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1. ABSTRACT 

 

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) 

characterized by inflammation and demyelination as well as axonal and neuronal degeneration. 

To date, effective therapies to reverse the disease are still lacking, so searching for biomarkers 

that could help distinguish the two mayor MS forms, relapsing-remitting (RRMS) and primary 

progressive (PPMS), is crucial. Increasing evidence indicates that dendritic cells (DCs) contribute 

to the pathogenesis of MS and might provide an avenue for therapeutic intervention. Therefore, 

in this study transcriptional profiling, in the basis of RNA-seq, of myeloid DCs (mDC) and 

plasmacytoid DCs (pDC) of 5 RRMS patients, 5 PPMS patients and 5 healthy controls was 

performed. Differentially Expressed Genes (DEG) analysis and Functional Enrichment Analysis 

demonstrated that there are many differences between the two multiple sclerosis forms in DCs. 

We were able to identify 20 genes that were differentially expressed between PPMS and RRMS 

patients in mDCs and > 100 in pDCs. Functional enrichment analysis also showed that the 

pathways identified as most significant were different in PPMS vs. RRMS between mDC and pDC. 

 

RESUMEN 

 

La esclerosis múltiple (EM) es una enfermedad autoinmune del sistema nervioso central 

(SNC) caracterizada por inflamación y desmielinización, así como por degeneración axonal y 

neuronal. Hasta la fecha, todavía faltan terapias efectivas para revertir la enfermedad, por lo 

que es crucial buscar biomarcadores que puedan ayudar a distinguir las dos formas principales 

de EM, remitente-recurrente (EMRR) y progresiva primaria (EMPP). La creciente evidencia indica 

que las células dendríticas (CD) contribuyen a la patogénesis de la EM y podrían proporcionar 

una vía para la intervención terapéutica. Por lo tanto, en este estudio se realizó el perfil 

transcripcional, en base a RNA-seq, de CD mieloides (mCD) y CD plasmocitoides (pCD) de 5 

pacientes con EMRR, 5 pacientes con EMPP y 5 controles sanos. Los análisis de expresión 

genética diferencial y el análisis de enriquecimiento funcional demostraron que existen muchas 

diferencias entre las dos formas de esclerosis múltiple en las CD. Pudimos identificar 20 genes 

que se expresaron diferencialmente entre pacientes con PPMS y RRMS en mCD y > 100 en pCD. 

El análisis de enriquecimiento funcional también mostró que las vías identificadas como más 

significativas eran diferentes en PPMS frente a RRMS entre mCD y pCD. 

 

 



 

4 
 

2. INTRODUCTION 

 

Multiple sclerosis (MS) is an autoimmune and neuroinflammatory disease of the central 

nervous system (CNS) in which the immune system attacks the myelin sheath wrapped around 

the axon resulting in neuronal dysfunction (Mutukula et al., 2021). It affects approximately 2.5 

million people worldwide (Thompson et al., 2018), with most frequently onset of disease 

diagnosed between 20 and 40 years old. To date, there is still no cure for this condition 

(Calahorra et al., 2022). Additionally, studies determine that MS is more frequent in women and 

in northern locations (Flórez-Grau et al., 2018). MS can affect any part of the CNS, and thus, its 

clinical manifestations are often diverse, with signs and symptoms that vary widely depending 

on the extent and location of the damaged areas (Calahorra et al., 2022). However based on the 

clinical data and the histopathological studies three main clinical subtypes of MS have been 

described: relapsing-remitting multiple sclerosis (RRMS), the most common form, affecting 

approximately 85% of patients, is defined by acute exacerbations or relapses followed by a 

remission or a period of clinical recovery, and then recurring bouts of relapse and remission; 

primary progressive multiple sclerosis (PPMS), where disease progression occurs without 

remission, patients show progressive decline in neurological function since the time of disease 

onset. In this case, usually patients have a higher age of disease onset; and secondary 

progressive multiple sclerosis (SPMS), which is characterized by gradual progression after an 

initial relapsing remitting course. 80% of patients with RRMS eventually progress into SPMS 

approximately 20 years after diagnosis (Gandhi et al., 2010; Dendrou & Friese, 2015; Klineova & 

Lublin, 2018; Lassmann, 2019). 

 

Although the exact causes of the disease and the mechanisms underlaying MS remain 

unknown, the infiltration of immune cells into de CNS in the presence of pre-existing genetic 

and environmental factors, such as vitamin D deficiency, ultraviolet B light (UVB) exposure, 

Epstein–Barr virus (EBV) infection, obesity and smoking could lead to increase disease 

susceptibility (Dobson & Giovannoni, 2019). Diverse studies have demonstrated that 

neuroinflammation in MS is associated with infiltration and accumulation of immune cells 

targeting myelin in the CNS. Although, generally both adaptive and innate immune cells are 

present in MS lesions, until recently MS research was mainly focused in the adaptive arm of the 

immune system (Nuyts et al., 2013). In fact, MS is considered to be predominantly a T-cell 

disease in which T cells are assisted by professional antigen-presenting cells, dendritic cells (DCs) 

(Xie et al., 2015). Immune dysregulation appears to originate with DCs which seem to have an 

activated phenotype in individuals with MS (Grigoriadis & Pesch, 2015). DCs provide an 
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important link between the innate and the adaptive immune system (Thewissen et al., 2014). 

These cells process antigens and present antigen peptide fragments on MHC (major 

histocompatibility complex) molecules to naïve T cells (Comabella et al., 2010). By secreting a 

number of cytokines, DCs play an important role in polarizing T cell responses and regulating the 

balance between immunity and tolerance (Cools et al., 2011). In the absence of inflammation, 

dendritic cells can induce tolerance by presenting autoantigens and environmental antigens to 

naive T cells. Mechanisms that confer T cell tolerance are diverse and include T cell deletion as 

well as the generation of T regulatory (Treg) cells. On infection or other causes of dendritic cell 

maturation, these cells enhance their antigen processing and presenting capacities and 

upregulate their production of cytokines and co-stimulatory molecules. Mature dendritic cells 

can induce naive T cells (Comabella et al., 2010). In MS, upon pathological activation of DCs in 

the periphery, activated T cells secrete proinflammatory cytokines facilitating their entry 

through the endothelial blood-brain barrier (BBB). Once in the CNS, these T cells are reactivated 

upon encounter of resident APCs, including DCs, presenting myelin derived epitopes. 

Subsequently, these T cells will secrete proinflammatory cytokines allowing recruitment of other 

inflammatory cells. This inflammatory cascade will lead to demyelination of axons, thereby 

causing the sensory and motor symptoms of MS (Nuyts et al., 2013).  

 

Dendritic cells are a heterogenic population of leukocytes that originate from 

hematopoietic stem cells. They belong to the group of mononuclear phagocytes, consisting of 

macrophages, monocytes and dendritic cells (Balan et al., 2019). DCs are ubiquitous in the body, 

found in blood, tissues and lymphoid organs. In humans, there are two major subsets of DCs: 

myeloid or conventional DCs (mDCs or cDCs) and plasmacytoid DCs (pDCs). Myeloid dendritic 

cells consist of two subsets generally classified as conventional DC1 (cDC1) and conventional 

DC2 (cDC2). cDC1 is a subset with high expression of CD141+ which are present at approximately 

one tenth the frequency of cDC2. They can also be identified by unique expression of C type 

lectin receptor 9A (CLEC9A) (Collin & Bigley, 2017). Moreover, cDC1 have a unique potential to 

induce cellular immunity against intracellular pathogens and malignant cells due to the 

processing and cross-presentation of exogenous antigens on MHC class I molecules to activate 

CD8+ T cells and Th1 (T helper) cells (Fucikova et al., 2019). Unlike cDC1, cDC2 are the major 

population of myeloid DCs and are generally known as BDCA1+ DCs or CD1c+ DCs (Balan et al., 

2019). They are known to be potent inducer of CD4+ T cells response (Fucikova et al., 2019). 

pDCs are characterized by their unique ability to produce extremely high amounts of type I 

interferon (IFN) upon recognition of foreign nucleic acids (Balan et al., 2019). They express Toll 
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like receptor 7 and 9 (TLR7 and TLR9) as well as CD123, BDCA2(CD303), and BDCA4 (CD304), 

which can be used as markers to isolate them (Xie et al., 2015). 

 

There is increasing evidence for a central role of DCs in MS. Several studies have 

demonstrated that there is abundant presence of both mDCs and pDCs in the inflamed CNS 

lesions and cerebrospinal fluid (CSF) of patients with MS (Nuyts et al., 2013). Both mDCs and 

pDCs accumulate in the leptomeninges and white matter lesions of MS patients. Individuals with 

MS have increased number of pDCs in CSF compared to healthy controls. The frequency of mDCs 

in CSF is dependent on disease duration. Highest frequencies of mDCs are found in patients with 

early MS, but then decrease over time (Serafini et al., 2006). Not only DC frequency, but also DC 

phenotype varies with the heterogenous clinical course of MS. Circulating mDCs of patients with 

RRMS display more pronounced expression of costimulatory markers, such as CD40 and CD80, 

which indicates a more proinflammatory phenotype compared to healthy controls. CD40 and 

CD80 are two costimulatory molecules implicated in the induction of immunity mediated by Th1 

cells, the increased expression of these costimulatory markers may lead to higher production of 

proinflammatory interleukin (IL)-12, IL-18 and tumor necrosis factor (TNF)-α (Karni et al., 2006).  

In contrast, mDCs of patients with PPMS have a more immature phenotype compared with 

healthy controls, as indicated by reduced expression of the costimulatory molecules CD80 and 

CD86. Data also indicates that the production of proinflammatory cytokines such as IL-12, TNF-

α and IL-23 is upregulated in both RRMS and SPMS patients. In fact, in vitro data, using monocyte 

derived DCs (MoDCs), confirms that cells from patients with MS secrete higher levels of 

proinflammatory cytokines IL-6, TNF-α and IL-23, than the MoDCs taken from healthy individuals 

(Huang et al., 2001). In contrast to mDCs, the phenotype of circulating pDCs of MS patients is 

more comparable with that of healthy controls (Serafini et al., 2006). Conflicting data has been 

presented with regard to the expression of costimulatory markers. Stasiolek et al., (2006) 

demonstrated that pDCs show a maturational defect and an altered immunoregulatory function 

in MS patients which might cause these cells to be less efficient in mounting an immune 

response. In individuals with MS, pDCs failed to efficiently express CD40, a molecule of crucial 

relevance for DC-T cell interactions. This study also described a reduced expression of CD86 and 

CD137 ligand on pDCs in RRMS patients compared with healthy controls (Stasiolek et al., 2006), 

while other studies indicate no differences (Lande et al., 2008). At the same time, cytokines 

produced by pDCs such as type I INF, IL-6, TNF-α seem to have been implicated in MS 

pathogenesis. Type I INF promotes Th1 polarization and IFN-γ production; IL-6 promotes myelin 

antigen-specific Th17 responses in encephalomyelitis (EAE) (animal model that resembles MS); 
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and TNF-α directly induces oligodendrocyte apoptosis and mediates human neuronal injury 

after activation with TLR9 agonists (Glehn et al., 2012). 

 

In summary, peripherally derived dendritic cells that infiltrate the CNS seem to be crucial 

for the disease development. Moreover, evidence is emerging that overproduction of particular 

cytokines by DC subtypes drives autoimmune CNS inflammation. In contrast, some dendritic 

cells located in lymphoid organs have the capacity to confer antigen-specific tolerance to T cells 

and prevent the development of MS (Flórez-Grau et al., 2018). Since the role of dendritic cells is 

regulating the balance between immunity and tolerance, immunotherapies that target these 

cells by either inhibiting their immunogenic potential or enhancing their tolerogenic functions 

could provide benefits to patients with MS (Comabella et al., 2010). In fact, the therapeutic 

efficacies of diverse MS treatments are thought to be associated with modulation of the 

immunologic functions of DCs. Currently, there are treatment options for MS that can affect DC 

function and phenotype, but there is still no DC-based drug for treating MS. However, 

developing therapies that target DC, specially tolerogenic DCs, is an area of active investigation 

in MS (Xie et al., 2015). It is also important to underline that almost all of the drugs developed 

to treat MS are for patients diagnosed with RRMS. Patients with PPMS are considered to be less 

responsible to immunomodulatory therapies and are usually excluded from trials aimed at 

demonstrating drug efficacy. Subsequently they are then excluded from using the new therapies 

in PPMS patients (Gandhi et al., 2010). 

 

As explained above, evidence is available that pathogenic mechanisms are different 

between the major forms of multiple sclerosis. From the study of these mechanisms, biomarkers 

that could be helpful in distinguishing between RRMS and PPMS may emerge (Lassmann, 2019). 

DCs also seem to be crucial for the development of this disease, both mDCs and pDCs appear to 

show different frequency, phenotype and expression in both MS forms (Nuyts et al., 2013). In 

fact, DCs have not yet been explored as a source of biomarkers for clinical course in MS.  For this 

reason, biomarkers that can aid in the diagnosis, the differentiation of MS phenotypes, the 

monitoring of disease progression or in the monitoring of treatment response are needed 

(Iparraguirre et al., 2020). Although numerous advancements have been made in MS treatment, 

there is still no widely acceptable cure for MS. Understanding the precise molecular mechanism 

of MS is crucial to develop effective therapies. Whole genome transcriptome studies offer an 

opportunity to discover genes altered by MS or that may underlie the disease (Almsned et al. 

2021).  
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For this reason, the aim of this study is to perform whole genome transcriptional 

profiling, in the basis of RNA sequencing (RNA-seq), of the two main categories of blood 

circulating dendritic cells, mDCs and pDCs, purified from peripheral blood mononuclear cells 

(PBMCs) of PPMS, RRMS patients and healthy controls (HC). This research may facilitate the 

discovery of biomarkers in DC that distinguish PPMS and RRMS, which have not been explored 

yet. The study might also ease the understanding of DC mechanisms in PPMS and RRMS and 

may uncover novel therapeutic targets for treating PPMS. 

                     

3. MATERIALS AND METHODS 

 

3.1. Sample collection 

Peripheral blood form PPMS and RRMS patients and healthy donors which had signed 

the informed consent was collected. All patients’ samples were collected within the first five 

years of disease onset and patients had not started treatment yet. A total of 17 biological 

samples were collected for this study. 10 were from MS patients, which were collected from 2 

different cohorts: Hospital Universitario de Cruces (HUC), Barakaldo and Hospital Universitario 

de Galdakao (HUG), Galdakao. 5 samples belonged to primary progressive MS (PPMS) patients 

and 5 to relapsing-remitting MS (RRMS) patients. 7 healthy donor samples were provided by the 

Biobanco Vasco. 5 samples were prepared for RNA-seq and 2 were used for quality control 

analyses. PPMS patients were 3 males and 2 females with a mean age of 51.8 (± 10.92) and 

RRMS patients were 2 males and 3 females with a mean age of 33 (± 6.24). The mean age of the 

healthy controls, which were all females, was 35.2 (± 9.95). 

 

3.2. Isolation of myeloid dendritic cells and plasmacytoid dendritic cells 

Myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) were isolated from 17 samples. Four 

10 ml EDTA tubes of peripheral blood were collected from each MS patient. Peripheral 

mononuclear cells (PBMCs) were isolated from approximately 40 ml of blood by Ficoll®-Plaque 

density gradient using 50ml SepMate™ tubes (STEMCELL Technologies, Ref. 85450). For that, 

total blood amount was measured, divided in 3 equal tubes and diluted in the same volume of 

PBS (Phosphate-buffered saline). Then, the diluted blood was pipetted down the side of a 50ml 

SepMate tube filled with 15ml of Ficoll®-Plaque and centrifugated at room temperature (RT) at 

1200 x g for 10 minutes with the brakes on. During centrifugation differential migration results 

in the formation of layers containing different cell types. The bottom layer contains 

erythrocytes, the top layer plasma, and PBMCs and platelets are found in the interface between 
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plasma and the Ficoll®-Plaque. Plasma with PBMCs was quickly poured off into a new tube and 

2 wash steps were performed in order to remove plasma and platelets. Then, PBMC 

concentration was determined with Trypan Blue. Before DC isolation CD14+ monocytes were 

separated from PBMCs using CD14 Human MicroBeads (Miltenyi Biotec, Ref. 130-050-20). For 

that, first, PBMCs were centrifugated at 300 x g for 10 min at RT, then the supernatant was 

removed and the pellet was resuspended in 80µl of buffer (PBS pH 7.2, BSA 0.5%, EDTA 2mM) 

and 20µl CD14 MicroBeads per 107 total cells. The mixture was then incubated in the refrigerator 

for 15 min. After that, cells were washed by adding 6ml off buffer, centrifuged at 300 x g 10 min 

and resuspended in 500µl of buffer. A MS column (Miltenyi Biotec, Ref. 130-042-201) was placed 

in the magnetic field of a suitable MACS separator and the cell suspension was added into de 

column. Then 3 washing steps (3x500µl buffer) were performed. CD14+ cells are positively 

selected and mDCs and pDCs are in the negative fraction that passes through the column. The 

negative fraction (2ml) was then divided into two equal parts and mDCs were isolated with 

EasySep™ Human Myeloid DC Enrichment Kit (STEMCELL Technologies, Ref. 19061) and pDCs 

with EasySep™ Human Plasmacytoid DC Enrichment Kit (STEMCELL Technologies, Ref. 19062) 

following “the Big Easy” magnetic protocol. In both cases DCs are negatively selected. The 

isolated pDCs and mDCs were stored in Qiagen RNA extraction kit’s lysis buffer (QIAGEN, Ref. 

74034) at -80°C. 

 

3.3. RNA extraction and quantification 

RNA was extracted from 16 samples of both mDC and pDC cells using the RNeasy Plus 

Micro Kit (QIAGEN, Ref. 74034) which is designed to purify small amounts of total RNA. RNA was 

extracted following the manufactures instructions and treated to eliminate genomic DNA 

(gDNA). Total RNA quality was assessed and its concentration was measured using the Agilent 

RNA 6000 Pico Kit (Agilent Technologies, Ref. 5067-1513) by the Agilent Technologies 2100 

Bioanalyzer (Agilent Technologies). Electropherogram features for a successful sample run will 

be 1 marker peak and 2 ribosomal peaks: one for 18S and the other for 28S.  

 

3.4. Quality controls of pDCs and mDCs isolation: flow cytometry and droplet digital PCR  

To verify the purity of the isolated subpopulation, cells were analyzed by flow cytometry 

(MASCQuant® flow cytometer, Miltenyi Biotech) using CDc1-APC and DC141-VioBrightFITC 

antibodies for mDCs and C123-PE and DC303-APC antibodies for pDC. CD14-VioBlue antibody 

was used as a control for CD14+ monocytes and CD19-PE for B cells. For the assessment of the 

purity, mDCs and pDCs from a healthy donor were extracted and kept in buffer (PBS pH 7.2, 
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2%FBS and 1Mm EDTA). Each DC population was divided into 5 tubes, since antibodies were 

analyzed separately. Then cells were centrifuged at 300 x g for 10 minutes, supernatant was 

removed and resuspended in 98µl of buffer. Then 2µl of required antibody was added. The 

solution was incubated at 4ºC for 10 minutes in the dark and then washed by adding 1ml of 

buffer, centrifuged at 300 x g for 10 min and finally resuspended in 200µl of buffer.  

 

Droplet Digital PCR (ddPCR) was also performed in order to assess the quality of the 

isolated mDCs and pDCs form a healthy donor using the QX200™ Droplet Digital PCR System 

(Bio-Rad). First, RNA was extracted from both DC populations, the positive fraction generated in 

the extraction of the DCs (QC- mDC and QC- pDC, used as a negative control) and positively 

selected CD14+ monocytes from PBMCs. Then, a RT-PCR was performed using the High-Capacity 

cDNA Reverse Transcription Kit in order to obtain the complementary DNA (cDNA) of the 

analyzed samples. For de ddPCR 25µl reaction mixes were prepared which consisted on 2x 

ddPCR SuperMix for Probes (No dUTP) (BioRad), 20x target primers/probe (FAM- or HEX/VIC- 

labeled) and cDNA (350pg). The probes against the genes of interest were FAM-labeled and the 

probe against the housekeeping gene was HEX-labeled (Table 1) (Bio-Rad).  Each ddPCR assay 

mixture (20μL) was loaded into a disposable droplet generator cartridge (Bio-Rad). Then, 70μL 

of Droplet Generation Oil for probes (Bio-Rad) were loaded into each of the eight oil wells. The 

cartridge was then placed inside the QX200™ droplet generator (Bio-Rad). When droplet 

generation was completed (12,000 to 20,000 droplets), the droplets were transferred to a 96-

well PCR plate using a Rainin multichannel pipet. The plate was heat-sealed with foil with the 

PX1™ PCR plate sealer (Bio-Rad) and then a PCR amplification was performed. In this case, the 

C1000 Touch™ Thermal Cycler (Bio-Rad) was used with the following thermal cycling conditions: 

10 minutes at 95°C, 40 cycles of 30 seconds at 94°C and 60 seconds at 60°C and 1 cycle of 10 min 

at 98°C with a 2°C/s ramp rate. The droplets were read individually with the QX200™ Droplet 

Reader (Bio-Rad) and quantified with QuantaSoft droplet reader software (Bio-Rad). Positive 

droplet populations were separated from negative droplets and quantified as copies/μl (c/μl). 

 

Table 1. FAM- and HEX- labeled probes used in the ddPCR  

FAM-labeled probes HEX-labeled probes 

CD303 (pDC) GAPDH (housekeeping) 
CD123(pDC)   

CD1c (cDC2)  

CLEC9A (cDC1)  

CD14 (CD14+ monocytes)  

CD19 (B cells)   
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3.5. Preparation of cDNA libraries for RNA sequencing 

The RNA library construction consisted of only high-quality RNA samples with RNA integrity 

number (RIN) over 8 and a concentration range between 2pg and 200ng. 30 libraries (15mDC, 

15pDC) were generated by the NEBNext Single Cell/Low Input RNA Library Prep Kit for Illumina® 

(New England BioLabs, Ref. E6420S/L) following the Low Input RNA protocol. For the preparation 

of the libraries all RNA samples were normalized to 750pg/μl. Reverse Transcription and cDNA 

amplification were performed using the C1000 Touch™ Thermal Cycler (Bio-Rad). NucleoMag® 

NGD Clean-up and Size Select (Macherey-Nagel, Ref. 744970.50) magnetic beads were used for 

cleaning up the amplified DNA. Then, the amplified cDNA quality and quantity was assessed by 

the Agilent Technologies 2100 Bioanalyzer using the DNA High Sensitivity Kit (Ref. 5067-4626). 

cDNA fragmentation and adaptor-ligation were also performed with the C1000 Touch™ Thermal 

Cycler (Bio-Rad) and NucleoMag® beads were used for the cleaning up of the adaptor-ligated 

DNA. Finally, a PCR enrichment was performed using NEBNext® Multiplex Oligos for Illumina® 

(Dual Index Primers Set 1) (New England BioLabs, Ref. E7600S), which was followed by the last 

clean up with the NucleoMag® beads. The quality and quantity of the generated libraries was 

assessed by the Agilent Technologies 2100 Bioanalyzer using the DNA High Sensitivity Chip. Good 

quality libraries were considered those which the electropherogram showed a narrow 

distribution with a peak size of 300-350bp. Full transcriptomic sequencing of the libraries was 

done with the Illumina platform NovaSeq 6000 S4 (2X150) at CCGA Kiel Center in Germany. The 

libraries were sequenced in 1 lane of the NovaSeq 6000 S4, which can generate 2 billion of reads 

per lane. 

 

3.6. Transcriptomic analysis of the sequenced libraries 

Sequenced data was informatically analyzed at different levels in collaboration with 

Sistemas Genómicos. A quality control of the raw data was performed using the FastQC tool, 

which reports the quality profile of the sequenced reads 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Then reads were mapped against 

the latest version of Homo sapiens (GRCh38) genome, provided by NCBI database using Tophat 

2.1.0. In whole transcriptome sequencing process, the number of mapped reads should be 

between 60-80% of total sequenced reads. Subsequently low-quality mapped reads were 

removed using Samtools 1.2 and Picard Tools 2.9.0. After selecting the reads with the highest 

mapping quality values, assembly and gene identification was performed using Bayesian 

inference methods with Cufflinks v2.2.1. In this step, the GC distribution, the proportion of 

guanine and cytosine bp along the reads, was also assessed, which should be centered between 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


 

12 
 

40-60%. Finally, differential expression and functional studies between samples were performed 

to study the concordance between samples. These studies give us an idea of global 

transcriptomic correlation between samples. For this, a Pearson correlation study between 

samples for each condition was performed considering all the normalized transcriptome by 

library size and gene length. This process was realized using statistic programming language R 

[http://www.r-project.org/]. This type of analysis allows identifying abnormal biological 

replicates for each condition. To achieve the differential expression study between groups of 

samples (PPMS vs RRMS, MS vs HC), different Python and R statistic packages were used. Genes 

that are differentially expressed between conditions will be identified using the DESeq2 method. 

DESeq2 uses a negative binomial distribution as a dispersion model for the statistical significance 

(Love et al., 2014). A gene was considered differentially expressed if it had a FoldChange value 

lower than -1.5 or superior to 1.5 with an FDR adjusted p-value (p_adj-value) of 0.05 or smaller. 

Functional enrichment of differentially expressed genes for each condition was performed by 

over-representation test using R scripts using clusterProfiler, AnnotationHub, DOSE, pathview 

and rtracklayer. 

 

4. RESULTS 

 

4.1. Quality controls of the isolated myeloid and plasmacytoid dendritic cells. 

Flow cytometry was used in order to assess the purity of the isolated fractions. In the 

case of plasmacytoid DCs a purity of approximately 90% was obtained and in the case of myeloid 

DCs 86%. 78.07% of the mDCs were positive for CD1c antibody, a marker for cDC2 subset, and 

8.51% were positive for CD141, a marker for the cDC1 subset. Both CD1c+ and CD141+ together 

constitute the mDC population. In this population CD14+ cells accounted for only 6% of the 

isolated fraction and CD19+ cells (mainly B cells) were practically undetectable (Figure 1).  In the 

case of pDCs, 90.82% of cells were positive for CD123 marker and 92.19% were CD303+. In this 

population CD14+ monocytes were practically undetectable and B cells (CD19+) were only 6% 

(Figure 2). 

http://www.r-project.org/
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Figure 1. Graph of flow cytometry of the isolated mDCs from a healthy donor. (A) and (B) show CD1c+ 

and CD141+ staining in mDC isolated fraction. (C) and (D) represent the % of CD14+ and CD19+ cells, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Graph of flow cytometry of the isolated pDCs from a healthy donor. (A) and (B) show CD123+ 

and CD303+ staining in pDC isolated fraction. (C) represents the % of CD14+ cells and (D) exhibits the % of 

B-cells.  
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In addition to cytometry quality control, gene expression pattern of known markers in 

the isolated pDC and mDC fractions was tested to validate their purity using droplet digital PCR 

(ddPCR). Plasmacytoid DCs fraction only showed expression for the subset specific markers: 

138.5c/µl of CD303 and 39.7c/µl of CD123. Myeloid DCs fraction showed a high expression of 

cDC2 subpopulation’s specific marker CD1c (51c/µl). CLEC9A, a specific marker for the cDC1, was 

not expressed in any of the analyzed fractions. CD303 and CD123 were also expressed in the 

mDC fraction, but in low levels, 15.55c/µl and 5.35c/µl, respectively. Positively selected CD14+ 

cells from PBMCs showed a high expression of the subset specific marker CD14 (544c/µl), but in 

this fraction mDC specific marker CD1c was also expressed at low levels (5.4c/µl). The other 

analyzed fractions did not express CD14 marker, except mDCs that showed a very low expression 

of CD14 marker (1.8c/µl). B cells specific marker CD19 was not expressed in any of the analyzed 

fractions. 

 

 

Figure 3. Gene expression quantification by droplet digital PCR of a healthy donor’s sample. Bar graph 

shows mean values of 2 replicates of mDC, pDC and CD14+ monocytes mRNA transcript counts of CD303, 

CD123 and CD1c in c/µl. Standard deviation is also presented. 

 

4.2. Library construction data 

Global yield of RNA obtained from the isolated pDCS and mDCS was low (Table 1), but 

the RNA extracted from the isolated mDCs and pDCs met the high-quality requirements for 

library construction (Figure 4A). All the samples used for this study had a RIN ≥ 8. Libraries 

generated with NEBNext Single Cell/Low Input RNA Library Prep Kit for Illumina® met the 

manufacturers’ quality requirements (Figure 4B) and in all cases the obtained cDNA 

concentration was enough to sequence the libraries (Table 2). 
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Table 2. RNA and library cDNA quantification. Averages of RNA concentration and of library 

concentration from 5 samples of each group 

Sample Name 
Average RNA  

concentration (pg/µl) 
Average library 

concentration (ng/µl) 

mDC-PPMS 1244.4 15.54 
pDC-PPMS 1025.2 9.94 
mDC-RRMS 1352 50.74 
pDC-RRMS 430.4 23.22 

mDC-HC 1505.2 14.26 
pDC-HC 2482.5 10.2 

 

 

 

 

 

 

Figure 4. RNA and library cDNA electropherograms of mDC-RRMS_3 sample. (A) shows RNA 

electropherogram with two peaks for 18S and 28S and a RIN value of 10 and (B) shows library cDNA 

electropherogram with a narrow distribution and a peak size of approximately 350bp.  

 

4.3. Quality of the analyzed data 

FastQC tool evaluates the quality of the raw data to ensure there are no biases that may 

affect how the data can be usefully used. It aims to provide a quality control report which can 

spot problems which originate either in the sequencer or in the starting library material. For 

each sequenced library 2 FastQC reports were obtained, one corresponding to the forward read 

and other to the reverse, so in total 60 FastQC reports were obtained. For this reason, all figures 

presented in the library quality resultS are considered representative figures. One of the most 

important estimator analyses of the FastQC tool is the Per Base Sequence Quality Analysis which 

shows and overview of the quality values across all bases of the data. High quality libraries are 

considered those whose quality values (Phred values) are higher than 20. All the libraries 

constructed with the Low Input RNA Library Kit were considered high quality libraries since all 

the calls had quality values higher than 20. As we can see in Figure 5, quality values stay in the 

green area but as the read gets longer base calls fall into the orange area. It is common to see 

B                        A                      
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base calls falling to this area towards the end of a read since the quality of calls will degrade as 

the run progresses. 

Figure 5. Representative boxwhisker type plot of per base sequence quality of the constructed libraries 

with the Low Input RNA library Kit. The y-axis on the graph shows the Phred values (quality scores) of the 

base calls and the x-axis the position in the read (bp). Yellow boxes represent the interquartile range (25-

75%) and the upper and lower whiskers represent the 10% and 90% points. The central red line is the 

median quality value and the blue line represents the mean quality. The background of the graph divides 

the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality 

(red).  

 

As mentioned before, as a rule in whole transcriptomic sequencing, the number of 

mapped reads should oscillate between 60-80% of total sequences reads. In this case, the 30 

mapped samples showed normal-to-high values. In fact, same samples had a number of mapped 

reads which were above the 80% of total sequence reads (Table 3). 

 

In addition, GC content distribution was calculated. Results show that the GC content of 

all sequenced libraries was between the desired distribution values, which implied that all 

samples presented a normal GC distribution value between 40-60%. FastQC tool calculates the 

GC distribution of the libraries across the whole length of each sequence and compares it to a 
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modelled normal distribution of GC content. In this case, as shown in Figure 6, our samples’ GC 

content (red line) is shifted toward lower GC content compared to the theoretical distribution 

(blue line), but the central peak is still between the 40-60% range. The central peak of our 

samples’ GC distribution is over the theoretical peak which might indicate contamination. 

However, in our case it is considered a specific contaminant as will be seen in further FastQC 

analysis, it is probably related to the index primers used in library construction. 

 

Table 3. Mapped read statistics of the 30 libraries. Sample name, total number of mapped read and high-

quality percentage (%HQ) of mapped reads are shown. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 
#Mapped 

Reads 
%HQ 

mapped 

mDC-PPMS_1 68456890 78% 

mDC-PPMS_2 59345612 76% 

mDC-PPMS_3 73987172 78% 

mDC-PPMS_4 39012398 69% 

mDC-PPMS_5 64017888 73% 

pDC-PPMS_1 43987612 70% 

pDC-PPMS_2 60470458 68% 

pDC-PPMS_3 62090704 81% 

pDC-PPMS_4 78570208 74% 

pDC-PPMS_5 48190043 79% 

mDC-RRMS_1 76950398 77% 

mDC-RRMS_2 83429841 82% 

mDC-RRMS_3 89369284 81% 

mDC-RRMS_4 92498727 79% 

mDC-RRMS_5 69399837 69% 

pDC-RRMS_1 65819713 73% 

pDC-RRMS_2 66669510 74% 

pDC-RRMS_3 58654981 81% 

pDC-RRMS_4 79604746 73% 

pDC-RRMS_5 42121480 71% 

mDC-HC_1 64766821 81% 

mDC-HC_2 47349950 83% 

mDC-HC_3 69931684 78% 

mDC-HC_4 72513419 71% 

mDC-HC_5 69095153 82% 

pDC-HC_1 52323111 75% 

pDC-HC_2 62998480 81% 

pDC-HC_3 56157280 71% 

pDC-HC_4 67723950 82% 

pDC-HC_5 59974553 77% 
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Figure 6. Representative GC distribution over all sequences. The y-axis represents the number of 

sequences and the x-axis the mean GC content. Red line indicates GC count per read of the analyzed 

samples and blue line indicates a theoretical distribution.  

 

All samples also presented optimal values for duplication distribution. This parameter is 

an indicator of sequencing process quality. In fact, it could indicate degradation of source 

biological material, or may also indicate significant deviations in sequencing process. FastQC tool 

also analyzes the duplication level of the sequenced libraries. In this case, two duplicated spikes 

can be seen across the blue line one around 10 and other around 5.000 (Figure 7). The plot also 

gives an expected overall loss of sequence were the library to be deduplicated. The sequenced 

libraries will not pass the quality control if the overall level of loss is higher than 50%. FastQC 

tool analyses the duplicated sequences that individually represent more than the 0.1% of the 

overall library and compare them to sequences of possible source of contamination. In this case, 

all the overrepresented sequences belong to the index primers used in library construction.  
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Figure 7. Representative duplication levels of the sequenced libraries. The y-axis shows the % of 

sequences and the x-axis the sequence duplication level. Blue line represents the percentage of 

duplication levels of the total analyzed libraries and red line indicates de percentage of deduplicated 

sequences. Plot also provides the percentage of remaining sequence if libraries were deduplicated. 

 

Due to the nature of RNA-seq sequencing gene length and size of library by sample may 

influence the subsequent statistical analysis of the data. Elimination of different statistical 

deviations can be achieved by normalizing the quantification data. In our case, the normalization 

step improved considerably the homogeneity of the distributions in all conditions.  In Figure 8 

the normalized distribution of gene expression in a selection of our libraries can be observed. 
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Figure 8. Normalized distribution of gene expression in a selection of constructed libraries, mDC (left) 

and pDC (right). y-axis shows normalized counts by library and gene size and in x-axis a selection of 

samples. 

 

DEesq2 algorithm was chosen to identify the differentially expressed genes between 

condition. This algorithm is one of the most conservative methods used in RNA-seq. It uses a 

negative binomial distribution which is needed to confirm the corrected fitted of each 

differential expression with the theorical distribution. In our study, the theoretical model fitted 

the experimental distribution of gene dispersion in all cases. 

 

4.4. Differentially Expressed Genes (DEG) and Functional Enrichment analysis.   

 Results revealed many differently regulated genes between the compared groups: PPMS 

vs RRMS and MS vs HC. We were able to identify 20 genes that are differentially expressed 

between PPMS and RRMS patients in mDCs and > 100 in pDC. Comparison between the two 

multiple sclerosis forms and healthy controls also showed DEG (Table 4). 

 

Table 4. Statistics of the Differential Gene Expression analysis. Fold Change values, P adjusted values and 

the number of significant DEG are provided. 

DC 
Type 

Group 1 Group 2 

Fold 
Change 

Min 
between 
Groups 

Fold 
Change 

Max 
between 
Groups 

P_adj-
Value 

Lowest 

P_adj-
Value 

Highest 

Number 
of 

Significant 
DEG 

mDC PPMS RRMS 1.8 77 3.85E-08 0.044 20 

pDC PPMS RRMS 1.8 85 7.37E-13 0.049 > 100 

mDC PPMS HC 1.5 30 1.98E-10 0.048 26 

pDC PPMS HC 4.5 36 1.06E-08 0.048 15 

mDC RRMS HC 1.8 13 4.17E-13 0.049 > 100 

pDC  RRMS HC 1.6 99 1.17E-10 0.048 > 100 
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Functional enrichment analysis in PPMS vs RRMS group comparison showed different results 

between mDCs and pDCs. In mDCs based on “GO: Cellular Component” membrane-related 

processes, such as plasma membrane, transmembrane transporter, membrane rafts, membrane 

microdomain, etc were identified as the most significant components in this group comparison. 

Functional enrichment analysis based on “GO: Biological Process” identified MyD88-

independent TLR signaling pathway as most significant category. In pDCs, significant “GO: 

Cellular Component” categories are ribosomal subunit and mitochondrial protein-containing 

complex, and significant “GO: Biological Process” categories include ATP-synthesis-coupled 

proton transport. 

 

5. DISCUSSION 

 

Multiple sclerosis is a complex disease, whose physiopathology is still not completely 

understood. Nevertheless, growing evidence supports a dysregulation of the immune system 

(Grigoriadis & Pesch, 2015). Evidence shows that dendritic cells play an important role in the 

pathogenesis of the disease (Collin & Bigley, 2017). Furthermore, the existing therapeutic 

available options for treating this disease are still limited (Stephen et al., 2020). For those 

reasons, it would be especially useful to identify biological markers that could facilitate the 

understanding of disease mechanisms or that might uncover novel therapeutic targets. 

  

RNA sequencing is a powerful new method for mapping and quantifying transcriptomes 

developed to analyze global gene expression. This technique provides insights at multiple levels 

into the transcription of the genome, as it yields information about the sequence and 

expression-levels. It provides a far more precise measurement of levels of transcripts than other 

methods (Wang et al., 2009). In fact, RNA-seq technologies have been used as promising means 

for biomarker identification in MS. Studies in several immune cells have been performed, such 

as, in B cells, monocytes, T cells and leukocytes, but all of them have focused on comparing 

RRMS and HC (Ramesh et al., 2020; Almsned et al., 2021; Fernandes et al., 2019; Iparraguirre et 

al., 2020). However, a systematic whole-genome transcriptomic profiling of blood DCs has not 

been performed in MS, and DC transcriptional studies involved in PPMS versus RRMS are 

undocumented. This is why, the main objective of this study was to perform whole-genome gene 

expression profiling by means of RNA-seq in the two major blood DC subsets; pDCs and mDCs, 

purified from PBMC of PPMS and RRMS patients, and healthy controls. 
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Obtaining a good purification of DCs was very important step in this study, so we 

checked if our purified fractions contained no or minimal amounts of B cells and CD14+ 

monocytes, the most likely contaminants in this purification procedure. Quality control 

performed by flow cytometry showed that the mDC and pDC fractions isolated with the 

EasySep™ Human myeloid/plasmacytoid DC enrichment Kits exhibited high purity values. In the 

case of mDC we obtained a purity of 86% and in pDCs approximately of 90%. In the mDC fraction 

6% of cells were stained with CD14 antibody, but in pDCs CD14+ population was practically 

undetectable (0.05%) (Figure 1, Figure 2). CD14+ cells are positively selected when isolating cells 

from PBMCs and should not be detected or in very low amounts in other fractions. Phenotyping 

studies and single-cell gene expression studies have recently identified a small percentage of the 

CD1c+ cDC2 population that express CD14, which have been characterized as monocyte-like DC 

(Villani et al., 2017). Therefore, it could be possible that this CD14+ cells belong to those mDCs 

that express CD14.  

 

ddPCR quality control was performed in order to validate the purity of the isolated DCs 

by analyzing the gene expression pattern of known markers. pDCs only showed expression for 

the subset specific markers, CD303 and CD123. mDCs, expressed the specific marker of the cDC2 

subpopulation, but not of the cDC1 (CLEC9A). It could have been expected since the latter is 

considered an unusual fraction (Balan et al., 2019), although, in flow cytometry was detected in 

a very low percentage. Furthermore, mDCs also expressed CD303 and CD123, markers that are 

considered pDC-specific, in line with protein atlas (https://www.proteinatlas.org/). However, 

several studies have identified CD303+ and CD123+ myeloid DCs. In fact, CD303 is a myeloid DC 

precursor component so it overlaps in expression with pDCs (Villani et al., 2017) and CD123+ 

mDCs represent earlier-stage immature mDC subset (Shi et al., 2008), but in both cases the 

highest expressing cells will include pDCs (Collin & Bigley, 2017). Positively selected CD14+ 

monocytes from PBMCs were also analyzed in the ddPCR, and apart of expressing CD14, they 

also manifested CD1c marker. Schroder et al., (2016) demonstrated that a small fraction of 

classical and intermediate human monocytes also express CD1c. When analyzing this gene in 

protein atlas, it is also expressed in monocytes but in much lower proportions than in myeloid 

dendritic cells (https://www.proteinatlas.org/). Moreover, some cDC2 also express CD14 (Villani 

et al., 2017) so we hypothesize that it could be possible that when separating CD14+ monocytes, 

purification of CD14+ cDC2 is also happening. Further testing should be performed to understand 

if those CD14+ cells expressing cDC2-specific considered markers are mDCs or monocytes. Flow 

cytometry would be a really interesting tool for this purpose.  

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Once the purity of the mDCs and pDCs was assessed we continued with the construction 

of the cDNA libraries. Bioanalyzer results showed that the RNA extracted from all samples met 

the high-quality requirement for library construction, since all had a RIN ≥ 8, but the obtained 

concentration was really low. However, it was enough for library construction (Figure 4A). 

Sequenced libraries were informatically analyzed in different levels. The 60 FastQC reports 

showed that in general sequenced libraries were considered high quality. Per Base Sequence 

Quality Analysis by FastQC tool showed that libraries presented high quality values since all the 

calls had quality values higher than 20 and when reads got longer although quality values were 

lower, they were still above 20 Phred values (Figure 5). Base calls quality falling lower in the 

Phred values towards the end of a read is common since the quality of the calls will degrade as 

the run progresses (Babraham Bioinformatics). This could be improved after quality trimming 

the adapters (Pollier et al., 2013). Mapped reads values also were considered normal-to high 

since in all cases they oscillated between the 60-80% of total sequences and in some cases even 

were above the 80% range (Table 3). 

 

Libraries in general showed a GC distribution shifted to lower GC content compared with 

the theorical distribution but in all cases the GC content was between the desired distribution 

values, between the 40-60% range (Figure 6). Duplication distribution values were also optimal 

in all samples, although some duplication spikes were detected along the reads (Figure 7). 

FastQC tool detects two potential contamination sources in a library sample, contamination 

arising from PCR artefacts or cross contamination with other biological samples (Babraham 

Bioinformatics). In our case, GC distribution peak being above the theorical peak and having 

some duplication peaks could mean possible contamination, but in this case detecting biological 

information from another source should be difficult since all samples belong to humans. 

However, to check that, FastQC tool analyses the sequences that individually represent more 

than 0,1% of the overall library and compare them to sequences of possible source of 

contamination. In this case, this analysis confirmed that the possible contamination in our 

libraries belonged to the index primers or adapters used in library construction. The detected 

adapter sequences do not influence the subsequent analysis of the data and they could be 

informatically eliminated if we desired to. In summary, all these quality analyses confirm that 

the libraries are of good quality. 

 

Differentially Expressed Genes (DEG) and Functional Enrichment Analysis demonstrated 

that there are many differences between the two multiple sclerosis forms in DCs. We were able 

to identify 20 genes that were differentially expressed between PPMS and RRMS patients in 
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mDCs and > 100 in pDCs. Some of these DEG reached high levels of significance and showed high 

fold-change differences between PPMS and RRMS, which makes them good biomarker 

candidates. Comparing the MS forms with healthy controls also showed DEG in both mDCs and 

pDCs (Table 4). Functional enrichment analysis also showed that the identified as most 

significant pathways based on “GO: Cellular Component” and “GO: Biological Process” were 

different in PPMS vs RRMS between mDCs and pDCs.  

 

In conclusion, transcriptome studies of mDCs and pDCs in PPMS and RRMS seem 

promising. In fact, some of the DEG that were identified are already known in MS pathology, 

though not specifically in relation to DC. Interestingly, many genes we identified have not been 

specifically reported in MS pathology. However, MS is a heterogenous disease affecting 

approximately 2.5 million people worldwide, so with the aim of finding biomarkers that facilitate 

a better understanding of dendritic cell effector mechanisms in PPMS versus RRMS, and that 

may uncover novel therapeutic targets for treatment of MS, but specially PPMS, a larger group 

of patients should be considered for a whole transcriptome study. Considering a higher number 

of participants could change the most significant DEG or enriched pathways, but, even so, it can 

be concluded that there are differences between the two main blood DC population in PPMS 

and RRMS. 
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