‖v2‖,

ϑ = 4(r(1− b‖C‖‖v3‖)‖C‖ − (p3‖B‖+ k‖B‖‖D‖)‖C‖)‖v3‖,

$ = 4(−γ2‖D‖+ V(t))‖v4‖,

where
γ1‖A‖ − k‖A‖‖v1‖‖D‖‖A‖ 6= 0,

α− µ‖B‖+ p1‖B‖‖A‖
(‖A‖‖v2‖+ 1)

− p2(‖C‖+ ‖D‖)‖B‖ 6= 0,

r(1− b‖C‖‖v3‖)‖C‖ − (p3‖B‖+ k‖B‖‖C‖)‖D‖ 6= 0,

−γ2‖D‖‖+ V(t)) 6= 0,

where
‖v1‖, ‖v2‖, ‖v3‖, ‖v4‖ 6= 0; ‖S11(t)− S12(t)‖,

‖E21(t)− E22(t)‖, ‖T31(t)− T32(t)‖, ‖M41(t)−M42(t)‖ = 0.

S11(t) = S12(t);E21(t) = E22(t);T31(t) = T32(t);M41(t) = M42(t). (24)

The uniqueness proof is now complete.

4. Numerical Scheme with Atangana–Toufik

In this article, an advanced scheme was applied for nonlinear FD equations on account
of FD with nonsingular kernel and non-nearby fractional derivative. For this purpose,
recollect the nonlinear system given in (5) and apply the technique we have used.

S(t)− S(0) =
(1− γ)

ABC(γ)
{γ1S(t)− kS(t)M(t)S(t)}

+
γ

Γ(γ)× ABC(γ)

∫ t

0
{γ1S(τ1)− kS(τ1)

M(τ1)S(τ1)}(t− τ1)
γ−1dτ1,

E(t)− E(0) =
(1− γ)

ABC(γ)
{α− µE(t) +

p1E(t)S(t)
(S(t) + 1)

− p2(T(t) +M(t))E(t)}

+
γ

Γ(γ)× ABC(γ)

∫ t

0
{α− µE(τ1) +

p1E(τ1)S(τ1)

(S(τ1) + 1)
− p2(T(τ1) +M(τ1))E(τ1)}

(t− τ1)
γ−1dτ1,

T(t)− T(0) =
(1− γ)

ABC(γ)
{r(1− bT(t))T(t)− (p3E(t) + kT(t)M(t))T(t)}
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+
α1

Γ(γ)× ABC(γ)

∫ t

0
{r(1− bT(τ1))T(τ1)− (p3E(τ1) + kT(τ1)

M(τ1))T(τ1)}

(t− τ1)
γ−1dτ1,

M(t)−M(0) =
(1− γ)

ABC(γ)
{−γ2M(t) + V(t)}

+
γ

Γ(γ)× ABC(γ)

∫ t

0
{−γ2M(τ1) + V(t)}(t− τ1)

γ−1dτ1.

As given tM+1,M = 0, 1, 2, 3 . . ., then the above equation can be reformulated as

S(tM+1)− S(0) =
(1− γ)

ABC(γ)
{γ1S(tM)− kS(tM)M(tM)S(tM)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

∫ tk1+1

tk1

{γ1S(τ1)− kS(τ1)
M(τ1)S(τ1)}

(tM+1 − τ1)
γ−1dτ1,

E(tM+1)− E(0) =
(1− γ)

ABC(γ)
{α− µE(tM) +

p1E(tM)S(tM)

(S(tM) + 1)
− p2(T(tM) +M(tM))E(tM)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

∫ tk1+1

tk1

{α− µE(τ1) +
p1E(τ1)S(τ1)

(S(τ1) + 1)
− p2(T(τ1) +M(τ1))E(τ1)}

(tM+1 − τ1)
γ−1dτ1,

T(tM+1)− T(0) =
(1− γ)

ABC(γ)
{r(1− bT(tM))T(tM)− (p3E(tM) + kT(tM)M(tM))T(tM)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

∫ tk1+1

tk1

{r(1− bT(τ1))T(τ1)− (p3E(τ1) + kT(τ1)
M(τ1))T(τ1)}

(tM+1 − τ1)
γ−1dτ1,

M(tM+1)−M(0) =
(1− γ)

ABC(γ)
{−γ2M(tM) + V(t)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

∫ tk1+1

tk1

{−γ2M(τ1) + V(t)}(tM+1 − τ1)
γ−1dτ1.

By using the above equation, we have

SM+1 = S0 +
(1− γ)

ABC(γ)
{γ1S(tM)− kS(tM)M(tM)S(tM)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

(
γ1Sk1 − kSk1

Mk1Sk1

h
B1

−
γ1Sk1−1 − kSk1−1

Mk1−1Sk1−1

h
Aγ,k1,2),

EM+1 = E0 +
(1− γ)

ABC(γ)
{α− µE(tM) +

p1E(tM)S(tM)

(S(tM) + 1)
− p2(T(tM) +M(tM))E(tM)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

(
α− µEk1 +

p1Ek1
Sk1

(Sk1
+1) − p2(Tk1 +Mk1)Ek1

h
B1
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−
α− µEk1−1 +

p1Ek1−1Sk1−1

(Sk1−1+1) − p2(Tk1−1 +Mk1−1)Ek1−1

h
Aγ,k1,2),

TM+1 = T0 +
(1− γ)

ABC(γ)
{r(1− bT(tM))T(tM)− (p3E(tM) + kT(tM)M(tM))T(tM)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

(
r(1− bTk1)Tk1 − (p3Ek1 + kTk1

Mk1)Tk1

h
B1

−
r(1− bTk1−1)Tk1−1 − (p3Ek1−1 + kTk1−1Mk1−1)Tk1−1

h
Aγ,k1,2),

MM+1 = M0 +
(1− γ)

ABC(γ)
{−γ2M(tM) + V(t)}

+
γ

Γ(γ)× ABC(γ)

M

∑
k1=0

(
−γ2Mk1 + V(t)

h
B1

−
−γ2Mk1−1 + V(t)

h
Aγ,k1,2),

where Aγ,k1,2 =
∫ tk1+1

tk1
(τ1 − tk1)(tM+1 − τ1)

γ−1dτ1 and B1 =
∫ tk1+1

tk1
(τ1 − tk1−1)(tM+1 −

τ1)
γ−1dτ1. By integrating the above and putting in a system of equations, we have

SM+1 = S0 +
(1− γ)

ABC(γ)
{γ1S(tM)− kS(tM)M(tM)S(tM)}

+
γ

ABC(γ)

M

∑
k1=0

(
hγ{γ1Sk1 − kSk1

Mk1Sk1}
h

B1

−
hγ{γ1Sk1−1 − kSk1−1

Mk1−1Sk1−1}
h

Aγ,k1,2),

EM+1 = E0 +
(1− γ)

ABC(γ)
{α− µE(tM) +

p1E(tM)S(tM)

(S(tM) + 1)
− p2(T(tM) +M(tM))E(tM)}

+
γ

ABC(γ)

M

∑
k1=0

(
hγ{α− µEk1 +

p1Ek1
Sk1

(Sk1
+1) − p2(Tk1 +Mk1)Ek1}

h
B1

−
hγ{α− µEk1−1 +

p1Ek1−1Sk1−1

(Sk1−1+1) − p2(Tk1−1 +Mk1−1)Ek1−1}

h
Aγ,k1,2),

TM+1 = T0 +
(1− γ)

ABC(γ)
{r(1− bT(tM))T(tM)− (p3E(tM) + kT(tM)M(tM))T(tM)}

+
γ

ABC(γ)

M

∑
k1=0

(
hγ{r(1− bTk1)Tk1 − (p3Ek1 + kTk1

Mk1)Tk1}
h

B1

−
hγ{r(1− bTk1−1)Tk1−1 − (p3Ek1−1 + kTk1−1Mk1−1)Tk1−1}

h
Aγ,k1,2),

MM+1 = M0 +
(1− γ)

ABC(γ)
{−γ2M(tM) + V(t)}

+
γ

ABC(γ)

M

∑
k1=0

(
hγ{−γ2Mk1 + V(t)}

h
B1
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−
hγ{−γ2Mk1−1 + V(t)}

h
Aγ,k1,2),

where
A1 = {M+ 1− k1)

γ+1 − (M− k1)
γ(M− k1 + 1 + γ)}

and
A2 = {M+ 1− k1)

γ(M− k1 + 2 + γ)− (M− k1)
γ(M− k1 + 2 + 2γ)}.

5. Numerical Results and Discussion

To evaluate the possible effectiveness of cancer transmission within the community,
the cancer fractional-order version with stem cells and chemotherapy was furnished. This
is why, for the fractional-order version of the cancer model, we employed Atangana–
Baleanu in a Caputo sense derivative with the Samudu transform and a better Atangana–
Toufik numerical scheme. The mechanical aspects of the fractional-order version were
identified with time-fractional parameters by using the numerous numerical tactics. In
order to acquire an analytical solution in the form of convergent series with easily calculable
components, we first applied a relatively approach to the analysis method on the resulting
time-fractional partial differential equations. With the aid of our numerical analysis, we
were able to make some suggestions regarding the proper order (fractional) of derivatives
in time to be applied while simulating a cancer tumor. The numerical study, which was
performed in Matlab 2020R, uncovered some of the reasons why some cancer tumor
models require fractional order of derivative in time. The findings demonstrated that the
concentration of cancer cells decreased with time until it reached zero with this kind of
killing rate and the specified initial condition. Here, the fractional order has no discernible
impact. It is easily observed that the solution lies in the bounded domain and converged to
a steady state for all Figures 1–4 according to different fractional order values. Moreover,
it can be seen from Figure 3 that stem and tumor cells reached zero after a few days,
while effector cells and chemotherapy came to a stable position, as shown in Figure 4.
The behavior of the system was analyzed through simulation by comparing the results at
integer values (α = 1) and noninteger values (α 6= 1) by using the proposed technique.

0 10 20 30 40 50 60
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0.5
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0.8

0.9

1

S
(t
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=1.0

=0.98

=0.95

=0.90

Figure 1. Simulation of S(t) for proposed scheme.
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Figure 2. Simulation of E(t) for proposed scheme.
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Figure 3. Simulation of T(t) for proposed scheme.
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Figure 4. Simulation of M(t) for proposed scheme.

6. Conclusions

We tested the cancer version with stem cells and chemotherapy by using a fractional
operator to look at the disorder’s dynamic behavior in the community. We employed the
Sumudu transform and a numerical scheme to gain a sensible technique in order to develop
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knowledge of the epidemic’s real behavior. The fixed point concept was used to validate
the existence and distinctiveness of the system’s answer. Within the framework of the
fractional derivatives, nonlinear FDEs were suggested from derivatives of the usage of
nonsingular as well as nonlocal kernels. Simulations were demonstrated to check the actual
effects of cancer with stem cells and chemotherapy in a community. This kind of research
will assist physicians with cancer disease treatment plans, decision making, and remedy.

Chemotherapeutic medications caused a symmetrical behavior with distinct fractional
values in which the percentage of tumor cells started to decline and the percentage of
immune cells and normal cells grew. These solutions have the same pattern of bounding to
the steady state point. By proving the relationship between chemotherapy medications and
increasing immunity against a particular malignancy, this represents a breakthrough in the
treatment of cancer tumors. Furthermore, it is noted that the suggested methods are an
effective method that may be used to resolve further nonlinear fractional-order differential
equations that are appearing in the field of biological sciences.
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