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1 INTRODUCTION AND OBJECTIVES

1 Introduction and Objectives

The growing urbanization as ongoing societal trend requires novel mobility concepts for
people and goods. Having more cars in the already crowed city will not help. The space
to build more roads is limited. The only sustainable way is to optimize the usage of the
limited infrastructure by high autonomy and automation of the mobility platforms (ve-
hicles) in such urban environments. New opportunities for automated driving, driverless
delivery of goods to stores and residences, robot taxis, and driverless public transporta-
tion will allow to maintain reliable services independent of the severity of the heath crisis
while safeguarding the health risk for the driver and the passengers [1, 2, 3].

The European Union (EU) reports estimate that over 90% of road accidents occur
due to human error [4], for instance, due to erroneous perception, incorrect decision-
making, distraction, or otherwise. Further, the inability of human drivers to perceive and
account for road and environmental factors beyond their line of sight results in inefficient
vehicular operation (wasted energy due to frequent stop and go, inefficient path planning,
traffic imbalances, and congestion). Autonomous vehicles have the potential of solving
those issues and to improve traffic and fuel efficiency [5, 6].

In this scope, the interest in evaluating the comfort experienced by passengers in
vehicles has raised. Not only with the objective of accommodating the passengers, but
preventing health issues in form of headaches or fatigue. Perhaps the prime objective of
an automated cabin is to be able to ‘multitask’ within a journey and increase the inherent
value of that journey by enabling additional productivity, enjoyment and improved well-
being whilst being driven [7]. This is more appropriate for longer trips (above 30 minutes),
but even so to maximise productivity, many manufacturers concepts depict fully flexible
seating within an office-like environment. This poses many challenges, like being able to
function with complex tasks while subjected to motion.

Evaluating comfort is a complex topic since welfare is related to physical, psycho-
logical and physiological variables. But, general comfort can be categorized in two classes:
environmental and riding. Environmental parameters include thermal comfort, air qual-
ity, noise, pressure gradients, etc, they relate to the judgments made by humans on the
surrounding conditions. Specific values and ranges classify each of them as presented in
the work of Silva [1]. Variables such as temperature and humidity are responsible for
responses in the form of sweating and heavy breathing, while others, like noise, pressure
and brightness are responsible for consequences along the lines of malaise and dizziness.

Riding comfort corresponds to dynamic factors, related to vibration, shocks, and
acceleration. These parameters are the main responsible for producing motion sickness
and general feeling of discomfort among other effects. Motion sickness is a result of the
conflict between the human body’s vestibular and visual sensory systems. It is mainly
caused due to a contradiction between the sensed motion (the motion as sensed via our
sensing systems) and the expected motion [8]. Predicting the future path of the vehi-
cle trajectory from radially expanding optic flow reduces the build of motion sickness.
Therefore, the driver having an anticipation of motion leads to a good match between the
expected and sensed motion and reduced motion sickness. Consequently, passengers were
more prone to motion sickness as they did not maintain visual references and focused
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1 INTRODUCTION AND OBJECTIVES

on static scenes within the vehicle’s interior [9]. In addition, an increase in sickness has
been detected in passengers when performing secondary tasks and travelling rearward
[7]. Average ride discomfort commonly originates from vibrations, accelerations and its
time derivative, jerks, that affect ride quality and passenger posture. High values of ac-
celerations or jerks can cause discomfort even during shorter periods of time [10]. Some
kinematic parameters, such as braking and turns, can be considered as significantly affect-
ing passenger comfort. As with motion sickness, the driver is less affected by the vehicle
handling by taking preventive actions, while passengers have to respond to the maneuvers.
Both general discomfort and motion sickness can be linked to specific aspects, such as
route roughness, driving behaviour in terms of breaking, steering, and accelerating.

From the biomechanical point of view each part of the human body is represented
by its equivalent mass, and elastic and damping elements. The natural frequencies of the
different parts are also indicated in [11]. These vibrations are the main responsible for the
discomfort felt by passengers and depend on direction and frequency. Therefore, in order
to assess and evaluate the oscillations and their consequences the International Standard-
ization Organization (ISO) developed a standardization and quantification system for this
matter in the form of International Standard 2631 (ISO-2631-1) [12]. The quantification
of the vibration level is done through the root mean square (RMS) of the signal corre-
sponding to the instantaneous acceleration felt by a given body. For vehicle occupants,
two frequency ranges are considered: 0.5–80 Hz for health, comfort, and perception; and
0.01–5 Hz for motion sickness. Furthermore, maximum motion sickness values have been
regarded for frequencies around 0.2 Hz [13] and higher frequency vibrations are attenu-
ated by the human body and reduce the discomfort. It is also interesting to note that
monotone continuous low frequency vibrations increase fatigue, while transient vibrations
produce stress.

The data used in this work originates from the UYANIK study [14] in Istanbul. It
is part of an international research were 5 countries and the vehicle data from 450 drivers
is collected. The data in this work belongs to a specific road type, specifically selected
to minimize the effect of factors outside the driving behaviour. Moreover, the stretch is
chosen to produce a better classification, since it provides more diverse data and it is
better distributed.

With the intention of implementing machine learning techniques, the data requires
being preprocessed through a chain of cleaning, normalizing, categorising and oversam-
pling, to be suitable for the algorithms. The results of the techniques depend directly on
the information provided during their learning phase. Thus, administering quality data
is prime for a optimal performance.

The main objective is to implement a series of machine learning techniques to
analyze the relationship between the handling of the vehicle and the general discomfortness
produced by these actions. The results of the techniques will validate the use of each one
and will extract the characteristic operations originating the discomfort. Analyzing the
data with different algorithms, also intents to provide more knowledge for implementing
other machine learning techniques.

From the available machine learning techniques, the implemented supervised Ra-
dial Distribution Function, focuses on predicting the effect different parameters have in the
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comfort, by making use of previously labeled data; while the unsupervised Self-Organized
Map (SOM), which has been proven useful to classify driving styles [15], is centred in rec-
ognizing discomfort generating patterns, by learning with unlabeled data. They both act
using Euclidean distances between vectors, but apply the calculations in distinct manner.
They have been implemented using open source Python libraries.

Using the results of these techniques, this work also aims to obtain reliable distinc-
tion between driving styles, from a comfort perspective, based on the riding parameters.
Contradistinguishing the parameters that have a comfortable ride as an outcome will al-
low to create recommendations for drivers based on their driving characteristics. This
recommendations will be in the form of gas, break and steering wheel operation, which
could be implemented in an advanced driving assistance system.

2 Comfort evaluation methods

The overall sensations of vibration discomfort depend upon the sensing as well as the
frequency content of the stimulus producing them. One of the main standards for comfort
is ISO 2631-1, where the RMS of the accelerations along all axes of the vehicle are defined
to reflect more closely the health hazard to which the human body is exposed on the basis
of the frequency and the direction of vibrations. To do so, ISO 2631-1 defines several filters
to better match the different discomfort categories to specific frequencies.

As shown in Figure 1, three filters, wf , wd and wk, divide the spectrum through the
aforementioned significant range of 0.01-80 Hz. wf is related to motion sickness, notice
its peak is situated around 0.2 Hz, with the frequency range between wf1 = 0.1 Hz and
wf2 = 0.3 Hz is defined as the most significant by ISO 2631-1. On the other hand, wd

and wk mould the horizontal and vertical acceleration respectively, being responsible for
weighting the general discomfort connected to the higher frequencies.

Following the work in [12], the weighted RMS acceleration values for each axis is
expressed as,

awj ,i =

√√√√ 1

N

N∑
k=1

a2i , wj(k), (1)

where i determines the direction, wj is the corresponding filter and N is the number of
samples of the acceleration data.

As for general comfort, only one parameter is presented, av. It accounts for the total
weighted acceleration considering vertical, lateral and horizontal axes. As it is expressed
in (2), the measured accelerations are first weighted with the corresponding filters and
then multiplied by some factors which account for the perception of the acceleration and
the direction of the measurement.

av =
(
k2
xawd,x

+ k2
yawd,y

+ k2
zawk,z

)1/2
(2)

In [1, 16], for evaluation of the health effects and with the intend of adjusting the
calculated values of av to human perception, the weighting parameters have been defined
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2 COMFORT EVALUATION METHODS

Figure 1: Amplitude responses of different weighting filters in ISO 2631, wf : motion
sickness (blue), wd: global comfort horizontal-component (green), and wk: global comfort
vertical-component (red). Figure taken from [15]

Table 1: Comfort index (av) and its relation with general discomfort.

Range of av (m/s2) Comfort level

greater than 2.0 extremely uncomfortable
1.25-2.5 very uncomfortable
0.8-1.6 uncomfortable
0.5-1.0 fairly uncomfortable

0.315-0.63 a little uncomfortable
less than 0.315 not uncomfortable

as kx = 1.4, ky = 1.4 and kz = 1. If the comfort is evaluated for passengers as this case,
all the coefficients ki will be one [17]. Depending on the value of av, the ride comfort can
be classified with different comfort grades as the Table 1 indicates. This standard can be
used individually or in combination with acceleration and jerk peaks.

There is a concrete form of (1), where wi = wf , so that only the filter for motion
sickness is applied. This allows to define the motion sickness dose value (MSDV), which
is expressed as,

MSDVi =
N∑
k=1

a2i , wf (k), (3)

where i is the specific axis for which the MSDV is evaluated. The MSDV is one of the
methods used to objectify the motion sickness ratings and was defined in accordance with
ISO 2631-1. In some works an illness rating method, derived from the MSDV has been
utilized [12, 16].

These standards are focused on the vertical vibration, which are a prime cause
of seasickness and the MSDV model has been used to predict sickness on ships [18, 19].
However, transverse oscillations have shown to posses a greater relation to motion sickness
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in road transport [20]. Moreover, other works reported that the wf frequency weighting,
as stated in ISO 2631-1, did not give good predictions of the incidence of motion sickness
in road coaches and suggested that they were not optimum for predicting sickness in cars
[7, 21, 22].

Besides ISO standard, acceleration threshold theory has been utilized in [17, 23,
24, 25, 26], as done in this work, to evaluate the general discomfort. In this model,
acceleration and jerk peaks are studied to assess the discomfort. In [24, 25], the threshold
has been set around 1.5 m/s2 for the acceleration and 0.6 m/s3 for the jerk. Since they
stand for studies conducted with buses and an automobile only carries seated passengers,
it is expected that the thresholds should be set on the higher.

Therefore, in this work the evaluation has been done following the study in [15],
where while using cars, the threshold has been set to 1.70 m/s2. Thus, the evaluation is
done by counting the acceleration peaks with values above a certain threshold, such that:

ni = ni + 1, when ai > Threshold, (4)

where i determines the axis for which the counting is done. In addition, as researched
in other works, differentiation between positive and negative acceleration peaks has been
done, due to the relationship between positive acceleration and the gas pedal, and nega-
tive accelerations and the break pedal [27]. This distinction aims to better connect the
discomfort felt with the drivers actions.

Furthermore, with the intent of relating the comfortness with the driving style,
(4) only was implemented in the x and y directions. The z axis was discarded since it
is independent to the drivers handling of the vehicle, and therefore of no use to create
driving recommendations besides “avoid bumps”.

3 Machine learning techniques

Machine Learning has become one of the most compelling areas of computer science
research. Artificial intelligence being its core, is propelling the field further than ever be-
fore. The realm of machine learning techniques (MLTs) is divided into two main classes.
The supervised machine learning techniques and the unsupervised machine learning tech-
niques.

Supervised learning reflects the ability of an algorithm to generalize knowledge from
available data with target or labeled cases so that the algorithm can be used to predict new
(unlabeled) cases [28]. Supervised machine learning requires predetermining an output
attribute besides the use of input attributes. The supervised learning step is where each
training input pattern is accompanied by its correct classification of the predetermined
attribute and “fed” to the algorithm. The difference between the algorithms current
response and the desired one is used to change the internal properties of the algorithm.
Of course, such an approach must do more than just learn the class exemplars since all
that the fully trained technique would be able to do would be to template match on these
exemplars. It must be able to generalise, that is to correctly classify the exemplars by
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recognizing similar patterns [29]. Pattern recognition might not be able to fully correlate
unlabeled inputs to their corresponding output class. Therefore, some MLTs are designed
to provide as a result the accuracy of the algorithm when classifying the input into the
different output classes. In those cases, a percentage value is given for every output
class, which represents the algorithms confidence level that the input belongs to each
corresponding output class.

Conversely, unsupervised learning involves pattern recognition without the involve-
ment of a target attribute. It refers to the process of grouping data into clusters using
automated methods or algorithms on data that has not been classified or categorized.
In this category learning is also called unsupervised, competitive, or self-organizing [30].
Algorithms must “learn” the relationships or features from the available data and group
cases with similar characteristics. To do so, unsupervised learning algorithms attempt
to identify several prototypes in the data set that can serve as cluster centres. Unsuper-
vised learning schemes can identify the natural structure in patterns but they can not,
in general, discover the hidden structure [28]. This is specially useful when the natural
structure is not obvious, but on the other hand, this means that unsupervised learning
can not solve the exclusive-OR (XOR) problems, unless the architecture of the network
forces such an association. Accordingly, when small amounts of data are available, the
learning is specified as “semi-supervised” [28].

Unsupervised learning may appear, therefore, to be a poor relation to supervised
learning. This is not the case, especially, where we are concerned with perceptual data
(such as speech or vision) where supervised techniques assume that we already possess an
accurate model of the underlying processes for assigning class membership, or at least, a
knowledge of the number of classes and examples of each [29]. Since that might be wrong,
unsupervised learning algorithms are suitable for creating the labels in the data that are
subsequently used to implement supervised learning tasks.

There exist numerous MLTs, each one with its own properties and objectives.
Explaining the specifics for each of them is out of the scope of this work. Therefore, only
a few examples for each of the learning classes are now briefly mentioned.

Among supervised techniques, the neural networks are one of the most common
types of neural network architectures currently used [31]. Neural network architectures
are inspired by the structure of the brain. They are constituted by nodes, which resemble
neurons, and their weights, resembling the connections between neurons. The simplest
kind of neural network is a single-layer perceptron network [29], which consists of a single
layer of output nodes, and it can be used as a binary classification model. More complex
architectures form Multi-layer perceptrons, Feedforward Neural Networks, Radial Basis
Networks, Deep Convolutional Networks, etc. Other supervised techniques like the De-
cision Tree algorithm emulate a tree, while the Näıve Bayes algorithm is cemented on
Bayesian probability theorem [28].

Examples of unsupervised techniques are the Boltzmann Machine, the Autoen-
coder and the Self Organized Map. The Boltzman Machine describes a physical system
using a network of units with constant “energy”, and it produces binary results [32]. The
Autoencoder has two main parts: an encoder that maps the input into the code, and a
decoder that maps the code to a reconstruction of the input. It is commonly used for writ-

8



4 RADIAL BASIS FUNCTION NETWORK (RBFNETWORK)

Figure 2: General scheme of a classifier RBFNetwork. Figure from [36]

ing prediction [33]. Finally, the Self Organized Map consists of sheet-like artificial neural
network, where neighboring cells compete in their activities by means of mutual lateral
interactions [30]. It is a great tool for visualization since it produces a map connecting
the input and output spaces.

In this work, a supervised and an unsupervised MLT have been implemented, the
Radial Basis Function Network and the Self Organized Map respectively. They have
been selected since they both make use of Euclidean distance calculations. This allows to
make a comparison between supervised and unsupervised algorithms with similar working
basis. The theory and working principle of both techniques are explained in the following
sections.

4 Radial Basis Function Network (RBFNetwork)

The Radial Basis Function (RBF) neural network, also named RBFNetwork or RBFNN,
is a feedforward supervised network first introduced to the literature by Broomhead and
Lowe (1988) [34]. At the time, it was used to interpolate due to the polynomial form
the outputs present. The interpolation implementation has been found to be specially
effective in task where interpolating long vectors is needed, when enlarging digital images
for example. But more recently, it has become a strong classification tool, and thus, the
focus in this chapter will be set on this property, since it is the one implemented.

The origin of the RBFNetwork relies in locally tuned nervous systems. For example,
cells in the auditory system, selective to small bands of frequencies, or cells in the visual
cortex sensitive visual features within a small region of the visual field [35]. Provided by
a multi variable input space, these locally tuned neurons characteristically respond to a
small range of the input space.
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Figure 3: Different classes of point (red and green) in 2D space. On the right, the circles
represent the radial basis functions mapped in the space according to the two point classes.

4.1 Working Principle

The RBFNN, in its simplest form only consists of three layers. A hidden non-linear
layer is located between the classic input and output layers of the network. The general
scheme is shown in Figure 2. The inputs are n-dimensional vectors, but to understand
how the RBFNN works it is easier to start with a 2 dimensional case. Points in 2D
space can be represented with (x, y) coordinates, which will form their position vector v⃗.
Considering a set of points, where the points belong to different classes, the neighbours
from the same class can be encircled and the circles differentiate the groups as shown in
Figure 3. In reality, these circles are smooth drop off radial distribution functions, and the
circles can be representative of the distance at which the distribution function obtain a
certain percentage of the maximum value. The most common radial distribution function
implemented is the Gaussian Distribution,

f(v⃗) =
1

σ
√
2π

e−
1
2(

||v⃗−c⃗||
σ )

2

, (5)

where c, also called centroid, is the position vector of the center of the distribution and σ
denotes the radius of the distribution, the bigger the σ, the slower the radius drops off,
making the circle bigger.

The entirety of the points can not be accurately grouped using a limited number
of circles with a fixed radius, but it is argued that with an unlimited set of circles and
with different size circles the entirety of the space can be accurately mapped as shown in
Figure 3. The limit of this argument consists of every point of the 2D space having its
own small circle. For a n-dimensional space the working principle is the same, but instead
of having circles the space will be distributed in n-dimensional hyperspheres.

So, a crucial part in a RBFNN is to select the number of centroids and their radius.
Normally, the number of centroids k is fixed in the beginning, since the centroids will form
the hidden layer of the network. Arguably, the accuracy of the network will increase as the
number of centroids increases, at the cost of computational time and power. Therefore,
having some knowledge of how the data is distributed helps with the selection of centroids,
for instance, in [37] a Feature Selection technique is proposed for this task. A common
but less effective method, is to evenly lay out the centroids. This only works for spread
data sets. The most usual approach, is to use a series of vectors outside of the input layer.
For the radius of the hyperspheres supervised learning is habitual. First, the radii are set
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randomly in some range and then modified through the learning process. However, finer
initial radii can provide superior and faster results.

After the hidden layer is set, a random weighting wij between -1 and 1 is given
to each connection from the centroid i to the output j. This weighting represents the
importance the i centroid has in the j output. If the centroid ci encapsulates the point of
class j, then the value of wij will be high, and the value will be low in the opposite case.
This weights are also updated in a supervised manner.

Since the RBFNetwork is a supervised MLT, a previous classification of the data
is required. This classification is also the expected output of the network. The number of
categories m, will define the number of outputs in the output layer. When a new input
vector is fed to the algorithm, the distribution function fi in (5) is computed for every
centroid and the output y⃗ is algebraically calculated as follows:

w11 w21 · · · wn1

w12 w22 · · · wn2
...

...
. . .

...
w1m w2m · · · wnm

 ·


f1
f2
...
fk

 =


y1
y2
...
ym

 (6)

The output vector is representative of how confidently the algorithm classifies the
input vector in the defined categories. For example, the y1 output represents the proba-
bility of the input vector being part of the class number 1. If the σ of the distribution
functions are forced to be low, meaning the drop off is more sudden, then, the network
can be used to predict the class of the input vector by looking at the output with the
highest value, which should be significantly bigger than the rest of the outputs.

During the training process, the output y⃗ is compared with the expected output
ˆ⃗y of the input vector. When different, adjustments are made on the radius σi and wij

weights using a gradient descent algorithm. Thus, for a iteration n, their values are
adjusted as follows:

σi(n+ 1) =σi(n) + β · fi · (ŷi − yi)
2, (7)

wij(n+ 1) =wij(n) + 0.01 · β · fi ·
(
||v⃗n − c⃗i||

σi

)2

·

(
k∑

l=1

wil · (ŷl − yl)
2

)
, (8)

where β is the learning rate, v⃗n is the input vector in the iteration n and fi is the results
of (5) for the centroid ci.

4.2 Interpretation

After the training process, a series of metrics are considered to determine the effectiveness
of a supervised machine learning algorithms. In this work the accuracy and the mean
square error (MSE) are studied.

The accuracy is the simplest metric, is the percentage inputs categorized in the
right class. To do so, the element of the output vector with the highest value determines
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the predicted class of the input. Then the prediction is compared with the actual class
of the input. For a number of inputs, the ratio of the correct predictions determines the
accuracy.

The MSE is the average deviation of the categorization. It is the average mean
square error between the predicted outputs and the actual outputs. It is mathematically
represented in (9), where N is the total number of inputs. The smallest possible MSE is
desired, which would indicate high precision of the algorithm and high reliability of the
accuracy.

MSE =
1

N

N∑
i=1

(ˆ⃗yi − y⃗i)
2 (9)

The disadvantage of these metrics is the lack of directional prediction. They do not
inform about which classes are being over predicted and which are being under predicted.
However, they are easy to implement and give direct information about the performance
of the algorithm. In order to maximize the accuracy and minimize the MSE, the number
of centroids, their location and the initial radius of the distribution function can be mod-
ified. The results obtained for the particular objective of this work, by changing these
parameters in the RBFNN, are presented in Section 8.

5 Self Organized Maps (SOM)

Self-Organizing Map (SOM) networks, also known as Self-Organizing Feature Maps or
Kohonen Networks, are unsupervised neural networks based on competitive learning. The
Self-organizing Map presented in this work belongs to the self-organized category. It is a 2
dimensional sheet-like artificial neural network, where the neurons, after an unsupervised
learning process, recognize patterns or classes of patterns across the inputs.

The structure is based in those parts of the mammalian brain, associated with
sensory processing (eg, the visual and auditory cortex), where the existence of low, usually
two, dimensional neural maps that reflect the topological ordering of the external stimuli
[29].

The ability of the SOM to perform, in an unsupervised manner, dimensionality
reduction and topological organisation means that they have been employed in a number
of application areas, such as statistical encoding, data compressing and classification
[29, 30]. The utility of SOMs for advanced driving assistance systems has already been
certified [15].
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Figure 4: Typical hexagonal SOM topology: structure of an N-input SOM, x⃗ =
(x⃗1, x⃗2, ..., x⃗N), and K = 77 output neurons distributed into a 7x11 two-dimensional
hexagonal grid. Figure from [15].

5.1 Working principle

5.1.1 SOM description

To describe the SOM map first assume a sequence of statistical samples of data vectors
x⃗ = x⃗(n) ∈ ℜN , where n is the iteration number and N is the number of features of each
neuron, and a subset of variable reference vectors m⃗i(n), {m⃗i ⊂ x⃗(n) : i = 1, 2, ...,M}
[30]. The structure of a SOM is compressed as a linear n-dimensional grid. For simplicity
a 2D single-layer linear grid will be used, which is also called the competitive layer.

The neurons in the 2D grid can be referred as nodes and are instantiated with
reference vectors mk(n), thus, the number of neurons in the competitive layer, which
is M , must be proportional to the size of the map. For instance, a map containing L
neurons in the primary axis and H in the secondary axes (square maps are most common
for symmetry reasons, specially when periodic boundary conditions are not applied) would
require M = L×H. Each node can be presented with its own (i, j) coordinate, thus, m⃗i

can be substituted by m⃗ij, which are the weight vectors of the map, also called output
vectors. The remaining data vectors are denoted as the input vectors which are responsible
for training the map.

All the nodes on the SOM map grid are connected directly to every input vector,
but not to one another, meaning the nodes do not know the values of their neighbours,
and only update the weight of their connections as a function of the given inputs.

5.1.2 SOM initialisation

The first thing to be set in a SOM is the size of the map itself. In general, the optimum
size of the output map depends on the expected number of features present in the data.
As a baseline, Vesanto´s rule in [38] defines the optimal number of neurons as M = 5

√
K,

where K is the total number of samples. Distinctively, N×N maps are argued as ideal in
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5 SELF ORGANIZED MAPS (SOM)

[31, 39], where N is the number of features of the input vectors. Hence, a certain amount
of experimentation may be necessary in order to achieve the correct size of the array.

The topologies of the map lattice that can be found in literature are nearly always
square or hexagonal. The square topology was the first one presented by Kohonen and has
the advantage that it fits the topology of the common output devices (screens, printers).
The hexagonal grid, as shown in Figure 4, maximizes the number of neighbours per neuron.
This topology enhances the adaptation of the map and updation of weights during the
learning process, since more neurons are considered as neighbours. It also enhances the
visualization tool kit and cluster formation respect to a square grid.

To initialise the weight vectors in some proper way, random selection will often
suffice according to Kohonen [30]. However, initial arrangement of the weights in the
SOM influences directly the final state of the map, since it conditions the formation of
clusters. A random distribution of initial weights may not be optimal, resulting in sparsely
populated trainable nodes and poor classification performance [31]. A bad initial state of
the grid may result in a bland map, where no collection of neurons can be distinguished
from one to another.

To avoid this issue, some solutions appear in the literature. In [15], an auxiliary
SOM is used to create the cluster centers for the final SOM map. In [?], few solutions
depending on the linearity of the data are proposed. But for quasi-linear data, like the
one in this work, the suggested solutions do not show any improvement over a random
initialisation. Other solutions described in [31] are: initialising the weights to the same
value and lumping of input vectors with similar values, which ideally increases the likeli-
hood of all nodes being closer to the pattern vector; or adding random noise to inputs to
distribute vectors over a larger pattern space.

An independent idea is to order the neurons depending on their modules. In this
method, first, the neuron closest to the origin is placed at the (0, 0) position on the grid.
With a linear alignment, the second closest neuron is placed in the (0, 1) position and so
on with the rest.

The final feature to consider when designing a SOM, is the condition of the periodic
boundary conditions (PBCs). When PBCs are taken into account, the map is considered
to be repeated in every direction. This means that neurons in the edges have the neurons
in the opposite edges as neighbours. Not considering PBCs highly fastens the training
process.

5.1.3 SOM training

Once the weights have been initialised is time to train the SOM. The training requires
to update the weights of the map K times, where K is the number of input vectors in
the input vector set. In each iteration a random input vector xk is chosen from the input
vector set. Then the distance between every node and the input vector is calculated,
normally the Euclidean distance by the means of the Pythagorean theorem is used as the
distance metric.

dij(x⃗k) =
√

||x⃗k − m⃗ij||2 (10)
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When all the distances are computed, the best matching unit (BMU) is selected.
Meaning, the output vector with the smallest distance to the input vector is chosen. The
BMU denoted as m⃗c by Kohonen, is the closest vector in the map respect to the input
vector. This process is why the SOM is considered a competitive learning technique, since
the output vectors “compete” in order to be the BMU.

Immediately after choosing the BMU the weights in the SOM are updated. For
each iteration of the SOM, the weight vectors are updated as follows,

m⃗ij(n+ 1) = m⃗ij(n) + α(n)βcij(n)dij(x⃗k(n)) (11)

where n denotes the aforementioned iteration step, xk(n) is an input sample randomly
selected from the training set at iteration n, βcij is a neighborhood function or kernel
around the best matching unit and α(n) is the learning rate.

Both α(n) and βcij are decreasing functions approaching zero with each iteration.
Specifically,

α(n) = α0 · exp
(
−n

τ

)
, (12)

βcij = β0 · exp
(

−d2c
2σ2(n)

)
, (13)

where α0 and β0 are the initial learning rate and neighbourhood function values; τ is the
time constant responsible of decreasing the learning rate and σ(n), which is the radius of
the neighbourhood function βcij, concretely, σ(n) = σ0 ·exp(−n/τ); and dc is the distance
to the BMU. It can be observed that when n, and thus, the number of input samples K
tends to infinity only the BMU will be updated.

It may be appropriate to observe here that if the maps are used for pattern recog-
nition, their classification accuracy can be multiplied if the cells are fine-tuned using
supervised learning principles [30].

5.2 Interpretation: U-matrix

The SOM is an excellent MLT for result visualization. Once the training phase has ended,
the distances between every neuron and its first and second neighbours are computed and
added. This summation can be named as the “weight difference” of the neuron respect
to its neighbours, and the mapping of the weight difference of all the neurons produces
the weight map, also called U-matrix. With the U-matrix, the map can be colored by
assigning colors depending on the value of the weight difference. The left image in Figure
5 displays a U-matrix, with colder colors for the neurons with lower weight difference.
Clearly, cold and hot spots are pictured, showing the formation of clumps. The blue
areas indicate the neurons which have been selected more times as the BMU during the
training process and are therefore more similar to their neighbours.

The samples can be mapped on the weight map according to their corresponding
BMU. Once all the samples are mapped, clusters can be identified with mathematical
implementations like the k-Nearest Neighbors (kNN), see the right image in Figure 5. In
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5 SELF ORGANIZED MAPS (SOM)

Figure 5: On the left, a U-matrix of 23 x 13, colored from blue to red according to the
weight difference bar on its right. On the right, cluster arrangements of nine clusters
formed with k-NN algorithm. Figures from [40].

this work the Quality Threshold (QT) computational technique has been used to form
the clusters. Other clustering methods like the k-Nearest Neighbours and Density Based
Scanning where implemented with little success, since due to the particular characteristics
of the SOMs they were not able to properly distinguish clusters.

The QT algorithm ensures that the distance between any two neurons within a
cluster should be below a given threshold. First, a random neuron is selected. Then,
the distance, calculated according to (10), between the selected neuron and a neighbour
is computed. If the distance is smaller than the threshold value, then the neighbour
becomes part of the cluster. This calculation is done for every first neighbour, and then
with the second neighbours and so on. As the cluster grows, the condition of the distance
between every current neuron in the cluster and a candidate neuron being smaller than
the threshold value has to be ensured. Finally, in the case that no neighbour neuron
fulfills that condition, a new random neuron is selected to form a new cluster.

Due to its mode of action, the QT algorithm is ideal to implement, since the
Euclidean distance follows the working principle of the SOM as described in Section 5.1.3.
The QT algorithm generates mostly non-overlapping clusters. However, its weakness is the
formation of clusters with too little elements. These clusters remain outside of the main
clusters as outliers. Therefore, a minimum number of neurons are needed to recognize
a cluster as meaningful, the outliers are considered particular cases with no value for
pattern recognition.

With the clusters formed, to interpret the results, the means and the variances
for all the variables are calculated for each cluster. This representation has shown to
be the most useful since it extracts the core information of the clusters. Moreover, this
way, the clusters can be categorized according the value of a certain parameter called
criteria, which will define the cluster. Other representations, such as picturing the values
of the variables in two and three dimensional grids was of no use, since some variables are
overlapping and the images become blurry and uninterpretable.
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The desired characteristics for a SOM are the formation of distinguished clusters
in the U-matrix and distinctive classification for the criteria with little variance and
overlapping. The most important one being the small variance of the criteria for the
clusters. This implies that the comfort of the samples in the cluster is well defined.
Additionally, this also results in the variance of vehicle variables being small, allowing
to relate more precisely the values of the other variables with the discomfort. When
overlapping of the criteria happens, the rest of the variables need to be observed, since
different parameters may produce the same discomfort level.

These aspects decide the validity of the SOM and to optimize those features, some
parameters can be modified and specified. The most important parameters to be defined
are the dimensions of the map, the initial arrangement of the weights, if periodic boundary
conditions (PBCs) are considered, how many samples are going to be used for the training
and how many samples to use to map and form cluster. The observations done for each
one of these features are presented in the Section 9.

6 UYANIK database

The dataset used in this work emerges from the real-world database collected with “UYAN-
IK” [14]. The research, done by the University of Sabançi at Istanbul, has the international
support of several research groups in the United States, Japan, Turkey, Italy, and Singa-
pore, which form an alliance (NEDO Alliance) to share the worldwide driving, road, and
vehicle-specific data obtained from 450 drivers. Toward that end, three vehicles (“Uyanik”
in Istanbul, “Nagoya Vehicle” in Japan [41], and “UT-Drive” in Dallas, Texas, USA [42])
have been equipped in cooperation with each other. The unification of these researches
permits a head-on comparisons between different drivers more easily.

As mentioned, this study only makes use of the data collection obtained by the
“Uyanik” vehicle. The methodology used in Istanbul for acquiring the data allows for more
precise “real-world” data compared to simulated environment studies [1, 16], where the
lack of surrounding influences, such as: traffic, result in worse implementations. But the
drawbacks of live human data collection, such as, equipment failures, technical difficulties,
climate and weather, together with traffic, driving local culture and effectiveness of law
enforcement, give rise to major challenges. Specially, the driver’s physical and mental
conditions along with the driving behaviors, which are the focus in this work.

The data collection performed in Istanbul consisted of a 25 km route formed by
different kinds of sections (city, highway, secondary roads, and a university campus) ac-
counting for 40 minutes for each run. A total of 108 drivers consisting of 19 females,
from the ages between 21-48, and 89 males, from the ages between 22-61, drove the ve-
hicle through the entire route. But due to equipment malfunction only samples from 101
drivers are usable.

The data from the 101 drivers was received through several channels. First, three
cameras were responsible for recording 640×480 30 fps uncompressed digital video tape
from the left and right sides of the driver and the road ahead. Second, four microphone
channels and a sync signal between the two acquisition systems, which were sampled at
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48 kHz and 24 bits per sample. Third, CAN-Bus signals like the vehicle speed (VS),
the engine RPM (ERPM), the steering wheel angle (SWA). This data from the CAN-
Bus cannot be read at a programmable rate, it fluctuates around, either 10 or 32 Hz.
Therefore, in order to have uniformity, they were re-converted to 32 Hz when needed.
Additionally, brake and gas pedal pressure sensors were installed, their readings as well
as the GPS recordings were digitized at the CAN-Bus sampling rate. Finally, a laser
distance measuring device, attached to an IMU XYZ Accelerator measuring sensor set-
up, was installed in the front bumper. The IMU Accelerator is responsible of recording
the values of the accelerations which are used for the evaluation of comfort variables
defined in the second chapter. All the recordings required getting synchronized at the
highest frequency of 32 Hz. The re-synchronization generates a set of easily processable
spreadsheet-like data chunks.

All these variables constitute the vehicle variables and they can be further dis-
tinguished in two subgroups. On the one side, the vehicle state variables describe the
disposition of the vehicle. On the other hand, the vehicle handling variables describe
the actions taken by the drivers when operating the vehicle. The state variables are the
acceleration for each axis, ( Acc x, Acc x pos, Acc x neg, Acc y, Acc z), the engine rpm
(ERPM), the pitch rate (PR), the roll rate (RR), the yaw rate (YR), and the vehicle speed
(VS). The handling variables are the the brake pedal (BP) and gas pedal (GP) pressure
sensor signals, the percentage of the gas pedal pressure (PGP), the steering wheel angle
(SWA) and the steering wheel relative speed (SWRS).

The route is divided in the aforementioned 4 groups depending on the type of road,
the most adequate stretch for researching driver styles has been selected for implementing
MLTs. In order to be suitable for this work, the route must be the same for every driver.
Moreover, the data needs to be varied and properly distributed for the comfort variables
to relate the comfort with the driving style and isolate the discomfort produced by the
vehicle handling from other external factors.

Data from highway stretches, with fluent traffic and high mean speeds, shows low
deviations and lack of variety, hardening the task of classifying comfort groups, since most
of samples fall in the same comfort category. Thus, the idea of using the highway stretch
is abandoned. City stretches are discarded since too many samples contain data where
the vehicles are stopped in red lights or hard traffic and therefore represent “false” data.

Arguably, the best option and the one used in this work, is the data collected in
the university stretch. Despite only accounting for 6 minutes on average of the entire 40
minute ride, and thus, provides a smaller amount of samples, it exhibits the most balanced
variable distribution from all the stretches.

7 Data processing

The efficiency of machine learning techniques is highly dependent on the data used for
training them. In this section the actions taken over the Uyanik dataset are described.
The aim of this process is to make them suitable for implementation and to obtain max-
imal performance from the learning algorithms. Additionally, how the comfort levels are
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defined will be explicated.

The data used in this work belongs to 18 drivers, considered to perform the most
diverse actions for the same university stretch. The ride has been divided in 15 second
sample windows, with a total number of 933 samples. Each window has a 7.5 second
overlap with the consecutive sample. For each sample window a set of 21 variables have
been defined. 15 of the 21 variables are the vehicle variables described in Section 6. The
root mean square (RMS) values, across the 15 seconds of the sample windows, have been
calculated for each of these variables. The other 6 variables are the comfort variables in
(4), calculated in each sample window for each axis. They are labeled as nax, nax pos,
nax neg, nay, nay pos, nay neg; where pos and neg distinguish the use of only positive
or negative accelerations respectively.

7.1 Data cleaning

As previously mentioned, only data from the university section has been taken due to
its varied and properly distributed values for the variables. Nevertheless, measurement
errors and special situations like bumps or dangerous driving might produce data non
representative of a controlled environment.

The outlier cases are detected and the corresponding samples have been removed
since they misrepresent the real data. To consider a sample as an outlier, the value of any
measured vehicle parameter has to be 10% away form any other data from that parameter.
In total, twelve samples have been removed reducing the number of usable samples from
933 to 921.

7.2 Normalization

The variables in the dataset represent unlike magnitudes and hold values of different
ranges. Since the MLTs implemented in this work make use of Euclidean distances without
caring of their nature, the disparities in range between the variables need to be taken into
account. Not doing so would assume that some variables have more importance than
others. The simplest and most efficient solution is to normalize each variable.

The normalization could be weighted as proposed in [43], giving slightly higher
values to variables that are considered more important or significant. But without enough
information to make a weighted normalization, the data for each variable has been evenly
normalized between 0 and 1. The normalized distributions for the vehicle and comfort
variables of the 921 samples is shown in Figure 6. It can be seen that the distributions
are centred around a certain value and become more skewed towards the top.

19



7 DATA PROCESSING

Figure 6: Normalized distributions of the vehicle variables and the comfort variables for
the 921 samples.

7.3 Selection of comfort variable as evaluation Criteria

With the intent of researching the acceleration threshold variables from (4), a comfort
variable has to be selected to classify the samples. As mentioned in Section 2, the acceler-
ations in the z axis have been neglected. Thus, several ways to combine these variables in
the x and y axes have been studied in order to get an unique comfort evaluation criteria.

The first idea was to use the nax and nay variables. They are the sum of the peaks
counted on the positive and negative directions for each axis, that is, nax = nax pos +
nax neg. A second idea consisted in using a new variable by subtracting the negative
accelerations to the positive ones. Thus, we defined the variables for each sample window
so nax sub = nax pos − nax neg and nay sub = nay pos − nay neg. This variable was
rapidly discarded since sustainable data was lost and input abundance is prime in high
density data studies.

Nonetheless, studying the nax sub variable revealed that 84.8% of the samples for
nax and 86.32% of the nay are composed only by positive or negative values in each
window. That is to say, in 84.8% of the samples nax = nax pos or nax = nax neg, and
86.32% of the samples have nay = nay pos or nay = nay neg. This observation hints the
usage of the nax pos and nax neg variables separately, since each of them will be majorly
represented in different windows and they are associated to unrelated vehicle variables.
On the other hand, there is no need to split the nay variable since it is expected to be
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Table 2: Discomfort categorization depending on the number of times the acceleration
threshold was surpassed for the composed (naxy) variable.

Discomfort level naxy

Not Uncomfortable ni ∈ 0 - 21

A little Uncomfortable ni ∈ 22 - 50

Fairly Uncomfortable ni ∈ 51 - 105

Uncomfortable ni ∈ 106 - 203

Very Uncomfortable ni ≥ 204

linked to the vehicle variables corresponding to the steering wheel and those do not have
directional differentiation.

Therefore, the nax pos, nax neg and nay variables are selected to study, com-
prehend the results and provide adequate driving advice to the drivers. Nevertheless,
classifying the comfortableness according to variables with different nature is complex, so
having an absolute acceleration threshold variable becomes convenient. For this task, a
new variable is created following the results in [26], the RMS of the ni variables in the xy
plane has been calculated for each sample window following the next equation:

naxy =
√

(nax pos+ nax neg)2 + nay2. (14)

This variable is called “criteria” through the rest of this work, since it is the criteria for
which the comfort level of the samples will be classified.

7.4 Comfort level categorization

In studies conducted with buses where samples of 5 minutes are examined [17, 23]. It has
been determined that the number of peaks in any direction required for an uncomfortable
ride correspond to values over 1 or 2 [23], and a value of 2.3 peaks in [17].

Since cars are arguably more comfortable than buses due to suspension, grip and
general stability, the threshold needs to be slightly higher. Since the samples used in this
work correspond to 15 minute stretches, the selected threshold to classify the ni stands at
a value of 8 in any direction. Thus, windows with ni < 8 are regarded as comfortable and
ni ≥ 8 as uncomfortable. In this work, additional categorization of the uncomfortable
class has been done by dividing the uncomfortable spectrum in different ranges according
to the distribution of the variables. For the criteria, the limits are calculated according
to (14) and [17, 23], and rounded up to be integers as shown in Table 2.

7.5 Oversampling

When trying to split the acceleration threshold variables, the problem of imbalanced data
is confronted as it can be seen in Figure 6. Most of the samples display low values of
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ni, for instance, for the criteria, 58.8% of the samples have lower values than 21, which
corresponds to roughly 10.3% of its maximum value. When MLTs, mainly unsupervised
ones, are trained with imbalanced data their reliability decreases since they are unable
to properly classify the samples [44]. In this case, for the naxy variable, the learner can
achieve 58.8% accuracy by predicting every new sample as comfortable, but such a learner
is useless since it can hardly distinguish uncomfortable classes.

To correct imbalanceness across the samples three major rescaling approaches are
presented. The first approach is to perform undersampling on the major class (class with
more samples), that is, some comfortable samples are selectively dropped so that the
classes are balanced. The second approach is to perform oversampling on the minority
class (class with less samples than the majority class), that is, to increase the number of
uncomfortable samples. The third approach is threshold-moving so the dividing threshold
divides the classes with equal number of samples in each of them. Since the threshold is
already defined and moving it would not allow a proper comfort classification, so this last
method is neglected.

Undersampling techniques like Near Miss [45] or Tomek´s Links [46] could be used
to clean the data while balancing the classes. However, the data is heavily comfortable
and would reduce drastically the number of samples, around 700 would be eliminated. It
makes undersampling unreasonable because valuable information is most probably lost.
Therefore, oversampling results the most sensible option.

Oversampling is not simply duplicating existing samples and it was already dis-
cussed discarding duplicates; otherwise, serious overfitting happens. Oversampling meth-
ods generate synthetic samples by interpolating neighborhood samples of the minority
class. In this work, three different oversampling methods are applied, the Synthetic Mi-
nority Oversampling Technique (SMOTE), the Adaptive Synthetic Sampling (ADASYN)
and the Support Vector Machine SMOTE (SVMSMOTE).

SMOTE creates synthetic samples of the minority class by interpolating a point
at a random distance between two sample vectors [47]. To do so, a random minority
sample s⃗1 is chosen, then a neighbour sample s⃗2 from the same class is selected, and the
new sample vector v⃗ is created following the Equation (15), where x is a random number
between 0 and 1.

v⃗ = s⃗1 + x · (s⃗1 − s⃗2) (15)

ADASYN builds on the methodology of SMOTE, by shifting the importance of
the classification boundary. Instead of using a random value of x in Equation (15),
ADASYN uses a weighted distribution to compensate for the skewed distributions of
minority examples [48]. ADASYN also uses a weighted distribution for different minority
classes according to their level of difficulty in learning, so more synthetic data is generated
for minority class examples that are harder to learn.

SVMSMOTE is trained to predict future instances. It focuses only on the minority
class instances residing along the decision boundary, due to the fact that this region
is the most crucial for establishing the decision boundary [49]. Furthermore, the new
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Table 3: Discomfort categorization depending on the number of times the acceleration
threshold was surpassed for the longitudinal (nax pos and nax neg), transversal (nay)
and composed (naxy) variable.

Discomfort level nax pos nax neg nay naxy

Not Uncomfortable ni ∈ 0 - 7 0 - 7 0 - 15 0 - 21

A little Uncomfortable ni ∈ 8 - 17 8 - 17 16 - 35 22 - 50

Fairly Uncomfortable ni ∈ 18 - 41 18 - 41 36 - 83 51 - 105

Uncomfortable ni ∈ 42 - 71 42 - 71 84 - 143 106 - 203

Very Uncomfortable ni ≥ 72 72 144 204

minority samples are generated outside the current minority region by extrapolation and
the boundary is consolidated by interpolation. This way data is expanded outside the
limits, which could be beneficial.

In a first study, the naxy variable was selected to execute the oversampling on,
since it is the absolute categorization variable, as it has been explained in Section 7.1.
Since, the oversampling techniques do not take into account (14), oversampling over naxy
resulted in incoherent samples, i.e. samples containing high values of naxy but low values
of nax pos, nax neg and nay which did not fulfill (14). This made classifying the samples
impossible since the criteria could classify one sample as uncomfortable but all the rest
of ni parameters classified it as comfortable. In addition it creates struggles when trying
to identify driving patterns correlated to the specific handling variables. Therefore, the
idea of oversampling the naxy variable was rejected.

In order to avoid the previous issue, and after trying several solutions, three sep-
arate oversamplings have been executed on the original data. Each one of them over the
nax pos, nax neg and nay variables. On this wise, these three variables contain the same
amount of samples for each of the discomfort intervals. However, the equality of distri-
bution on the naxy variable is compromised. After the oversampling, naxy is computed
and therefore, an uniform distribution along naxy can not be assured. The oversampling
intervals are chosen to fulfill the categorization in Table 3.

After oversampling the selected three parameters and recalculating naxy, the three
methods result in similar distributions, see Table 4. Therefore, a better understanding
of the quality of each method is required. To do so, the “variance” respect to the ideal
distribution (equal in every comfort class) is calculated such as:

variance =

∑4
i=0(ni −N/5)2

N
(16)

where N is the total amount of samples and ni is the number of samples in the comfort
class i (i = 0 : not uncomfortable, and i = 4 : very uncomfortable). The smaller
the variance the better, since represents a better distribution of the samples along the
discomfort classes.

Table 4 shows the different distributions, plus the total number of samples and the
variance of each one of the methods. The data obtained by oversampling with ADASYN
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Table 4: Number of samples in each discomfort category of naxy, after executing the
SMOTE, ADASYN and SVMSMOTE oversampling techniques. The total number of
sample for each method and the variance respect to an uniform distribution.

Discomfort level naxy SMOTE ADASYN SVMSMOTE

Not Uncomfortable 0 - 21 1609 1020 889

A little Uncomfortable 22 - 50 1816 1948 1339

Fairly Uncomfortable 51 - 105 1730 1840 1240

Uncomfortable 106 - 203 1739 2175 1758

Very Uncomfortable ≥204 953 890 1113

Total samples 7840 7873 6339

Variance 63.1 171 65.2

is discarded, since its variance is almost three times as big as the other two. SMOTE and
SVMSMOTE present similar variances, but the samples are spread differently. SMOTE
produces less samples in the very uncomfortable class, while SVMSMOTE, due to its
working principle, creates samples with values over the previous maximum and thus pro-
ducing more uncomfortable samples. Additionally, SVMSMOTE produces samples with
negative values of nax pos, nax neg and nay, which makes no sense, since the times the
acceleration threshold has been surpassed can not be negative, the minimum must be
zero. Thus, for the SVMSMOTE the samples with negative values have been discarded,
explaining the smaller amount of samples in the not uncomfortable class and in total for
this method.

From the values obtained for the variance it is decided that the data obtained from
the SMOTE and the SVMSMOTE will be used to train the MLT algorithms. Observing
the different results emerging from the mirrored distributions for each method becomes
interesting.

8 RBFNetwork implementation

The implementation of the RBFNN has been done following the explanation Section 4.
As mentioned there, the number of centroids, their location and the initial radius of
the distribution function have to be specified. As suggested in [35, 36], the location of
the centroids were determined by using samples from the dataset and the radius of each
centroid was initially set to be a third of the distance to the closest neighbour. This
provides the algorithm with useful centroids from the beginning, since it occupies space
where samples are likely to be located.

With these parameters set, a number of networks were trained with different
amount of centroids, but showed overall low accuracy. To improve the results, several
solutions were tried: the number of input variables was systematically reduced from 19
(all the vehicle variables) down to just 2 handling variables, the data from the three over-
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Table 5: Accuracy and MSE of the RBFNetworks containing different amount of centroids
and different number of input variables (19: all vehicle variables; 8: all handling variables;
2: BP and SWA).

No. input var. No. centroids Accuracy % MSE %

500 15.4 86.5

19 1000 17.8 82.2

3000 16.7 78.1

500 32.9 75.3

8 1000 34.4 74.2

3000 33.8 72.6

500 51.9 72.3

2 1000 56.3 68.4

3000 55.6 70.1

sampling methods were implemented, the number of input samples was changed, different
centroid arrangements were tried and the number of epochs of the training phase was
increased.

For networks with different number of input variables, the accuracy and MSE of
the best arrangements are tabulated in Table 5. It can be seen that the accuracy of the
network is very low despite increasing the number of centroids. The best results, having
only two input variables, only showed 56.3% accuracy, so almost half of the samples were
not properly classified; and the value of the MSE is 68.4%, marking high deviation in
prediction. Thus, the algorithm does not properly classify the samples and has very low
confidence in its predictions.

By observing the final radii of the centroids and weights of the output layer, it
was clear that the data from different classes is mixed in space. A specific value of the
variables does not result in a direct discomfort type, since more than one class have similar
values for different vehicle variables. Thus, the algorithm produced distribution functions
with big radius that overlap, or with very small radius, which contain a minimal number
of samples inside.

Apart from the data categorized in Section 7.4, RBFNetworks were trained with
data oversampled in just two groups. One being the comfortable group with naxy < 22
and the other being the uncomfortable group when naxy > 22. Doing so brought up the
accuracy to 93% and lowered down the MSE to 11.2%, even with all the 19 input variables.
This means the data in the comfortable class is well defined and the data is mixed and
overlaps across the uncomfortable categories. Moreover, the centroids of the comfortable
class were located closest to the origin of the n dimensional space. Logically, making
small maneuvering actions when driving produces small discomfort. These results are of
no use to classify the samples, since the discomfort is not connected to specific handling
variables.

All together, the results show the RBFNetwork is not appropriate to classify the
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data according to the categorization in Section 7.4, or that the categorization may not
be ideal for a supervised learning technique. It could also be caused by the design of the
criteria. Accelerations in different directions correlate to different handling parameters
and some samples belonging to separate classes, but with the same axial origin, have
overlapping data in some variables. For instance, samples with the similar break pedal
action may have different comfort levels, caused by the accelerations in the y axis where
the break has no influence.

With the RBFNN having a poor performance with the data oversampled in Section
7.5, a unsupervised machine learning techniques seems more appropriate to analyze the
data, since it does not care about the categories the samples have been given. It would
be able to create new classifications.

9 SOM implementation

Firstly, the use of hexagonal lattice map in this work must be addressed. Easy to im-
plement, its maximization of neighbours produces a more effective learning process since
more nodes are updated every cycle. Moreover, despite making the training 4 times slower,
periodic boundary conditions are regarded as a must. Not considering PBCs resulted in
poor maps, where the neurons on the edges have the lowest weight difference values, since
they have less neighbours. In Figure 7a this issue is displayed. Apart from having the
cluster centers in the edges, the middle ground of the grid is very uniform which is bad
for cluster formation. Most of these clusters then, are just extensions of the edges, with
high variance for the criteria, as seen on the right of the image. None of the initialisation
methods proposed were able to significantly improve the quality of the SOM with PBCs
off.

So with the PBCs on, different initialisation methods presented in the theory were
implemented. Ordering according to the modules with linear and radial alignments pro-
duced close to none positive results. An example of a weight map obtained with vertical
alignment is displayed in Figure 7b. It shows limited dark spots and a bland middle area,
which produced overlapping for the naxy and vehicle variables. Using an auxiliary SOM
was not sufficient either, to distinguish the cluster centers (see Figure 7c). Some cluster
centers were too similar to each other and the final clusters join, resulting in high vari-
ance of the criteria. With several other methods showing even worse results, the solution,
taken from [50], is to randomly initialise the map, but setting a large initial neighbourhood
radius which reduces slowly. This is done by selecting a big initial σ in (13).

Using Vesanto´s rule, the initial topology of the map was set to 21 × 21 for the
data obtained oversampling with SMOTE (K = 7840, M ≈ 443), and 20 × 20 for the
SVMSMOTE (K = 6339, M ≈ 398). Apart from these dimension, a set of experiments
were carried out with maps of 15 × 15 and 25 × 25. However, it was seen in the results
from these last two failed to create cluster which properly classify the criteria.

In the smaller 15 × 15 map, the lack of space produced just a few clusters with
high variances. Figure 8a shows the formation of only 4 clusters, which resulted in big
variance of the naxy variable across them.
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(a) 21 x 21 SOM, without PBC.

(b) 21 x 21 SOM, with PBC, initialised by ordering the neurons depending on their modulus,
in a vertical alignment.

(c) 21 x 21 SOM, with PBC, initialised by fixing the centers formed by a smaller auxiliary SOM.

Figure 7: A series of visual representations of the SOMs created with initialisation meth-
ods. On the left, the U-matrix; on the middle the clusters formed when mapping the
original data; and on the right, the mean and variance of the criteria for the clusters.

For the bigger 25 × 25 map, the abundance of space resulted in formation of
separated clusters with identical values for the criteria. Neurons with similar weights
are located in separated regions. In Figure 8c this can be observed, where a total of 11
clusters are formed. Some outliers are big enough to be meaningful, but are copies of other
clusters, meaning that secondary clusters were formed with no additional information.

The 21 × 21 map size presented the best distinction for the criteria. It exhibits the
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smallest variance overall and minimal overlapping, as seen in Figure 8b. So, Vesanto´s rule
was ensured and 21 × 21 maps were built and further trained to improve the classification
capabilities.

(a) 15 x 15 SOM, with PBC, randomly initialised with big initial neighbourhood radius.

(b) 21 x 21 SOM, with PBC, randomly initialised with big initial neighbourhood radius.

(c) 25 x 25 SOM, with PBC, randomly initialised with big initial neighbourhood radius.

Figure 8: A series of visual representations of different sized SOMs. On the left, the
U-matrix; on the middle the clusters formed when mapping the original data; and on the
right, the mean and variance of the criteria for the clusters.

For training the map, initially, the entirety of the samples obtained in Section
7.5 were used. But the high amount of input samples resulted in an overload of data
that produced bland U-matrices with little distinction between clusters and with many
outliers. Therefore, a number of random samples from the entire oversampled dataset
were used to train the SOMs. Setting the number of input samples at the same amount
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of windows in the original data (921), did not fix the issue. This amount is just a bit
more than double the neurons in the map, and thus, not every neuron ended up being
updated. By trial and error, the optimal number of input samples was set between 4 and
5 times the number of neurons in the map.

Finally, the results obtained by training using the data oversampled with SVMSMOTE,
Figure 9a, and SMOTE, Figure 9b, were studied. To compare the data obtained by over-
sampling with SMOTE and SVMSMOTE the criteria, at the right of the images, needs to
be compared, since both produce properly clustered maps. It can bee seen that SMOTE
provides better differentiation for the comfort variable with smaller variance, and thus, it
better classifies the samples. Therefore, the data oversampled with the SMOTE technique
is considered superior in this work and the results and recommendations are analysed us-
ing the SOM trained with this data. The reason for the SVMSMOTE to be worse could be
that it produced a more discomfort dataset and the original samples are majorly comfort-
able. The SMOTE on the other hand, with a lower distribution seems to better portray
the original data.

(a) 21 x 21 SOM, with PBC, randomly initialised with big initial neighbourhood radius, and
trained with the data oversampled using SVMSMOTE.

(b) 21 x 21 SOM, with PBC, randomly initialised with big initial neighbourhood radius, and
trained with the data oversampled using SMOTE.

Figure 9: A series of visual representations of the SOMs created with different data when
training. On the left, the U-matrix; on the middle the clusters formed when mapping the
original data; and on the right, the mean and variance of the criteria for the clusters.
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10 Cluster Analysis, Driving Recommendations and

Driver Style Analysis

10.1 Cluster Analysis and Driving Recommendations

With the best conditions for the SOM, the results analysed in this section belong to a
map of 21 x 21 dimensions, with PBCs and trained with 1764 samples of the SMOTE
data set.

For every cluster obtained from mapping the original 921 samples into the SOM,
the means and variances of every variable are computed. These values are then graphed
in Figure 10. Displaying the nax and nay variables also allows to understand the origin
of the discomfort and to better correlate it to the handling variables.

Figure 10: Mean values and variances of the clusters formed using a 21 x 21 SOM map
with periodic boundary conditions and randomly initialised with big initial neighbourhood
radius (SOM in Figure 9b).

The first 5 variables are the vehicle state variables. They characterize the con-
ditions in which the vehicle handling variables are relevant. For instance, the cluster 1
has higher value for the BP than the 0 and 3 clusters while having the same nax neg
value, which could be due to the lower VS. The state variables are mostly grouped except
of the YR, making harder to interpret. The ERPM variable will be discarded for the
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discussion since all of the clusters have arguably the same values. To the contrary, the
vehicle handling variables are more spread out, helping produce more distinct driving
recommendations.

Taken into account the absolute comfort variable naxy the clusters are catego-
rized and then described according to the most meaningful vehicle variables for each one.
Additionally suggestions to improve the ride experience for each one are the following:

0 - Blue. Comfortable: it scores the lowest value for almost all the variables. The
medium values for GP and PGP do not translate in discomfort, due to the low YR and
VS. The variables indicate the vehicle just keeps the speed and drives in a strait line. It is
comfortable in every and therefore, no suggestion are needed for samples in this cluster.

1 - Orange. A little Uncomfortable: it is a bit discomforting in the y axis. With
the smallest VS and high YR it is understood that it corresponds to slow tight curves
having the highest SWA. It is also in the limit of being fairly uncomfortable in the positive
direction of the x axis. This is reflected in a high GP and PGP values, similar to cluster
1, while having lower VS. Not much can be done to solve this, apart from moderating the
use of the gas pedal.

2 - Green. Fairly Uncomfortable: it is in the limit of extremely discomforting in
the x neg direction and fairly uncomfortable in the y axis, the second most discomforting
cluster. It scores highest in VS and lowest ERPM, which probably means high gears.
Being in the limit of being fairly uncomfortable in the y direction, a small preventive
suggestion would be to slightly lower the speed and keep the steering wheal as strait as
possible. It scores significantly higher for the BP, and the lowest in gas pedal. This
describes intense breaking which is suggested to be avoided by lowering the speed and
being gentle when breaking.

3 - Red. Fairly Uncomfortable: an uncomfortable experience in the x pos direction
is felt in this cluster. However, it is not too high in the overall discomfort since it only
scores in one axis. It has the highest ERPM, PR, GP and PGP. Together, with low values
of YR, BP and steering wheel, denotes a straight acceleration window. It is strongly
suggested to lower the excessive use of the throttle.

4 - Purple. Uncomfortable: it is the most discomforting cluster overall and
discomforting in every direction. It has the highest values for almost every variable except
VS and GP. The high value for nax pos is not clear since the gas pedal usage is similar to
1 and 2 clusters, but it could be caused by the increased PR. However the elevated values
for the nax neg and nay are clearly depicted by the excessive maneuvering of the BP,
SWA and SWRS, which are specially recommended to be decreased in order to minimize
their discomfort effects.

10.1.1 General observations

Note from the picture of the results, that the variance of the criteria correlates with the
variance of the rest of the variables, the bigger the variance of naxy, the bigger the variance
of the other variables. Furthermore, the variances shrink as the comfort increases. This is
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most probably due to the data being more comfortably distributed, which indicates that
having a better distributed experimental data set would enrich the map. Moreover, non
of the variables reach the maximum value, in the very uncomfortable category, because
those samples are left as outliers in the SOM, so getting rid of them at the start could
also have been useful.

Despite having discarded the ERPM variable for the recommendations, it would
be interesting to posses information about other variables, such as the gear box of the car,
to better describe the state of the vehicle and have a clearer image of the road conditions.

The correlation between nax neg and the BP is strong, marginally affected by the
other variables. At first glance, the nay variable seems to correlate with the SWA and
SWRS, but under some circumstances, depicted by the orange cluster, it does not fully
match them. For the nax pos, is logically related to the gas peal. However, nax pos has
a more direct connection, but not fully, with the PGP rather than with the GP. Also
depends on the circumstances like the PR and VS. For this direction, knowledge of the
gear box would also be beneficial, since the car has more torque at lower gears. This
could also help explain the high values of the gas pedal variables, while the discomfort
in the positive x direction is not that elevated. The need to have a minimum pressure to
maintain speed could also raise the general GP and PGP values. They only drop when
the break is heavily used, for obvious reasons.

Another interesting observation is the general lower value of the nax pos variable
compared to the nax neg. This could be caused by the relative small horse power of the
vehicle and its inability to produce sudden acceleration from the gas pedal signal. On
the contrary, the breaks produce a more instantaneous and effective velocity decrease
increasing the discomfort on the negative direction.

Finally, the strong accelerations in the x positive direction do not amount to much
acceleration in other direction, indicating that drivers do not tend to strongly speed up
during curves. The other two directions, x negative and y, display simultaneous high
discomfort values, and drivers with those samples break while changing direction.

10.2 Driver Style analysis

The clusters obtained from the SOM are used in this section to analyse the driving style
of each driver. This allows to compare the maneuvering of the vehicle and the discomfort
produced respectively by each driver. In Figure 12, the percentage of samples belonging
to each cluster are pictured for every driver. The distribution has been ordered from most
comfortable on the left, to least comfortable on the right.

It can directly be seen that drivers are mostly comforting, having a heavy presence
of comfortable samples. This is expected, since most of the data fit in the comfortable
category, and for the same road drivers are required to take similar actions. However,
the significant information relays in distribution of the uncomfortable samples. Using the
knowledge gained in the previous section some distinctions are made between drivers.

IM1059 has the smallest percentage of the most discomforting cluster (green and
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Figure 11: Distribution of clusters created with SOM for every driver. Cluster colors
follow the color pattern in Figure 10.

purple together). With a reasonable red and the biggest percentage of orange, it can be
considered one of the most comfortable drivers. He generally accelerates slowly and is
careful when breaking.

IF1017 and IM1086 can also be the most comfortable drivers. They have some
of the highest percentage of comfortable samples and no purple samples, which are the
most discomforting. Not much can be recommended for these drivers, IM1017 could press
softer the break pedal and IM1086 could reduce the gas pedal pressure.

IM1070 also does not have any purple sample, but has one of the highest percent-
ages of green samples. Shows a heavier breaking pattern than the previous two.

IF1019, IM1060 and IM1085 have the highest percentage of red samples. They
also produce little samples of the green and purple categories. Thus, the only suggestion
for them is to control the pressure of the gas pedal.
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Figure 12: Cluster assignment for every sample of the drivers and ordered in time. The
color of the samples follows the color pattern of the clusters in Figure 10.

Finally, it is obvious that IM1087 is the most discomforting driver. Despite half
of the samples belong to the comfortable cluster, he occasions the smallest percentage of
blue samples. Moreover, the green and purple bar combination is significantly bigger for
him. Therefore, he does not accelerate strongly, but abuses the breaks and steering well.
This shows a tendency for driving fast into corners to then correct the velocity with the
break.

The rest of the drivers display some combination of these behaviours. Apart of the
driver styles, it is also interesting to observe when and how the discomforts are produced.
To do so, in Figure 12 every sample of each driver has been pictured, with the correspon-
dent cluster color, in respect to the time of measurement. In the image the time of each
sample is considered to be 7.5 seconds to account for the overlapping. The white spots
symbolize the outlier samples, either from the data processing, or from the SOM.

No specific pattern seems to appear for the discomfort depending on the time of
the ride. This brings to light the small influence external factor have on comfort for this
data. However, some interesting points can be extracted from this picture by observing
the arrangement of the differently clustered samples. The blue samples are not discussed
since they are comfortable steady drives through straits, and the rest of the colors are
studied on top of what can be considered as a blue background.
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The orange samples generally appear in groups or paired with red ones. When
they are group it indicates the slow acceleration that elongates in time, and when paired
with red, it means the steady acceleration proceeds, or is proceeded by, a harder use of
the gas pedal. The red samples mostly appear alone when not paired with a orange one.
Therefore, the high accelerations from strong throttling are momentaneous and do not
last much. The same happens with the green and purple samples, specially with the last
one, meaning the breaking and trajectory changing occur shortly. The individual purple
samples hint the lack of big curves on the road. The reason for two red or green samples
being together, could be that the discomforting accelerations mostly happen during the
overlapped time of consecutive samples.

For some of the drivers a few things can also be pointed out. IF1019 breaks at
the beginning, probably slowing much the vehicle, and then speeds up the most through
the rest of the stretch. IM1070 also breaks heavily and his ride lasts the longest, since he
travels at lower speeds without excessive use of the throttle. IM1078, who was previously
considered as the most discomforting, displays the shortest travel time, meaning he had
the highest speed of any driver, and therefore needed to break and steer more.

Analyzing the driving styles and road behaviours in these ways can help to generate
specific recommendations for each driver. Moreover, the travel analysis could improve the
general comfort of the ride when encountered with the same road stretch.

11 Conclusions

The main objective of this work has been fulfilled. The general comfort of passengers in
cars has been studied using machine learning techniques. Specifically, the discomfort gen-
erated by acceleration peaks using acceleration threshold theory. Moreover, the secondary
goals of distinguishing the origin generating the discomfort and creating recommendations
according to the driving style, have been successfully achieved. Despite meaning to use
several MLTs, only two were implemented. The Radial Distribution Function turned out
ineffective, but the Self-Organized Map was able to fix the issues the previous one en-
countered, enabling a rich analysis of the data and the creation recommendations for the
different driving styles. In what follows, an overview of the research, the problems faced
and instructions for further works are presented.

The data taken from the Uyanik database was first preprocessed. 15 second sample
windows were created to be studied. The RMS of the vehicle variables and the discomfort
variables were calculated for each window. Then, the comfort variable naxy, which encap-
sulates the discomfort in the x and y axes, was selected to proceed with the research and
5 discomfort classes were defined for it, ranging from not uncomfortable to very uncom-
fortable. Since the discomfort variable presented very bad distribution, synthetic samples
were produced applying three oversampling algorithms, for a greater performance of the
MLTs.

The results of the RBFNetwork showed the algorithm was inadequate to classify
the given data in the 5 comfort categories. A deeper analysis revealed the data across
the uncomfortable classes is scattered and mixed, while the data from the most comfort-
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able class is well defined. The reasons for this could be the following: the discomfort
categories are not properly defined and samples are wrongly classified; the number of
samples in the original data which belong to the comfortable class is comparably bigger
than for the uncomfortable classes, and thus, after oversampling most of the samples in
the uncomfortable classes are synthetically produced and do not represent experimental
data; or selecting the naxy as the criteria, with the intend to take into account multiple
directional accelerations, may not be adequate.

The SOM on the other hand, due to its unsupervised nature, is less affected by
the problems the RBFNetwork faces. Despite both techniques making use of Euclidean
distances, the ability of the SOM to map the samples in an abstract grid, made it possible
to distinguish several discomfort groups. The vehicle variables were then differentiated
according to the clusters, which made possible analyzing the variables causing the discom-
fort. Recommendations for each cluster were derived from these results and the driving
style of each driver was analyzed.

The next comparison can be made between both techniques. The neurons in the
competitive layer of the SOM correspond to centroids of the RBF. During the training
phase, when a neuron of the SOM is updated, the location of the analog centroid is
displaced along with its neighbours towards an optimum position. This way, all the SOM
centroids in one area belong to the same cluster. When new samples are mapped, the best
matching unit assigns the corresponding group, regardless of their previous categorization.

The results from both the RBF and the SOM share one characteristics. The most
comfortable samples have generally the smallest value for the vehicle variables and samples
on the discomfort range overlap. This creates problems for supervised techniques, as seen
with the RBF.

In order to solve this issues, the next solutions are proposed. A better catego-
rization of the discomfort levels, more related to the sensation felt. The variances of the
criteria produced by the SOM can be taken as a starting point. Too many samples lay in
the comfortable class, so gathering more experimental data, with uncomfortable charac-
teristics, would be the best option. This would allow to mark a better distinction of the
uncomfortable classes and generate more realistic synthetic samples by oversampling.

Another interesting alternative is selecting samples of shorter duration. This could
make the RMS of the variables more precise. Additionally, a driver analysis could be
done using the vehicle speed and calculating the distance travelled in each sample. This
way, road architecture like curves could be identified by comparing the driving patterns
at different points of the trip.

Suggestions for future MLT implementations are Decision Trees or Feature Selec-
tion - Extraction algorithms. The Decision Tree is a interesting supervised technique that
could classify samples by dividing the data through a chain of selections. It could empha-
size more in some variables, in contrast to the normalized Euclidean distance calculations
use done this work. Among semi-supervised methods, Feature Selection or Feature Ex-
traction could be useful to extract valuable relationships between certain vehicle variables
and specific discomfort parameters. Studying the discomfort variables separately, instead
of using a composed variables like naxy, also seems compelling for these techniques.
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It is clear in any case, that machine learning techniques are powerful tools for
analyzing complex data. Obtaining reliable algorithms to predict or detect discomforting
driving pattern could be integrated in the future.
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