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Abstract: The purpose of this study was to study the validity and reproducibility of an algorithm
capable of combining information from Inertial and Magnetic Measurement Units (IMMUs) to detect
changes of direction (COD). Five participants wore three devices at the same time to perform five
CODs in three different conditions: angle (45°, 90°, 135° and 180°), direction (left and right), and
running speed (13 and 18 km/h). For the testing, the combination of different % of smoothing applied
to the signal (20%, 30% and 40%) and minimum intensity peak (Pml) for each event (0.8 G, 0.9 G,
and 1.0 G) was applied. The values recorded with the sensors were contrasted with observation
and coding from video. At 13 km/h, the combination of 30% smoothing and 0.9 G PmI was the
one that showed the most accurate values (IMMU1: Cohen’s d (d) = —0.29;%Diff = —4%; IMMU2:
d = 0.04 %Diff = 0%, IMMU3: d = —0.27, %Diff = 13%). At 18 km/h, the 40% and 0.9 G combination
was the most accurate (IMMU1: d = —0.28; %Diff = —4%; IMMU2 = d = —0.16; %Diff = —1%;
IMMUS3 = d = —0.26; %Diff = —2%). The results suggest the need to apply specific filters to the
algorithm based on speed, in order to accurately detect COD.

Keywords: validation; reliability; inertial sensors; time-motion

1. Introduction

Agility is one of the essential components in most team sports. It is defined as the
ability to move quickly by changing speed or direction in response to a stimulus [1]. Ina
sport like soccer, each player can make around 700 turns per game [2], something common
before scoring a goal [3]. From a biomechanical point of view, change of direction (COD)
requires a deceleration phase consisting of several braking steps, followed by a propulsive
phase or push towards the desired direction [4-7]. For this reason, the eccentric-concentric
muscular activity in this type of movement plays a fundamental role, and it is important
to know the stress or muscular damage that it can cause to a player [7-9]. Efficiency in
COD mechanics could be related to the player’s agility as well as being an indicator of
favorable performance in elite players [10]. An efficient COD mechanic could reduce the
probability of long-term injuries [5,7]. Therefore, analyzing the quality of this type of
movement, as well as quantifying it over time, could be very beneficial in improving a
player’s performance.

To date, there is little information on COD during soccer. The technique used for
this type of analysis is video observation and manual recordings [2,3]. However, this
methodology makes it extremely difficult to approach the study of COD in a precise,
immediate and sustainable way. GPS (Global Positioning System) devices have been
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the most widely used monitoring resource in recent years [11]. However, low sampling
frequency (5-20 Hz) seems to be a limitation for detecting fast movements when the
duration is short [12].

Thanks to the integration of micro-electromechanical sensors (MEMS) devices, such
as accelerometers and gyroscopes, it has been possible to delve into movement patterns,
with the purpose of studying specific movements in sports [13-19]. Due to this, it is of
vital importance to select sensors that will be used appropriately, according to the motor
task selected for the analysis [20]. When 3D orientation is required, magnetic sensors
(magnetometer) are integrated together with accelerometers and gyroscopes forming an
Inertial and Magnetic Measurement Unit (IMMU) [21-24]. These sensors are fused with
different algorithms, capable of estimating the space-time orientation of a body, with the
Kalman Filter being the most commonly used [21-24]. The different signals obtained from
these sensors are affected by different sources of error, such as changes in the physical
properties of the MEMS [25], oscillations between the device and the body [26], and
ferromagnetic disturbances which can alter the magnitude and direction of the magnetic
field vector [27], among others.

The use of inertial sensors for COD analysis seems to have an acceptable validity for
identifying the angle of rotation, although there is no consensus on the sampling frequency,
number and location of the devices [15]. In the studies reviewed, different sampling
frequencies were used, being higher (>140 Hz-1500 Hz) when various segments involved
in COD such as the leg, pelvis and trunk were included in the analysis, and lower (around
100 Hz) when the objective was to analyze the movement of the whole body [15]. However,
it seems necessary to continue investigating which sampling frequency adjusts best when
the movement to be analyzed is a COD.

For all of the above reasons, the objective of this study is to describe the validity and
reproducibility of the algorithm configured through the use of several inertial sensors from
the combination of different percentages of signal smoothing and the minimum acceleration
peak used for the detection of the COD. For this, a designed track was used, performed at
two race speeds (13 and 18 km/h) and making turns at different degrees (45°, 90°, 135°
and 180°).

2. Materials and Methods
2.1. Participants

Five non-professional athletes participated in this study on a voluntary basis (age:
30.8 £ 2.1 years, height: 1.83 £ 0.03 m, body weight: 76.3 + 4.7 kg). All participants
were former soccer players, had more than five years’ experience teaching soccer-specific
movement skills and had no health problems or musculoskeletal injuries in the six months
prior to the test, trying to avoid any biomechanical alteration. All the participants were
informed about the procedure, as well as the benefits and possible risks of the study. In
addition, the development of the study was in accordance with the Declaration of Helsinki.

2.2. Instrument

WIMU ProTM system inertial device (RealTrack Systems, Almeria, Spain) was used
for the study. The device has four triaxial accelerometers, a triaxial gyroscope and a
magnetometer that records movement with a configurable sampling frequency (from 10 to
1000 Hz. In order to be able to select the appropriate sampling frequency, a previous pilot
study (not shown in this work) was carried out to compare different recording frequencies
(e.g., 10, 15, 20, 100, 500 and 1000 Hz). To do this, a repeated analysis was performed on the
same sample, changing the sampling frequency on the WIMU ProTM system software. It
was necessary to carry out the test at 1000 Hz (maximum frequency), in order to later be able
to reduce it. The results showed that frequencies below 15 Hz overestimated the number of
CODs, while from 20 Hz, the number of CODs recorded by the different combinations of
the algorithm were very similar, with no differences at 50 Hz. However, it was decided to
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establish a frequency of 100 Hz, to maintain homogeneity in the selected frequency with
previously published works [15].

2.2.1. Algorithm Used and Configuration of Parameters

The algorithm developed by RealTrack Systems (Almeria, Spain), identifies the hori-
zontal accelerations detected by the device through inertial sensors. These accelerations are
related to changes to which the foot is implanted on the ground or changes of inertia (COI)
carried out by the player, always projected on the horizontal plane and classified in the
anterior-posterior and medio-lateral axes. The algorithm allows the configuration of some
parameters to be modified with the double purpose of having a certain sensitivity to detect
COI and, on the other hand, not excessive sensitivity that would cause excessive noise in
the information, being impractical on the sports field. The parameters used for configuring
the algorithm are:

e Minimum intensity peak (PmlI): minimum gravitational acceleration (G) that the
movement must reach in order to be recorded.

e % Smoothing: smoothing percentage of the circular mean filter that is applied to the
signal before processing it with the algorithm.

2.2.2. Detection of Mediolateral and Anteroposterior Acceleration Orientation

The algorithm used in the COI detection is implemented directly into the SPro “Change
of Inertia” module, taking advantage of the modular system of plug-ins (Monitors) available
with the SPro software. Each module accesses the data from the sensors/channels generated
by each Wimu device. The algorithm gets the information from the data channels EulerX
(orientation of the subject in degrees in respect to due north) and Earth X, Y (components
of acceleration on the horizontal plane with respect to the earth), through the use of
magnetometers. In this way, the EarthX and EarthY values are used to calculate the
medio-lateral and antero-posterior acceleration (Figure 1a,b).
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Figure 1. (a) Earth Y acceleration signal and its conversion to medio-lateral acceleration. (b) Earth X
acceleration signal and its conversion to anterior-posterior acceleration. (c—e), represents the signals
unified (module) by the algorithm at 20%, 30%, and 40% Smoothing + Minimum intensity peak (PmI)
0.8 G respectively. The orange bar indicates if the algorithm has detected COD and its duration
(length of the bar).
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2.2.3. % Signal Smoothing and COIs Unification

First, smoothing is applied to the original signal, by means of a circular mean filter
whose window depends on the sampling frequency where the sensors are found. To change
the coordinate system of the horizontal acceleration vector, the EarthX and EarthY data
are re-projected using the EurlerX channel data calculated in the previous step, and the
module formed by the new vectors is calculated. Once the module with which the applied
horizontal inertia vector has been calculated with respect to the subject, it is possible to
detect and count the different COIs. Finally, several COI-type movements are unified into a
single COD-type action. This is due to the fact that a single COD can be made up of several
COlIs, since several steps may be necessary to change the desired direction (Figure 1c—e).

2.2.4. Parameter Settings

The combination of algorithm configuration parameters is shown in Table 1. A total
of 18 possible configurations (2 speed from origin x 3 signal smoothings x 3 minimum
intensity peaks) were analyzed.

Table 1. Modifiers parameters of the algorithm.

Start Velocity (km/h) % Smoothing Minimum Intensity Peak (PmI)
13 km/h 20% 08G
30% 09G
18 km/h
40% 1.0G

2.3. Procedures

Before starting the test, the devices were calibrated and synchronized according to the
company’s manual. Each participant wore three devices placed in the intrascapular space
by means of a bib. The devices were named from inside out: IMMUT1 (the device in contact
with the back), IMMU?2 (device placed between the other two IMMUSs), and IMMUS3 (the
device placed furthest from the body) (Figure 2). The researchers checked that the three
devices were perfectly aligned and overlapped one on top of the other prior to performing
each repetition. In the perception of the researchers, the devices presented robustly fixed
for carrying out the test.

IMMU 1

IMMU 2

IMMU 3

Figure 2. Location of the WIMU devices with the use of the vests.
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The test was carried out on an artificial-turf soccer field, with the participants wearing
specific soccer boots for that surface. The CODs were repeatedly performed at different
angulations and speeds, using a circuit previously used [28] (Figure 3). The participants
were instructed to perform a 15 m linear run down a marked line on the soccer field. The
researcher, aided by a stopwatch, performed a 3 and 5-s countdown (13 and 18 km/h,
respectively) as a reference time in which the breaking point had to be reached in order to
do the corresponding COD (Figure 4). In this way, in an attempt to ensure a constant speed
in all the repetitions in the test. For a better understanding of the test, the participants were
required as a warm-up to do a COD at both speeds in each direction (45°, 90°, 135° and
180°) both to the left and to the right. To carry out the test, each participant performed
5 CODs towards each angle both to the left and to the right at a speed of 13 km /h (Total
participant = 40 CODs; Total group = 200 CODs) and 4 CODs at a speed of 18 km/h
(Total participant = 32 COD; Total sample = 128 COD). To avoid possible fatigue interfer-
ence in the dynamics of the test, the participants rested for approximately 60 s between
each repetition.
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Figure 3. Circuit for testing.
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Figure 4. X-Axis Acceleration Channel (blue) and velocity (red) during the course of a COD at 45° at

13 km/h. Different biomechanical phases of a COD.



Sensors 2023, 23, 3095

60f11

WIMU ProTM system (RealTrack Systems) software was used to analyze and extract
the data from the inertial device of each of the recorded repetitions, where a temporary
selection of each test repetition was made on the total acceleration channel. Each repetition
of the test was subsequently analyzed using the “Change of Inertia” module of SPro. Prior
to the statistical analysis, it was corroborated with a video recording using a drone at a
height of 15 m above the breaking point (drone: DJI Mavic Pro, DJI, Shenzhen, China) and
the Kinovea® software (Kinovea, 0.8.15, http:/ /www.kinovea.org/, accessed on 1 June
2022), each of the repetitions was performed at the selected speed. A total of 15 repetitions
were eliminated after observing inconsistency in the approach speed.

2.4. Statistical Analysis

An analysis of the normality of data was first performed using the Shapiro-Wilk test.
In addition, given the assumptions of normality, a descriptive analysis was performed
with mean and standard deviations on the nine proposed combinations. The intraclass
correlation coefficient (ICC) and the coefficient of variation (CV) were used to analyze
the reproducibility between the different IMMUSs and the different combinations at both
speeds. For the ICC analyses, an analysis model was used with the average fixed values of
evaluators (average fixed raters), a two-way, random effects model. The averaged fixed
raters model is a statistical technique that uses a fixed group of evaluators to measure the
consistency of measurements. In the case of the different IMMU models, it was consid-
ered that they were evaluated by the same group of evaluators, i.e., the IMMU models
themselves. Using this model, it was possible to evaluate the agreement levels between
the IMMUs models [29]. The coefficient of variation (CV) was used to analyze which of
the two modifying parameters of the algorithm (% signal smoothing and PmlI) showed
greater precision, taking into account the mean and standard deviations of the three IM-
MUs compared to the movements recorded with video. To analyze the validity of the
different combinations in relation to the video, the percentage mean differences were also
calculated together with effect size and 95% Confidence Interval, calculated using Cohen’s
d, following the classification of [30]: trivial (0.2), small (0.2-0.6), medium (0.6-1.2), long
(1.2-2.0), and very long (2.0-4.0). The analysis processes were carried out using Microsoft
Excel (Microsoft, Redmond, WA, USA) and IBM SPSS Statistics v.24 (IBM Corporation,
Armonk, NY, USA).

3. Results

Table 2 shows the mean and standard deviations of video recording and the combina-
tions for the three IMMUSs. After a video analysis, participants averaged 38.4 £ 3.6 COD
at a speed of 13 km/h and 31.2 £3.7 COD at a speed of 18 km/h. The ICC test showed a
reproducibility level of 0.94 (0.86-0.99) when the algorithm combinations processed the
sample at 13 km/h and 0.96 (0.89-0.99) when it was processed over 18 km/h. Figure 5
shows the coefficients of variation between the IMMUSs when all the combinations were
grouped together with modifier parameters and speed. The results show a lower %CV
between devices when all the combinations were pooled at 13 km/h (%CV = 6.5%), a %
smoothing of 30% (%CV = 7.9%), and a minimum peak intensity of 0.9 G (%CV = 7.9%).
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Table 2. Comparison of the smoothing criterion of COD IMMUs devices between COD video criterion measure at 13 km/h and 18 km/h.
VIDEO IMMU1 IMMU2 IMMU3
e " ¢ Mean + SD Mean £ SD % Diff (]éfg;‘:nésizde) (Lo(v:*}egl'?g’pper) cv e Mean & SD % Diff lECflf‘:\CelnS'Sizde) (Logezfl?’pper) cv oo Mean  SD % Ditf (licftf;?ns’sizk‘le) lLoSvIe?';jlolAlpper) A

0.8 780+ 9.3 103 5.62 3.3/7.9 12 83.0 + 18.6 116 333 1.7/49 2 91.8 +11.7 139 6.16 3.6/8.6 13

20 09 632462 64.5 490 2.8/6.9 10 65.5 + 10.1 71 357 1.9/5.2 15 723495 88 471 27/67 13

1.0 546+ 7.1 42 288 14/43 13 56.0 + 5.2 46 3.90 21/5.7 9 59.7 +7.3 56 371 20/5.4 12

08 472+ 64 23 1.69 04/2.9 14 450 + 44 17 1.60 04/2.8 10 52.0 + 7.0 35 244 1.0/38 13

at13 km/h 30 0.9 384£36 36.8 + 4.4 —4 —0.39 ~1.4/06 12 385437 0 0.02 -1.0/1.0 10 435+75 13 0.86 —-02/19 17
1.0 338+ 6.1 —12 —0.84 ~1.9/02 20 328+ 34 ~15 —1.61 —2.8/-04 10 36.0 £ 5.6 6 —051 ~15/05 16

0.8 36.6 + 4.4 -5 —0.44 ~15/0.6 12 358 +22 -7 —0.89 -1.9/0.2 6 372+ 44 -3 —0.29 -1.3/0.7 23

40 09 344476 —10 —0.67 -17/03 22 312413 —19 —2.65 —-4/-12 4 350 +8.1 -9 ~1.69 —29/-04 23

1.0 304 + 6.4 -21 ~1.54 -2.7/-03 21 260 +3.7 -32 —3.40 ~5/-17 14 29.5+7.8 23 ~1.40 ~2.6/-03 26

0.8 86.6 + 26.6 178 2.90 14/44 31 90.2 +353 189 235 1.0/3.7 39 112 + 408 259 3.00 14/45 36

20 09 73.8 +26.1 137 228 09/3.6 35 77.4+ 282 148 229 09/3.6 36 93.6 +34.9 200 251 1.1/39 37

1.0 63.6 £ 22.6 104 2.00 07/32 36 65.6 +22.8 110 2.10 0.8/3.4 35 79.2 +29.7 154 226 0.9/3.6 38

0.8 50.6 + 13.9 62 1.90 0.6/3.1 27 465+ 11.4 49 1.80 05/3.0 24 58.25 + 16.5 87 226 0.9/3.5 28

at18 km/h 30 0.9 312+37 42,6 +11.9 37 1.20 0.1/24 28 42 +10.1 35 1.42 0.2/25 24 49.2 +10.4 58 2.30 0.9/3.6 21
1.0 30.6 + 3.4 -1 ~0.16 ~12/08 11 35.6+97 14 059 ~04/16 27 382416 22 245 1.0/38 4

08 416+ 10 33 1.37 02/25 24 408 +83 31 1.49 03/2.6 20 494+ 122 58 2.00 07/3.2 25

40 0.9 29.8 + 4.0 —4 —0.36 ~1.4/0.6 13 30.8 +4.1 —1 —0.10 ~1.1/09 13 30.6 + 3.0 -2 ~0.17 ~12/08 10

1.0 234474 —25 -1.33 —24/-01 32 29.4 + 89 -6 —0.26 ~1.3/07 30 294 +49 —6 —0.40 ~1.4/0.6 17
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CV % Modifiers Parameters of the Algorithm
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Figure 5. %CV between devices when the combinations were grouped by speed and modifier parameters.

Table 2 shows the percentage differences, as well as the effect size for all devices and
all combinations compared to the video at the speed of 13 km/h. Combinations processed
with 20% smoothing showed very large differences (Cohen’s d > 2.8). However, as the
minimum intensity peak increased, the % difference between the established COD and the
COD registered by the algorithms decreased. The %S20—13 km/h—0.8 G combination
was the one that obtained the highest % difference of all the combinations (%Diff >100%).
However, among the three combinations at 20% smoothing, there was low variability
(%CV =12.8 £ 3.6%). Smoothing at 30% showed more accurate values, showing the
combination %S30—13 km/h—0.9 G trivial-small differences in IMMUs 1 and 2 and
medium in IMMU3. When the minimum intensity peak was set at 1.0 G, the number
of CODs was underestimated (average of the three IMMUs at 1.0 G = 34 + 1.6 COD;
%Diff = —11%). In the same way, when the smoothing was 40%, the values were closer to
the number of established CODs. The %S40—13km/h—0.8 G showed small to medium
differences with the values being slightly underestimated in the three IMMUs. When 40%
smoothing and a minimum intensity peak of 1.0 G were applied, the percentage differences
increased negatively in the three IMMUES, being the combination with the lowest values
(the mean of the three IMMUs = 28.6 &+ 2.3 COD; %Diff = —25.3 4 5.8%).

At the speed of 18 km/h (Table 2), S20% smoothing showed large differences in
the three combinations and the three IMMUSs (Cohen’s d > 1.55; %Diff > 104%). As the
smoothing and the minimum intensity peak were increased, the values became more
precise, showing the combination %S30—18km/h—1.0 G, small and medium differences in
IMMUs 1 and 2. For the 18 km/h speed the combination that was most accurate in the three
IMMUs was that of %540—18km/h—0.9 G which showed trivial and small differences in
relation to the number of CODs established.

4. Discussion

The purpose of this study was to analyze the reproducibility, precision and validity
of various configurations of the algorithm processed through RealTrack Systems” SProTM
software using the Wimu Pro device to record CODs with different angulations and ve-
locities. To the authors” knowledge, this is the first study to present results showing the
need to adjust both the smoothing % of the inertial signal and the minimum peak intensity
(G) to detect changes in direction. The results obtained show excellent reproducibility,
precision and validity of the Wimu Pro device for the detection of changes in direction in a
standardized context.

In relation to reproducibility, less variability was found when the run was performed
at 13 km/h. This could be related to a decrease in accuracy as speed increases, as has been
described for analysis in other GPS variables [12,15]. The IMMUS3, a device placed on the
outermost part of the subject, was the one that showed the greatest percentage differences
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in relation to the CODs established at both speeds. This could be due to a slight instability
between surfaces, causing slight movements between devices, and worsening when the
CODs were performed at 18 km/h [31].

Although the algorithm showed high precision, large differences between the different
combinations were found. This seems to explain the need to have to adapt the algorithms to
the activity in question. In the present study, both the % signal smoothing and the PmlI, were
very efficient adjusting the accuracy of the algorithm. When the % signal smoothing and the
PmlI were set to the lowest settings (%S20 and 0.8 G), the algorithm was not able to remove
other movements generated by the subject during the course of the test, resulting in very
high percentage differences. This became greater at 18 km/h where speed probably caused
greater variability. In contrast, when the parameters were set to maximum (%S40 and
1.0 G), the algorithm underestimated the CODs, perhaps removing too much information,
but showing a high potential for bias noise. Similar to the results of this work, high validity
and reproducibility were found in the detection of the ball thrown (deliveries) by cricket
players and tackles by rugby players, in contrast to manual notes from videos [32,33]. The
speed of approach to the moment of COD breakaway seems to be an influential variable in
the precision of the algorithm. Thus, the higher the running speed, the more necessary the
filter criteria are. In our case, the %S540—0.9 G combination showed the highest accuracy at
18 km/h.

Instead, the speed at 13 km/h, %S30—0.9 G could be enough. This is consistent with
previously published data [34], using a similar methodology, where it was clear that as the
subject’s acceleration increased in different movements, the percentage differences between
the IMMU device and a 3D motion analysis system increased.

Several studies carried out with a GPS signal have shown how modifying the sampling
frequency of the device from 5 Hz to 10 Hz seems to increase accuracy when the object
of measurement travels distances at high speeds [12,33]. However, that accuracy stopped
increasing when it was increased from 10 Hz to 15 Hz [35]. More specifically in inertial
sensors, and based on our own analyses, no significant differences were found when the
sample was processed above 20 Hz, coinciding with the results of [36], which suggests that
for most human movements a 20 Hz sampling is sufficient.

For future research using IMMU, it seems vitally important to reach a consensus
on which filter parameters and thresholds to use for motion detection. Considering the
high variability that the different analysis proposals present, it will be difficult to be able to
compare results and, consequently, to advance firmly in the understanding of COD.

This work is not exempt from limitations that must be taken into account when
interpreting the results. On the one hand, to assess the reproducibility between devices,
the three superimposed IMMUSs were placed in the intrascapular space of the participants,
which could cause slight oscillations between devices that could have affected the results.
It would have been interesting to have also tested at other movement speeds such as
sub-maximum and maximum. In addition, the fact that the study obtained its results from
a standardized test means that the data should be taken with caution when extrapolating
them to real activities, such as training or competition matches. In this way, it would be
interesting to assess the method in a real-game context, where its natural elements make
the player’s movement faster and more unpredictable.

5. Conclusions

The novel algorithm provides reproducible, accurate and valid information to detect
COD in a standardized test at different angulations and speeds.
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