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Abstract

Numerical analyses of the roller–raceway contact have been carried out in a spherical roller bearing using frictional contact models
of different complexity. The models used in the study include an implementation of Kalker’s exact contact theory named CECT (Con-
formal Exact Contact Theory) and detailed Finite Element models. The adequacy of the more simplified contact solutions is assessed
by contrasting them with the solutions obtained with the more comprehensive models. Additionally, the use of the exact contact the-
ory, well known in the wheel–rail application, is demonstrated in contact mechanics analyses in rolling bearings, describing relevant
details of its implementation for this application. Situations with different normal loads and friction levels have been analysed, and
two distinct steady equilibrium configurations of the roller have been identified.
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1. Introduction
The contact conditions between rolling elements and raceways
determine to a large extent the operational limits, performance,
and life of rolling bearings. Contact mechanics is thus an essential
discipline in their design and analysis. Contact analysis methods
of different complexity are used depending on the application and
purpose of the study. Numerical, grid-based methods generally al-
low the solution of more general contact problems than analytical
methods. Oh and Trachman (1976) and Hartnett (1979) are early
examples of numerical solutions of the normal part of 3D con-
tact problems in rolling bearings, based on a discretization of the
contact surface. In these works, the potential contact surface was
taken as flat, and the contact surfaces were assumed to behave
like half-spaces in the normal direction. The computational cost
grew rapidly with the refinement of the mesh, as indicated in Oh
and Trachman (1976).

Finite Element models (FEM) are also used to obtain numer-
ical contact solutions in rolling bearings. Some examples may
be found in Ju et al. (2000), Bomidi and Sadeghi (2014), Li et al.
(2018), and Abdullah et al. (2020). Regarding the contact mechan-
ics part of the simulation, these works dealt mainly with the so-
lution of the normal part of the rolling element–raceway con-
tact. In well-lubricated contacts, the tangential stresses are much
lower than the normal pressures in the contact. As a result, the
precise solution of the normal contact problem has traditionally
received more attention than the tangential contact problem in
rolling bearings. However, even in well-lubricated contacts, the is-
sues related to the tangential contact problem are relevant in sev-
eral aspects of rolling bearing design and operation. For instance,
the frictional dissipation occurring in the rolling element–raceway
contacts may be an important heating source, and call for limit-
ing the operating speed to avoid excessive temperature increase in
the bearing. It is also essential for determining the rolling torque,

the transmission efficiency, and the wear evolution in the run-
ning surfaces of the bearing. This wear may alter the profiles of
the contacting surfaces, possibly leading to increased peak nor-
mal pressures and reduced rolling contact fatigue (RCF) life, as
was shown in Oloffson et al. (2000). As indicated in Harris (2001),
even though the shear stresses acting on the rolling elements and
raceway surfaces in contact are small compared to the normal
pressures, they cannot be neglected for the determination of the
bearing endurance with regard to fatigue, and in many cases, they
are the most significant factor in determining the endurance of a
rolling bearing in a given application. By way of example, in Slack
and Sadeghi (2010), it was shown how relatively small levels of
friction can have a noticeable effect on the propagation pattern
of RCF spalls. More recently, it was demonstrated that wear in
grease-lubricated spherical roller bearings causes contamination
of the grease, which in turn accelerates wear and degradation of
the bearing to premature replacement (Pozzebon et al., 2020; Lin &
Meehan, 2021). The frictional contact analysis is an essential part
of this process.

Frictional contact problems involve a greater difficulty than
frictionless contact problems, and simplified contact models are
usually employed to facilitate their solution. A commonly used
simplifying assumption is that of full slip, wherein the tangen-
tial stresses are determined as the normal pressures times a co-
efficient of friction. This is used for instance in Houpert (1999,
2002) and Leblanc and Nelias (2007), following Jones (1959). As ex-
plained in Houpert (1999, 2002), the coefficient of friction is actu-
ally variable across the contact (see also Kleckner & Pirvics, 1982).
Still, a single value may be used for the full contact provided it
is properly calculated according to the average contact pressure
and sliding speeds in the contact. Besides the shearing of the lu-
bricant film between the contact surfaces, the possible contribu-
tion of the solid direct contact between the surfaces should be
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considered. The full slip approach is also commonly used in rigid
body dynamics simulations of other mechanical systems involv-
ing frictional contacts, to achieve fast computation of the contact
resultant forces and moments (Zhuravlev, 1998; Leine & Glocker,
2003; Kireenkov, 2008; Karapetyan, 2009; Kudra & Awrejcewicz,
2013; Zobova, 2019).

The underlying assumption in full slip tangential contact solu-
tions is that the elastic displacement gradients of the contacting
surfaces are small in relation to the rigid slip velocities and can be
neglected. The surfaces are thus regarded as rigid in the tangen-
tial directions of the contact. However, the effects of the tangen-
tial elasticity of the bodies may be significant in certain situations,
as shown in Halling (1966–67) and Johnson (1985, section 8.5). In
these works, the tangential contact problem was solved with the
strip theory (Haines & Ollerton, 1963). This consists in dividing the
contact patch into parallel strips aligned with the rolling direction
and applying in each Carter’s plane strain solution for the steady-
state rolling contact of two elastically similar bodies (Carter, 1926).
The strip theory was also used in Oloffson et al. (2000) and Mee-
han et al. (2017) to obtain tangential contact solutions to calcu-
late wear profiles in spherical roller thrust bearings and spheri-
cal roller bearings, respectively. This being an analytical solution,
its computational costs are much lower than those of numerical
methods. On the other hand, it is limited to cases in which the di-
rection of the rigid slip velocities is approximately constant in the
rolling direction, as it was initially conceived for situations with
pure creepage.

The FASTSIM algorithm (Kalker, 1982) of Kalker’s simplified
rolling contact theory is another simplified partial slip model for
the tangential contact problem, which overcomes the limitation of
constant direction of the rigid slip velocities along the contact. The
simplification of this model consists in assuming that the elastic
tangential displacement in each point in the contact patch de-
pends only on the contact tangential stress at that point. Though
commonly used for planar contacts, it may be readily extended to
non-planar contacts, provided the assumption of half-space-like
elastic behaviour and elastic similarity of the contacting bodies is
retained. In this model, the contact patch is divided into a 2D grid
of rectangular elements organized in parallel strips aligned with
the rolling direction, and the tangential stresses are computed
along each strip in a recursive, non-iterative way, moving from
the leading to the trailing edge. Therefore, it is still much faster
than exact contact models. This model was applied in Legrand
and Mondier (1995) and Heras (2018) to different types of ball bear-
ings, seeking to improve the tangential contact solutions obtained
with the usual full slip approach.

Generally, when more precise contact solutions are necessary,
these have to be obtained numerically. The numerical computa-
tion of rolling contact problems was pioneered by Kalker (Kalker,
1979, 1990). He set out the kinematic equations of the contact
problem in a Eulerian mesh of the contact surface in which the
exact integral relationships between surface stresses and elas-
tic displacements are discretized, and the normal and tangential
contact conditions are enforced. The method, known as Kalker’s
exact contact theory, is aimed at solving contact problems in lin-
ear elastostatics and was implemented first in the program DU-
VOROL and later in the program CONTACT. It is widely known in
the railway community and used as a reference to validate sim-
pler contact models. CONTACT has continued being developed by
Vollebregt (Vollebregt, 2012, 2020, 2021, 2022), and several authors
have programmed their implementations as well, Jin et al. (2005),
Baeza et al. (2011), and Kaiser (2012) being some examples. Wang
and Knothe (1993) and Wang et al. (2012) are other examples of

the application of methods similar to Kalker’s exact contact the-
ory for rolling contact problems. In Wang and Knothe (1993), the
2D problem of steady-state rolling of two viscoelastic cylinders
was analysed. In Wang et al. (2012), 3D steady-state rolling prob-
lems with surfaces including micro-irregularities were analysed.
The method used here was limited to cases with zero spin.

Some authors classify the exact contact theory as a boundary
element method (BEM). Others (e.g., Wang et al., 2012) designate
this type of method as a semi-analytical method (SAM), refer-
ring to the calculation of the influence coefficients (ICs), which
relate surface displacements and stresses. This type of method
is indeed commonly used for half-space contact problems, and
the half-space ICs are calculated analytically. However, work has
been done to extend the exact contact theory to more general ge-
ometries with numerically calculated ICs (see e.g., Li, 2002; Volle-
bregt & Segal, 2014), so the designation of SAM, in this case, is
now less appropriate. Here, the designation of ‘contact element
method’ (CEM) will be used for methods like Kalker’s exact con-
tact theory, in which just the contact surface is discretized, to dis-
tinguish them from the BEM in which the whole contacting solids
are discretized. The latter was done e.g., in Abascal and Rodríguez-
Tembleque (2007), to solve the structural (global) and the contact
(local) problems in a coupled way.

Rolling contact problems have also been studied with BEM. In
González and Abascal (1998, 2000), a method was developed to
analyse 2D steady rolling contact problems with BEM. This was
subsequently extended to 3D, for a deformable wheel on a rigid
base in Abascal and Rodríguez-Tembleque (2007), and allowing
for the two contacting bodies to be deformable in Rodríguez-
Tembleque and Abascal (2010). In the latter work, each body could
be meshed with either BEM or FEM. The methodology developed in
these references allows for studying coupled structural and con-
tact problems, though the development was aimed at linear elas-
tostatic problems. In González and Abascal (1998, 2000) and in one
of the procedures presented in Abascal and Rodríguez-Tembleque
(2007), the equilibrium equations were condensed to the degrees
of freedom in the potential contact surface, which could be clas-
sified as a CEM wherein the ICs are calculated numerically with
BEM.

CEM methods are best suited to contact problems not coupled
with the structural problem, as is the case in linear elastostatic
problems in which the remote loads are not influenced by the spe-
cific distribution of contact stresses. In cases in which this premise
is not fulfilled due e.g., to large displacements or inelastic material
behaviour, FE models are used to get numerical solutions to rolling
contact problems. FEM for contact mechanics analyses commonly
involves much more degrees of freedom than other contact anal-
ysis methods and higher computational costs. In turn, they offer
more versatility to include in the analysis complex material be-
haviour, non-linear geometry, and dynamic effects, for example.

When the rolling is steady state, it is advantageous to set out
the problem in a static mesh relative to the motion of the wheel
axis of revolution, where the problem can be described in a purely
spatial way, without explicit time dependence. In this setting, the
displacement fields are decomposed into a part of rigid body mo-
tion, which is described in a Eulerian way, and a part of deforma-
tion, which is described in a Lagrangian way. This has the advan-
tage of limiting the mesh refinement for detailed contact analysis
to the region occupied by the contact patch and of avoiding time
stepping. This approach has been used mainly in the tire–road ap-
plication. The tire undergoes large deformations and has a com-
plex structure and inelastic material behaviour, while the road is
commonly assumed to be rigid. This methodology was applied for
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2D in Zeid and Padovan (1981), Padovan et al. (1984), and Oden and
Lin (1986) and extended to 3D in Bass (1987), Padovan (1987), Oden
et al. (1988), Faria et al. (1989, 1992), Nackenhorst (1993), and Le
Tallec and Rahier (1994). In this framework, the inertia effects are
accounted for, in addition to non-linear geometry and material
behaviour. Nackenhorst (Nackenhorst, 1993) noted the relation-
ship between this type of analysis and the Arbitrary Lagrangian
Eulerian (ALE) methods (Donea et al., 2004), widely used in fluid–
structure interaction problems, among others. Kabe and Koishi
(2000), Nackenhorst et al. (2000), Hu and Wriggers (2002), Damme
et al. (2003), Nackenhorst (2004), Ziefle and Nackenhorst (2008),
and Rafei et al. (2018) are further examples of its development
and application in 3D rolling contact problems. In Kabe and Koishi
(2000), comparisons between solutions obtained for steady rolling
contact with this methodology and with Lagrangian simulations
were made, showing the substantial computational advantage of
the former.

In Nackenhorst et al. (2000) and Damme et al. (2003), the ap-
plication of the ALE formulation for 3D wheel–rail rolling con-
tact analyses was demonstrated, where the two contacting bod-
ies have to be regarded as deformable. As stated in Nackenhorst
(2004), future work has to be spent on the development of reli-
able and efficient numerical algorithms. A difficulty of the ALE
formulation for rolling contact problems, which is relevant also
in the case of a single deformable body, is that the particle path-
dependent variables are not computed inherently. This becomes
necessary for the representation of the kinematics of the tangen-
tial contact problem and inelastic material behaviour. These is-
sues were addressed in Ziefle and Nackenhorst (2008), and the is-
sue related to the tangential contact problem, viz the computation
of the convective term of the contact slip velocities, in Laursen and
Stanciulescu (2006) as well. In later works using the ALE formula-
tion (Suwannachit & Nackenhorst, 2013; Behnke & Kaliske, 2015;
Draganis et al., 2015; Wollny et al., 2016; Draganis, 2017), thermo-
mechanical rolling contact problems have been studied.

For transient rolling contact problems, a total Lagrangian de-
scription seems preferable (Wriggers, 2001). Li et al. (2008), Zhao
and Li (2011), Pletz et al. (2014), Vo et al. (2014), Zhao et al. (2014),
and Toumi et al. (2016) are examples of Lagrangian 3D wheel–rail
rolling contact analyses in which detailed frictional contact so-
lutions were computed with FEM. This type of analysis involves
a non-linear time-stepping solution, which is computationally
costly. Returning to the rolling bearing application, Heras et al.
(2017a), Tonazzi et al. (2017), Schwack et al. (2018), Fallahnezhad
et al. (2019), and Schwack et al. (2021) are examples featuring this
type of analysis. A relevant difficulty in rolling contact analyses
of rolling bearings with respect to the wheel–rail or tire–road ap-
plications is that in many cases more than two contacting bodies
have to be modelled. In these works, it was relevant to obtain a
detailed solution of the tangential contact problem to get repre-
sentative friction torques, plastic strains, or wear profiles in the
computations.

In this work, the roller–raceway contact is studied in a spher-
ical roller bearing, with partial slip contact models of different
complexity, covering the normal and tangential parts of the con-
tact problem. The geometry of the studied bearing is described
in Section 2. In Section 3, the used contact models are described.
These include the strip theory, the exact contact theory, and FEM.
As a novelty with respect to previous works, the use of the ex-
act contact theory is demonstrated in the rolling contact analysis
in a rolling bearing. This necessitates a specific adaptation from
its original application in the wheel–rail case, which is explained
in Section 3.2.2. In Section 4, the results of the numerical studies

Figure 1: Sectional view of the spherical roller bearing.

Table 1: Geometric parameters of the spherical roller bearing.

Parameter Description Value

D (mm) Roller nominal diameter 19.8
rE (mm) Outer race groove curvature radius 102.4
rI (mm) Inner race groove curvature radius 103
R (mm) Roller crown radius 100.3
α (º) Nominal contact angle 11.5
αR (º) Roller angle 0

carried out are presented. On the one hand, rolling contact solu-
tions obtained with the different contact models are compared,
discussing the validity of each one for the application. This serves
to assess the benefits that may be gained with more comprehen-
sive 3D partial slip contact models, with respect to the usual full
slip or simplified 1D partial slip models. Regarding the applica-
tion of FEM, a detailed assessment of the stationarity of the com-
puted contact solutions is presented, not seen in previous works,
which is necessary to achieve valid steady equilibrium solutions
in the studied bearing. On the other hand, steady rolling equilib-
rium configurations of the roller are computed for scenarios with
different normal loads and friction levels. This equilibrium study
is only possible with a 3D partial slip contact model. Lastly, the
main conclusions of the work are compiled in Section 5.

2. Description of the Studied Spherical
Roller Bearing
The object of this study is a double-row spherical roller bearing
with symmetrical barrel-shaped rollers. This is a type of bear-
ing commonly used in railway axles. These bearings have self-
aligning and high load-carrying capacity and can carry combined
radial and thrust loads (Kleckner & Pirvics, 1982; Harris, 2001).
Figure 1 shows a sectional view of the bearing (not to scale), and
Table 1 lists its main internal dimensions relevant to the contact
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analyses. One-half of the bearing section is shown in the figure,
which is symmetrical with respect to the XZ plane. The bearing
material is steel, with a Young’s modulus E of 207 GPa and a coef-
ficient of Poisson ν of 0.3.

The resulting roller–raceway contact patches have a high
width-to-length ratio (approx. 40) and modest total contact an-
gle variations in the lateral direction. The length refers to the di-
mension in the rolling direction and the width to the dimension
in the lateral direction. The total contact angle variation is around
11º with a normal load on the roller of 5.5 kN. This load has been
computed in the most loaded roller for a total radial load of 28.7
kN in the bearing, considering a radial bearing clearance of 0.1
mm.

The following coordinate systems are defined:

1. Bearing {X, Y, Z}: Cartesian coordinate system that rotates
with orbital rotation velocity ωm following the radial bearing
plane containing the central point of the considered roller.
Its origin is on the common rotation axis of the inner and
outer rings, at the lateral mid-plane of the bearing (between
the two rows of rollers). The YZ plane contains the rotation
axis of the rings and the roller centre. The Y axis is aligned
with the rotation axis of the rings, the Z axis points verti-
cally upwards, and the X axis completes the right-handed
coordinate system.

2. Reference roller {x, y, z}: Cartesian coordinate system with
origin in the nominal location of the roller centre in the YZ
plane, with the y axis aligned with its nominal axis of revo-
lution. It is obtained from the bearing {X, Y, Z} system with
a rotation of α around the X axis and displacements of –rm

tan(α) and rm along Y and Z. rm is the pitch radius of the
bearing, equal to (rE – D/2) cos(α).

3. Roller {u, v, w}: Cartesian coordinate system with origin in
the roller centre, which moves solidary to the roller. It is ob-
tained from the {x, y, z} system with the following sequence
of rotations and displacements:
a. β tilt rotation around the x axis. After this rotation, a z′

axis is obtained from the z axis.
b. γ yaw or skew rotation around the z′ axis. After this ro-

tation, the orientation of the v axis is defined, which co-
incides with the roller axis.

c. θ pitch rotation around the v axis.
d. dy and dz displacements along the y and z axes.

The tilt and skew rotations of the roller are illustrated in Fig. 2.
The contact of one of the rollers with the inner and outer races

is considered. Each body is identified with a letter. I is used for the
inner ring, R for the roller, and E for the outer or exterior ring. The
nominal contact points of the roller with the inner and outer races
are identified in Fig. 1 as ‘i’ and ‘e’, respectively. The nominal rolling
radii of the rings rroll ,I,i and rroll ,E,e are given by equation (1). These
are distances in the Z axis from the bearing axis to the inner and
outer nominal contact points. The longitudinal curvature radius
of each ring at the nominal contact point is equal to the rolling
radius divided by cos(α).

rroll,I,i = rm − D
2

cos (α) ; rroll,E,e = rm + D
2

cos (α) (1)

In steady rolling, the motion of the roller is composed of an or-
bital rotation around the global Y axis with angular velocity ωm

and a pitch rotation around its own v axis with angular veloc-
ity ωR. The theoretical angular velocities for perfect rolling on the
nominal contact points are given by equations (2) and (3). In these
equations, ωI and ωE are the rotation velocities of the inner and

outer rings (around the global Y axis). Their values are fixed at
476.2 and 0 rpm in this work.

ωm,o = rroll,I,iωI + rroll,E,eωE

rroll,I,i + rroll,E,e
(2)

ωR,o = −2rroll,I,irroll,E,e (ωI − ωE )
D (rroll,I,i + rroll,E,e )

(3)

Each roller has a mass mR of 65.6 g and inertia moment about
the u axis IR,uu of 5.87 kg.mm2. Together with the kinematic pa-
rameters considered, this results in a centrifugal force and a
gyroscopic moment of approx. 3 N (along the positive Z axis)
and 6 N.mm (along the positive X axis for the roller depicted
in Fig. 1), respectively. In the cases analysed in this work, these
roller inertia forces are much lower in magnitude than the roller–
raceway contact forces, and their effect on the contact solutions is
negligible.

3. Contact Models
It is aimed to obtain detailed rolling contact solutions for each
roller–raceway contact. To this end, different partial slip contact
models have been considered in this work. Each of them is de-
scribed in the following subsections.

The following common assumptions are considered:

1. The bodies are homogeneous, and the material’s behaviour
is linear elastic and isotropic.

2. Coulomb’s friction law is used, with a constant coefficient
of friction. This is commonly applied in dry or in boundary
lubricated contacts.

The bearing is considered to be radially loaded. The motions of
the inner and outer rings are prescribed, as well as the approach
between them. The precise motion and position of the roller are to
be determined as part of the solution so that the roller complies
with steady equilibrium. More precisely, quasi-steady equilibrium
configurations of the roller are computed, since the load on the
roller changes continuously during its orbital rotation around the
bearing.

3.1. Strip theory
The strip theory is described in Haines and Ollerton (1963). The
necessary geometric and kinematic inputs are obtained under the
following assumptions:

1. The roller is considered in its nominal orientation, with nei-
ther tilt nor skew.

2. The inner and outer roller–race contact centres are consid-
ered to be located in the same rolling circle of the roller.

3. The contact centres, which are prescribed, may be different
from the nominal contact points.

The normal contact problem is solved first using the Hertz the-
ory. The same normal load N is prescribed for the inner and outer
contacts. The crown radius of the roller and groove radii of races
are used in the lateral direction and the longitudinal curvature
radii of the roller and races at the contact centres in the longitu-
dinal direction. Here, the correction proposed in Blanco-Lorenzo
et al. (2018) is also applied to the effective lateral curvature, i.e.,

Bcorr = B + d
2r2

(4)

In this equation, B is half the effective lateral curvature, d is
the normal approach between two contacting bodies, and r is the
mean radius of curvature of the contact surface, which may be
approached as the arithmetic mean of the lateral curvature radii
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Figure 2: Tilt and skew rotations of the roller.

of the two contacting surfaces. In the presently studied case, the
effect of this correction, i.e., the second term of equation (4), is
negligible.

The tangential contact problem is solved by dividing the con-
tact patch into parallel strips aligned with the x direction and
applying Carter’s theory (Carter, 1926) independently in each of
them. The interaction between different strips is neglected. A pure
longitudinal creepage is considered, constant in each strip. The
longitudinal rigid slip velocities wx are calculated as the differ-
ence of the relative velocities of the contact patch over each con-
tacting surface. The contact relative velocities Vc ,j over the surface
of each race j, j ∈ {I, E}, and over the surface of the roller, Vc ,R, are
given in equations (5) and (6). These velocities are identical for per-
fect rolling on the nominal contact points of the inner and outer
contacts.

Vc, j = ∣∣ωm/ j

∣∣ rroll, j = ∣∣ωm − ω j

∣∣ rroll, j (5)

Vc,R = |ωR| rroll,R (6)

In these equations, rroll,j are the rolling radii of each race (mea-
sured along the bearing Z axis), and rroll,R is the rolling radii of the
roller (measured along the roller z axis). These are variable in the
lateral direction of the contact patch. The longitudinal creepage ξ

is thus calculated according to equation (7). The contact velocity
Vc is taken as the average of Vc ,j and Vc ,R.

ξ = Vc,R − Vc, j

Vc
= 2

(
Vc,R − Vc, j

)
Vc,R + Vc, j

(7)

For given ring rotation velocities ωI and ωE, ωm and ωR are it-
erated until the equilibrium of longitudinal forces and moments
around the y axis is satisfied in the roller with the inner and outer
contact resultants. Only the tangential contact forces contribute
to these equilibrium conditions.

In a strip of maximum normal pressure p′
no, the normalized

creepage ξ ∗ is calculated according to equation (8). μ is the coeffi-
cient of friction and E∗ is calculated as E/[2(1 – ν2)] for two bodies
with the same elastic constants.

ξ∗ = E∗

2μp′
no

ξ (8)

The tangential contact solution in a strip, including the tangen-
tial stresses px and slip velocities vx, is calculated as a function of
the strip values of μp′

no and ξ ∗ by Carter’s theory:

Figure 3: Tangential contact stresses in Carter’s 2D tangential contact
solution.

−sgn (ξ ) × px

μp′
no

=

⎧⎪⎨
⎪⎩

√
1 − x′2 − c′

√
1 −

(
x′−(1−c′ )

c′

)2
for 1 − 2c′ < x′ ≤ 1√

1 − x′2 for − 1 ≤ x′ ≤ 1 − 2c′
(9)

sgn (ξ ) × vx

Vc

=
⎧⎨
⎩

0 for 1 − 2c′ < x′ ≤ 1

ξ

(
1 + 1

ξ∗

(
c′ − 1 +

√
(x′ − (1 − c′ ))2 − c′2

))
for − 1 ≤ x′ ≤ 1 − 2c′ (10)

In equations (9) and (10), x′ is equal to the longitudinal distance
x from the centre of the strip divided by the half-length of the
strip a′, and c′ the half-length of the adhesion area in the strip c
divided by a′ (see Fig. 3). c′ is equal to 1 – min(1; |ξ ∗|). For |ξ ∗| >

1, the strip is entirely in slip. The resultant longitudinal force in
a strip dFx may be obtained by integrating px over the strip. The
result is given in equation (11) for a strip of unit width, with dN
being the resultant normal force on the strip, equal to πa′p′

no/2.

dFx = −sgn (ξ ) ×
(
1 − c′2

)
× μ × dN (11)
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Figure 4: Potential contact surfaces and local contact coordinate
systems in roller–raceway contacts of the spherical roller bearing.

3.2. Exact contact theory
In this work, a previously presented implementation of the exact
contact theory named CECT (Blanco-Lorenzo et al., 2016, 2018) is
used, with the capability to solve conformal contact problems in
non-planar contact surfaces. In the cited works, the application
of CECT to wheel–rail contact problems was demonstrated. Here,
its application to contact problems in rolling bearings is shown,
and particular features of the implementation necessary for this
application are described.

In the type of contact mechanics problems treated here, the
CEM allows the construction of models with much fewer degrees
of freedom than the FEM described in Section 3.3 for a similar
level of detail in the contact solution. Further advantages of the
exact contact theory are the use of a Eulerian mesh, by which the
mesh is restricted to a region only slightly larger than the contact
patch itself, and that it is possible to solve steady rolling contact
problems directly, as opposed to the incremental or multistepping
technique followed with the FE models described in Section 3.3.
All this translates into much lower computational demands than
the FEM simulation methodology used in this work.

A starting point of the contact analysis is the definition of the
geometry of the potential contact surface, in which the contact
patch of the rolling element with each raceway is contained. This
is defined as a prismatic surface extruded along the X direction. Its
profile is between the profiles of the rolling element and the race-
way. Each contact is analysed in a local curvilinear {x, s, n} system
associated with the potential contact surface. It moves with the
contact patch, and its origin is defined to be in the corresponding
nominal contact point. The s and n axes, of variable direction, are
contained in the radial YZ plane. The s axis is tangent to the profile
of the contact surface, and the n axis is normal to it, pointing into
the rolling element. The x axis is perpendicular to the radial YZ
plane, pointing towards the direction of the relative movement of
the rolling element with respect to each raceway. Figure 4 depicts
the {x, s, n} systems for the inner and outer contacts in different
lateral positions. The profiles of the potential contact surfaces are
also represented, in dotted lines. The X and Y axes of the {X, Y, Z}
system are flipped for the analysis of each contact so that the X
and x axes point in the same direction, to facilitate transforma-
tions between both systems.

The inner and outer contact problems are specified and solved
independently, considering the relative motion of the rolling ele-
ment with respect to each raceway. A Newton–Raphson iteration
procedure is carried out to obtain the position, orientation, and
rotation velocities of the rolling element with which its steady
rolling equilibrium is satisfied. The main steps of the process are
illustrated in the flowchart of Fig. 5.

In the steady equilibrium configuration, the sum of all the
forces and moments acting on the rolling element, including the
inertia forces, is zero, while the rolling element is in a steady con-
figuration in the radial YZ plane. The rolling element configura-
tion is defined with the following variables, which are arranged in
a vector {P}:

1. Position, defined by displacements dY and dZ of the rolling
element centre in the YZ plane with respect to its nominal
position.

2. Orientation, defined by rolling element tilt and skew angles
β and γ .

3. Rotation velocities ωm and ωR.

A centrifugal force and gyroscopic moment are considered as
inertia forces on the rolling element, with the magnitudes indi-
cated in Section 2. An additional resultant force and moment may
be considered acting on the rolling element, due for example to
contact with the cage or lubricant churning. Here, these have been
fixed at zero. The resultant forces and moments due to the con-
tact, inertia, and additional forces and moments acting on the
roller are summed in a vector {R}.

The main steps of the process illustrated in Fig. 5 for the deter-
mination of the steady equilibrium configuration of the roller are
as follows:

1. {P} is initialized. This may be done with the nominal roller
position or with a previously obtained equilibrium solution
for a similar problem if one is available.

2. The inner and outer roller–raceway contacts are solved with
CECT for the roller configuration defined in {P}.

3. {R} is calculated considering the previously obtained con-
tact solutions. {R} is composed of subvectors {RF} and {RM}
of forces and moments, respectively, each of them of three
elements.

4. The condition for steady equilibrium is {R} = {0}. To check
this condition, different tolerances are defined for {RF} and
{RM}, namely tolF and tolM. If all the elements of {RF} and
{RM} are below their respective tolerance (in absolute value),
the equilibrium configuration of the roller has been found.
Otherwise, a different {P} is tried. {P} is updated according
to a Newton–Raphson algorithm as defined in the following
steps.

5. [J] is calculated, the 6 × 6 Jacobian matrix that contains the
sensitivities of each element of {R} to each element of {P}.
This involves the solution of six pairs of inner and outer
roller–raceway contact problems with CECT, one for each
element of {P}, Pi. Each of these pairs of contact problems is
solved considering a modified {P′

i} vector, in which Pi is given
a small increment δPi (i.e., Pi is substituted by Pi + δPi), and
the rest of the elements are the same as in {P}. With each
of these pairs of contact solutions, a modified resultant is
obtained on the roller, {R′

i}. The column of [J] corresponding
to Pi is calculated as ∂{R}/∂Pi ≈ ({R′

i} – {R})/δPi.
6. {P} is updated as {P}(n + 1) = {P}(n) – ([J]–1)(n) {R}(n). The su-

perindices in parentheses (n) and (n + 1) denote the iteration
number.
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Figure 5: Flowchart of the search for the steady equilibrium configuration of the roller with contact solutions from CECT.

7. With the updated {P}, the process returns to step 2. Steps 2–6
are looped until {R} is sufficiently close to {0}, as defined by
the tolerances tolF and tolM.

The contact problems in step 2 above are solved with meshes of
roughly 50 × 50 elements. Coarser meshes may be used in step 5 to
save computation time. The matrix [J] presents a significant noise
level due to discretization error when some element of the contact
mesh changes from inside to outside contact or vice versa in some
of the contact solutions computed in this step. This poses a con-
siderable difficulty for the convergence of the Newton–Raphson
process described earlier, and in some cases leads to divergence.
This problem has been tackled by using very small increments
δPi, to avoid changes in the set of elements making up the con-
tact patch. However, excessively small δPi increments could lead
to being left with too few significant digits when computing the
differences ({R′

i} – {R}), so some testing is necessary to arrive at
adequate δPi values for the described numerical computation of
[J].

The application of the exact contact theory to rolling bearings is
affected by the following two fundamental geometric differences
between rolling element–raceway and wheel–rail contact:

1. The raceway is not straight in the rolling direction.
2. The rolling radii of the contacting surfaces of the rolling el-

ement and raceway are not large with respect to their vari-
ations in the contact patch.

Each of these points is addressed in the following subsections.

3.2.1. Curvature of the raceway in the rolling direction
The raceways are taken as bodies of revolution, like the rolling
element. The axes of revolution of each pair of contacting bod-
ies (inner raceway–roller and outer raceway–roller) may not be
aligned nor contained in the same plane. The axis of revolution

of the raceway is arranged to be aligned with the Y axis in each
contact.

The inner raceway–rolling element contact is counterformal in
the rolling direction. Additionally, the longitudinal curvature radii
of the outer raceway are considered to be much higher than those
of the rolling element. Within linear elasticity, this implies that the
longitudinal dimensions of the contact patches are much smaller
than these radii. So, the hypothesis of a prismatic contact surface
previously described is retained for both the inner and outer con-
tacts.

On the other hand, the longitudinal curvatures of the raceways
affect the rolling element–raceway normal undeformed distances.
The longitudinal dimension of the inner contact patch decreases
as a result of the convex longitudinal curvature of the inner race-
way, and that of the outer contact patch increases as a result of the
concave longitudinal curvature of the outer raceway. The normal
undeformed distances are computed following mostly the same
procedure explained in Blanco-Lorenzo et al. (2016), which is based
on computing intersections of the contacting surfaces with planes
perpendicular to x. Only the computation of the intersections of
the raceway surface is changed.

The intersections of the rolling element surface are computed
in the same way as in the wheel–rail case, following a modification
of the development to compute the wheel contact locus explained
in appendix D of Li (2002). The key in this development is that
the distance between the intersection of the wheel axis from the
normal to the possible contact point on the wheel surface, to the
centre of the rolling circle of that possible contact point, is known.
Additionally, the possible contact point is in the same longitudinal
position as the intersection mentioned earlier. Therefore, the lon-
gitudinal distance from the possible contact point to the centre of
its rolling circle is known. Replacing in this development this dis-
tance by the distance to the plane perpendicular to x with which
the intersection of the wheel surface is to be computed, expres-
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sions for the exact coordinates of this intersection are obtained
[cf. equations (11) and (12) of Blanco-Lorenzo et al. (2016)].

The intersections of the raceway surface are no longer constant
in the x direction as with a straight rail. These are computed with
the same equations as for the rolling element, particularized for
having the raceway axis of revolution parallel to the Y axis. In this
way, the Z coordinates of the raceway surface intersection are cal-
culated as sgn(rroll, j ) ×

√
r2
roll, j − x2, with j ∈ {I, E}. In this expres-

sion, sgn(rroll,j) = 1 if the raceway axis of revolution is below the
point (x, s) = (0, 0) of the contact patch along the Z axis, and –1
otherwise. The raceway axis of revolution is defined to be at x = 0,
and the origin of the Z coordinate is on this axis. The Y coordinates
of the intersection are the same as those of the raceway profile on
the YZ plane.

The longitudinal curvature of the raceway also implies that in
steady rolling, the rotation velocity vector of the rolling element in
its relative motion with respect to the raceway j, ωR/j, is not aligned
with the axis of revolution of the rolling element v, unless v is par-
allel to the bearing Y axis. This is because ωR/j is the vectorial sum
of ωm/j and ωR. The rigid slip velocities are computed as the pro-
jections of the relative velocity vectors over the potential contact
surface, following the same approach outlined in Blanco-Lorenzo
et al. (2016). For this purpose, a new coordinate system {u′, v′, w′}
is used, with the v′ axis parallel to ωR/j. The input data in this cal-
culation are as follows:

1. ωR/j, with components ωR/j ,X, ωR/j ,Y, and ωR/j ,Z in the {X, Y, Z}
system.

2. vP/j, the velocity vector of a point P on the rolling element
relative to the raceway j, as well as the position of that point.
vP/j has components vP/j ,X, vP/j ,Y and vP/j,Z in the {X, Y, Z} sys-
tem.

3. The mesh points of the potential contact surface on which
the rigid slip velocities are to be computed. The vector from
point P to an element I in the potential contact surface is
rI-P.

4. The angles of inclination δ of the potential contact surface
in the YZ plane. The angle at element I is δI. These angles
are measured from the Y axis to the tangent to the potential
contact surface directed in the positive s direction, counter
clockwise as viewed looking towards the negative X direc-
tion. As the potential contact surface is prismatic, the an-
gles δ vary only in the s direction.

Angles ψω and ϕω are computed according to equations (12) and
(13).

ψω = atan
(−ωR/ j,X/ωR/ j,Y

)
(12)

ϕω = sgn
(
ωR/ j,Z

) × acos

⎛
⎝sgn

(
ωR/j,Y

)
√

ω2
R/j,X + ω2

R/j,Y∣∣∣∣ωR/j
∣∣∣∣

⎞
⎠ (13)

The coordinate system {u′, v′, w′} is obtained from the system
{X, Y, Z} with the following steps:

1. Rotation of ψω around the Z axis. After this rotation, the ori-
entation of the u′ axis, which is obtained from the X axis, is
already defined.

2. Rotation of ϕω around the u′ axis.
3. The origin of the system {u′, v′, w′} is translated to the point

P on which the velocity vP/j is given.

The rigid slip velocity wI/j at an element I in the potential con-
tact surface with respect to the raceway j is calculated by applying
wI/j = vP/j + ωR/j × rI-P. Finally, wI/j is projected on the potential

contact surface, and the rigid slip velocities wI/j ,x and wI/j ,s which
are input in the tangential contact problem are obtained as the
components of this projection on the principal directions of the
surface x and s. The following expressions result:

wI/ j,x = vP/ j,X + ∣∣∣∣ωR/j
∣∣∣∣ RI(− cos (θI ) cos (ψω )

+ sin (θI ) sin (ψω ) sin (ϕω )) (14)

wI/ j,s = vP/ j,Y cos (δI ) + vP/ j,Z sin (δI ) + ∣∣∣∣ωR/j
∣∣∣∣ RI

× (− cos (δI ) cos (θI ) sin (ψω )

− cos (δI ) sin (θI ) cos (ψω ) sin (ϕω )

+ sin (δI ) sin (θI ) cos (ϕω )) (15)

In equations (14) and (15) RI and θ I are, respectively, the radial
and azimuthal coordinates of the vector rI-P in a cylindrical coor-
dinate system with its axial direction aligned with the v′ axis and
having the origin of the θ coordinate on the negative w′ axis.

3.2.2. Varying rolling radii of the contacting surfaces
The following relation of velocities holds in the tangential contact
problem:

v = w + Du
Dt

= w + Vc
∂u
∂x

+ ∂u
∂t

(16)

In equation (16), v is the slip velocity, w is the rigid slip velocity,
and u is the tangential elastic displacement difference of the con-
tacting surfaces. They are 2D vectors with components in the (x, s)
tangent directions of the contact surface. These vectors are func-
tions of the (x, s) surface position in the contact reference frame
and in non-stationary problems of time as well. The uppercase
time derivative on the central side of the equation denotes a La-
grangian derivation associated with the material particles of the
contacting surfaces. Vc is the rolling or contact velocity, approxi-
mately the velocity at which the material particles of the bodies
flow through the Eulerian {x, s, n} coordinate system attached to
the contact patch along the negative x direction, or in other words,
the velocity of the contact over the contacting surfaces in the rel-
ative motion with respect to each contacting surface. In wheel–
rail contact, Vc may be taken as uniform throughout the whole
contact. In rolling bearings, it may be variable because the rolling
radii of the bodies may be variable. This affects the computation
of the surface velocities associated with the elastic deformations
of the contact surfaces, i.e., the second term on the central side
of equation (16).

The discretization in time of equation (16) leads to

v = w + u − u′

�t
. (17)

In equation (17), �t is the chosen increment for the time dis-
cretization, u, v, and w are field magnitudes in the current time
instant t, and u′ is the elastic displacement difference in the pre-
vious time instant and position. For the contacting particles oc-
cupying position (x, s) in the current time instant t, u′ = u′(x, s, t)
= u(x + Vc �t, s, t – �t). The quantity Vc �t is designated as �q.
�t is fixed for the whole contact patch, so with a variable Vc, �q
is variable in the contact patch. A reference �q, �qo, is chosen in
the contact patch. This may be the value of �q at (x, s) = (0, 0),
for example. u′ is obtained in different ways in transient and in
steady-state rolling contact problems.

In transient rolling contact problems, the elastic displacement
field in the previous time instant is known. It is computed with
the contact stresses of the previous time instant, p′ = p(x, s, t –
�t), according to equation (18).
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u′
Ii = [IC′

IiJj]p
′
Jj (18)

Equation (18) expresses the discretized relationship between
contact surface stresses and elastic displacements at t – �t. A sim-
ilar relationship may be written for the current time t. p′

Jj is the
vector of contact stresses at time t – �t, with element p′

Jj of this
vector being the contact stress along direction j ∈ {x, s, n} on ele-
ment J of the contact mesh. The index J is extended over all the el-
ements of the mesh entering into contact. [IC′

IiJj] is a matrix of ICs
of the contact mesh. Element IC′

IiJj of this matrix gives the elastic
displacement difference along direction i ∈ {x, s} on element I due
to a unit stress along direction j on element J, at the position (xI +
�qo, sI) occupied by the particles of element I in a previous instant.
Different alternatives for the efficient approximation of the ICs of
solids with non-planar surfaces are proposed in Blanco-Lorenzo et
al. (2021). In this work, the approximation designated as B̂ in that
reference is used. Here, it is generally desirable a common �qo for
the whole contact mesh for efficiency in the computation of ICs
and their convolution(With a regular mesh, the convolution of the
ICs with the contact stresses may be performed efficiently in the
Fourier domain with FFTs, and without forming complete NE × NE
[IC′

IiJj] matrices for a 2D mesh with NE elements, as explained e.g.,
in Liu et al. (2000). This, however, is not relevant to the subject dis-
cussed here, and the variables and equations in this section are
expressed in the space domain for convenience. In planar contact
problems, the surface displacements may be obtained with a 2D
convolution applying 2D FFTs. In non-planar contacts, generally,
the similarities between ICs in the lateral direction are lost, and
full 2D convolutions are no longer possible. In this case, the sur-
face displacements of each lateral position of the mesh may be
computed as the sum of ns 1D convolutions in the longitudinal
direction applying 1D FFTs (ns being the number of divisions of
the mesh in the lateral direction)) with the contact stresses. To
get the desired displacements at (xI + �q, sI, t – �t), the initially
obtained displacements at (xI + �qo, sI, t – �t) are interpolated in
the x direction (or extrapolated as necessary at extreme positions
of the mesh).

In steady rolling contact problems, the transient term ∂u/∂t on
the right-hand side of equation (16) vanishes, and the second term
on the right-hand side of equation (17) becomes a purely spa-
tial gradient. Therefore, the difference u – u′ in this term may be
scaled proportionally to Vc in each mesh position.

(u – u′) is split into the contributions due to the normal pres-
sures and the tangential tractions, (u – u′)n and (u – u′)t, with (u
– u′) = (u – u′)n + (u – u′)t. Following the Panagiotopoulos process
to solve the generally coupled normal–tangential contact problem
(Panagiotopoulos, 1975; Kalker, 1990), (u – u′)t is initially unknown,
and (u – u′)n is known in the tangential problem. If the available (u
– u′)n corresponds to a common �qo in the whole contact patch,
the value for the applicable �q in each position is obtained by
scaling (u – u′)n with the ratio �q/�qo.

For (u – u′)t, this scaling is realized by modifying the elements of
the matrices of ICs with which this difference is computed within
the solver used for the tangential problem. This may be calcu-
lated according to equation (19) or to equation (20). The [IC] ma-
trix in these equations is homologous to the previously explained
[IC′] matrix for the current time instant t. In either case, the fact
that in steady rolling p′ = p(x, s, t) is used. The subindices IiJj used
in equation (18) are dropped in these equations for brevity, and
here j ∈ {x, s}.

(u − u′ )t = ([IC] − [IC′]) p = [dIC]p (19)

(u − u′ )t = [IC] (p (x, s, t) − p (x + �x, s, t)) = [IC]dp (20)

Referring to equation (19), if the initially computed difference
matrix [dIC] corresponds to a common �qo in the whole con-
tact patch (i.e., if [dIC] = [dIC(�qo)]), a scaled difference ma-
trix [dICsc(�q)] is used within the tangential solver instead of
[dIC(�qo)]. Each element of [dICsc(�q)] is computed as dICsc,IiJj(�q)
= dICIiJj(�qo) × �qI/�qo, being �qI the value of �q at the position of
element I. Regarding equation (20), which is used in the SteadyGS
tangential solver (Vollebregt, 2010), �x is the element size in the
longitudinal direction, common in the whole contact mesh. In this
case, the scaling of [IC] is performed analogously as explained for
[dIC] in equation (19). In either case, it has to be borne in mind
that this scaling is valid only for computing differences (u – u′)t,
but not values u or u′. Equations (19) and (20) become

(u − u′ )t = [dICsc (�q)]p (21)

(u − u′ )t = [ICsc (�q)]dp. (22)

The calculation of Vc is carried out in a similar way as described
in Section 3.1, using equations (5) and (6) to compute contact ve-
locities Vc ,j and Vc ,R over the surfaces of the raceway and rolling
element. The contact velocities may be approximated as constant
in x in this calculation due to the short longitudinal dimension of
the contact patch. Vc and �q may therefore be taken as variable
only in the s direction. For the general case of contacting bodies
with dissimilar elastic constants, Vc is computed as the weighted
average of Vc ,j and Vc ,R, using the elastic constant EB

∗= EB/(1 – νB
2)

of each body B as weight. A possible refinement could be to re-
tain the velocities Vc ,j and Vc ,R to compute the velocities due to
elastic deformations of each surface separately instead of using a
single, averaged Vc. This would require doubling the amount of IC
matrices to be handled. However, if the difference between these
velocities is not small, there will be large rigid slip velocities, which
in linear elasticity will dominate the resultant slip velocities v as
Kalker pointed out (Kalker, 1990, 2001). In this case, a slight im-
provement in the computation of the term (u – u′)/�t of equation
(17) is not relevant.

In the considered spherical roller bearing, it has been observed
that using a variable contact velocity across the contact patch
to compute the velocities (u – u′)/�t has little influence on the
tangential problem solution, because the variations of the rolling
radii are relatively modest and because there are large rigid slip
velocities in most of the contact patch as a result of the curved
profiles of the roller and the raceways. However, having a curved
raceway in the rolling direction makes possible to have significant
variations in the rolling radii across the contact patch without
having large rigid slip velocities. For example, in the case of steep-
angle tapered roller bearings, this effect may be more relevant.

3.3. FEM
The FE model for the calculation of the roller–raceway contacts
comprises one roller and a portion of the inner and outer rings in
contact with it. It has been built in Abaqus/Standard (Dassault
Systèmes Simulia Corp., 2012). A general view of the model is
shown in Fig. 6a. The contact regions of the roller and the race-
ways are finely meshed with solid linear hexahedron C3D8 ele-
ments. Figure 6b shows a detail of the mesh of the roller surface
in the most finely meshed region. The minimum element size is
approx. 0.024 × 0.37 × 0.06 mm (in longitudinal, lateral, and depth
directions, respectively). The model has a total of about 740 000
nodes. Frictional contact pairs are defined between the rolling
surfaces of the roller and the inner and outer raceways. A surface-
to-surface contact detection method is used, and the contact con-

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/1/139/6862099 by U

niversidad del Pais Vasco user on 15 M
arch 2023



148 | Journal of Computational Design and Engineering, 2022, Vol. 10, No. 1

Figure 6: 3D FE model for contact analysis of spherical roller bearing. (a) General view. (b) Mesh detail.

Figure 7: Main phases of the FEM rolling contact simulations of the spherical roller bearing. (a) Initial position. (b) Initial approach. (c) Normal load. (d)
Rolling.

straints are enforced with the penalty method, both for the nor-
mal and tangential parts.

The rolling contact between the roller and the inner and outer
rings is simulated in a Lagrangian, multistep static simulation.
A central reference node is defined for each ring, through which
their motion is prescribed. The main phases of the FEM simula-
tion are the initial positioning and normal loading of the roller and
the rolling stage. These are illustrated in Fig. 7. The figure shows
a schematic view of the two rings and the roller perpendicular
to the bearing Y axis during the different simulation phases. The
central node of the outer ring is fully constrained during the whole
simulation.

All the bodies are initially positioned in such a way that the
inner and outer contacts fall into the most finely meshed regions
of the contact surfaces at the end of the simulation. The axial
position of the roller also has to be adjusted at the beginning of
the simulation, as explained in Section 4.2.

The normal loading phase is split into two steps, depicted in
Fig. 7b and c. In the first of these steps, small radial displace-
ments are imposed on the roller and inner ring to achieve the
initial closure of the inner and outer contacts. This is indicated
by the blue vertical arrows on the central points of the inner ring
and the roller. This displacement-controlled step is necessary be-
cause before achieving the initial contact closure the system is
singular if the rigid body motion of the bodies is not constrained.
In the second step of the normal loading phase (Fig. 7c), the radial
displacement constraints of the roller and the inner ring are re-

leased, and the desired radial load is imposed on the central node
of the inner ring. This is indicated by the red vertical arrow on the
central point of the inner ring. At the end of this step, the roller is
in equilibrium under the inner and outer contact forces and the
inertia forces applied through the central node of the roller as pre-
scribed concentrated forces and moments. The resulting normal
approach of this node towards the outer ring at the end of this
phase is held constant during the subsequent rolling stage.

During the rolling stage (Fig. 7d), small axial rotation incre-
ments are imposed on the central node of the inner ring. Thus, the
motions of the central nodes of the rings are entirely prescribed,
while the movement of the roller is driven by the contacts with the
inner and outer raceways. The rolling phase of the simulation is
also split into several steps. The applied axial rotation increments
to the inner ring are adjusted according to the mesh density of the
surface sections traversed by the contact patches in each of these
steps for the displacement increments of the contact patches in
each substep to be similar to the mesh element size in the longi-
tudinal direction.

A quasi-stationary rolling contact state is established at the
contact level within rolling distances of the order of a few times
the longitudinal contact patch dimension [1–2 times as shown
by experience with the exact contact theory, as quoted in Kalker
(1979)]. On the other hand, in the simulations carried out, it has
been observed that larger rolling distances are required for the
roller to reach a steady configuration, as is shown in Section 4.2.
Simulations with inner ring rotated angles of up to 170 mrad
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have been carried out in this work, which corresponds to a roller–
raceway rolled distance of about 7.6 mm, or about 17 times the
total longitudinal dimension of the outer contact patch with a nor-
mal load of 5.5 kN between the roller and each raceway. In con-
trast, much lower rolled distances have been seen to be necessary
in other applications of detailed FEM for rolling contact analyses
in rolling bearings. For example, a rolled distance of one time the
longitudinal contact patch dimension was applied in Heras et al.
(2017b), observing that this was sufficient for the friction torque
to stabilize.

Taking into account the large size of the model, which includes
two finely meshed contact regions, and the long rolling distances,
the mesh construction and simulation set-up have to be prop-
erly optimized to get affordable FEM simulations. With this aim,
a variable mesh density has been used in the rolling direction,
as may be appreciated in Fig. 6b, providing the finer mesh in the
final part of the simulated rolling path in each contact surface.
Compared to wheel–rail rolling contact FEM simulations shown
in previous works (Blanco-Lorenzo et al., 2016, 2018), these roller–
raceway rolling contact simulations have presented greater dif-
ficulty. The fact of having the roller driven just by the contacts
with the rings rather than with prescribed motion, as well as the
increased model size, contributes to the added complexity.

4. Results
The partial slip contact models described in Section 3 have been
used to compute roller–raceway frictional contact solutions for
the spherical roller bearing described in Section 2. First, the per-
formance of the considered contact models is assessed in Section
4.1. In Section 4.2, the quality of the contact solutions obtained
with FEM is discussed, examining the evolution of relevant out-
put quantities along the simulations. Lastly, Section 4.3 presents
a study of the steady rolling equilibrium attitudes of the roller in
a range of normal loads and friction levels.

4.1. Comparison of strip theory, CECT, and FEM
In this section, the roller–raceway contact solutions obtained with
the contact models described in Section 3 are compared, to assess
the ability of each model to produce representative results. For
this purpose, the steady rolling positions of the roller with a nor-
mal load N of 5.5 kN and two different values of the coefficient of
friction μ, namely μ = 0.10 and 0.30, are considered. Besides com-
paring the results of the different models, the main features of the
contact solutions are illustrated for different friction levels. With
μ = 0.10, most of the contact patch is sliding. With the higher μ, a
bigger adhesion zone is obtained, and the elasticity of the bodies
plays a more important role in the tangential contact. A partial
slip contact model may provide a greater precision improvement
in the contact solutions in the latter case, with respect to a full
slip contact model.

Two different solutions computed with strip theory are in-
cluded in each case, labelled as ‘H+C’ (Hertz + Carter). The differ-
ence between both solutions is the position of the roller–raceway
contact centres. In one of them, each roller–raceway contact cen-
tre is located in its nominal position. This is identified with ‘s0 = 0’.
In the other, identified with ‘s0 = s0_CECT’, the roller–raceway con-
tact centres are offset from their nominal positions in the contact
lateral (s) direction. The same offset is applied for the inner and
outer contacts, computed as the average of the offsets for each
contact of the corresponding equilibrium solution computed with
CECT.

Figure 8: Lateral distribution of normal load in roller–raceway contacts
with N = 5.5 kN. (a) μ = 0.10. (b) μ = 0.30.

Figure 9: Lateral distribution of traction in roller–raceway contacts with
N = 5.5 kN. (a) μ = 0.10. (b) μ = 0.30.

Figures 8 and 9 show the lateral distributions of normal load
and longitudinal tractions per unit contact width, N∗ and Fx

∗,
across the inner and outer contact patches. The contact patches
appear offset from their nominal position towards the positive y
direction, as can be seen comparing the CECT and FEM solutions
with the H+C (s0 = 0) solution. This offset is higher for higher μ.
The reason for this offset is explained in Section 4.3. The FEM so-
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Figure 10: Contours of adhesion and slip zones in the outer roller–raceway contact patch with N = 5.5 kN. Solid blue: H+C (s0 = 0); dashed red: H+C
(s0 = s0_CECT); dotted green: CECT; chain black: FEM. (a) μ = 0.10. (b) μ = 0.30.

Figure 11: Magnitude and direction of tangential stresses and contours of adhesion and slip zones in inner roller–raceway contact patch with N = 5.5
kN and μ = 0.30. (a) H+C (s0 = s0_CECT). (b) CECT. (c) FEM.

lutions give a slightly more concentrated load distribution in the
lateral direction, as seen in Fig. 8. Apart from this, there are no
remarkable differences in the normal contact solutions obtained
with H+C (s0 = s0_CECT), CECT, and FEM.

Figures 10 and 11 show the contact patch contours and the
tangential stresses. As is characteristic with crowned rollers, the
tangential contact solutions are dominated by high longitudinal
creepages due to the variable rolling radii of the roller across the
contact with the raceways, with two zero-slip bands in which they
change sign. This may also be seen in the longitudinal traction
distributions of Fig. 9. A good match is observed between the dif-
ferent solutions in the tangential contact as well. On the other

hand, mostly with high μ notable differences are seen between
the H+C solutions obtained with and without adjusted contact
centre positions. These differences may be clearly appreciated
in the lateral distributions of frictional work shown in Fig. 12.
This shows that not making the lateral contact position adjust-
ment may lead to some inaccuracy in the tangential contact so-
lution. While quite accurate results may be obtained with H+C,
it is not possible to work out the necessary equilibrium condi-
tion in the lateral direction to perform this position adjustment
taking into account only the longitudinal tangential stresses in
the calculation. The differences between both H+C solutions are
higher with higher μ because the roller shift between its equilib-
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Figure 12: Lateral distribution of frictional work in the inner and outer
races after one roller passage with N = 5.5 kN. (a) μ = 0.10. (b) μ = 0.30.

rium and nominal position increases for higher μ, as explained in
Section 4.3.

The slip velocities and frictional work levels are higher towards
the bearing XZ centre plane, as can be seen in Fig. 12. Here, the lon-
gitudinal creepage due to the rolling radii difference of the roller
surface with the rolling cone is superposed with the spin creepage.
The lateral contact shift is produced towards this side, and con-
sequently, the maximum frictional power densities in the contact
patch increase.

Due to the short longitudinal dimension of the contact patches,
the slip velocities are primarily aligned in the rolling direction, ex-
cept around the zero-slip bands. Figure 13 shows longitudinal dis-
tributions of slip velocities along slices close to one of these re-
gions. In the case with low μ, notable differences are observed be-
tween the H+C, CECT, and FEM results around the zero-slip bands,
where the tangential stresses change from their positive to their
negative saturation bounds in a relatively small distance in the
lateral direction. In this region, significant lateral components of
stress and slip velocities appear, as seen in Fig. 13a, and the 2D
simplification is inadequate. Part of the differences between the

CECT and FEM results seen in Fig. 13a may be attributed to the
fact that the lateral positions in which the results are taken in
each model are not exactly the same. The results obtained with
CECT and FEM indicate higher levels of tangential stresses and
slip than predicted with the strip theory neglecting the interac-
tion between adjacent strips. Nevertheless, these regions occupy
a small part of the whole contact patch.

In the case with high μ, the changes of ξ ∗ are slower in the
lateral direction, which implies lower interaction between adja-
cent strips. Consequently, the lateral components of stress and
slip velocities are comparatively smaller, and a better agreement
is found between the tangential stresses (not shown in the figure)
and slip velocities obtained with H+C, CECT, and FEM, as shown
in Fig. 13b. Figure 14 shows the distributions of longitudinal rigid
slip in the outer contact, for μ = 0.10 and 0.30, both in terms of
longitudinal rigid slip velocities wx and normalized longitudinal
creepages ξ ∗. The graphs for the inner contact are qualitatively
similar. While the profiles of wx are similar for both values of
μ, the profiles of ξ ∗ are different mainly due to the different μ.
Here, it is also shown for each μ how ξ ∗ changes as a result of
the lateral shift of the contact, mainly for high μ where the shift
is higher.

4.2. Assessment of stationarity of FEM solutions
Figure 15 shows the evolution along a FEM simulation of different
parameters that are checked to determine whether the obtained
FEM results correspond to stabilized equilibrium positions. The
results shown correspond to the case of Section 4.1 with μ = 0.30.
Similar trends are observed for the case with μ = 0.10, with some
of the parameters stabilizing earlier.

Figure 15a shows the resultant tangential forces in each con-
tact. The lateral tangential forces become reasonably stabilized
within the first half of these simulations after a rolled distance of
about eight times the longitudinal dimension of the contact patch
(a rolled distance equal to the longitudinal dimension of the outer
contact patch corresponds to a rotated angle of the inner ring θ I

of about 10 mrad, cf. Section 3.3). The longitudinal forces reach
stabilization earlier.

Figure 15b shows the lateral locations of the centres of the nor-
mal pressures of the inner and outer contacts, Yc ,i and Yc ,e. Their
evolution is determined primarily by roller tilting in this simula-
tion. The roller also has a slight lateral motion, also shown in these
figures in non-dimensional form η as the axial velocity of the roller
centre vR ,y divided by the rolling speed along the outer contact
centreline. This does not represent exactly the lateral creepage in
the roller–raceway contact, as it does not include the part due to
roller skew.

The lateral motion of the roller causes variations in the con-
tact lateral resultant forces enough to comply quasistatic equilib-
rium of the roller in significantly different lateral positions. The
lateral position of the roller influences the lateral shift of the con-
tact patches, which impacts on the tangential solution, as shown
in Section 4.1. The actual steady equilibrium position of the roller
is the one with zero η. Reaching this position from an arbitrary
initial position would require impractically long rolling distances
for this FE model. In this work, the correct equilibrium lateral po-
sition of the roller is found iterating with different initial lateral
positions. In this way, plots of η versus roller lateral position, such
as the ones shown in Fig. 16, are produced. In this figure, dy des-
ignates the axial offset of the roller centre from its nominal po-
sition along the y axis. The changes of dy are of the order of just
1 micron in these simulations. This shows that an accurate analy-
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Figure 13: Longitudinal distribution of slip velocities at lateral positions of the roller–raceway contacts partly in adhesion. N = 5.5 kN. (a) μ = 0.10.
Outer contact—at s = 1.54 mm in H+C results, 1.52 mm in CECT results, and 1.60 mm in FEM results. (b) μ = 0.30. Inner contact—at s = 0.68 mm in
H+C and CECT results and 0.80 mm in FEM results.

Figure 14: Lateral distribution of longitudinal rigid slip in the outer
roller–raceway contact with N = 5.5 kN. (a) μ = 0.10. (b) μ = 0.30.

sis of the motions of the roller is necessary to interpret the FEM re-
sults correctly and to obtain the steady rolling solution. Given the
slow lateral movement of the roller in lateral positions different
from the one corresponding to steady equilibrium, the roller may
not reach its steady-state equilibrium position during its whole
orbiting motion around the bearing in some cases.

The trends of roller tilt and skew shown in Fig. 15c indicate that
the tilt is stabilized during the simulation, but not the skew. Never-
theless, the skew angle variations are not very high, and the values

obtained in the final phase of this simulation are close to the value
computed with CECT for steady equilibrium, with a difference of
just about 0.2 mrad. The differences in the tilt angles obtained
with CECT and FEM are of the same order. It is considered that
these angles are small enough to be able to take the FEM solution
as a representative steady equilibrium solution.

Calculations with CECT indicate that the individual contact lat-
eral resultant forces in the inner and outer contacts are relatively
sensitive to the tilt and skew angles. Higher negative tilt and skew
angles lead to higher lateral force in the outer contact and lower in
the inner contact, and higher negative skew also leads to slightly
higher total lateral force. Indeed, the individual lateral contact
forces computed with CECT and FEM do not match well. How-
ever, other results, such as the total lateral resultant force on the
roller from the inner and outer contacts, the roller axial displace-
ment dy, and the resultant longitudinal forces, are not so sensitive
to these angles, and a relatively good agreement is found between
the CECT and FEM results, as shown in Table 2 for the cases of Sec-
tion 4.1. The table includes the longitudinal and lateral frictional
forces in each contact, Fx and Flat, and the sum of the lateral forces
in the inner and outer contacts

∑
Flat. All the forces are divided by

μN.
Apart from the CECT and FEM results, Table 2 also shows the

results of a full slip solution for each friction level. These full slip
solutions have been derived from the CECT equilibrium solution
for each case, considering the corresponding normal pressure dis-
tributions and rigid slip velocities computed with CECT, as follows.
At each point of the contact patch, the magnitude of the tangen-
tial stress is defined as the normal pressure times the coefficient
of friction, and its direction is determined with the direction of
the rigid slip. The resultant contact forces are then obtained as
the vector sum of the contributions of each element of the mesh
of the contact surface, as in the other models. The full slip so-
lutions obtained in this way are not equilibrium solutions; these
would have to be computed for other roller (equilibrium) config-
urations through a procedure such as that shown in Fig. 5. It is
observed that the lateral forces, and mostly the values of their
sum

∑
flat for the full slip solutions, are much lower than the cor-

responding values obtained with CECT and with FEM. This was to
be expected, as the lateral force due to spin (the camber thrust)
is absent in symmetric contact patches with the full slip model.
Consequently, the equilibrium configurations obtained with the
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Figure 15: Indicators of stationarity of FE rolling contact solution for N = 5.5 kN and μ = 0.30 along the rolling stage of simulation. (a) Frictional
contact resultant forces fi = Fi/μN. (b) Axial positions in bearing of centres of contact normal pressures, and lateral displacement of roller. (c) Roller
orientation (tilt β and skew γ ). (d) Roller rotation velocities ωm and ωR.

Figure 16: Non-dimensional axial velocity of roller η as a function of its
initial lateral position in FEM rolling contact simulations.

full slip solutions would surely have much lower dy displacements
than the ones computed with CECT and FEM, cf. Section 4.3.

Figure 15d shows the trends of the rotation velocities ωm and
ωR of the roller relative to their theoretical values corresponding
to perfect rolling on the nominal contact points. It may be seen
that the roller rotation velocities are also stabilized by the end of
these simulations. The perturbations seen in the trends of these
velocities, η and γ at about 75 and 125 mrad of inner ring rotated
angle (θ I), correspond to contacts changing to zones of different
mesh densities in the rolling direction, cf. Fig. 6b.

4.3. Equilibrium solutions for different operating
conditions

Steady rolling equilibrium configurations of the roller have been
computed with CECT for a range of normal loads and friction lev-
els. The results are summarized in Fig. 17. Two distinct equilib-
rium configurations of the roller are observed. There is a first con-
figuration, which is closer to the nominal roller position, feasible
at higher loads. This will be identified here as configuration 1. The
results shown in previous sections correspond to this configura-
tion. On the other hand, there is a second configuration, feasible
at lower loads. This will be identified here as configuration 2. With
higher coefficients of friction μ, there is a range of intermediate
loads in which both configurations are feasible.

The second configuration is farther from the nominal roller
position, with higher axial offsets (Fig. 17a), tilt and skew an-
gles of the roller. This configuration also involves higher rolling
torques and associated resultant longitudinal forces in each con-
tact (Fig. 17b) and higher frictional powers (Fig. 17c). The transi-
tion loads from configuration 1 to configuration 2 increase as μ

increases. Also, the leap between both configurations is higher for
higher μ.

Figures 18 and 19 illustrate a case of each configuration. The
figures depict free-body diagrams of the roller, including the resul-
tant tangential frictional forces and spin moments in each contact
and the centres of the normal pressures marked with filled circles.
The nominal contact positions are also shown with unfilled red
circles. The frictional forces and moments are represented acting
on these points on the roller.
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Table 2: Frictional contact resultant forces on the roller and roller axial offset computed with CECT and FEM for N = 5.5 kN and μ = 0.10
and 0.30.

μ = 0.10 μ = 0.30
Full slip CECT FEM Full slip CECT FEM

fx,i (−) 4.36E–03 –4.96E–03 –4.8E–03 2.58E–02 –5.33E–03 –5.2E–03
fx,e (−) 7.31E–03 4.99E–03 4.8E–03 –1.28E–02 5.33E–03 5.2E–03
flat ,i (−) –5.20E–03 2.23E–02 5.5E–04 –1.08E–02 2.34E–02 1.3E–02
flat ,e (−) 5.63E–03 2.87E–02 5.7E–02 1.20E–02 3.22E–02 5.2E–02∑

flat (−) 4.54E–04 5.09E–02 5.8E–02 1.17E–03 5.55E–02 6.5E–02
dy (μm) - 6.3 7.2 - 20.4 23.5

Figure 17: Steady rolling contact configurations of the roller computed with contact solutions of CECT for different normal loads and coefficients of
friction. (a) Axial offset dy of the roller from its nominal position. (b) Longitudinal force in roller–race contacts fx = Fx/μN. (c) Total dissipated power by
friction in roller–race contacts, Pfric. (d) Ratio of frictional power in contact of roller with outer to inner race, Pfric ,e/Pfric ,i.

In equilibrium configuration 1, the resultant frictional lateral
forces transmitted to the roller in both contacts have the same
direction, as may be observed in Fig. 18a. The roller has a small
axial displacement in the direction of these forces so that the
contact centres are shifted in this direction, and an axial com-
ponent of the normal forces appears to balance the lateral fric-
tional forces. The lateral frictional forces are higher for higher
μ. As a result, the axial displacement of the roller in the equi-
librium position is higher for higher μ, and the rolling torques
and frictional power increase somewhat more than proportionally
with μ.

For a given μ, the axial displacement of the roller is higher at
lower normal loads, cf. Fig. 17a. This is because the ratio of cam-
ber thrust to normal load increases at lower loads in this case. In

non-conformal contact, this ratio remains constant for a given el-
lipticity of the contact patch, coefficient of friction, and spin. In
this case, as the load increases, this ratio becomes smaller due
to the higher friction saturation in the longitudinal direction, re-
sulting from higher longitudinal rigid slip velocities. This effect
is notable despite the modest total contact angle variation in the
contact patch (approx. 11º with N = 5.5 kN) because the variation
of the rolling radii is relatively high. This is a distinctive feature of
conformal contact in rolling bearings with respect to conformal
wheel–rail contact, as a result of the much higher ratios of lateral
profile radii over rolling radii seen in this application.

Continuing with equilibrium configuration 1, the roller also
adopts a small negative tilt, of the order of −0.05 mrad accord-
ing to the computations with CECT (higher with higher μ). The tilt
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Figure 18: Roller free-body diagram in equilibrium configuration 1 with N = 5.5 kN and μ = 0.30. (a) Front view. (b) Plan view.

Figure 19: Roller free-body diagram in equilibrium configuration 2 with N = 4 kN and μ = 0.30. (a) Front view. Note: the lateral forces have been scaled
down by a factor of 10 in this view. (b) Plan view.

values computed with FEM are higher, cf. Fig. 15, possibly due to
global deflections in the FE model. As a result of the negative tilt
of the roller, the offset from the nominal position is slightly higher
in the inner contact, and the inner normal load causes a higher
moment along x than the outer. This is balanced by the difference
in the lateral frictional forces of both contacts, being higher the
outer one. The lateral frictional forces are greater than the longi-
tudinal ones, as may be seen comparing Fig. 18a and b, in which
the forces are represented at the same scale.

The roller axial offsets, tilt, and skew angles are much higher
in equilibrium configuration 2. The skew angles increase up to –4
mrad, and the tilt angles increase up to about –0.4 mrad with μ

= 0.3. The offset of the inner contact from its nominal position is
considerably higher than that of the outer contact, as may be seen
in Fig. 19a, as a result of this increased tilt. The dissipated power
in the inner contact also increases more than in the outer con-
tact in this configuration, cf. Fig. 17d. The lateral frictional forces

are much higher than in configuration 1, as may be seen compar-
ing Fig. 19a with Fig. 18a. Note that the lateral forces have been
scaled down by a factor of 10 in Fig. 19a; the scale of the rest of
the forces and moments is the same in Figs. 18 and 19. The di-
rection of the lateral frictional force of the inner contact is also
reversed.

It has to be mentioned that in some cases in which equilibrium
configuration 2 is found as the only one complying with steady
equilibrium strictly, the force residuals with roller configurations
that may be assimilated to equilibrium configuration 1 are not
high. Also, the slow lateral movement of the roller when being
out of its steady equilibrium position is recalled. Further research
is necessary on the practical significance of equilibrium configu-
ration 2.

The effects described here, as well as the lateral contact shifts
shown in Section 4.1, are more relevant with higher coefficients
of friction. A 3D partial slip contact model is necessary to capture
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them, with the ability to predict lateral frictional forces in addition
to the longitudinal ones, as well as moments related to both lon-
gitudinal and lateral contact stresses. The lateral frictional forces
referred to here are the ones coming e.g., from spin in a contact
with no lateral creepage, which full slip and 1D models fail to
predict. At lower friction levels, such as may be found in well-
lubricated conditions, the offsets of the roller from its nominal
position are small, as may be seen in Fig. 17a. In this case, it may
be satisfactory to assume nominal roller position and use a sim-
pler contact mechanics model, e.g., the strip theory or the full slip
solution.

The computation of the equilibrium configuration(s) of the
roller for each combination of N and μ has taken of the order of
minutes to tens of minutes with CECT. Each of these equilibriums
involves the computation of several pairs of inner/outer contact
solutions, iterating with the six parameters defining the roller con-
figuration as outlined in Section 3.2. The FEM described in Section
3.3 has much greater computational demands, with a single run
taking about tens of hours in a high-performance computer. The
application of this FEM in this study would be much less practical
due to the high computational costs and the need to start from
positions close to the sought equilibrium configuration, as illus-
trated in Section 4.2.

5. Conclusions
The roller–raceway frictional contact has been studied in a spher-
ical roller bearing. For this purpose, different partial slip contact
models have been used, as opposed to the usual full slip approach:
the strip theory, an implementation of Kalker’s exact contact the-
ory called CECT, and FEM. The use of CECT, previously applied in
wheel–rail contact, has been demonstrated in the contact analysis
of a spherical roller bearing. The method may also be applied in
other types of rolling bearings. The need for a variable discretiza-
tion size �q is highlighted, due to the variable rolling radii of the
contact surfaces. Regarding the FEM, it has been shown that a
precise analysis of the motions of the roller is necessary to ar-
rive at the solution corresponding to the steady rolling configura-
tion of the roller. Also, in the presented FEM analyses, relatively
long rolling distances, of the order of ten times the total longi-
tudinal dimension of the contact patch, have been necessary to
achieve reasonably stabilized solutions. These contrast with the
much lower distances necessary to reach a quasi-steady state at
the local contact level. The required rolling distances could be dif-
ferent in other cases or with other analysis set-ups.

The studied contact patches present a high width-to-length
ratio, modest contact angle variations, and rigid slip velocities
mostly aligned in the rolling direction. These features point to
2D-like contact solutions and anticipate that representative re-
sults may be obtained with strip theory. Indeed, the results ob-
tained with the strip theory agree quite well with those obtained
with the more comprehensive 3D contact models, as long as the
contact patch position is appropriately adjusted. However, a 3D
partial slip contact model is needed to perform this adjustment,
with a proper description of the rigid slip velocities in the roller–
raceway contacts according to the geometry of the non-planar
contact surfaces, and the capability to compute lateral frictional
forces in addition to the longitudinal ones, as well as associated
moments. While the lateral frictional forces are relatively small
in the studied short contact patches (as compared to the normal
loads), with high friction, they may be high enough to cause a
noticeable lateral shift of the contact patch with a roller having
zero nominal roller angle. This lateral shift, in turn, influences the

tangential contact solution. At lower friction levels, the frictional
forces are smaller, and the contact shifts from their nominal posi-
tions have been shown to decrease in the studied bearing. Still, the
relevance of possible contact shifts should be evaluated for each
bearing geometry and operating conditions. These could come for
reasons other than frictional forces, e.g., in the presence of inter-
nal clearances, axial loading, and misalignment.

The advantages and disadvantages of the different contact
models considered in this work are summarized in the following
points:

1. The strip theory may be used to get detailed steady-state
contact solutions efficiently in cases with wide contact
patches and slip velocities aligned in one direction, in which
the contact location may be estimated beforehand, aside
from the contact frictional forces.

2. The exact contact theory is a comprehensive 3D partial slip
contact model that may be applied to get precise frictional
contact solutions within the framework of linear elastostat-
ics, providing a realistic representation of the effect of the
contact frictional forces on the roller equilibrium. Its com-
putational costs are between those of strip theory and FEM
while allowing a much more general application than strip
theory.

3. The main difficulty for the practical application of FEM in
the type of contact problems treated here is its high compu-
tational costs. Its use should be reserved for studying phe-
nomena not allowed by simpler contact models, such as
non-linear material behaviour.

The steady rolling configurations of the roller have been com-
puted for different normal loads and friction levels with the exact
contact theory. Two different steady equilibrium configurations of
the roller have been found. There is a first configuration, which
may be described as the expected one, in which the roller has
low or moderate offsets from its nominal position in the bear-
ing radial plane. This configuration is feasible at higher loads. The
second configuration, which is feasible at lower loads, presents
higher roller offsets and dissipated powers. The leap between both
configurations increases with higher friction levels. The finding of
these two configurations in a numerical analysis requires using
a 3D partial slip contact model. Further research is necessary on
the significance of the second steady equilibrium configuration of
the roller. For this purpose, it may be interesting to investigate the
transient evolution of the roller in its orbital motion around the
bearing.
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