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Abstract: The current socio-economic and environmental context obliges companies to increase
their energy efficiency to be competitive, and the development of Industry 4.0 technologies should
contribute to improve it. This article analyses the influence of Industry 4.0 technologies on energy
efficiency and the mediation of quality management of production process variables. After a descrip-
tive analysis, a correlation and regression analysis is presented using information from 72 projects for
the integration of Industry 4.0 technologies in industrial companies. At a global level, it is confirmed
that the four technology groups (Artificial Vision and Artificial Intelligence, Additive Manufacturing
and Robotics, Big Data and Advanced Analytics, and Internet of Things) contribute to improving
energy efficiency by an average of 15–25% in the processes where they are integrated. In addition,
the regression model determines that improved decision-making capabilities strongly mediate the
achievement of higher energy efficiency.

Keywords: energy efficiency; Industry 4.0; sustainability; quality management

1. Introduction

The International Energy Agency points out that the world is in a complex global
energy crisis [1]. The World Energy Outlook (WEO) concluded that industries exposed
to global energy prices face real threats of rationing and consequently their production
could be affected [1]. This situation has triggered governments around the world to act
in the face of this energy crisis towards more efficient energy systems. Thus, in 2021 the
United Nations identified energy efficiency activities as a priority. The United Nations
Environment Programme focuses on research, development, transfer, and promotion of
innovative industrial technologies to improve energy efficiency [2]. In the European Union,
the European Commission reinforced the European Green Deal [3]. It is linked to the
REPowerEU plan for energy saving and diversification of energy supply, and includes the
binding target of increasing energy efficiency of production systems to 13% for 2030 [4].
Japan presented the Fifth Science and Technology Basic Plan, aimed at promoting business
models with radical technological changes in production, which plays an important role in
improving energy efficiency [5,6]. Similarly, China has developed Green Transformation,
an initiative whose objective is based on achieving symbiosis between organizations and
society using new industrial technology to solve environmental challenges and to achieve
energy efficiency and socio-economic growth [7]. In addition, China carried out a strategic
plan—Made in China 2025—identifying several priorities: product innovation, productivity
improvement, reduction of uncertainty in decision-making and reduction of manufacturing
errors, better control of processes, and energy efficiency. It aims to accelerate the ecological

Energies 2023, 16, 2124. https://doi.org/10.3390/en16052124 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16052124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2027-7157
https://orcid.org/0000-0002-3968-3967
https://orcid.org/0000-0003-4496-3792
https://orcid.org/0000-0001-5553-2862
https://doi.org/10.3390/en16052124
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16052124?type=check_update&version=1


Energies 2023, 16, 2124 2 of 19

transition and promote new information technologies, numerical control tools and robotics,
energy-saving vehicles, new energies, and energy equipment, among others [8].

The business world is no stranger to this energy crisis that has become a global
threat [9]. To survive, companies must take advantage of the technological opportunities
offered by the technological revolution of Industry 4.0 to reduce the consumption of avail-
able resources [10]. Additive Manufacturing and Robotics (AMRB), Artificial Vision and
Artificial Intelligence (AVAI), Big Data and Advanced Analytics (BDAA), and the Internet
of Things (IoT), among other Industry 4.0 technologies, should also serve to minimise
energy consumption [11]. In this regard, in 2019 at the World Economic Forum [12], the
leading companies in the global digital transformation stated that the impact of Industry
4.0 technologies significantly improves business value and contributes to energy optimi-
sation. Later, in the same vein, the European Economic and Social Committee [13] stated
that digital transformation has discovered methods to reduce energy consumption without
sacrificing productivity and innovation. It is precisely these two variables, together with
others identified in the literature and set out in Section 2 of the paper, that are key to
managing the quality management of production process variables and ultimately the
competitiveness and sustainability of companies. Therefore, by articulating strategies to im-
prove the values of these variables (mediating variables) with the support of new Industry
4.0 technologies, we can expect to improve energy efficiency in the production processes
of industrial companies. Although the relationship between the integration of Industry
4.0 technologies and the energy efficiency of processes in companies has been extensively
studied [14,15], the present research improves the understanding of what this interrela-
tionship looks like. Using variables widely used in quality management and production
process innovation, we have determined how these variables affect energy efficiency in
the adoption of Industry 4.0 technologies. Company managers and technicians are very
familiar with these quality management variables, and they largely determine energy
performance in industrial companies. Managing these processes requires knowledge of
the key variables that influence many aspects of company performance, including energy
efficiency [14].

This knowledge can be especially useful for industrial companies interested in inte-
grating new Industry 4.0 technologies in the design of strategies. The paper is organised as
follows. The following section presents the literature review, followed by the methodologi-
cal section, results and conclusions.

2. Literature Review

Academic literature highlights the increasing role of digital technologies towards an en-
ergy efficient society [16] and their adaptation to different industrial sectors through different
Industry 4.0 technologies [17]. Sajadieh et al. [18] and Bermeo-Ayerve et al. [19] add that smart
factories must also be energy efficient to achieve global competitiveness with technological
solutions. Some authors point out that the combined use of Industry 4.0 technologies offers
potential to reduce production waste, overproduction and goods movement and contribute
to minimising energy consumption [20,21]. For example, AMRB together with BDAA and
cloud manufacturing factors in production systems contribute to increase efficiency in en-
ergy use [11]. Intelligent energy management analysis of various systems through BDAA
can improve predictive control, reduce energy intensity, and generate a reduction in energy
consumption [22]. The literature also notes that BDAA and AMRB facilitate value creation
and energy efficiency in distribution and supply chains [23–25].

However, the implementation of Industry 4.0 technologies in industry must be ap-
proached from the perspective of operational performance of quality management variables
of production processes along with those of innovation management [26,27]. In the litera-
ture, studies highlight the relationship of some of the main variables, such as productivity,
manufacturing errors, product innovation, decision-making and process control, linked to
energy efficiency [28–32]:
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• Productivity: The ratio of economic output per unit of energy use has been a common
metric used to measure relative performance in interrelated economic, energy and
environmental issues [33]. Today, it is possible to identify energy-consuming processes,
through the production process, and measure energy efficiency [34], since the main
factors responsible for energy efficiency in industrial companies are related mainly to
production activities [35]. Many analyses have referred to the industrial productivity
benefits associated with energy efficiency [36]. Zhang et al. [6] assert the need to adjust
the dispersion of labour productivity, optimise energy investment activities, strengthen
energy price control mechanisms and energy intensity to improve energy efficiency
and energy cost. The configuration of Industry 4.0 technologies and their integration
into the production process favours efficient production, improving productivity and
efficient use of resources and energy [37]. One example is IoT technology, which
enables the control of energy savings [38,39] through intelligent energy analysis.
Another example is BDAA, which serves to implement real-time monitoring methods,
developing optimisation algorithms, and controlling all devices with precision for
flexibility of manufacturing resources to achieve productivity gains [40].

• Manufacturing errors: Saez et al. [31] highlight that efforts to improve the integration
of Industry 4.0 technologies into manufacturing operations and reduce manufacturing
errors must be part of a holistic approach that considers other aspects, such as energy
efficiency [31]. Therefore, companies have incorporated maintenance and production
scheduling practices to avoid manufacturing errors and control energy efficiency [41].
In addition, [42] propose the development of models that early error detection can
reduce energy consumption by turning machines on/off and pausing their operation.

• Product innovation: Improved energy efficiency and more specifically reduced energy
consumption can occur as a side effect of actual product and process innovation
activities [43–45]. In fact, Liang et al. [46] points out that, at present, enterprises
in industrial clusters promote the development of innovative products, processes,
and technologies to achieve an energy-saving effect. In addition, green product and
process innovation are presented as the economic development pattern of enterprises
to conserve generate, transform, and make efficient use of energy [32,35,47]. In this
way, it will not only contribute to increasing economic output but will also have an
impact on facilitating energy demand management [48].

• Decision-making: Among the quality variables of production processes, uncertainty
in decision-making is reduced by monitoring energy, equipment, reliability, real-time
quality, and multi-criteria decision-making methods [49,50]. Nowadays, most energy
solutions are carried out by genetic algorithms with the help of AVAI technology
through energy performance analysis, load prediction, anomaly detection, and con-
sumption pattern recognition to support decision-making [51] and reach optimal
solutions. On the other hand, the integration of BDAA with AVAI provides greater
operational advantage to enterprises [52] and contributes to decision support, product
and process innovation, and risk mitigation.

• Process control: This requires advanced continuous monitoring technologies for smart
management of both consumers and producers in relation to energy distribution on
different scales: from a single appliance to an entire building or even at the village
and city level [53]. Thus, among the most relevant consequences of the adoption
at machine level are the implementation of control strategies for the efficient use of
components and the minimisation of processing time and non-value tasks, such as
reducing the energy demand of machines during idle periods [54]. Monitoring and
controlling machines can reduce their energy consumption [31].

The aim of our research is to show how companies can benefit from Industry 4.0-related
technologies and consequently improve their energy performance. We have approached
this question by looking at classical quality management variables used in production
processes, with which company managers and technicians are perfectly familiar.
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Therefore, based on the literature review, shown in Table 1, and the stated objectives
of our research, we pose the following research questions (RQ):

• RQ1: What is the influence of Industry 4.0 technologies on the variables usually
involved in the quality management of production processes?

• RQ2: What is the influence of Industry 4.0 technologies on energy efficiency?
• RQ3: What is the mediation of quality management of production process variables

on energy efficiency in the adoption of Industry 4.0 technologies?

Table 1. Literature review.

[Ref.]
Authors (Year) Research Gap Methodology-Data Main Contributions

[23]
Witkowski

(2017)

Innovation in production logistics
with Industry 4.0 technologies

Analysis of 900 strategic, inter-company
and high value innovation projects from
Europe, USA and China

Industry 4.0 technologies contribute to
technical and technological
product innovation.

[20]
Kamble et al.

(2018)

Sustainability of Industry 4.0
technologies based on process
integration, process control,
innovation and product quality

Literature review of 85 papers

Industry 4.0 contributes to sustainable
benefits, process safety, energy efficiency
and productivity, energy generation
and distribution.

[40]
da Silva et al.

(2020)

Industry 4.0 technologies for
improving productivity, smart factory
performance and production,
self-decision, and machine control

Literature review of 2519 papers

The combination of Industry 4.0
technologies and cloud computing are
necessary to process data related to
consumption, savings, and
energy efficiency.

[14]
Urban et al.

(2020)

Possibilities of applying Industry 4.0
concepts and tools to the product
development process.

Single case study Innovations based on AR/VR technologies
optimize energy efficiency up to 30%.

[38]
Hossein et al.

(2020)

Industry 4.0 solutions in the energy
sector: Energy supply, transmission,
distribution, and energy demand.

Literature review of 168 papers

The IoT in the energy supply chain and the
advantages of IoT-based energy
management systems increase
energy efficiency.

[44]
da Rosa et al.

(2020)

Product and process innovation in
reducing energy consumption.

Analysis of 116,962 companies from
55 sectors.

Innovative products and process
innovation leads to a reduction in
energy consumption.

[21]
Dantas et al.

(2021)

Analysis of CE and Industry 4.0
technologies in the contribution to the
implementation of sustainable
practices of the 2030 Agenda

Literature review of 50 papers
Better process control increases flexibility,
production agility and, in turn,
organisational agility.

[11]
Laskurain-Iturbe et al.

(2021)

Influence of Industry 4.0 technologies
on the circular economy

Multiple case study of 27 projects of
Industry 4.0 technologies

Industry 4.0 technologies offer companies
solutions to reduce consumption of
energy.Important differences between the
potential impacts of each technology.

[25]
Zekić-Sušac et al.

(2021)

Integration of BD and machine
learning into an intelligent system for
energy efficiency management

Study of 17,000 public buildings
The combination of AI, BD and IoT show
potential for smart energy management
and energy efficiency.

[48]
Amin et al.

(2022)

Energy consumption, energy
productivity and eco-innovation Data available from 1995 to 2019

The use of advanced technology increases
energy productivity and in turn reduces
consumption.

[51]
Chen et al.

(2022)

Reducing uncertainty in decision
making, reduce uncertainty and
achieve energy efficiency.

19,725,379-energy performance of
buildings data records.

Increased use of machines based on
predictive processes contributes to less
uncertainty at the start of energy
efficient design.

[52]
Hajiagha et al.

(2022)

Benefits of Industry 4.0 technologies
for decision making

12 experts participated with the DEMATEL
(Decision Making Trial and Evaluation
Laboratory) methodology.

Industry 4.0 technologies contribute to
operational excellence, continuously
improving processes to achieve optimal
performance, and improving the energy
efficiency of equipment and machinery.

[34]
Khraiche et al.

(2022)
Energy efficiency policies and targets. Study of 44 countries in Europe

from 1990 to 2015

Between 1999 and 2015, most European
countries experienced a reduction in
energy efficiency as the adoption of
technology involved

[16]
Neligan et al.

(2022)

Digitization as a potential force
towards the circularity of products
and more energy efficient

Multiple case study: 599 manufacturing
companies and 296 industrial
service providers.

Companies improve resource efficiency at
different stages of a product’s life cycle by:
driving innovation, digitisation and
circularity together with financial analysis.

[18]
Sajadieh et al.

(2022)

Manufacturing paradigm of smart
factory technologies and urban
manufacturing

Multiple case study: 9 smart factories.

Conceptual definition of urban smart
factory (SF): A human-centric factory with
four pillars: personalization, sustainability,
resilience, and SF.
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3. Research Methodology
3.1. Sample Frame and Variables

The study took as a reference the Industry 4.0 technology adoption projects presented
in the first four editions of the BIND 4.0 programme, which specialises in promoting
Industry 4.0 projects. BIND 4.0 won the European Enterprise Promotion Awards 2020
(EEPA) in the category “Improving the business environment” [55]. Within the 168 projects
submitted, 130 projects were pre-analysed and companies initially contacted via email.
Subsequently, 72 projects developed by 63 companies from Europe, America, Asia, and
Africa were selected and analysed in depth. These projects were representative of manu-
facturers of technological products or services with applications in the fields of advanced
manufacturing, smart energy, transport, and telecommunications, among others, which
provided innovations and for which it was possible to obtain verified information from
different sources. They had to be informative cases with accessible access to evidence,
answer the research questions and achieve a minimum representation of the technology
groups [56]. In a first step, the projects were classified by 8 technological categories, tak-
ing into account the classification used by SPRI (the Basque public agency for business
development, precursor of the BIND 4.0 programme) (SPRI, 2017). However, they were
subsequently grouped into four majors Industry 4.0 technology clusters, as most of the
projects integrated technology clusters. In addition, the technology clusters were required
to have a minimum of representativeness of 4 or more projects) [57]. Finally, 11 projects on
AMRB, 24 AVAI, 16 BDAA and 21 IoT were analysed. A short description of each project
and the main source of evidence in each case is presented in Table 2 (please note that other
sources and tools have been used, such as email, which is very useful to resolve issues that
are not perfectly clear or to corroborate/reject some evidence).

Table 2. Description of the selected projects and the sources of data collection used.

Technology—Industry 4.0 Project Source of
Evidence †

AMRB 1—Design and manufacture of complex metal parts for the
automotive industry. I(1)/V(2)/D(15)

AMRB 2—Obtain 3D models of a very specific piece used in an
oil refinery. I(3)/V(0)/D(7)

AMRB 3—Development of thermoplastic automotive components. I(1)/V(1)/D(7)
AMRB 4—3D printing software that corrects anisotropy. I(1)/V(1)/D(4)
AMRB 5—Development of new AM tools for industrial processes and
metallic aeronautical components assembly. I(1)/V(0)/D(3)

AMRB 6—Manufacture of prototypes for its geometric, dimensional,
mechanical and structural validation. I(2)/V(0)/D(6)

AMRB 7—Metal AM in manufacturing process. I(1)/V(1)/D(7)
AMRB 8—Surface treatments to avoid light transmission losses in
optical measuring equipment in aggressive environments. I(2)/V(1)/D(3)

AMRB 9—Technological scouting on AM technologies. I(1)/V(1)/D(7)
AMRB 10—Design and manufacture of 3D metal printers based on
SLM technology. I(2)/V(1)/D(5)

AMRB 11—Design, manufacture and produce custom, trustworthy &
connected 3D printers. I(2)/V(0)/D(6)

AVAI 1—Robot for predictive maintenance improvement in
automotive sector. I(1)/V(2)/D(4)

AVAI 2—Development and construction of an AV prototype for
non-contact measurement of sheet thickness in areas susceptible to
stretch-type defects.

I(1)/V(2)/D(7)

AVAI 3—Sheet metal quality control in assembly process. I(2)/V(1)/D(14)
AVAI 4—Development of an automatic and continuous arrow
measurement system with artificial vision. I(3)/V(1)/D(7)

AVAI 5—Process compliance control in manual position. I(2)/V(0)/D(10)
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Table 2. Cont.

Technology—Industry 4.0 Project Source of
Evidence †

AVAI 6—AI algorithms to reduce energy consumption of
industrial plants. I(2)/V(0)/D(5)

AVAI 7—Recognition of broken machines using sound. I(1)/V(0)/D(6)
AVAI 8—Digital transformation into business opportunities. I(1)/V(0)/D(5)
AVAI 9—Improve the energy management in buildings with high
savings and comfort levels. I(2)/V(0)/D(3)

AVAI 10—AI prototyping for non-contact measurement of sheet
thickness in areas susceptible to stretch-type defects I(1)/V(1)/D(6)

AVAI 11—Sheet metal quality control in assembly process. I(3)/V(1)/D(4)
AVAI 12—Development of an automatic and continuous arrow
measurement system with artificial vision. I(2)/V(1)/D(5)

AVAI 13—Process compliance control in manual position. I(2)/V(1)/D(6)
AVAI 14—AI algorithms to reduce energy consumption of industrial
plants. I(1)/V(1)/D(6)

AVAI 15—Intelligent reading of consumption meters, for the extraction
of different fields of interest from an image through mobile devices. I(3)/V(1)/D(7)

AVAI 16—AI-powered HMI and assistant to augment workers in the
digital factory. I(2)/V(0)/D(6)

AVAI 17—Industrial AI solutions for transforming process data
into value. I(3)/V(2)/D(5)

AVAI 18—Replacing manned helicopters with long-range drones. I(2)/V(1)/D(4)
AVAI 19—Build a predictive machine failure analytics model based on
the Halerium tool. I(2)/V(2)/D(7)

AVAI 20—Data analysis via AI algorithms in converters for preventive
maintenance, sizing of components, calculating operational limit I(1)/V(0)/D(3)

AVAI 21—Robotic process automation through the development and
design of interfaces based on AI. I(3)/V(0)/D(7)

AVAI 22—Simplify complex processes and automate what required
humans with help of natural language processing and AI. I(2)/V(2)/D(6)

AVAI 23—Personal data anonymization software based on AI. I(1)/V(1)/D(3)
AVAI 24—Digitising the most distributed infrastructure on earth,
power lines. I(3)/V(0)/D(4)

BDAA 1—Help automotive companies to make smart decisions based
on their own data. I(3)/V(2)/D(7)

BDAA 2—Identify patterns of behaviour in telecom operator’s mobile
customers in order to optimize investments in its network. I(2)/V(1)/D(4)

BDAA 3—Big data and machine learning to chrome plated processes at
auto parts manufacturer. I(3)/V(0)/D(5)

BDAA 4—Optimize manufacturing processes at airplane
engines manufacturer. I(2)/V(0)/D(7)

BDAA 5—Data analytics project aimed at creating value for
operator’s customers. I(3)/V(2)/D(6)

BDAA 6—Analysis of the vegetation around electrical infrastructure
using nanosatellites images. I(2)/V(0)/D(3)

BDAA 7—Special programming of the Berckhoff automation tool in
order to acquire the capacity of introduce owned models. I(1)/V(2)/D(6)

BDAA 8—Warehouse management optimization. I(2)/V(2)/D(5)
BDAA 9—Validation of approximation through neural networks to
Recovery Time Objective in process units. I(1)/V(1)/D(5)

BDAA 10—Modelling and optimization of manufacturing processes
based on advanced analytical techniques. I(3)/V(0)/D(4)

BDAA 11—Sensorization pilot project to validate the potential and
maturity of the technology. I(1)/V(0)/D(3)

BDAA 12—Transform data captured from multiple sources (SCADA,
ERP, BI) into valuable information for decision making. I(3)/V(0)/D(6)

BDAA 13—Asset health information platform for early detection of
component defects that cause failures. I(2)/V(1)/D(3)
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Table 2. Cont.

Technology—Industry 4.0 Project Source of
Evidence †

BDAA 14—Implementation of an intelligent system for
production planning. I(1)/V(0)/D(5)

BDAA 15—Software platform to connect safely machines, data and
analysis for operating efficiency. I(2)/V(0)/D(5)

BDAA 16—Implementation of a technological infrastructure that
allows relating process parameters with results in the product. I(1)/V(2)/D(4)

IOT 1—Operational intelligence for wind turbines, met masts, solar
plants and IoT devices. I(1)/V(0)/D(6)

IOT 2—Help clients build their own devices by connecting them with
sensors and wireless communicators. I(1)/V(1)/D (6)

IOT 3—Oil circuit monitoring solution for compressors and hydraulic
systems (lifting table) in automotive sector. I(3)/V(2)/D(4)

IOT 4—Cloud platform to monitor and control company processes. I(1)/V(1)/D(3)
IOT 5—Predictive maintenance of infrastructures based on a scalable
assistance system. I(3)/V(1)/D(6)

IOT 6—Project focused on the asset management field. I(3)/V(0)/D(5)
IOT 7—Optimising preventive maintenance of a
cable-processing machine. I (2)/V(1)/D(6)

IOT 8—Connection, control and management of the forming machinery
area and its possible connection with the current ERP. I(2)/V(0)/D(7)

IOT 9—Automatic output record of measurement equipment and tools
from the warehouse with RFID technology. I(1)/V(1)/D(5)

IOT 10—Workers’ safety system, capable of detecting falls. Risk
assessment of different jobs. I(2)/V(2)/D(4)

IOT 11—Ergonomic evaluation in real time. I(3)/V(1)/D(3)
IOT 12—Monitoring of production cells in industrial plants. I(2)/V(1)/D(7)
IOT 13—Management of the push bench gearboxes for controlling
aspects like the assembly of them in the bench or the tones laminated
by each one.

I(2)/V(2)/D(5)

IOT 14—Industrial asset tracking and forklift fleet analytics. I(2)/V(1)/D(3)
IOT 15—Development of software solution for automation systems. I(1)/V(2)/D(6)
IOT 16—VCSim simulation tool in a set of distributed and
interconnected parts. I(2)/V(0)/D(7)

IOT 17—Indoor geolocation and analysis of industrial assets. I(2)/V(2)/D(4)
IOT 18—Monitoring any parameter in energy-intensive industry easily
and costly-effectively using waste heat as a source of energy. I(3)/V(0)/D(4)

IOT 19—Surface treatments to avoid light transmission losses in optical
measuring equipment in aggressive environments. I(3)/V(0)/D(4)

IOT 20—Implementation of corporate electric mobility solutions. I(1)/V(1)/D(6)
IOT 21—Process automation & asset digitalization through RFID. I(1)/V(1)/D(4)

Note: † I, interviews; V, visits; D, document analysis.

Table 3 describes the three groups of variables analysed for this study. In an attempt
to limit subjectivity, for each variable 72 values were measured using three main sources
of data collection for each project, as mentioned before: interviews, visits and document
analysis. Negative influences were not detected in the study, so they have not been included.
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Table 3. Classification of variables measured in the study.

Group Variable Type Scale

Industry 4.0
Technologies

AMRB

Dummy 0 = No
1 = Yes

AVAI
BDAA
IoT

Quality
management
of
production processes

Productivity
Manufacturing errors
Product innovation
Decision-making
Process control

Likert

0 = No influence
1 = Very little influence
2 = Little influence
3 = Medium influence
4 = High influence
5 = Very high influence

Energy
efficiency Energy efficiency Likert

0 = No influence
1 = Improv. less than 5%
2 = Improv. between 5–10%
3 = Improv. between 15–20%
4 = Improv. between 20–25%
5 = Improv. more than 25%

3.2. Qualitative Approach

Qualitative techniques and methodologies have been used in this research for several
reasons. The use of qualitative methods allows for a considerable increase in knowledge
about the behaviour of organisations, and among all of them, the case study allows for
generating a very important level of realism in the conclusions of the research [58], which it
is precisely the point in this research. Instead of one, a multiple case study was conducted
to reinforce the analytical generalisations with corroborated evidence (literal replication),
which is essential to provide the research with internal validity.

The case study methodology allows the phenomenon to be analysed in its real context,
considering all aspects of the problem, and using multiple sources of evidence, quantitative
and/or qualitative simultaneously [59]. It is worth clarifying that certain methodologies
considered qualitative, such as case studies, do not only handle qualitative information,
as the same case study can contain both qualitative and quantitative information [57].
Case study research allows the use of either qualitative data exclusively or quantitative
data exclusively, or even both [56,57]. Moreover, it is possible to combine qualitative and
quantitative methods so that a set of hypotheses can be generated from the application of
qualitative instruments and then tested quantitatively [58,60].

In Table 4, key elements of the research protocol are highlighted. Evidence was
collected through passive and active observation (methodological triangulation) [57]. In
accordance with the principle of data saturation [61], data collection was interrupted when
no new themes emerged that could enrich the existing results, and documents such as
project reports or technical reports were collected for analysis (data triangulation). The
evidence collected was then examined, categorised, tabulated, and reviewed, seeking to
identify common patterns of behaviour across cases and determine the connection between
the data and the research objectives [62].
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Table 4. Measures taken to ensure the validity and reliability of the case study.

Research Phase

Design Case
Selection

Data
Collection

Data
Analysis

Reliability

Develop case study
protocols based on the
literature.

Selection based on
theoretical sampling
(Yin, 2017).

Provide the script to all
interviewees prior to
the interview.

Third-party review of the
processes followed in the
research process (Lincoln
and Guba, 1985).

Develop a case study
database (with all
available documents:
interview transcripts,
archives, etc.) (Lincoln
and Guba, 1985).

Internal validity

Establish the theoretical
framework prior to
data analysis
(Eisenhardt, 1989;
Yin, 2017).

Sampling criteria in the
case study protocol
(Yin, 2017).

Records of factors that
could serve as
alternative
explanations
(Miles et al., 2018)

Pattern matching (matching
patterns identified in the
work of other authors)
(Miles et al., 2018).
Triangulation techniques:
multiple sources of evidence
and data collection methods
(Lincoln and Guba, 1985).

Construct validity

The use of multiple
sources of evidence:
interviews, documents,
artefacts and others, to
protect against
researcher bias (Flick,
1992; Peräkylä, 1997).

N/A

Peer review of
transcripts and drafts
(LeCompte and
Goetz, 1982).

Chain of evidence (verbatim
transcripts of interviews and
notes from company
observations to cross-check
data from particular sources
of evidence) (Griggs 1987;
Hirschman, 1986).
Let key informants and other
supporting researchers
review the data analysis and
the draft report findings
(Yin, 2017).

External validity

Justification for the
selection of
case studies. Description of business

cases and contextual
factors of the case study
(Yin, 2017).

N/A Not ApplicableDefining the scope and
limits at the research
design stage (Marshall
and Rossman, 1989).

3.3. Quantitative Approach

Finally, the research questions were tested with the quantitative studies. The statistical
software SPSS v28 was used for this purpose. Initially, a descriptive study was carried
out based on the results obtained in the qualitative analysis. We calculated the means and
variances of the quality management of production processes variables and the energy
efficiency. Using the Kruskal–Wallis test, we analysed if there were significance differences
between the results obtained for the different technology groups for these six variables. In
the second analysis, a correlation analysis between the variables of quality management of
production process and the energy efficiency was conducted [63].

Finally, prior to the model-type selection, the common method bias was analysed
using Harman’s post hoc single-factor test for the quality management variables of the
production processes. The factor with the greatest weight, 43.155%, was lower than the
50% recommended in the literature [64]. In addition, a dimension reduction analysis was
conducted. In this analysis, the need was identified to represent the quality management
variables of the production processes by means of two components. The first component
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included the variables “productivity”, “manufacturing errors”, “decision-making”, and
“process control” and the second “product innovation”. To test its construct validity, a
factor analysis was carried out. The construct can be considered unifactorial because the
percentage of variance associated with the first component of this group of variables was
59.12%, with lower values for the rest of the components [65]. To test its internal consistency,
a reliability test was carried out using Cronbach’s α as a statistic. To pass this test, a value
of over 0.7 is considered advisable [66]. In this study, the construct had an indicator value
of 0.758, meaning that the data had suitable internal consistency. In the collinearity analysis,
the IoT variable was also eliminated due to the degree of collinearity with the other three
technology groups [67].

In order to select the model, the variance explained by the model calculated by the R2

indicator and the significance of the model were considered. In this selection process, it
was observed that the linear regression model without constant explained more than 62%
of the variance including only the Industry 4.0 technologies and 83% once the components
representing the quality variables of the production processes were inserted. Moreover, it
allowed F values always higher than 40, so that the models were significant for alpha = 0.01.
For these reasons, taking into account the recommendations indicated in the literature [63],
it was considered that this model performed in two steps was optimally suited to the object
of the study and allowed us to analyse the influence of the set of Industry 4.0 technologies
on energy efficiency, considering the mediation of the quality management variables of the
production process. The equations of the model were:

In the first step,

Energy efficiency = β11 × AMRB + β12 × AVAI + β13 × BDAA + error (1)

In the second step,

Energy efficiency = β21 × AMRB + β22 × AVAI + β23 × BDAA + β24 × product innovation + β25 × decision-making + error (2)

Afterwards, four two-step regression analyses were run, including within the technol-
ogy part each of the individual technologies, to find out whether there were differences in
the measurement of the different technology groups.

Finally, four two-step regression analyses were carried out, including each technology
individually within the technology part, to find out whether there were differences in the
mediation of the different technology groups.

4. Results

The research focused on the study of technology companies that have combined sev-
eral of the technologies AMRB, AVAI, BDAA, and IoT to clarify unresolved issues, and
to reinforce or even reject the previous conclusions of the literature. The main sources of
evidence were internal documents (real cases, applications, reports, memories of Industry
4.0 projects, etc.) and direct communication with managers and technicians [68]. The visits
made it possible to study the influence of energy efficiency, analysing how the integration
of Industry 4.0 technologies influences on the variables of quality management of the pro-
duction processes: productivity, manufacturing error, product innovation, decision-making
and process control, together with the influence of these on energy consumption. Among
the results, the documentation provided by managers and technicians was examined.

4.1. Influence of the Integration of Industry 4.0 Technologies on the Quality Management of
Production Processes

In a first analysis, after examining, categorising, tabulating, reviewing the evidence,
and identifying common patterns of behaviour, the connection between quality manage-
ment of production processes variables and Industry 4.0 technologies was determined.

Figure 1 shows graphically the influence of Industry 4.0 technologies on the variables
analysed. The statistical results show a positive influence (from 2.5 to 3.49), high positive
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(from 3.5 to 4.49), and very high positive (from 4.5 to 5) between the adoption of AMRB,
AVAI, BDAA and IoT technologies and the quality management of production processes
variables (productivity, manufacturing errors, product innovation, decision-making, and
process control). It is observed that the adoption of Industry 4.0 technologies increases
productivity, improves product innovation and process control, and reduces manufacturing
errors and uncertainty in decision-making. Using the Kruskal–Wallis test, significant
differences were not detected between the four technology groups. The managers remarked
that these influences depend on the type of technologies, the type of processes, and how
the technologies are adopted, but in this study, in terms of type of technology, significant
differences were not detected.
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Thus, the combination of AMRB technologies achieves a very high positive influence
on product innovation. As an example, a technical supplier to the aeronautic industry said
that some parts that used to be made by assembling more than 10 components in several
stages, with AMRB integration are now made in one single stage, without components or
welding, which opens a wide range of possible new product innovations at an affordable
price. As it was observed in the case studies and stated in the literature [69,70], due
to the difficult task of integrating and managing innovation in the processes, the need
for resources and efforts to produce new knowledge in the production process is very
high. The managers added that this aspect influences negatively at the first stage on the
manufacturing errors. However, even if it is the technology group with the lowest value
obtained on manufacturing errors, the influence in the long term is considered positive.

The combination of AVAI and BDAA technologies achieved a very high positive result.
Among the results, AVAI technology achieved very high positive results in relation to
productivity, decision-making and process control and BDAA technology in product pro-
ductivity, decision-making and process control. In this sense, several managers highlighted
the wide range of information capture and processing that these technologies create. This is
linked to greater “process control”, earlier detection of “manufacturing errors”, and more
“decision-making” tools. In relation to IoT technology, the results show a medium–high
positive influence on all of the variables.

4.2. Influence of the Integration of Industry 4.0 Technologies on Energy Efficiency

All technologies have a positive or high positive influence on energy efficiency with
values that vary from 3.00 AMRB to 3.56 AVAI, but using the Kruskal–Wallis test, significant
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differences were not detected between the four technology groups. This means that in the
processes or sub-processes where they are applied, on average energy efficiency improves
by 15% to 25% in the four technology groups. However, as the managers pointed out, the
percentage of improvement depends largely on the initial situation, the type of process, and
in some cases, such as AMRB, on the batch size. They consider that the level of efficiency is
very high for small batch sizes, in some cases up to 70% (aerospace industry application),
and lower as the size of the batch increases (suppliers of automotive and lift manufacturing
industry) with improvements between the 2% and 5%. This fact was explained by a
technician working for a company supplier of the automotive industry, who stated that “for
the preparation of prototypes, this technology required mainly programming activities, but
traditional technologies required much more work and energy consumption in machine
preparation and adjustment tasks”.

With regard to AVAI, the technicians pointed out that AVAI are very useful for applying
continuous improvement actions because AVAI allow them to work with more information
in the processes. For this reason, they consider that “the greater the experience of working
with these technologies, the greater the accumulation of improvements in relation to energy
efficiency”.

Therefore, Industry 4.0 technologies offer opportunities to improve energy efficiency.
However, despite the fact that no significant differences were detected in the quantitative
statistical analysis, as pointed out by a manager of a company that manufactured large
electric motors, “the selection of the technology in which to invest must be made with
great care”. The characteristics of the range of parts to be manufactured, their variability in
terms of quantity and characteristics, and their integration with respect to the rest of the
processes must be taken into account. In this respect, he explained how the vibrations in
the workshop led them to need a new distribution of spaces, as they had an impact on the
non-compliance of specifications of parts manufactured with AMRB.

4.3. Correlation Analysis between Quality Management of Production Processes Variables and
Energy Consumption

In this section, we analyse the linear relationship between the quality management
variables of the production processes and energy efficiency. Table 5 shows that the quality
management variables that measure productivity, manufacturing errors, decision-making
and process control have a positive significant linear relationship with respect to consump-
tion of energy per product manufactured. However, the product innovation variable has
a negligible correlation value, and therefore no linear relationship can be considered to
exist. In this respect, several technicians and managers highlighted the relationship be-
tween the variables of quality management of production processes analysed. In a project
involving AVAI, its managers explained the reasons of this relationship and the correlation.
They emphasized that “(having) more data in the company’s information system on the
processes improved decision-making and allowed for greater control of the processes”.
These aspects affect a reduction in manufacturing errors. Moreover, when they did appear,
action could be taken more quickly because they were detected earlier and there was more
information about their causes. Furthermore, they added that all of this had an impact
on the application of improvement actions that improve the productivity and the energy
efficiency.

Table 5. Pearson correlation indices of quality management of production process variables with
energy efficiency.

Productivity Manufacturing
Errors

Product
Innovation

Decision
Making

Process
Control

Energy
efficiency

Index 0.249 0.229 −0.060 0.314 0.371

Sig. 0.035 0.053 0.617 0.007 0.001
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4.4. Mediation of Quality Management of Production Processes Variables on the Influence of the
Adoption of Industry 4.0 Technologies on Energy Efficiency

This section presents a multiple regression analysis including the technologies used as
dummy-code variables, and the mediation of the quality management of production process
variables on energy efficiency. As has been stated previously, a factorial analysis was carried
out using the principal component analysis method. In the test, it was observed that the
variables “Improvement in product innovation” (extraction factor 0.905) and “Reduction of
uncertainty in decision-making” (extraction factor 0.890) accumulated 70.4% of the variance,
so these two variables were integrated together with the variables of belonging to one or
other technology within the multiple regression model. A deeper factor analysis shows
that the variable “Reduction of uncertainty in decision-making” shares the 59.12% of the
variance with the variables “Productivity”, “Manufacturing errors” and “Process control”
and is the most representative of this set of quality management of production processes
variables. In the collinearity analysis, the IoT variable was also eliminated due to the degree
of collinearity with the other three technology groups.

The regression model was integrated without a constant to maximize the explained
variance. It has been developed in two steps. In the first step, the overall influence of
AMRB, AVAI and BDAA on energy efficiency was analysed without including the quality
management of production processes variables. In the second step, the quality management
of production process variables was included in the model.

As a result, in both cases the model was significant at α = 0.001. In the second step,
the significance increased: the F value increased from 40.674 to 75.221. In addition, the R2

value has increased from 0.623 to 0.838, so the percentage of the variance explained in the
second step by the model is 83.8%. This value is considered optimum in the literature [63].

As a result, the multiple linear regression models are explained by the following
equations, being the standard error of the model’s estimation 2.13 in the first step and 1.4.

As can be seen in Table 6, in the first step the three technologies are significant at α =
0.001. However, in the second step, the only significant variable that appears in the model
is the production process quality management variable called “decision-making” with
a linear influence value of 0.761. In addition, the value indicates that the linear relation
is positive and strong. For this reason, this result confirms the great importance of the
mediation of the variable in the process of adopting Industry 4.0 technologies to reduce
energy consumption, as can be seen in the equations.

Table 6. Multiple regression model.

Step
Model Information AMRB AVAI BDAA Product

Innovation
Decision-
Making

R2 F Sig. Error β Sig. β Sig. β Sig. β Sig. B Sig.

1st 0.623 40.674 <0.001 2.13 0.343 <0.001 0.536 <0.001 0.483 <0.001 - - - -

2nd 0.838 75.221 <0.001 1.4 0.096 0.122 0.056 0.425 0.073 0.258 0.064 0.607 0.761 <0.001

In the first step,

Energy efficiency = (0.343 †) × AMRB + (0.536 †) × AVAI + (0.483 †) × BDAA + error (3)

In the second step,

Energy efficiency = 0.096 × AMRB + 0.056 × AVAI + 0.073 × BDAA + 0.064 × product innovation + (0.761 †) × decision making + error (4)

Furthermore, the technical experts agreed that the “decision-making” variable con-
tributed to a gradual improvement in energy efficiency after the adoption of Industry 4.0
technologies. These improvements start to accumulate from the beginning, though the
degree of improvements achieved decreases over time.

In addition, multiple regression models classified by technology groups were con-
ducted (Table 7). They show that in the first step, even though the R2 values are very low
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and vary between 0.118 and 0.277, the technological variables have a significant positive
influence on the four technology groups and the models are significant at α = 0.01. How-
ever, in the second step, R2 values are optimal and explain more than 83% of the variance
due to the influence of the “decision-making” variable [63]. This variable becomes the
only significant one (α = 0.01), with values of β varying between 0.754 and 0.819, as can be
observed in the following equations:

Table 7. Multiple regression models classified by technology groups.

1st Step

Tech.
Model Information Industry 4.0

Technology
Product

Innovation
Decision-
Making

R2 F Sig. Error β Sig. β Sig. B Sig.

AMRB 0.118 9.484 0.003 3.29 0.343 0.003 - - - -

AVAI 0.277 28.617 <0.001 2.95 0.536 0.001 - - - -

BDAA 0.234 21.650 <0.001 3.06 0.483 0.001 - - - -

IoT 0.217 19.734 <0.001 3.09 0.466 0.001 - - - -

2nd Step

AMRB 0.837 126.041 <0.001 1.39 0.070 0.215 0.085 0.483 0.819 <0.001

AVAI 0.835 122.747 <0.001 1.41 −0.040 0.945 0.155 0.158 0.779 <0.001

BDAA 0.836 123.629 <0.001 1.41 0.036 0.650 0.160 0.145 0.754 <0.001

IoT 0.836 123.322 <0.001 1.41 0.029 0.601 0.152 0.163 0.765 <0.001

In the first step,

Energy efficiency = (0.343 **) × AMRB + error (5)

Energy efficiency = (0.536 **) × AVAI + error (6)

Energy efficiency = (0.483 **) × BDAA + error (7)

Energy efficiency = (0.466 **) × IoT + error (8)

In the second step,

Energy efficiency = 0.070 × AMRB + 0.085 × product innovation + (0.819 **) × decision-making + error (9)

Energy efficiency = −0.040 × AVAI + 0.155 × product innovation + (0.779 **) × decision-making + error (10)

Energy efficiency = 0.036 × BDAA + 0.160 × product innovation + (0.54 **) × decision-making + error (11)

Energy efficiency = 0.029 × IoT + 0.152 × product innovation + (0.765 **) × decision-making + error (12)

This confirms the high degree of importance of the mediation of this variable between
the adoption of all of the Industry 4.0 technology groups and energy efficiency. Moreover,
it is noteworthy that the degree of linear influence and mediation is very strong.

5. Discussion and Conclusions

This research shows how Industry 4.0 technologies can contribute to energy efficiency
and the importance of the mediation of quality management of production process variables.
In general, based on the analysis of the literature and the results obtained, we can state
that the adoption of Industry 4.0 technologies exerts a positive medium–high influence
on energy efficiency. Projects adopting these technologies achieve an average of 15% to
25% improvement in energy efficiency in the processes where they were implemented.
Although no significant differences between the different technology groups were detected
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in the quantitative analysis, in the qualitative phase, differences in how the influences
were detected. Their specific applications, the batch size, the time needed to obtain the
level of improvements and how are combined with other technologies are key factors that
determine the degree of influence.

In general, the reasons of the high level of influence of the four technology groups AMRB,
AVAI, BDAA and IoT on energy efficiency are related to greater precision, flexibility, speed and
amount of information and/or greater energy efficiency of operations. These results confirm
previous findings about the positive influence of AMRB [71–80], BDAA [81,82], AVAI [36,83]
and IoT [38,39].

In addition, in a process of transformation of the socio-tecno-economic model, this
research confirms that Industry 4.0 adoption helps to improve the indicators of productivity,
manufacturing errors, product innovation, uncertainty of decision-making and process
control. Moreover, these influences on productivity, manufacturing errors, uncertainty
of decision-making and process control exert linear influence and a high mediation level
on energy efficiency. Although the influence and mediation of product innovation is not
significant, the mediation of these variables should be relevant in the Industry 4.0 revolution
for organizations, policymakers and other stakeholders to define their road map in the
adoption process of new technologies.

In relation to the limitations of the research, we highlight the problems in obtaining
the same information to measure the quality management of production process variables
in different kinds of organizations and types of production processes. This has made it
difficult to measure the influence of each of the technologies on each variable. Overcoming
this difficulty has been complicated, but the process has been very useful for us to go deeper
into the projects and complement the qualitative information. It would be interesting to
conduct further research to deepen and improve the level of knowledge while taking
into consideration the level of experience working with Industry 4.0 technologies and
information about how the process of adoption has been. The level of experience seems
to influence the value of the analysed variables in a positive way, and some technicians
and managers have highlighted the importance of the conditions of the adoption process.
Furthermore, the results depend largely on the type of application developed in the projects,
so it would be interesting to classify the analysis according to the type of application in
different sectors, though this requires sufficient experiences and data.
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Acronyms
AMRB Additive Manufacturing and RoBotics
AVAI Artificial Vision and Artificial Intelligence
BDAA Big Data and Advanced Analytics
CE Circular Economy
EEPA European Enterprise Promotion Awards
IoT Internet of Things
OEM Original Equipment Manufacturer
RQ Research Question
WEO World Energy Outlook
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