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Abstract
Non-motor manifestations of Parkinson’s disease (PD) appear early and have a significant impact on the quality of life of

patients, but few studies have evaluated their predictive potential with machine learning algorithms. We evaluated 9

algorithms for discriminating PD patients from controls using a wide collection of non-motor clinical PD features from two

databases: Biocruces (96 subjects) and PPMI (687 subjects). In addition, we evaluated whether the combination of both

databases could improve the individual results. For each database 2 versions with different granularity were created and a

feature selection process was performed. We observed that most of the algorithms were able to detect PD patients with high

accuracy ([80%). Support Vector Machine and Multi-Layer Perceptron obtained the best performance, with an accuracy of

86.3% and 84.7%, respectively. Likewise, feature selection led to a significant reduction in the number of variables and to

better performance. Besides, the enrichment of Biocruces database with data from PPMI moderately benefited the per-

formance of the classification algorithms, especially the recall and to a lesser extent the accuracy, while the precision

worsened slightly. The use of interpretable rules obtained by the RIPPER algorithm showed that simply using two variables

(autonomic manifestations and olfactory dysfunction), it was possible to achieve an accuracy of 84.4%. Our study

demonstrates that the analysis of non-motor parameters of PD through machine learning techniques can detect PD patients

with high accuracy and recall, and allows us to select the most discriminative non-motor variables to create potential tools

for PD screening.
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1 Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative condition after Alzheimer’s disease and

affects up to 1% of the population above 60 years [1].

Cardinal motor symptoms such as bradykinesia, rigidity,

and resting tremor are essential for PD diagnosis. These

motor features emerge when approximately 50% of

dopaminergic cells in the substantia nigra have degenerated

[2, 3] and 70% of striatum dopaminergic synapses are lost

[4]. Therefore, the clinical onset of PD is insidious, and by

the time of diagnosis the development of brain pathology is

in advanced stages.

Early and accurate detection of PD is crucial for suc-

cessful outcomes of disease-modifying therapies to slow-

down—or even halt—disease progression. Towards this

end, clinical features predating motor symptoms might be

useful. It is increasingly recognized that non-motor mani-

festations, including olfactory dysfunction, autonomic

symptoms, sleep disorders, visual impairment, cognitive

decline or depressive symptoms, not only accompany but

usually precede the onset of motor features [5, 6]. This

premotor or prodromal phase in PD lasts between 5 to 20

years, and there is an increasing interest in using this array
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of premotor manifestations to identify PD patients at very

early stages.

In the last few decades, machine learning techniques are

being increasingly applied for the early diagnosis of PD.

This has led to a substantial improvement in prediction

accuracy of PD by means of multiple data modalities,

including handwritten patterns [7, 8], voice and speech

signals [9, 10], different neuroimaging techniques [11–19]

or biofluids [20, 21]. However, there is a scarcity of studies

using machine learning approaches for PD diagnosis based

on a constellation of non-motor symptoms.

According to the recent review of works applying

machine learning for diagnosis of PD [22], out of 209

publications, 168 focused in discriminating PD patients

from controls, but only two reported results obtained using

just non-motor symptoms. Prashanth et al. [23] used Sup-

port Vector Machine (SVM) algorithm with different ker-

nels. Then, Mabrouk et al. [24] analyzed five machine

learning models and compared non-motor features results

with results obtained combining DatSCAN single-photon

emission computed tomography (SPECT) with motor

features.

The rest of the previous works that included non-motor

symptoms in their classification algorithms, combined

these manifestations with other clinical, imaging and/or

biofluid biomarkers [25–30]. For example, Prashant et al.

[28] obtained high classification accuracy of PD patients

and controls with Support Vector Machine (SVM) algo-

rithm using non-motor symptoms, cerebrospinal fluid

(CSF) markers and dopamine transporter imaging using

SPECT. The combination of non-motor symptoms with

other diagnosis modalities might mask the potential clas-

sification performance of non-motor symptoms by them-

selves. A combination of non-motor symptoms with other

clinical imaging and/or biofluid biomarkers was also used

in some other works pursuing different objectives as PD

subtyping [31] or prediction of symptoms of depression

[32]. Armañanzas et al. [33] applied classification algo-

rithms exclusively to non-motor symptoms, but their goal

was to assess the severity of the disease in PD patients.

Therefore, very few studys have applied classification

algorithms exclusively to non-motor symptoms with the

goal of discriminating PD patients from controls. Relying

on this alternative strategy to detect PD in preclinical

stages poses one important advantage over classification

algorithms combining multiple data modalities: non-motor

symptoms can be used for population PD screening as

clinical scales measuring these manifestations are readily

available and can be easily implemented as ancillary tests

in primary care in contrast to dopaminergic neuroimaging

and cerebrospinal fluid measurements, that are usually

restricted to specialized hospital care. High diagnostic

accuracy of non-motor symptoms for PD diagnosis may

encourage the establishment of machine learning algo-

rithms in clinical settings to assist general practitioners in

decision making. In addition, building interpretable and/or

explainable models will contribute to boost their impact on

the healthcare system [34].

In this work, we selected a combination of clinical

scales that measure non-motor features, including depres-

sive symptoms, olfactory function, autonomic symptoms,

visuospatial abilities and cognitive outcomes. We evalu-

ated the performance of 9 distinct algorithms for the

PD/control (binary) classification using our own cross-

sectional database, including 59 PD patients and 37 con-

trols (Biocruces database). Due to the small size of the

latter database, we gathered the baseline measurements of

Parkinson’s Progression Markers Initiative (PPMI) data-

base and we selected the same or equivalent parameters to

those from Biocruces database, which allowed us to addi-

tionally include 490 PD patients and 197 controls to our

data. Accordingly, we analysed whether the inclusion of

these data from a different source could be beneficial to our

goals. Two levels of databases were created from each

database with increasing granularity: a first level database

with total scores of each questionnaire and test (feature per

test, FPT) and a second level database that included the

individual items of each questionnaire and test (feature per

item, FPI). Each level included demographic variables and

class (PD or control), as well.

The current work had 2 main objectives. On the one

hand, our goal was to assess the ability of well-known

machine learning algorithms to distinguish PD patients

from control subjects in our database using just demo-

graphic data and non-motor manifestations. This goal was

complemented with more specific questions: (a) which was

the best learning algorithm for this task, (b) which were the

most relevant non-motor parameters (features), and

(c) could these features produce simple and effective rules?

On the other hand, we wanted to evaluate whether data

from several clinical studies could be compatible enough

so their combination could improve the results achievable

separately.

The paper proceeds describing, in Sect. 2, the type of

data and tests used in this work, the characteristics of the

generated databases, the machine learning methods and the

evaluation used for the experiments. In Sect. 3, we explain

the results of the performed experiments. In Sect. 4, a

comparison with other studies is made and the limitations

of the work are explained, while we conclude with some

final remarks in Sect. 5.
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2 Methodology

2.1 Biocruces database

This database contained information from 59 patients with

PD and 37 controls. Participants were recruited and eval-

uated between the years 2015 and 2018 through the

Department of Neurology at Cruces University Hospital

and the Biscay PD Association (ASPARBI). All patients

fulfilled Parkinson’s UK Brain Bank criteria for the diag-

nosis of PD. All patients were studied in an on-medication

condition to complete all study assessments. The study

protocol was approved by the regional Basque Clinical

Research Ethics Committee. All participants gave written

informed consent prior to their participation in the study, in

accordance with the tenets of the Declaration of Helsinki.

The Biocruces database consisted of demographic data

and a collection of non-motor clinical outcomes from

several questionnaires and psychophysical tests. Assess-

ments were completed on a single occasion (cross-sectional

data) by the two neurologists and the two neuropsycholo-

gists of the group who were experts in PD. Demographic

and general clinical attributes included: gender (GEN-

DER), years of education (EDUCYRS), dominant hand

(HANDED), age (AGE) and the class itself (PD or control).

The demographic and clinical characteristics of the healthy

controls and PD patients included in the Biocruces data-

base are shown in Table 1.

On the other hand, non-motor data included information

from neuropsychological tests (Symbol Digit Modalities

Test, Benton Judgment of Line Orientation Test, Montreal

Cognitive Assessment and Hopkins Verbal Learning Test),

from an olfaction test (Brief Smell Identification Test),

from a questionnaire on neuropsychiatric symptoms

(Geriatric Depression Scale) and autonomic manifestations

(SCOPA-AUT). Below we will explain in more detail the

content of the aforementioned tests and questionnaires:

• Geriatric Depression Scale (GDS) [35] is a self-reported

15-item questionnaire for assessing the degree of

depression in older adults. Scores of 0-4 are considered

normal, depending on age, education, and complaints;

5-8 indicate mild depression; 9-11 indicate moderate

depression; and 12-15 indicate severe depression.

• SCOPA-AUT [36] is a questionnaire that consists of 25

items for assessing the autonomic nervous system. The

dysfunction of the following components of the auto-

nomic system are concretely evaluated: gastrointestinal

(7 items), urinary (6 items), cardiovascular (3 items),

thermoregulatory (4 items), pupillomotor (1 item), and

sexual (2 items for men and 2 items for women).

• Brief Smell Identification Test (BSIT) [37] is used to

clinically quantify olfactory deficits, and it includes

12-items. Each item is a single odor that individuals

need to identify among 4 options that are provided to

test their olfactory function. BSIT is an abbreviated

version of University of Pennsylvania Smell Identifica-

tion Test (UPSIT) [38] test, a comprehensive 40-item

test that is divided in 4 booklets of 10-items.

• Symbol Digit Modalities Test (SDMT) [39] is a simple,

fast, and economic test to detect cognitive impairment.

It is a paper-pencil measure and consists of substituting

digits for abstract symbols using a reference key. The

completion of this test requires attention, perceptual

speed, motor speed, and visual scanning.

Table 1 Demographic and clinical features of participants in Bio-

cruces and PPMI databases

Biocruces database Control PD p-value

n 37 59

Age (years) 53.9 (13.1) 58.4 (9.7) 0.07

Sex (% females) 45.9% 35.6% 0.43

Education (years) 13.8 (5.1) 10.8 (4.2) 0.003

MoCA 27.5 (3.4) 24.9 (4.1) 0.001

GDS 1.2 (1.6) 3.4 (3.2) \0.001

Duration (years) NA 6.6 (4.6) –

UPDRS I NA 2.3 (1.9) –

UPDRS II NA 12.0 (7.2) –

UPDRS III NA 26.2 (12.2) –

UPDRS IV NA 4.4 (3.8) –

HY (median, IQR) NA 2.0 (2.0–2.5) –

LEDD (mg) NA 653.9 (427.2) –

PPMI database

n 197 490

Age (years) 61.3 (11.2) 62.0 (9.8) 0.42

Sex (% females) 34.3% 35.5% 0.73

Education (years) 16.0 (2.9) 15.5 (3.1) 0.04

MoCA 28.2 (1.1) 27.1 (2.3) \ 0.001

GDS 1.3 (2.1) 2.5 (2.6) \ 0.001

Disease duration (years) NA 0.53 (0.58) –

UPDRS I NA 0.9 (4.5) –

UPDRS II NA 5.9 (4.3) –

UPDRS III NA 18.3 (8.7) –

UPDRS IV NA NA –

HY (median, IQR) NA 2.0 (1.0–2.0) –

LEDD (mg) NA NA –

Sex is expressed as the proportion of females in each group, whereas

quantitative data is expressed as mean (standard deviation). Ordinal

data is expressed as median (interquartile range). p-value is calculated

using the t-test (chi-square in the case of Sex). Abbreviations: PD =

Parkinson’s disease, MoCA = Montreal Cognitive Assessment, GDS =

Geriatric Depressions Scale, UPDRS = Unified Parkinson’s Disease

Rating Scale, HY = Hoehn and Yahr score, LEDD = Levodopa

Equivalent Daily Dose
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• Benton Judgment of Line Orientation Test (BJLOT)

[40] is a standardized measure of visuospatial abilities.

The test measures a person’s ability to match the angle

and orientation of lines in space. The complete test has

30 items, but short forms have also been created.

Biocruces database includes data from the complete

version.

• Montreal Cognitive Assessment (MoCA) [41] is a

neuropsychological test administered by professionals

to test the general cognitive abilities of the subject. The

score ranges from 0 to 30 points, and scores below 26

are compatible with mild cognitive impairment. It

assesses several cognitive domains: short-term memory,

spatio temporal reasoning skills, executive functions,

attention, concentration and working memory, lan-

guage, abstraction, reasoning and orientation to time

and place.

• Hopkins Verbal Learning Test (HVLT) [42] is a test of

verbal learning and memory. The test consists of three

trials of free-recall of a semantically categorized

12-item list, followed by yes/no recognition. Approx-

imately 20–25 min later, a delayed recall trial and a

recognition trial are completed. The delayed recall

requires free recall of any words remembered. The

recognition trial is composed of 24 words, including the

12 target words and 12 false-positives, 6 semantically

related, and 6 semantically unrelated words. The

revised version (HVLT-R) is more recent and offers

six alternate forms. The latter was used in Biocruces

database.

We generated 2 versions of the Biocruces database: a first

one where each feature represented a single question or test

item (feature per item, FPI) and a second one where a

single feature was created for each complete questionnaire

or test by summing up the answers of its items (feature per

test, FPT). The FPI database consisted of 120 variables

while the FPT had 14 variables. The first and third columns

in Table 2 show the variables in each database and the

corresponding equivalencies. Demographic attributes are

equal in both databases.

2.2 PPMI database and the combination
of Biocruces and PPMI databases

Due to the small sample size of the Biocruces database, we

explored the potential benefit of adding data from other

studies. For this purpose, we used data from the Parkin-

son’s Progression Markers Initiative (PPMI),1 getting what

we called the Bio?PPMI database.

PPMI [43] is a landmark, multicenter, longitudinal study

that aims to identify biomarkers for the progression of PD

to improve therapeutic and etiological research. The study

is a public-private partnership funded by The Michael J.

Fox Foundation for Parkinson’s Research (MJFF).2 The

recruited PD patients form PPMI had a disease duration of

3 years or less and were drug-naı̈ve (early PD patients) at

study inclusion.

PPMI has collected longitudinal data from more than

1400 individuals at 33 clinical sites in 11 countries. It

began in 2010 but is now recruiting a larger and more

diverse group of individuals, including de novo PD, control

volunteers and at-risk populations.

The PPMI database has many more parameters than

those mentioned above for Biocruces database, thus for the

present work we exclusively selected those variables from

PPMI database that were also present in Biocruces data-

base. The exported subject data from PPMI database

included two cohorts: 490 idiopathic PD patients and 197

controls.

In order to conduct the integration of the Biocruces and

PPMI databases, we carried out a unification process

transforming several features. First, regarding demographic

data, in the PPMI database GENDER takes 3 values

(women without reproductive capacity, women with

reproductive capacity and men) and just two in the Bio-

cruces database (women and men). Only two possible

values were used, merging both women categories from the

PPMI database.

In addition, the PPMI study uses the UPSIT instead of

BSIT. In order to make the transformation from the UPSIT

to the BSIT, we took into account the work of Lawton et al.

[44]. This transformation could only be performed for the

FPT variables, preventing the compatibility of both data-

bases in the FPI version.

Finally, the version of the BJLOT test was also different

in the two databases. PPMI had the abbreviated version of

15 items and the Biocruces database had the complete set

of 30 items. This is why the FPT variable of the BJLOT

test (BJLOT_total) was divided by two in the Biocruces

database.

The demographic and clinical characteristics of the

healthy controls and PD patients from the PPMI study are

shown in Table 1 together with those from the Biocruces

database. When comparing the characteristics of the sub-

jects from both databases, the mean age of the controls in

the PPMI database was higher and the proportion of

women in PPMI was lower. Differences in age and sex

between PD patients from Biocruces and PPMI were more

discrete. PD patients from the Biocruces database had

slightly worse overall cognitive performance than those

1 www.ppmi-info.org/data. 2 www.michaeljfox.org.
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from PPMI and more depressive symptoms (GDS), which

might be explained by differences in disease duration.

Similarly, the motor disability in PD patients from Bio-

cruces was larger.

2.3 Pre-processing of Biocruces and PPMI
databases

After unifying both databases, data was pre-processed by

removing missing values, outliers and applying rescaling

techniques when necessary.

Regarding the SCOPA-AUT test, only questions 1 to 21

were used, due to the large number of missing values in

items 22 to 26 in Biocruces database. The missing data

from these questions were imputed using the feature mean

of each class. Following the pre-processing of the Bio-

cruces database, 5 subjects were removed from the data-

base due to missing data. After such corrections, Biocruces

database consisted of 96 individuals, of which 37 were

control subjects and 59 PD patients.

Regarding the PPMI database, samples with more than

20% missing values were eliminated, removing a total of

123 subjects. The rest of the missing values were imputed

with the feature mean. A total of 687 samples were used,

197 being control subjects and 490 PD patients.

In both Biocruces and PPMI databases, for the questions

related to urinary problems in the SCOPA-AUT question-

naire, there is an alternative answer to specify that the

subject uses a catheter and, therefore, those questions did

not apply. The remaining answers are scaled from 0

(‘‘never’’) to 3 (‘‘often’’), so we labeled the alternative

answer as 4, since it implies urinary problems.

Finally, we observed that the possible range of values

varied considerably among different variables. Therefore,

we applied two normalisation techniques when it was

required by the learning algorithm: one-hot encoding was

applied to categorical features, while quantitative ones

were normalised by min-max normalisation. This way, all

variables took a value in the [0,1] range.

2.4 Feature selection

After pre-processing both databases, we applied a feature

selection process to identify the most relevant features.

This technique was applied to the FPI and FPT versions of

both Biocruces and PPMI databases, and also to the data-

base obtained after merging both databases (i.e.,

Bio?PPMI). A feature selection method was used for two

main reasons. On the one hand, one of the aims of this

work was to identify the most significant variables or

Table 2 List of feature per test (FPT) and feature per item (FPI) classes from Biocruces database and the latter after applying Correlated Feature

Selection (FPT?CFS and FPI?CFS, respectively)

FPT FPT?CFS FPI FPI?CFS

GENDER GENDER

EDUCYRS EDUCYRS EDUCYRS

HANDED HANDED

AGE AGE AGE AGE

GDS_total GDS_total GDSSATIS, GDSBORED, GDSGSPIR, GDSHLPLS, GDSWRTLS,

GDSHOPLS, GDSDROPD, GDSEMPTY, GDSAFRAD, GDSHAPPY,

GDSHOME, GDSMEMRY, GDSALIVE, GDSENRGY, GDSBETER

GDSALIVE, GDSDROPD,

GDSHOPLS, GDSMEMRY

SCAU_total SCAU_total SCAU1..21 SCAU2, SCAU20

SDMTOTAL SDMTOTAL SDMTOTAL

BJLOT_total BJLOTPAR1..30 BJLOTPAR30

BSIT_total BSIT_total BSIT1..12 BSIT1, BSIT3, BSIT5, BSIT6,

BSIT7, BSIT8, BSIT9, BSIT11

MoCA_total MCAALTTM, MCACUBE, MCACLCKC, MCACLCKN, MCACLCKH,

MCALION, MCARHINO, MCACAMEL, MCAFDS, MCABDS,

MCAVIGIL, MCASER7, MCASNTNC, MCAVF, MCAABSTR,

MCAREC1..5, MCADATE, MCAMONTH, MCAYR, MCADAY,

MCAPLACE, MCACITY

MCACLCKN, MCAREC2,

MCAREC3

HVLTRT_total HVLTRT1..3

HVLTRDLY HVLTRDLY

HVLTREC HVLTREC

Class Class Class Class

Note it was considered appropriate to leave the HVLTRDLY and HVLTREC as separate variables, considering that these items belonging to the

same neuropsychological test represent a cognitive ability that does not overlap with HVLTRT_total
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biomarkers to differentiate PD patients from controls. On

the other hand, feature selections would help simplifying

models, making the information easier to acquire and

interpret, and also reducing training times and overfitting

probabilities.

Among the feature selection strategies, we decided to

use filter methods because they have the lowest computa-

tional cost and they are not tuned to a specific type of

prediction model [45] and, consequently, can be combined

with different classifiers.

We used the multivariate method called Correlated

Feature Selection (CFS) [46] because it is able to deal with

redundant, duplicated and correlated features. The CFS

method was developed by Hall and Smith and searches for

subsets that are correlated with the class but independent of

each other. The algorithm assumes that features that are

irrelevant have a low correlation with the class, so they do

not have to be included in the subsets. In addition, they

examine excessive features, as these are often correlated

with one of the other attributes.

In order to evaluate the subset S of k features, the fol-

lowing formula was used:

Merits ¼
k � rcf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k þ kðk � 1Þrff
p ð1Þ

where rcf is the average correlation value between the class

and the features, and rff is the average correlation value

between all pairs of features.

We tried other filter method such as Fast Correlation

Based Filter [47], but the latter obtained less stable subsets,

as they depended on the search algorithm.

2.5 Classification algorithms

In this work, the results obtained with 9 supervised

machine learning algorithms are compared. To perform a

fair comparison, we used their default parameters (see

MLP, Bagging and AdaBoost below for the exceptions).

All algorithms, except DT and RIPPER, were implemented

using the sklearn library in Python. The remaining two

were implemented using the Weka software. The main

parameters used in the algorithms are described below.

• Adaptive Boosting (AdaBoost) [48]. We combined 100

DT with the CART algorithm. The weight applied to

each classifier at each boosting iteration was 1.

• Bootstrap aggregating (Bagging) [49]. In order to be

comparable with RF, 100 DTs with the CART

algorithm were constructed in this work.

• Decision Tree (DT) [50]. In this project, the C4.5

algorithm [51] was used. The split criterion was the

information gain, the minimum number of instances per

leaf was 2 and the confidence threshold for pruning was

set to 0.25.

• K-Nearest Neighbors (KNN) [52]. The number of

neighbors, K, was set to 5 and the Euclidean distance

was used.

• Multi-Layer Perceptron (MLP) [53]. The architecture

had 100 neurons in the hidden layer and, since the

system was issuing underfitting warnings with the

default value of 200 epochs, we trained it through 500

and 900 epochs in the FPI and FPT databases,

respectively. The nonlinear activation function was

ReLU and the network was trained using the backprop-

agation technique [54]. The solver for weight optimiza-

tion was Adam, with a learning rate of 0.001.

• Naive Bayes (NB) [55]. The Gaussian Naive Bayes

algorithm was used [56], which assumes that the

probability of the features is Gaussian.

• Random Forest (RF) [57]. A set of 100 binary decision

trees was used, which were an optimized version of the

CART algorithm [58]. The function to measure the

quality of a split was Gini impurity, the minimum

number of samples required to split an internal node

was 2 and the minimum number of samples required to

be at a leaf node was 1.

• Repeated Incremental Pruning to Produce Error

Reduction (RIPPER) [59]. The minimal instance weight

within a split was 2.

• Support Vector Machine (SVM) [60]. Radial Basis

Function (RBF) kernel with the regularization param-

eter set to 1 was used.

2.6 Classification performance evaluation

To make a robust estimation, the models were validated

using 10 runs of a 10-fold cross-validation [61]. The same

seed was used in all classifiers, i.e., all classifiers used the

same 10 sub-samples in each run. Performance was mainly

evaluated based on accuracy, although F-measure, Preci-

sion and Recall were also analyzed.

Statistical significance of the differences in performance

was also assessed. First, Fiedman’s Aligned Ranks test [62]

was used to test the median equivalence hypothesis. Sub-

sequently, after rejecting the null hypothesis, statistical

significances were assessed based on Bayesian statistical

tests. The Bayesian approach is based on the subjective

interpretation of probability, which considers probability as

a degree of belief with respect to uncertainty. We per-

formed the correlated Bayesian test proposed by Corani

and Benavoli [63].
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2.6.1 Bayesian correlated t-test

The test takes into account that cross-validation on a single

database has correlations between training sets, based on

the following generative model of the data:

xnx1 ¼ 1nx1lþ vnx1; ð2Þ

where xnx1 is the vector of accuracy differences, 1nx1 is a

vector of ones, l is the parameter of interest and

v�MVNð0;
P

nxnÞ is a multivariate normal noise with zero

mean and covariance matrix
P

nxn [64].

The posterior distribution can be used to evaluate the

probability of one of the algorithms being better than the

other or the two algorithms being ‘‘practically equivalent’’.

To do this, we defined that two classifiers were practically

equivalent if their mean difference of selected metric was

less than a certain value (1% in our case), creating a region

of practical equivalence (rope) [65] with the interval

[�0:01, 0.01]. Once the rope was defined, the probabilities

could be calculated from the posterior:

• P(left): the integral of the posterior in the interval (�1,

�0:01), namely the posterior probability that the mean

difference in accuracies is practically negative.

• P(rope): the integral of the posterior in the interval

[�0:01, 0.01], namely the posterior probability that the

two classifiers are practically equivalent.

• P(right): the integral of the posterior in the interval

(0.01, 1), namely the posterior probability that the

mean difference of the accuracies is practically positive.

3 Results

Since one of our goals was to assess the benefits of

including additional data to Biocruces database, we

designed the experimental work in a progressive way.

Firstly, we trained the classification algorithms using

exclusively the Biocruces data. Then, as a sanity check of

the PPMI database, we replicated the experiment using just

the PPMI data. And, finally, we tested whether the com-

bination of Biocruces and PPMI data could be used to

improve the results obtained with just the Biocruces data-

base. The following 3 sections describe each of these steps,

while Sect. 3.4 is devoted to further analyse comprehen-

sible models aiming to find a set of simple rules that

effectively distinguish PD patients from control subjects.

3.1 PD classification in Biocruces database

The first step in the experiment was to apply the CFS

feature selection method to the data, resulting in a selection

of just 19 features in the FPI version (80% reduction) and 6

in the FPT version (54% reduction), as can be seen in

Table 2. The high reduction in the FPI version confirms the

expected high correlation among questions in the same

questionnaire. The application of the feature selection

process duplicated the available database versions, so we

applied the 9 supervised machine learning algorithms

described in Sect. 2.5 to four versions of the Biocruces

database (FPT, FPT?CFS, FPI and FPI?CFS).

The accuracies of the 9 classification strategies are

represented in Fig. 1. The figure shows that most of the

algorithms obtained an accuracy greater than 80% to cor-

rectly discriminate PD patients from controls, at least for

one of the database versions, which proves that many

learning strategies achieve quite good detection rates even

for small databases. Remarkably, SVM and MLP obtained

an accuracy of 86.3% and 84.7%, respectively, although

the database version for which the best result was observed

did not coincide. A similar trend was detected with the

F-Score metric, although the performance of the explana-

tory models—DT and RIPPER—was a bit lower.

Regarding the database versions, the results didn’t show

a clear pattern for all the algorithms. Some algorithms

preferred the FPI version while others got better results

with the FPT version. However, most of the algorithms

showed an improvement in their results when CFS was

applied to the data, while just the Bagging algorithm

showed a small accuracy and F-score reduction. The per-

formance improvement provided by the feature selection

process was especially remarkable for FPI, since 80% of

the features from the original database where removed.

3.2 PD classification in PPMI database

As our previous experiment confirmed that good accuracy

levels ([80%) could be achieved with features based on

non-motor symptoms in a small set of subjects, we pro-

ceeded with the replication of the experiment with the

equivalent PPMI database. It is worth mentioning that,

although the actual goal was to assess the benefit of

enriching our data by including samples from other

research works, we first replicated the experiment using

just the PPMI data to ensure that this new source of

information was also well suited for the studied learning

algorithms. The obtained results did confirm it.

In fact, many algorithms achieved slightly better accu-

racy levels compared to the results using Biocruces
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database. This was an expected finding, as the PPMI

database is 7 times larger than the Biocruces one. However,

the maximum accuracy level, obtained by the MLP algo-

rithm for the FPI?CFS database version (85.9%), didn’t

improve the best value achieved for the Biocruces database

(86.3% for SVM with the FPT?CFS database).

The analysis of the differences in performance for the

database versions confirmed the conclusions drawn from

the Biocruces database. The best database version was

algorithm dependent and, for the vast majority, the feature

selection process resulted in better accuracy levels. Con-

sidering these results and due to the extra benefits a feature

selection process provides (e.g., model simplification,

speed-up of the training and testing phases), the subsequent

analyses were performed using CFS versions of the

databases.

3.3 PD classification in combined Biocruces
and PPMI database

In this section, we will show the results obtained after

enriching our database with the data obtained from the

PPMI repository. To that end, we merged both databases,

getting the Bio?PPMI database. To get a homogeneous

mix, the proportion of subjects from each database was

kept constant in the folds of the cross-validation evaluation

process.

As explained in Sect. 2, we couldn’t build a FPI version

of the merged database due to incompatibilities in data

storage format between UPSIT and BSIT in the original

databases. This fact, added to our decision of focusing on

the feature-reduced versions, let us just the FPT?CFS

database version for this experiment. The variables in this

database were the following: EDUCYRS, HANDED,

AGE, GDS_total, SCAU_total, BJLOT_total, BSIT_total

and MoCA_total (see Fig. 2).

The accuracy and F-score levels of the 9 algorithms are

shown in Table 3. The most remarkable finding is that

SVM improved the previous results, obtaining 87.5%

accuracy. Similarly, MLP improved its accuracy up to

86.9%. Both of them also improved their F-score. In

addition, we measured the stability of these estimations and

small standard deviation values between 0.4% and 0.7%

were computed, proving the reliability of the estimations.

In order to further confirm the validity of the results, we

performed a statistical test using the Bayesian tests

described in Sect. 2.6.1, after having rejected the equiva-

lence of the medians with the Friedman test (p-

value=2 � 10�43). For the comparison, 18 cases were

defined combining the 9 algorithms with 2 database ver-

sions: the FPT?CFS versions of the Biocurces database

and the merged database (Bio?PPMI).

The results of the test are summarized in Fig. 3. The

green cells show the probability that the algorithm in its

row outperforms—by at least 1% of accuracy—the algo-

rithm in its column. The red cells show the opposite. None

of the comparisons showed that the most probable result

was a tie (i.e., less than 1% difference).

The statistical tests mostly confirmed the results given

by the mean accuracy values shown in the previous fig-

ures and tables. The 3 pairs made up by SVM/Bio?PPMI,

MLP/Bio?PPMI and SVM/Biocruces outperformed any

other combination with high probability. In particular,

SVM/Bio?PPMI did it with 80% or higher probability. It

is also remarkable the performance of the SVM algorithm

when trained with the small database of Biocruces

database.

Considering that these 3 options (SVM/Bio?PPMI,

MLP/Bio?PPMI and SVM/Biocruces) are the best ones

regarding the accuracy, we analyzed their behavior in more

specific situations. On the one hand, we estimated the

precision and recall metrics, since a high recall can be

Fig. 1 Results (accuracy) of

supervised machine learning

algorithms applied to Biocruces

database on correctly

discriminating PD patients from

healthy controls. Abbreviations:

AdaBoost = Adaptive Boosting,

Bagging = Bootstrap

aggregating, DT = Decision

Tree, KNN = K-Nearest

Neighbor, MLP = Multi-Layer

Perceptron, NB = Naive Bayes,

RF = Random Forest, RIPPER =

Repeated Incremental Pruning

to Produce Error Reduction,

SVM = Support Vector

Machine
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preferable in widely applicable screening studies. On the

other hand, we estimated the accuracy of the algorithms

splitting the test data by the gender variable, since it is

well-known that PD’s characteristics often depend on

gender and consequently, medical applications designed

without taking this aspect into account might generate sub-

optimal results as well as discriminatory outcomes [66].

The results, shown in Table 4, suggest that the data

enrichment particularly improved the recall values. In this

sense, the differences between SVM and MLP were neg-

ligible whereas SVM trained with the Biocruces database

Fig. 2 Correlated Feature

Selection (CFS) of variables

from Biocruces database and

Bio?PPMI database and PD vs.

controls classification

performance using 9 supervised

machine learning algorithms. *

The combination of algorithm

and database significantly

outperforming other possible

combinations (Bayesian tests).

Abbreviations: AdaBoost =

Adaptive Boosting, Bagging =

Bootstrap aggregating, DT =

Decision Tree, KNN =

K-Nearest Neighbor, MLP =

Multi-Layer Perceptron, NB =

Naive Bayes, RF = Random

Forest, RIPPER = Repeated

Incremental Pruning to Produce

Error Reduction, SVM =

Support Vector Machine

Table 3 Classification performance for 9 supervised machine learning algorithms applied to the combined Biocruces and PPMI database

(Bio?PPMI database)

Ada. Bag. DT KNN MLP NB RF RIP. SVM

Accuracy 0.753 0.833 0.826 0.808 0.869 0.808 0.839 0.844 0.875

F-Score 0.803 0.866 0.759 0.851 0.896 0.847 0.873 0.795 0.900

Abbreviations: Ada. = Adaptive Boosting (AdaBoost), Bag. = Bootstrap aggregating (Bagging), DT = Decision Tree, KNN = K-Nearest

Neighbor, MLP = Multi-Layer Perceptron, NB = Naive Bayes, RF = Random Forest, RIP. = Repeated Incremental Pruning to Produce Error

Reduction (RIPPER), SVM = Support Vector Machine
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showed higher precision at the expense of recall reduction.

Regarding the gender-specific accuracy, we found signifi-

cant differences in some of the databases. SVM trained

with the Biocruces database was biased towards men

subjects while SVM and MLP trained with the merged

database showed the opposite bias. These findings suggest

that future studies will benefit from generating gender-

specific models.

3.4 Comprehensible models for PD detection

In the biomedical context, the interpretability and appli-

cability of classification models in the clinical practice is of

utmost importance [34]. In our work, we observed that the

rule-based RIPPER algorithm obtained competitive results,

since its accuracy was 84.4%, and this result encouraged us

to further analyze the rules proposed by the algorithm.

First of all, accepting the high explaining capacity of

simple rules, we studied how RIPPER’s accuracy evolved

while we forced it to produce simpler rules. To that end, we

adjusted the parameter, named N, that controls the

minimum number of instances covered by each rule. The

default value of N = 2 was replaced by 10, 30 and 50.

The experiments showed that the accuracy was not

reduced while the N parameter value was increased. In

fact, when just the Biocruces database was used, the

accuracy even increased from 81 to 83% when N was

changed from 2 to 10. This could be expected since simpler

models usually perform better in small databases. How-

ever, high N values produced trivial rules due to the small

size of the Biocruces database.

The rules generated by RIPPER for the Biocruces

database (N=10) and the Bio?PPMI database (N=50) were

very similar; they just differed in the threshold proposed

for the BSIT test. The first two rows in Table 5 show these

rules and their performance metrics. It is remarkable how

few simple rules could provide such a good classification

performance.

Encouraged by these results, we also applied the RIP-

PER algorithm with N=10 for the Biocruces FPI?CFS

database version (remember that no merged database exists

for the FPI version). The accuracy wasn’t reduced com-

pared to the N=2 rules, although it was slightly lower than

Fig. 3 Bayes correlated t-test results between the supervised machine

learning algorithms for the two databases (Biocruces and

Bio?PPMI). The green colour indicates that the models in the row

are statistically better than those in the columns, while the red colour

indicates the inverse situation. Abbreviations: Ada. = Adaptive

Boosting (AdaBoost), Bag. = Bootstrap aggregating (Bagging),

DT = Decision Tree, KNN = K-Nearest Neighbor, MLP = Multi-

Layer Perceptron, NB = Naive Bayes, RF = Random Forest, RIP. =

Repeated Incremental Pruning to Produce Error Reduction (RIP-

PER), SVM = Support Vector Machine

Table 4 Classification

performance estimations for the

best behaving machine learning

algorithms computed overall

with all subjects, exclusively in

women and in men

Algorithm Database Accuracy Precision (%) Recall (%)

Overall (%) Women (%) Men (%)

SVM Biocruces 86.3 81.6 89.3 91.8 85.3

SVM Bio?PPMI 87.5 93.3 84.8 88.4 91.7

MLP Bio?PPMI 86.9 90.3 85.3 87.5 91.7

Abbreviations: SVM = Support Vector Machine, MLP = Multi-Layer Perceptron
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the results for FPT (80.9%). Nevertheless, the resulting rule

shown in the last row of Table 5 was comprised of just two

items, where SCAU2 corresponds to the question ‘‘In the

past month, has saliva dribbled out of your mouth?’’ and

BSIT6 to the rose smell identification, suggesting that an

extremely simple rule can be enough for a preliminary

patient screening.

4 Discussion

Currently, few works exist that leverage the power of

machine learning algorithms to detect PD based on non-

motor symptoms and they are supported by more complex

data such as clinical images and biofluid biomarkers. Other

previous studies have used individual non-motor features

of PD to classify PD patients with different objectives. For

example, it has been observed that hyposmia has a positive

predictive value of 40% in non-PD individuals [67–70] and

predicts the early conversion to PD of patients in prodro-

mal phases [68, 71]. A prospective study also observed

10% risk of conversion of disease-free PD-relatives with

hyposmia to symptomatic PD at 2 years [72]. Gastroin-

testinal disturbances are the most frequent autonomic

manifestations of PD patients. Particularly constipation is

the most common gastrointestinal symptoms in prodromal

PD [73]. However, none of these symptoms present suffi-

cient sensitivity by itself that can be used for screening. As

far as we know, only two previous publications have used

exclusively non-motor clinical scales and questionnaires to

classify PD patients based on machine learning approaches.

On one hand, Mabrouk et al. [24] obtained the best accu-

racy of 82.2% with KNN algorithm. On the other hand,

Prashanth et al. [23] got an accuracy of 85.48% using SVM

with RBF kernel. Both works included UPSIT, one of the

tests coming out to be more discriminant in our work, but

combined with different tests. With regard to performance,

our best results for PPMI – the database used in both works

– is similar, while Biocruces results improved them. The

other work we identified using only non-motor features,

Armañanzas et al. [33] was aimed to identify non-motor

features associated with the severity of motor

manifestations, which differs from the objective of our

work, in which we seek to identify non-motor character-

istics with more accuracy for the early diagnosis of PD

versus controls.

In our work, the results obtained with the rule-based

RIPPER algorithm showed that even very simple rules

based on two single items could achieve good PD detection

rates—80.9% in Biocruces database—when trying to dis-

criminate controls from PD. All these results suggest that a

hierarchical screening strategy could be designed. This

hierarchical screening could begin with just a few ques-

tions and tests—such as the identification of a single smell,

as suggested by RIPPER—, so it could be universally

adopted with little effort. This initial step should filter the

subjects less prone to be affected by the PD and redirect the

rest to more specific questionnaire and tests; for instance,

to the complete SCOPA-AUT and BSIT tests, which

formed a rule that correctly classified 84.4% of the subjects

in our database. In the final steps, more complex classifiers,

such as the SVM model, that achieved an accuracy of

87.5% in our data, could be used.

Hopefully, the steps in the hierarchical screening should

begin with simple rules obtaining very high recall values,

followed by progressively more complex models with

increasingly higher precision. We claim that such a hier-

archical approach will drastically improve early detection

of PD cases. Obviously, the design of such a strategy

requires further research in order to find the best models for

each step of the process. To that end, we consider of capital

importance to enlarge the available databases, so the

learning algorithms can get even more accurate models.

Therefore, we welcome all the works aimed at obtaining

more data from both, PD patients and control subjects.

One of the main limitations of this study was that it was

focused on the classification of controls (that is, without

motor disorders suggestive of PD) compared to PD patients

with established motor manifestations. Two of the main

clinical challenges in PD are the early diagnosis of the

disease, even in pre-motor phases, and the differential

diagnosis of PD with other conditions that present with

tremor, such as neurodegenerative parkinsonism (e.g.,

multistemic atrophy, progressive supranuclear palsy or

Table 5 Rules output by RIPPER and its estimated performance for differentiating PD patients from healthy controls using non-motor clinical

parameters

Training data Rule for predicting PD Acc. (%) Prec. (%) Recall (%)

Biocruces/FPT?CFS SCAU_total[ 7 or BSIT_total\ 9 83.2 74.4 86.2

Bio?PPMI/FPT?CFS SCAU_total[ 7 or BSIT_total\ 10 84.4 78.1 80.8

Biocruces/FPI?CFS SCAU2 = Yes or BSIT6 = No 80.9 78.7 70.3

Abbreviations: SCAU_total = SCOPA-AUT complete questionnaire, BSIT_total = Brief Smell Identification Test (BSIT) complete test, SCAU2

= SCOPA-AUT questionnaire item 2, BSIT6 = Brief Smell Identification Test (BSIT) item 6, Acc. = Accuracy, Prec. = Precision
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Lewy body dementia), vascular parkinsonism, parkinson-

ism induced by drugs or essential tremor. Although 94% of

the patients included in this study were patients with early

PD (\5 years duration), their disease was already estab-

lished clinically, and their differentiation from controls by

early biomarkers does not make practical sense. Thus, the

results of this work should be considered exclusively as a

methodological proposal based on the analysis of non-

motor parameters with machine learning to address the

mentioned diagnostic challenges in PD. Future studies that

analyze non-motor manifestations in a comprehensive way

using machine learning to create early diagnostic classifi-

cation tools should include populations in the pre-motor

phase at high risk of developing PD, such as some carriers

of genetic mutations or patients with idiopathic REM sleep

disorder. Another limitation of the present project is that

we have not included some non-motor features relevant to

PD, such as the presence of sleep disorders, visual mani-

festations, neuropsychiatric disorders such as psychotic

symptoms or impulse control disorder. Given the potential

relevance of these characteristics as early phenomena in

PD, future work should also integrate them to make a more

comprehensive and exhaustive analysis of the spectrum of

non-motor symptoms in PD.

5 Conclusions

It is well established that non-motor manifestations of PD

are early and can be quantified daily clinical practice with

minimal. Here, we evaluated the performance of 9 distinct

machine learning algorithms for discriminating idiopathic

PD patients from controls using a wide collection of non-

motor clinical PD features. For that, we used information

from two databases: Biocruces database (with 59 PD

patients and 37 controls) and PPMI database (490 PD and

197 controls). In addition, we evaluated whether the

combination of data from such databases could improve the

results of machine learning classification compared to

those achievable by each database separately.

As main results, we conclude that classifiers induced

from non-motor based features are able to discriminate

between PD patients and control. We observed that Support

Vector Machine (SVM) and Multi-Layer Perceptron

(MLP) were the two machine learning algorithms that had

the best performance to differentiate PD from controls,

with a best accuracy of 87.5% and 86.9%, respectively.

Likewise, we observed that the use of correlation feature

selection improved the discriminating capacity of the

machine learning algorithms.

In order to favor the interpretability and applicability of

our tested classification models in the clinical practice,

Repeated Incremental Pruning to Produce Error Reduction

(RIPPER) machine learning algorithm provided a simple

rule based on two non-motor symptoms – SCAU_total

(total autonomic manifestations) and BSIT_total (total

olfactory dysfunction)–with good accuracy (84.4%), pre-

cision (78.1%) and recall (80.8%).

It is important to note that in this kind of studies the PD

patients are overrepresented and, hence, the distribution of

the training data doesn’t match the test data distribution if

applied to a wide segment of the population. As a conse-

quence, specific adaptations will probably be needed in

order to properly estimate the model’s performance when

applied in such contexts. Moreover, it is important to notice

that gender differences exist in non-motor symptoms.

Therefore, any clinical implementation effort of classifi-

cation algorithms for differentiating PD patients from

controls, should be predated by gender-specific generation

of simple rules.

As a positive final remark, we would like to highlight

that the parameters of the learning algorithms weren’t

tuned to get the best possible results with our data. This

means that there is still room for improvement and that

automatic parameter optimization systems could be used to

improve the results presented in this article.
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