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Abstract: A significant activity is devoted to the investigation of the ultrafast spin dynamic processes,
holding a great potential for science and applications. However, a challenge of the understanding of
the mechanisms of underlying spin dynamics in nanomaterials at pico- and femtosecond timescales
remains under discussion. In this article, we explore the gyrotropic vortex dynamics in a circular
soft magnetic nanodot, highlighting the impacts given by nutations in the high-frequency part of
the dot spin excitation spectrum. Using a modified Thiele equation of the vortex core motion with
a nutation term, we analyze the dynamic response of the vortex to an oscillating magnetic field
applied in the dot plane. It is found that nutations affect the trajectory of the vortex core. Namely,
we show that the directions of the vortex core motion in the low-frequency gyrotropic mode and the
high-frequency nutation mode are opposite. The resonant frequencies of gyrotropic and nutational
vortex core motions reveal themselves on different scales: gigahertz for the gyrotropic motion and
terahertz for the nutations. We argue that the nutations induce a dynamic vortex mass, present
estimates of the nutational mass, and conduct comparison with the mass appearing due to moving
vortex interactions with spin waves and Doering domain wall mass.

Keywords: soft magnetic materials; nanodots; magnetic vortex; gyrotropic dynamics; nutations

1. Introduction

Quite recently, the topic of nutations in the magnetization dynamics have attracted es-
sential attention due to the resonance effects that manifest themselves in the high-frequency
range at pico- and femtosecond timescales [1–8]. Ultrafast spin dynamics remains the
subject of crucial importance for the spintronic applications and high-speed spintronic de-
vices based on magnetic nanomaterials. Understanding the mechanisms of high-frequency
magnetization oscillation processes in soft magnetic nanodots contributes to this field.

The phenomenological Landau–Lifshitz equation of magnetization motion becomes
invalid at the short, pico-second and sub-pico-second time scales. The origin of that is
the importance of other fast degrees of freedom (electrons, phonons, etc.) on such short
time scales, which start to strongly interact with the moving magnetization. To account for
other degrees of freedom in magnetic materials and extend the applicability of the Landau–
Lifshitz equation to ps and sub-ps spin dynamics, an extra “inertial” term containing the
second derivative of the magnetization with respect to time was added. This new term is
responsible, in particular, for the magnetization of high frequency THz motions (nutations).
Researchers, inspired by the ideas presented in Refs. [9,10], considered several aspects
of magnetization dynamics in the inertial mode, including spin waves, ferromagnetic
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resonance, s–d electron interactions, spin current torques, etc. [2,7,11–15]. As it appears, the
nutations can be treated by an effective mechanism, allowing them to explain the features
of ultrafast magnetization dynamics related, in particular, to the impact of magnetization
“inertia”. It was assumed that the nutation effects can be described on the base of a term
proportional to the 2nd order derivative of the magnetization, with respect to time, multi-
plied by the coefficient, η [9]. In most publications, η was considered to be proportional to
the magnetization dissipation parameter (α) and nutation time (τ) [4,7,13,16,17], in several
others, η is taken as an α-independent parameter [8,18]. The emergence of the nutation
term can be interpreted on the basis of the angular momentum conservation law [17] and
the magnetization precession in the presence of neighboring magnetic atoms in a crys-
talline environment. If the system is affected by an external magnetic field, or induced,
for example, by the electric current, then this external field tilts the angular momentum
axis; in other words, it induces the precession while magnetic moments linked with the
neighbors in the crystal environment react inertially and begin to nutate on a femtosecond
time scale because they are coupled by the Heisenberg exchange interaction. The nutation is
considered to be important if the time scale of the magnetic field change is smaller than the
angular momentum relaxation time. Various mechanisms responsible for the emergence
of a nutation term were considered in [3,9,12,15,17,19,20], where it was shown that, along
with inertia nutations, the first-mentioned Josephson nutation, Rabi oscillations, surface
magnetic anisotropy, and geometrical confinement can be reasoned. Approximate estimates
of the nutation times (τ) performed in [9,16] result in values of about 10–100 fs. However,
in [1], essentially higher essential values of τ, collected experimentally and approximately
in the order of 10 ps were extracted from the resonance linewidth. The value of τ esti-
mated from the time-resolved magneto-optical measurements of Co-thin films in [5] is
about of 1 ps.

Despite a fairly significant amount of theoretical work considering the nutation in
magnetic materials, the experimental observation of the effect encounters difficulties related
with the separation of the dynamic responses of the system for different timescales. For
example, the frequency difference between the frequencies of ferromagnetic resonance
(4 GHz) and nutation resonance (0.6 or 0.4 THz) in CoFeB or permalloy-thin magnetic
films is about 100 times [1]. These first experiments on magnetization nutation observed
at the frequencies close to 0.5 THz in CoFeB and Ni81Fe19 films deposited on different
substrates were reported very recently [1]. This stimulated further experimental research
in this field. Thus, high-order nutation resonances, the dependence of nutation effects on
magnetic anisotropy, and the ballistic switching of magnetization have been experimentally
detected [5,6]. We note that only uniformly magnetized magnetic samples were considered
before. In this regard, it is of interest to explore the influence of nutation on the motion
of swirling topologically non-trivial magnetization textures on the nanoscale: magnetic
vortices and skyrmions. Prerequisites for such studies can be found in the work in [3,4,17],
with estimations of the nutation timescales and lifetimes in magnetic nanostructures [17],
nutation interpretation [21] of two excitation modes in the spectrum of the coupled magnetic
vortices in magnetic spherical shells [21] and tri-layer magnetic nanodots [22], resonance
peaks attributed to precessional and nutation motion in the nanoparticles [3,23], and
nutation wave considered as a result of collective spin excitations in the spatially extended
spin systems [4].

The vortex gyrotropic mode and its frequency in thin soft magnetic nanodots are
well understood, see [24] and the review in [25]. However, when referring to nutations
in the magnetic vortex dynamics, one should keep in mind that the inertia term, which is
important for nutations, is also associated with the mass of magnetic texture revealed in
the spectrum of oscillations in nanosized particles. Thus, as was shown in [26], the lowest
modes in the vortex excitation spectra in circular soft magnetic nanodots are owed to the
effective vortex mass appearing due to spin waves–vortex interactions.

In order to clarify the differences in the inertially induced oscillations, in this article, we
explore the nutation effect on the gyrotropic vortex dynamics. We consider the excitations
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of the vortex ground magnetic state in a cylindrical soft magnetic nanodot with radius R
and thickness L, calculate the gyrotropic and nutation mode frequencies and the mode
intensities, and evaluate their behavior depending on the system parameters. We also show
that the nutation term can be treated as dynamic vortex mass in the particle-like equation
of the motion of the vortex core.

2. Materials and Methods

In this section, we analyze the features of the inertial gyrotropic dynamics of a magnetic
vortex in a soft magnetic (permalloy, FeNi alloy) nanodot using the methods of collective
variables and determine the main parameters of vortex gyrotropic and nutation resonances
arising in the low-frequency (gigahertz) and high-frequency (terahertz) ranges.

Let us consider a cylindrical ferromagnetic nanodot with thickness L order of 10 nm
and radius R order of 100 nm (Figure 1). To explore the magnetic vortex dynamics, we
appeal to the Thiele equation of the vortex center motion with a nutation term derived
from the corresponding Landau–Lifshitz–Gilbert (LLG) equation:

dM
dt

= −|γ|
[
M×Heff

]
+

α

Ms

[
M× dM

dt

]
+

η

Ms

[
M× d2M

dt2

]
, (1)

where Heff = −δE/δM is the effective magnetic field, and

E(m) = A
(
∂µmα

)2 − 1
2

Msm ·Hm −Msm ·H

is the magnetic energy density; γ is the gyromagnetic ratio; α is the Gilbert dissipation
parameter; η is the nutation coefficient; Ms is the saturation magnetization; A is the isotropic
exchange stiffness constant proportional to the Heisenberg exchange integral; α, µ =x, y, z,
m = M/Ms is the unit magnetization vector; Hm is the magnetostatic field; H is external
magnetic field. No magnetic anisotropy is included to the energy density E, assuming a soft
magnetic material. Further we consider in-plane circularly polarized oscillating field H. We
assume that the dot is thin enough and the magnetization M(ρ, z, t) does not depend on the
thickness coordinate, z. We address to the collective variable approach with magnetization
taken in a form M(ρ,t) = M(ρ, X(t)), where ρ is the radius vector and X is the vortex core
position in the dot plane, respectively.
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Figure 1. Schematic illustration of the vortex ground state in a circular magnetic nanodot.

We use the angular parameterization for the dot magnetization components via spher-
ical angles Θ, Φ: mz = cosΘ and mx + imy = sinΘexp(iΦ). After several transformations
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using the ansatz m(ρ,t) = m(ρ, X(t)), the LLG Equation (1) acquires the form of the modified
Thiele equation:

G× V−∇XW + D̂ · V− N̂
dV
dt

+ µ[z×H] = 0 (2)

with the coefficients determined as follows, V = dX/dt, W(X) =
∫

d3rE(m(r, X)), and the
energy density E taken here without the Zeeman energy.

The gyrocoupling tensor (emergent magnetic field tensor) is:

Gij =
MsL
|γ|

∫
d2ρm·

[
∂im× ∂jm

]
=

MsL
|γ|

∫
d2ρ sin Θ

[
∂iΘ∂jΦ− ∂iΦ∂jΘ

]
The damping tensor and nutation tensor are defined as:

Dij = −α
MsL
|γ|

∫
d2ρ
[
∂im·∂jm

]
= −αMsL

|γ|

∫
d2ρ
[
∂iΘ∂jΘ + sin2∂iΦ∂jΦ

]
,

Nij = η
MsL
|γ|

∫
d2ρ
[
∂im·∂jm

]
= η

MsL
|γ|

∫
d2ρ
[
∂iΘ∂jΘ + sin2∂iΦ∂jΦ

]
,

where ∂i = ∂/∂Xi are derivatives with respect to the vortex core X position components,
and integration is conducted over the dot plane.

Equation (2) is the generalized Thiele equation [27] with the additional nutation term
N̂ dV

dt . Important difference from the original Thiele equation obtained for the steady state
rigid domain wall center motion is that the gyrocoupling, damping, and nutation tensors
are calculated via derivatives, with respect to the soliton center position X, not with respect
to the current coordinate, r = (x, y, z). The gyrovector is determined as a dual vector for
the antisymmetric tensor Gij; G = –Gz, G = Gxy = −Gyx = 2π

|γ| qpLMs where the integer
number q is vorticity, p = ±1 is the vortex polarization that determines the direction of mz
component in the center of vortex (here, we take q = +1, p = +1, G > 0, as in [28,29]), z is the
unit vector directed along z-axis, parallel to the dot thickness. The second and third terms
in Equation (2) are the restoring and dissipative forces. Following the approach elaborated
in [24,28,29], we extract the Zeeman force as the separate term FH = µ[z×H], where the
coefficient µ calculated within the two-vortex model is µ = πRLξCMs and ξ = 2/3 [24],
and C = ±1 determines vortex chirality.

For the vortex in-plane circular motion, excited by the in-plane circularly polarized
oscillating magnetic field H =

(
Hx, Hy

)
, H(t) = Hx + iHy = H0exp(iωt), the vortex

velocity and acceleration are expressed via the angular velocity ω = ωz, V = dX
dt =

[ω×X] = ω[z×X], dV
dt = −ω2X that allows us to rewrite Equation (2) in terms of the

oscillation frequencyω:

− N̂ω2X−G× [ω×X] +∇XW − D̂ · [ω×X]− µ[z×H] = 0 (3)

In the case of sufficiently small displacements of the vortex core from its equilibrium
position X = (X, Y), the magnetic energy can be decomposed in the series of small parameter
as W(X) = W(0) + κ

(
X2 + Y2)/2, where κ is the stiffness coefficient determined for the

vortex magnetic state in [29] within an appropriate displaced vortex core model.
It was shown in [24] that for cylindrical nanodot, the damping and nutation tensors

are diagonal at X = 0 with equal diagonal components. We use notations Dxx = Dyy = D
and Nxx = Nyy = N. We note that within the rigid vortex model m(ρ, X(t)) = m(ρ − X(t));
∂/∂Xi = −∂/∂xi; and, therefore, Tr

(
D̂
)
, Tr
(

N̂
)

are proportional to the dot exchange energy.
Then, Equation (3) written in terms of the vortex position X reads as:

− Nω2X− GωX + κX− D[ω×X]− µ[z×H] = 0 (4)
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or in terms of the vector components:

X
(
−N

G
ω2 −ω +

κ

G

)
+

D
G

ωY = − µ

G
Hy,−D

G
ωX + Y

(
−N

G
ω2 −ω +

κ

G

)
=

µ

G
Hx. (5)

It is convenient to rewrite Equation (5) using the complex variables for the vortex core
position and oscillating magnetic field, Z = X + iY, H = Hx + iHy,, as:

Z = i
µ

G
H

(ω0 −ω− ηGω2 + idω)
, (6)

where ω0 = κ/G, ηG = N/G, d = −D/G.
Introducing the circular component 〈M+〉 = Mx + iMy of the volume averaged dot

magnetization 〈M(t)〉 = −(µ/V)[z× X(t)], we get the simple relation 〈M+〉 = −i(µ/V)Z.
Then, substituting Solution (6) into this relation and introducing the Fourier transforms
〈M+(t)〉 = 〈M+(ω)〉exp(iωt), H(t) = H(ω)exp(iωt), we obtain the linear relation:

〈M+(ω)〉 = µ2

GV
H(ω)

(ω0 −ω− ηGω2 + idω)
= χ(ω)H(ω) (7)

Allowing us to obtain the dynamic circular magnetic susceptibility χ(ω) in the form:

χ(ω) = χ′(ω) + iχ′′(ω) =
µ2

GV
ω0 −ω− ηGω2 − idω

(ω0 −ω− ηGω2)
2 + d2ω2

(8)

The imaginary part of χ(ω):

χ′′(ω) = −χ(0)
dωω0

(ω0 −ω− ηGω2)
2 + d2ω2

, (9)

determines the intensities and linewidths of magnetic resonances. Here, χ(0) = µ2/VGω0
is the static vortex dot susceptibility calculated in [24,29].

The eigenfrequencies of the vortex motion are determined by the poles of dynamical
susceptibility given by Equation (7):

ηGω2 + (1− id)ω−ω0 = 0. (10)

The quadratic Equation (10) has complex roots ω1,2, whose real parts determine
the frequencies of the gyrotropic vortex motion ωG and vortex nutation ωη , and the
imaginary parts determine damping (linewidths) of these excitation modes. We search
for the solutions of Equation (10) in the form ω = ω′+ iω′′ and find assuming ω′′ < ω′,
the resonance frequencies to be ωres = ω′[1 + id/(1 + 2ηGω′)], where ω′ satisfies the
equation ηGω′2 + ω′ − ω0 = 0. In the limit ηGω0 << 1, this equation has two solutions:
ωG = ω0, standing for the vortex gyrofrequency of the counter-clockwise vortex core
motion, and ωη = − 1

ηG
, which is responsible for the nutation frequency of the clockwise

core motion. The corresponding complex roots of Equation (10) are ω1 = ω0(1 + id) and
ω2 = −(1/ηG)(1− id). The real parts of the roots, ω0 > 0 and ωη < 0, have opposite signs
due the positive sign of the nutation parameter ηG = N/G (N > 0 due to η > 0 [9,12] and
G > 0).

The low frequency vortex core precession and high-frequency nutation motions are in
the opposite directions. More definitely, for a magnetic vortex with positive polarization
(p > 0), the gyrotropic motion of the vortex core is counter-clockwise, while the nuta-
tion motion is clockwise. For a vortex with negative polarization (p < 0), the situation
is reversed.
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3. Results and Discussion

Obtained analytical expressions for the dynamical susceptibility χ(ω) of the vortex-
state nanodots (8,9) are similar to those calculated [2,7] or simulated [12] recently for
uniformly magnetized samples. However, as noticed in [24], all parameters in the dynam-
ical susceptibility of the vortex state dot (intensities, resonance frequencies, linewidths)
are essentially different from ones for uniformly magnetized particles. The developed
model of the magnetic susceptibility is valid for all parameters of the vortex nanodot
(G, D, N, ω0, µ). The gyrovector G does not depend in the linear approximation on
the particular model of the displaced vortex core. However, the damping D and nuta-
tion N coefficients, the vortex gyrotropic frequency ω0 , and the coefficient µ of response
to magnetic field are model dependent. The dependence of D and N on the particular
model of the displaced vortex is relatively weak and can be neglected in the first approx-
imation. The model dependence of ω0 and µ is strong. For all numerical calculations
(plots) and estimations, we used the two-vortex model of the displaced vortex described in
detail in [24,25].

Here, we calculate numerically the dependences of ωG/2π (GHz) and ωη/2π (THz)
on the nutation parameter ηG, as shown in Figure 2, for the permalloy (FeNi alloy) cylin-
drical nanodot with the magnetic material parameters A = 1.1·10−6 erg/cm, Ms = 800 G,
α = 0.01, γ/2π = 2.95 MHz/Oe, dot radius R = 100 nm, and dot thickness L = 10 nm,
as in [25,29]. The damping parameter is D = −2παMsL(5/8 + ln(R/Rc)/2)/γ [30],
the vortex core radius is Rc = 0.68Le(L/Le)

1/3, where Le =
√

2A/Ms is the exchange
length. Therefore, according to [29] for the nanodot aspect ratio L/R = 0.1 we take
ω0/2π = 0.52 GHz, and d = 0.02 (Rc = 18.5 nm). The range of the nutation parameter
ηG is related with sub-picosecond timescales [9,16,17]. Direct calculations within two
vortex model yields the relation ηG = (5/8 + ln(R/Rc)/2)η or ηG ≈ 2η for our nanodot
parameters. The estimation of the nutation vortex frequency for these dot parameters and
τ = 10 ps yields is ωη/2π = 0.9 THz.
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Figure 2. Dependence of the vortex eigenfrequencies ωη and ωG (insert), taken in the logarithmic
scale on the nutation parameter ηG in permalloy (FeNi alloy) circular nanodot. The nanodot thickness
is 10 nm, and the radius is 100 nm.

The vortex gyrotropic (ωG) and nutation (ωη) eigenfrequencies presented in Figure 2
are essentially different. Therefore, for convenience, we use a logarithmic frequency scale.
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Note that we are considering the absolute values of ω, since the sign of the frequency, as
noted above, is important only for determining the sense of the vortex core rotation. As
shown in Figure 2, the gyrotropic frequency ωG of the order of 1 GHz very slowly decreases
with the increase in the nutation parameter ηG. The absolute value of the nutation frequency
ωη changing in the THz range decreases. If we choose the vortex core polarization p = +1,
the low-frequency vortex core gyrotropic motion is counter-clockwise (positive resonance
frequency), whereas the high-frequency nutation motion is clockwise (negative resonance
frequency). The resulting core motion is a superposition of two such rotations. The
vortex core trajectory for the vortex gyroscopic and nutation modes can be represented as
ZG(t) = Z1exp(iω0t)exp(−dω0t) and Zη(t) = Z2exp(−it/ηG)exp(−dt/ηG), respectively.
Therefore, to excite and detect the gyrotropic and nutation spin modes in the vortex, such as
structures, circularly polarized oscillating magnetic fields of different directions are needed.

Note that the differences in the senses of rotation of two spin modes, where the first one
is due to spin precession, and the second one is due to the spin inertia, is a common feature
of the spin dynamics in ferromagnets. The first mode corresponds to the ferromagnetic
resonance in the uniformly magnetized samples [2] or to the gyrotropic resonance in
curling magnetic structures [29]. The second high-frequency mode emerges due to the spin
inertia and is manifested as the nutation spin motion. The resulting spin dynamics is a
superposition of precession and nutation. In both cases, ferromagnetic resonance [2] and
vortex gyrotropic motion, the magnetization oscillates in the plane xOy perpendicularly
to the selected axis Oz, which is dictated by a strong dc magnetic field or by the vortex
core polarization direction, respectively. In the first case, the oscillation magnetization is
spatially unform [2], whereas in the second case it is inhomogeneous and volume-averaged
magnetization 〈M(t)〉, defined in the text below Equation (6) [24]. The opposite signs of
the gyrotropic and nutation resonance frequencies result in the different signs of magnetic
susceptibilities shown in Figure 3. The dynamical susceptibility χ(ω) defined by Equation
(8) is marked as χ+(ω) in [2]. The nutation resonance frequency in [2] corresponds to a
peak at a positive frequency ω > 0 of the susceptibility χ−(ω), which is in response to
the magnetic field circulating in the opposite (clockwise) direction. Both approaches are
equivalent because of the relation χ−(ω) = χ+(−ω).
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with the experimental data [1]. The nanodot thickness is 10 nm, and the radius is 100 nm.
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The nutation relaxation rate is d/ηG = α/η. If we use the definition of the nuta-
tion parameter η via the nutation time τ as η = ατ, then the nutation mode trajectory is
Zη(t) = Z2exp(−it/ηG)exp(−t/τ). The nutation vortex motion decays with the charac-
teristic time τ, i.e., very fast, on the picosecond time scale. The corresponding resonance
linewidth 1/τ is high, in the order of 0.5–1 THz. Such large linewidths were experimentally
detected for the nutation resonance in the CoFeB and FeNi thin films in [1].

Equation (9) for the imaginary part of the vortex dynamic susceptibility allows us
to calculate the ratio of the peak intensities at the nutation and gyrotropic resonance
as χ′′

(
ωη

)
/χ′′(ω0) = ω0/ωη . The nutation frequency ωη = η−1[5/8 + ln(R/Rc)/2]−1

is much larger (approximately in 103 times) than the vortex gyrotropic frequency ω0.
Therefore, the high-frequency nutation resonance peak value is very small in comparison
with the low-frequency vortex gyration peak.

The dependence of χ′′ on the frequency for the value of the nutation parameter selected
in accordance with the experiments ηG = 0.1 ps is shown in Figure 3; in order to highlight
the nutation peak of the susceptibility at high frequencies, we inserted it into the inset to
Figure 3. Note that only the χ

(1)
max = χ′′(ωG) peak exists in the frequency dependence of the

imaginary part of dynamical susceptibility χ′′(ω) when nutation is supposed to be absent.
An additional nutation peak χ

(2)
max = χ′′

(
ωη

)
emerges when the nutation parameter ηG

acquires non-zero values, it tends to shift to the low-frequency part of the spectrum when
increasing the nutation parameter ηG.

In several published papers, it is stated that the nutation is equivalent to some of the
inertia of the spin system. The nutation moment of inertia was introduced in [9–11] and
then it was calculated in [14] and estimated in [11,15], However, the corresponding inertial
mass was never calculated in ferromagnets, except in the specific case of interaction of
moving magnetic vortex with a bath of spin waves [26,31] or spin sd–exchange interaction
with conductivity electrons in ferromagnetic metals [15]. The nutation mass introduced
in [4] for spin waves has a different physical sense. It is just the nutation spin wave
frequency at zero wave vector. The inertia of the spin in metallic ferromagnets represents
a nonadiabatic contribution from the environmental degrees of freedom (conductivity
electrons). It was shown in [10,26] that such external degrees can be spin waves excited
over inhomogeneous magnetization (vortex) background. The origin of the inertial mass
in both cases is dynamical. From the other side, an inertial mass was introduced to
magnetism by Doering in 1948 considering a rigid motion of a 1D domain wall in anisotropic
ferromagnet [32] without any other degrees of freedom.

Here, we consider the connection between the nutation term in the LLG equation of
motion (1) and the inertial vortex (2D topological magnetic soliton) mass. The nutation
term defined by the second order time derivative of magnetization contributes to a vortex
mass determined by the nutation coefficient N in the modified Thiele equation for the
vortex center position X motion. Equations (2)–(4) allow us to assume that the nutation
coefficient N can be treated as a vortex inertial mass in the course of particle-like motion of
the vortex core, described by the core position X, velocity dX/dt, and acceleration d2X/dt2.
Then, the vortex mass can be explicitly written as:

Mυ =
1
2

L
γ2 αωMτ

[
5
8
+

1
2

ln
(

R
Rc

)]
, (11)

where ωM = 4πγMs.
It can be seen from this expression that nutation-induced vortex mass is directly propor-

tional to the nutation time τ and depends on the sizes of nanodot and the parameters of the
magnetic material. Using Equation (11), we can estimate the vortex mass for a definite system.
The range of vortex mass of permalloy nanodot (R = 100 nm, L = 10 nm) related with the
range of nutation parameter η = ατ~0.01 × (10−12 − 10−11 s) is 10−23 − 10−22 g. Although
this nutation vortex mass is essentially smaller than the dynamical vortex mass emerging
due to the spin wave–vortex interaction considered in [10,26], it has the same order of
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magnitude as the Doering mass of domain walls in uniaxial anisotropic ferromagnets. We
can estimate the Doering mass for the vortex in soft magnetic material using its definition
MD = S/

(
2πγ2∆

)
, where S ≈ 2RL is the domain wall square and ∆ ≈ R is the domain

wall width, and we can obtain the value MD = L/
(
πγ2) comparable with the vortex

nutation mass given by Equation (11).

4. Conclusions

We considered the high-frequency vortex excitations in the framework of the nutation
approach to the inertial dynamics in ferromagnets. Based on the Thiele equation with
a nutation term obtained here and the model of vortex dynamics developed in [24], we
calculated the resonant frequencies and the dynamic susceptibility of a single vortex state
in a magnetically soft nanodot to excitations induced by an in-plane oscillating magnetic
field with a circular polarization. We showed the existence of two resonant frequencies
reflected in two peaks of the dynamic magnetic susceptibility, corresponding to the vortex
core gyrotropic motion and the nutations. The first frequency is the standard gyrotropic
frequency, the value of which belongs to the gigahertz range; the second frequency is
responsible for spin nutations manifested themselves in the terahertz frequency range. The
magnitude of the nutation frequency and the intensity of the dynamic response depend on
the timescales of the nutation effects; the longer the nutation time, the lower the nutation
frequency and the more pronounced the response signal.

A distinctive feature of the considered vortex oscillations is the difference in the direc-
tions of spin rotation. Vortex core in the gyrotropic and nutation modes rotates in opposite
directions. Namely, for a vortex with positive polarity, the low frequency gyrotropic motion
is counterclockwise, while the high-frequency nutation motion is clockwise; for a vortex
with negative polarity, the situation is reversed. The resulting trajectory of the vortex
core represents superposition of precessional and nutational motion. Therefore, the vortex
trajectory in a nanodot is affected by the nutations. As follows from our calculations for the
detection and excitation of the low-frequency and high-frequency modes of the vortex state
in the circular thin nanodot, it is necessary to apply circularly polarized oscillating magnetic
fields of different directions due to the differences in the sense of magnetization rotation.

The nutation term in the initial LLG equation of magnetization motion leads to the
appearance of a finite vortex inertial mass in the particle-like equation of motion of the
vortex core. Our estimations showed that the magnitude of nutation-induced vortex mass
depends on the nutation time, the sizes of nanodot, and the parameters of magnetic material;
for the thin permalloy nanodot (R = 100 nm, L = 10 nm), it attains a magnitude of about
10−23 − 10−22 g. Despite the rather small values of the nutation mass, even in comparison
with the mass that arises due to the interaction of the spin wave with the vortex, taking into
account its effect is important for the inertial dynamics of magnetization. The presence of a
non-zero mass at the vortex can lead not only to a change in the vortex motion trajectory but
also to nonadiabatic interactions of magnetic moments, comprising curling magnetic state,
with the crystalline environment, which, in turn, can induce additional torques, affecting
various aspects of magnetization dynamics.
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