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Abstract

Nonlinear Optics (NLO) has hugely contributed to many fields of modern science and
engineering. NLO processes occur due to the interaction of molecules and materials with
intense (optical) electromagnetic fields. NLO stimulated the development of more precise
methods for spectroscopic and structural characterization of materials, emerging photon
technologies, optical signal processing, optical computers, ultra-fast switchers, laser am-
plifiers, and many others. Two of the most notable NLO processes are multi-photon
absorption, which is the simultaneous absorption of several photons by a molecule, and
the sum-frequency generation, the conversion of two optical beams of lower frequency
into a one beam of higher frequency. The probability of the NLO processes is usually
quantified with the (molecular) NLO properties (NLOPs), such as the first and second
hyperpolarizabilities.

Quantum chemistry provides an additional framework for the interpretation of the
NLO phenomena and corresponding NLOPs, and computational tools for an efficient
design of the new NLO molecules and materials. However, the simulation of NLOPs re-
quires a precise description of many quantum phenomena, with the electron correlation
being the most fundamental one. The search for a theoretical method that is accurate
and cost-effective for the computation of NLOPs started several decades ago but despite
the progress, most methods that are adequate to calculate electronic energies struggle to
reproduce NLOPs to a good accuracy. The most prominent NLO responses are often ob-
served for large molecular structures, thus one is often restricted to cost-efficient methods.
The most notable examples of such type of methods are Density Functional Approxima-
tions (DFAs), which are the most widely used in computational physics and chemistry,
due to their the overall good ratios between the cost and efficiency. Unfortunately, for the
computation of NLOPs, it has been repeatedly shown that the performance of DFAs may
vary dramatically from one system to another. Therefore, there is still a lot of room for
improvement in the field of computational chemistry.

This Thesis provides new insights into the computations of NLOPs of molecular sys-
tems using modern quantum chemistry methods. It covers the topics related to i) the
application and assessment of a broad range of theoretical methods to compute response
properties; ii) an analysis of the nature of the nonlinear response and its dependence on
the electronic correlation; and iii) the assessment of some DFAs, by uncovering hidden
sources of errors affecting the computation of fundamental molecular properties.

In the Chapter 7, we present a novel decomposition scheme for nonresonant NLOPs,
namely the Partition of NLOPs Into Orbital Contributions (PNOC). It expresses the elec-
tronic response in the terms of the Natural Orbitals (NOs) of the unperturbed molecular
system, and for each NO assigns a contribution of the NLOP. PNOC provides an in-
sight into the character of the nonlinear response. For example, using PNOC one can
track the changes in the electric response due to the alteration of the chemical structure,
such as the formation of the radical structures, or quantifying the contribution to the (hy-
per)polarizabilities of p-type NOs in conjugated systems. PNOC does not pose a large
computational cost and can be applied to most of the electronic structure methods. With
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its aid, one can also study the importance of electronic correlation for static NLOPs and,
for example, prove how important is the proper description of the multireference character
in open-shell systems.

The Chapters 8, 9, and 10 present a coherent analysis on the hidden problem of spu-
rious oscillations affecting computation of vibrational NLOPs using Kohn-Sham DFT
(KS-DFT). First, in Chapter 8, we present a benchmark of the DFA performance to simu-
late nuclear relaxation contributions to static (hyper)polarizabilities of hydrogen-bonded
systems. In this test, the best performing DFA yielded average relative errors below 20%
for all tested properties. However, more interesting observations were made for the worst
performing DFAs, namely wB97X, M06, and M06-2X. They yielded huge errors, ex-
ceeding hundreds of percent, especially for the anharmonic vibrational terms. We show
that this is due to the inherited numerical instabilities of these DFAs caused by the emer-
gence of spurious oscillations which affect the derivatives with respect to some vibrational
modes. In Chapter 9, we introduce a new computational procedure to detect and quantify
the errors arising from the spurious oscillations. It is based on the Fourier spectral analy-
sis and employs several techniques from the digital signal processing. We test dozens of
DFAs and show the true extent of their internal grid instabilities. For more than half of
the studied functionals we report huge relative errors caused by the spurious oscillations
in the derivatives of the energy, dipole moment, and static polarizability, which exceed
hundreds and thousands of percent. We also report the highest order of the derivatives
that one can safely compute for each DFA, which is greatly limited when the spurious
oscillations are present. In Chapter 10, we analyze the dependence of the spurious os-
cillations on the basis set or the quality of the electronic density. We also propose a
substantial improvement of our original algorithm, which greatly reduces the cost while
preserving the original accuracy in the determination of errors. Moreover, we discuss
the effect of spurious oscillations on other molecular properties through the indirect er-
rors arising from the Self-Consistent Field procedure adopted in KS-DFT. Such indirect
errors affect Kohn-Sham molecular orbitals and, therefore, propagate to all energy com-
ponents and molecular properties. Lastly, we split the errors coming from the spurious
oscillations among the exchange and correlation components and unveil which of those
are responsible for the spurious oscillations in popular DFAs.

In this Thesis, besides studying NLOPs, we also investigate the topological features of
some molecular systems with enhanced NLOPs, namely the molecular electrides. Elec-
trides are novel ionic substances where electrons act as anions. In this work, using first-
principle methods, we try to answer a fundamental question related to the electrides,
namely if the localized electrons that define the anion of the electride formally consti-
tute as an isolated integer number of electrons. For that purpose, we evaluate several
indicators of electronic localization and quantify the number of isolated electrons, as well
as directly compute electron distribution functions (EDFs) which determine the proba-
bilities of having a specific number of isolated electrons. Moreover, using the effective
oxidation state (EOS) approach, we assign formal oxidation states of such isolated ’cen-
ters’. The EOS analysis and the EDFs allow us to formally classify the localized electrons
in the studied molecular electrides.

Findings presented in this Thesis expand the current knowledge on some of the crucial
aspects of simulations of nonlinear optical properties, and may be of great interest for the
development of more efficient and accurate quantum chemical methods.
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Resumen

La óptica no lineal (NLO) ha contribuido enormemente a muchos campos de la ciencia
y la ingeniería modernas. Los procesos de la NLO ocurren debido a la interacción de
moléculas y materiales con campos eléctricos (ópticos) intensos. La NLO dio origen a
métodos más precisos para la caracterización espectroscópica y estructural de materiales,
así como nuevas técnicas ópticas para la conversión de energía. Los procesos de la NLO
más notables son la absorción multifotónica, que es una absorción simultánea de varios
fotones por molécula, y la generación de suma de frecuencias, una conversión de dos
haces ópticos de menor energía en un solo haz de mayor energía. La probabilidad de los
procesos NLO generalmente se cuantifica con las propiedades (moleculares) ópticas no
lineales (NLOP), como la primera y la segunda hiperpolarizabilidad.

La química cuántica proporciona un marco adicional para la interpretación de los
fenómenos NLO y las NLOP correspondientes y, además, herramientas computacionales
para un diseño eficiente de los nuevos materiales y moléculas con NLOP. Por precisa que
sea, la simulación de NLOP requiere una descripción precisa de muchos fenómenos cuán-
ticos, siendo la correlación de electrones el más fundamental. En las últimas décadas se ha
buscado un método teórico que sea preciso y rentable para el cálculo de NLOP y, a pesar
del progreso, la mayoría de los métodos que son adecuados para calcular energías elec-
trónicas no permiten reproducir las NLOP con una precisión equivalente. Las respuestas
más prominentes se observan con frecuencia en estructuras moleculares grandes, lo cual
limita el uso de métodos computacional a métodos de bajo coste computacional, como
la Teoría del Funcional de la Densidad (DFT), que es el método más utilizado en física
y química computacionales. Dado que se desconoce el funcional de densidad exacto, se
utilizan aproximaciones al funcional de la densidad (DFA). Desafortunadamente, se ha
demostrado repetidamente que la precisión de las DFA en el cálculo de las NLOP puede
variar drásticamente de un sistema a otro. Por lo tanto, todavía hay mucho margen de
mejora en este campo de la química computacional.

Esta tesis proporciona nuevos conocimientos sobre cálculos eficientes de NLOP de
sistemas moleculares utilizando métodos modernos de la química cuántica. Abarca los
temas relacionados con i) la aplicación y evaluación de una amplia gama de métodos
teóricos para calcular propiedades respuesta; ii) un análisis de la naturaleza de la respuesta
no lineal y su dependencia de la correlación electrónica; y iii) el desarrollo de métodos
computacionales más precisos, en particular DFA, al revelar el origen de los errores que
afectan al cálculo de propiedades moleculares fundamentales.

En el capítulo 7, presentamos un esquema de descomposición novedoso para NLOP
no resonantes, al que llamaremos partición de NLOP en contribuciones orbitales (PNOC).
PNOC expresa la respuesta electrónica en los términos de los Orbitales Naturales (NO)
del sistema molecular no perturbado, y para cada NO asigna una contribución a la NLOP.
PNOC también proporciona una idea del carácter de la respuesta no lineal. Por ejemplo,
utilizando PNOC se pueden monitorizar los cambios en la respuesta eléctrica debido a la
alteración de la estructura química, como la formación de estructuras radicales, o cuan-
tificar la contribución a las (hiper)polarizabilidades de los NO de tipo p en sistemas con-
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jugados. PNOC no conlleva un gran coste computacional y se puede aplicar a cualquier
método de estructura electrónica. Con la ayuda de PNOC también se puede estudiar la im-
portancia de la correlación electrónica para NLOP estáticas y, por ejemplo, demostrar qué
tan adecuada es la descripción del carácter multireferencial en sistemas de capa abierta.

Los capítulos 8, 9 y 10 presentan el desconocido problema de las oscilaciones espurias
que afectan el cálculo de las NLOP vibracionales usando Kohn-Sham DFT (KS- DFT).
Primero, en el Capítulo 8, usamos como punto de referencia el hecho de que las DFA no
pueden reproducir correctamente las contribuciones de la relajación nuclear a las (hiper)
polarizabilidades estáticas de los sistemas con enlaces por puente de hidrógeno. En esta
prueba, el DFA que da mejorer resultados da errores relativos promedio por debajo del
20% en todas las propiedades probadas. Sin embargo, se realizaron observaciones más
interesantes para los DFA con peor rendimiento, a saber, wB97X, M06 y M06-2X. En
concreto, estos funcionales dieron grandes errores, superando el 100%, especialmente
para los términos vibracionales anarmónicos, y como mostramos, esto se debe a las in-
estabilidades numéricas heredadas de estos DFA que dan lugar a oscilaciones espurias
que afectan a las derivadas de alto orden con respecto a algunos modos vibracionales. En
el Capítulo 9 presentamos un nuevo procedimiento computacional para detectar y cuan-
tificar los errores que surgen de las oscilaciones espurias. Se basa en el análisis espectral
de Fourier y emplea varias técnicas del procesamiento de señales digitales. Probamos
docenas de DFA y mostramos hasta que punto los funcionales dependen del tamaño de
la malla de puntos de integración. Para más de la mitad de los funcionales estudiados
reportamos enormes errores relativos de las oscilaciones espurias en las derivadas de alto
orden de la energía, del momento dipolar y de la polarizabilidad estática, que en algunos
casos exceden el 1000%. También calculamos el orden más alto de las derivadas que se
pueden estudiar de manera eficiente para cada DFA, que está muy limitado cuando las os-
cilaciones espurias están presentes. En el Capítulo 10, revelamos más información sobre
las oscilaciones espurias, por ejemplo, su dependencia con el conjunto de bases de cál-
culo o con la calidad de la densidad electrónica. También proponemos una gran mejora
de nuestro algoritmo original, que reduce en gran medida el tiempo de costo conservando
la precisión original en la determinación de errores. Además, discutimos el efecto de las
oscilaciones espurias en otras propiedades moleculares, a través de los errores indirectos
que surgen del procedimiento Self-Consistent Field adoptado en KS-DFT.

En esta Tesis, además de estudiar los NLOP, también investigamos las características
topológicas de algunos sistemas moleculares con NLOP grandes tales como los electruros
moleculares. Los electruros son unos nuevos compuestos iónicos donde los electrones ac-
túan como aniones. En este trabajo, utilizando métodos de primeros principios, tratamos
de responder una pregunta fundamental relacionada con los electruros: podemos asignar
un número entero de electrones a las regiones del espacio que identificamos como respon-
sables del carácter electrúrico? Para ello, evaluamos varios indicadores de localización
electrónica y cuantificamos el número de electrones aislados y calculamos directamente
las funciones de distribución de electrones (EDF) que están relacionadas con la prob-
abilidad de tener un número específico de electrones aislados. Además, con el uso de
herramientas de la química cuántica, asignamos estados de oxidación efectivos formales
(EOS) a tales electrones aislados. El análisis de EOS y los EDFs nos permiten clasificar
formalmente los electrones aislados de los electruros moleculares estudiados.

Los hallazgos presentados en esta Tesis amplían el conocimiento actual sobre varios
aspectos cruciales de las simulaciones de propiedades ópticas no lineales, que pueden ser
de gran interés para el desarrollo de DFA más eficientes y precisos.
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Chapter 1

Introduction

The emergence of Nonlinear Optics (NLO) has revolutionized many fields of science and
engineering and evolved the way we utilize various properties of matter. NLO describes
the interaction of matter with very intense optical electromagnetic fields. Effects of such
perturbations on the molecular structure are vast and cover a plethora of changes — the
electronic densities are polarized, the positions of nuclei and their vibrational motion are
altered, and excitations to higher quantum states occur, to name just a few. What distin-
guishes nonlinear from the linear optics is that the probability of NLO processes depend
nonlinearly on the intensity of the applied optical field and very intense optical fields are
required. Two of the fundamental types of NLO processes are multi-photon absorption
and sum-frequency generation. In the former, several photons are simultaneously ab-
sorbed by the molecule, whereas in the latter, several incident photons are combined into
one photon of larger energy. The first prediction of the existence of the NLO phenom-
ena, a two-photon absorption, was done in 1931 by Maria Göppert-Mayer [1]. It took
nearly 30 years to finally realize it experimentally by Kaiser and Garret [2], when lasers
had been already invented [3]. Moreover, at the same time, another landmark discovery
was done by Franken, Hill, and Peters, namely, the experimental demonstration of the
second-harmonic generation [4].

There are two main types of optical processes, resonant and nonresonant. The resonant
processes occur when the frequency of the incident beam matches a particular transition
frequency between the ground state and some targeted (electronic or vibrational) state.
The resonant NLO phenomena possess high spatial selectivity, which can be greatly uti-
lized in (bio)imaging [5–9] and structural studies of interfaces [10–14]. The nonresonant
optical processes take place when the perturbing frequency is different from any of the
transition frequencies. Whereas most NLO phenomena can occur both in the resonant and
nonresonant frequency regions, the ones related to the static electric fields, that is time-
independent ones, are strictly nonresonant. Moreover, in comparison to the equivalent
processes in the resonant region, the nonresonant ones have usually lower enhancement
factors and worse spatial resolution.

The evolution of computational quantum chemistry has hugely contributed to NLO
with the possibility to accurate design new NLO molecules and materials. In addition,
it provided the theoretical framework to effectively analyze the relationship between the
electronic structure of molecules and their optical response. However, from the point of
view of computational chemistry, the molecular NLO properties (NLOPs) also provide an
almost unlimited ”playground” for testing the boundaries of modern electronic structure
theory methods. The latter is due to the theoretical complexity of these properties, which
requires a very accurate description of most quantum effects.

Perhaps, conceptually, the most simple (and universal) method to compute the static
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Figure 1.1: Schematic representation of two-photon absorption process where two photons of frequency w

are simultaneously absorbed by the molecule.

electronic NLOPs is the Finite-Field (FF) technique [15, 16]. Static NLOPs are defined
as the consecutive derivatives that appear in the Taylor expansion of the total electronic
energy with respect to the perturbing electric field F = (Fx,Fy,Fz) [15, 16],

E(F) = E0 �
x,y,z

Â
i

µ

0
i Fi �

1
2

x,y,z

Â
i, j

ai jFiFj �
1
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bi jkFiFjFk

� 1
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gi jklFiFjFkFl + · · · , (1.1)

where µ

0
i , ai j, bi jk, gi jkl are the components of the permanent dipole moment, static

polarizability, and the first and second hyperpolarizabilities, respectively. In FF, one com-
putes the total energies of a system perturbed with a set of electric fields and calculates
the above derivatives numerically via central differences, polynomial fitting, or any other
preferred method of numerical differentiation. However, since most of the NLO phe-
nomena originate from the interaction of quantum systems with time-dependent periodic
optical fields, it was natural that the theoretical foundations of NLO rooted in the Time-
Dependent Perturbation Theory (TD-PT) [17, 18]. TD-PT is one of the most powerful
tools of quantum mechanics and allows to interpret a plethora of physical processes, in-
cluding NLO. However, TD-PT is also a demanding theory, as it has a set of quite strict
requirements and assumptions, which reflect the complexity of the studied processes. To
accurately simulate the NLOPs and the related NLO phenomena, one must obtain the ex-
act electronic and nuclear parts of the wavefunction (usually treated separately under the
Born-Oppenheimer approximation). For the former, one has to fully account for the elec-
tronic correlation, whereas for the latter, a proper representation of a vibrational motion is
needed. Moreover, to study most of the NLO phenomena with TD-PT, one has to deter-
mine the exact electronic and vibrational wavefunctions not only for the ground state but
also for (all) excited states. Except for some theoretical models, these conditions are not



5

fulfilled in the computational studies of many-body systems such as molecules. There-
fore, the TD-PT formulas derived for the NLO phenomena, also denoted as Sum-Over-
States (SOS), are rigorously valid for Full Configuration Interaction (FCI) wavefunctions,
and then they cannot be directly applied to the approximate wavefunctions obtained with
Hartree-Fock (HF), Configuration Interaction (CI), truncated Multi-Configurational Self-
Consistent Field (MCSCF), or even Coupled-Cluster (CC) theories. Moreover, one usu-
ally cannot compute all possible excited states. Nevertheless, the SOS expressions utiliz-
ing the approximated wavefunction can still provide some valuable information. Further
simplifications of the SOS formula were proposed for analysis purposes. The most no-
table one is the two-state approach of Chemla and Oudar [19], in which the expressions
for the (non)resonant electronic hyperpolarizabilities are reduced by including only the
ground state and one excited state. Despite its simplicity, this approach can unveil the
most important molecular features responsible for the enhancement of the nonlinear re-
sponse [20].

A powerful (and more modern) alternative formulation of electronic NLOPs is pro-
vided by the response theory, which has been developed both for the exact and approxi-
mated wavefunctions [15, 16, 21–25]. Response theory relies on the time-evolution of the
observables and does not impose any conditions on the exactness of the Hamiltonian and
the wavefunction. One of the most important features of the response theory is that one
can obtain properties of the excited states from the ground state response functions, that
is, without the explicit computation of the excited state wavefunction [15, 16, 23]. For ex-
ample, from the linear response functions one can obtain information on the excited state
energies and the one-photon transition matrix elements between the ground state and the
excited states. The quadratic response functions give access to the properties related to
the two-photon absorption from the ground state, as well as the dipole moments of the
excited states. The cubic response functions provide information on the three-photon ab-
sorption from the ground state, two-photon absorption from the lower excited states to the
higher excited states, and the polarizabilities of the excited states.

There are two main formalisms within the response theory, namely the polarization
propagator [21, 26] and the quasi-energy derivative approach [27–30]. The former one is
based on the expansion of the observables with respect to the perturbation and nowadays
is usually combined with the Ehrenfest theorem [16, 21, 24]. The quasi-energy approach
is considered to be more attractive and flexible because it provides a uniform formulation
for both variational and nonvariational methods [16, 24, 25, 27–29, 31]. The quasi-energy
approach can be viewed as an extension of the time-independent response theory to the
time-dependent regime. That is, for the static electric fields (the time-independent pertur-
bations), the corresponding NLOPs can be defined as the consecutive derivatives of the
total energy system with respect to the applied electric field (see Eq. 1.1). The explicit
analytic formulas are obtained by a tedious differentiation of all parameters that define
the total energy [15, 16, 23]. In particular, one needs to determine the response of the
wavefunction parameters, such as the molecular orbital (MO) coefficients or configura-
tion interaction (CI) expansion coefficients, which are related to the Wigner’s 2n + 1 rule.
For variational wavefunctions, one can further simplify the formulas by the means of the
Hellmann-Feynman theorem. In the case of the oscillating electric fields (the periodic
time-dependent perturbations), one can express frequency-dependent NLOPs as the time-
averaged derivatives of the quasi-energy with respect to the amplitude of the field [29]. In
such picture, one can also define the time-dependent version of the Hellmann-Feynman
theorem.

Over the decades, numerous works have been dedicated to the development of analyti-
cal formulas for the response properties obtained from various levels of quantum theories
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[16, 21, 25, 29, 31–47]. Undoubtedly, they have been mostly focused on the ab-initio
correlated wavefunction methods, such as MCSCF and CC [21, 29, 31, 34–39, 48–63], as
these methods define the upper standards of computational methods due to their high ac-
curacy. CC singles, doubles and perturbatively accounted triple excitations, CCSD(T), is
usually used as the golden-standard for most of the ground-state molecular properties, in-
cluding the static NLOPs [23], although, for the excited state properties and the dynamic
NLOPs, CCSD(T) is outperformed, for example, by the CC3 method [23]. However, the
CC methods scale very quickly with the size of the basis set, which limits their applica-
bility. Even with the cost-reducing approximations, such as resolution of identity (RI),
CCSD(T) or CC3 are usually too expensive to study nonlinear response for systems with
more than a few dozens of atoms. Still, thanks to the regular development of effective
electronic structure methods, the parallelization techniques, and the continuously increas-
ing capabilities of modern computer units, nowadays, we can tackle much larger chemical
systems than a decade ago. This is important because the molecular systems that show
good NLO capabilities are usually large and, moreover, one should also account for their
experimental environment such as the solvent or bulk [64–71]. Therefore, as long term
goals one should consider using electronic structure methods with a modest computa-
tional cost, but still of reasonable accuracy. For this reason, Density Functional Theory
(DFT) along with the Kohn-Sham approach (KS-DFT) have been the preferred method
for the simulations of various molecular and bulk properties [72–74].

Given its effectiveness, low cost, and conceptual simplicity, KS-DFT has become
the true workhorse of modern computational chemistry [72–74]. Since the exact density
functional is unknown, a race for constructing the most accurate and versatile density
functional approximation (DFA) is still on. In the recent years, several DFAs that pro-
vided accurate electronic energies and geometrical structures have been proposed [75–
78]. They partially overcome the main challenges of DFAs, such as the delocalization er-
ror [79], dispersion forces [80], and strong correlation [81]. Still, the DFAs’ performance
in the area of molecular linear and nonlinear optics has been under active assessment
for decades [66–68, 82–108]. Most of such works attempt to find the best performing
and well-rounded DFA for the evaluation of NLOPs but, unfortunately, there are as many
different conclusions as studies. Most of these works rely on the implementation of the
response theory in time-dependent DFT (TD-DFT), which allowed to study one- and two-
photon phenomena in a cost-effective way. A key difference between the time-dependent
HF (TD-HF) and TD-DFT, both approximating the wavefunction with a single Slater de-
terminant, is the inclusion of time-propagation of the approximate exchange-correlation
kernel in the latter. Development of the response theory for TD-DFT began with the im-
plementation of linear response functions [48–57], and later was extended to the nonlinear
response functions [31, 58–63]. More recently, the computationally flexible procedures
to construct arbitrary-order response functions in KS-DFT were proposed [41, 42, 109].
They are based on a powerful computational technique of automatic differentiation, which
allows to exactly compute arbitrary-order derivatives of any molecular property, without
the need to derive the explicit formulas for a given DFA.

The vibrational contribution to NLO phenomena, in general, requires a more elabo-
rate computational treatment because one has to accurately describe both the electronic
correlation and the nuclear motion. One can distinguish three main types of methodolo-
gies for the computation of vibrational NLOPs. The first one, a perturbative approach, is
Bishop-Kirtman Perturbation Theory [110–112] which originates from TD-PT for exact
quantum states. In BKPT, the electronic and vibrational motions are decoupled by means
of the Born-Oppenheimer approximation and several other assumptions. This leads to
partitioning of the total NLOP into the electronic and vibrational contributions. The latter
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ones involve summations in the basis of normal modes and are separately derived for each
particular NLO phenomenon. Furthermore, in BKPT, one separates the vibrational con-
tributions into the harmonic and anharmonic components. The second type of methods
for vibrational NLOPs are derivative-based and mostly developed for nonresonant pro-
cesses [112–119]. In these methods, the dependency of the electronic energy and dipole
moment with the strength of an external electric field is expressed through a double expan-
sion in electric field and the field-dependent normal coordinates. Some derivative-based
methods, such as Bishop-Hasan-Kirtman Finite-Field Nuclear Relaxation (FF-NR) or the
Field-Induced Coordinates (FICs), may be used to cost-efficiently simulate the leading
(an)harmonic corrections to NLOPs of large molecular systems. The third type of meth-
ods for the vibrational NLOPs involves the vibrational self-consistent field (VSCF) proce-
dure [120–122]. In VSCF, one solves a set of single-mode vibrational Hartree equations
and as a result obtains a fully anharmonic wavefunction [123, 124]. The corresponding
single-mode effective potential is defined taking into account the coupling between the
modes. The VSCF results can be further corrected by the vibrational equivalents of elec-
tronic post-HF methods, such as the vibrational PT [125–127], CI [128, 129], or CC [130,
131] methods. Then, with such (post-)VSCF wavefunctions one can directly compute the
vibrational contributions to NLOPs that already account for the anharmonic effects [123,
124, 131–133].

One of the landmark papers on the analysis of NLOPs is due to Chopra and co-workers
[134], who studied orbital contributions to the linear and nonlinear response to static elec-
tric fields. Although the decomposed contributions sum up properly, they are dependent
on the choice of the coordinate origin, which is popularly named as origin dependency. To
alleviate the serious problem of the origin dependency one can fix the coordinate axis at
the center of mass or nuclear charge. Another important work was done by Nakano et al.,
who established the concept of NLOP density derivatives, which are n-order derivatives
of the electron density with respect to the external electric field (see Section 4.6) [135–
137]. The integrals of these quantities do not add up to the total values of the NLOP, but
they are not origin dependent. Later, this analysis was extended to open-shell systems
through the usage of the density of effectively unpaired electrons [138–140]. Geskin and
Brédas adapted the Mulliken partitioning and defined the atomic contributions to NLOPs
using the derivatives of the Mulliken charges with respect to the electric field, and this ap-
proach was later extended to dynamic properties within the time-dependent frameworks
[141, 142]. Hieringer and Baerends decomposed the first hyperpolarizability into pair-
wise contributions [143]. Mandado and co-workers attempted to decompose the linear
response in terms of field-induced orbitals [144]. Recently, Montilla, Luis and Salvador
proposed a genuine origin-independent methodology for the decomposition of the static
(hyper)polarizabilities [145]. Unfortunately, the above mentioned approaches are not suit-
able to compare the performance of quantum chemical methods and analyze the role of
the electronic correlation. Most of them cannot be adopted for the more advanced meth-
ods or would require a very high computational cost. Decomposing NLOPs into orbital
contributions would help identifying pitfalls in electronic structure methods such as the
wrong selection of active orbital spaces or the adequate size of orbital basis sets.

This Thesis is a collection of three projects, each devoted to a different aspect of com-
puter simulations of molecular nonlinear optics. Although the nonlinear optical phenom-
ena most often involve at least one time-dependent electromagnetic field, in this Thesis,
for the practical reasons, we consider the response to the static electric fields only. The
new computational procedures introduced in Chapters 7, 9, and 10 were initially applied
for the static NLOPs, nevertheless, they could be extended to the frequency-dependent
NLOPs as well.
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Chapter 7 discusses the role of electron correlation in the NLOPs using the partitioning
scheme developed by the Candidate in the first year of the doctorate studies, the Partition
of Optical Properties Into Orbital Contributions (PNOC) [146].

The next three chapters, namely Chapters 8, 9, and 10, form a coherent trilogy de-
voted to the spurious oscillations in DFAs and how they affect the computation of the
vibrational properties. Chapter 8 serves as an introduction explaining the origin and moti-
vation for the main project. The starting point of this trilogy was a collaborative work on
the DFAs computations of vibrational contributions to NLOPs of weakly-bonded molec-
ular complexes [108]. From the Candidate’s perspective, the most interesting result from
this work was the pinpointing the origin of a dramatic failure of several density functional
approximations. In a series of subsequent tests, the very source of these errors was fi-
nally unveiled — spurious oscillations which were directly related to the accuracy of the
numerical integration in KS-DFT. After the identification of the source of the problem, a
diagnosis of its full extent had to be done. This is the topic of Chapter 9, the main part of
this trilogy, where a new computational protocol to measure spurious oscillations based
on the Fourier spectral analysis and techniques from the digital signal processing, is pre-
sented. This method allowed us to efficiently analyze the errors arising solely from the
spurious oscillations [147]. With its aid, a broad series of tests were carried out for dozens
of popular density functional approximations which directly provided the information on
their numerical stability. Afterwards, in Chapter 10, a follow-up study exploring the na-
ture of the spurious oscillations was carried out. We analyzed the influence of the spurious
oscillations in various parts of the KS-DFT energy terms. Some observations motivated
us to adopt further approximations in the electronic structure computations to reduce the
cost of the analysis performed with our new method without affecting its accuracy.

Lastly, Chapter 11 has more application-related character and, while not directly in-
volving any computations of NLOPs, addresses an important topological question about
a new and promising NLO materials called molecular electrides. In these very peculiar
chemical systems, highly localized electrons, formally not belonging to any of the atoms,
act as the anions of ionic species. Such an unusual electronic structure leads to a set of
unique properties, among which are huge NLO responses. However, despite their large
potential in many fields of science, their topological classification of their electronic struc-
ture is not yet completed. The work presented in Chapter 11 tries to fill this gap [148].
In particular, it discusses the suitability of several ab-initio and DFT methods to describe
topological quantities related to electron localization and provides an answer on the most
likely number of localized electrons in electride anions. Furthermore, in this work, the
first attempt to assign the formal oxidation state of the electride isolated electrons was
made.
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Chapter 2

Objectives

The aim of this Thesis is to provide new tools and insights for developing more effi-
cient computational protocols for the accurate simulation of the NLOPs of molecular sys-
tems, focusing on the assessment of Density Functional Approximations (DFAs). This is
achieved by combining different aspects of modern computational chemistry. This Thesis
has the following three general goals:

Assessment of the performance of various QC methods in the simulation of the NLOPs.
The focus is put on the modern DFAs, which show great cost-effectiveness and are rou-
tinely applied in most NLO studies, and the noncovalently bonded complexes, which
recently have gained a lot of attention due to their indisputable stabilizing role in all sur-
rounding matter. While in recent years a few DFAs that properly predict the geometrical
and energetical features of the molecular complexes have been proposed, their suitability
for the description of the vibrational and nonlinear optical response properties of such
systems still needs further assessment. Besides simulations of NLOPs, our goal is to put
additional emphasis on the topological characterization of a promising new kind of NLO
compounds — molecular electrides — and the highly localized (excess) electrons which
lead to the enhanced response to electric fields.

Explanation and analysis of the nature of the molecular response to static electric
fields and its dependence on the electron correlation. Such a problem is of special in-
terest for the systems with open-shell electronic structures, which are also characterized
by large nonresonant hyperpolarizabilities and carry a large computational cost to prop-
erly describe their multireference character. Our goal is to aid the analysis proposing a
decomposition method operating in the basis of the natural orbitals. Developing a com-
putational tool to provide additional insight into the role of different types of correlation
in such systems is of great interest.

Development of a method to unveil a hidden problem of DFAs, namely, the grid-
related spurious oscillations that drastically hinder the simulations of vibrational optical
properties. These oscillations are directly related to one of the most fundamental approxi-
mations adopted in DFT, namely, the numerical integration of exchange-correlation com-
ponents of the functionals. Since it is almost impossible to bypass the numerical integra-
tion in DFT, this problem becomes a big issue for the development of new DFAs. Besides
being interested in the physical accuracy of DFAs, one should also be aware of the limi-
tations which originate from the constantly increasing structural complexity of the newly
developed functionals. Therefore, our main goal is split into more concrete objectives:
The development of a novel computational program for the cost-efficient quantification
of the errors in molecular properties arising from the spurious oscillations, and to raise
awareness of the limitations of various DFAs, which include the accurate computation of
vibrational responses.
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4.1 Introduction
This Chapter introduces the methodology of the nonlinear optical response required to
follow most of the Results section of this Thesis. These theoretical foundations are shown
from the perspective of molecular quantum chemistry, i.e., the microscopic representation
of the response to external electric fields. Moreover, most of the weight is put on the
nonresonant response, and in particular, response to the static electric fields, as it was the
sole regime of fields studied in this Thesis.

Most of the sections of this Chapter are based on Refs [15, 112, 149–151], hence
the corresponding notation is also adapted (and unified across this Chapter where it was
needed).

4.2 Multipole Expansion
Unless stated otherwise, in this Chapter, the a , b , g , and d subscripts denote the x, y, and
z Cartesian components, F is the electric field vector with three Cartesian components,
F = (Fx,Fy,Fz).

In general, the external electric fields F applied to a molecule may be fully inhomoge-
neous through the space. In such cases, a set of particles with charges ei at the positions
~ri = (ri,a ,ri,b ,ri,g ) interacts with the associated scalar potential f

F according to the mul-
tipole expansion [152]:
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with W being the interaction energy between the molecule and the electric potential, q
being the total charge of the system and µ̂
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and octupole moment operators, respectively. In the above expansion, F
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It has to be stressed that Eq. 4.1 is valid only for static, i.e., time-independent, electric
fields.

4.3 Nonlinear Optical Properties
Molecular nonlinear optical properties (NLOPs) describe the response of molecules in the
presence of (intense) radiation electric fields. Such electric fields are time-dependent and
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described as the sum of electromagnetic waves with the w angular frequencies,

F
a

(t) = Â
w

Fw

a

e�iwt , (4.5)

with Fw

a

being the Fourier amplitudes of the oscillating fields (the summation includes
both positive and negative frequencies).

For most of the optical phenomena and related experiments, it is assumed that the
molecules are subdued with an homogeneous electric field. This is because the size of
the molecules is much smaller than the wavelength of the applied electric field. In such
case, the interaction of nuclei and electrons with such fields (see Eq. 4.1) is governed only
through the dipole moment, whereas the higher moments do not contribute.

In the quantum mechanical nomenclature, the total Hamiltonian, Ĥ, of the molecule
interacting with the classical electric field F(t), is
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where Ĥ0 is the (time-independent) Hamiltonian without the presence of the field, µ
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(t) are the a-th components of time-dependent dipole moment vector and electric
field vector. Time-dependent polarization described with µ(t) and F(t) is most generally
expressed as the Taylor series in the electric field strength,
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where µ

0
a

is the a-th component of the permanent dipole moment (vector) and the con-
secutive terms in the expansion stand for the linear and nonlinear optical properties. The
linear response is governed by the polarizability (matrix), ↵(�w;w). Nonlinear response
is mainly governed by the quadratic response of the first hyperpolarizability (3rd-rank
tensor), �(�w

s

;w1,w2), and the cubic response of second hyperpolarizability (4th-rank
tensor), �(�w

s

;w1,w2,w3). Higher order nonlinearities are not commonly studied. In
the above equation, w

s

is the frequency of the observed induced polarization and is given
by w

s

= w1 +w2 for terms involving b and w

s

= w1 +w2 +w3 for terms involving g .
Linear and nonlinear optical properties are universal quantities, which for different

combinations of involved light waves, may describe different optical phenomena. Exam-
ples of those are listed in Table 4.1. It is important to stress that all optical phenomena
occur at the same time, but with different probabilities. The intensity of the different non-
linear optical phenomena may be controlled through a particular experimental realization.
For example, if the applied electric field, FA(t), contains both static and frequency depen-
dent parts,

FA,a(t) = F0
A,a +Fw

A,a cos(wt) , (4.8)

the dipole polarization takes the form [15]:

µ

a

(t) = µ̃

0
a

+ µ̃

w

a

cos(wt)+ µ̃

2w

a

cos(2wt)+ µ̃

3w

a

cos(3wt) . (4.9)
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Table 4.1: Selected linear and nonlinear properties and the optical phenomena they may describe [15, 151,
153].

Property Process
Re[↵(�w;w)] Refractive Index
Im[↵(�w;w)] One-Photon Absorption

�(�(w1 +w2);w1,w2) Sum Frequency Generation
�(�(w1 �w2);w1,�w2) Difference Frequency Generation

�(�2w;w,w) Second Harmonic Generation
�(�w;w,0) Electro-Optical Pockels Effect
�(0;w,�w) Optical Rectification

�(�3w;w,w,w) Third Harmonic Generation
�(�2w;w,w,0) Electric Field-Induced Second Harmonic Generation

Re[�(�w;w,�w,w)] Intensity-Dependent Refractive Index
Im[�(�w;w,�w,w)] Two-Photon Absorption
�(�w1;w1,w2,�w2) Optical Kerr Effect

�(�w;w,0,0) Electro-Optical Kerr Effect
�(0;w,�w,0) Electric Field-Induced Optical Rectification

In above equation, terms up to the third order in the electric field were included, and the
factors in front of the cosine packets are the Fourier amplitudes:

µ̃

0
a

= µ

0
a

+Â
b

a

ab

(0;0)F0
b

+
1
2 Â
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F0
g
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1
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g
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(0;0,0,0)F0
b

F0
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F0
d
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Fw

g

+
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b ,g,d
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(0;�w,w,0)F0
b

Fw

g

Fw

d

, (4.10)

µ̃

w

a

= Â
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a

ab

(�w;w)Fw
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+Â
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b

abg

(�w;w,0)Fw

b
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+
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g

abgd

(�w;w,0,0)

⇥Fw

b

F0
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F0
d

+
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b ,g,d

g

abgd

(�w;w,�w,w)Fw

b

Fw

g

Fw

d

, (4.11)

µ̃

2w

a

=
1
4 Â

b ,g

b

abg

(�2w;w,w)Fw

b

Fw

g

+
1
4 Â

b ,g,d

g

abgd

(�2w;w,w,0)Fw

b

Fw

g

F0
d

, (4.12)

µ̃

3w

a

=
1
24 Â

b ,g,d

g

abgd

(�3w;w,w,w)Fw

b

Fw

g

Fw

d

. (4.13)

In the µ̃

0
a

term, one can find the polarization of the system due to the static field and the
optical rectification; µ̃

w

a

is responsible for the (intensity-dependent) refractive index, the
electro-optical Pockels and Kerr effects, and the one- and two-photon absorption prob-
abilities; µ̃

2w

a

determines the (electric field-induced) second harmonic generation; and
lastly, µ̃

3w

a

quantifies the third-harmonic generation.
Although not useful for the description of the light-matter interaction, some chemical

phenomena involve only static electric fields, i.e. time and frequency independent F(t) =
F. In such a scenario, for a system in a stationary state, the dipole moment no longer
changes in time, µ

a

(t,F(t)) = µ

a

(F), and Eq. 4.7 takes the form

µ

a

(F) = µ

0
a

+Â
b

a

ab

F
b

+
1
2 Â

b ,g

b

abg

F
b

F
g

+
1
6 Â

b ,g,d

g

abgd

F
b

F
g

F
d

, (4.14)
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where, for clarity, the frequency dependence of a , b , g has been dropped, i.e.,

a

ab

= a

ab

(0;0) ,
b

abg

= b

abg

(0;0,0) ,
g

abgd

= g

abgd

(0;0,0,0) .

Because Eq. 4.14 is a Taylor expansion of µ

a

(F) around F = 0, the static (hyper)polari-
zabilities may be defined as the consecutive derivatives with respect to the magnitude of
the electric field:

a

ab

=
dµ

a

(F)
dF

b

����
F=0

, (4.15)

b

abg

=
d2

µ

a

(F)
dF

g

dF
b

����
F=0

, (4.16)

g

abgd

=
d3

µ

a

(F)
dF

d

dF
g

dF
b

����
F=0

. (4.17)

4.4 Sum-Over-States
Microscopic representation of the optical response is traditionally done in the framework
of time-dependent perturbation theory (TD-PT) [15, 17, 18, 150]. Response to external
electric fields of any kind is expressed in terms of the excited states, leading to the Sum-
Over-States (SOS) representation. The derivation presented here follows the one given
in Ref [15]. The main assumption of TD-PT is that the interaction with the perturbation
constitutes only a fraction of the total energy of the system. Then, the total time-dependent
Hamiltonian of the interacting system Ĥ(t) is partitioned as [18]

Ĥ(t) = Ĥ0 +V̂ (t) , (4.18)

where Ĥ0 is the time-independent Hamiltonian of the unperturbed system and V̂ (t) is
time-dependent perturbation operator. V̂ (t) involves the dipole moment operator (treated
quantum mechanically) and the time-dependent electric field F

a

(t) (treated classically
and defined by Eq. 4.5),

V̂ (t) =�Â
a

µ̂

a

F
a

(t)eet . (4.19)

To ensure that the perturbation is turned on adiabatically at t =�• , an additional expo-
nential factor with a small positive infinitesimal e is used.

As in a regular perturbation theory, it is assumed that one knows a complete set of
exact eigensolutions |ni of the unperturbed Hamiltonian Ĥ0,

Ĥ0|ni= En|ni , (4.20)

with En being the corresponding eigenvalues. Time propagation of a (ground-state) wave-
function can be expressed using the whole set of exact time-independent eigenfunctions,

|Y(t)i= Â
n

cn(t)|ni= Â
n

dn(t)e�iEnt/}|ni , (4.21)

where the time evolution is included in the admixture coefficients cn(t) = dn(t)e�iEnt/}.
Following PT approach, the dn(t) coefficients are expanded in a perturbation series,

dn(t) = d(0)
n (t)+d(1)

n (t)+d(2)
n (t)+d(3)

n (t)+ · · · , (4.22)
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with d(0)
n (t) denoting the time evolution of the unperturbed system (only d(0)

n (t) = 1 pre-
vails) and d(1)

n (t), d(2)
n (t), d(3)

n (t), . . . , being perturbative corrections of consecutive order.
For that reason, the time evolution of the perturbed wavefunction is also expanded in a
similar fashion:

|Y(t)i= |Y(0)(t)i+ |Y(1)(t)i+ |Y(2)(t)i+ |Y(3)(t)i+ · · · , (4.23)

where
|Y(N)(t)i= Â

n
d(N)

n e�iEnt/}|ni . (4.24)

The expectation value of the time-dependent polarization is expanded in the perturbative
series as well,

hY(t)|µ̂
a

|Y(t)i= hµ̂
a

i(0) + hµ̂
a

i(1) + hµ̂
a

i(2) + hµ̂
a

i(3) + · · · , (4.25)

and the consecutive terms are described with mixed terms involving various orders of
correction to the eigenfunction:

hµ̂
a

i(0) = h0|µ̂
a

|0i , (4.26)

hµ̂
a

i(1) = hY(0)(t)|µ̂
a

|Y(1)(t)i+ hY(1)(t)|µ̂
a

|Y(0)(t)i , (4.27)

hµ̂
a

i(2) = hY(0)(t)|µ̂
a

|Y(2)(t)i+ hY(1)(t)|µ̂
a

|Y(1)(t)i+ hY(2)(t)|µ̂
a

|Y(0)(t)i , (4.28)

hµ̂
a

i(3) = hY(0)(t)|µ̂
a

|Y(3)(t)i+ hY(1)(t)|µ̂
a

|Y(2)(t)i+ hY(2)(t)|µ̂
a

|Y(1)(t)i
+ hY(3)(t)|µ̂

a

|Y(0)(t)i , (4.29)

Each correction is responsible for a particular optical response, namely hµ̂
a

i(1) will be
responsible for the linear polarization, whereas hµ̂

a

i(2) and hµ̂
a

i(3) (and higher) for the
nonlinear polarization. Detailed derivation of these terms follow general rules of TD-PT
and can be found in Ref. [15].

In the following part of this section, final formulae for linear and nonlinear optical
properties are presented and commented on. The linear dipole polarization can be con-
cisely written as [15, 18]

hµ̂
a

i(1) = Â
w

a

ab

(�w;w)Fw

b

e�iwteet , (4.30)

with a direct dependence on the microscopic polarizability a

ab

(�w;w). As a result of
the TD-PT derivation, it is expressed in the sum-over-state manner as [15, 18]

a

ab

(�w;w) =
1
}Â

n

h0|µ̂
a

|nihn|µ̂
b

|0i
wn0 �w � ie

�
h0|µ̂

b

|nihn|µ̂
a

|0i
wn0 +w + ie

�
. (4.31)

All the SOS formulae for NLOPs utilize two main ingredients, namely the transition
dipole moment between two energetic states, hn|µ̂

a

|mi, and the transition frequency
wnm = (En �Em)/}. In Eq. 4.31, only transitions from the ground-state |0i to a par-
ticular excited state |ni are included. First order nonlinearity of the dipole polarization
[15, 18],

hµ̂
a

i(2) = 1
2 Â

w1,w2

b

abg

(�w

s

;w1,w2)F
w1
b

Fw2
g

e�iw
s

te2et , (4.32)
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depends on the hyperpolarizability b

abg

(�w

s

;w1,w2) which is expressed in the SOS
form as [15, 18]:

b

abg

(�w

s

;w1,w2) =
1
}2 ÂP1,2 Â

n,p
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(wn0 �w

s

� i2e)(wp0 �w2 � ie)

+
h0|µ̂

b

|nihn|µ̂
a

|pihp|µ̂
g

|0i
(wn0 +w1 + ie)(wp0 �w2 � ie)

+
h0|µ̂

g

|nihn|µ̂
b

|pihp|µ̂
a

|0i
(wp0 +w

s

+ i2e)(wn0 +w2 + ie)

�
. (4.33)

In above equation, ÂP1,2 permutes the pairs of indices (b ,w1) and (g,w2). In contrast to
Eq. 4.31, the SOS expression for hyperpolarizability involves transition dipole moment
integrals between the n–th and p–th excited states. Lastly, the second nonlinear part of
the dipole polarization [15, 18],

hµ̂
a

i(3) = 1
6 Â

w1,w2,w3

g

abgd

(�w
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e�iw
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te3et , (4.34)

directly depends on the second hyperpolarizability g

abgd

(�w

s

;w1,w2,w3). The SOS
formula for second hyperpolarizability is finally derived as [15, 18]
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�
, (4.35)

where ÂP1,2,3 permutes the pairs of indices (b ,w1), (g,w2) and (d ,w3). This expres-
sion involves transitions to three intermediate states n, m, and p. Due to their general-
ity, all above SOS formulae in Eqs. 4.31 - 4.35 describe both resonant and nonresonant
responses. The former one occurs when the frequency of incident light w matches a
particular transition frequency between the ground state and the targeted excited state.
Such processes possess high spatial selectivity and probability and are greatly enhanced.
Moreover, the dipole polarization of resonant phenomena contains both real and imagi-
nary terms, the latter describing absorption/emission processes. In the nonresonant region
of the response, when the perturbing frequency is significantly different from any of the
transition frequencies, nonlinear polarization also occurs, but usually with a lower en-
hancement factor and poorer spatial resolution. In contrast to the resonant polarization,
nonresonant polarization has only the real part, since the imaginary contribution is negli-
gible.

To facilitate the usage of the SOS formula, improve their convergence, one can de-
velop reduced formulas including only the key terms. This can be done separately for
each type of optical processes, both resonant and nonresonant ones. Since this Thesis
focuses mostly on the response to static electric fields, the reduced SOS formulae for
nonresonant processes are presented.
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The molecular polarizability in the nonresonant region is reduced to

a

ab

(�w;w) =
1
}Â
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h0|µ̂

a

|nihn|µ̂
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�
, (4.36)

where prime in the summation means skipping the ground state |0i. In the above formula,
the only difference lies in the denominator where imaginary terms have been excluded.
Including a canonical transformation to the interaction representation suggested by Bates
[18, 154], the formula for the nonresonant molecular hyperpolarizability is simplified to

b

abg
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where µ̂

a

= µ̂

a

�h0|µ̂
a

|0i is the fluctuation dipole moment operator, ÂP�s ,1,2 permutes
the pairs (a,�w

s

), (b ,w1), (g,w2). Lastly, the nonresonant molecular second hyperpo-
larizability can be also concisely written as
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, (4.38)

where ÂP�s ,1,2,3 permutes the pairs (a,�w

s

), (b ,w1), (g,w2), and (d ,w3).

4.5 Response to Static Electric Fields
Description of the perturbation with static electric fields through static NLOPs, while not
essential for most of the real-life experiments, is of key importance in the field of molec-
ular quantum chemistry. They allow to quantify the effects of polarization of electronic
density and changes in the molecular structure in the present of electric perturbation.
Permanent dipole moment and static polarizability are used to describe the noncovalent
interactions between molecular systems and they are also used as a first approach to de-
sign molecules with high NLO properties, which may be candidates to be used in the new
opto-electronic devices. Static polarizability is crucial for the description of the mecha-
nisms of chemical reactions in the presence of oriented external electric fields (OEEFs).
Recently, controlling chemical reactions using OEEFs has gained much attention [155–
160].

Accurate computations of static NLOPs are very difficult. They require large basis
sets, including polarization and diffuse functions, sometimes even specially tailored solely
for the computations of NLOPs such as Sadlej’s POL basis set [161–165]. Static NLOPs
are also very dependent on the electronic correlation. For that reason, the static response
properties are usually used to further test the accuracy of quantum chemical methods.

From a methodological point of view, Eqs. 4.36 to 4.38 are also valid for static proper-
ties. In real applications, however, the response to static electric fields is described using
alternative approaches to TD-PT, which usually fulfill the Hellmann-Feynman theorem.
When the static electric field perturbs a molecular system that initially was in a stationary
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state for a given Hamiltonian Ĥ0, both electrons and nuclei relax their position and the
whole system is described with the new stationary state |Y(F)i,

Ĥ(F)|Y(F)i= E(F)|Y(F)i . (4.39)

In such case, the field-dependent perturbed Hamiltonian Ĥ,

Ĥ(F) = Ĥ0 �Â
a

µ̂

a

F
a

, (4.40)

includes the interaction with the external field through the dipole moment operator (de-
fined by the positions of electrons ri,a and nuclei RI,a ),

µ̂

a

= Â
I

RI,a �Â
i

ri,a . (4.41)

To quantify the linear dependence of the electronic energy on the electric field, one has to
compute its total first derivative with respect to the external field,

dE(F)
dF

a

=
d

dF
a
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which equals to the negative field-dependent dipole moment. The derivation in Eq. 4.42
directly follows the Hellmann-Feynman theorem. To obtain the final result, Eq. 4.39, the
hermiticity of Ĥ(F) and the normalization condition of |Y(F)i were adopted.

Combining Eqs. 4.42 and 4.15-4.17, one can express the linear and nonlinear static
electrical properties as derivatives of total energy:
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With such a definition of static NLOPs, one can define an equivalent Taylor expansion
of the field-dependent energy,
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This representation is of fundamental value and is adopted both in the analytical and
numerical computations of static NLOPs.
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4.6 Density-Based Representation of Static NLOPs
If one considers only the electronic part of the Hamiltonian, an equivalent description of
the static NLOPs can be obtained in terms of the electronic densities. In a similar fashion
to Eq. 4.14, the charge density function r(r,F) can be also expressed by the means of a
Taylor expansion with respect to the electric field strength [134–136]:
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In the above equation, the following shorthand notation for the density derivatives has
been adopted [135, 136]:
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Combining Eq. 4.48 with the definition of the dipole moment in terms of the charge
density integral,
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one can compare it with Eq. 4.14 and isolate the relations for higher nonlinear response
functions in terms of the electronic density derivatives [135, 136]:
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For that reason, the above–defined derivatives r

(b )(r), r

(bg)(r), and r

(bgd )(r) have been
named after their NLOPs analogs, respectively, a–, b–, g–densities [135, 136]. However,
these are not rigorous property densities, because their sole integration, i.e.

R
drr

(bgd ...)(r)
does not yield the corresponding NLOP (actually, it yields zero) — one needs to include
the position operator r

a

in the integration.
One can also represent electronic NLOPs using the reduced density matrices ex-

pressed in terms of the atomic or molecular orbital basis. Namely, the expectation value
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of an operator Ô, expressed as the sum of n one–electron operators Ô1 = Ân ôn, can be
written as

hY|Ô1|Yi= Â
s

Z
dr ô1(r0)r1(r0s ;rs)

��
r0=r ,

= Â
s

Â
µ,n

Ds

µn

hc
µ

|ô1|cn

i , (4.58)

where Ds

µn

is the orbital representation of the s part of 1-RDM, r1(r0s ;rs):

Ds

µn

=
Z

dr
Z

dr0c⇤
µ

(r0)r1(r0s ;rs)c
n

(r) . (4.59)

The total D
µn

is given by the sum of Da

µn

and Db

µn

:

D
µn

= Da

µn

+Db

µn

. (4.60)

Therefore, one can further express the field-dependent dipole moment µ

a

(F) of Eq. 4.52
in terms of the field-dependent one-particle reduced density matrix, D(F), and the one-
electron transition dipole moment matrix h(a) defined as h(a)

µn

= hc
µ

|r
b

|c
n

i:

µ

el
a

(F) =�Â
µ,n

D
µn

(F)h(a)
µn

. (4.61)

For such purposes, it is natural to utilize an atomic orbital (AO) basis, that is, a set of
the contracted GTOs centered at the atomic positions. The AOs are invariant respect to
the strength of the external electric field. Therefore the static polarizability, the first and
second hyperpolarizabilities can be written as:

a

el
ab

=�Â
µn

D(b )
µn

h(a)
µn

, (4.62)

b

el
abg

=�Â
µn

D(bg)
µn

h(a)
µn

, (4.63)

g

el
abgd

=�Â
µn

D(bgd )
µn

h(a)
µn

. (4.64)

In these equations, D(b )
µn

, D(bg)
µn

, and D(bgd )
µn

are the derivatives of the field-dependent 1-
RDM with respect to the external field denoted with the equivalent notation of Eqs. 4.49
- 4.51.

4.7 Separation of Electronic and Vibrational Contribu-
tions to NLOPs

The SOS expressions in Eqs. 4.31 to 4.35 are derived for the most general case of any
eigenstate. The same holds for the formulae for the nonresonant response in Eqs. 4.36
to 4.38. However, the description of the molecular NLOPs is only feasible when one
adapts the most fundamental approximation adapted in quantum chemistry, namely the
Born-Oppenheimer (BO) approximation, which decouples the motion of the electrons
and nuclei.

The total Hamiltonian, without the presence of the electric field, is split into electronic
and nuclear parts,

Ĥ0(R,r) = Ĥel
0 (R,r)+ Ĥnuc

0 (R) , (4.65)
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and the total wavefunction is expressed as a product of the electronic and nuclear parts,

|Y(R,r)i= |Yel(R,r)i⇥ |Ynuc(R)i . (4.66)

Firstly, the eigenproblem of the electronic part is being solved,

Ĥel
0 (R,r)|Yel

K (R,r)i=V el
K (R)|Yel

K (R,r)i , (4.67)

and the resulting electronic energy V el
K (R), which parametrically depends on the position

of the nuclei, is used as a part of the Ĥnuc
0,K (R) operator, which is then used to solve the

eigenproblem of the nuclear part of the wavefunction,

Ĥnuc
0,K (R)|Ynuc

kK (R)i= EkK|Ynuc
kK (R)i . (4.68)

Then, one can express any NLOP, generally denoted here as P, as a sum of the elec-
tronic, Pel , and vibrational, Pvib, parts:

P = Pel +Pvib . (4.69)

If the BO approximation is assumed in the SOS expression one has to simply utilize the
vibronic product states. These are denoted as |N,ni, where the first index denotes N-th
electronic state, and the second n-th vibrational state. In particular, the ground state is
denoted as |0,0i. The formulae for NLOPs in the nonresonant region (Eqs. 4.36-4.38) in
terms of the vibronic states are rewritten as:

a

ab

(�w

s

;w) =
1
}ÂP�s ,1Â

k,K

0h0,0|µ̂
a

|K,kihk,K|µ̂
b

|0,0i

⇥ (
1

wkK �w

s

+
1

wkK +w

s

) , (4.70)

b

abg

(�w

s

;w1,w2) =
1
}2 ÂP�s ,1,2 Â

k,K,l,L

0h0,0|µ̂
a

|K,kihk,K|µ̂
b

|L, lihl,L|µ̂
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· 1
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, (4.71)

g

abgd

(�w

s

;w1,w2,w3) =
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⇥ 1
wkK �w

s

· 1
wlL �w3

· 1
wlL +w2

�
. (4.72)

In the above expressions, wkK = (EkK �E00)/} is the transition frequency to the |K,ki
vibronic state measured from the ground |0,0i vibronic state.
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4.8 Bishop-Kirtman Perturbation Theory
In their seminal work, Bishop and Kirtman proposed an efficient way for the calcula-
tion of vibrational contributions to NLOPs in a perturbative manner, by adopting few
additional approximations related to the denominators of the SOS expressions [110–112].
This method has been named as the Bishop-Kirtman Perturbation Theory (BKPT). It ex-
presses the overall vibrational part of the NLOP as a sum of a pure vibrational term, Pv,
and the well-known Zero Point Vibrational Average (ZPVA) correction, DPZPVA:

Pvibr = Pv +DPZPVA . (4.73)

Firstly, in BKPT is assumed that wkK transition frequencies (i.e. transition to vibronic
states of excited electronic states) are much larger than frequencies of the incident light
beams, wkK � wi. Secondly, it is assumed that the energy differences between vibrational
levels in higher excited states are negligible in comparison to the differences in energies
between the electronic states, which can be summarized as wkK ⇠= w0K . To facilitate the
formulae, the BKPT expressions utilize the following shorthand notation: w0K ⌘ wK is
the transition frequency to higher electronic state K, wk0 ⌘ wk is the transition frequency
to higher vibrational state of the ground electronic state.

When those two approximations are adapted, one can obtain the following formula
for the nonresonant a

ab

(�w

s

;w),

a

ab

(�w

s

;w) =
1
} Â

K 6=0
h0|


h0|µ̂

a

|KihK|µ̂
b

|0i · ( 1
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wK +w
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+
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} Â

k 6=0


h0|µ00
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|kihk|µ00
b

|0i · ( 1
wk �w

+
1

wk +w

)

�
, (4.74)

where µ

00
b

= h0|µ̂
b

|0i. In the above expression, the first term including the summation
over the electronic excited states, constitutes for the ZPVA part of the response. The
second term constitutes entirely for the pure vibrational part, Pv. It includes a summation
over the vibrational states of the ground electronic state. An equivalent splitting is done
for the nonlinear response of b

abg

and g

abgd

.
Bishop and Kirtman proposed a new concise "square bracket" notation to represent

vibrational contributions to NLOPs:

a

v
ab

(�w

s

;w) = [µ2] , (4.75)

b

v
abg

(�w

s

;w1,w2) = [µa]+ [µ3] , (4.76)

g

v
abgd

(�w

s

;w1,w2,w3) = [a2]+ [µb ]+ [µ2
a]+ [µ4] . (4.77)

Each square involves the following transition dipole moments between different vibra-
tional states of the ground electronic state,

(µ
a

)i j = hi|µ00
a

| ji , (4.78)

(a
ab

)i j = hi|a00
ab

| ji , (4.79)

(b
abg

)i j = hi|b 00
abg

| ji , (4.80)

as well as transition frequencies between vibrational states wi. The required square
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bracket terms are calculated as follows:

[µ2] =
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, (4.81)
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. (4.87)

As earlier in this Chapter, prime in the summation excludes ground vibrational states and
(µ

a

)i j is the dipole fluctuation coupling the ith and jth vibrational states:

(µ
a

)i j = hi|µ00
a

| ji= hi|µ00
a

| ji�di jh0,0|µ̂a

|0,0i . (4.88)

However, a direct evaluation of Eqs. 4.81-4.87 is possible only for diatomics, when one
generates the property profiles along the internuclear distance and utilizes the numerical
technique of Numerov-Cooley to evaluate the necessary integrals [15, 112].

For the polyatomic molecules, one solves this problem by expanding static electric
properties into the Taylor series in the normal modes Q, which in the case of µ

a

is:

µ

a

(Q) = µ

0
a

+Â
a

∂ µ

a

∂Qa

����
Q=Q0

·Qa +
1
2 Â
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∂

2
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����
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+
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∂

3
µ

a

∂Qa∂Qb∂Qc

����
Q=Q0

·QaQbQc + · · · . (4.89)

In the above equation, µ

0
a

is the permanent dipole moment for the optimized geometry,
denoted as Q0. Consecutive terms involve the derivatives of the dipole moment with re-
spect to the normal coordinates (all evaluated for the optimized geometry). Equivalent
expansions are adopted for other electric properties such as polarizability and hyperpo-
larizabilities. The first derivative of the dipole moment with respect to the normal co-
ordinate corresponds to the purely harmonic approximation, whereas higher derivatives
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define electrical anharmonicity. Namely, the second derivative of the dipole moment with
respect to the normal coordinates is considered as the first-order electrical anharmonicity,
and the third derivative is considered as the second-order electrical anharmonicity. For
the (hyper)polarizabilities one utilizes the equivalent expansions and terminology.

Moreover, one expresses the vibrational wavefunction as a linear combination of har-
monic oscillators, obtained by solving the eigenproblem for the following perturbed an-
harmonic potential:

V (Q) =V 0 +
1
2 Â

a
w

2
a Q2

a +
1
6 Â

a,b,c
FabcQaQbQc +

1
24 Â

a,b,c,d
FabcdQaQbQcQd + · · · . (4.90)

In the above definition, wa is the harmonic vibrational frequency of mode Qa (please note
the change of the notation). The first order mechanical anharmonicity of the potential
energy is accounted with the cubic force constant, Fabc. The second order mechanical
anharmonicity is described by the quartic force constants, Fabcd . These are defined as the
high-order derivatives of the electronic energy V (Q):

Fabc =
d3V (Q)

dQadQbdQc

����
Q=Q0

, (4.91)

Fabcd =
d4V (Q)

dQadQbdQcdQd

����
Q=Q0

. (4.92)

.
In their original work [110, 111], Bishop and Kirtman accounted for the second-order

electrical anharmonicity, i.e. Eq. 4.89, up to the cubic terms and the first-order mechanical
anharmonicity, i.e. Eq. 4.90, up to the cubic terms. Few missing terms in the original
formulation were added later in the work of Bishop, Luis and Kirtman [166]. This led
to the separation of the square bracket terms in Eqs. 4.81–4.87 into contributions [A]n,m
with n-th and m-th orders of electrical and mechanical anharmonicity, respectively. New
square bracket formulas for vibrational NLOPs are [110–112]:

a

v
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(�w

s

;w) = [µ2]0,0 +[µ2]2,0 +[µ2]1,1 +[µ2]0,2 , (4.93)
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Formulas for the [A]n,m terms are expressed using the following shorthand notation for the
property derivatives,

(a/a) =
dµ

a

dQa

����
Q=Q0

and (a/ab) =
d2

µ

a

dQadQb

����
Q=Q0

,

(ab/a) =
da

ab

dQa

����
Q=Q0

and (ab/ab) =
d2

a

ab

dQadQb

�����
Q=Q0

,

(abg/a) =
db

abg

dQa

����
Q=Q0

and (abg/ab) =
d2

b

abg

dQadQb

�����
Q=Q0

,
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and the denominators involving harmonic vibrational frequencies of normal modes and
incident frequencies,
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and the signed lambda terms are defined as:
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Within the adopted anharmonic expansions, [µ2]n,m involve the first and second deriva-
tives of µ with respect to normal modes and cubic force constants:
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Although not given in this manuscript, [a2]n,m, [µa]n,m, and [µb ]n,m terms are derived
from the corresponding [µ2]n,m equation by performing few simple substitutions listed in
Table V of Ref. [110].

Square bracket terms [µ3]n,m involve only the terms corresponding to the first-order
electrical and mechanical anharmonicity:

[µ3]1,0 =
1
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Similarly, [µ2
a]n,m involves not only first-order anharmonic terms, but also polarizability

derivatives:
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On the other hand, the [µ4]n,m terms involve only the terms second-order anharmonicity:
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By omitting all of the anharmonic terms in Eqs. 4.93-4.95, one is left with the double
harmonic approximation in BKPT:
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g
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abgd
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;w1,w2,w3) = [a2]0,0 +[µb ]0,0 . (4.109)

Lastly, within the BKPT one can express the ZPVA correction as the sum of square
bracket terms corresponding to different anharmonicity. For example, if one only con-
siders the first-order electrical and mechanical anharmonicity, one can express the ZPVA
correction for a property P (equivalent for a , b , g) as:

DPZPVA = [P]0,1 +[P]1,0 . (4.110)

with the square bracket terms defined as:
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In Eq. 4.111, EZP is the zero point energy obtained with the harmonic approximation.
Even with such reduced level of anharmonicity, ZPVA corrections require more costly
high-order derivatives of the property P. For example, Dg

ZPVA
abgd

(�w

s

;w1,w2,w3) involves
already second order derivatives of g

el with respect to normal modes. On the contrary,
g

v
abgd

(�w

s

;w1,w2,w3) defined by Eq. 4.95, does not involve derivatives of g

el , but the
derivatives of lower order NLOPs, such as a

el or b

el .

4.9 Alternative Representation of Nuclear Relaxation and
Curvature Contributions

BKPT allows to describe the nonresonant vibrational response to both time-dependent and
static electric fields. However, for the static fields there exists an alternative formulation
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directly based on the derivatives of electronic properties [112–115, 149]. This approach
is based on the double-series expansion in the normal modes and electric field of the
electronic energy V (Q,F):
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where Qa is the a-th normal mode, and Fx, Fy, and Fz are the components of the static
electric field vector F. The consecutive factors are defined as the (mixed) derivatives:
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These factors include the electronic contributions to the basic molecular electrical prop-
erties and their derivatives with respect to the normal coordinates, such as
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Moreover, it is convenient to define the following q1 and q2 terms, which are derivatives
with respect to a given normal mode of the dipole moment and the static polarizability,
scaled with the harmonic frequency of this mode:

qa,a
1 =

aa,a
11

2aaa
20

, (4.115)

qa,ab

2 =
aa,ab

12
2aaa

20
. (4.116)

Imposing the condition that the field-dependent molecular structure is always opti-
mized ( ∂V (Q,F)/∂Qi = 0,8i), one can obtain the following expression for the field-
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dependent normal coordinates displacements:
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Inserting the above equation back into Eq. 4.113 and grouping the terms by power in
electric field strength, one can reach new definitions of vibrational NLOPs.

Using this approach, in contrast to the Eq. 4.73, the overall response of the vibrational
structure of the system is partitioned into nuclear relaxation (NR) and curvature (curv)
terms,

Pvibr = PNR +Pcurv , (4.118)

Interpretation of the NR terms is very simple - they quantify changes in the polarization
due to the reorganization of the molecular structure due to the electric field perturbation.
On the other hand, the curvature contributions quantify the change in the polarization due
field-induced perturbation of the PES curvature.

The final expressions to the static linear and nonlinear optical properties are listed
below. The NR contribution to polarizability is simply described as

a

NR
ab

(0;0) =
1
2 ÂP

ab

3N�6

Â
a

aa,a
11 qa,b

1 , (4.119)

with ÂP
ab

denoting permutation operator exchanging solely the a and b upper indices.
a

NR
ab

(0;0) depends solely on the quantities obtained at the harmonic approximation, i.e.,
no electrical and mechanical anharmonic terms are involved. Next, the NR contribution
to the first hyperpolarizability is defined as

b
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, (4.120)

with ÂP
abg

denoting permutation operator exchanging the a , b , and g upper indices.
The first summation constitutes for the purely harmonic term, while the second and third
involve electrical (aab,a

21 ) and mechanical (aabc
30 ) anharmonicity. Lastly, NR of the second
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hyperpolarizability is computed as,
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where, again, ÂP
abgd

denotes the permutation operator exchanging the a , b , g , and d

upper indices. Except the first summation, all summations involve anharmonic deriva-
tives. Normally, the analytical expressions for those high-order derivatives are not avail-
able (or are not implemented), and one has to obtain them using numerical differentiation.
This fact combined with the extremely large number of mixed derivatives to be computed,
makes a direct usage of Eq. 4.121 very costly.

There exist a direct correspondence of the NR terms with the BKPT square bracket
terms present in Eqs. 4.93 - 4.95 (when one sets all incident frequencies w = 0):

a

NR
ab

(0;0) = [µ2]0,0
w=0 , (4.122)

b

NR
abg
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w=0 , (4.123)
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w=0 . (4.124)

In the above relations, each of the square bracket terms corresponds to the different sum-
mation in Eqs. 4.119-4.121 (the order of the terms in each set of equations is preserved).
Nuclear relaxation terms involve the lowest order terms of the different square bracket
BK contributions, defined as the sum n+m in [A]n+m. Square bracket terms of the higher
anharmonicity, along with the ZPVA correction, constitute to the curvature terms. For ex-
ample, the curvature contribution to the polarizability, a

curv
ab

(0,0), can be expressed with
the BKPT square brackets as:

a

curv
ab

(0,0) = Da

ZPVA +[µ2]2,0
w=0 +[µ2]1,1

w=0 +[µ2]0,2
w=0 + . . . . (4.125)

Concluding, the response to the static electric fields of molecular systems can be ex-
pressed both with BKPT and the derivative NR+curvature scheme. Both approaches are
simply different partitionings of the same overall vibrational response. However, the cal-
culation of the nuclear relaxation terms can be more feasible when one adapts one of the
two methods described in the following sections, namely, the finite-field nuclear relax-
ation approach or evaluation of NR expressions using the field-induced coordinates.



4.10. BISHOP-HASAN-KIRTMAN FF-NR APPROACH 35

4.10 Bishop-Hasan-Kirtman Finite-Field Nuclear Relax-
ation Approach

Bishop, Hasan and Kirtman presented a very efficient and concise approach to calcu-
late nuclear relaxation and curvature terms, the Finite-Field Nuclear Relaxation (FF-NR)
approach [116]. In FF-NR, one does not need to explicitly calculate the high-order deriva-
tives, which is especially useful for larger chemical systems.

It requires computations of the static electronic NLOPs under the perturbation with
static field F for both the equilibrium geometry relaxed in the electric field, RF, and
"frozen" equilibrium geometry of the system, R0, i.e. the one optimized without the
presence of the electric field. During the geometry optimizations, the field-free Eckart
conditions must be enforced to prohibit reorientation [117].

One defines two main quantities, namely a difference in electronic properties due to
the field perturbation, (DPel)R0 , calculated for the same field-free optimized structure,

(DPel)R0 = Pel(F,R0)�Pel(0,R0) , (4.126)

and a similar difference, (DPel)RF involving the corresponding field-free and field-relaxed
equilibrium geometries,

(DPel)RF = Pel(F,RF)�Pel(0,R0) . (4.127)

For different dipolar properties µ
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lowing Taylor series in the field strength:
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The above equations allow to obtain the consecutive electronic parts of NLOPs through
numerical differentiation or polynomial fitting:

a

el
ab

(0;0) =
∂ (Dµ

el
a

)R0

∂F
b

����
F=0

, (4.131)

b

el
abg

(0;0,0) =
∂

2(Dµ

el
a

)R0

∂F
b

∂F
g

����
F=0

=
∂ (Da

el
ab

)R0

∂F
g

�����
F=0

, (4.132)

g

el
abgd

(0;0,0,0) =
∂

3(Dµ

el
a

)R0

∂F
b

∂F
g

∂F
d

����
F=0

=
∂

2(Da

el
ab

)R0

∂F
g

∂F
d

�����
F=0

=
∂ (Db

el
abg

)R0

∂F
d

�����
F=0

. (4.133)



36 CHAPTER 4. QUANTUM CHEMICAL EVALUATION OF THE NLOPS

The authors showed that (DPel)RF can be expanded in a similar manner,
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but the factors, defined as the consecutive derivatives, contribute both to the electronic
and NR terms. Therefore, the differentiation of (Dµ

el
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)RF with respect to the applied field
yields,
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On the contrary, the differentiation of (Da

el
ab

)RF and (Db

el
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)RF leads to NR terms of the
first and second hyperpolarizabilities in the infinity frequency regime:
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By subtracting purely electronic terms, one can obtain NR contributions to NLOPs.

4.11 Field-Induced Coordinates
In their seminal work, Luis et al. proposed another efficient way of computing the NR
terms with the usage of the Field-Induced Coordinates (FICs) [118, 119]. FICs are defined
as linear combinations of normal modes and describe the displacements of atoms induced
by the external electric field. Based on the Taylor expansions of the potential and normal
coordinates (see Eqs. 4.113 and 4.117) authors define FICs of different orders. The first-
order FIC (FIC1), denoted as c

a

1 and having three Cartesian components, is defined as:
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FIC1 is defined within the double harmonic approximation (only the linear derivatives in
normal modes are involved), however, as it will be shown later, it is used to describe the
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anharmonic response as well. The second-order FIC (FIC2), denoted as c
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2 and having
nine Cartesian components, is defined as:
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FIC2 constitutes terms involving both the harmonic and anharmonic parts:
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The main feature of FICs is that they drastically reduce the cost of computation of
the NR contributions to NLOPs. The formulae for the properties are equivalent to Eqs.
4.119 - 4.121 but with anm, q1, and q2 being evaluated as the derivatives with respect to
the three FIC1 and the six FIC2, and not the 3N�6 normal coordinates. This exceptional
feature is shown below for the example of NR contribution to static polarizability, which
requires usage of only two FIC1 as shown by the authors. The derivation involves a formal
representation of FICs as a new set of coordinates denoted as f ,
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and from the definition of FIC1, one gets M1a = �qa,a
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As a result, one expresses a

NR
ab

(0;0) with the exactly the same formulae as before, but
in the FIC1 basis. The above evaluation requires the usage of only two Cartesian com-
ponents of FIC1, namely c

a

1 and c

b

1 . Moreover, one has to always use just these two
FIC1 coordinates, regardless of number of atoms in the system. An equivalent demon-
stration could be done for any NR component of static NLOPs, as well as those for the
infinite frequency limit. To calculate b

NR
abg

(0;0,0) using FICs, one only has to utilize all
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three components of FIC1, c

i
1 (i=a , b , g). Computation of g

NR
abgd

(0;0,0,0) is much more

costly, because one has to utilize also all of the FIC2 components, c

i j
2 (i, j =a , b , g). This

still requires performing some numerical differentiation to obtain the high-order deriva-
tives, such as a30 and a40 (expressed in the FIC1 and FIC2 basis), however, it involves
many orders of magnitude less than if one calculated everything in the normal modes ba-
sis. For example, to compute g

NR
abgd

(0;0,0,0) using the normal modes basis, one requires
roughly (3N �6)4 mixed derivatives of the a40 type, among others. Moreover, as shown
by the authors, some terms of g

NR
abgd

(0;0,0,0) can be calculated using FIC1 only (that is
without FIC2), and, furthermore, one can use the harmonic part of FIC2 (see Eq. 4.145)
to calculate g
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abgd

(�w;w,0,0) and g
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abgd

(�w;w,�w,w) in the infinite frequency limit

w ! •, as well as the [a2]0,0
w=0 part of g
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(0;0,0,0).
By comparison to the arbitrary frequency BKPT terms, FICs have been expanded also

to frequency-dependent NLOPs in the nonresonant region. It simply requires changing
the denominators of several terms, such as q1, to include frequency dispersion [119]. For
example, FD-FIC of the first order is defined as [119],
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which is an equivalent definition of Eq. 4.143, but with the modified q1 term,
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Then, a

NR
ab

(�w;w) and b
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;w1,w2) are defined again with the equivalent formu-
lae 4.119 and 4.120, but with frequency dependent anm and qa,a

1,|w| quantities. As expected,
formulae for a
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ab

(�w;w) and b

NR
abg

(�w

s

;w1,w2) reduce properly to their static and infi-
nite frequency limit counterparts, when one sets w = 0 or w ! •. As in the case of static
FICs, the number of necessary FD-FIC coordinates is still far smaller than if one utilized
all normal modes in the evaluation. However, the usage of FD-FICs in the computation of
g

NR
abgd

(�w

s

;w1,w2;w3) requires much more computational effort, but still far less than if
one utilized the normal mode representation of Eq. 4.121.
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Chapter 5

Density Functional Theory
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5.1 Introduction
This chapter is devoted to the introduction of fundamental aspects of Density Functional
Theory (DFT), shifted towards computational chemistry. The discussion is more focused
on the practical aspects of DFT, not on the strict theoretical properties and constraints, on
which DFT is built. A part of this Chapter belongs to a fundamental approximation made
in DFT, namely the computation of integrals through the numerical integration, which is
directly related to the work presented in Chapters 8, 9, and 10.

5.2 Wavefunction Representation of a Quantum System
The most fundamental differential equation of quantum mechanics, the Schrödinger equa-
tion,

Ĥ|Yi= E|Yi , (5.1)

defines a set of pure quantum states of any quantum-mechanical system. Each of the states
is described with its unique wavefunction |Yi and is characterized with a total energy E.
These so-called eigensolutions are specific for a given energy operator, the Hamiltonian
Ĥ, which uniquely defines the quantum system.

The wavefunction vectors describing the states of N electrons are very complicated
quantities, depending on the 4N coordinates (3N spatial and N spin coordinates),

|Yi= Y(rs ,r2s2, . . . ,rNsN) , (5.2)

where ri = (xi,yi,zi) is the vector of position of the i-th electron, and the spin of the
electron is represented with si=a or b (the first electron denoted without the lower index).
|Yi contains all possible information on the particular quantum state. Among others, one
of the most important features of |Yi is its probabilistic interpretation and connection to
an experimentally measurable quantity, the electronic density r(r) and its spin component
r

s

(r). The electronic spin density, r

s

(r), is defined through the integration of |Yi over
all electronic coordinates but one, namely

r

s

(r) = N Â
s2...sN

Z
dr2 · · ·

Z
drN |Y(rs ,r2s2, . . . ,rNsN)|2 , (5.3)

where dr = dxdydz denotes the infinitesimal volume element. Then, the total electronic
density, r(r), is defined as a sum of its two spin components:

r(r) = r

a

(r)+r

b

(r) . (5.4)

With the use of r(r), one can quantify the probability of finding any electron within the
volume element dr centered at position r, which is simply evaluated as r(r)dr.

On the other hand, the Hamiltonian contains the information on the number and kind
of particles, how they interact with each other, and how they interact with an external
perturbation, if present. This Thesis focuses solely on the electronic structure of the
molecular systems. The separation of the nuclear motion is done by the means of the
Born-Oppenheimer approximation, and furthermore, the nuclei are treated as classical
point charges. Hence in this work, only the electronic part of the Hamiltonian is consid-
ered. In such case, the Hamiltonian of the system containing Nel electrons and Nnuc nuclei
is defined as a sum of several components:

Ĥ = T̂ +V̂ee +V̂ext , (5.5)
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where each of them has its own physical meaning. The two first operators in Eq. 5.5
are universal for any kind of system containing electrons, being the one-electron kinetic
energy operator T̂ ,

T̂ =�1
2

Nel

Â
i=1

—2
i , (5.6)

and the potential energy of the electrostatic repulsion between electron pairs, V̂ee (which
is a two-electron operator),

V̂ee =
1
2

Nel

Â
i

Nel

Â
j 6=i

1
|ri � r j|

. (5.7)

The third term in Eq. 5.5, V̂ext , is actually system dependent and describes the interaction
of electrons with an unique external potential. In general, this potential may be one-
electron (i.e. affects each electron separately) or many-electron (i.e. affects several of
them simultaneously). In this work, only one-electron external potentials are considered,
which makes V̂ext to be expressed as a sum of the Nel one-electron components,

V̂ext =
Nel

Â
i=1

v̂ext,s (ri) , (5.8)

In general, v̂ext,s (ri) may be any type of potential, such as the electrostatic attraction
of electrons and nuclei, the interaction with external electric and magnetic fields (the
latter depends on the spin of electrons as well), mechanic pressure spatially confining
electrons, or any model interaction as well, such as the model of Hooke’s atom. For
a molecular system without any external perturbation, v̂ext,s (ri) simply constitutes the
potential energy between the i-th electron and the set of Nnuc nuclei,

v̂ext,s (ri) = v̂ext(ri) =
Nnuc

Â
I

�ZI

|ri �RI|
. (5.9)

Accordingly, the total energy of the system can also be partitioned into several compo-
nents,

E = hĤi ,
= hT̂ i+ hV̂eei+ hV̂exti , (5.10)

where hÔi is the expectation value of the operator Ô and is formally calculated as

hÔi= hY|Ô|Yi ,

= Â
s1...sN

Z
dr · · ·

Z
drNY⇤(rs ,r2s2, . . . ,rNsN)ÔY(rs ,r2s2, . . . ,rNsN) . (5.11)

However, in addition to the tremendous amount of work required to solve the Schrödinger
equation (which has been solved exactly for a limited number of model systems), working
with such complex structure as |Yi is expensive from the computational point of view.
Because the electronic Hamiltonian of Eq. 5.5 consists of only one- and two-electron
operators, one can formally work with simpler quantities called reduced density matrices
[167], to express total energy and other (molecular) properties.

The one-particle reduced density matrix (1-RDM), r1(r0s ;rs), is defined as [167]

r1(r0s ;rs) = N Â
s2...sN

Z
dr2 · · ·

Z
drNY⇤(r0s ,r2s2, . . . ,rNsN)

⇥Y(rs ,r2s2, . . . ,rNsN) , (5.12)
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and is a more generalized version of Eq. 5.3 Actually, its diagonal component, r0 = r, is
equal to the electronic spin density, namely r1(rs ;rs) = r

s

(r). The one-particle reduced
density matrix can be used to efficiently calculate the expectation values of hT̂ i and hV̂exti,

hT̂ i=�1
2 Â

s

Z
drr2

rr1(r0s ;rs)|r0=r , (5.13)

hV̂exti=
Z

drr(r)v̂ext,s (r) . (5.14)

The pair density, r2(r0,r), which is the diagonal part of two-particle reduced density
matrix, is calculated by the integration of |Yi over all but two position coordinates r and
r0,

r2(r0,r) = N(N �1) Â
s1...sN

Z
dr3 · · ·

Z
drN |Y(r0s1,rs2, . . . ,rNsN)|2 . (5.15)

Similarly to density, it also has a probability interpretation, that is, r2(r0,r)dr0dr is the
joint probability of finding one electron in a volume element dr0 at position r0, and a
second electron in a volume element dr at position r. More importantly, r2(r0,r) can be
used to evaluate the interelectronic repulsion energy hV̂eei,

hV̂eei=
1
2

Z
dr

Z
dr0r2(r0,r)

|r� r0| . (5.16)

Actually, Eqs. 5.13, 5.14, and 5.16 represent these energy components as the functionals
of the reduced density matrices. A functional is a mathematical rule which maps a func-
tion (defined over a particular argument space) into a single real or complex number [72],
with a definite integral being the most notable example of a functional.

5.3 Density Functional Theory
In Density Functional Theory (DFT), one makes one step further in the "simplification"
of the energy expression. In DFT, the total electronic energy of the system is represented
solely in terms of the density [72, 168, 169]:

EDFT[r] = T [r]+Vee[r]+Vext [r] . (5.17)

Evaluation of such energy expression should be formally very efficient, since the density
is a function of only 3 spatial variables (in contrast to the wavefunction which depends
on 3N spatial coordinates or r1(r0s ;rs) and r2(r0,r), which depend on 6 spatial coordi-
nates).

Almost a century ago, Thomas and Fermi proposed the first approximation to the
energy, which was evaluated solely using the electronic density, and it did not depend on
the wavefunction or the reduced density matrix [72, 170, 171]. A key component of their
model was the fully local kinetic energy functional, T TF[r], based on the infinite uniform
electron gas,

hT̂ i ⇡ T TF[r] =
3
10

(3p

2)2/3
Z

drr

5/3(r) . (5.18)

The interelectronic repulsion was treated fully classically, i.e., as an interaction between
two independent electronic densities.

hV̂eei=U [r]+Uncl ⇡U [r] ,

=
1
2

Z
dr

Z
dr0r(r)r (r

0)

|r� r0| , (5.19)
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where Uncl is the non-classical part of the interelectronic repulsion, which was omitted in
the Thomas-Fermi model. Nuclear attraction energy could already be exactly calculated
using only the density,

hV̂exti=V ext [r] =�Z
Z

dr r(r)
|r�R| . (5.20)

The overall expression for the total energy of their atomic model was:

E ⇡ ETF[r] = T TF[r]+U [r]+V ext [r] ,

=
3

10
(3p

2)2/3
Z

drr

5/3(r)�Z
Z

dr r(r)
|r�R|

+
1
2

Z
dr

Z
dr0r(r)r (r

0)

|r� r0| . (5.21)

Despite its performance was very limited, it was the first realization of a true functional of
density. Another historical functional was proposed by Slater in 1951, who approximated
the nonclassical part of the electron interaction, namely the exchange interaction:

Uncl ⇡ ES
x [r] =

9
8

✓
3
p

◆3 Z
drr

4/3(r) . (5.22)

While originally Slater used different assumptions, an equivalent result was obtained
when developing an exact exchange functional for the model of infinite uniform elec-
tron gas [72, 172]. Later, the Slater functional became a starting point in the construction
of all modern exchange functionals.

In 1964, Hohenberg and Kohn built the theoretical foundations of DFT as we know
them today [168]. In their seminal works, they proved two fundamental theorems. The
first Hohenberg-Kohn theorem is a proof of Eq. 5.17, i.e. the existence of the functional
of the density yielding the exact total energy of the ground state. The theorem states
that the external potential V̂ext is uniquely determined by the density of the system, r(r),
therefore it is a density functional. Hence, the total electronic Hamiltonian, Ĥ, and its
corresponding expectation value, the energy, are also functionals of the density.

The second Hohenberg-Kohn theorem proves the variational character of the exact
density functional of the ground-state energy, that is, for any input density different from
the ground-state density, the exact functional will yield an energy higher than the true
ground-state energy E0:

E0 = E[r0]< E[r] if r(r) 6= r0(r) . (5.23)

Within the proof, they define the total energy with the use of a universal functional FHK[r]
(named as the Hohenberg-Kohn functional), which is system independent:

E[r0] = FHK[r]+V ext [r] , (5.24)

where
FHK[r] = T [r]+Vee[r] = min

Y!r0
hY|T̂ +V̂ee|Yi , (5.25)

In the above definition, |Yi must be the wavefunction that gives the exact density r0(r)
(Eqs. 5.3 and 5.4) and yields the lowest expectation value.

Although being an exact theory, the biggest obstacle of DFT is the description of
highly non-local quantities, namely the kinetic energy and interelectronic repulsion, in
terms of a very local variable, the electronic density. An accurate approximation of the
kinetic energy functional turned out to be the most challenging task, giving large errors
even in the simplest atomic systems.
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5.4 Kohn-Sham DFT
Within the field of quantum chemistry, modern applications of DFT almost always rely on
the Kohn-Sham version of DFT (KS-DFT) [173]. Kohn and Sham proposed to circum-
vent the problem of kinetic energy by evaluating it for the set of one-particle spinorbitals
obtained from a fictitious noninteracting model. This model was very special - it has some
resemblance with a real (molecular) system, i.e., the same number of electrons and nuclei
at the same positions, but with the interelectronic interaction completely turned off, while
still preserving the exact density of the true (interacting) system. While electrons were
not explicitly feeling the interaction of each other, they are were placed into a new unique
one-particle external potential v̂S,s (r), which exactly reproduces the same (interacting)
density.

Such noninteracting quantum system is described with the Hamiltonian ĤKS, ex-
pressed as a sum of single-particle operators f̂KS,i,s :

ĤKS =�1
2

Nel

Â
i

—2
i +

Nel

Â
i

v̂S,s (ri) ,

=
Nel

Â
i

f̂ KS
i,s . (5.26)

The latter does not contain any operator explicitly accounting for the interelectron inter-
action. The wavefunction |Fi is represented by a single Slater determinant formed from
a set of N Kohn-Sham spinorbitals {fi,s} [174]:

|Fi= |f1,a(r1)f1,b (r2) · · ·fN/2,a(rN�1)fN/2,b (rN)i ,

=
1p
N!

N!

Â
n
(�1)pnPn{f1,a(r1)f1,b (r2) · · ·fN/2,a(rN�1)fN/2,b (rN)} , (5.27)

where Pn is an operator that generates the n-th permutation of the electron labels 1,
2, . . . , N and pn is the number of transpositions required to obtain such permutation
[174]. Following the general rules of quantum mechanics, the density of a system of N
independent particles can be expressed as a sum of the squares of spinorbitals’ amplitudes.
Therefore, the density of the Kohn-Sham system, rS(r), is evaluated as

rS(r) = Â
s

N/2

Â
i
|fi,s (r)|2 = r(r) , (5.28)

and, as required by the model, rS(r) is equal to the exact density r(r) of the interacting
system.

The total electronic energy in KS-DFT is defined as the sum of the following compo-
nents,

EKS�DFT = Ts[{fs}]+Vext [r]+U [r]+Exc[r] . (5.29)

The first term, the kinetic energy evaluated within the KS-DFT scheme, Ts[{fs}], is ob-
tained from the expectation value of T̂ for the KS determinant F:

Ts[{fs}] = hF|T̂ |Fi ,

=�1
2 Â

s

N/2

Â
i

Z
drf

⇤
i,s (r)—2

fi,s (r) , (5.30)
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and is evaluated for a given set of Kohn-Sham orbitals. The second term in Eq. 5.29 is the
potential energy, Vext [r], corresponding to the interaction of electrons with the external
potential. As mentioned in Eq. 5.14, Vext [r] is an explicit functional of the density and,
in the case of molecular systems (without the presence of any external perturbations), is
defined as the integral:

Vext [r] =
Z

dr
Nnucl

Â
I

�ZI

|r�RJ|
r(r) . (5.31)

The third term in Eq. 5.29 is the classical part of the interelectronic repulsion, namely the
Coulomb repulsion energy U [r]:

U [r] =
1
2

Z
dr

Z
dr0r(r)r (r

0)

|r� r0| . (5.32)

Lastly, Exc[r] is the exchange-correlation energy, the main unknown in KS-DFT, which
incorporates the effects of all approximations made by adapting the Kohn-Sham non-
interacting model. Exc[r] is defined through two separate components, the exchange en-
ergy, Ex[r], and the correlation energy, Ec[r],

Exc[r] = Ex[r]+Ec[r] . (5.33)

The exchange energy incorporates the Pauli exclusion effect that affects the electrons of
the same spin, and is simply defined as the difference between the two-electron energy
calculated for the Kohn-Sham wavefunction |Fi and the classical Coulomb repulsion:

Ex[r] = hF|V̂ee|Fi�U [r] . (5.34)

Correlation energy constitutes the remaining energetic effects arising from the approxi-
mating the real interacting system with the Kohn-Sham model, including the incomplete-
ness of |Fi for the description of the true ground-state wavefunction |Yi:

Ec[r] = hY|T̂ +V̂ee|Yi�hF|T̂ +V̂ee|Fi ,
= (T [r]�Ts[r])+(Vee[r]�U [r]�Ex[r]) ,

= Tc[r]+Uc[r] . (5.35)

As shown above, one can further separate Ec into the kinetic part, Tc[r], accounting for
the lack of correlation in kinetic energy, and potential part, Uc[r], accounting for the lack
of correlation in interelectronic repulsion. Both Ex[r] and Ec[r] are always non-positive
numbers. The Kohn-Sham approach alleviates the problem of the nonlocal character of
kinetic energy by using an exact quantum mechanical representation in Ts (although for an
approximate wavefunction). Ts approximates most of the exact T [r] and correctly mimics
the atomic shell structure. Then, the small fraction of the energy which is put into Exc is
somewhat better approximated by local and semi-local approximations. However, as a
side effect, in KS-DFT one actually works with orbitals and not only the density, which
increases the cost of the actual calculation.

Kohn-Sham spinorbitals are obtained by solving the set of N independent one-particle
equations, which are defined for the one-particle Kohn-Sham operator f̂ KS

s

,

f̂ KS
s

fi,s (r) = ei,s fi,s (r) ,⇢
�1

2
—2 + v̂S,s (r)

�
fi,s (r) = ei,s fi,s (r) . (5.36)
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The above set of equations are equivalent to the ones obtained from the Hartree-Fock
method, the difference lying in the one-electron potential v̂S,s (r). In the Kohn-Sham
method, v̂S,s (r) is defined as the sum of the external potential, v̂ext,s (r) (nuclear attrac-
tion), the classical Hartree (Coulomb) potential v̂H(r), and, the exchange-correlation po-
tential v̂xc,s (r):

v̂S,s (r) = v̂ext,s (r)+ v̂H(r)+ v̂xc,s (r) . (5.37)

Those potentials are defined as the functional derivatives of corresponding potential ener-
gies:

v̂H(r) =
dU [r]

dr

=
Z

dr0 r (r0)
|r0 � r| , (5.38)

v̂xc,s (r) =
dExc[r]

dr

s

, (5.39)

=
dEx[r]

dr

s

+
dEc[r]

dr

s

, (5.40)

= v̂x,s (r)+ v̂c,s (r) , (5.41)

and v̂ext,s (r) is defined according to Eq. 5.9.

5.4.1 KS-DFT Equations in a Finite Basis
In quantum chemistry, the Kohn-Sham equations are solved iteratively using a finite
atomic-centered basis. This was formally established in the work of Pople, Gill, and
Johnson and was the DFT equivalent of the Roothaan-Hall (for closed-shell systems) and
Pople-Nesbet (for open-shell systems) equations [175]. This section summarizes the most
important theoretical aspects of this implementation. Unless stated otherwise, the Latin
letters (i, j, k, l) label the molecular spinorbitals, the Greek letters (µ , n , l , d ) label the
atomic orbitals, whereas a and b denote the spin component.

In most quantum chemical computations, molecular spinorbitals are expressed as a
linear combination of atomic orbitals (LCAO),

fi,s (r) =
M

Â
µ

cs

µicµ

(r) , (5.42)

with c

µ

(r) being an atomic-centered basis function, named also Atomic Orbitals (AOs),
and cs

µi being the corresponding orbital coefficient. The most common AOs are the Gaus-
sian type orbitals (GTOs). The spin density and its gradient are expressed in terms of AOs
as

r

s

(r) =
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(r)c
n

(r) , (5.43)
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(r)) . (5.44)

Ps

µn

is the spin one-particle density matrix and when the wavefunction is described with
a single Slater determinant, it is expressed in the atomic basis as:

Ps

µn

=
N/2

Â
i
(cs

µi)
⇤cs

in . (5.45)
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Like in the case of the total electronic density, one defines the total density matrix as the
sum of two spin components:

P
µn

= Pa

µn

+Pb

µn

. (5.46)

Most of the functional approximations, as will be showed later in the following sec-
tions, have semi-local form, depending solely on the spin densities and its gradient. One
can express Eq. 5.33 as the integral of a general integrand of density and its gradient,
f (r
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,g
bb

),

Exc[r] =
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dr f (r
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) , (5.47)

where
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(r)|2 , (5.48)
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(r)|2 , (5.49)
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(r) ·rr
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(r) . (5.50)

For Exc[r] in Eq. 5.47, one can derive the expressions for the exchange-correlation poten-
tials:
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One can naturally expand the above formula for Exc[r] in terms other density-related
quantities, such as its Laplacian, or terms based on the kinetic-energy density.

In the finite basis, the one-particle Kohn-Sham eigenequations (Eq. 5.36) are trans-
formed into a set of secular equations that must be solved to obtain the orbital coefficients
cs

n i,
M

Â
n

⇣
Fs

µn

� e

s

i S
µn

⌘
cs

n i = 0 , (5.53)

which involve the matrices expressed in the AO basis. Namely, these are the overlap S
µn

matrix,
S
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and the Fock matrix, Fs
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= Hcore
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+ J
µn

+Fxc,s
µn

. (5.56)
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In KS-DFT, the Fock matrix can be split into three components. The first two are also
common for the Hartree-Fock method: the bare nucleus Hamiltonian matrix, Hcore

µn

, and
the Coulomb matrix, J

µn

,
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, (5.57)

J
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=
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Â
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P
ld

(µn |ld ) , (5.58)

where (µn |ld ) is a two-electron integral expressed in a quantum mechanical notation
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The third term in Eq. 5.56 is the exchange-correlation part of the Fock matrix (whereas
in Hartree-Fock, there is solely the exact exchange instead). By inserting Eqs. 5.51 and
5.52 into the integral of Eq. 5.55, one obtains the following expressions for the a and b

parts of Fxc
µn

:
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After solving Eq. 5.53 in an iterative manner, one obtains the set of LCAO coefficients
cs

n i defining the Kohn-Sham spinorbitals. As a result, one expresses the total energy of
Eq. 5.29 in a finite AO basis:

EKS�DFT =
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where Exc[r] is defined by Eq. 5.47 and in almost all cases is calculated using numerical
integration.

5.5 Jacob’s Ladder of Density Functional Approximations
In principle, DFT is as an exact theory, as the Schrödinger equation is. However, its
exactness requires the exact density functional, which is still unknown (and may remain
as such forever). Besides hints on the properties of exact functional, in a form of strict
theoretical constraints, no general prescription of how to approximate it exists. However,
over the decades, some relatively successful Density Functional Approximations (DFAs)
have been proposed.

Nowadays, it is common to discuss the increasing complexity and performance of
DFAs using the so-called Jacob’s ladder of DFT. This simple hierarchy, introduced by
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John Perdew and Karla Schmidt, classifies DFAs onto different rungs (i.e., tiers) based
on the type of density-based components they utilize [176, 177]. Going up in the ladder,
each rung incrementally adds more density components in the functional, while also in-
creasing their computational cost. In general, DFAs from higher rungs tend to show better
performance in reproducing experimental or high-level ab-initio data. Below, a very brief
description of each rung of the DFT Jacob’s ladder is given, along with some examples of
the most popular approximations of each type.

The 1st Rung - Local Spin Density Approximations (LSDAs)

The lowest rung of the ladder belongs to the LSDAs, includes local functionals, depending
solely on the values of the electronic spin densities, r

a

(r) and r

b

(r), and are represented
as
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where e

unif
xc (r

a
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b

) is the exchange-correlation energy per particle of the electron gas of
density r , and in the case of LSDAs, it is derived from the infinite uniform electron gas
model. The LSDA exchange part can be derived exactly from first principles and is simply
the Slater-Dirac functional:
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On the contrary, no explicit exact expression for the LSDA correlation has been derived.
The most widely used LSDA approximations are the ones of Vosko, Wilk, and Nuisar
(VWN, several versions available) and the one of Perdew and Wang (PW92). Those have
very complicated formula and were derived as interpolations of highly accurate quantum
Monte-Carlo calculations. Despite its very local character, LSDA works very well for
metallic solid-state systems because of the very delocalized and slowly varying electronic
density of such systems. In contrast, in molecular systems where the density changes are
very rapid and of high amplitudes, LSDA performs badly and is not reliable even for a
qualitative analysis.

The 2nd Rung - Generalized Gradient Approximations (GGAs)

The second rung consists of functionals that also include the gradients of the spin density,
—r
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(r) and —r
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(r), namely
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In many cases, dependency on —r(r) is introduced through the reduced spin density
gradient, s

s

(r), which is defined as

s
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, (5.67)

and is a convenient parameter of density inhomogenicity. Large values of s
s

(r) corre-
spond not only to regions of large gradients but also to regions of very small densities,
such as exponential tails far from the nuclei. Conversely, small values of s

s

(r) correspond
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to regions with slowly varying densities or regions with very large densities, such as in the
closest vicinity of nuclei. In principle, there are many separate exchange and correlation
GGAs that one can mix together; therefore, it is better to introduce them separately. In
quantum chemistry, the two most popular exchange functionals are B88 [178] and PBE
[179]. The former one, developed by Becke in 1988 and fitted to reproduce the exact
exchange of rare gas atoms, is defined as the extension of the Slater exchange [178]:
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In the above equation, FB88
x,s is the enhancement factor,

FB88
x,s = b

s
s

(r)2

1+6b s
s

(r)sinh�1s
s

(r)
, (5.70)

with the only fitted parameter of b = 0.0042. FB88
x,s vanishes for ideally homogeneous

spin densities, as expected.
Regarding the GGA correlation functionals, two of the most widely used are LYP

[180] and PBE [181].

The 3rd Rung - meta-Generalized Gradient Approximations (meta-GGAs)

The third rung belongs to the functionals depending on the kinetic energy density, t

s

, and
less frequently on the Laplacian of the density —2

r(r):

Emeta�GGA
xc [r

a

,r
b

] =
Z

drr(r)emeta�GGA
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) , (5.71)

and the kinetic energy density calculated within KS-DFT as

t

s

= Â
i
|—fi,s |2 , (5.72)

with fi,s being the i-th Kohn-Sham spinorbital. Due to the dependence on t

s

in meta-
GGA, one can distinguish the regions of space in which one orbital dominates the electron
spin density [177]. Almost all meta-GGAs have very complicated, layered expressions.
The most popular meta-GGAs used in chemistry are TPSS [182], SCAN [183], M06-L
[184] and MN15-L [76].

The 4th Rung - Global and Range-Separated Hybrids (GHs and RSHs)

The fourth rung belongs to hybrid functionals, in which one introduces a fully non-local
exact exchange, Eexact

x , i.e., the Hartree-Fock exchange evaluated for the occupied Kohn-
Sham orbitals:

Eexact
x =�1

2 Â
s

occ

Â
i, j

Z
dr

Z
dr0

f

⇤
i,s (r)f⇤

j,s (r0)fi,s (r)f j,s (r0)
|r� r0| . (5.73)

Such types of hybrid functionals are used only within the KS-DFT scheme, which ex-
plicitly uses one-particle orbitals. While in general one has to construct functionals in
which exchange and correlation parts have similar level of locality, it is formally possible
to introduce the exact exchange through the adiabatic connection [169, 185–188].
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Two of the most common types of hybrid DFAs are Global Hybrids (GHs) and Range-
Separated Hybrids (RSHs). In the former ones, the mixing of the exact and (meta-)GGA
exchange is the same for all points in space, i.e., it is set globally:

EGH
xc = E(meta�)GGA

xc +ax(Eexact
x �E(meta�)GGA

x ) , (5.74)

where ax is one of the possible admixture coefficients, which increases the exact ex-
change, while decreasing the (meta-)GGA exchange.

One of the other possibilities to incorporate the exact exchange, which is adapted in
RSHs, is to vary the amount of exact exchange depending on the interelectronic distance.
Namely, exact exchange is introduced only at long interelectronic distances (LR), whereas
at short interelectronic ranges (SR) mostly the (meta-)GGA exchange prevails. In general,
such partition can be expressed as

ERSH
xc,w = E(meta�)GGA,SR

x,w +Eexact,LR
x,w +E(meta�)GGA

c . (5.75)

Such inclusion of the exact exchange at long distances corrects the exact asymptotic be-
havior of the exchange interaction, which should asymptotically decay as lim

r12!•
Ex = 1/r12

[169, 189]. The asymptotic limit can be achieved through the Ewald splitting of the two-
electron repulsion operator, which in a more general way is defined as [189]

1
r12

=
1� [a +berf(wr12)]

r12
+

a +berf(wr12)

r12
. (5.76)

The first term of the r.h.s. of Eq. 5.76 corresponds to the SR part, whereas the second cor-
responds to the LR part; erf is the standard error function, a governs the minimal amount
of exact exchange at both SR and LR, b controls the additional amount of exact exchange
at different ranges. The most important parameter defining the RSH performance is w ,
the range separation parameter, which determines the transition from SR to LR. Larger
values of w result in a quicker transition from the DFA to the exact exchange, that is, the
transition already occurs at the shorter interelectronic distances.

From Eq. 5.76 one can obtain the following equations for the SR and LR exchange
terms:

E(meta�)GGA,SR
x,w = (1�a)E(meta�)GGA

x �bE(meta�)GGA
x,w , (5.77)

Eexact,LR
x,w = aEexact

x +bEexact
x,w . (5.78)

While the expression for Eexact
x,w is obtained by changing 1/r12 in Eq. 5.73 by the second

term of Eq. 5.76, the short range version of the DFA exchange E(meta�)GGA
x,w must be

derived from scratch.
Some RSHs utilize only the short-range part of the DFA exchange at SR, whereas

at LR only the exact exchange prevails. This corresponds to setting a = 0 and b = 1
in Eqs. 5.77 and 5.78. Most notable examples of such RSHs are LC-BLYP [190], LC-
wPBE [191], and wB97X [192], with the parameter w set to 0.47, 0.30, and 0.30 Bohr�1,
respectively. The CAM-B3LYP functional includes the GGA exchange at all distances,
by using a = 0.19, b = 0.46 and w = 0.33 Bohr�1 [193]. RSHs improve the accuracy of
the excitation energies to Rydberg and charge transfer states, when compared to GHs and
other types of DFAs [194–199].

Chemical performance of RSHs can be improved by a system-specific tuning of the
range-separation parameter w , giving rise to RSHs commonly known as Optimally Tuned
RSHs (OT-RSHs) [92, 100, 102, 107, 200–206]. Several w-tuning techniques have been
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proposed, adopting different constraints and targeting different molecular properties. Most
often, the range separation parameter is adjusted to impose Janak’s theorem, which states
that for the exact Kohn-Sham exchange correlation potential, the energy of the highest oc-
cupied molecular orbital (HOMO) should be equal to the negative value of the ionization
potential [207]. A popular procedure for the optimization of range separation parameter
requires to minimize the following function,

J(w) =

q⇥
e

N
HOMO(w)+ IPN(w)

⇤2
+
⇥
e

N+1
HOMO(w)+ IPN+1(w)

⇤2
, (5.79)

where for the system with N electrons, e

N
HOMO is the energy of HOMO orbital and IPN is

the ionization potential.

The 5th Rung - Double Hybrids (DHs)

The last rung of Jacob’s ladder, the fifth one, belongs to the functionals which additionally
utilize the information on the virtual Kohn-Sham orbitals. This is done to more precisely
account for nonlocal correlation effects, which are omitted in most DFAs. Inclusion of
the nonlocal correlation can be done in many ways, but one of the most popular and
conceptually simplest methods is the so-called Double Hybrids (DHs). In DHs, in addi-
tion to mixing of the (meta-)GGA and exact exchanges (as in GHs), one combines the
higher-level correlation with the correlation part of DFAs:

EDH
xc = E(meta�)GGA

xc +ax(Eexact
x �E(meta�)GGA

x )+ac(Ehigh�level
c �E(meta�)GGA

c ) . (5.80)

In the most popular DHs, Ehigh�level
c is evaluated by the second-order perturbation theory

in the framework of DFA, EPT2
c , by the means of the Görling-Levy theory [208, 209].

Shortly, EPT2
c is evaluated in similar manner to the second-order Moller-Plesset (MP2)

corrections for the Hartree-Fock energy [174, 210], but employing the Kohn-Sham or-
bitals. The most important feature of DHs is their improved description of long-range
effects in non-covalent interactions. Unfortunately, the usage of DFAs from this rung is
very costly (formal cost equivalent to MP2), which prohibits using them for large chem-
ical systems. Most notable examples of modern DHs are B2PLYP [211], mPW2PLYP
[212], PBE-QIDH [213], and PBE0-DH [214].

5.6 Numerical Integration in KS-DFT
This section introduces the key elements of the numerical integration performed when
solving the KS-DFT equations. Although by many considered as just a technical issue,
numerical integration is a fundamental approximation that determines the accuracy of
modern DFAs. Besides constructing a physically accurate exchange-correlation func-
tional, one has to solve two key types of integrals in KS-DFT. These are the integrals for
the exchange-correlation energy Exc[r(r)] (Eq. 5.47) and the elements of the Fock matrix
corresponding to the exchange-correlation potential (Eqs.5.60 and 5.61). Exact, i.e., fully
analytical evaluation of those integrals is possible only for the simplest DFAs, such as
Slater exchange, and mostly for model systems or plain atoms.

5.6.1 Multicenter Integration. Becke Partitioning Scheme
The key concept of solving such complicated integrals defined over whole molecular
space (i.e. solving molecular integrals) is to first partition them into many integrals over
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smaller subspaces. Multicenter partition is an exact decomposition and does not introduce
any approximation. If the IA integrals were solved analytically, the total I integral would
be exact. By referring to the nature of atoms in molecules, in his fundamental work,
Becke proposed to partition the molecular integrals simply into integrals defined over the
atomic domains [215]. The goal was to express the integral I of a general integrand F(r)
as a sum of atomic contributions,

I =
Z

drF(r) = Â
A

IA , (5.81)

where A denotes the A-th atom and the integral IA is simply defined as

IA =
Z

drFA(r) . (5.82)

While still defined over the whole Cartesian space, the origin of integration in IA is chosen
to be exactly at the position of the A-th nucleus. The partitioning itself is achieved through
the usage of atomic weights wA, which for each point in space, r, sum to one:

Â
A

wA(r) = 1 . (5.83)

Then, one finally partitions the integrand F(r) as

F(r) = Â
A

wA(r)F(r) = Â
A

FA(r) , (5.84)

which leads to Eqs. 5.81 and 5.82. In Becke’s partitioning scheme, the weights are defined
as

wA(r) =
PA(r)

ÂB PB(r)
, where PA = ’

B 6=A
sk

B(µAB) , (5.85)

with sk
B designed to be (smooth) step-like functions. For a given atom A, its weight should

decay smoothly from the value wA(RA)⇡ 1 at the position of the A-th nucleus, RA, to zero.
Moreover, at RA all the weights of the other atoms are (nearly) zero. Becke proposed to
define atomic cells in a strictly geometrical manner using fuzzy Voronoi polyhedra (also
called fuzzy Voronoi cells) [215]. For that purpose, Becke utilized the elliptical coordinate
µAB,

µAB =
rA � rB

RAB
, (5.86)

where for a given point in space r , rA and rB denote distances to nuclei A and B from that
point, and RAB is the internuclear separation between this pair of centers:

rA = |r� rA| ,
rB = |r� rB| ,

RAB = |rA � rB| .

If one used non-overlapping cells (where weights w are ideal step functions), all points for
which �1  µAB  0, 8B 6= A would belong exclusively to the polyhedron of the atom A.
This simplified scenario would correspond to the following ideal step function sk

B(µAB):

sk
B(µAB) =

(
1, if �1  µAB  0
0, if 0 < µAB  1

. (5.87)
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Instead, Becke proposed a following smoothing function,

sk
A(µAB) =

1
2
[1� fk(µAB)] , (5.88)

which was constructed iteratively as

f1(µAB) =
3
2

µAB �
1
2

µ

3
AB , (5.89)

fk(µAB) = f [ fk�1(µAB)] . (5.90)

After thorough exploration, Becke finally adopted k = 3. Formally, the above formulation
was given for homoatomic pairs. In the case of heteroatomic pairs, Becke proposed to use
sk

A(nAB) instead, with nAB calculated as

nAB = µAB +aAB(1�µ

2
AB) . (5.91)

In the above formula, the role of the parameter aAB was to account for the different sizes
of the atoms A and B,

aAB =
uAB

u2
AB �1

and uAB =
cAB �1
cAB +1

, (5.92)

where cAB = R0,A/R0,B is the ratio of the Slater-Bragg radii of atoms A, R0,A, and B, R0,B.
Becke’s scheme adapting the fuzzy Voronoi cells is the most widely applied multicen-

ter partitioning of molecular integrals in quantum chemistry. However, there have been
proposed other partitioning schemes, the most notable of those are Hirshfeld partitioning
and the one based on the Quantum Theory of Atoms in Molecules (QTAIM). Salvador
and Ramos-Cordoba extended Becke’s scheme to include the density topological descrip-
tors to define nAB, rather than the fixed ratio of the Slater-Bragg radii of atoms [216]. This
allowed to account for the differences in sizes of atomic basins in different chemical en-
vironments, especially those due to the partial ionic character of atoms. In the Hirshfeld
partitioning, the atomic weight in Eq. 5.84 is defined as the ratio [217]

wA(r) =
r

0
A(r)

ÂB r

0
B(r)

, (5.93)

where r

0
X(r) correspond to the spherically averaged density of isolated atom X placed at

the equivalent position in space as in the studied molecule.

5.6.2 Atomic Integration in the Spherical Polar Coordinate System
After defining atomic contributions to the F integrand, one has to solve separately the IA
integrals. Because IA are atomic centered it is naturally to express them in the spherical
polar coordinate system, (r, q , and f ), and treating the origin of the integration at the
position of the nucleus:

IA =
Z

drFA(r) ,

=
Z •

0
dr r2

Z
p

0
dq sinq

Z 2p

0
dfFA(r,q ,f) . (5.94)

Then, one calculates atomic integral in a stepwise manner, namely, firstly integrating over
the angular part,

FA(r) =
Z

p

0
dq sinq

Z 2p

0
dfFA(r,q ,f) , (5.95)
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and secondly, integrating the radial part,

IA =
Z •

0
dr r2FA(r) . (5.96)

At this point, one introduces the actual numerical integration to approximate the Eqs. 5.95
and 5.96. To do so, for each radial shell ri (defining the sphere of radius ri) the angular
integral is evaluated using the angular quadrature,

FA(ri)⇡
NW

Â
j

wq ,f
j FA(ri,q j,f j) , (5.97)

where wq ,f
j is the angular grid-weight and q j,f j are the angular coordinates of the j-th

angular grid-point. Subsequently, the radial quadrature is utilized to finally evaluate the
IA integral,

IA ⇡
Nr

Â
i

wr
i FA(ri) , (5.98)

where, equivalently, wr
i is the radial grid-weight and ri is the radial distance from the

origin of integration (i.e. the radial shell) of the i-th radial grid point.
Therefore, the overall numerical approximation of the IA integral can be concisely

written as:

IA ⇡
Nr

Â
i

wr
i

NW

Â
j

wq ,f
j FA(ri,q j,f j) . (5.99)

Then, the problem of numerical integration boils down to determining grid points and
weights. Traditionally, the size of the integration grid in the KS-DFT calculations is
denoted as (Nr, NW), where Nr and NW, respectively, indicate the number of radial shells
and angular points per atom, hence, the total number of grid points per atom is NrNW.

5.6.3 Angular Grids
In most of the applications in quantum chemistry, the angular part is integrated via the
Lebedev quadrature [218–221]. Each integral over the unit sphere S2 = {r 2 R3 : |r| = 1}
is expressed with the Lebedev quadrature as [218–221]

Z

S2
dW f (r) =

Z
p

0
dq sinq

Z 2p

0
df f (q ,f) = 4p

NW

Â
i

wW
i f (ri) , (5.100)

where wW
i are the grid weights and ri are the points located in the unit sphere. Actually,

one can always expand any function f (q ,f) defined over a unit sphere as a sum of the
spherical harmonics,

f (q ,f) =
•

Â
l=0

l

Â
m=�l

clmY m
l (q ,f) . (5.101)

Spherical harmonic Y m
l of the l-th degree and the m-th order is defined using the normal-

ized associated Legendre function of corresponding degree and order:

Y m
l (q ,f) =

1p
2

Pm
l (cosq)eimf . (5.102)

Grid weights and sampling point positions are obtained by solving a set of non-linear
equations that were derived by enforcing symmetry and exactness conditions. Lebedev



56 CHAPTER 5. DENSITY FUNCTIONAL THEORY

solved and tabulated angular grids up to lmax = 131, which corresponds to a grid of 5810
points.

Lebedev’s angular grid owes its popularity to its very unique property the grid of the
l-th order integrates exactly all spherical harmonics up to the l-th degree [218–223]. This
is of special importance because the spherical harmonics actually define the angular part
of the atom-centered basis functions utilized in quantum chemistry. This corresponds to
a finite sum equivalent to Eq. . However, more complex integrands involving kernels
of DFAs, are much more complicated and combine linear harmonic in a nonlinear man-
ner. It has also been shown that Lebedev grids are very cost-efficient when compared to
other schemes for integration of the angular part, such as angular product grids involving
Gauss-Legendre quadratures. Additionally, the Lebedev grid is invariant under symmetry
operations of the octahedral point group. Unfortunately, this particular feature does not
provide any gain in the real calculations of molecules because of the adoption of multi-
center partitioning of molecular integrals.

5.6.4 Radial Grids
Radial integration of the atomic integral is treated as a typical 1D problem,

I =
Z •

0
dr r2 f (r) , (5.103)

where for brevity, following simplification of symbols is used from now on, namely I =
IA, f (r) = FA(r), and wi = wr

i . However, the radial integral defined in the unbounded
range [0;•) requires either the application of a special quadrature or the mapping to a
finite integral before applying the quadrature. In almost all radial grids used in quantum
chemistry, the latter approach is adapted, which allows for more tunable integration. This
is important because most molecular integrands are concentrated in the core regions of
atoms.

The two most widely used quadratures for the radial grid of DFAs are Euler-Maclaurin
quadrature of second order and Chebyshev quadrature of the second kind. Euler-Maclaurin
quadrature, in general, can approximate any type of function, usually defined over the
range [0,1], Z 1

0
dx f (x)⇡

n

Â
i

wi f (xi) , (5.104)

where n is the number of radial points. Euler-Maclaurin uses equally spaced points xi and
equal weights wi [224],

xi =
i

n+1
, , (5.105)

wi = 1 . (5.106)

In the Chebyshev quadrature of the second kind, defined over the range [�1,1], one ap-
proximates a particular type of integral [225],

Z 1

�1
dx
p

1� x2 f (x)⇡
n

Â
i

wi f (xi) , (5.107)

with the sampling points xi being the nodes of the Chebyshev polynomials of the second
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kind with the corresponding weights wi,

xi = cos
✓

ip
n+1

◆
, (5.108)

wi =
p

n+1
sin2

✓
ip

n+1

◆
. (5.109)

However, prior to the application of such quadratures, one has to map the semi-infinite
domain [0;•) into the finite domain for which a given quadrature has been developed.
For that reason, one has to apply the change of variables r = R(t), with t being the new
integration coordinate for the finite domain. In general, after applying the R(t) mapping,
one converts the integral in Eq. 5.103 to

I =
Z b

a
dtR0(t)R2(t) f (R(t)) , (5.110)

where R0(t) = dR(t)/dt is the derivative coming from the Jacobian transformation of the
integral. The choice of the mapping function is crucial, it has to provide the highest
resolution in the core region of the atoms and a bit sparser resolution in the valence region
of the atoms (to minimize the number of redundant points r which do not contribute to the
property). The resolution of the mapping is controlled with R0(t), small value of R0(t) tells
that a given interval for r is mapped onto a large interval of t (implying high resolution)
[226]. For an efficient mapping, R0(t) should be small where R(t) is small, and large
where R(t) is large [226].

In the rest of this section a few of commonly applied radial grids are briefly introduced.
This short compilation corresponds to the one given in the work of Gill and Chien [223].
For each of the presented radial grids, the description includes its adopted mapping R(t),
the form of the transformed integral I on the finite ranges, sampling points ri and their
corresponding weights wi. Moreover, the type of function integrated exactly by such
given radial grid is also shown.

In his work on multicenter partitioning, Becke also proposed the radial grid to solve
the atomic integrals [215]. It adapted the following mapping R(t) onto the [�1,1] interval:

r = R(t) = R0
1+ t
1� t

, (5.111)

I = 2R3
Z 1

�1
dt
(1+ t)2

(1� t)4 f (R(t)) . (5.112)

Then, to integrate Eq. 5.112, Becke used the Chebyshev quadrature of the second kind
(see Eqs. 5.107 to 5.109). This leads to the following equations for radial points ri and
weights wi:

ri = R0
1+ ti
1� ti

, (5.113)

wi =
2p

n+1
R3

0
(1+ ti)5/2

(1� ti)7/2 , (5.114)

ti = cos
✓

ip
n+1

◆
. (5.115)

As shown by Gill and Chien, Becke’s radial grid with n points can integrate exactly the
generic function f (r),

f (r) =
1

r3/2(r+R0)3 P2n�1

✓
r�R0

r+R0

◆
, (5.116)
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where P2n�1 is a polynomial of the 2n-1-th order.
Murray, Handy and Laming proposed a radial grid, named Handy’s grid, which was

based on the following mapping to the [0,1] interval [224],

r = R(t) = R0
t2

(1� t)2 , (5.117)

I = 2R3
0

Z 1

0
dt

t5

(1� t)7 f (R(t)) . (5.118)

Handy’s grid utilizes the second-order Euler-Maclaurin summation formula (see Eqs.
5.104 to 5.106) to calculate the above integral, which yields the following radial points
and weights:

ri = R0
t2
i

(1� ti)2 , (5.119)

wi = R3
0

2t5
i

(n+1)(1� ti)7 , (5.120)

ti =
i

n+1
. (5.121)

The n-point Handy grid integrates exactly the generic function f (r):

f (r) =
1

r5/2(
p

r+
p

R0)2 L
✓ p

rp
r+

p
R0

◆
, (5.122)

where L(x) is a continuous function linear between the roots xi and vanishing at the
boundaries. Treutler and Ahlrichs proposed a more complicated transformation of the
coordinates to the [�1,1] interval [227],

r = R(t) =�R0
(1+ t)a

ln2
ln
✓
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2

◆
, (5.123)
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and combined it with the Chebyshev quadrature, yielded the following set of points and
weights,

ri =�R0
(1+ ti)a

ln2
ln
✓

1� ti
2

◆
, (5.125)
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, (5.126)

ti = cos
✓

ip
n+1

◆
, (5.127)

where, basing on their extensive tests, a was set to 0.6 [227]. Gill and Chien could
not determine the type of functions which are exactly integrated by Ahlrichs’ grid, due
to the complicated mapping in Eq. 5.123. Mura and Knowles suggested the following
transformation R(t) [228],

r = R(t) =�R0 ln(1� t3) , (5.128)
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I = 3R3
0

Z 1

0
dt

t2 ln2(1� t3)

1� t3 f (R(t)) , (5.129)

which maps the integral over the range [0,1]. They combined it with the Euler-Maclaurin
integration, yielding the following set of radial points and weights,

ri =�R0 ln(1� t3
i ) , (5.130)

wi = R3
0

3t2
i ln2(1� t3

i )

(n+1)(1� t3
i )

, (5.131)

ti =
i

n+1
, (5.132)

f (r) =
e�r/R0

r2(1� e�r/R0)2/3 L[(1� e�r/R0)1/3] . (5.133)

In the same work, Gill and Chien proposed their own radial grid, namely the MultiExp
grid [223]. It was constructed to properly integrate linear combinations of exponential
functions, namely,

f (r) =
2m

Â
k=1

cke�kr/R0 . (5.134)

The authors were motivated by the fact that the basis sets applied in most of the KS-DFT
computations are of Slater (STO) or Gaussian (GTO) type. In the latter case, GTO basis
functions are still contracted to mimic the sharpness of STOs. In the MultiExp grid, the
following mapping is applied to the [0,1] interval:

r = R(t) =�R0 ln t , (5.135)

I = R3
0

Z 1

0
dtt�1(ln t)2 f (R(t)) . (5.136)

In contrast to other radial grids, the MultiExp grid has its own unique set of grid points
and weights,

ri =�R0 ln ti , (5.137)

wi = R3
0

ai

xi
, (5.138)

where ai and xi are found numerically by inverting the Cholesky triangle of the associated
Gram matrix of polynomials Qn(t), which are orthogonal to the weight function ln2 t.

None of the radial quadratures ideally approaches the problem of integration in KS-
DFT. Many works tried to assess the efficiency of each radial quadrature, along with new
improved schemes based on local augmentation or adaptive grid schemes [222, 226–230].
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Chapter 6

Chemical Bonding Analysis
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6.1 Introduction
In this Chapter, we briefly introduce the methodology to perform a topological analysis of
the electronic density within the Quantum Theory of Atoms in Molecules (QTAIM) and to
compute formal oxidation states of the atoms in a molecule using the effective oxidation
states approach. In Chapter 11 of this Thesis, these two theories are used to characterize
very unique and rare types of systems called molecular electrides. In molecular electrides,
one can identify isolated localized electrons that formally do not belong to any of the
atoms and may act as the smallest anions possible.

6.2 Quantum Theory of Atoms in Molecules
There exist plethora of ways of defining the atomic moieties in a molecule from first
principles. In general, they can be categorized into those operating in the Hilbert space
(i.e., orbital space) or in the Cartesian space (i.e., the real space of positions of electrons
and nuclei). The most notable partitionings belonging to the former group are the ones
developed by Mulliken[231] and Löwdin[232]. Shortly, they define an atom in terms of
the AOs localized in the corresponding nucleus, and all expectation values of local atomic
properties are evaluated only using such set of atomic orbitals. Bonds, on the other hand,
are mostly characterized through the overlap of the functions belonging to a pair of atoms.
The problem of such types of partitionings is their heavy dependence on the type and size
of the basis set and the level of computational theory. The second group of partitionings
operates purely in the real space and atoms are defined based on the geometry of the
system, or on the local character of the electronic density. The most commonly used
in quantum chemistry are the ones based on the geometrical partitioning of the electron
density using the Voronoi polyhedra, [215, 216] Hirshfeld-based partitionings, [217, 233–
236], and the QTAIM proposed by Richard Bader [237]. These approaches can be applied
to most of the computational methods, and are based on the information stored in the
electronic density.

In QTAIM, a definition of an atom within a molecule is rigorously based on the topol-
ogy of the electronic density. The boundaries of the atoms are limited by the zero-flux
surface of the gradient vector field of the charge density, W(r). This surface is defined as
the set of points in space fulfilling the following zero-flux condition:

—r(r) ·n(r) = 0 8r 2 W(r) , (6.1)

where n(r) is the unit vector perpendicular to W(r). This boundary condition partitions
the Cartesian space into a set of disjoint regions, where each region is defined by the
basin of a single nucleus (which formally is a nuclear attractor, see below). One of the
main concepts of QTAIM, in addition to the formal topological definition of atoms, is the
atomic additivity of energies and average properties. As proved by Bader, the average
value of the observable hÔi for the total system (O can be both a one- or two-particle
operator), is expressed as the sum of the atomic contributions O(W) [237, 238]:

hÔi= Â
W

O(W) . (6.2)

Within QTAIM, one can partition most of the properties into atomic or functional group
contributions and use those to predict properties in new molecules. Another key feature of
QTAIM is definition of the topological descriptors, which mark particular type of interac-
tions between atoms and may also recover the Lewis model of chemical bonds [239]. The
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former is directly related to the topology of the density and the presence of the critical
points, whereas the latter is related to the description of the localization of electrons using
the Laplacian of the density.

Critical points of the density, rc, are the points in the (Cartesian) space, where the
gradient of the density —r(rc) vanishes,

—r(rc) = 0 . (6.3)

The character of these critical points is determined from the Hessian matrix of the elec-
tronic density, H(rc), which contains all partial second derivatives with respect to the x,
y, and z Cartesian components:

H(rc) = —T —r(r)|r=rc =

0
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, (6.4)

which is diagonalized to obtain the eigenvalue matrix ⇤(rc):

H(rc)L = L⇤(rc) , (6.5)
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A . (6.6)

These eigenvalues determine the (principal) curvatures of r(r) at rc, namely the positive
eigenvalue corresponds to a minimum of r(r) along the corresponding direction, whereas
the negative eigenvalue corresponds to the maximum of r(r) at rc. The type of each
critical point, which is usually denoted as (s ,l ), is determined by the rank s of the
Hessian, i.e., the number of nonzero eigenvalues, and its signature l , defined as the sum
of the signs of the eigenvalues l1, l2, and l3. There are four types of CPs (corresponding
to four possible signatures), each pointing to a different element of the chemical structure:

• Nuclear attractor critical points (NACPs) with CP = (3,-3) have all negative li
eigenvalues and are local maxima of r(r). Each atomic basin in QTAIM contains
one nuclear attractor, at which all trajectories of —r(r) terminate. Nuclear attrac-
tors are usually found at the position of the nuclei. One can also find attractors that
do not coincide with any nucleus — such unique points in the density topology are
named non-nuclear attractor critical points (NNACPs). This very rare feature is a
footprint of an exceptional electron localization. However, the values of r(r) at
NNACPs are orders of magnitude smaller than at NACPs.

• Bond critical points (BCPs) with CP = (3,-1) have two negative li eigenvalues and
one positive. The latter corresponds to the minimum along the axis connecting two
NACPs. BCP is an universal indicator of bonding between two highly interacting
atoms.

• Ring critical points (RCPs) with CP = (3,+1) have two positive eigenvalues and one
negative. It indicates a ring-like pattern in r(r), where at rc there are minima in
two directions forming a plane, and a maximum along the direction perpendicular
to ring plane. The most notable example of RCP is the center of benzene ring.
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• Cage critical points (CCPs) with CP = (3,+3) have all positive eigenvalues making
this point a local minimum in three dimensions. Its presence indicates a multi-atom
cage-like structure and is usually located near the center of such a cage.

The number of critical points satisfy a relationship given by the topological Poincaré-Hopf
theorem:

NNACP +NNNACP �NBCP +NRCP �NCCP = 1 , (6.7)

If this relation is violated, most likely not all critical points were found in the search or
some critical points are due to discontinuities of the electronic density.

The Laplacian of the electronic density, —2
r(r), is a topological descriptor of the

electron localization [238, 240]:

—2
r(r) = ∂

2
r(r)

∂x2 +
∂

2
r(r)

∂y2 +
∂

2
r(r)

∂ z2 . (6.8)

The negative values of —2
r(r) are natural signs of the electron localization - they cor-

respond to regions where the potential energy is dominant over the kinetic energy [238,
240]. Regions with large negative —2

r(r) are usually found very close to the nuclei, at
chemical bonds, and the positions of lone pairs of electrons. In contrast, the positive val-
ues of —2

r(r) denote the regions where the kinetic energy dominates, and hence there is
electron depletion [238, 240].

6.3 Effective Oxidation State Analysis
The oxidation state (OS) is a fundamental concept in chemistry used to rationalize obser-
vations and make further predictions. It is used in the analysis of the chemical structures
and redox properties, mechanisms and bonding patters in organometallic chemistry, and
the rationalization of the spectroscopic properties related to electro–magnetic response of
matter. While being the bread and butter of all chemists, its formal definition still has
few ambiguities. The latest formal definition of OS established by IUPAC in 2016 says
”the oxidation state of an atom is the charge of this atom after ionic approximation of its
heteronuclear bonds” [241]. Hence, it is justified to say that OS is a property of atoms
embedded within a molecule and in many cases OS values may be transferable within the
same functional group. However, despite its simple definition, the realization of the OS
concept from first principles is not trivial. Several studies have been devoted to establish
a connection between particular quantum chemistry magnitudes and the values of OS ob-
tained following the IUPAC recommendations; moreover, several authors have proposed
their own computational routines to predict the most likely OS of a given atom [241–248].

In 2015, Ramos-Cordoba, Postils, and Salvador proposed a universal procedure for
the determination of oxidation state of atomic-moieties from first principles, namely the
Effective Oxidation State (EOS) analysis [248, 249]. It utilizes the concept of effective
atomic orbitals (eff-AOs), which are distorted atomic orbitals that come from the real
space partitioning (or localization) of MOs into atomic regions [250–253].

For all the electrons of the same spin in each atom A, the procedure for the construc-
tion of eff-AOs is as follows. First, one defines the intra-atomic contribution of the i-th
MO to atom A, f

A
i,s (r), as [250–253]

f

A
i,s (r) = wA(r)fi,s (r) , (6.9)

where wA(r) is the atomic-partitioning weight (which considering all the atoms of the
molecule sum up to one for all electron coordinates, ÂA wA(r) = 1). These atomic weights
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are the same as those applied to electronic densities to define the atomic basins, and
can come from any type of atomic partitioning, both in the Cartesian space, such as the
Becke, Hirshfeld-based, or QTAIM partitionings, as well as in the Hilbert space, such as
the Mulliken or Löwdin population analyses [248, 249]. Second, the overlap matrix SA

s

between the intra-atomic parts of MOs is defined as:

SA
i j,s =

Z
drf

A⇤
i,s (r)f A

j,s (r) . (6.10)

Third, SA
s

is diagonalized to yield the eff-AOs occupancies, �A
s

(the eigenvalues) and a
unitary matrix of the transformation coefficients, UA

s

(the eigenvectors)

�A
s

= UA†
s

SA
s

UA
s

. (6.11)

The UA
s

are used to finally define eff-AO, h

A
i,s (r), as:

h

A
i,s (r) =

1q
l

A
i,s

n
s

Â
j

UA
ji,s f

A
j,s (r) . (6.12)

Each h

A
i,s (r) has its unique effective occupation number �A

s

, which has a similar inter-
pretation as the NO occupancy. In the above procedure, only eff-AOs with nonnegative
eigenvalues are constructed and for most of the partitioning schemes, 0 < l

A
i,s  1.

Afterwards, one finally calculates the formal oxidation state with the EOS scheme.
The eff-AO occupancies of all atoms (or fragments), l

A
i,s , are gathered and sorted de-

scendingly. The first Nel,s eff-AOs, with Nel,s being the number of s electrons, are set
as fully occupied, that is, l

A
i,s ! l

A,id
i,s = 1, while the rest are set as fully empty, that is,

l

A
i,s ! l

A,id
i,s = 0. Such a formal integer assignment of occupancies is a representation of

the discrete ionic model, which is used to define the oxidation state by IUPAC. Then, for
each atom (or fragment), one calculates its formal effective oxidation state, EOS[A], as
the difference between the total number of electrons in the isolated atom/fragment, NA

el ,
and the number of fully occupied eff-AOs of this particular fragment, which equals to
Ân

s

i l

A,id
i,s :

EOS[A] = NA
el �

n
s

Â
i

l

A,id
i,s . (6.13)

To provide some insight on the reliability of the assigned oxidation state, the authors have
proposed the following index, R, as the minimal value between its two spin components,
namely R = min(R

a

,R
b

), where each spin component is defined as

R
s

(%) = 100 ·min
✓

1,max
✓

0,lLO,s �lFU,s +
1
2

◆◆
, (6.14)

where lLO,s is the occupation of the lowest occupied eff-AO (LO), that is, the smallest
value of l

A
i,s within the set of occupied eff-AOs, and lFU,s is the occupation of the first

unoccupied eff-AO (FU), i.e., the largest value of l

A
i,s within the set of unoccupied eff-

AOs. The reliability index R takes values in the range between 50% and 100%, where
R ⇡ 50% indicates a fully uncertain assignment of the oxidation state. In contrast, R ⇡
100% indicates a very reliable prediction of the oxidation state which comes from a large
difference between lLO,s and lFU,s .

Two most important features of the EOS analysis are that: 1) it provides almost equiv-
alent results for all real-space definitions of atoms (i.e., it is robust among different weight
definition, wA(r)) and 2) it can be applied to any electronic structure method for which
the first reduced density matrix, r1(r0s ;rs), is available.
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7.1 Introduction
Quantum chemistry provides a mathematical framework that allows one to compute and
simulate NLOPs of promising materials and also analyze their nature and origin. The
former has especially benefited from the development of computational methods, which
currently allow to tackle the energy and NLOPs of large molecular structures and can
guide the design of new nonlinear materials. The most used method to assess the role
of the different electronic states in NLOPs is the SOS approach using the few-states ap-
proximation. Such kind of analysis is of relevance mostly for specific situations, for
example, when one is interested in the resonant response related to the transition to one
precisely defined excited state. In the nonresonant response region, in particular, for static
hyperpolarizabilities, it is sometimes hard to distinguish one dominating electronic state
describing almost all the response. Moreover, the rationalization of NLOPs using excited
states is not as straightforward as if it is done in terms of the (molecular) orbitals.

This Chapter of Thesis is devoted to the decomposition procedure developed by the
Candidate, namely Partition of NLOPs Into Orbital Contributions (PNOC) [146]. It ex-
presses the electronic response in the terms of the Natural Orbitals (NOs) of the unper-
turbed system and serves as a tool for two main purposes: i) to study the structure-property
relations for NLOPs and to provide more insight into the character of the response, and
ii) to provide a basis for assessing the performance of the computational methods for the
evaluation of the NLOPs, especially to analyze the origin of the errors arising from dif-
ferent types of electronic correlation, which can be understood in terms of the NOs. The
first section is devoted to the description of the PNOC procedure, the second section de-
scribes the details of the computational protocol of the implementation of PNOC, and the
remaining sections present the PNOC analysis of the NLOPs a few selected molecules to
illustrate the potential of this tool. Since the PNOC is currently only developed to analyze
the electronic part of the response, the corresponding el upper index is removed from the
presented formulae. Moreover, the discussion focuses on the diagonal components of the
NLOP tensors, that is, a

aa

, b

aaa

, and g

aaaa

.

7.2 The Decomposition Procedure
PNOC operates in the Hilbert space and is based on the 1-RDM representation of the
NLOPs (see Section 4.6). Flowchart of the PNOC procedure is shown in Fig. 7.1 for the
example of the partitioning of second hyperpolarizability g

abgd

. One proceeds equiva-
lently for a

ab

and b

abg

, using the corresponding derivative of 1-RDM.
First, one needs to obtain the derivatives of 1-RDM in the AO basis. In the current

implementation, these are calculated with the finite field procedure using the following
central differences formula,
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Figure 7.1: Flowchart of the PNOC procedure to obtain the NOs contributions to the second hyperpolar-
izability, g

abgd

. An equivalent procedure is done for the partitioning of a

ab

and b

abg

by the usage of the
corresponding derivative of the 1-RDM, namely D(b ) and D(bg).

where D
µn

(F
a

) denotes the 1-RDM in the AO basis of the system perturbed with electric
field, F

a

applied along the a-th direction. These matrices are obtained from the electronic
structure calculations and are available for most computational methods. Such numerical
computation of the 1-RDM derivatives is straightforward because the AO basis is invariant
to the applied electric field (the AO basis depends only on the position of the atoms).

Second, one projects the h(a) and D(a...) from the AO to NO basis of the unperturbed,
i.e., field-free, molecule. The transformation is achieved using the matrix C, correspond-
ing to the change between AOs, �AO, and NOs, �NO:

�NO = �AOC , (7.4)

where �NO and �AO are row vectors, and the linear combination of atomic orbitals
(LCAO) coefficients are organized column wise in C. With such matrix C, one performs
the projection and obtains an equivalent representation of NLOPs in a differently chosen
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basis:
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In above equations, M(a) is the transition dipole matrix and D(a...) are the n-th order
derivative of the 1-RDM calculated in the NO basis:

M(a) = C†h(a)C , (7.8)

�(b ) = C�1D(b )(C�1)† , (7.9)

�(bg) = C�1D(bg)(C�1)† , (7.10)

�(bgd ) = C�1D(bgd )(C�1)† . (7.11)

Finally, one can proceed with the actual partitioning. A selected (non)linear property
is expressed as a sum of p NO components,
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ab ,p , (7.12)

b
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= Â
p

b

abg,p , (7.13)

g

abgd

= Â
p

g

abgd ,p . (7.14)

Each component is obtained under the assumption that the pair contribution of p and q
NOs is equally distributed among them, which leads to
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The analysis employs NOs of the unperturbed system as the target basis, as this orbital
basis is often used in the description of 1-RDM for the many-body wavefunction. If one
performs the spin unrestricted computations, such as Unrestricted HF (UHF) or broken
spin-symmetry KS-DFT, unrestricted NOs defined by Pulay and Hamilton are adopted in-
stead [254]. PNOC is a universal method which can be applied to any quantum chemistry
method for which 1-RDMs are available. In contrast to most of the NLOP decomposition
schemes found in the literature [134, 141, 142, 255–258], PNOC is free of the origin-
dependency problem in some situations. Origin–dependency in PNOC comes directly
from M(a). Upon a translation of the system into a vector T, the partitioned values of
a

aa,p and g

aaaa,p change according to the following equations:
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In the above equations, the orthonormality condition between NOs is utilized. For the sys-
tems which are centrosymmetric along the studied axis a , all diagonal elements of �(a)

and �(aaa) are equal to zero, thus making the decomposed values of a

aa,p and g

aaaa,p
origin independent. Noteworthy to mention is that b

aaa

vanishes in the centrosymmetric
systems.

7.3 Tested Systems and Computational Details
In this work, we study NLOPs of the three different chemical models shown in Fig. 7.2.
In the first part of the Results, devoted to the role of the static and dynamic electron
correlation in NLOPs, we compared the NLOP contributions in benzene, C6H6 and para -
benzyne, C6H4. The first molecule is a typical example of a closed-shell system for which
a single HF Slater determinant is a good reference for the correlated methods. Therefore,
for benzene the static correlation is non-relevant and most of the properties are governed
by the dynamic correlation. On the contrary, para-benzyne is a diradical molecule in its
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singlet state, with two unpaired electrons in the para position. Para-benzyne is an open-
shell system that requires to include several determinants to the reference wavefunction,
and therefore it is a typical case for which the static correlation is crucial and determines
most of the chemical properties. For both systems, we mostly focused on the NO contri-
butions to the polarizability and second hyperpolarizabilities of the orbitals shown in Fig.
7.3.

Figure 7.2: Graphical representation of the studied molecular systems, benzene and para-benzyne, and
all-trans-hexatriene.

In C6H4, which belongs to the D2h symmetry point group, we focus on the decompo-
sition of NLOPs in the following valence NO contributions: the singly occupied s -type
NOs 5b1u and 6ag (occupied by the unpaired electrons), the occupied p-type orbitals, de-
noted as p(occ): 1b3u, 1b1g, 1b2g, the virtual p-type orbitals, denoted as p(vir): 2b3u, 1au,
1b2g. This set of NOs was correlated in the corresponding CASSCF(8,8) calculation. In
C6H6, which belongs to the D6h symmetry point group, the valence p orbitals are the rel-
evant NOs, namely the occupied p(occ) NOs: 1a2u, 1e1g, and 2e1g, and the virtual p(vir)
NOs: 1e2u, 2e2u, and 1b2g. For the completeness, we also investigated contributions of the
s -type NOs 6e1u and 6e2g, which are the doubly occupied counterparts of the singly oc-
cupied 5b1u and 6ag in C6H4. In the CASSCF computations for benzene, only the p(occ)
and p(vir) were included in the active space, leading to CASSCF(6,6). Additionally, for
both systems we analyzed the overall contributions of the following sets of NOs: 1sC —
carbon core orbitals; s (occ) — all occupied s -type NOs (including the above-mentioned
5b1u and 6ag); s (vir) — all virtual s -type NOs, as well as total contributions from the p

(occ) and p (vir) groups.
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Figure 7.3: Graphical representation of the studied NOs of benzene (left panel) and para-benzyne (right
panel). Numbers below the orbital pictures denote their natural occupancies. Obtained at the (U)CCSD/aug-
cc-pVDZ level of theory.
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In the second part of the Results section, using PNOC we analyze the effect of type
and size of the atomic basis set on the static response of all-trans-hexatriene, C6H8. Hex-
atriene is a conjugated closed-shell system for which proper description of the dynamical
correlation is necessary. In this system, we focus on the overall contributions of NOs be-
longing to two defined orbital subspaces, namely the full valence (FV) and higher virtual
(HV) orbitals. The former one consists of the first 19 s -type occupied NOs (including
core 1s carbon orbitals), 3 occupied p-type NOs, the first 3 virtual p-type NOs, and the
first 16 virtual s -type NOs. All remaining virtual s and p NOs are classified as HV
orbitals (and their number changes with the size of the basis set).

Geometries of benzene and para-benzyne were optimized using (U)B3LYP/aug-cc-
pVDZ, whereas the hexatriene was optimized with CAM-B3LYP/cc-PVDZ. In all calcu-
lations of static NLOPs, the systems were placed in such a way that their centers of mass
coincided with the origin of the Cartesian coordinate system. Moreover, they were rotated
until the main component of the diagonalized inertia tensor coincided with the z-axis of
the Cartesian system. In such geometrical arrangement, the longitudinal components of
polarizability and second hyperpolarizability, azz and gzzzz were studied.

The electronic structure calculations were performed with the Gaussian09 [259] com-
putational package and PNOC was implemented in an in-house FORTRAN90 code. In
all computations, the highest possible symmetry constraints were applied (accounting
for electric field perturbation). Tight convergence criteria in all procedures were used,
namely, in (U)HF the DIIS convergence threshold was set to 10�11, in CASSCF energy
convergence criteria was set to 10�11, and in CCSD convergence criteria for the total en-
ergy and the norm of amplitude vector in CCSD were set to 10�10 and 10�8, respectively.
Such convergence criteria allowed to achieve the best stability in the numerical differen-
tiation of the elements of 1-RDMs (according to Eqs. 7.1 - 7.3). For those methods that
do not satisfy the Hellmann–Feynman theorem, namely (U)MP2 and (U)CCSD, relaxed
and unrelaxed 1-RDMs can be often obtained. The former are more adequate for the
calculation of electronic properties and, hence, we adopt them in this work.

7.4 Nature of the Static Response in Open-Shell Systems
In this section, we focus on the changes in the nature of the response when one forms the
diradical structure. This analysis is based on the results obtained with (U)CCSD, which
is also considered a reference method for assessing the performance of other levels of
theory in the next section. In Table 7.1, the PNOC contributions of the selected NOs (and
orbital subgroups) for benzene and para-benzyne are compiled. As expected, the core
orbitals are not involved in the static response as the core electrons are highly confined,
therefore these are not going to be further discussed. For each system, we first discuss the
key observations for azz and then for gzzzz.

In benzene, the overall contributions of the s - and p-type NOs to azz are very sim-
ilar. The largest contributions correspond to the four frontier p-type NOs, namely 1e1g
(10.5%), 2e1g (13.7%), 1e2u (9.1%), and 2e2u (8.8%). In the case of gzzzz, the main role
of the response shifts to the p NOs. In general, these contribute 60% to gzzzz, with 2e1g
(11.4%) and 1e2u (8.0%) having the highest individual contributions. Moreover, one can
find the opposite (negative) contributions coming from other NOs.
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Table 7.1: PNOC contributions of selected NOs to longitudinal azz and gzzzz of benzene, C6H6, and para-
benzyne, C6H4, obtained at the reference (U)CCSD/aug–cc–pVDZ level of theory. Values are given in the
atomic units (relative contributions to the total property are given in parenthesis).

C6H6 C6H4
Orbitals azz,p gzzzz,p azz,p gzzzz,p

6e1u (5b1u) 4.36 ( 5.5%) -373 (-3.0%) 7.83(10.5%) 8536 (29.0%)
6e2g (6ag) 4.57 ( 5.7%) -77 (-0.6%) 4.48 ( 6.0%) 5112 (17.4%)
1a2u (1b3u) 0.66 ( 0.8%) 186 ( 1.5%) 0.64 ( 0.9%) -80 (-0.3%)
1e1g (1b1g) 8.39(10.5%) -411 (-3.4%) 8.78(11.8%) -1387 (-4.7%)
2e1g (1b2g) 10.94(13.7%) 1402(11.4%) 7.40 ( 9.9%) -540 (-1.8%)
1e2u (2b3u) 7.25 ( 9.1%) 978 ( 8.0%) 4.58 ( 6.1%) -489 (-1.7%)
2e2u (1au) 7.06 ( 8.8%) -343 (-2.8%) 6.88 ( 9.2%) -1120 (-3.8%)
1b2g (2b2g) 0.26 ( 0.3%) 451 ( 3.7%) 0.20 ( 0.3%) 103 ( 0.4%)

1sc 0.01 ( 0.0%) 0 ( 0.0%) 0.01 ( 0.0%) -2 ( 0.0%)

s (occ) 18.04(22.6%) -1153 (-9.4%) 24.01(32.2%) 12602 (42.9%)
s (vir) 20.68(25.9%) 6018(49.1%) 16.18(21.7%) 17879 (60.8%)
s (all) 38.72(48.5%) 4865(39.7%) 40.19(53.9%) 30481(103.7%)

p(occ) 19.99(25.0%) 1177 ( 9.6%) 16.81(22.5%) -2007 (-6.8%)
p(vir) 21.12(26.5%) 6213(50.7%) 17.57(23.6%) 932 ( 3.2%)
p(all) 41.11(51.5%) 7390(60.3%) 34.39(46.1%) -1076 (-3.7%)

Total NLOP
CCSD 79.84 12255 74.58 29403

CCSD(T) 80.39 13180 76.70 37152

In para-benzyne, formation of the diradical open-shell electronic structure leads to
huge changes to the static electronic response. Longitudinal azz decreases by 5.3 au for
UCCSD, but the PNOC analysis reveals a shift of the major contribution to the s -type
of NOs, which constitute now 53% of the property. In particular, one observes a large
increase in the absolute contributions for the singly occupied 5b1u and 6ag NOs. On
the contrary, contributions of the p-type NOs are decreased being the largest decrease
reported for the frontier p-type NOs, from 10.9 to 7.4 for 1e1g !1b2g, and from 7.2 to 4.6
for 1e2u !2b3u. Equivalent but much more pronounced changes are observed for gzzzz.

7.5 Role of Electron Correlation in Static NLOPs
We discuss the role of static and dynamic electron correlation in the static response by
comparison of the PNOC contributions obtained with (U)HF, (U)MP2, CASSCF, and
(U)CCSD. Each of these methods is considered the main representative of a group of
quantum mechanical methods that introduce electron correlation in a different manner:
HF – no correlation, CASSCF – static correlation, MP2 and CCSD – dynamic correlation.
Moreover, breaking of the spin symmetry in HF (and later in MP2) allows to partially deal
with the problems arising from the absolute near-degeneracy of the HOMO and LUMO
orbitals. This phenomenon has been labeled as the type A static correlation [260]. Re-
sults of the decomposition are compiled in Tables 7.2 and 7.3 and the ones obtained with
(U)CCSD (given in Table 7.1) are considered as the reference.
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Table 7.2: PNOC contributions to longitudinal azz (in au) of benzene, C6H6, and para-benzyne, C6H4,
obtained at different levels of theory. For the computations of benzene, HF, MP2, and CASSCF adopting
the (6,6) active space, CAS(6,6), were used. For para-benzyne unrestricted variants UHF, UMP2 and
CASSCF adopting the (8,8) active space, CAS(8,8), were used.

C6H6 C6H4
Orbitals HF MP2 CAS(6,6) UHF UMP2 CAS(8,8)

6e1u (5b1u) 4.43 4.31 4.58 4.67 6.56 6.70
6e2g (6ag) 4.67 4.21 4.93 2.70 3.38 3.76
1a2u (1b3u) 0.38 0.74 0.81 1.06 0.29 0.84
1e1g (1b1g) 9.50 8.60 7.44 6.93 12.96 7.30
2e1g (1b2g) 12.07 11.24 10.01 7.05 9.13 6.91
1e2u (2b3u) 8.42 7.59 6.72 4.17 6.02 4.18
2e2u (1au) 8.42 7.29 6.63 6.60 11.58 6.51
1b2g (2b2g) 0.00 0.38 0.25 0.12 0.01 0.19

1sc 0.01 0.01 0.07 0.01 0.01 0.01

s (occ) 18.08 18.41 19.00 19.97 21.12 22.65
s (vir) 18.09 20.84 19.01 14.55 14.72 14.59
s (all) 36.18 39.25 38.01 34.52 35.84 37.24

p(occ) 21.96 20.58 18.26 15.03 22.39 15.04
p(vir) 21.96 22.04 18.43 14.90 22.22 14.98
p(all) 43.92 42.62 36.68 29.93 44.60 30.02

Total azz 80.10 81.89 74.70 64.47 80.45 67.27

Looking simply at the total values of azz, one could reach a conclusion about the per-
formance of a given method. In benzene, azz obtained with HF is very similar to the
CCSD one. MP2 yields a value overestimated by 2.0 au, and CASSCF underestimated it
by 5.1 au. This suggests that HF describes the linear response better than CASSCF, which
in principle is a much more superior method and yields energies variationally closer to the
exact ones. With a tool like PNOC, one can compare not only the total values but also the
NO contributions to NLOP, which provide a more detailed analysis of the performance of
the different methods. PNOC reveals that the small overall error in HF azz comes from
a fortunate compensation of errors — an underestimation of the contributions of s -type
NOs (by 2.5 au) and an overestimation of the contribution of the p-type NOs (by 2.8
au). In CASSCF, one can observe a systematic underestimation in the contributions of the
p-type NOs. In MP2, the orbital-wise contributions to azz closely follow the reference
trends. In para-benzyne, for which the static correlation comes into play, the performance
of these methods changes. UHF underestimates the total azz by 10.1 au, UMP2 overes-
timates it by 5.9 au, and CASSCF underestimates it by 7.3 au, which could lead to the
conclusion that UMP2 gives the best description of this linear response property. How-
ever, when one examines the NO contributions one can observe that it is CASSCF which
captures the changes due to the formation of the diradical. Namely, CASSCF correctly
predicts a dominance of contributions of the s -type orbitals - s (all) and p(all) are 55%
and 45% of total azz, respectively. In contrast, in UMP2 the response is incorrectly dom-
inated by the p-type NOs - s (all) and p(all) are 45% and 55% of total azz. Moreover,
UMP2 significantly overestimates the relative contributions of 1b1g and 1au NOs.
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Table 7.3: PNOC contributions to the longitudinal gzzzz (in au) of benzene, C6H6, and para-benzyne, C6H4,
obtained at different levels of theory. For the computations of benzene, HF and MP2 and CASSCF adopting
the (6,6) active space, CAS(6,6), were used. For para-benzyne unrestricted variants UHF, UMP2 and
CASSCF adopting the (8,8) active space, CAS(8,8), were used.

C6H6 C6H4
Orbitals HF MP2 CAS(6,6) UHF UMP2 CAS(8,8)

6e1u (5b1u) -377 -338 -377 733 2796 6544
6e2g (6ag) -157 75 -229 -288 364 3683
1a2u (1b3u) 311 119 269 45 -558 103
1e1g (1b1g) -1300 -493 486 1983 2109 43
2e1g (1b2g) 1555 686 1706 931 1523 -41
1e2u (2b3u) 3475 296 1363 843 1694 -65
2e2u (1au) -396 -375 411 1688 1866 22
1b2g (2b2g) 411 423 391 154 211 137

1sc 0 0 0 -1 -1 -2

s (occ) -1018 -987 -1246 35 2457 9113
s (vir) 4305 6739 4327 7559 13542 10140
s (all) 3287 5752 3080 7594 15999 19253

p(occ) 567 311 2461 2959 3074 105
p(vir) 5352 6089 5488 4610 7612 1634
p(all) 5919 6400 7948 7568 10686 1739

Total gzzzz 9206 12152 11028 15162 26683 20990

The differences are even more pronounced for the description of gzzzz. In C6H6, com-
pared to the reference value obtained with CCSD, gzzzz = 13180 au, HF, MP2 and CASSCF
underestimate this value by 3974, 1028 and 2152 au, respectively. The decomposed val-
ues of gzzzz support the superior performance of MP2, which for benzene provides a well-
balanced description of response coming from the s - and p-type NOs. On the contrary,
CASSCF(6,6) strongly underestimates the s (occ) contribution and yields overestimated
individual contributions of the frontier p NOs, especially 1e1g and 2e2u which are positive,
but in fact, should be negative. Upon the formation of the diradical C6H4, the errors in the
second hyperpolarizability are enhanced. Compared to UCCSD, for which gzzzz is 29403
au, UMP2 seems to provide the best total value of 26683 au, while UHF and CASSCF
(8,8) produce underestimated values of 15162 and 20990 au, respectively. Interestingly,
PNOC’s detailed analysis provides the opposite conclusions. First, the PNOC analysis
unveils that a small error of UMP2 in total gzzzz of C6H4 is accidental and comes from the
cancellation of large errors. Namely, UMP2 provides a very underestimated contribution
of the s -type NOs, s (all) = 15999 au against 30481 au obtained with UCCSD. Further-
more, UMP2 strongly overestimates the contribution of p-type NOs, p (all) = 10686 au
versus the reference value -1076 au. Orbital-wise, UMP2 hugely underestimates the con-
tribution of 5b1u and 6ag NOs (the only ones occupied by radical electrons) and greatly
overestimates the contributions of all valence p NOs. Even worse errors are found in the
orbital contributions described with UHF. In contrast, for CASSCF(8,8), one observes a
strong but systematic underestimation of orbital contributions, especially of s -type NOs.
However, CASSCF(8,8) correctly describes the key role of 5b1u and 6ag in static gzzzz, and
the negligible role of valence p -NOs.
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Concluding this section, the inefficiencies due to a lack of electronic correlation can
be examined with the PNOC contributions. Moreover, with PNOC one can detect cases
where good performance is only accidental due to the cancellation of errors. These two
scenarios are especially reflected in the contributions to higher-order nonlinear response
of gzzzz. When the static correlation is not relevant, MP2 provides a reasonable description
of the orbital nature of the response. In such cases, the CASSCF calculations including
only a few valence orbitals are insufficient because of the unbalanced treatment of the
correlation. Namely, one can observe the correct trends of the orbital contributions to
gzzzz but with the underestimated values. Situation changes when the static correlation
plays the main role (like in C6H4). For the accurate calculation gzzzz, UMP2 provides an
incorrect orbital-based picture of gzzzz and one has to account for the static correlation via
multiple determinants, for example, by using the CASSCF method.

7.6 Assessing the Role of Basis Functions
PNOC can be also used to assess the role of the particular type of atomic basis functions in
the NLOP computations. In this section, we study the influence of diffuse functions of dif-
ferent angular momentum in simulations of static NLOPs. In particular, we focus on the
longitudinal component of the second hyperpolarizability, gzzzz, of p-conjugated system,
all-trans-hexatriene, C6H8. Starting from the cc-pVDZ/cc-pVDZ for carbon/hydrogen
basis set (also abbreviated here as VDZ/VDZ), diffuse functions of selected angular mo-
mentum, s, p or d type are separately added to the Carbon (C) and/or Hydrogen (H)
centers (original primitive exponents are utilized). The addition of diffuse functions for
selected elements is denoted with a + sign. We tested the following basis sets, where
the first basis corresponds to C and the second to H (the total number of basis func-
tions is given in parenthesis): VDZ/VDZ (124), VDZ+s/VDZ (130), VDZ+p/VDZ (142),
VDZ+d/VDZ (154), VDZ+sp/VDZ (148), VDZ+p/VDZ+p (166), AVDZ/VDZ (178),
VDZ/AVDZ (156) and AVDZ/AVDZ (210). In such notation, standard AVDZ is equiva-
lent to VDZ+spd for C and to VDZ+sp for H.

The results of total and decomposed NLOPs are compiled in Table 7.4. It is well
known that diffuse functions are essential for the computation of high-order nonlinear re-
sponse, whereas non-augmented basis sets tend to greatly underestimate these properties.
Full augmentation from VDZ/VDZ to AVDZ/AVDZ leads to a 48% increase of gzzzz.

PNOC reveals that these large changes in gzzzz are mainly due to the increased re-
sponse of the orbitals from the p(HV) subspace. In particular, an increase in the p(HV)
contribution accounts for the 64% of the increase of the total gzzzz. PNOC also reveals
that the addition of diffuse functions to carbon atoms is much more important than to
the hydrogen centers. Using the AVDZ/VDZ basis, one can already reach very good
correspondence to the ones of AVDZ/AVDZ for all orbital components, namely s (FV),
s (HF), p(FV), and p(HV). On the other hand, if one added the diffuse functions solely to
the hydrogen centers it would lead to the incorrect response of the p-type NOs. Among
the set of diffuse functions of C, the p-type diffuse functions seem to be the most impor-
tant ones, while the s-type is the least important. For gzzzz, the addition of d-type diffuse
functions also marginally affects the response, and it is through a slight increase in the
contribution of p(HV). Since diffuse functions of p angular momentum in carbon are cru-
cial for gzzzz, the effect of further addition of p diffuse functions to hydrogen centers is
also examined. The VDZ+p/VDZ+p basis set has substantially better performance than
VDZ+p/VDZ and yields results comparable to those of AVDZ/VDZ. PNOC reveals that
it correctly describes both the FV and the HV components of the response.
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Table 7.4: Basis set dependency of the PNOC contributions to longitudinal gzzzz of hexatriene. Decomposed values were obtained at the CCSD level of theory. Additionally, CCSD(T)
total values are given.

C: VDZ VDZ+s VDZ+p VDZ+d VDZ+sp VDZ+p AVDZ VDZ AVDZ
H: VDZ VDZ VDZ VDZ VDZ VDZ+p VDZ AVDZ AVDZ

s (FV) -11175 -11591 -14565 -12884 -14905 -15929 -15725 -14256 -16120
s (HV) 4006 5105 6368 5196 7349 6941 7352 7887 8057
s (all) -7169 -6486 -8198 -7688 -7557 -8988 -8373 -6369 -8063

p(FV) 109754 110375 130891 111891 131418 131879 128768 119306 129463
p(HV) 5756 5779 34215 11305 34681 39289 37697 16528 39135
p(all) 115511 116154 165106 123195 166099 171169 166465 135834 168598

Sum(FV) 98579 98784 116326 99006 116513 115950 113043 105050 113343
Sum(HV) 9762 10883 40583 16501 42029 46231 45049 24415 47192

Total gzzzz
CCSD 108342 109668 156909 115507 158542 162181 158092 129465 160535

CCSD(T) 104299 105860 155439 112562 157482 161993 158102 126938 161292
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7.7 Local Representation of Static NLOPs
PNOC scheme can also provide a real-space representation of the NLOPs using the par-
titioned values of the properties. One can define a local version of a azz(r) and gzzzz(r)
through multiplication of each NO contribution to the property by its NO real-space am-
plitude:

azz(r) = Â
p

azz,p
��
f

NO
p (r)

��2 (7.20)

gzzzz(r) = Â
p

gzzzz,p
��
f

NO
p (r)

��2 (7.21)

This definition assumes a uniform contribution of NO to the property. Because NOs are
orthonormal, integration of azz(r) and gzzzz(r) retrieves the total values of azz and gzzzz:

azz =
Z

drazz(r) (7.22)

gzzzz =
Z

drgzzzz(r) (7.23)

On the contrary, the total values of the properties are not recovered by the integration of
density derivatives r

(1)(r) and r

(3)(r) which always integrate to zero.
For the two systems studied, benzene and para-benzyne, local representations of

azz(r) and gzzzz(r), as well as r

(z)(r) and r

(zzz)(r), are shown in Figure 7.4. These were
obtained at the reference (U)CCSD/aug-cc-pVDZ level of theory. Both PNOC and den-
sity derivatives provide a similar picture, with the former being easier to analyze. To
interpret the density derivatives, one has to establish the patterns of regions with posi-
tive and negative values, which is much more troublesome to be done for larger chemical
systems. In C6H6, azz(r) is almost equally distributed among all carbon atoms. Except
for those in the para position, hydrogen atoms do not seem to contribute to the response.
Picture for gzzzz(r) is different, as the larger local contribution is found for the C1 and C4
atoms (see labels in Figure 7.2). Moreover, the shape of the contribution of each carbon
atom resembles the shape of the p-type AO. In contrast, in C6H4, both azz(r) and gzzzz(r)
have enhanced values at the position of unpaired electrons. This is especially clear in
gzzzz(r), which in shape resembles frontier s -type NOs 5b1u and 6ag. Interestingly, one
can also observe negative contributions in the shape of p-type AOs at the carbon atoms
without unpaired electrons. This originates from the negative contributions of the frontier
p-type NOs (see Table 7.1).

Additionally, through the PNOC local representation of NLOPs one can also establish
a connection with electron correlation. We compared azz(r) and gzzzz(r) with the local
representation of the nondynamic (static) and dynamic correlation, Ind(r) and Id(r) [261].
These two indices and their local representations are defined using the occupancies of the
NOs, ns

i , namely

Ind(r) =
1
2 Â

s

Â
p
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��
f
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��2 , (7.24)
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It has been shown that Ind(r) and Id(r) depict regions in space in which a particular type
of electronic correlation is important. In comparison with the local representations of
NLOPs, in benzene, gzzzz(r) follows the profile of the dynamic correlation index Id(r).
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In contrast, in para-benzyne, gzzzz(r) follows the profile of nondynamic correlation index
Ind(r). This simple local representation provides a quick depiction of the connection
between the static NLOPs and the electronic correlation of different types.

7.8 Conclusions
Partition of NLOPs Into Orbital Contributions decomposes the total values of the linear
and nonlinear optical properties into the natural orbitals of the unperturbed system. It can
be applied regardless the electronic structure method. It does not pose a large computa-
tional cost, since PNOC requires only the information on the field-perturbed first-order
reduced density matrix (from which the numerical derivatives are computed). The most
important feature of PNOC is its ability to detect flaws in quantum chemical methods to
compute NLOPs. It can unveil the compensation of errors of electronic structure methods
through the orbital-wise contributions. As shown for para-benzyne, while the total value
of gzzzz computed using UMP2 is much closer to the reference values than the one obtained
using CASSCF(8,8), the orbital picture of the response is wrong. UMP2 contributions to
gzzzz of the NOs occupied by the radical electrons are incorrect, whereas the ones ob-
tained at CASSCF(8,8) are only systematically underestimated. This directly concludes
that UMP2, despite adopting unrestricted formalism, cannot capture the effect of static
correlation on the static response. One can also utilize PNOC to assess the role of par-
ticular basis functions in the computation of response properties. For example, we have
proven that for the second hyperpolarizabilities of p-conjugated systems, the addition of
the p-type diffuse functions to the basis set is the most beneficial and one does not need
to employ s- or d-type diffuse functions. Moreover, since PNOC shows that the biggest
contributions belong to the p-type NOs, one can solely apply these diffuse functions at
the carbon atoms. Lastly, without any extra cost, PNOC can be used to obtain a real-space
representation of the NLOPs, which can work as a visualization aid to connect the mag-
nitude of the optical property with some parts of the molecule and design of molecules
with the tailored NLOPs.
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Figure 7.4: Comparison of functions representing the NLOPs in the Cartesian space: azz(r), gzzzz(r),
r

(z)(r), and r

(zzz)(r). The last row presents local nondynamic and dynamic correlation indices Ind(r) (light
gray) and Id(r) (dark gray). Left panel depicts functions obtained for benzene, and right panel for para-
benzyne. Light and dark violet colors represent positive and negative values of some isosurfaces: azz(r)
= 0.40, gzzzz(r) = 40.0, r

(z)(r) = 0.085, r

(zzz)(r) = 5.00, and Ind(r) = Id(r) = 0.006. Obtained at the
(U)CCSD/aug-cc-pVDZ level of theory.
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8.1 Introduction
The design of new molecular materials with a large nonlinear optical properties remains
a challenging task for computational chemistry. This is due to the necessity of the ac-
curate description of both electronic and vibrational (hyper)polarizabilities of individual
molecules as well as an appropriate inclusion of the intermolecular interactions effects in
the bulk [262–266]. To accurately simulate the molecular response properties one usually
requires high-level quantum-chemical methods and large basis sets [267–271]. How-
ever, very often the molecular size becomes a limiting factor for the application of such
methods. On the other hand, the interactions with surrounding molecules are by defini-
tion long-range and have dynamic and many-body nature [272, 273]. This leads to even
stricter requirements on the accuracy of the computational protocols [265, 274]. DFT is
a cost-effective method for the simulations of the electronic and vibrational structures of
molecules, however its suitability for molecular NLO is still being validated.

As a natural step from the isolated molecules towards more complex systems, the elec-
tronic NLOPs of various types of weakly-bound systems were intensively studied [64, 65,
95, 96, 272, 273, 275–286]. In particular, it was found that the electronic properties of hy-
drogen bonded systems can be well described by RSHs and also by some GHs employing
a large amount of the exact exchange (e.g. M06-2X) [95]. In the case of the dispersion-
bonded systems, these methods also performed well provided that dispersion interaction
corrections were applied [285, 286]. The good performance of RSHs could be traced back
not only to an improved description of the NLO properties of the individual subsystems,
but also to a better description of the interaction-induced (excess) component of NLO
properties involving the effects of intermolecular interactions in the complex [287].

Thus far, only few studies addressed the vibrational part of the NLOPs of noncova-
lently-bonded complexes [280, 287]. One could expect that the low-frequency vibrational
modes in such systems corresponding to the intermolecular nuclear motion will have a
higher impact on the vibrational contributions to NLOPs than in the isolated molecules.
The accurate computation of vibrational NLOPs requires approaches computationally
more expensive than the ones for the calculation of their electronic counterparts. In partic-
ular, one has to evaluate the equilibrium geometry, vibrational frequencies and electrical
and mechanical anharmonic corrections at the same level of theory. For some molecular
systems, the nonresonant static vibrational contributions to hyperpolarizability were of
the same magnitude (or even larger) than their electronic counterparts [288–290]. More-
over, vibrational hyperpolarizabilities are important for electro-optical phenomena like
the Pockels and DC Kerr effects, and for optical processes like the intensity-dependent
refractive index [119]. On the contrary, for the second and third harmonic generation,
when the optical frequencies are much higher than the vibrational frequencies, the vibra-
tional hyperpolarizabilities become far smaller than their electronic counterparts [291].

The main goal of this Chapter is to benchmark modern DFAs for the simulation of
the anharmonic vibrational and electronic (hyper)polarizabilities of the noncovalently-
bonded molecular complexes [108]. We provide the answer to which functionals are the
most and the least reliable for simulations of these properties. Focusing on the latter
ones, by a consecutive decomposition of the NR contributions, we narrowed down which
anharmonic BKPT terms and which property derivatives are described incorrectly. Addi-
tionally, in a subsequent study, we unveil that the large errors in the high-order property
derivatives are due to spurious oscillations of the potential energy along the vibrational
coordinates. These spurious oscillations have origin in the numerical integration adopted
in the KS-DFT computations. This Chapter, and especially its last two sections, can be
considered as a prequel to the main work of this Thesis described in Chapters 9 and 10.
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8.2 Systems and Computational Details
In this study, the focus is put on the electric properties of molecular complexes. We
study the longitudinal electronic and NR contributions to the (hyper)polarizabilities of
the following set of hydrogen-bonded systems: HCN · HCl, HCN · HCN, N2 · HF, OC ·
HF, HCN · HF, HCN · HNC, HNC · HCN, FCCH · NCF, and HCCH · NCF. All systems are
co-linear with the z Cartesian axis, and therefore, we study the diagonal components of
NLOPs along the z direction. Unless otherwise indicated, the electronic and vibrational
contributions to properties and equilibrium geometries were determined at the very same
level of theory.

The NR contributions are calculated using the FF-NR approach [116] (see Section
4.10). The necessary field-dependent optimizations maintain the Eckart conditions and
are carried out with the procedure developed by Luis et al. [117]. For the numerical dif-
ferentiation in the FF-NR approach, we employ the Romberg–Rutishauser (RR) scheme
[292]. In the RR scheme, the correction of order p to the derivative P is determined
iteratively according to the formula:

Pp,k =
4p ·Pp�1,k �Pp�1,k�1

4p �1
, (8.1)

where k is related to the strength of the field used in the FF-NR calculations. The value
of P0,k is determined from the finite–difference expression for the derivative of the energy
(E) or dipole moment with respect to the electric field F . The smallest electric field
amplitude Fz used in FF-NR was equal to 0.0002 a.u. In all calculations we employ
the Romberg–Rutishauser scheme using the following sequence of electric fields ±Fz,
±2Fz, . . . , ±2kFz, where k=7. Moreover, all values of NLOPs obtained with the FF-
NR procedure were re-checked using the field-induced coordinates [118, 119] and BKPT
[110–115] methods.

The DFT calculations were performed employing 10 functionals: BLYP [178, 180],
CAM-B3LYP [193], LC-BLYP [190], wB97X [192], M06 [293], M06-2X [293], MN15
[75], PBE0 [294], and HSE06 [295]. In the KS-DFT computations, the pruned SuperFine-
Grid, implemented in Gaussian package, was applied [296]. Moreover, the reference
values were determined at the CCSD(T) level of theory [297]. As a reference to bench-
mark, various anharmonic terms of Eqs. 4.93 to 4.95, we also employed the MP2 method
[210]. All the calculations of the properties were performed using the aug-cc-pVTZ basis
set[298–305]. Moreover, to achieve the best stability in the numerical differentiation, tight
convergence criteria for energy and density were imposed (energy convergence criterion
was set to 10�12 Hartree). FF-NR, FIC and BKPT calculations were performed using
custom computer routines based on the energies (FF-NR method) and property deriva-
tives (FIC and BKPT methods). Quantum chemical computations were done using the
Gaussian package (ver. 09 and 16) [259, 296].
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8.3 Errors in the Harmonic and Anharmonic Nuclear Re-
laxation Contributions

We start the discussion from the overall performance of DFAs in the estimations of both
electronic and vibrational contributions to NLOPs. Table 8.3 compiles the average ab-
solute relative errors in these properties computed with respect to the reference values
obtained with CCSD(T). All of the tested functionals accurately describe electronic po-
larizability, a

el
zz , yielding average errors from 0.8% (CAM-B3LYP) to 8% (BLYP). In

the case of electronic nonlinear response, the average errors are much larger — for b

el
zzz,

they range from 13.4% (M06-2X) to 118.1% (BLYP), and for g

el
zzzz they range from 4.0%

(MN15) to 128% (BLYP). Such unsatisfactory performance of the BLYP functional is not
unexpected, since it has been shown that GGA functionals struggle to predict accurate
values of electronic (hyper)polarizabilities [87, 88, 306]. On the other hand, the smallest
errors are achieved with RSHs, such as CAM-B3LYP, and GHs with a high percentage of
the exact exchange, such as M06-2X and MN15.

In comparison to the electronic part, one observes larger average errors for a

NR
zz . The

smallest average error in a

NR
zz is 3.6% (wB97X), and the largest one 31.4% (BLYP). In the

description of b

NR
zzz , all DFAs, except CAM-B3LYP, LC-BLYP, and MN15, yield average

errors larger than 20%. Most notably, M06-2X, M06, and wB97X yield large average
errors of 50.5%, 56.0%, and 85.6%, respectively. The performance of these three DFAs
is even worse for g

NR
zzzz. While other DFAs yield average errors for g

NR
zzzz in the range 13.6%

(CAM-B3LYP) - 30.3% (BLYP), M06-2X, M06, and wB97X functionals yield average
errors exceeding hundreds and thousands of percent.

Table 8.1: The average absolute relative errors (in percentages) in the longitudinal electronic and nuclear-
relaxation (hyper)polarizabilities of molecular complexes. Relative errors were calculated with respect to
the reference values calculated at the CCSD(T)/aug-cc-pVTZ level of theory.

a

el
zz b

el
zzz g

el
zzzz a

NR
zz b

NR
zzz g

NR
zzzz

MP2 0.1 27.9 5.4 2.4 8.7 10.0
BLYP 8.0 118.1 128.2 31.4 36.0 30.3

B3LYP 2.0 33.1 37.1 19.8 19.5 16.5
CAM-B3LYP 0.8 19.7 6.9 14.2 13.7 13.6

LC-BLYP 2.1 24.0 18.4 10.8 15.7 15.4
wB97X 0.8 24.1 5.8 3.6 85.6 1767.6

M06 1.8 48.1 32.5 13.4 56.0 1072.1
M06-2X 1.2 13.4 7.6 7.4 50.5 891.0
MN15 0.9 27.4 4.0 7.6 15.2 14.3
PBE0 0.9 32.1 24.2 25.6 30.9 24.7

HSE06 1.0 35.7 27.2 24.3 29.0 27.5

To investigate the possible source of these unusually high errors in b

NR
zzz and g

NR
zzzz, we

further partition the NR contributions to the first and second hyperpolarizabilities into
the harmonic and anharmonic terms. The harmonic contributions correspond to the 0,0
square bracket terms of Eqs. 4.123 and 4.124, and the anharmonic corrections constitute
for the remaining terms in these equations.

For this analysis, we use MP2 as the reference method, because the computations of
explicit harmonic and anharmonic terms to g

NR
zzzz at the CCSD(T) level using the BKPT

method require massive computational resources. The accuracy of MP2 method in pre-
dicting the NR properties is very good. Namely, the MP2 average relative errors for a

NR
zz ,

b

NR
zzz and g

NR
zzzz are 2.37%, 8.72% and 9.95%, respectively. It can thus be concluded that
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MP2 can be used as a reference method to determine which harmonic or anharmonic
terms are the origin of the poor performance of some of the DFAs.

Before the discussion on the DFAs errors, let us first comment on the actual char-
acter of the NR response of these chemical systems. Table 8.2 presents the percentage
contribution of harmonic and anharmonic terms obtained at the MP2/aug-cc-pVTZ. As
observed, the anharmonicity plays a crucial role and its effects cannot be neglected when
studying the vibrational part of the response property. When described at the MP2/aug-
cc-pVTZ level of theory, the anharmonicity in b

NR
zzz can account for 7% (N2 · HF) of a

total value of b

NR
zzz , and may reach up to 50% (HCN · HF). In the case of a second hy-

perpolarizability, the anharmonic corrections become more important and prevail over
the harmonic terms. Except HCCH · NCF (34%) and FCCH · NCF (49.63%) complexes,
the anharmonicity contributions exceed 50% of the total g

NR
zzzz value and reach up to 87%

(HCN · HCl).

Table 8.2: Percentage weight of net harmonic and anharmonic contributions to nuclear-relaxation first and
second hyperpolarizabilities computed at the MP2/aug-cc-pVTZ level of theory.

System b

NR
zzz g

NR
zzzz

[%] harmonic [%] anharmonic [%] harmonic [%] anharmonic
HCN · HF 50.1 49.9 26.3 73.8
HCN · HCl 51.1 49.0 13.0 87.0

OC · HF 64.1 36.0 38.9 61.1
N2 · HF 93.0 7.0 37.0 63.0

HCN · HNC 55.7 44.3 21.9 78.1
HNC · HCN 71.4 28.6 47.0 53.0
HCN · HCN 71.8 28.2 42.5 57.5

HCCH · NCF 81.6 18.5 65.5 34.5
FCCH · NCF 76.3 23.7 50.4 49.6

Except for the wB97X, M06, and M06-2X, all functionals show consistent perfor-
mance in the computations of both the harmonic and anharmonic contributions to b

NR
zzz

and g

NR
zzzz. For example, the CAM-B3LYP functional yields average errors of 11.1% and

5.6% for b

NR,har
zzz and b

NR,anh
zzz , and 3.1% and 7.0% for g

NR,har
zzzz and g

NR,anh
zzzz . In contrast,

M06-2X, M06, and wB97X provide a rather good description of the harmonic contribu-
tions to b

NR
zzz (errors in the range 7.3% - 21.1%) and g

NR
zzzz (errors in the range 3.1% - 7.9%),

but fail dramatically in the estimation of the anharmonic contributions. Most notably, one
can observe huge average errors in the g

NR,anh
zzzz , again reaching thousands of percent.

In order to further pinpoint the source of these huge errors in g

NR,anh
zzzz , we investi-

gate each of the anharmonic square bracket term from Eq. 4.124. That is, we an-
alyze the average absolute relative errors for [µ2

a]1,0
w=0, [µ2

a]0,1
w=0, [µ4]2,0

w=0, [µ4]0,2
w=0,

and [µ4]1,1
w=0 (again, relative errors measured with respect to the values obtained with

MP2/aug-cc-pVTZ). Average errors in these components obtained by the DFAs in ques-
tion (and for CAM-B3LYP) are compiled in Table 8.4. Huge discrepancies are observed
for the [µ4]2,0

w=0 and [µ4]0,2
w=0 terms. Most notably, the largest average errors are observed

for wB97X and the [µ4]2,0
w=0 (635.6%) and [µ4]0,2

w=0 (871.4%). In contrast, for CAM-
B3LYP the average errors in these properties are about ten times smaller.

Within the BKPT formalism, the anharmonic [µ4]
w=0 terms involve the high-order

derivatives of total energy and dipole moment with respect to the normal modes (or equiv-
alently, FICs). As described in Section 4.9 (see Eqs. 4.121 and 4.122-4.124), [µ4]2,0

w=0,
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the second-order electrical anharmonicity, is defined as

[µ4]2,0
w=0 =

3N�6

Â
a,b,c

 
aabc,a

31 qa,b
1 qb,g

1 qc,d
1 +

aab,a
21 abc,b

21
abb

20
qa,g

1 qc,d
1

!
, (8.2)

and, in particular, involves the second (aab,a
21 ) and third (aabc,a

31 ) derivatives of dipole mo-
ment (see notation defined in Eq. 4.114). [µ4]0,2

w=0, which corresponds to the second-order
mechanical anharmonicity, is defined as

[µ4]0,2
w=0 =

3N�6

Â
a,b,c,d

 
�aabcd

40 qa,a
1 qb,b

1 qc,g
1 qd,d

1 +
3N�6

Â
e

9aabc
30 acde

30
4acc

20
qa,a

1 qb,b
1 qd,g

1 qe,d
1

!
, (8.3)

and, in particular, involves the third (aabc
30 ) and fourth (aabcd

40 ) derivatives of energy. A
simple test allowed to preliminarily establish that the problem lies almost exclusively in
the high-order derivatives, such as aabc

30 and aabcd
40 . Namely, we computed [µ4]0,2

w=0 by
combining the values of aabc

30 and aabcd
40 obtained with MP2 and the values of qa,b

1 obtained
with wB97X. Such values of [µ4]0,2

w=0 are characterized by much smaller errors.

Table 8.3: The average absolute relative errors in harmonic, b

NR,har
zzz and g

NR,har
zzzz , and anharmonic, b

NR,anh
zzz

and g

NR,anh
zzzz , NR contributions for a set of 9 molecular complexes. Relative errors were calculated with

respect to the values calculated at the MP2/aug-cc-pVTZ level of theory.

b

NR,har
zzz b

NR,anh
zzz g

NR,har
zzzz g

NR,anh
zzzz

BLYP 49.5 24.1 25.2 14.8
B3LYP 22.5 14.1 8.3 13.1

CAM-B3LYP 11.1 5.6 3.1 7.0
LC-BLYP 5.7 7.1 4.9 8.1
wB97X 7.3 76.9 3.1 1630.3

M06 21.1 61.5 7.9 1059.0
M06-2X 12.3 48.8 3.2 836.5
MN15 9.2 9.6 3.1 18.5
PBE0 25.1 12.6 7.9 12.3

HSE06 25.2 12.9 8.4 19.6

Table 8.4: Average absolute relative error in predicting anharmonic BKPT contributions to g

NR
zzzz for a set of

9 molecular complexes. Relative errors were calculated with respect to the values of the same contributions
calculated at the MP2/aug-cc-pVTZ level of theory.

CAM-B3LYP wB97X M06 M06-2X
[µ2

a]1,0
w=0 19.0 154.9 87.7 72.1

[µ2
a]0,1

w=0 24.8 40.7 84.8 52.1
[µ4]1,1

w=0 123.6 135.5 341.0 165.4
[µ4]2,0

w=0 58.5 635.6 459.7 250.4
[µ4]0,2

w=0 79.0 871.4 429.5 477.2
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8.4 Grid-Related Spurious Oscillations in the Energy De-
rivatives Curves

This poor performance in computation of high-order derivatives of molecular properties
motivated us to further investigate this problem. One can get more insight into the ob-
served (erroneous) values of the molecular properties by establishing their dependence
along a particular (geometrical) coordinate.

In this test, we are interested in the errors in [µ4]0,2
w=0 arising from the high-order

derivatives aabc
30 and aabcd

40 . To reduce the dimensionality of the problem, we switched to
the FIC representation of these properties. In fact, to evaluate the first summation in Eq.
8.3, one can utilize solely the z-component of FIC1, c1,z, which drastically reduces the
dimensionality of the problem since only the diagonal derivatives with respect to c1,z are
needed. In contrast, the second summation in 8.3 requires both z-component of FIC1,
c1,z and harmonic part of FIC2, c2,har,zz. In this preliminary analysis, we solely focus on
the dmE/dc1,z

m derivatives. For that reason, we compute the curves of dmE/dc1,z
m (m

= 0 - 4) for different geometrical displacements along the c1,z coordinate of the HCN ·
HF complex. We obtain those for three DFAs, namely B3LYP, wB97X, and M06-2X,
combined with the unpruned version of SuperFineGrid, i.e., (250, 974) grid, as well for
the CCSD(T) method.

Results for the dmE/dc1,z
m derivatives are depicted in Figure 8.1 and in these plots

Dc1,z = 0 corresponds to the optimized geometry. While one does not observe any dra-
matic differences in the curves of E(R), dE/dc1,z, and d2E/dc1,z

2, interesting spurious
oscillations emerged in the curves of d3E/dc1,z

3 and d4E/dc1,z
4 obtained with M06-2X

and wB97X. These oscillations introduce large inconsistencies in the values of the prop-
erties. In the previous works, similar spurious oscillations were reported in PECs along
the interatomic separation R in Ar2 (the E(R) curve) and were attributed to an insufficient
size of the grid used in the numerical integration [307, 308].

For that reason, we evaluate d4E/dc1,z
4 with several integration grids, namely (99,

590), SuperFineGrid and its unpruned version (250, 974), and (750, 974) (see nomencla-
ture of grid sizes in Section 5.6.2). These results are depicted in the last row in Figure
8.1. No significant differences are observed for B3LYP when combined with different
integration grids. In contrast, one notices big changes in the curves for M06-2X and
wB97X obtained with different grids. Most notably, for these DFAs, the oscillations have
much larger amplitudes when the smaller grid, (99, 590) is used. In the case of the (250,
974) grid, oscillations are much smaller but still considerably large. It seems that the
oscillations can be alleviated by using a huge integration grid, such as (750, 974).

The values of d4E/dc1,z
4 at the optimized geometries, for the (99, 590), SuperFine-

Grid, (250, 974), and (750, 974) grids are respectively: 8.10·10�4, 8.07·10�4, 8.01·10�4,
and 8.00·10�4 for B3LYP; 1.34·10�3, -9.20·10�5, 2.52·10�4, and 4.08·10�4 for M06-2X;
6.72·10�3, 7.76·10�3, 1.92·10�4, and 7.96·10�4 for wB97X. Therefore, for M06-2X and
wB97X combined with the SuperFineGrid, one observes the relative errors in d4E/dc1,z

4

due to the insufficient integration grid equal to -122% and 875%.
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Figure 8.1: Grid-related spurious oscillations affecting the derivatives of the total energy with respect to
c1,z of HCN · HF, dmE/dc1,z

m (m = 0 - 4). Top and middle row panels show the results of DFAs combined
with the (99, 590) grid. In the bottom row panels, curves of d4E/dc1,z

4 obtained with various integration
grids are shown. In all plots, the black solid curve represents the CCSD(T) results and the vertical lines
mark the equilibrium distance. All properties are given in atomic units.
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8.5 Grid-Size Dependence of NR Contributions
Lastly, to fully confirm that the huge errors in the NR contributions to the hyperpolariz-
abilities are in fact due to the insufficient size of the grid used in the numerical integration,
for all molecular systems we reevaluated electronic and NR NLOPs using the huge (750,
974) integration grid. Table 8.5 compiles the average absolute relative errors obtained
with two integration grids, (SuperFineGrid) and (750, 974). The average errors of the
electronic part of the response remain unchanged when computed with a larger grid. In
contrast, there is a dramatic increase in the performance of all three problematic DFAs for
the NR contributions. For b

NR
zzz , the average errors decrease from 56% to 14% for M06,

from 51% to 18% for M06-2X, and from 86% to 4% for wB97X. More strikingly, one ob-
serves even larger reduction of errors for g

NR
zzzz. With the (750, 974) they are reduced from

hundreds and thousands of percent to 9, 34, and 53% for wB97X, M06, and M06-2X,
respectively. Surprisingly, wB97X in combination with the (750, 974) grid, outperforms
other functionals in the computations of NR contributions, and shows almost equivalent
performance as MP2.

Table 8.5: Effect of the adopted numerical integration grids, (SuperFineGrid) and (750, 974), on the per-
formance of some DFAs in computations of electronic (el) and nuclear relaxation (NR) contributions to
NLOPs. Numbers correspond to the average absolute relative errors. The relative errors were calculated
with respect to the reference values calculated at the CCSD(T)/aug-cc-pVTZ level of theory. The averaging
included all nine hydrogen-bonded complexes. Data for the SuperFineGrid corresponds to the one from
Table 8.1.

a

el
zz b

el
zzz g

el
zzzz a

NR
zz b

NR
zzz g

NR
zzzz

M06(SuperFineGrid) 2 48 35 13 56 1072
M06(750, 974) 2 47 32 11 14 34

M062X(SuperFineGrid) 1 13 8 7 51 869
M062X(750, 974) 1 14 7 7 18 53

wB97X(SuperFineGrid) 1 24 6 4 86 1768
wB97X(750, 974) 1 26 6 3 4 9

8.6 Conclusions
In this work, we assessed the performance of DFAs in predicting the molecular (hy-
per)polarizabilities, including both the electronic and vibrational contributions, of nine
hydrogen-bonded complexes. There are two main outcomes of this particular study.

The first one has a more general and pragmatic character and is directly related to the
main results of the benchmark. Namely, the best accuracy in simulations of the electronic
and NR (hyper)polarizabilities of the hydrogen-bonded complexes was observed for the
CAM-B3LYP functional. For this DFA, the average absolute errors for all studied prop-
erties were below 20%. Next in performance were the LC-BLYP and MN15 functionals,
with errors not exceeding 30%. In contrast, the worst performance was observed for the
wB97X, M06, and M06-2X, for which the NR contributions to the second hyperpolariz-
ability yielded average relative errors exceeding hundreds of percent.

The second conclusion is more case-specific, nevertheless being as much (or even
more) important as the first conclusion. By performing several subsequent analyses, we
have managed to pinpoint the source of huge errors in g

NR
zzzz observed for wB97X, M06, and

M06-2X. Namely, when combined with the integration grids of insufficient sizes, these
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functionals provided very inaccurate high-order derivatives of the energy with respect to
the nuclear coordinates, which are an essential factor of the expression for the anharmonic
terms of vibrational hyperpolarizabilities. Such high-order derivatives turned out to be
affected by the grid-related spurious oscillations of the corresponding curves along the
selected displacement coordinate. This result was unexpected because in the main part
of this work we applied SuperFineGrid — the largest predefined grid implemented in
Gaussian package [259, 296]. For almost all applications of KS-DFT, SuperFineGrid is
believed to be of an army-grade quality. Still, integration grid of such size turned out to
be too small for the wB97X, M06, and M06-2X functionals. Surprisingly, when the huge
(750, 974) grid was adopted in FF-NR, the wB97X functional unlocked its true potential
and provided the best predictions of NLOPs in the whole set of tested methods, on par
with the MP2 method. These latter observations and, especially, the phenomenon of the
spurious oscillations, became the motivation for the two of main projects of this Thesis,
to which Chapters 9 and 10 are devoted to.
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Chapter 9

Spurious Oscillations Affecting
Molecular Properties in KS-DFT
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9.1 Introduction
Unlike most wavefunction methods, the computation of electronic energies from DFAs
requires the numerical integration of the exchange and correlation functionals, which de-
pend on the size and type of the numerical integration grid (see Sections 5.6.2 - 5.6.4). In
most in-silico studies, the inaccuracy of the numerical integration is usually considered to
yield small random numerical errors. Standard numerical integration techniques to calcu-
late the energy density functionals have been mostly developed to integrate fairly smooth
varying integrands with high atomic character, such as the electronic density.

In their seminal work, Johnson, Wolkow, and DiLabio showed that grid instability
manifests itself through regular spurious oscillations of the Potential Energy Curve (PEC)
[307]. Spurious oscillations were present in the PECs of the dispersion bound complexes,
such as Ar2 or benzene dimer, computed using the meta-GGA functionals combined with
small integration grids. These oscillations were alleviated when large (radial) grids were
used. Following this observation, Johnson et al. performed a detailed study of the most
grid–susceptible components of some meta-GGAs. They proved that in the case of the dis-
persion bound complexes, the problem lies in the insufficiently sampled midpoint regions
between the interacting fragments [308]. At those points, most of the kinetic density-
based components of the meta-GGA energy functional integrands display enhanced val-
ues which are not accurately enough integrated. This is opposite to the behavior of the
reduced density gradient, the main component of GGA functionals, which goes to zero
at such points. Such midpoints are not properly sampled, mostly because of the nature
of atomic–centered quadratures, which are designed to integrate efficiently the core and
valence regions of the atoms. As shown and explained by the authors, one of the solutions
is to simply increase the number of radial shells of the integration grid.

There are two main disadvantages of such a strategy. The first one is that the radial
sampling does not change uniformly with the size of the radial grid. For example, unless
the algorithm is changed, a two-fold increase in the number of points in the radial grid
will not guarantee a twice better sampling in the region between two atoms — since most
of the new radial shells will be added to the core region of atoms. The second one is that
the computational cost of the integration increases linearly with the size of the applied
numerical integration grid. A cost-effective solution was proposed by Grafenstein and
Cremer through the local augmentation of the radial grid [309]. It provides a smooth
increase in radial sampling in a selected part of the radial space (for example, in the far
valence region), without the need to add redundant radial shells in other regions of space
(for example, in the core regions). Despite its efficiency and simplicity, this approach has
not been implemented in standard computational packages thus far.

Only a few works have addressed the issue of grid-related spurious oscillations [307–
318]. Peverati, Macrina, and Baldridge commented on the grid-related oscillations in
PECs of triangular structures of rare gases when described with the M06-L functional
[311]. Contreras-Garcia and Yang observed similar spurious oscillations in the curves of
the noncovalent interaction energy [312]. Mardirossian and Head-Gordon, when design-
ing the B97M-V, wB97M-V and wB97X-V functionals, included information on the grid
stability and spurious oscillations found in PECs of dissociating dispersion–bounded sys-
tems [77, 78, 319]. Grafenstein, Izotov, and Cremer studied the grid-dependent singulari-
ties occurring at the critical points of the electronic density for several meta-GGAs [310].
This problem is partially related to the grid-dependent oscillations, but leads to much
more dramatic errors. Such singularities may produce great blow-ups in the total energy
and may even prevent obtaining a stable SCF solution of the Kohn-Sham equations. As a
possible cure to this problem, they remove the singularity–prone terms composing some
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meta-GGA functionals. Yu, He and Truhlar did similar tests for the newly developed
meta-GGA MN15-L functional [76]. Dasgupta and Herbert, in tests of their newly pro-
posed SG2 and SG3 integration grids, check for the oscillations in PECs obtained with
several grid-demanding DFAs [316]. Gould, Johnson, and Tawfik observed oscillations
in PECs obtained with M06-L and SCAN when benchmarking popular dispersion cor-
rections for non-equilibrium geometries. More recently, Bootsma and Wheeler discussed
the practical issues arising from the lack of rotational invariance of the integration grids
in DFT, which can lead to great uncertainties in the computed thermodynamic proper-
ties of organic reactions [320]. In all the examples mentioned above, except the last one,
the grid-related spurious oscillations were analyzed only in PECs, i.e., the dependence
of the derivatives of the energy or any other molecular properties along the vibrational
coordinates were not explored. Under such "mild" conditions, spurious oscillations were
observed only for the meta-GGA functionals.

First of all, let us show that the problem affects various energy derivatives and it cannot
be always solved by increasing the numerical grid size. Figure 9.1 illustrates the spurious
oscillations of dmE/dRm in dissociating Ar2, when calculated with three popular DFAs,
namely B3LYP, M06-2X, and wB97X. Although these oscillations are not evident from
the potential energy curve of Ar2 [308, 317, 321] (see the left graph in the first row in
Figure 9.1), they compromise the calculation of accurate force constants and higher-order
derivatives. In some cases, at the expense of a large computational cost, the problem can
be partially alleviated if grids much larger than those predefined in standard packages
are employed. However, for some DFAs, such as M06-2X and wB97X, the oscillations
persist after a large increase of the grid size (see the graphs in the bottom row in Figure
9.1). In such situations obtaining an accurate response property seems to be out of reach
for atom-centered grids.

Therefore, there was an urge to perform a broad study and to establish the full extent
of the spurious oscillation problem [147]. First of all, for such benchmark study one must
acquire suitable reference results not affected by the spurious oscillations. However, there
are two main difficulties to accomplish that: i) One cannot directly compare the DFA and
another computational method because the differences could be either due to the spurious
oscillations or to the methods’ performance, hence, the reference must be based on the
same DFA; ii) As shown in Figure 9.1, one should not blindly trust even a very large
grid, because oscillations may still be present. To circumvent these two problems, we
benefited from the fact that these grid-related errors have regular oscillatory patterns. We
designed an algorithm that employs Fourier spectral analysis and filtering techniques to
identify and quantify oscillations in property profiles along some nuclear displacement
coordinates [147]. With the aid of this algorithm, we show that the spurious oscillations
that arise from the sizable numerical integration errors of DFAs are neither a problem
limited to meta-GGAs and the PES of dispersion compounds nor can be solved using the
largest predefined grids available in most computational packages [147]. Moreover, these
spurious oscillations easily occur in molecular complexes (and even a single molecule)
with low-frequency vibrational modes, affect various molecular properties, and vary with
the grid size, making most DFA predictions strongly grid-size dependent.
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Figure 9.1: Grid-related spurious oscillations affecting the derivatives of the total energy with respect to
interatomic separation R of Ar2, dmE/dRm (m = 0 - 4). Top and middle row panels show the results of
DFAs combined with the (99, 590) grid. On the bottom row panels, curves of d4E/dR4 obtained with
various integration grids are shown. In all plots, the black solid curve represents the CCSD(T) results and
the vertical lines mark the equilibrium distance. All units are a.u.
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This Chapter, has the following structure. The second section describes the studied
systems and the computational details. The third section describes a novel algorithm to
efficiently detect and quantify the errors in molecular properties arising from the spurious
oscillations. The fourth and fifth sections discuss the results of a broad benchmark on
the grid-stability of DFAs, done with the use of the newly proposed algorithm. The last
section shows additional examples of spurious oscillations affecting low-frequency modes
of the single molecules.

9.2 Computational Details

9.2.1 Systems and Properties
In this work, we focused on the systems which characterize with a very loose and anhar-
monic motion (also referred as a floppy motion), dimolecular complexes stabilized by dif-
ferent type of intermolecular interaction. Namely, we included hydrogen-bonded (HCN ·
HF, HCN · HCl, CO · HF, and N2 · HF), halogen-bonded (HCN · BrH and HCN · BrF), and
dispersion-bonded (Ar2 and He2) complexes (see Table 9.1). Selected hydrogen-bonded
systems were also used in the previous study on the NR contributions (see Chapter 8),
whereas dispersion-bonded Ar2 and He2 have been frequently used in other studies to
test the grid-dependency of DFAs [76–78, 307–310, 316, 319]. All of the systems are
co-linear with the Cartesian Z-axis and are characterized by a low-frequency mode cor-
responding to the intermolecular stretching (their harmonic frequencies are compiled in
Table 9.1).

Table 9.1: Molecular complexes included in the benchmark and the type of intermolecular interaction re-
sponsible for their binding. The third column contains the harmonic vibrational frequency of the the inter-
molecular stretching mode (belonging to the S+

(g) irreducible representation), obtained at the CCSD(T)/aug-
cc-pVTZ level of theory.

Complex Intermolecular interaction whar [cm�1]
HCN · HF hydrogen-bond 187.3
HCN · HCl hydrogen-bond 117.8

N2 · HF hydrogen-bond 121.5
OC · HF hydrogen-bond 137.3

HCN · BrH halogen-bond 63.3
HCN · BrF halogen-bond 124.7

He2 dispersion 27.8
Ar2 dispersion 29.5

In this work, we refer to the property curve as the dependence of the property (for
instance, an energy derivative) along a nuclear displacement coordinate. We analyzed
oscillations in the property curves along the nuclear displacement coordinate x of deriva-
tives of the total electronic energy, dmE/dx

m (m = 0 - 4), the dipole moment, dm
µz/dx

m

(m = 0 - 3), and the static polarizability, dm
azz/dx

m (m = 0 - 2) (all derivatives are with
respect to the same nuclear displacement coordinate, i.e., x ). The choice of displacement
coordinates is discussed in Section 9.2.2. These derivatives are of key importance to de-
scribe basic molecular properties related to the vibrational structure of the molecules, such
as IR and Raman spectroscopies. In Table 9.2, the connection between these derivatives
and various molecular properties is given.
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Table 9.2: Property derivatives studied in this work and the experimental molecular properties they are
describing, including vibrational frequencies, IR and Raman intensities, and NR contributions to static non-
linear optical properties. In the case of higher anharmonic corrections, lower-order mechanical derivatives
are also utilized. Moreover, in the case of IR and Raman intensities, as well as NR contributions, purely
mechanical derivatives dmE/dx

m are also used.

Derivative Molecular Property
dE/dx Forces acting on nuclei

d2E/dx

2 Quadratic force constants; Harmonic vibrational
frequencies; NR contribution to vibrational

polarizability
d3E/dx

3 Cubic force constants; Cubic anharmonic
correction to vibrational frequencies; Quadratic
and Cubic anharmonic corrections to the IR and

Raman intensities; NR contribution to
vibrational hyperpolarizability

d4E/dx

4 Quartic force constants; Quartic anharmonic
correction to vibrational frequencies; Cubic
anharmonic correction to the IR and Raman
intensities; NR contribution to vibrational

second hyperpolarizability

µi Permanent dipole moment
dµi/dx Harmonic IR intensity; NR contribution to

vibrational polarizability
d2

µi/dx

2 Quadratic anharmonic correction to IR intensity;
NR contribution to vibrational

hyperpolarizability
d3

µi/dx

3 Cubic anharmonic correction to IR intensity;
NR contribution to vibrational second

hyperpolarizability

ai j Static electronic polarizability
dai j/dx Harmonic Raman intensity; NR contribution to

vibrational hyperpolarizability
d2

ai j/dx

2 Quadratic anharmonic correction to Raman
intensity; NR contribution to vibrational second

hyperpolarizability
a d3

ai j/dx

3 Cubic anharmonic correction to Raman intensity
aDerivative not studied in this work
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9.2.2 Nuclear Displacement Coordinates
To effectively describe the most anharmonic nuclear displacements in polyatomic sys-
tems, we adopted the first–order Field-Induced Coordinate (FIC), c1,i [118] (see Section
4.11). In the case of hydrogen- and halogen-bonded systems, the property curves were
obtained for linear displacements along the first-order FIC vector, c1,z. For these sys-
tems, c1,z is parallel to the main intermolecular axis and involves only vibrational modes
of the s -type. In fact, c1,z is almost exclusively given by the low-frequency intermolec-
ular stretching mode between the two molecules held by a noncovalent interaction (see
example in Figure 9.2).

Figure 9.2: Graphical representation of c1,z (in normalized Cartesian coordinates) of HCN · BrH obtained
with B3LYP/aug-cc-pVTZ and the (250, 974) integration grid. For this system, according to Eq. 4.143,
c1,z = �219.48Q1 + 0.21Q2 + 0.19Q3 + 0.62Q4, where Q1-Q4 are S-type normal modes, and Q1 is the
intermolecular stretching.

Therefore, one can try to express c1,z in terms of the separation between two molecules,
where ±Dc1,z corresponds approximately to ±0.15Å in the intermolecular separation.
However, for the sake of generality, in this paper, we have preferred to use FICs which
would be the most efficient way of studying the spurious oscillations of more complex
polyatomic systems. In this work, for polyatomic systems, curves were sampled with 400
points and D(Dc1,z) = 0.02 au, and Dc1,z = 0 corresponds to the optimized equilibrium
geometry.

In the case of diatomic dispersion-bonded systems, scan along the interatomic distance
R has been done. The curves were sampled with DR = 0.005 Bohr and consisted of 1000
points. In all cases, irrespective if the methods give a bounded system or not, starting
points (i.e. DR = 0.0 Bohr) R = 7.2 Bohr and R = 6.0 Bohr were taken for Ar2 and He2,
respectively. Afterwards, the derivatives of the properties were calculated numerically
(see Section 9.2.4).

9.2.3 Electronic Structure Calculations
We investigated a broad range of forty-five DFAs including generalized gradient approxi-
mations (GGAs), meta-GGAs, global hybrids, range-separated DFAs, and double hybrids
(see Table 9.3). For all DFAs (see Table 9.3), KS-DFT computations were performed
using Gaussian16 [296], except for B97, B97-D, SCAN, SCAN0, wB97X-D3, B97M-V,
wB97X-V, wB97M-V, which were performed using QChem 5.1 [322]. CCSD(T) compu-
tations were done using CFOUR [323]. In this work, all of the computations employed the
aug-cc-pVTZ [298–305] basis set, except in Section 9.6 where the aug-cc-pVDZ [298–
305] basis set was employed.



102 CHAPTER 9. SPURIOUS OSCILLATIONS AFFECTING KS-DFT

Table 9.3: List of DFAs used thorough this work; GGA — Generalized Gradient Approximation, GH —
global hybrids, RSH — range-separated hybrids, DH — double hybrids.

DFA Type Ref. DFA Type Ref.
BLYP GGA [178, 180] PBE GGA [179]

B1LYP GH GGA [324] PBE0 GH GGA [294]
B3LYP GH GGA [325, 326] LR-wPBE RSH GGA [191]
BH&H GH GGAa [296] LR-wHPBE RSH GGA [296]

BH&HLYP GH GGA [296] B97 GH GGA [327]
LC-BLYP RSH GGA [190] B97-D GGA [328]

CAM-B3LYP RSH GGA [193] wB97 RSH GGA [192]
M06 GH meta-GGA [293] wB97X RSH GGA [192]

M06-L meta-GGA [184] wB97X-D RSH GGA [329]
M06-HF GH meta-GGA [330] wB97X-D3 RSH GGA [331]
M06-2X GH meta-GGA [293] B97M-V meta-GGA [319]

SOGGA11 GGA [332] wB97M-V RSH meta-GGA [77]
SOGGA11-X GH GGA [333] wB97X-V RSH GGA [78]

M11 RSH meta-GGA [334] TPSS meta-GGA [182]
M11-L meta-GGA [335] RevTPSS meta-GGA [336]

MN12-L meta-GGA [337] TPSSh GH meta-GGA [338]
N12-SX RSH GGA [339] PBE-0DH DH GGA [214]

N12 GGA [334] PBE-QIDH DH GGA [213]
MN12-SX RSH meta-GGA [339] B2PLYP DH GGA [211]

MN15 GH meta-GGA [75] mPW2PLYP DH GGA [212]
MN15-L meta-GGA [76] HSE03 RSH GGA [340, 341]
SCAN meta-GGA [183] HSE06 RSH GGA [295]
SCAN0 GH meta-GGA [342]

a No GGA exchange is used, i.e., EBHH
xc = 0.5 ESlater

x + 0.5 EHF
x + ELY P

c

The SCF DIIS converge criteria was set to 10�12 in the HF and KS–DFT computa-
tions, whereas in CCSD(T) the convergence threshold for maximum amplitude was set to
10�10. In the coupled–perturbed equations, convergence threshold was set to 10�11. In all
methods, the screening threshold for the two–electron integrals was set to 10�14. Except
Ar2 and He2, all molecular systems were optimized at the corresponding level of theory
with the convergence criteria of Root Mean Square (RMS) of the gradient set below 10�6

(and 10�8 in case of the CCSD(T)). In the optimization procedure with DFAs, only the
(250, 974) grid has been used.

In the KS-DFT computations, we use Handy-Lebedev grids [218–221, 224] (see Sec-
tions 5.6.3 and 5.6.4) , (Nr, NW), where Nr is number of radial shells and NW is number
of points in the Lebedev angular grid. In this study, the following unpruned integration
grids were tested: (99, 590), (250, 974), (500, 974) and (750, 974), along with some of
their pruned versions: UltraFine, SG3, and SuperFineGrid. For the integration of nonlo-
cal VV10 [343] correlation in B97M-V, wB97X-V and wB97M-V, the SG3 grid has been
used. The smallest unpruned grid tested in our study, (99, 590), is an unpruned version
of UltraFine [296] (a default predefined grid in Gaussian16) and SG3 [316] (the largest
predefined grid in QChem 5.1 [322]). The (250, 974) grid is the unpruned version of
a popular (and the largest) predefined grid in Gaussian16, known as the SuperFineGrid.
The unpruned (250, 974) grid is already larger than most of the largest predefined grids
in standard computational packages. Table 9.4 contains the list of largest predefined grids
utilized in the chosen computational packages. Besides the names of the grids, their un-
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pruned parent grid, as well as the radial grid are also given. The cost of the calculations
multiply by four going from (99, 590) to (250, 974) and triples from (250, 974) to (750,
974). Hence, the calculation with the latter grid increases by more than one order of
magnitude the cost of most calculations performed nowadays.

Table 9.4: The largest predefined grids in some quantum chemical computational packages. The fourth
column lists the parent unpruned grids (shown for C atom).

Program Grid Radial Quadrature Parent Grid Size
Gaussian16 SuperFineGrid Handy [224] (250, 974)
QChem 5.1 SG3 DE [229, 344–346] (99, 590)
ORCA 5.0.1 DEFGRID3 Ahlrichs [227] (45, 590)

GAMESS US JANS Handy [224] (150, 974)
NWChem 7.0.2 huge Knowles [228] (300, 1454)

DALTON UltraF LMG [230] (111, 1454)

9.2.4 Numerical Differentiation
Molecular properties E, µz, and azz have been obtained analytically. In the case of dou-
ble hybrid functionals and CCSD(T), the relaxed densities have been used to compute µz
and azz. On the other hand, the derivatives dmE/dx

m (m = 1 - 4), dm
µz/dx

m (m = 1 -
3), and dm

azz/dx

m (m = 1 - 2) were obtained through numerical differentiation. For that
purpose, we have constructed an algorithm to automatically choose the Savitzky-Golay
[347] differentiation filter (i.e., differentiation via polynomial fitting). We will refer to
this method as AutoSG. The order of the filter (i.e., the order of the interpolating polyno-
mial) has been chosen automatically, with the criterion to quantitatively differentiate all
relevant (i.e., non-noisy) bands in the Fourier Transform spectrum of the property. In this
procedure, a maximum order of 30 has been used as the limit. The length of the filter (i.e.,
the number of points used in the fitting) has been set to 51, 75, and 101 for hydrogen-,
halogen- and dispersion-bonded systems, respectively. Such number of points provided a
good trade-off between the cost and steepness of the cutoff region.

The most important feature of this algorithm is that it differentiates hidden spuri-
ous oscillatory bands and keeps the noise contribution to the minimum. Such numerical
derivatives have proven to be of very good quality and superior to ones obtained with a
finite (central) differentiation or even the Romberg-Rutishauser procedure [292]. If one
would use the finite (central) differentiation with a very large step size, one could miss
the differentiation of high-frequency spurious oscillations. However, the latter does not
represent a solution to the spurious oscillations because there is no guarantee that finite-
difference numerical derivatives are not affected by the spurious oscillations. Besides,
since spurious oscillations are an inherent problem of the DFA, analytical derivatives —
which are employed in many computational packages for low-order derivatives — would
also present spurious oscillations on the property curve.

In Figures 9.3-9.5, we show a performance comparison of numerical differentiation
techniques, including our newly implemented AutoSG. In the test, the formula for central
differentiation (utilizing Richardson extrapolation once, which we label here as CD(n,1))
has been used:

CD(n,1) =
1

48DR4 [�E(R�4DR)+68E(R�2DR)�256E(R�DR)+378E(R)

�256E(R+DR)+68E(R+2DR)�E(R+4DR)] , (9.1)

where DR = 2n ·0.005 au.
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Figure 9.3: Accuracy of different numerical differentiation procedures to compute d2E/dR2 in Ar2. Black
curve represents the reference curve obtained analytically. Other curves were obtained as numerical second
derivatives of the total energy. AutoSG is our automatic differentiation using Savitzky-Golay filtering;
RR corresponds to Romberg-Rutishauser differentiation involving up to 4 different fields and the starting
perturbation of DR = 0.005 a.u.; CD(2,1) corresponds to the central differentiation and uses DR = 0.02 a.u.
starting step; CD(4,1) corresponds to the central differentiation and uses DR = 0.08 a.u. starting step; all
curves were obtained using the wB97X functional combined with different integration grids, namely (99,
590) — top row, (250, 974) — middle row, and (750, 974) — bottom row.
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Figure 9.4: Accuracy of different numerical differentiation procedures to compute d3E/dR3 in Ar2. Black
curve represents the reference curve obtained as numerical first derivative (utilizing CD(2,1)) of the ana-
lytically obtained d2E/dR2. Other curves were obtained as numerical third derivatives from the total ener-
gies. AutoSG is our automatic differentiation using Savitzky-Golay filtering; RR corresponds to Romberg-
Rutishauser differentiation involving up to 4 different fields and the starting perturbation of DR = 0.005
a.u.; CD(2,1) corresponds to the central differentiation and uses DR = 0.02 a.u. starting step; CD(4,1) cor-
responds to the central differentiation and uses DR = 0.08 a.u. starting step; all curves were obtained using
the wB97X functional combined with different integration grids, namely (99, 590) — top row, (250, 974)
— middle row, and (750, 974) — bottom row.
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Figure 9.5: Accuracy of different numerical differentiation procedures to compute d4E/dR4 in Ar2. Black
curve represents the reference curve obtained as numerical second derivative (utilizing CD(2,1)) of the ana-
lytically obtained d2E/dR2. Other curves were obtained as numerical fourth derivatives from the total ener-
gies. AutoSG is our automatic differentiation using Savitzky-Golay filtering; RR corresponds to Romberg-
Rutishauser differentiation involving up to 4 different fields and the starting perturbation of DR = 0.005
a.u.; CD(2,1) corresponds to the central differentiation and uses DR = 0.02 a.u. starting step; CD(4,1) cor-
responds to the central differentiation and uses DR = 0.08 a.u. starting step; all curves were obtained using
the wB97X functional combined with different integration grids, namely (99, 590) — top row, (250, 974)
— middle row, and (750, 974) — bottom row.
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9.3 Procedure for Quantification of the Grid-Related Spu-
rious Oscillations

9.3.1 The Algorithm
In this section, the algorithm for the detection and quantification of spurious oscillations
along a nuclear displacement is discussed in detail. The algorithm will need two in-
puts: the property curve we want to analyze, calculated with a certain DFA combined
with the grid G, PDFA(G), and some spurious-oscillation free reference, Pref. In order to
guarantee that the latter does not have spurious oscillations it is convenient to choose a
computational method that does not rely on numerical integration, such as HF, MP2 or
coupled-cluster. The number of points that will be analyzed on the property curve defines
the set of geometries indicated as {⇠0}, and we will refer to them as displacement range.
The algorithm will provide a quantitative measure of the degree of oscillations that are
present in the property curve within the displacement range.
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Figure 9.6: Left: Algorithm 1, which tests the property curve obtained with grid G, and also uses this
property curve to obtain the filtered curve. Right: Algorithm 2, which uses a larger-grid (LG) to obtain the
filtered curve that will be used to quantify the spurious oscillations on a smaller grid (G). In all cases, the
same DFA and basis are employed.

The flowchart of the algorithm is shown in Figure 9.6. The algorithm consists of
three stages: 1) detection of the oscillations in PDFA(G), 2) obtaining an oscillation-free
version of PDFA, PDFA

filt , and 3) quantifying the spurious oscillations by comparing PDFA
filt

and PDFA(G). There are two variants of the algorithm, which will be commented below.
The algorithm has been implemented in an in-house Python3 program, which uses NumPy
[348], SciPy [349], SymPy [350], and Matplotlib [351] libraries. All graphs shown in this
Chapter were prepared using the Matplotlib package [351].

The main goal of the first and second stages is to obtain PDFA
filt . To do so it is convenient

to use the same DFA one wants to test but with a larger integration grid (LG), which will
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have much less spurious oscillations than a lower-quality grid (G) that one wants to test
(Algorithm 2 in Figure 9.6). However, as we will comment later, the algorithm can be
easily adapted to confidently filter the oscillations of any grid size (presuming these will
be easily separable). Algorithm 1 in Figure 9.6 uses the same grid G of the tested DFA to
generate PDFA

filt . In this first work, to reduce the uncertainty about the presence of spurious
oscillations, we have decided to employ the Algorithm 2 and the (750, 974) grid as LG
(PDFA(LG) = PDFA(750,974)).

In this work, we have used reference property curves obtained with CCSD(T), Pref =
PCCSD(T). However, the choice of the ab-initio method used to distinguish the (eventual)
oscillations in PDFA(LG) does not impact the final results in detection and measurement
of the spurious oscillations. Despite the evident differences in performance between HF,
MP2, and CCSD(T) all these methods work equally well as spurious-oscillation-free ref-
erences for this algorithm.

At the first stage, the discrete Fourier transforms of PDFA(LG) and Pref are compared.
In these spectra, only bands which are ten times larger than the baseline of the noise level
(determined as the average of last 30% of the spectrum) are considered. The comparison
of their frequency spectra will reveal bands that are present on PDFA(LG) but not in Pref,
which will be marked as potentially spurious oscillatory bands. The bands of both curves
are evenly matched using an overlap criterion larger than 0.90. Any extra bands present
in the spectrum of PDFA, but not in Pref, are labeled as spurious oscillatory bands (spu-
rious bands, hereafter). For a better distinction of the spurious bands, which may have
much lower amplitude than the main low-frequency band, the Kaiser windowing tech-
nique [352] is adapted to PDFA and Pref (with a different relative side-lobe attenuation for
each type of derivative). Figure 9.7 illustrates the property curves of PDFA(750,974) and
PCCSD(T) and their Fourier transform, for HCN · BrH along Dc1,z.
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Figure 9.7: Top: d3E/dc1,z
3 curves for HCN · BrH along the Dc1,z displacement, obtained with the

wB97X/aug-cc-pVTZ combined with the (750, 974) grid, PDFA(LG) = PDFA(750,974) (blue). Property curve
obtained with CCSD(T), Pref = PCCSD(T), is shown in black. Bottom: Frequency spectra of PDFA(750,974)

and PCCSD(T). The vertical dashed line marks the cutoff frequency for the low-pass filtering of PDFA(750,974).
The horizontal dashed line marks the noise level in the PDFA(750,974) and PCCSD(T) spectra. The band corre-
sponding to the spurious oscillation present in PDFA(750,974), is indicated with a black arrow.

At the second stage, the spurious bands detected in PDFA(LG) are filtered out (along
with high-frequency numerical noise), yielding a filtered reference curve, PDFA

filt . This is
done using a low-pass finite impulse response (FIR) filter of type I, designed with the
Remez exchange algorithm [353]. Filter specifications (frequency cutoff, stop– and pass–
band attenuation) are automatically chosen by the program. To this end, the position and
height of the oscillation bands are used:

• The cutoff frequency corresponds to the right-most side of the main non-spurious
band (which determines the general shape of the curve), which has the same height
as the top of the detected oscillatory band.

• The stop-band attenuation is chosen to be 60dB smaller than the maximum of the
highest oscillatory band.

• The pass-band attenuation is chosen to be 40dB.

• The number of filter coefficients (i.e., the number of filter taps) is set to the first odd
number smaller than the total number of points minus the number of points in the
displacement range, {⇠0}.

• The width of the transition is estimated using Bellanger’s estimate [354], and if
needed, is iteratively changed to yield a stable filter.

The latter parameters permit to filter the oscillations within {⇠0} with a very good preci-
sion and in an automatized manner. It is important to stress out that such designed FIR
filter will provide a valid part of the filtered curve only within {⇠0}. The resulting curve
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outside the displacement range is corrupted by the initial conditions of the FIR filter,
which is an indispensable feature of the FIR filters.

The results of filtering of PDFA(LG), along with the Fourier transform of an automati-
cally designed FIR filter (also called the response of the filter), are shown in Figure 9.8.
The separation of the spurious band from the main low-frequency band is the key factor to
a successful filtering. In principle, if the filtering is done accurately enough, any grid will
provide the same true reference PDFA

filt . We have checked that the main low-frequency band
is well separated from the spurious bands when the (750, 974) grid is used as LG. Using
(250, 974) as LG, in most cases, also yields the correct filtered curve PDFA

filt . Difficulties
arise for (99, 590) or smaller grids because, in these cases, the spurious oscillations are
very strong, span already at low frequencies, and cannot be easily filtered out. For these
difficult cases, the filtering using PDFA(99,590) requires a much a higher resolution of the
PDFA(99,590) spectra and, hence, more points in PDFA(99,590), which is not always feasible.
Therefore, with the current version of the filtering technique we recommend the use of
large grids as LG.

Figure 9.8: Results of the filtering of PDFA(LG) = PDFA(750,974) with an automatically designed FIR filter,
shown for P = d3E/dc1,z

3 of HCN · BrH using wB97X/aug-cc-pVTZ. Top: Original (i.e., unfiltered) and
filtered curves in the c1,z domain. One can observe the effect of the initial conditions in the left part of
the yellow curve. The valid part of the filtered curve within the {⇠0} studied range, is shown in green
color. Bottom: Frequency spectra of the original and filtered curve (in reciprocal domain), along with the
response of the designed FIR filter (orange, shown in the normalized decibel scale). In the top plot, dashed
black vertical lines mark the displacement range of the property curve {⇠0}, for which RMS, RMSE, and
RRMSE are calculated. In the bottom plot, dashed orange vertical lines mark the transition band of the
designed low-pass filter.

At the third (and last) stage of the algorithm, we use PDFA
filt and PDFA(G) to quantify

the spurious grid oscillations in the property curve obtained from some DFA and integra-
tion grid G, PDFA(G). We employ the RMS and the root mean square error (RMSE) to
define the relative root mean square error (RRMSE), which quantifies the distortion of the
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property curve in the displacement range due to spurious oscillations.

RMSE = RMS
h
PDFA(G)�PDFA

filt

i
, (9.2)

and

RRMSE =
RMSE

RMS
⇥
PDFA

filt
⇤ ·100 . (9.3)

In the current work, the RMS involves the geometries within the displacement range,
which we have selected following these criteria:

• For the hydrogen– and halogen– bonded systems: 33 points in the range 0± 0.32
Dc1,z (i.e., displacement along the normalized FIC coordinate, starting from the
optimized geometry).

• For the dispersion-bonded systems: 129 points in the range 7.2 ± 0.32 a.u. for Ar2,
and 6.0 ± 0.32 a.u. for He2 (i.e., displacements along the interatomic separation
close to the overall minimum in the potential energy of Ar2 and He2).

Because the grid errors change in a (rapid) oscillatory manner along the nuclear co-
ordinates, it is more wisely to quantify those with RMSE rather than investigate the error
of a single geometry. If the observed grid-related oscillation would consist only of one
particular frequency (i.e., be a single sinusoid) and if within the displacement range there
would be an integer number of cycles, the Maximum Absolute Error (MaxAbsErr) would
be

p
2 RMSE (which is a well-known property for the root mean square of a single si-

nusoid). In reality, the grid-related spurious oscillations consist of a broad range of dis-
persed frequencies and they have irregular shapes. Figure 9.9 presents the distribution of
the MaxAbsErr/RMSE ratio among the studied systems. The ratio MaxAbsErr/RMSE is
on average 1.87 with a standard deviation 0.47 (i.e., MaxAbsErr is about twice larger than
RMSE) within {⇠0}. For example, if for a property one obtains RMSE = 1·10�3 au, the
maximum error coming from the spurious oscillations within the {⇠0} range is expected
to be about 2·10�3 au.

RMS and RMSE (with opposite signs) are plotted in Figure 9.10. In this example,
the curve obtained with wB97X and the (750, 974) grid for HCN · BrH, PDFA(LG) =
PDFA(750,974) (purple color in Figure 9.10) still suffers from spurious oscillations. The spu-
rious oscillations are qualitatively filtered out in PDFA

filt (green color in Figure 9.10). Curves
obtained with other grids, PDFA(G) = PDFA(99,590), and PDFA(250,974), are also shown for
comparison. The difference between the latter curves and PDFA

filt yields the red curves in
the plots of Figure 9.10, which represent the spurious oscillations in PDFA(G) within the
{⇠0} range.
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Figure 9.9: Distribution of values of the ratio between the maximum absolute error (MaxAbsErr) and the
Root Mean Square Error (RMSE) measured over the same range of interatomic displacements for each
property, with the data bin interval of 0.05, for different order of the dmE/dx

m derivatives (m = 1 - 4), as
well as their overall sum (labeled as Total). The values included all tested DFAs, three integration grids,
and all molecular complexes. The vertical dash line marks the average value of MaxAbsErr/RMSE (1.87).

9.3.2 Spurious Oscillations and the Errors in Vibrational Properties
It is difficult to anticipate the final effect of the spurious oscillations on the vibrational
contributions to the molecular properties because they depend on various derivatives in
quite different ways. For example, for the i-th normal mode, the corresponding harmonic
vibrational frequency, whar is defined as the second order diagonal derivative of total en-
ergy. The corresponding harmonic IR and Raman intensities, IRhar and RAhar, are pro-
portional to the first derivative of the dipole moment and polarizability with respect to
the selected normal mode, respectively. On the contrary, the anharmonic corrections to
vibrational frequencies, IR and Raman intensities, which are commonly evaluated at the
second-order vibrational perturbation theory (VPT2) developed by Barone and cowork-
ers [355, 356], involve many crossed terms between derivatives of different types. For
example, the anharmonic corrections to vibrational frequencies, wanh involve mixed third
and fourth order partial derivatives of the energy, and usually one does not further track
the values coming solely from the diagonal derivatives. The anharmonic contributions
to IR and Raman intensities, IRanh and RAanh, have very a complicated form. In the
corresponding formulae [355, 356], one can find terms depending solely on the mixed
third-order derivatives of dipole moment (or polarizability), several cross terms between
mixed third-order derivatives of the energy and the second-order derivatives of the dipole
moment (or polarizability), and the cross term involving the mixed fourth-order deriva-
tives of the energy and the first-order derivatives of the dipole moment (or polarizability).
Moreover, almost all these terms are multiplied by scale factors depending on various
combinations of harmonic frequencies (usually in the denominators).

RRMSE is a convenient measure of the spurious oscillations because it only requires
the computation of the derivative profile at the DFT level and a cost-efficient ab initio
reference such as HF. However, one should still establish the possible connection between
the RRMSE values and the potential errors in the vibrational properties. For that means,
in Table 9.5, we collect the RRMSE values and relative errors for the selected vibrational
spectroscopic properties of N2 · HF. It is important to stress that while errors in vibrational
properties correspond to a single optimized geometry of the system, RRMSE measures the
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Figure 9.10: The PDFA(G), PDFA(LG) and PDFA
filt curves of d3E/dc1,z

3 of the HCN · BrH system. Calculated
with wB97X/aug-cc-pVTZ and three tested grids G= (99, 590) (top), with RMSE = 2.21 ·10�4 and RRMSE
= 184.7%; (250, 974) (middle), with RMSE = 1.51 ·10�4 and RRMSE = 126.3%; (750, 974) (bottom), with
RMSE = 1.72 · 10�5 and RRMSE = 14.4%. In all computations, LG = (750, 974) was utilized. Dashed
colored horizontal limes mark the negative value of RMSE (pink) and RMS of the filtered profile (green).
Dashed black vertical lines mark the studied range of the property curve {⇠0}, for which RMS, RMSE, and
RRMSE are calculated.
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errors for a set of slightly distorted geometries (along a chosen displacement coordinate).
The numbers show that the relative errors in the property might be as large as twice
the RRMSE value. For instance, 17% RRMSE in dazz/dx gives a relative error on the
harmonic Raman intensity of 38%; 64% RRMSE in d2

azz/dx

2 gives a relative error on
the anharmonic correction to the Raman intensity of 163%. Certain properties depend
on more than one derivative and the RRMSE of all the derivatives need to be considered.
For instance, RRMSEs of 16% and 665% for d3E/dx

3 and d4E/dx

4, respectively, must
be considered to explain the 234% error on the calculation of IR anharmonic corrections
to the intermolecular stretching mode of N2 · HF using wB97X with the (250, 974) grid.
Therefore, the large RRMSE values for dmE/dx

m, dm
µz/dx

m, and dm
azz/dx

m indicate
significant spurious oscillations and may warn about the presence of potentially large
errors in vibrational properties.
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Table 9.5: RRMSE of various derivatives of E, µz, and azz with respect to the floppy intermolecular stretching mode Q3 of N2 · HF using three integration grids: G1 - (99, 590), G2
- (250, 974) and G3 - (500, 974). The last 6 columns contain the relative errors (in %) of the selected (an)harmonic vibrational properties: whar and Dwanh — harmonic vibrational
frequency and its anharmonic correction; IRhar and DIRanh — harmonic IR intensities and its anharmonic correction; RAhar and RAanh — harmonic Raman intensities and its anharmonic
correction. The error estimations were obtained with the (750, 974) grid results used as the reference.

RRMSE [%] Prop. Rel. Err. [%]
d2E/dc1,z

2 d3E/dc1,z
3 d4E/dc1,z

4
whar(Q3) Dwanh(Q3)

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3
B3LYP 0 0 0 0 0 0 4 0 0 0 0 0 2 0 0

CAM-B3LYP 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0
N12 7 1 0 119 31 2 1973 874 70 2 0 0 625 175 0

M062X 2 0 0 21 3 0 388 70 1 1 0 0 62 14 0
wB97X 3 1 0 52 16 1 1447 665 48 2 0 0 195 234 9

RRMSE [%] Prop. Rel. Err. [%]
d1

µz/dc1,z
1 d2

µz/dc1,z
2 d3

µz/dc1,z
3 IRhar(Q3) DIRanh(Q3)

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3
B3LYP 0 0 0 0 0 0 7 0 0 0 0 0 1 0 0

CAM-B3LYP 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0
N12 1 0 0 56 14 1 4548 1983 148 2 0 0 303 62 4

M062X 0 0 0 12 1 0 373 42 1 0 0 0 9 1 0
wB97X 0 0 0 26 9 1 1650 794 50 2 0 0 31 126 4

RRMSE [%] Prop. Rel. Err. [%]
d1

azz/dc1,z
1 d2

azz/dc1,z
2 RAhar(Q3) DRAanh(Q3)

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3
B3LYP 0 0 0 5 0 0 0 0 0 6 0 0

CAM-B3LYP 0 0 0 2 0 0 0 0 0 4 0 0
N12 17 4 0 8588 3726 257 38 11 1 32656 15921 192

M062X 5 0 0 907 114 29 11 0 0 171 110 9
wB97X 12 4 0 2103 973 64 15 0 0 60435 915 163
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9.4 Analysis of Relative Errors from the Spurious Oscil-
lations

After showing that RRMSE is a meaningful indicator of the errors in the vibrational prop-
erties due to the spurious oscillations, we can use it to quantify the errors for different
property derivatives, systems, and DFAs. An example of such analysis is given in Table
9.6, which compiles the RRMSE values for various derivatives of the HCN · BrH sys-
tem and a small group of selected functionals. In general, the errors are the largest for
the smallest grid and higher-order derivatives. Errors arising from the spurious oscil-
lations are usually not observable in the curves of E(R), µz(R) and azz(R). However,
for the smallest grid tested, namely (99, 590), RRMSE may reach already substantial
values for the gradients of the energy (this is mostly due to the fact that the values of
gradients are very close to zero, because we are studying slightly displaced optimized
geometries). Nevertheless, for the second derivatives of energy, wB97X, SCAN, and
M06-2X combined with the (99, 590) grid yield RRMSE already larger than 10%. For
the same functionals, one observes the largest RRMSE values for higher-order deriva-
tives, d4E/dx

4, reaching thousands of percent. Similarly, one observes propagation of
errors for dm

µz/dx

m and dm
azz/dx

m, although this increase seems to be much quicker
than in the case of dmE/dx

m (roughly, one derivative "faster"). Some of the functionals,
such as BH&H, B3LYP, and CAM-B3LYP may yield small RRMSE when the (250, 974)
grid is used. However, in the case of the latter two, when those are combined with the
(99, 590) grid one can observe RRMSE in the range 17- 74% for the highest derivatives,
namely d4E/dx

4, d3
µz/dx

3, and d2
azz/dx

2

To depict the true extent of the problem, for each DFA and integration grid, we col-
lect the maximum RRMSE values within the set of all systems. Figure 9.11 graphically
depict those errors found for dmE/dx

m, Figure 9.12 for dm
µz/dx

m, and Figure 9.13 for
dm

azz/dx

m. In most of the cases, the maximum values of errors are found for HCN · BrH,
Ar2, He2, as these systems turned out to be the most grid demanding.

The (99, 590) grid — which is equal or larger than the largest predefined grid in
QChem 5.1 [322] or ORCA 5.0.1 [357–359] — gives maximum RRMSE values that ex-
ceed 10%, 40%, and 500%, respectively, for d2E/dx

2, d3E/dx

3, and d4E/dx

4. The latter
is a clear indication that (99, 590) is definitely an insufficient grid to compute vibrational
spectroscopic data for molecules with at least a low-frequency vibrational mode. For the
(250, 974) grid, the maximum values of RRMSE for d4E/dx

4 are greater than 160% for
all DFAs, except for BH&H (18%) and LC-BLYP (11%). The largest grid, (750, 974),
reduces the maximum RRMSE significantly for the first and second energy derivatives but
some popular DFAs —such as wB97X, SCAN, or M06-2X— give extremely large errors
for the third and fourth derivatives; in fact, even with the largest grid, only a handful of
functionals gives a maximum RRMSE below 50% for d4E/dx

4. Grid-dependence may
look slightly less problematic for the computations of dm

µz/dx

m (see Figure 9.12). For
example, for the (250, 974) grid, most of the functionals yield maximum RRMSE below
10% for d2

µz/dx

2 and 50% for d3
µz/dx

3. However, one has to bear in mind that Ar2
and He2 could not be included in the statistical analysis of dm

µz/dx

m (Ar2 and He2 are
centrosymmetric, hence dm

µz/dx

m is always zero). In the case of dm
azz/dx

m, grid errors
enhance very quickly. For half of the DFAs combined with the (250, 974) grid, maximum
RRMSEs exceed 100% already for dazz/dx (see Figure 9.13).
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Table 9.6: The RRMSE values (in percentages) for various derivatives of energy, dipole moment, and static
polarizability, shown for the selected DFAs and three integration grids. Obtained for the HCN · BrH system
and the displacements along the c1,z coordinate.

dmE/dc

m
1,z dm

µz/dc

m
1,z dm

azz/dc

m
1,z

Method Grid 0 1 2 3 4 0 1 2 3 0 1 2

BH&H
(99, 590) 0.0 0.4 0.2 1 7 0.0 0.0 0 0 0.0 0.0 0
(250, 974) 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0
(750, 974) 0.0 0.0 0.0 0 1 0.0 0.0 0 0 0.0 0.0 0

CAM-
B3LYP

(99, 590) 0.0 0.4 0.3 2 17 0.0 0.2 3 43 0.0 0.3 11
(250, 974) 0.0 0.0 0.0 0 5 0.0 0.0 0 4 0.0 0.0 2
(750, 974) 0.0 0.0 0.0 0 3 0.0 0.0 0 0 0.0 0.0 0

LC-
wHPBE

(99, 590) 0.0 10.8 3.2 25 104 0.0 1.0 11 215 0.0 2.9 36
(250, 974) 0.0 0.0 0.0 0 6 0.0 0.0 0 3 0.0 0.0 0
(750, 974) 0.0 0.0 0.0 0 5 0.0 0.0 0 2 0.0 0.0 0

B3LYP
(99, 590) 0.0 1.7 0.6 4 20 0.0 0.3 9 74 0.0 0.6 13
(250, 974) 0.0 0.1 0.1 1 13 0.0 0.0 0 9 0.0 0.1 4
(750, 974) 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0

MN15
(99, 590) 0.0 3.5 2.5 11 180 0.0 1.6 38 328 0.0 2.4 69
(250, 974) 0.0 0.0 0.0 0 6 0.0 0.0 0 1 0.0 0.0 0
(750, 974) 0.0 0.0 0.0 0 6 0.0 0.0 0 0 0.0 0.0 0

TPSSh
(99, 590) 0.0 20.8 10.4 53 455 0.0 2.8 23 482 0.0 4.3 74
(250, 974) 0.0 0.3 0.5 5 100 0.0 0.0 1 21 0.0 0.3 14
(750, 974) 0.0 0.0 0.0 0 7 0.0 0.0 0 1 0.0 0.0 0

MN15-L
(99, 590) 0.0 8.5 6.6 29 374 0.0 8.3 103 1542 0.1 7.7 171
(250, 974) 0.0 0.0 0.0 0 5 0.0 0.0 0 4 0.0 0.5 33
(750, 974) 0.0 0.0 0.0 0 8 0.0 0.0 0 3 0.0 0.3 25

wB97X
(99, 590) 0.0 20.9 18.0 185 5147 0.0 5.2 163 7145 0.1 28.9 2509
(250, 974) 0.0 4.8 7.9 126 3393 0.0 1.5 112 6359 0.0 18.4 1517
(750, 974) 0.0 0.1 0.4 14 765 0.0 0.2 22 1972 0.0 1.8 302

SCAN
(99, 590) 0.0 19.7 14.9 129 3908 0.0 2.1 99 7689 0.1 33.2 1456
(250, 974) 0.0 1.6 2.7 48 1993 0.0 0.9 54 3241 0.0 6.6 573
(750, 974) 0.0 0.1 0.5 21 1002 0.0 0.1 10 916 0.0 4.6 551

M06-2X
(99, 590) 0.0 31.4 11.9 72 1068 0.0 8.6 117 4339 0.0 10.4 622
(250, 974) 0.0 4.6 4.9 58 780 0.0 0.5 23 881 0.0 7.3 370
(750, 974) 0.0 0.0 0.0 0 0 0.0 0.0 0 11 0.0 0.0 1



118 CHAPTER 9. SPURIOUS OSCILLATIONS AFFECTING KS-DFT

9.5 Limits in the Computation of Property Derivatives.
Ranking of DFA’s Grid-Stability

Since the errors arising from the spurious oscillations may increase dramatically fast and
reach thousands of percent, it seems convenient to ask a pragmatic question: up to which
order of derivative one can obtain small errors caused by the spurious oscillations for a
given DFA combined with the selected grid? In other words, to which derivative order a
given DFA yields reliable values? To this end, we defined a safe calculation of the prop-
erty derivative as a calculation with RRMSE value below 10%. This value was chosen
heuristically through numerical tests, which indicated that the maximum relative errors in
the derivatives (measured with respect to RMS of the filtered profile) are usually below
20% (see Figure 9.9). For each tested DFA, integration grid, and molecular system, we
established the maximum order of derivatives which can be safely obtained. Derivatives
up to the fourth, third, and second order along the nuclear displacement were considered
for the energy and the main symmetry axis component of the dipole moment and static
polarizability, respectively. The results of this analysis for DFAs combined with the (250,
974) grid are compiled in Tables 9.7 to 9.9 (each table contains the results for the deriva-
tives of different property) An equivalent analysis was done for the (99, 590) and (750,
974) grids, however, those results are shown only in the summarized version in Figures
A1.1 and A1.2.

One can observe a similar behavior of DFAs for the systems characterized with the
same type of intermolecular interaction, namely hydrogen-bonded (group A), halogen-
bonded (group B), or dispersion-bonded (group C) molecules. In general, the highest
derivatives are safely reached for the hydrogen-bonded complexes. This means that these
systems, although still grid-wise challenging for a lot of DFAs, they suffer from the spu-
rious oscillations the least. The halogen-bonded molecules exhibit much more significant
oscillations hence one can safely reach only lower derivatives. The dispersion-bonded
systems are the species affected by this problem the most. Moreover, within the same
group of molecules, the magnitude of the spurious oscillations increases in the following
order: dmE/dx

m, dm
µz/dx

m, dm
azz/dx

m. These observations allowed to reduce the di-
mensionality of the analysis and discuss only the worst cases among the whole group of
molecules. These results are compiled in Figures 9.14 for the (250, 974) grid and in Fig-
ures A1.1, and A1.2, for the (99, 590) and (750, 974) grids, respectively. For example, for
the energy derivatives calculated with MN12-SX(250, 974), the smallest number within
groups A and B is 3, and within group C is 1 (see Table 9.7).
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(99, 590)

(250, 974)

(750, 974)

Figure 9.11: Maximum values of RRMSE for the derivatives of the total energy found within the set of all
molecular complexes, obtained with the (99, 590) grid (top panel), the (250, 974) grid (middle panel), and
the (750, 974) grid (bottom panel).
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(99, 590)

(250, 974)

(750, 974)

Figure 9.12: Maximum values of RRMSE for the derivatives of µz found within the set of hydrogen- and
halogen-bonded molecular complexes, obtained with the (99, 590) grid (top panel), the (250, 974) grid
(middle panel), and the (750, 974) grid (bottom panel).
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(99, 590)

(250, 974)

(750, 974)

Figure 9.13: Maximum values of RRMSE for the derivatives of azz found within the set of all molecular
complexes, obtained with the (99, 590) grid (top panel), the (250, 974) grid (middle panel), and the (750,
974) grid (bottom panel). Data for dm

azz/dx

m is not available for wB97X-V, wB97M-V and B97M-V, for
which static polarizabilities are not implemented in QChem 5.1.
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Table 9.7: Maximum order m of dmE/dx

m derivatives (m = 0 - 4), for which RRMSE was lower than 10%.
All calculations use the (250, 974) grid.

HCN · HF HCN · HCl OC · HF N2 · HF HCN · BrH HCN · BrF Ar2 He2
BH&H 4 4 4 4 4 4 4 3

LC-BLYP 4 4 4 4 4 4 4 3
PBE 4 4 4 4 4 4 4 2

CAM-B3LYP 4 4 4 4 4 4 3 2
BH&HLYP 4 4 4 4 3 4 3 2

HSE06 4 4 4 4 4 4 3 1
PBE0 4 4 4 4 4 4 4 1

LC-wHPBE 4 4 4 4 4 4 4 2
M11-L 3 3 3 3 3 4 2 2
B3LYP 4 4 4 4 3 4 3 1

RevTPSS 4 4 4 4 3 4 3 1
M11 3 3 3 3 4 3 2 1

MN15 4 4 4 4 4 4 3 1
B2PLYP 4 4 4 4 4 4 3 1

BLYP 4 4 4 4 3 4 3 2
HSE03 3 3 3 3 2 3 3 1

MN12-L 4 4 4 4 4 3 2 1
PBE-QIDH 4 4 4 4 4 4 4 1
MN12-SX 4 4 3 4 4 3 2 1

TPSSh 4 4 4 4 3 3 3 1
TPSS 4 4 4 4 3 4 3 1

B1LYP 4 4 4 4 3 4 3 1
SOGGA11-X 4 4 4 4 3 4 2 1

wB97X-V 4 4 4 4 3 3 2 1
wB97M-V 4 3 4 4 3 3 2 0
LC-wPBE 2 3 3 2 2 2 2 1
B97M-V 4 3 3 4 3 3 3 1

mPW2PLYP 4 3 4 3 3 3 3 2
MN15-L 4 4 4 4 4 4 3 0

PBE-0DH 4 4 4 4 4 3 4 1
N12-SX 4 3 3 3 2 3 1 1
M06-2X 3 3 3 3 2 2 1 1
B97-D 3 3 3 2 2 3 2 1
M06 4 - 3 3 2 3 1 0

wB97 3 2 3 2 2 2 1 1
wB97X 3 2 3 2 2 2 1 1

SOGGA11 3 2 3 2 2 4 2 3
B97 3 3 3 3 0 2 1 1

SCAN 2 2 2 2 2 2 1 1
SCAN0 2 2 2 2 2 2 1 1

wB97X-D3 3 2 3 2 2 2 1 1
M06-L 3 3 3 3 0 3 1 0

M06-HF 3 3 3 2 0 2 1 0
N12 3 2 3 2 0 2 1 1

wB97XD 3 2 3 2 0 2 1 1
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Table 9.8: Maximum order m of dm
µz/dx

m derivatives (m = 0 - 3), for which RRMSE was lower than 10%.
All calculations use the (250, 974) grid.

HCN · HF HCN · HCl OC · HF N2 · HF HCN · BrH HCN · BrF
BH&H 3 3 3 3 3 3

LC-BLYP 3 3 3 3 3 3
PBE 3 3 3 3 3 3

CAM-B3LYP 3 3 3 3 3 3
BH&HLYP 3 3 3 3 3 3

HSE06 3 3 3 3 3 3
PBE0 3 3 3 3 3 3

LC-wHPBE 3 3 3 3 3 3
M11-L 3 3 3 3 3 3
B3LYP 3 3 3 3 3 3

RevTPSS 3 3 3 3 3 3
M11 3 3 3 3 3 3

MN15 3 3 3 3 3 3
B2PLYP 2 3 3 3 3 2

BLYP 3 3 3 3 2 3
HSE03 3 3 3 3 3 3

MN12-L 3 3 3 3 3 3
PBE-QIDH 2 2 3 3 3 3
MN12-SX 3 3 3 3 3 3

TPSSh 3 3 3 3 2 3
TPSS 3 3 3 3 2 3

B1LYP 3 3 3 3 2 3
SOGGA11-X 3 3 3 3 2 3

wB97X-V 3 3 3 3 1 3
wB97M-V 3 3 3 3 2 2
LC-wPBE 3 3 3 3 3 3
B97M-V 3 3 2 3 2 2

mPW2PLYP 3 2 2 2 2 2
MN15-L 2 3 3 3 3 2

PBE-0DH 2 3 3 3 3 2
N12-SX 2 2 2 2 1 2
M06-2X 3 2 2 2 1 2
B97-D 2 2 2 2 1 2
M06 3 - 2 2 1 2

wB97 2 2 2 2 1 1
wB97X 2 2 2 2 1 1

SOGGA11 1 2 3 2 1 2
B97 2 2 2 2 1 2

SCAN 1 1 1 1 1 1
SCAN0 1 1 1 1 1 1

wB97X-D3 2 2 2 1 1 1
M06-L 2 2 2 2 1 3

M06-HF 2 2 2 2 1 2
N12 2 2 2 1 1 1

wB97XD 2 2 2 1 1 1
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Table 9.9: Maximum order m of the dm
azz/dx

m derivatives (m = 0 - 2), for which RRMSE was lower than
10%. All calculations use the (250, 974) grid.

HCN · HF HCN · HCl OC · HF N2 · HF HCN · BrH HCN · BrF Ar2 He2
BH&H 2 2 2 2 2 2 2 2

LC-BLYP 2 2 2 2 2 2 2 2
PBE 2 2 2 2 2 2 1 1

CAM-B3LYP 2 2 2 2 2 2 1 1
BH&HLYP 2 2 2 2 2 2 1 1

HSE06 2 2 2 2 2 2 1 0
PBE0 1 2 2 2 2 2 1 1

LC-wHPBE 1 2 2 2 2 2 1 0
M11-L 2 2 2 2 2 2 1 0
B3LYP 2 2 2 2 2 2 1 0

RevTPSS 2 2 2 2 2 2 1 0
M11 2 2 2 2 2 2 1 0

MN15 1 2 2 2 2 2 1 0
B2PLYP 2 2 2 2 2 2 1 1

BLYP 2 2 2 2 2 2 1 0
HSE03 2 2 2 2 2 2 1 0

MN12-L 1 2 2 2 2 2 1 0
PBE-QIDH 1 1 2 2 2 2 1 0
MN12-SX 1 2 2 2 2 2 0 0

TPSSh 2 2 2 2 1 2 1 0
TPSS 2 2 2 2 1 2 1 0

B1LYP 1 2 2 2 2 2 1 0
SOGGA11-X 2 2 2 2 1 2 1 0

wB97X-V - - - - - - - -
wB97M-V - - - - - - - -
LC-wPBE 1 2 2 2 2 2 1 0
B97M-V - - - - - - - -

mPW2PLYP 2 2 1 1 1 1 1 1
MN15-L 1 2 2 2 1 1 1 0

PBE-0DH 1 2 2 2 1 2 1 0
N12-SX 2 1 1 1 1 2 0 0
M06-2X 2 1 1 1 1 2 0 0
B97-D 1 1 1 1 1 2 0 0
M06 1 - 2 1 1 2 0 0

wB97 1 1 1 1 0 1 0 0
wB97X 1 1 1 1 0 1 0 0

SOGGA11 0 1 1 1 1 1 0 0
B97 2 1 1 1 0 1 0 0

SCAN 0 0 0 0 1 1 0 0
SCAN0 0 1 0 0 1 1 0 0

wB97X-D3 1 1 1 1 0 1 0 0
M06-L 1 1 1 1 0 1 0 0

M06-HF 2 1 1 1 0 1 0 0
N12 1 1 1 1 0 1 0 0

wB97XD 2 1 1 1 0 1 0 0
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Figure 9.14: Maximum order of derivatives that can be safely obtained (i.e., RRMSE 10%) with the
(250, 974) grid. The maximum order of the derivatives computed is fourth for the energy, third for the
dipole moment, and second for the polarizability. Groups A, B, and C, correspond to hydrogen-, halogen-,
and dispersion-bonded complexes, respectively. Data not available for wB97X-V, wB97M-V, and B97M-V,
for which static polarizabilities are not implemented in QChem 5.1.

In Figure A1.1, one can observe that modern DFAs with the (99, 590) integration grid
cannot be safely used to calculate high-order derivatives needed to describe the vibrational
structure of the highly anharmonic systems. This is very surprising because the integration
grid of the corresponding size is the default choice in the most popular computational
packages (UltraFine in Gaussian [296] and SG3 in QChem [322]). We ranked the grid-
errors of DFAs when combined with (250, 974) grid, accordingly to the following weight:

wDFA =
1
3

 
1

12

A,B,C

Â
G

max
i2G

(nEi)+
1
9

A,B

Â
G

max
i2G

(n
µz,i)+

1
6

A,B,C

Â
G

max
i2G

(n
azz,i)

!
, (9.4)

where nEi , n
µz,i and n

azz,i are, respectively, the lowest maximum order of the derivative
that can be safely calculated with that DFA (RRMSE 10%) for the energy, the dipole
moment, and the polarizability of molecule i. If the weight is one for a given DFA, it
means that such DFA can be used to safely compute all the high-order derivatives of E,
µz, and azz.
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We classified the DFAs into five rungs according to their overall stability across vari-
ous molecular properties.

Rung I includes grid-robust DFAs, namely, BH&H and LC-BLYP. These DFAs pro-
vide safe results for almost all derivatives using the (250, 974) grid. BH&H is the only
functional in our set which does not employ a GGA or meta-GGA exchange. In practice,
BH&H is seldom employed because it is not accurate for most chemical purposes (this
DFA is not even considered in two of the most extensive recent benchmark studies [360,
361]). Conversely, LC-BLYP has been extensively used to study molecular properties
and, hence, it is considered the safest choice among the DFAs covered in this study.

DFAs in Rung II —PBE, CAM-B3LYP, and BH&HLYP— suffer from some grid de-
pendency. They can provide stable anharmonic vibrational corrections for the hydrogen-
and halogen-bonded complexes, and harmonic contributions for the dispersion-bonded
systems. On the contrary, they should not be employed to calculate anharmonic contribu-
tions of dispersion-bonded systems.

Rung III includes DFAs suffering from grid-dependent oscillations for all the studied
systems. Widely used DFAs, such as B3LYP, PBE0, MN15, and wB97X-V belong to
this group. The DFAs in this rung cannot provide stable force constants or the Raman
intensities (see dazz/dx ) of dispersion-bonded systems.

Rung IV encloses DFAs which are highly grid dependent. Most of these DFAs en-
counter serious difficulties to study molecules with low-frequency vibrations and, within
this group of molecules, they are limited to the basic anharmonic corrections to frequen-
cies and IR intensities (see d3E/dx

3 and d2
µz/dx

2) of hydrogen- and halogen-bonded
complexes. We advise to use these DFAs with a great caution, as they may require giant
integration grids to avoid spurious oscillations (see Figure A1.2).

DFAs with the highest grid dependency belong to Rung V. This group consists mostly
of DFAs from the B97, M06, SCAN, and N12 families, including very popular DFAs
such as M06-2X and wB97-X. Within the set of molecules exhibiting low-frequency vi-
brations, most of Rung V DFAs are limited to the calculation of harmonic vibrational
properties of hydrogen- and halogen-bonded complexes. Some DFAs, namely, B97, M06-
L, M06-HF, N12, and wB97XD, cannot provide stable energy or polarizability gradients
for the halogen-bonded systems. Grids smaller than (250, 974) seriously compromise the
calculation of energy gradients even for hydrogen-bonded complexes (see Figure S18).
A much larger grid, such as (750, 974), increases the stability of some DFAs in Rung
V, but even with this enormous grid, these DFAs cannot be trusted to calculate harmonic
frequencies of dispersion-bonded complexes (see Figure S19).
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9.6 Spurious Oscillations in Intramolecular Normal Modes
In the previous sections, it has been extensively shown that the grid-related spurious os-
cillation may dramatically affect noncovalently bounded systems. One can further ask if
this problem can also affect the atomic motion within a single molecule.

This Section presents the first evidences of spurious oscillations affecting intramolec-
ular normal modes. This is shown for the several systems: the allyl anion, phenanthrene,
and H2S2 (in Appendix, additional results are shown for the butadiene, cyclobutadiene,
benzene, naphthalene, and H2O2). For each of the system, the dmE/dQm and dm

µ

a

/dQm

derivatives with respect to one selected normal mode of low-frequency (or two in the case
of butadiene) were studied. We have tested only modes for which one could observe a
noticeable change of distances between pair(s) of nuclei that are not covalently bonded,
but are sufficiently close enough to interact with each other (and therefore they mimic the
displacements studied in the noncovalently bonded complexes). All these modes, despite
having low vibrational frequencies, are well defined with the harmonic approximation.
The VPT2 anharmonic corrections to the vibrational frequencies, IR and Raman intensi-
ties are very small (as shown in Tables 9.10 to 9.14 for the VPT2 results obtained with
HF). Since the purpose of this new set of calculations was to demonstrate the broad scope
of the spurious oscillations problem, the analysis is limited to a few integration grids,
a handful of DFAs and only the energy and dipole moment derivatives. In most of the
studied examples, we tested only the wB97X and M06-2X functionals combined with the
(99, 590), (250, 974), and (750, 974) grids. Moreover, as the oscillation-free (ab-initio)
reference, we chose the HF method. The property curves contain 300-400 points and are
sampled with system-specifically chosen steps.

9.6.1 Allyl anion (Q2 mode)

Figure 9.15: Graphical representation of the Q2 (A1) normal mode of allyl anion. Obtained at the M06-
2X/aug-cc-pVDZ level of theory.

It is a smallest organic system in which we already noticed the effect of the spurious
oscillations. We studied the effect of spurious oscillations in the computation of deriva-
tives with respect to the Q2 normal mode (see graphical representation in Figure 9.15).
This mode belongs to the A1 irreducible representation and corresponds to the second-
lowest vibrational frequency. In this mode, in particular, two hydrogen atoms belonging
to C1 and C3 atoms are getting closer. The Q2 mode is very harmonic. The anharmonic
corrections to vibrational frequency, and IR intensities account only for 1% of their cor-
responding total values (see Table 9.10).
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Table 9.10: Vibrational properties of the Q2 normal mode of the allyl anion obtained with HF, wB97X, and
M06-2X: whar and wanh — harmonic and anharmonic vibrational frequencies, IRhar and IRanh — harmonic
and anharmonic IR intensities, RAhar and RAanh — harmonic and anharmonic Raman intensities. DFA
computations utilized the (250, 974) integration grid.

Q2 (A1) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 457 459 2.983 3.019 0.705 0.264
wB97X 427 2.561
M06-2X 422 2.109

For the selected wB97X and M06-2X functionals, the spurious oscillations affect the
high order derivatives d3E/dQ3

2, d4E/dQ4
2, and d3

µz/dQ3
2. Examples of these oscillations

are depicted in Figure 9.16 and the RRMSE values are compiled in Table 9.11. When the
(99, 590) grid is utilized, RRMSE are above 10% and reach 38% for d3

µz/dQ3
2 obtained

using M06-2X. On the contrary, when the larger grids are applied, RRMSE errors are
below 2% for wB97X and 8% for M06-2X. While these errors are not as large as the ones
observed in the previous sections, one can expect more dramatic errors in larger and more
complicated systems.

Table 9.11: Values of RRMSE (in percentages) for the selected property derivatives with respect to the Q2
normal mode of allyl anion, obtained for some selected DFAs and integration grids.

Method Grid d3E/dQ3
2 d4E/dQ4

2 d2
µz/dQ2

2 d3
µz/dQ3

2

wB97X
(99, 590) 7.3 12.9 0.2 12.9

(250, 974) 0.7 1.9 0.0 1.0
(750, 974) 0.7 1.9 0.0 1.0

M06-2X
(99, 590) 17.7 15.0 0.7 38.3

(250, 974) 3.1 7.5 0.0 1.2
(750, 974) 3.1 7.6 0.0 1.2
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Figure 9.16: Spurious oscillations in d4E/dQ4
2 (left column) and d3

µz/dQ3
2 (right column) for the displacements along the Q2 normal coordinate of allyl anion. Data obtained with

wB97X (top row) and M06-2X (bottom row).
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9.6.2 Phenanthrene (Q4 mode)

Figure 9.17: Graphical representation of the Q4 (A1) normal mode of phenanthrene. Obtained at M06-
2X/aug-cc-pVDZ level of theory.

The largest molecule we investigated was phenanthrene, an example of a polyaromatic
hydrocarbon. We investigated the Q4 normal mode, which shares similarities with the Q2
mode of allyl anion (see Figure 9.17). However, in this mode the key motion is the one of
the two hydrogen atoms belonging to the C1 and C4 carbons and now are slightly farther
apart than the ones bounded to C1 and C3 atoms of allyl anion. The vibrational frequency
is rather small (around 255 cm�1) but still very harmonic.

Table 9.12: Vibrational properties of the Q4 normal mode of phenanthrene obtained with HF, wB97X, and
M06-2X: whar and wanh — harmonic and anharmonic vibrational frequencies, IRhar and IRanh — harmonic
and anharmonic IR intensities, RAhar and RAanh — harmonic and anharmonic Raman intensities. DFA
computations utilized the (250, 974) integration grid.

Q4 (A1) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 263 261 0.495 0.486 0.177 0.165
wB97X 253 0.4278
M06-2X 252 0.4133

Surprisingly, the effect of spurious oscillations is dramatic. For the high-order energy
derivatives, d4E/dQ4

4 and d3
µz/dQ3

4, the oscillations have huge amplitudes and very high
frequencies (see Figure 9.18). When the (99, 590) grid is utilized, RRMSE exceeds 146%
and 3030% for d3E/dQ3

4 and d4E/dQ4
4 using the wB97X functional. For M06-2X, the

corresponding errors are much lower but still unacceptably large; namely RRMSE equals
to 15% and 116% for d3E/dQ3

4 and d4E/dQ4
4, respectively. Dramatic errors of the same

magnitudes are also observed for the derivatives of the dipole moment, for both wB97X
and M06-2X. Moreover, the errors are only partially alleviated with the huge (750, 974)
grid, which for a molecule of such size would already be computationally very costly.
Therefore, if one performs the full VPT2 computations with these functionals and inte-
gration grids, one should expect huge errors in the resulting the anharmonic vibrational
frequencies of this mode (as well as other modes which were vibrationally coupled).
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Table 9.13: Values of RRMSE (in percentages) for some property derivatives with respect to the Q4 normal
mode of phenanthrene, obtained for some DFAs and integration grids.

Method Grid d3E/dQ3
4 d4E/dQ4

4 d2
µz/dQ2

4 d3
µz/dQ3

4

wB97X
(99, 590) 146.8 3030.2 116.6 1136.2

(250, 974) 100.6 1716.4 69.5 1086.2
(750, 974) 7.4 41.2 11.0 84.9

M06-6X
(99, 590) 15.0 116.4 37.3 516.8

(250, 974) 10.2 188.7 8.8 218.2
(750, 974) 3.6 22.6 1.9 27.3
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Figure 9.18: Spurious oscillations in d4E/dQ4
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9.6.3 H2S2 (Q1 mode)

Figure 9.19: Graphical representation of the Q1 (A) normal mode of H2S2. Obtained at M06-2X/aug-cc-
pVDZ level of theory.

In this last section, we present the spurious oscillations affecting the description of a
different type of nuclear motion, that is, a displacement mimicking changes in dihedral
angle, and in much simpler chemical system, namely H2S2. We studied the displacements
along the Q1 normal mode of H2S2 (see Figure 9.19). To be precise, such of nuclear
displacements along Q1 are of linear type, i.e., atoms are proportionally displaced along
the normalized Q1 vector. In contrast, if one decided to study the displacement along the
dihedral angle, these would be described by a curvilinear mode. We decided to choose
the former option to stay consistent with the normal coordinate system. The Q1 normal
mode in H2S2 is characterized with low vibrational frequency and slightly larger anhar-
monic contributions than the previously studied modes (see Tables 9.14). At HF level, the
anharmonic correction reduce the harmonic frequency from 447 cm�1 to 421 cm�1.

Table 9.14: Vibrational properties of the Q1 normal mode of H2S2 obtained with some methods: whar and
wanh — harmonic and anharmonic vibrational frequencies, IRhar and IRanh — harmonic and anharmonic IR
intensities, RAhar and RAanh — harmonic and anharmonic Raman intensities. DFA computations utilized
the (250, 974) integration grid.

Q1 (A) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 447 421 15.918 15.937 0.0427 0.0583
B3LYP 428 12.270 0.0370

CAM-B3LYP 432 13.689 0.0402
BH&H 450 15.281 0.0392

LC-BLYP 438 15.865 0.0480
wB97X 433 14.684 0.0346

wB97XD 429 13.927 0.0310
PBE 435 11.857 0.0346

PBE0 445 13.423 0.0378
TPSSh 449 12.539 0.0385

M06-2X 415 13.132 0.0398
N12 433 13.520 0.0305

MN15 452 14.369 0.0440
MN15-L 468 13.535 0.0403

For these molecular systems, we included 13 different DFAs, constituting a few rep-
resentatives of each rung from Section 9.5, and tested the grids with larger angular grid
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as well. Namely, besides including the "default" (99, 590) grid, we tested the importance
of the radial part of the integration by comparison with the results for the (250, 974) and
(750, 974) grids, and the importance of the angular part by comparison of the (750, 974),
(750, 3074), and (750, 5294) grids. The 5294-point grid is the largest Lebedev grid and
we consider it as the best possible angular grid to be used in such computations. The (750,
5294) grid is 69 times larger than (99, 590), 16 times larger than (250, 974), and 5 times
larger than the (750, 974) grid. This implies a great increase in the cost of the calculation,
which disqualifies the choice of this grid in any real life computations, especially VPT2
calculations which involves the numerical computation of high-order derivatives and solv-
ing dozens of CPKS equations (for the Hessian and dipole and polarizability derivatives).
All electronic structure calculations employed the aug-cc-pVTZ basis set and were done
using the QCHEM 5.1 computational package.

Results for H2S2 are compiled in Tables 9.15 and 9.16 and the oscillations are shown
in Figures 9.20 and 9.21. One finds substantial errors for the third derivatives of energy,
d3E/dQ3

1, and in the case of M06-2X, already for the second derivative, d2E/dQ2
1. In the

latter case, RRMSE for d2E/dQ2
1 are above 20% for the (99, 590), (250, 974) and (750,

974) grids, implying a 20% of error in the vibrational frequencies of Q1 modes obtained
at the harmonic level. Secondly, the 974-point Lebedev grid is not large enough to permit
the safe calculations of the high-order nuclear derivatives, which in practical terms means
that one might not reach a correct answer with a program such as Gaussian. Thirdly, the
rather grid-robust DFAs from rung 3, such as PBE, PBE0, and MN15 (see Table 9.15)
also suffer from considerable grid-errors. For the latter one, the RRMSE for d3E/dQ3

1
and d4E/dQ4

1 exceed 330% for the (99, 590) grid, and 55% for the (250, 974) and (750,
974) grids. Surprisingly, for PBE and PBE0, the RRMSE values are much larger for the
(250, 974) and (750, 974) grids than for (99, 590). This is due to a fortunate lowering of
amplitude of oscillations for very small displacements DQ1 ⇡ 0 in the case of the (99, 590)
grid (see Figure 9.20). Lastly, for the most grid-demanding DFAs from rung 5, namely
wB97X, wB97XD, N12 and M06-2X, errors can exceed dozens and hundreds of percent.
In this test, the largest RRMSE values are observed for M06-2X combined with the (99,
590) grid. Moreover, for those DFAs, the spurious oscillations of substantial amplitudes
persist even if the huge (750, 3074) grid is used.



9.6. SPURIOUS OSCILLATIONS IN INTRAMOLECULAR NORMAL MODES 135

Table 9.15: Values of RRMSE (in percentages) for some property derivatives with respect to the Q1 normal
mode of H2S2, obtained for some DFAs and integration grids.

Method Grid d2E/dQ2
1 d3E/dQ3

1 d4E/dQ4
1

B3LYP

(99, 590) 0.6 5.8 6.7
(250, 974) 0.4 2.4 3.5
(750, 974) 0.4 2.4 3.5

(750, 3074) 0.0 0.0 0.1
(750, 5294) 0.0 0.0 0.1

CAM-B3LYP

(99, 590) 0.2 1.0 1.4
(250, 974) 0.3 0.4 1.3
(750, 974) 0.3 0.4 1.3

(750, 3074) 0.0 0.0 0.1
(750, 5294) 0.0 0.0 0.1

BH&H

(99, 590) 0.4 2.3 4.9
(250, 974) 0.2 0.8 1.2
(750, 974) 0.2 0.8 1.3

(750, 3074) 0.0 0.0 0.1
(750, 5294) 0.0 0.0 0.1

LC-BLYP

(99, 590) 0.4 3.6 6.3
(250, 974) 0.3 1.3 1.7
(750, 974) 0.3 1.2 1.5

(750, 3074) 0.0 0.0 0.0
(750, 5294) 0.0 0.0 0.1

PBE

(99, 590) 0.3 6.1 3.7
(250, 974) 0.6 35.1 35.4
(750, 974) 0.6 35.2 35.4

(750, 3074) 0.0 0.8 0.8
(750, 5294) 0.0 0.0 0.1

PBE0

(99, 590) 0.3 3.9 3.8
(250, 974) 0.5 23.3 28.7
(750, 974) 0.5 23.3 28.8

(750, 3074) 0.0 0.3 0.7
(750, 5294) 0.0 0.0 0.1

TPSSh

(99, 590) 2.8 99.4 97.9
(250, 974) 0.6 77.1 76.8
(750, 974) 0.6 77.3 76.8

(750, 3074) 0.1 5.6 5.2
(750, 5294) 0.0 0.1 0.3
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Table 9.16: Values of RRMSE (in percentages) for some property derivatives with respect to the Q1 normal
mode of H2S2, obtained for some DFAs and integration grids.

Method Grid d2E/dQ2
1 d3E/dQ3

1 d4E/dQ4
1

wB97X

(99, 590) 2.4 40.9 45.3
(250, 974) 0.4 48.2 56.2
(750, 974) 0.4 48.3 56.3

(750, 3074) 0.1 14.9 20.4
(750, 5294) 0.0 0.2 0.3

wB97XD

(99, 590) 2.2 64.2 61.9
(250, 974) 0.9 33.0 38.4
(750, 974) 0.9 33.1 38.7

(750, 3074) 0.2 21.8 28.6
(750, 5294) 0.0 1.4 2.1

M06-2X

(99, 590) 21.9 711.9 817.2
(250, 974) 20.1 497.3 676.4
(750, 974) 20.1 499.1 678.4

(750, 3074) 0.8 49.5 59.1
(750, 5294) 0.0 2.1 3.6

N12

(99, 590) 1.3 199.3 203.9
(250, 974) 1.0 129.3 140.2
(750, 974) 1.0 129.1 140.1

(750, 3074) 0.2 31.3 44.9
(750, 5294) 0.0 2.2 3.6

MN15

(99, 590) 12.0 334.1 353.5
(250, 974) 2.2 55.4 58.6
(750, 974) 2.2 54.9 58.3

(750, 3074) 0.1 1.9 2.2
(750, 5294) 0.0 0.1 0.1

MN15-L

(99, 590) 2.0 39.4 38.6
(250, 974) 0.5 37.8 41.8
(750, 974) 0.5 37.7 41.9

(750, 3074) 0.3 11.1 10.5
(750, 5294) 0.0 0.9 1.3
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Figure 9.20: Spurious oscillations in d4E/dQ4
1 for the displacements along the Q1 normal coordinate of

H2S2. Left column shows the results for B3LYP, BH&H, PBE, and TPSSh, and right column for CAM-
B3LYP, LC-BLYP, and PBE0.
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Figure 9.21: Spurious oscillations in d4E/dQ4
1 for the displacements along the Q1 normal coordinate of

H2S2. Left column shows the results for wB97X, M06-2X, MN15, and right column for wB97XD, N12,
and MN15-L.
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9.7 Conclusions
In summary, we have uncovered an important limitation of most modern density func-
tional approximations, which might suffer from spurious oscillations of molecular prop-
erties along the nuclear displacement coordinate. The oscillations are due to numerical
integration errors, which sometimes can be alleviated using large integration grids that
compromise the favorable cost-accuracy ratio of DFAs. However, in some cases, the spu-
rious oscillations cannot be avoided even using enormous grids such as (750, 974).

With the newly developed algorithm, based on the Fourier spectral analysis and dig-
ital signal processing techniques, one can easily identify and quantify these oscillations.
With its use we performed a wide benchmarking of the grid-stability of DFAs and classi-
fied forty-five popular DFAs into five groups. Among the widely employed functionals,
only LC-BLYP shows robustness against spurious oscillations of various molecular prop-
erties examined along a nuclear displacement coordinate. Hardly a handful of DFAs are a
safe choice to compute the high-order derivatives, such as d3E/dx

3, d4E/dx

4, d3
µz/dx

3,
and d3

azz/dx

3, which are key quantities to define the basic anharmonic corrections to the
vibrational properties. This criterion is especially harder to fulfill for the loosely nonco-
valently bonded complexes, especially halogen– and dispersion–bonded complexes.

While the spurious oscillations are the most prominent and evident for the noncova-
lently-bonded complexes, they are not limited to this kind of chemical systems. As shown
in the last section of this Chapter, oscillations could be identified in different sorts of
single-molecules normal modes. In particular, we show that molecules like H2O2, H2S2,
the allyl anion, butadiene, cyclobutadiene, benzene, naphthalene, and phenanthrene also
exhibit spurious oscillations for various energy and dipole derivatives over certain normal
modes. All the evidence indicates that the oscillations are a universal feature of modern
DFAs that can affect molecules with low-frequency vibrational modes. Given the ubiq-
uitous nature of the latter, the grid-dependency problem of modern DFAs constitutes a
challenge to the development of new approximations that calls for the inclusion of molec-
ular properties and the study of spurious oscillations in the construction of new DFAs.



140 CHAPTER 9. SPURIOUS OSCILLATIONS AFFECTING KS-DFT



141

Chapter 10

The Origin of Spurious Oscillations in
Density Functional Approximations



142 CHAPTER 10. THE ORIGIN OF SPURIOUS OSCILLATIONS IN DFAS

10.1 Introduction
In the previous Chapter, it was demonstrated that the grid dependence of DFAs and the
resulting spurious oscillations are much broader problems than was originally anticipated.
Although they are not initially observable in the PECs, grid-related spurious oscillations
emerge in the energy derivatives with respect to the nuclear displacement, which are key
quantities to simulate the vibrational IR and Raman spectra. We showed that DFAs from
all rungs of Jacob’s ladder suffer from spurious oscillations and the corresponding errors
may reach hundreds of percent for high-order derivatives. DFAs from the BLYP and PBE
families were the least affected by the spurious oscillations, whereas the functionals from
the B97, M06, and SCAN families were the most affected by them. Due to the large
errors in the high-order derivatives of E, µ , and a with respect to the normal coordinates,
the latter DFAs turned out to be unsuitable for the computation of VPT2 anharmonic
corrections. As a natural follow-up question, one could further ask which parts of these
DFAs are responsible of the spurious oscillations.

The newly developed algorithm has proven to be an indispensable tool for studying
the phenomenon of spurious oscillations, giving a measure of the grid-related errors even
for the high-order derivatives of molecular properties. However, in its current version,
the procedure needs some computing effort to compute property curves. For example, to
evaluate energy derivatives errors, one has to evaluate hundreds of energy calculations for
different molecular geometries. Accomplishing that for all normal modes would require
a substantial computational cost. In this Chapter, we will explore some of the aspects of
electronic structure methods that could lead to a reduction of the computational complex-
ity of the procedure, without affecting the errors measures.

We start the discussion with a rather technical aspect: the choice of the size of the
basis set. Next, we test, if one can skip the SCF procedure and utilize the arbitrary in-
put densities for the computation of electronic energies and their derivatives with respect
to the nuclear displacements. We also discuss direct and indirect effects of the spurious
oscillations in energy components. Last but not least, we unveil the main source of spu-
rious oscillations in the most popular DFAs. We show which exchange and correlation
functionals are the most grid robust, and which are the ones that are most grid demanding.

10.2 Systems and Computational Details
In this Chapter, we employ the computational procedure established in Chapter 9. Namely,
the detection of grid-related spurious oscillations and the quantification of the correspond-
ing errors are done with the algorithm presented in Section 9.3.1. We test forty-five DFAs,
however, the set slightly differs from the one in Chapter 9 (see Table 10.1). Now, we in-
clude LSDA functionals (SVWN5 and SPW92), the Perdew-Wang functionals (PW91,
mPW91, and B1PW91), the VSXC meta-GGA functional, but do not consider double
hybrids (mPW2PLYP, B2PLYP, PBE-0DH, and PBE-QIDH) and the HSE functionals
(HSE03 and HSE06). We investigate the same type of molecular displacements as in the
previous Chapter for HCN · HF, HCN · HCl, N2 · HF, OC · HF, HCN · BrF, Ar2. We opti-
mize the geometries of polyatomic systems at the corresponding level of theory, using
the aug-cc-pVTZ basis set and the (250, 974) grid. Then, for each optimized geometry,
a set of displacements along the c1,z coordinate is generated. For SVWN5 and SPW92,
the optimization procedure is skipped and the B3LYP geometries are adopted instead. In
this work, we mostly focus on the errors in the derivatives of various energy components
with respect to nuclear displacements x . Additionally, in Section 10.3, the errors in the
derivatives of dipole moment and static polarizability are also reported. Derivatives are
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obtained using the numerical technique described in Section 9.2.4. In this Chapter, we
quantify the errors coming from spurious oscillations using RMSE (see Eq. 9.2).

Through this Chapter, we test the (99, 590), (250, 974), (750, 974), and (1500, 974)
integration grids, and we adopt the last one as the large grid (LG) grid that is required to
obtain the filtered property profiles (see Section 9.3.1). For the integration of the nonlo-
cal VV10 correlation in wB97M-V, wB97X-V, and B97M-V, a pruned SG3 grid is used
[316]. In this Chapter, except for the optimization procedures and tests from Section 10.3,
we utilize the 6-31+G* basis set in all electronic structure calculations. In the KS-DFT
SCF calculations, the DIIS convergence criterion is set to 10�11 and almost all the two-
electron integrals are included (cutoff set to 10�30). Static polarizabilities, reported in
Section 10.3, are obtained analytically using the CPKS equations. All HF and KS-DFT
calculations are performed with QCHEM 5.1 [322] and all graphs are prepared with the
Matplotlib package [351].

Table 10.1: List of DFAs used in this Chapter; GGA — Generalized Gradient Approximation, GH —
global hybrids, RSH — range-separated hybrids.

DFA Type Ref. DFA Type Ref.
BLYP GGA [178, 180] PBE GGA [179]
B1LYP GH GGA [324] PBE0 GH GGA [294]
B3LYP GH GGA [325, 326] PBE50 GH GGA [322]
BH&H GH GGAa [296] LC-wPBE RSH GGA [191]

BH&HLYP GH GGA [296] VSXC meta-GGA [362]
LC-BLYP RSH GGA [190] B97 GH GGA [327]

CAM-B3LYP RSH GGA [193] B97-D GGA [328]
M06 GH meta-GGA [293] wB97 RSH GGA [192]

M06-L meta-GGA [184] wB97X RSH GGA [192]
M06-HF GH meta-GGA [330] wB97X-D RSH GGA [329]
M06-2X GH meta-GGA [293] wB97X-D3 RSH GGA [331]

SOGGA11 GGA [332] B97M-V meta-GGA [319]
SOGGA11-X GH GGA [333] wB97M-V RSH meta-GGA [77]

M11 RSH meta-GGA [363] wB97X-V RSH GGA [78]
M11-L meta-GGA [335] TPSS meta-GGA [182]

MN12-L meta-GGA [337] RevTPSS meta-GGA [336]
N12-SX RSH GGA [339] TPSSh GH meta-GGA [338]

N12 GGA [334] SPW92 LDA [364, 365]
MN12-SX RSH meta-GGA [339] SVWN5 LDA [364, 366]

MN15 GH meta-GGA [75] PW91 GGA [367]
MN15-L meta-GGA [76] mPW91 GGA [368]
SCAN meta-GGA [183] B1PW91 GH GGA [324]
SCAN0 GH meta-GGA [342]

a No GGA exchange is used, i.e., EBHH
xc = 0.5 ESlater

x + 0.5 EHF
x + ELY P

c
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10.3 The Effect of the Basis Set
We start the discussion by analyzing the dependency of the errors coming from spurious
oscillations on the atom-centered basis set. We tested 26 basis sets of different sizes and
families: STO-3G, Pople’s basis sets with different levels of contraction, 3-21G, 6-31G
and 6-311G (with and without diffuse and polarization functions), Karlsruhe basis set
(ma-)Def2SVP and (ma-)Def2TZVP, and Dunning’s basis sets (aug-)cc-pVDZ and (aug)-
cc-pVTZ. In the case of Pople’s basis sets, the importance of the diffuse and polarization
functions in hydrogen atoms was also tested (by analyzing the differences between 6-31G,
6-31G*, 6-31G**, as well as between 6-31G, 6-31+G, 6-31++G). For three representa-
tive DFAs, wB97X, M06-2X, and B3LYP, we calculated the RMSE of the derivatives of
the energy, dipole moment, and polarizability of the HCN · HF system. These molecular
properties, when listed in that order, show an increasing dependence on the quality of the
basis set, especially on the inclusion of diffuse functions.

Results of this test are collected in Figures 10.1 and A2.3, and the raw data is given
in Tables A3.1 to A3.6 (see Appendix). The errors coming from grid-related spurious
oscillations in the dmE/dx

m, dm
µz/dx

m, and dm
azz/dx

m derivatives depend slightly on
the basis set. This observation goes in line with the fact that most exchange-correlation
functionals have a semi-local character and do not depend strongly on the size of the
basis set. Except for a few cases, for all properties and DFAs, the magnitude of the error
obtained with aug-cc-pVTZ can be predicted using a much smaller basis set. With some
exceptions, small basis sets, such as Def2SVP or 6-31G, can be used to quantify the errors
coming from spurious oscillations in a qualitative manner. Remarkably, one can predict
the magnitude of the grid errors even for high-order derivatives such as d4E/dx

4 using
a very small basis set. Hence, the actual cost of our procedure to identify grid-related
oscillations is dramatically lowered using a small basis set.
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Figure 10.1: Study of the basis set dependence of the grid-related errors in the dmE/dc1,z
m derivatives

(left panel, m= 1 - 4, stored column-wise), the dm
µz/dx

m derivatives (middle panel, m = 0 - 3, stored
column-wise), and the dm

azz/dx

m derivatives (right panel, m = 0 - 2, stored column-wise) of HCN · HF
using wB97X, M06-2X, and B3LYP combined with the (99, 590) integration grid. Colors reflect the values
of the errors in the property measured using RMSE (note the logarithmic scale). Raw data compiled in
Tables A3.1 to A3.6.
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10.4 The Usage of Approximate Densities
Since spurious oscillation errors can be measured using the small basis sets (hence, den-
sities of lower quality), we will investigate the importance of the quality of the density to
estimate errors coming from spurious oscillations. To this end, we analyze the grid-related
oscillations in the curves of dmE/dx

m computed using different types of input densities:

• The SCF density, which was the density used thus far;

• The trial densities from the superposition of atomic densities (SAD), and its purified
version (SADMO), both of which are popular guess densities used to initialize the
SCF procedure [322, 369, 370];

• The trial density constructed from frozen molecular orbitals (which we will refer as
FMO), i.e., the SCF procedure is only performed for the equilibrium geometry and
then the same set of MO coefficients are used for all points of the PES.

The energy computation coming from a DFA and a trial density X will be indicated as
DFA@X. It is important to stress that, except the SCF density, all of the other densities
do not correspond to a stationary wavefunction. Moreover, the SAD and FMO densities
are not idempotent and should never be used to calculate molecular property. Conversely,
the SADMO density is obtained from an initial diagonalization of the SAD density ma-
trix, followed by the aufbau occupation of the corresponding NOs that are employed to
construct the density.

There are two main advantages in favor of using trial densities to check for spurious
oscillations. First, it dramatically reduces the cost of the procedure. Instead of perform-
ing hundreds of SCF calculations for the displaced geometries to construct the whole
PEC (and its derivatives), one only has to perform one SCF calculation (of the optimized
geometry) and the rest of points of the PEC can be calculated at almost no cost (since
they do not require SCF or to construct a Fock matrix, or calculate the 1-and 2-electron
integrals). Formally, employing the FMO densities (and orbitals) to search for potential
oscillations of N nuclear displacements by studying M points of the PEC provides the
N ⇥M-fold reduction of computer time. For example, the search for oscillations in only
one coordinate with 400 points in PEC requires 400 times less of computer time. If all
3N�6 normal coordinates are studied, (3N�6)400 times less CPU time is required. Us-
ing FMO densities we can study only the direct grid errors in dmEx/dx

m and dmEc/dx

m,
as it will be explained in Section 10.5.

For this analysis, we tested 20 DFAs and computed the dmE/dx

m curves for two
noncovalently bonded systems: HCN · HF and Ar2. Figures 10.2 and 10.3 include only
the spurious oscillations obtained using the SCF, SAD, SADMO, and FMO densities (see
also Figures A2.4 to A2.10 in the Appendix). These spurious oscillations are calculated
from the difference between the results obtained with two different grids: the (99, 590)
grid and the reference (1500, 974) grid, DP = PDFA(99,590) �PDFA(1500,974). For these
cases, no filtering procedure was utilized as the (1500, 974) grid yields oscillation-free
d3E/dx

3 and d4E/dx

4 curves for HCN · HF. Figures 10.4 to 10.6 present correlation plots
of the RMSE values obtained using the SCF and trial densities.

As expected, the FMO, SAD, and SADMO trial densities generate property curves of
d3E/dx

3 and d4E/dx

4 that are incorrect and unphysical. However, the description of the
grid-related spurious oscillations using the trial densities is remarkably good. In particu-
lar, the spurious oscillations perfectly match the SCF ones when the FMO trial densities
are used. For all the examples, DP curves obtained from FMOs and SCF densities match
very well even in the case of highly displaced geometries. The latter is true regardless
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of the DFA type. On the contrary, SAD and SADMO provide limited predictions of the
shape of spurious oscillations. With these input densities, one observes a good character-
ization of spurious oscillations for SVWN5, B3LYP, MN15 functionals, whereas for the
other tested DFAs the oscillations are rather poorly described.

These conclusions are further confirmed by the linear regression analysis, which re-
veals that all trial densities can predict the existence of spurious oscillations, FMO den-
sities being clearly the best ones for this purpose. The Pearson correlation between the
errors predicted by the FMO and SCF densities is very close to one for all dmE/dx

m

derivatives. In the case of SAD and SADMO, the correlation with the SCF errors is
slightly lower (R2 larger than 0.95). The largest grids, (750, 974) and (1500, 974), usu-
ally do not produce large spurious oscillations and, therefore, it is difficult to reproduce
their small errors using approximate densities (see Figures 10.4 to 10.6). A similar effect
occurs when the RMSE errors are very small (see the bottom left parts of the correlation
plots). The latter occurs mostly for the 1st and 2nd derivatives, whereas for the 3rd and
4th derivatives situation is a bit better (because the spurious oscillations have much larger
amplitudes). Nevertheless, even when the RMSE is very small the trial densities provide
the same qualitative answer than the SCF densities. Therefore, the trial densities may be
used to detect and quantify the spurious oscillations of DFA, for a fraction of the cost of
a single SCF cycle.
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Figure 10.2: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with VSXC/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure 10.3: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590) �PDFA(1500,974), obtained with B97/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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10.5 Direct and Indirect Errors in Energy Components
Derivatives

The quality of the integration grid directly affects the computation of Exc, since it is the
only part of the electronic energy that is evaluated using numerical quadratures. We will
call this type of error as direct error. However, since the KS-DFT equations are solved
until self consistency, one can expect the numerical integration errors to also affect the
Kohn-Sham MOs. Then, those MOs are used to evaluate all energy components (see
Eq. 5.29): the Kohn-Sham kinetic energy Ts, the nuclei-electron potential energy Ven, the
Coulomb electron repulsion J, the exact HF-like exchange Ex,HF, the exchange energy Ex,
and the correlation energy Ec, as well as any other molecular property. It is important
to stress that for a given set of MOs, the Ts, Ven, J, and Ex,HF energy components are
evaluated analytically using closed-form expressions (when Gaussian type of basis func-
tions are used). Therefore, the computation of expectation values does not rely on the
numerical integration (and are free of direct errors). We will call indirect grid error to the
error propagated by affected MOs to other energy components and molecular properties.
In fact, spurious oscillations affecting the derivatives of dipole moment and static polar-
izabilities, which were already discussed in Chapter 9, partially suffer from the indirect
error (both µ and ↵ are density-based electronic properties, see Eqs. 4.54 and 4.55 in
Section 4.6).

In order to analyze the magnitude of these error types, we analyzed the curves of
derivatives of all components of the electronic energy: dmTs/dx

m, dmVen/dx

m, dmJ/dx

m,
dmEx,HF/dx

m, dmEx/dx

m, and dmEc/dx

m. We performed the KS-DFT SCF computations
using several DFAs (B3LYP, VSXC, B97, wB97M-V, M06-2X, and MN15) and two in-
tegration grids, (99, 590) and (1500, 974). Like in Section 10.4, we considered the results
obtained with the (1500, 974) grid as the oscillation-free references.

The differences in the properties obtained with the (99, 590) and (1500, 974) grids are
shown in Figure 10.7 (see additional Figures A2.11 to A2.14 in the Appendix). Equivalent
observations and conclusions can be made by analyzing the derivatives of any order. In
this Section, we present the results of the third derivatives with respect to the nuclear dis-
placements. For all DFAs tested, one observes spurious oscillations affecting derivatives
of all energy components. The magnitude of the spurious oscillations in the derivatives
of T , Ven, and J is much larger than those in Ex,HF, Ex, and Ec. Errors have opposite
sign for different energy components, which in general, follows the sign of the value of
the original energy component. For Ts and J, which are positive energy components,
the oscillations in d3Ts/dx

3 and d3J/dx

3 are in-phase and out-of-phase with the ones
of d3Ven/dx

3, d3Ex,HF/dx

3, dmEx/dx

m, and dmEc/dx

m (which correspond to the energy
components that have a negative contribution to the total energy).

Interestingly, for the components evaluated fully analytically, i.e., Ts, Ven, J, and
Ex,HF, there is a cancellation of errors. Namely, for the sum of these energy compo-
nents, d(T +Ven + J +Vnn +Ex,HF)3/dx

3 = d(E �Exc)3/dx

3, the spurious oscillations
have magnitudes similar to those of d3Exc/dx

3 but are of the opposite phase. Conse-
quently, the total spurious oscillations in the d3E/dx

3 curves have smaller amplitudes.
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Figure 10.4: Correlation between RMSE in dmE/dx

m obtained using the SCF and FMO densities for
20 DFAs combined with the 6-31+G* basis set. Colors represent the integration grid used to calculate
RMSE: (99, 590) — blue, (250, 974) — orange, (500, 974) — green, and (1500, 974) — pink. Point
shapes represent different chemical systems: HCN · HF — plus, Ar2 — circle. The line representing ideal
correlation, i.e. y = x, is shown with a dashed line.
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Figure 10.5: Correlation between RMSE in dmE/dx

m obtained using the SCF and SAD densities for
20 DFAs combined with the 6-31+G* basis set. Colors represent the integration grid used to calculate
RMSE: (99, 590) — blue, (250, 974) — orange, (500, 974) — green, and (1500, 974) — pink. Point
shapes represent different chemical systems: HCN · HF — plus, Ar2 — circle. The line representing ideal
correlation, i.e. y = x, is shown with a dashed line.
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Figure 10.6: Correlation between RMSE in dmE/dx

m obtained using the SCF and SADMO densities for
20 DFAs combined with the 6-31+G* basis set. Colors represent the integration grid used to calculate
RMSE: (99, 590) — blue, (250, 974) — orange, (500, 974) — green, and (1500, 974) — pink. Point
shapes represent different chemical systems: HCN · HF — plus, Ar2 — circle. The line representing ideal
correlation, i.e. y = x, is shown with a dashed line.
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Figure 10.7: Grid-dependent spurious oscillations in the third derivatives of energy components of Ar2:
total electronic (E), kinetic (T ), nuclei attraction (Ven), Coulomb repulsion (J), exact HF-like exchange
Ex,HF, exchange (Ex), and correlation (Ec), as well as their sums. Obtained with VSXC/6-31+G* (left panel)
and B97/6-31+G* (right panel) as the difference between (99, 590) and (1500, 974) integration grids.

Due to the indirect errors, the spurious oscillations cannot be easily separated between
the Ex and Ec using the SCF MOs. However, there are two possibilities to overcome this
issue and study only the direct errors affecting the Ex and Ec derivatives.

The first solution is to use MOs obtained from a SCF calculation using a huge grid for
the evaluation of the Ex and Ec integrals. However, this solution is time demanding. The
second solution is to use the FMO densities, which reproduce the spurious oscillations at
almost no computational cost. In fact, using the same set of MOs, the values of Ts, Ven, J,
and EHF

x are independent of the integration grid.
Proof of this concept is shown in Figure 10.8 (see additional Figures A2.15 to A2.18

in the Appendix), where spurious oscillations for the (99, 590) grid in d3Ex/dR3, and
d3Ec/dR3 are calculated using different input densities. In these figures, the black curves
were obtained by using MOs from the SCF performed with (1500, 974) grid and only
contain the direct errors. The orange curves were obtained with the SCF densities using
the (99, 590) grid, and include both the direct and indirect errors. And finally, the green
curves were obtained using the FMO densities with a small grid, and reproduce the direct
errors calculated using the trial densities. In Figure 10.8, we observe huge discrepancies
between the red and black (or green) curves of d3Ex/dR3 due to the effects of the indi-
rect errors. In contrast, the FMO densities reproduce the direct spurious oscillations for
d3Ex/dR3, and d3Ec/dR3. The latter is another advantage of using FMO trial densities to
study the effects of spurious oscillations.
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Figure 10.8: Spurious oscillations in the third derivatives of exchange (Ex), correlation (Ec) energy com-
ponents of Ar2, as well as their sum, obtained using VSXC/6-31+G* (left panel) and B97/6-31+G* (right
panel), and the (99, 590) and (1500, 974) integration grids. Three different types of the input densities are
employed: SCF — density obtained in SCF using corresponding grids, SCF(1500, 974) — density obtained
in SCF using the reference (1500, 974) grid, FMO — trial density constructed using FMOs obtained for
one geometry (R=7.2 Bohr) and the (250, 974) integration grid.

10.6 The Origin of Grid Dependency in DFAs: Exchange
and Correlation

With our algorithm, we can analyze the origin of the direct errors due to spurious oscilla-
tions. In particular, we can separately inspect the errors coming from spurious oscillations
in the derivatives of exchange and correlation energies, dmEx/dx

m and dmEc/dx

m, respec-
tively. However, to that end one has to first circumvent the problem of indirect errors –
which, as we demonstrated in the previous section, can be accomplished using the FMO
trial densities.

For forty-five DFAs, we computed the average ratio between the RMSE of dmEx/dx

m

and dmEc/dx

m using the FMO trial densities. We included the ratios calculated for the
third and fourth derivatives, using two integration grids (99, 590) and (250, 974), for
HCN · HF, HCN · HCl, OC · HF, N2 · HF, HCN · BrF, and Ar2. The final results are sum-
marized in Table 10.2, whereas the system-specific data is compiled in Tables 10.3 and
10.4, for the (250, 974) grid, and Tables A3.7 to A3.8, for the (99, 590) grid.

The results may be summarized with the following three statements. First, for half
of the studied DFAs, the total error in dmExc/dx

m is dominated by the error in just one
component. For the second half, which mostly consists of standalone functionals, the
errors in the exchange and correlation components have comparable magnitude. Second,
the relative grid stability of DFAs is very similar for all energy derivatives. Third, the
main source of error (exchange or correlation) may change with the grid and the chemical
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system.
To facilitate the analysis, we first sorted the DFAs according to their relative stability

in the derivatives of the exchange-correlation energy, dmExc/dx

m. Namely, for a given
property and molecular system, we established the relative error of a given DFA with re-
spect to the lowest RMSE value among all 45 DFAs. Examples depicting the relative grid
stability of dmExc/dx

m (as well as of dmEx/dx

m and dmEc/dx

m) are shown in Figures 10.9
and 10.10. For example, for the d3Exc/dx

3 derivatives, one finds the lowest RMSE val-
ues of HCN · HF, HCN · HCl, and Ar2 using BH&H; OC · HF, N2 · HF using SPW92; and
HCN · BRF using BH&HLYP. Second, we construct a vector KDFA with the lowest RMSE
value for a selection of grids and properties. Namely, we choose the (99, 590) and (250,
974) grids, and d3Exc/dx

3 and d4Exc/dx

4 properties, giving rise to fourth-dimensional
KDFA vector for each DFA, characterized by the lowest and largest components, KDFA

min
and KDFA

max . Third, we identify the lowest Kmin among all the DFAs, Kmin, and use it to
define K = Kmax/Kmin

For example, the BH&H functional yields RMSE values which can be three times
larger than the smallest RMSE found (for a given property, grid, and molecular system).
On the contrary, N12 yields RMSE values of d3Exc/dx

3 and d4Exc/dx

4 which can be
70000 times larger than the smallest RMSE found.

Now we will discuss the main source of grid instability and spurious oscillations in the
selected DFAs. This is briefly summarized in Figure A3.9. Starting from the three most
grid-robust DFAs, namely BH&H, SVWN5, and SPW92 the grid errors coming from the
exchange part are much larger than the ones from the correlation part. All these DFAs
incorporate the LSDA exchange and correlation (except BH&H which includes the LYP
correlation [296]).

Within the DFAs from the BLYP family (BLYP, B1LYP, B3LYP, BH&HLYP, LC-
BLYP, and CAM-B3LYP), for which K ranges between 5 and 10, the B88 exchange part
is responsible for the spurious oscillations. On average, it yields 10-20 larger RMSE than
the LYP correlation part. In fact, the LYP correlation yields a RMSE as small as the one
of LSDA correlation functionals (see Figures 10.9 and 10.10).

In contrast, within the DFAs from the PBE family (PBE, PBE0, PBE50, and LC-
wPBE), which are also grid-robust functionals with K between 5 and 30, errors coming
from the exchange and correlation parts have a very similar magnitude. On average, it is
the exchange part that yields larger RMSE. A closer inspection reveals that when the (99,
590) grid is used, the PBE exchange introduces much more grid-related errors than the
PBE correlation (see Table A3.7), whereas, for the (250, 974) grid, it is the correlation
which yields slightly larger RMSE errors (see Table 10.3). The PBE correlation yields
few times larger RMSE than the LSDA and LYP correlation.

Next in stability are the functionals from the TPSS family (TPSS, RevTPSS, and
TPSSh), the MN15 family (MN15 and MN15-L) and the B1PW91 functional. It is clear
that the TPSS exchange is much more grid dependent than the TPSS correlation, with
average ratios in the range of 10 - 24 (see Table 10.2). For the MN15, MN15-L, and
B1PW91 functionals, on average, the exchange and correlation parts yield quite similar
RMSE. However, a closer inspection of the data reveals that, in fact, for almost all chem-
ical systems but HCN · BrF, it is the exchange part which is more stable (ratios are below
1, see Tables A3.8 and 10.4).

Among the B97-V functionals (wB97X-V, wB97M-V, and B97M-V), which have val-
ues of K in the range 400 - 700, and the B97-based functionals (B97, B97-D, wB97,
wB97X, wB97X-D, and wB97X-D3), which have values of K in the range 5000 - 70000,
the correlation part is the main (and most likely the only) source of grid instabilities and
spurious oscillations. Ratios between the errors from oscillations in exchange and correla-
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Figure 10.9: The relative values of RMSE in d4Exc/dx

4, d4Ex/dx

4, and d4Ec/dx

4 for HCN · HF, HCN ·
HCl, and OC · HF, with respect to the minimal RMSE value found within the whole set. The minimum
values are marked with a + sign for d4Exc/dx

4, N for d4Ec/dx

4, and • for d4Ex/dx

4. The ordering of DFAs
corresponds to the one in Table 10.2. Results obtained using the (250, 974) grid.
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Figure 10.10: The relative values of RMSE in d4Exc/dx

4, d4Ex/dx

4, and d4Ec/dx

4 for N2 · HF, HCN ·
BrF, and Ar2, with respect to the minimal RMSE value found within the whole set. The minimum values
are marked with a + sign for d4Exc/dx

4, N for d4Ec/dx

4, and • for d4Ex/dx

4. The ordering of DFAs
corresponds to the one in Table 10.2. Results obtained using the (250, 974) grid.
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Figure 10.11: Families of DFAs grouped by the main origin of their grid instability, namely, exchange (blue
area), correlation (orange area), and both (pink area). Functionals in which both exchange and correlation
are exceptionally stable are shown in green area. The font size indicates the DFAs overall grid instability,
namely, the larger the names the more grid unstable a given DFA is. The description of the functional
families is given in Table A3.9.

tion are much smaller than one, namely in the range of 10�5 — 10�3, especially when the
(250, 974) grid is used. Interestingly, the exchange part of the B97 and B97-V functionals
is as stable as the B88 exchange (see Figures 10.9 and 10.10).

The functionals from the PW91 family (PW91 and mPW91), suffer from large errors
due to spurious oscillations (i.e., K = 2000 - 3000). In the case of these functionals, both
exchange and correlation are highly grid sensitive to spurious oscillations (see Figures
10.9 and 10.10), although, the exchange yields errors which, on average, are 24 - 28 times
larger than those due to correlation.

Lastly, we discuss the remaining DFAs, which suffer from huge spurious oscillations
and almost all of them belong to rungs 4 and 5 from Section 9.5 (and correspond to
K = 400 - 105). All of them were developed as the standalone functionals, that is, the
exchange and correlation parts were developed simultaneously and are not separable. For
the VSXC functional, which suffers from the smallest errors in this group of DFAs, the
correlation yields on average two times larger errors than the exchange. On the contrary,
for the SOGGA11, SOGGA11-X, N12, and N12-SX functionals, the correlation part is
responsible of the spurious oscillations. More strikingly, in the case of SOGGA11-X and
N12, the exchange part is almost as stable as the B88, B97 and PBE exchange and it is
the correlation part that most suffers from spurious oscillations. In M11, M11-L, MN12-
L, MN12-SX, SCAN, and SCAN0, both exchange and correlation cause large errors.
Similarly, in the DFAs from the M06 family, both components are greatly grid sensitive
to spurious oscillations and there is no clear dominance of one component (trends are
system and grid specific).
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Table 10.2: The average ratios between the RMSE of dmEx/dx

m and dmEc/dx

m for some DFAs (the values
in parentheses). DFAs and they their relative grid stability (see description in the text): numbers in first
column denote the maximum desired relative errors in dmExc/dx

m with respect to the most stable DFA, K
(see description in text). For each DFA, Numbers in parentheses are the average values of ratios between
the RMSE for dmEx/dx

m and dmEc/dx

m, including m = 3, 4, all molecules and the (99, 590) and (250, 974)
grids. (the presented numbers are obtained by averaging the values from the corresponding rows in Tables
A3.7 to 10.4).

K DFAs (average RMSE(dmEx/dx

m) / RMSE(dmEc/dx

m))
1
2
3 BH&H (5.4)
4 SPW92 (11.0) SVWN5 (10.8)
5 LC-BLYP (21.8) PBE50 (1.8)
6 BH&HLYP (11.2) CAM-B3LYP (11.6)
7
8 B1LYP (12.6) B3LYP (13.0) PBE0 (2.6)
9

10 BLYP (18.8) PBE (3.1)
20
30 LC-wPBE (4.2)
40
50
60
70
80
90 MN15-L (1.3)

100 RevTPSS (10.8)
200 B1PW91 (1.1) MN15 (0.9) TPSS (23.7) TPSSh (14.7)
300
400 wB97X-V (0.6)
500
600 VSXC (0.5)
700 B97M-V (0.6) wB97M-V (0.1)
800
900 MN12-L (3.1)

1000
2000 MN12-SX (1.6) mPW91 (28.2)
3000 PW91 (24.2)
4000 M11 (3.1) SOGGA11 (0.2) SOGGA11-X (0.2)
5000 B97-D (6.6·10�2) M06 (0.6) N12-SX (0.2)
6000
7000 M06-2X (1.1)
8000 B97 (2.8·10�2)
9000 M06-L (1.2) M11-L (4.0)

10000
20000 M06-HF (1.8)
30000 wB97 (1.6·10�2)
40000 wB97X (1.0·10�2)
50000 wB97X-D3 (8.5·10�3)
60000
70000 N12 (2.8·10�2) wB97X-D (6.1·10�3)
80000
90000
> 105 SCAN (3.6) SCAN0 (2.7)
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Table 10.3: Part 1) Ratios between the RMSE values of Ex and Ec for some DFAs combined with the (250, 974) grid. The numbers correspond to the averages of ratios for the d3E/dx

3

and d4E/dx

4 derivatives, computed separately for each chemical system. The second and third columns show the names of the (meta-)GGAs exchange and correlation functionals
included in a given DFA (information not shown for standalone functionals, for which exchange and correlation parts are not meant to be used separately).

DFA EDFA
x EDFA

c HCN · HF HCN · HCl OC · HF N2 · HF HCN · BrF Ar2 He2
SVWN5 S VWN5 0.5 1.7 1.4 1.9 35.0 25.5 5.2
SPW92 S PW92 2.1 1.3 1.5 0.8 36.0 28.5 6.7
BH&H S LYP 1.2 0.9 1.1 1.1 37.3 1.6 2.9

BLYP B88 LYP 4.8 4.2 2.0 9.6 101.1 4.0 1.1·104

B1LYP B88 LYP 2.4 2.5 4.8 8.9 58.4 3.3 5.0·103

B3LYP B88 LYP 1.4 4.1 3.3 4.3 61.8 4.1 8.1·103

BH&HLYP B88 LYP 3.6 2.5 2.1 5.0 67.0 2.5 4.4·103

LC-BLYP B88 LYP 1.6 0.9 0.7 0.8 208.1 2.7 5.1
CAM-B3LYP B88 LYP 0.9 2.2 1.2 3.9 62.7 2.5 3.3·103

PBE PBE PBE 1.1 0.6 1.4 0.8 11.2 0.9 0.6
PBE0 PBE PBE 1.5 0.9 2.0 0.5 8.9 0.7 0.5

PBE50 PBE PBE 0.8 0.6 0.7 0.6 5.2 0.4 0.3
LC-wPBE PBE PBE 0.9 1.7 7.9 1.5 16.1 0.9 0.1

TPSS TPSS TPSS 103.7 20.4 30.6 73.3 11.8 5.5 0.9
RevTPSS RevTPSS RevTPSS 2.7 3.3 2.7 61.8 13.0 4.9 0.9

TPSSh TPSS TPSS 74.5 13.6 3.3 36.5 8.2 5.0 0.8

B97 3.0·10�4 5.3·10�4 7.3·10�4 4.1·10�4 8.8·10�3 4.7·10�3 1.7·10�1

B97-D 1.2·10�3 1.7·10�2 2.6·10�2 1.3·10�2 2.8·10�2 3.1·10�2 4.3·10�1

wB97 4.8·10�4 5.2·10�4 8.5·10�3 2.8·10�3 4.5·10�3 7.1·10�3 1.4·10�2

wB97X 1.5·10�4 1.9·10�4 3.7·10�4 9.3·10�5 2.1·10�3 4.5·10�3 3.1·10�2

wB97X-D 8.2·10�5 1.1·10�4 2.6·10�4 6.5·10�5 8.4·10�4 3.6·10�3 6.2·10�2

wB97X-D3 9.6·10�5 1.5·10�4 3.0·10�4 5.2·10�5 1.4·10�3 3.7·10�3 4.1·10�2

wB97M-V 2.9·10�3 3.9·10�3 7.2·10�3 7.5·10�3 4.2·10�2 1.8·10�2 8.7·10�3

wB97X-V 1.0·10�2 2.1·10�2 1.2·10�2 9.0·10�3 2.3·10�1 5.0·10�2 2.4·10�2

B97M-V 5.7·10�3 1.3·10�1 1.4·10�1 3.1·10�1 3.5·10�2 7.9·10�1 7.1·10�1
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Table 10.4: Part 2) Ratios between the RMSE values of Ex and Ec for some DFAs combined with the (250, 974) grid. The numbers correspond to the averages of ratios for the d3E/dx

3

and d4E/dx

4 derivatives, computed separately for each chemical system. The second and third columns show the names of the (meta-)GGAs exchange and correlation functionals
included in a given DFA (information not shown for standalone functionals, for which exchange and correlation parts are not meant to be used separately).

DFA EDFA
x EDFA

c HCN · HF HCN · HCl OC · HF N2 · HF HCN · BrF Ar2 He2
B1PW91 B88 PW91 4.8·10�1 1.2·10�2 2.0·10�2 4.3·10�2 4.0·10�1 7.2·10�1 4.4·10�1

PW91 PW91 PW91 116.2 5.7 118.5 6.0 5.9 3.3 0.6
mPW91 mPW91 mPW91 151.1 6.2 129.1 6.3 5.6 3.3 0.6

VSXC 0.4 0.5 0.4 0.5 1.9 0.5 0.5
SCAN 3.5 4.4 4.5 2.6 6.5 3.0 6.1
SCAN0 3.0 3.0 2.6 1.9 3.5 2.3 4.5

M06 0.7 0.5 1.1 0.4 2.1 0.2 2.6·10�2

M06-L 2.7 1.3 3.2 0.9 2.5 0.2 5.5·10�2

M06-HF 7.1 1.9 5.3 1.2 0.9 0.7 1.7·10�2

M06-2X 3.1 1.2 3.2 1.3 0.5 0.6 9.4·10�2

M11 3.5 4.9 3.1 5.1 1.2 2.9 2.5·10�2

M11-L 4.6 4.4 5.1 4.3 12.5 2.0 1.1

SOGGA11 1.0·10�2 5.6·10�2 9.8·10�2 2.6·10�2 3.1·10�1 7.9·10�2 1.9
SOGGA11-X 8.5·10�4 7.6·10�3 3.3·10�3 3.0·10�3 1.3·10�1 4.8·10�2 5.0·10�1

N12 2.1·10�2 4.5·10�3 9.6·10�3 2.7·10�3 3.9·10�3 1.2·10�2 3.7·10�1

N12-SX 9.0·10�2 3.0·10�2 5.9·10�2 3.8·10�2 1.3·10�1 4.5·10�2 3.6·10�1

MN12-L 2.4 4.6 2.3 5.1 6.7 1.9 0.6
MN12-SX 1.1 1.4 0.8 1.4 2.2 1.4 5.9

MN15 7.3·10�3 8.0·10�2 1.7·10�2 4.9·10�2 2.6 2.1·10�1 3.0·10�1

MN15-L 0.6 1.1 0.3 1.0 3.7 0.7 0.1
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10.7 Conclusions
In this Chapter, we have performed a detailed analysis on the origin of spurious oscilla-
tions. First, we showed that the oscillations are not strongly basis set dependent; hence,
they may be estimated using compact basis sets, such as 6-31G or Def2SVP. For instance,
6-31+G* predicts the magnitude of the error due to the spurious oscillation in the en-
ergy and property derivatives computed with aug-cc-pVTZ. This conclusion holds also
for the derivatives of dipole moment and static polarizability, which, in general, are more
susceptible to the quality of the basis set than the electronic energies.

Second, we unveiled that to identify errors coming from the spurious oscillations, one
does not require to utilize the Kohn-Sham MOs and the corresponding densities. One can
actually utilize trial densities that were not obtained from an SCF procedure, such as the
SAD, SADMO, and FMO densities. The SAD and SADMO densities are already avail-
able in most computational packages and are a opular choice for the initial guess in the
SCF procedures. The FMO densities can be trivially constructed from LCAO coefficients
of the equilibrium geometry and used for all the other points of the property curve. The
best accuracy in the description of oscillations was observed for the FMO densities. This
approach, while being limited to the derivatives of electronic energy, can provide very
accurate estimates of the errors coming from spurious oscillations at a very low computa-
tional cost. The cost of our diagnostic reduces to just one KS-DFT computation when the
FMO densities are employed.

In this Chapter, we also discussed the consequences of direct and indirect errors due
to spurious oscillations. Small integration grids affect not only the evaluation of the
exchange-correlation energies, which leads to direct errors, but also affect the Kohn-Sham
MOs through the SCF procedure; these errors are called indirect. Indirect errors affect
molecular properties computed with such orbitals. Moreover, the indirect errors hinder
a separation of spurious oscillations coming from the exchange and correlation compo-
nents. However, the separation can be achieved using MOs free of the spurious oscillation
error, or the same FMOs for all the points of the PEC.

Lastly, in this work, we study wether the main source of spurious oscillations is the
exchange or the correlation energy term. In LSDAs and the functionals from the BLYP
family, the spurious oscillations are small and emerge almost exclusively from the Slater
and B88 exchange functionals. The same origin of the oscillations is observed for the
moderately grid-sensitive functionals from the TPSS, PW91, M11, and MN12 families.
Regarding the correlation functionals, only PW92, VWN5 (LSDAs) and LYP (GGA) are
exceptionally grid-robust. More interestingly, our study reveals that the huge direct spu-
rious oscillations from the B97 and N12 families are only due to the the correlation part.
The exchange part of these functionals is almost as robust as the B88 or PBE exchanges.
Lastly, in the case of most standalone functionals, such as the ones of the M06, M11
and MN15 families, which also yield huge spurious oscillation errors, both exchange and
correlation suffer from considerable grid dependencies.
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Chapter 11

How Many Electrons Does a Molecular
Electride Hold?
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11.1 Introduction
Electrides are novel ionic substances where the electrons act as the anions in crystal struc-
tures and molecules [371–375]. These anionic electrons are localized in particular parts
of the crystals and are considered as the individual entities that formally do not belong to
any atom. Electrides share some similarities with the F-centers in crystals, which are va-
cancies in the crystal structure arising from the (random) misalignment of atoms (or their
complete lack). For instance, both the anionic electrons of the electrides and the electrons
localized in the F-centers are easily photo-excited, which leads to the intense absorption
in the UV-Vis range and acute colors of such materials. Actually, the electrides can be
treated as the stoichiometric F-centers. Although the notion of free electrons may also be
found in metals or alkaline metal solutions of ammonia, the character of these electrons
is drastically different to the ones that belong to the anions of the electrides. In the former
case, electrons are greatly delocalized over the whole lattice and still can be formally as-
signed to the metallic centers, whereas in electrides they are hugely localized and do not
belong to any atom. In the case of alkaline metal solutions of ammonia, free electrons are
solvated by the ammonia molecules and form a disordered liquid state, unlike the case of
crystal electrides, where the anionic vacancies form ordered geometrical structures.

The first hypothesis on the existence of electrides was done by James L. Dye, who had
previously worked with alkalides [376]. In 1983, Dye managed to synthesize the first elec-
tride [377], namely Cs+(18C6)2 · e�, and a few years later successfully characterized the
anionic vacancies in its crystal structure [378]. However, Cs+(18C6)2 ·e� was inherently
unstable under normal laboratory conditions. It took Dye two decades more, up to 2005,
to finally synthesize a first stable organic electride, Na+[tripip-aza(222)]·e�. However,
the actual first realization of a stable inorganic electride, [Ca24Al28O64]4+(4e�), synthe-
sis was achieved in 2003 by the group of Hideo Hosono [379]. [Ca24Al28O64]4+(4e�)
has found many applications, to name the most prominent ones, it can act as an electron
emitter [380], an electron injection electrode [381], a synthetic organic reagent in cou-
pling reactions [382], a cathode in the top-emission organic light-emitting diodes [383]
and fluorescent lamps [384], a reversible H2 storage device [385], a catalyst in the syn-
thesis of ammonia [386], an electrode in electrochemical reactions [387], and an electric
conductor [388]. Today, there is a large collection of (in)organic electrides, which are
classified according to the spatial pattern of the lattice voids with the electride electrons,
namely zero- [389], one- [390–393], two- [394–401], and three-dimensional electrides
[402–407], as well as electride nanoparticles [408, 409]. In the recent years, the concept
of the single-molecule electrides (known as the molecular electrides) emerged [375], and
it will be the topic of this Chapter.

Since the electride electrons can be found in the single molecules, it was of key im-
portance to establish a unique set of features which could be used to produce an unbiased
classification of molecules as molecular electrides [375]. Electrides present several spe-
cial properties which may be helpful in their identification. Solid-state electrides, show
huge magnetic susceptibilities due to the unpaired electrons in the vacancies; most elec-
trides are expected to be Mott insulators, and some electrides show superconducting be-
havior at low temperatures [381, 410–412]. Moreover, electrides are characterized by
huge nonlinear optical response properties, and indeed some electrides have the largest
first hyperpolarizabilities ever reported [413, 414]. However, the electrons localized in
electrides can not be experimentally detected because the density of the free electrons is
not large enough to be located in the X-ray of the crystal structure. Therefore, most exper-
imental confirmations rely on indirect structural measurements, such as comparisons with
other crystal structures of electrides and alkalides [415–417], chemical shifts of the cor-
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responding cations, EPR studies, and atomic resolution scanning tunneling microscopy
[418]. In contrast, theoretical chemistry provides reliable tools for the topological char-
acterization of the electrides because it has an easy access to direct information on the
electronic density of the system. The most common tools to identify localized electrons
are the topology of the electronic density (done by the means of Quantum Theory of
Atoms in Molecules, QTAIM) and the presence of NNACPs [238], the Electron Local-
ization Function (ELF) [419–421], the non-covalent interactions (NCI) [422, 423], the
localized-orbital locator (LOL) [424], and the Laplacian of the electron density [238].
Although the increased values of the localization indicators may be observed in many
chemical systems that cannot be considered electrides, molecular electrides are charac-
terized using several of them simultaneously. In 2015, Postils and coworkers concluded
that the rarest feature among these indicators is the presence of NNACP in the topology
of the electronic density. They considered it as a unique footprint of the electride anionic
electrons.

It was important to find a suitable electronic structure method to detect the NNACP
and characterize the corresponding basin, which character influences all the properties of
the electride. One of the basic questions, which had not been systematically answered,
was which is the most likely number of electrons held by the molecular electrides. This
question was also directly related to the formal oxidation state of the electride anion,
or equivalently, to what extent these localized electrons can be considered as the anions
(with a formal charge of -1). This Chapter is a compilation of the main results of the
Candidate’s study [148], which aims to provide answers to the above questions.

11.2 Studied Systems and Computational Details
In this work, the previously characterized molecular electrides were studied [375], namely,
Li@calix[4]pyrrole [375, 413, 425], Na@calix[4]-pyrrole [375, 413, 425], TCNQLi2
[375, 426], TCNQNa2 [375, 426], TCNENa3 [427], TCNENa4(II) [427], Mg2EP [428],
Mg2C60 [429], and e@C60F60 [375, 430]. Their structures are shown in Figure 11.1. We
study the topology of the electronic density of those systems using the QTAIM analysis
(see Section 6.2). All these studied systems contain at least one NNACP, a significant
concentration of density in the region of NNACP observable with ELF [419, 420], neg-
ative values of the Laplacian of the electron density [238], and huge values of nonlinear
optical properties [375, 414, 428, 429]. Thus, we compute the values of electron density,
r(rNNACP), and the Laplacian of the electron density, r2

r(rNNACP) (both measured at
the position of NNACP), the average number of electrons in the NNA basin NNNA, and
the localization index lNNA, which quantifies the average number of localized electrons
in the NNA basin. With the increased amount of localized electride electrons, one can
expect r(rNNACP) to rise, r2

r(rNNACP) to decrease and be more negative, and NNNA and
lNNA to increase. Additionally, for each NNA basin, we compute its effective oxidation
state (EOS) using the method described in Section 6.3.

To compute the EOS, we must define real-space fragments among which the electrons
are distributed. We test two partitions: EOS[1], which considers only two fragments: the
NNA basin and the rest of the molecule, and EOS[2], which divides the space into sev-
eral fragments: the NNA basins, one fragment for each metallic atom, and the rest of the
molecule. The only exception is the e@C60F60 system, in which only type 1 fragmenta-
tion can be applied because there are no metallic center.
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Figure 11.1: From top-left to bottom-right, the molecular structures of e@C60F60, TCNQM2,
M@calix[4]pyrrole, TCNENa3, TCNENa4(II), Mg2EP, and Mg2@C60, where M atom denotes either M
= Li or M = Na.
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All structures were optimized using CAM-B3LYP/ma-Def2TZVP [193, 431]. For
such optimized geometries, single point calculations using different methods, includ-
ing DFAs such as CAM-B3LYP [193], B3LYP [325, 326], M06-2X [330], and MN15
[75], as well as wavefunction-based ab-initio HF, MP2 [210], CCSD [432] and CCSD(T)
[297] methods. For all systems, except e@C60F60, several basis sets were tested, namely
(aug-)cc-pVDZ and (aug-)cc-pVTZ [298–305], ma-Def2TZVP [431] and ma-Def2QZVP
[431]. In the case of e@C60F60, the medium-sized basis sets, 6-31G [433], 6-31G(d)
[433, 434], 6-31+G [433, 435], and ma-TZVP [431] with the additional diffuse functions
placed at the center of the cage, were utilized. The set of additional functions, labeled as
DF, consisted of four uncontracted diffuse functions of the s- and p-types with exponents
1.68714478 · 10�n (n = 1-4) [375, 430]. It was previously established that additional DF
provide a good description of the NNA localized in the center of the cage [375, 430]. All
HF, MP2, and KS-DFT calculations were performed with Gaussian16 (Rev. B01) [436],
whereas CCSD and CCSD(T) were done using CFOUR 2.1. [323].

Besides performing the EOS analysis for the NNA basins, the electron distribution
functions (EDFs), from the formulation of Cancés et al. [437], were also computed. EDFs
define the probability of finding exactly zero, one, and two electrons in the particular
region of space or atomic basin. The probability of finding zero electrons in the region A
is given by:

PA
0 =

N

’
i=1

⇣
1�l

A
i

⌘
, (11.1)

and, if PA
0 6= 0, the probability of finding exactly n electrons in the region A, PA

n , is given
by

PA
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i1,...,in
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i j

1�l

A
i j

!
PA

0 8n > 0 , (11.2)

where the prime in the summation indicates that we are excluding terms with repeated
indices, and l

A
i are the N non-zero eigenvalues of the atomic overlap matrix for the basin

A. In this work, we only consider the basin of the NNA and thus we drop the notation
indicating the region (Pi ⌘ PNNA

i and li ⌘ l

NNA
i ). EDFs were introduced in chemistry

by Daudel [438, 439] and have been extensively used by Martín Pendás and co-workers
[440–442] as an elegant tool to characterize chemical bonds [443]. Using the EDFs, one
can easily retrieve the average number of electrons in the NNA basin:

NNNA = Â
i

iPi . (11.3)

In the present case, the probability of finding more than two electrons in the NNA
basin is expected to be negligible, hence, NNNA ⇡ P1+2P2. Despite the MP2 probabilities
cannot be computed from Eqs. 11.1 and 11.2, neglecting Pi8i > 2, and employing the
approximate localization index, we can compute approximate MP2 P0, P1, and P2 from
the following set of equations:

NNNA ⇡ P1 +2P2 , (11.4)
lNNA ⇡ NNNA �P0 (NNNA)

2 � P1 (1�NNNA)
2 � P2 (2�NNNA)

2 , (11.5)
1 ⇡ P0 +P1 +P2 , (11.6)

which give rise to these approximate probabilities:

P0 ⇡ 1�NNNA +
1
2
�
N2

NNA �lNNA
�
, (11.7)

P1 ⇡ lNNA +NNNA (1�NNNA) , (11.8)

P2 ⇡ 1
2
�
N2

NNA �lNNA
�
. (11.9)
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Obviously, if Pi ⇡ 08i > 2 and accurate NNNA and lNNA are used, the latter expressions
provide excellent estimates for P0, P1, and P2, regardless of the wavefunction approxima-
tion. We will consider that the molecule is at least a one-electron molecular electride if
the probability of having one or more electrons, 1�P0, is higher than P0.

In the case of post-HF methods, relaxed electronic densities [444] were used in sub-
sequent QTAIM and EOS analyzes. Furthermore, the Muller approximation has been
adapted [445–451] to approximate the necessary two-electron densities for computing
the (de)localization indices. The topology of the electron density within the QTAIM for-
malism was done using the AIMAll package (ver. 19.10.12) [452] and the EOS analysis
was carried out with APOST3d (dev. ver. 2.0) [453].

11.3 Results and Discussion
In this section, results of the QTAIM, EOS and EDF analyses are presented. The dis-
cussion is done separately for each pair of molecular electrides that share a structural
motif, that is, TCNQLi2 and TCNQNa2, Li@calix[4]pyrrole and Na@calix[4]pyrrole,
TCNENa3 and TCNENa4(II), Mg2EP and Mg2@C60, and lastly, e@C60F60.

11.3.1 TCNQLi2 and TCNQNa2

Figure 11.2: Geometries of TCNQLi2 (top) and TCNQNa2 (bottom) optimized at the CAM-B3LYP/ma-
Def2TZVP level of theory. The NNA position is indicated with a red ball.

Results are compiled in Tables 11.1 and 11.2. Both TCNQLi2 and TCNQNa2 are
molecules with a triplet ground state 3B1. These systems contain one NNACP in between
the alkaline atoms (see Figures 11.2), which is detectable with most of the tested DFT
and wavefunction-based methods. The exceptions are found for TCNQLi2 and the den-
sities obtained with B3LYP/ma-Def2TZVP, CAM-B3LYP/ma-Def2TZVP, M06-2X/ma-
Def2TZVP, MN15/ma-Def2TZVP and MN15/ma-Def2QZVP, and for TCNQNa2 and the
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densities obtained with MN15/ma-Def2TZVP and MN15/ma-Def2QZVP. In all of these
cases, no NNACP was found in the topology of the density.

Nevertheless, for all methods that correctly report only one NNACP, the values of
r(rNNACP) and r2

r(rNNACP) are very similar. The population of the NNA basin is
between 0.5 and 0.7 electrons for TCNQLi2, whereas for TCNQNa2 it is much lower,
between 0.2 and 0.5. In general, it can be observed that the values of NNNA and lNNA
for the NNA basin increase with the percentage of HF exchange used in the DFT or
wavefunction-based method (20% of the exact exchange), CAM-B3LYP (19 - 65% of the
exact exchange), M06-2X (54% of the exact exchange) and finally HF and MP2, which
are fully based on the exact exchange. HF provides values of NNNA and lNNA very close
to those obtained with MP2, especially in TCNQNa2, which may suggest that for this
system, the average NNA basin populations are underestimated by DFAs. Moreover, in
the case of TCNQNa2, both NNNA and lNNA seem to be more basis set dependent than
for TCNQLi2. As compared to TCNQLi2 , electrons in the NNA basin of TCNQNa2 are
less localized. For the first molecule, one observes that more than 50% of the electrons
are localized in the NNA basin and, in the latter case, this number is about 25% for the
studied DFAs and below 50% for HF and MP2.

The outcome of the EOS analysis for TCNQLi2 and TCNQNa2 is entirely different.
In TCNQLi2, the formal oxidation state of the NNA basin is -1, in spite of the types of
fragments used. The values of RI of these predictions increase with the average num-
ber of electrons in the NNA basin. Moreover, they are larger for the second fragmenta-
tion scheme, namely, EOS[2], which distributes the electrons in the electrides among the
NNA, the two Li atoms, and the rest of the molecule. The picture of a negative oxidation
state of the NNA basin is further confirmed by the EDFs, for which the highest probability
is found for P1, that is, finding exactly one electron in the basin. One can also find a good
correspondence between the values of P1 and the RI value predicted by the first fragmen-
tation (EOS[1]). In TCNQNa2, the assigned oxidation state is strongly shifted towards
zero and depends on the type of fragmentation used. For the fragmentation scheme 1, the
oxidation state of the NNA basin is zero, which means that formally one cannot classify
this NNA basin as an anion. For the fragmentation scheme 2, for the methods but HF, the
oxidation state of NNA is also zero. This observation goes in line with the EDF analysis,
where the probabilities of finding exactly zero electrons in the NNA basin are the largest
ones.

In summary, according to the EOS and EDF criteria, one can classify TCNQLi2 as a
true one-electron molecular electride, while TCNQNa2 represents a borderline situation
between a zero-electron and a one-electron molecular electride.
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Table 11.1: Results of the QTAIM partitioning for TCNQLi2. The third and fourth columns report values of the density, r(rNNACP), and its Laplacian, —2
r(rNNACP), at the positions

of the NNA. The fifth and sixth columns give the population, NNNA, and localization index, lNNA, for the NNA basin. Starting on the seventh column, results of the EOS and EDF
analyses of the NNA basin are given. EOS[1] and EOS[2] correspond to the oxidation state obtained with type 1 and 2 fragmentations, respectively (see text). The last three columns
report the probabilities (in percentage) of finding 0, 1, and 2 electrons in the NNA basin.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP

ma-Def2TZVP no NNAs
ma-Def2QZVP 9.6·10�3 -8.2·10�3 0.540 0.277 -1 55 -1 83 46.9 52.6 0.6

cc-pVTZ 9.6·10�3 -8.3·10�3 0.563 0.300 -1 60 -1 87 44.7 54.7 0.6
aug-cc-pVTZ 9.6·10�3 -8.3·10�3 0.557 0.295 -1 59 -1 86 45.2 54.2 0.6

B3LYP

ma-Def2TZVP no NNAs
ma-Def2QZVP 9.4·10�3 -7.9·10�3 0.505 0.242 0 52 -1 79 50.3 49.2 0.5

cc-pVTZ 9.4·10�3 -8.1·10�3 0.527 0.262 -1 52 -1 82 48.3 51.2 0.6
aug-cc-pVTZ 9.4·10�3 -8.1·10�3 0.524 0.259 -1 52 -1 81 48.5 50.9 0.6

M06-2X

ma-Def2TZVPa 7.8·10�3 -4.5·10�3 0.424 0.084 0 68 -1 67 58.3 41.2 0.5
ma-Def2QZVP 9.3·10�3 -7.9·10�3 0.607 0.344 -1 67 -1 94 40.6 58.4 1.0

cc-pVTZ 9.4·10�3 -8.3·10�3 0.609 0.345 -1 67 -1 94 40.6 58.4 1.1
aug-cc-pVTZ 9.5·10�3 -8.3·10�3 0.609 0.346 -1 68 -1 94 40.5 58.5 1.0

MN15 ma-Def2TZVP no NNAs
ma-Def2QZVP found 8 NNAs and Poincare-Hopf not satisfied

HF

ma-Def2TZVP 7.8·10�3 -4.7·10�3 0.593 0.337 -1 66 -1 90 41.5 57.9 0.6
ma-Def2QZVP 9.6·10�3 -8.5·10�3 0.726 0.504 -1 92 -1 100 28.7 70.5 0.9

cc-pVTZ 9.7·10�3 -8.7·10�3 0.719 0.494 -1 91 -1 100 29.4 69.8 0.8
aug-cc-pVTZ 9.7·10�3 -8.7·10�3 0.724 0.502 -1 92 -1 100 28.8 70.3 0.9

MP2 ma-Def2TZVP 8.0·10�3 -4.8·10�3 0.550 0.291 45.6 53.9 0.6
aug-cc-pVTZ 1.0·10�2 -9.1·10�3 0.700 0.470 31.0 68.0 1.0

a Two closely separated NNAs are found for this basis set (NNNA and lNNA correspond to the sum of both NNAs).
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Table 11.2: Results of the QTAIM partitioning, EOS, and EDF analyses for TCNQNa2. For a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP ma-Def2TZVP 6.9·10�3 -4.4·10�3 0.213 0.044 0 100 0 66 78.9 21.0 0.0
aug-cc-pVTZ 7.1·10�3 -4.9·10�3 0.265 0.068 0 98 0 58 73.7 26.2 0.1

B3LYP ma-Def2TZVP 6.6·10�3 -4.1·10�3 0.170 0.028 0 100 0 72 83.2 16.8 0.0
aug-cc-pVTZ 6.8·10�3 -4.6·10�3 0.217 0.045 0 100 0 65 78.6 21.3 0.0

M06-2X ma-Def2TZVP 6.7·10�3 -4.0·10�3 0.236 0.053 0 100 0 62 76.7 23.2 0.1
aug-cc-pVTZ 6.9·10�3 -4.5·10�3 0.241 0.054 0 100 0 61 76.3 23.6 0.1

MN15 ma-Def2TZVP no NNAs
aug-cc-pVTZ found 11 NNAs and Poincare-Hopf not satisfied

HF ma-Def2TZVP 7.1·10�3 -5.2·10�3 0.443 0.191 0 63 -1 68 56.2 43.7 0.2
aug-cc-pVTZ 7.1·10�3 -5.4·10�3 0.495 0.238 0 52 -1 75 51.0 48.8 0.2

MP2 ma-Def2TZVP 7.3·10�3 -5.3·10�3 0.418 0.171 58.4 41.4 0.2
aug-cc-pVTZ 7.4·10�3 -5.6·10�3 0.465 0.212 53.7 46.0 0.2
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11.3.2 Li@calix[4]pyrrole and Na@calix[4]pyrrole

Figure 11.3: Geometries of Li@calix[4]pyrrole (top) and Na@calix[4]pyrrole (bottom) optimized at the
CAM-B3LYP/ma-Def2TZVP level of theory. The NNA position is indicated with a red ball.

Results for Li@calix[4]pyrrole and Na@calix[4]pyrrole are compiled in Tables 11.3
and 11.4. These chemical systems are open-shell doublet systems with the 2A1 electronic
ground state. A NNACP is found in the center of the pyrrole ring, on the same vertical
axis as Li and Na atoms (see Figure 11.3). The presence of NNACP is correctly described
by all the methods tested except the MN15 functional. Although the values of density
and the Laplacian density are quite similar across all methods and basis sets, larger differ-
ences are observed for the averaged quantities. Again, DFAs yield much lower values of
NNNA and lNNA than MP2, while HF drastically overestimates these properties. The best
correspondence with the reference MP2 results is found for the CAM-B3LYP functional.
Regarding the most likely oxidation state of the electride anion, for Li@calix[4]pyrrole,
a situation similar to TCNQNa2 can be observed. That is, the non-zero oxidation state is
predicted only by HF and mostly for the second fragmentation state. Although the corre-
sponding RI values of these predictions are much larger for TCNQNa2 (especially for the
second fragmentation scheme), the probabilities of founding exactly zero electrons, P0,
are only slightly larger. In the case of Na@calix[4]pyrrole, all methods and fragmentation
schemes predict a zero oxidation state and these predictions are fully supported by RI =
100% (except for HF, for which RI = 55 - 64%). The zero oxidation state is supported
by the large values of P0, which are larger than 80% for all methods except HF. More-
over, the probabilities of finding exactly zero electrons in the NNA basin are the highest
for Na@calix[4]pyrrole among all systems studied. Therefore, based on the EOS and
EDF results, one could assign both Li@calix[4]pyrrole and Na@calix[4]pyrrole as low-
electron-number electrides, with the former one being more a borderline case (similar to
TCNQNa2).
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Table 11.3: Results of the QTAIM partitioning, EOS, and EDF analyses for Li@calix[4]pyrrole. For a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP ma-Def2TZVP 7.6·10�3 -4.0·10�3 0.291 0.079 0 94 0 91 71.5 28.3 0.2
aug-cc-pVTZ 8.0·10�3 -5.2·10�3 0.269 0.067 0 98 0 95 73.7 26.2 0.1

B3LYP ma-Def2TZVP 6.9·10�3 -3.2·10�3 0.215 0.043 0 100 0 100 78.9 21.0 0.1
aug-cc-pVTZ 7.2·10�3 -4.3·10�3 0.193 0.035 0 100 0 100 81.0 18.9 0.1

M06-2X ma-Def2TZVP 7.0·10�3 -2.9·10�3 0.195 0.035 0 100 0 100 81.0 19.0 0.1
aug-cc-pVTZ 7.3·10�3 -4.1·10�3 0.177 0.028 0 100 0 100 82.8 17.1 0.1

MN15 ma-Def2TZVP no NNAs
aug-cc-pVTZ no NNAs

HF ma-Def2TZVP 7.6·10�3 -5.2·10�3 0.518 0.250 -0.5 100 -1 52 49.3 50.0 0.7
aug-cc-pVTZ 7.8·10�3 -5.8·10�3 0.511 0.245 0 51 -1 51 49.8 49.5 0.6

MP2 ma-Def2TZVP 7.7·10�3 -4.5·10�3 0.321 0.100 68.1 31.8 0.2
aug-cc-pVTZ 8.2·10�3 -5.6·10�3 0.29 0.08 71.2 28.7 0.1
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Table 11.4: Results of the QTAIM partitioning, EOS, and EDF analyses for Na@calix[4]pyrrole. For a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP ma-Def2TZVP 5.9·10�3 -2.6·10�3 0.169 0.027 0 100 0 100 83.3 16.7 0.1
aug-cc-pVTZ 6.0·10�3 -2.6·10�3 0.167 0.026 0 100 0 100 83.5 16.4 0.1

B3LYP ma-Def2TZVP 5.3·10�3 -2.0·10�3 0.094 0.008 0 100 0 100 90.8 9.2 0.0
aug-cc-pVTZ 5.3·10�3 -2.0·10�3 0.086 0.007 0 100 0 100 91.5 8.5 0.0

M06-2X ma-Def2TZVP 5.7·10�3 -2.2·10�3 0.100 0.009 0 100 0 100 90.3 9.7 0.0
aug-cc-pVTZ 5.5·10�3 -1.8·10�3 0.062 0.004 0 100 0 100 94.0 6.0 0.0

MN15 ma-Def2TZVP no NNAs
aug-cc-pVTZ no NNAs

HF ma-Def2TZVP 5.8·10�3 -3.1·10�3 0.448 0.191 0 63 0 62 56.0 43.7 0.2
aug-cc-pVTZ 6.0·10�3 -3.4·10�3 0.484 0.224 0 55 0 55 52.4 47.3 0.2

MP2 ma-Def2TZVP 6.2·10�3 -3.0·10�3 0.202 0.041 79.8 20.2 0.0
aug-cc-pVTZ 6.4·10�3 -3.0·10�3 0.195 0.039 80.5 19.6 0.0
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11.3.3 TCNENa3 and TCNENa4(II)

Figure 11.4: Geometries of TCNENa3 (top) and TCNENa4(II) (bottom) optimized at the CAM-B3LYP/ma-
Def2TZVP level of theory. The NNA position is indicated with a red ball.

Results for TCNENa3 and TCNENa4(II) are compiled in Tables 11.5 and 11.6. These
chemical species are open-shell systems with the 2A and 3B3 electronic ground states,
respectively. Both TCNENa3 and TCNENa4(II) were recently classified as the molecu-
lar electrides based on the topological descriptions and reportedly large values of NLOPs.
However, the latter ones were presented only for TCNENa3 and only for the static first hy-
perpolarizability [427]. The first hyperpolarizability of TCNENa4(II) was not included in
the discussion, because it was zero due to the centrosymmetry of the system. For the sake
of completeness, using CAM-B3LYP and various basis sets, in our work we additionally
computed all static NLOPs of these two molecules (up to the second hyperpolarizability).
Both systems show remarkably large values of nonlinear �(0;0,0) and �(0;0,0,0) and
of the same magnitude as in other molecular electrides [414].

Similarly to TCNQNa2, TCNENa3 and TCNENa4(II) posses one and two Na-Na
pairs, respectively, and between each of the pairs, the NNACP is located (see Figure 11.4).
Due to these structural and topological similarities, the results of the QTAIM, EOS, and
EDF analyses on the occupation of the NNA basin are equivalent to those of TCNQNa2.
Therefore these two systems can also be considered borderline situations between zero-
and one-electron molecular electrides.
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Table 11.5: Results of the QTAIM partitioning, EOS, and EDF analyses for TCNENa3. For a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP ma-Def2TZVP 7.0·10�3 -4.4·10�3 0.204 0.040 0 100 0 68 79.8 20.2 0.0
aug-cc-pVTZ 7.2·10�3 -4.9·10�3 0.268 0.069 0 97 0 58 73.5 26.5 0.1

B3LYP ma-Def2TZVP 6.7·10�3 -4.1·10�3 0.162 0.025 0 100 0 74 84.0 16.0 0.0
aug-cc-pVTZ 6.9·10�3 -4.5·10�3 0.218 0.046 0 100 0 66 78.5 21.5 0.0

M06-2X ma-Def2TZVP 6.8·10�3 -4.0·10�3 0.211 0.040 0 100 0 67 79.3 20.6 0.2
aug-cc-pVTZ 7.1·10�3 -4.6·10�3 0.228 0.047 0 100 0 64 77.6 22.2 0.2

MN15 ma-Def2TZVP no NNAs
aug-cc-pVTZ found 5 NNAs and Poincare-Hopf not satisfied

HF ma-Def2TZVP 7.1·10�3 -5.2·10�3 0.438 0.187 0 64 -1 66 56.6 43.3 0.1
aug-cc-pVTZ 7.2·10�3 -5.4·10�3 0.495 0.238 0 52 -1 75 51.0 48.8 0.2

MP2 ma-Def2TZVP 7.0·10�3 -5.0·10�3 0.410 0.165 59.1 40.7 0.2
aug-cc-pVTZ 7.1·10�3 -5.3·10�3 0.464 0.211 53.8 46.0 0.2
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Table 11.6: Results of the QTAIM partitioning, EOS, and EDF analyses for TCNENa4(II). For the a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP ma-Def2TZVP 7.0·10�3 -4.3·10�3 0.202 0.040 0 100 0 68 80.0 20.0 0.0
aug-cc-pVTZ 7.2·10�3 -4.9·10�3 0.266 0.068 0 98 0 59 73.6 26.3 0.1

B3LYP ma-Def2TZVP 6.7·10�3 -4.0·10�3 0.159 0.024 0 100 0 74 84.3 15.7 0.0
aug-cc-pVTZ 6.9·10�3 -4.5·10�3 0.215 0.045 0 100 0 66 78.7 21.2 0.0

M06-2X ma-Def2TZVP 6.8·10�3 -4.0·10�3 0.211 0.041 0 100 0 67 79.2 20.6 0.2
aug-cc-pVTZ 7.1·10�3 -4.6·10�3 0.226 0.046 0 100 0 65 77.8 22.0 0.2

MN15 ma-Def2TZVP no NNAs
aug-cc-pVTZ no NNAs

HF ma-Def2TZVP 7.1·10�3 -5.2·10�3 0.439 0.188 0 63 -1 67 56.5 43.4 0.1
aug-cc-pVTZ 7.2·10�3 -5.4·10�3 0.495 0.239 0 52 -1 75 51.0 48.9 0.2

MP2 ma-Def2TZVP 7.0·10�3 -5.0·10�3 0.411 0.166 59.1 40.8 0.2
aug-cc-pVTZ 7.1·10�3 -5.2·10�3 0.465 0.211 53.8 46.0 0.2
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11.3.4 Mg2EP and Mg2C60

Figure 11.5: Geometries of Mg2EP (top) and Mg2C60 (bottom) optimized at the CAM-B3LYP/ma-
Def2TZVP level of theory. The NNA position is indicated with a red ball.

In contrast to previously discussed systems, Mg2EP and Mg2C60 do not contain al-
kaline metals. Instead, they hold a Mg2 motif which is held by an external structure.
Moreover, the electronic ground state of both systems is 1A1. These molecules were
classified as electrides by Chattaraj and co-workers [428, 429], and present a NNACP in
between Mg2 (see Figure 11.5). For both systems, all tested DFAs but MN15 yield similar
values of the topological descriptors. The average number of electrons in the NNA basin
is in the range 0.68 - 0.75, of which 29 - 32% are localized there. On the contrary, for
the densities obtained with MN15, NNNA is lower and in the range 0.50 - 0.55, of which
only 21 - 23% are localized. Again, HF yields NNA basins holding the largest number
of electrons (NNNA = 0.97 - 1.03) and are the most localized (42 - 45%). MP2 yields
results which are in between those of HF and DFAs. For all methods but MN15, the EOS
analysis assigns two different oxidation states, 0 for EOS[1] and -2 for EOS[2]. Due to
the singlet spin symmetry of the molecule, the EOS cannot assign an oxidation state of -1
to the NNA basin. For DFAs, the reliability indices of the assigned oxidation states lie in
the range 80 - 87% for EOS[1] and 56 - 61% for EOS[2]. In contrast, for HF the values
of RI are lower for EOS[1] (RI = 53 - 60%) but larger for EOS[2] (RI = 75 - 79%). In the
case of MN15, despite the NNACP being detected, the assigned oxidation state is zero.
The results of the EDF analysis show important differences with the previously discussed
molecular electrides. The probability of having exactly two electrons in the NNA basin
is not negligible: P2 is between 11 - 14% for DFAs, 21 - 24% for HF, and 13 - 20% for
MP2. On top of that, P0 and P1 have very similar values, except for HF, for which P1 is
almost twice as large as P0. The situation in which we have only one electron is the most
likely scenario if one has to choose among the three possibilities, although, no possibility
can be ruled out. Therefore, based on the EOS and complementary EDF results one can
conclude that Mg2EP and Mg2@C60 are at least one-electron molecular electrides.
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Table 11.7: Results of the QTAIM partitioning, EOS, and EDF analyses for Mg2EP. For a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP ma-Def2TZVP 3.2·10�2 -3.8·10�2 0.722 0.229 0 82 -2 59 42.1 44.7 12.8
aug-cc-pVTZ 3.3·10�2 -3.9·10�2 0.746 0.244 0 80 -2 60 40.6 45.3 13.6

B3LYP ma-Def2TZVP 3.2·10�2 -3.6·10�2 0.677 0.201 0 87 -2 56 44.9 43.4 11.3
aug-cc-pVTZ 3.2·10�2 -3.8·10�2 0.712 0.222 0 83 -2 58 42.7 44.4 12.4

M06-2X ma-Def2TZVP 3.1·10�2 -3.6·10�2 0.705 0.219 0 84 -2 58 43.1 44.3 12.2
aug-cc-pVTZ 3.1·10�2 -3.7·10�2 0.701 0.216 0 84 -2 58 43.4 44.1 12.1

MN15 ma-Def2TZVP 2.9·10�2 -3.3·10�2 0.517 0.116 0 100 0 54 55.9 37.1 6.7
aug-cc-pVTZ 3.0·10�2 -3.7·10�2 0.539 0.125 0 100 0 52 54.4 38.1 7.3

HF ma-Def2TZVP 3.4·10�2 -4.3·10�2 1.018 0.460 0 54 -2 79 25.8 48.8 24.3
aug-cc-pVTZ 3.4·10�2 -4.3·10�2 1.030 0.470 0 53 -2 79 25.3 48.7 24.8

MP2 ma-Def2TZVP 3.0·10�2 -3.5·10�2 0.835 0.332 34.8 46.9 18.3
aug-cc-pVTZ 3.1·10�2 -3.6·10�2 0.876 0.366 32.5 47.4 20.1
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Table 11.8: Results of the QTAIM partitioning, EOS, and EDF analyses for Mg2@C60. For a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI EOS[2] RI P0 P1 P2

CAM-B3LYP ma-Def2TZVP 4.0·10�2 -5.0·10�2 0.699 0.211 0 85 -2 58 43.8 43.9 11.9
aug-cc-pVTZ 4.0·10�2 -5.5·10�2 0.738 0.234 0 82 -2 61 41.4 44.9 13.1

B3LYP ma-Def2TZVP 3.9·10�2 -5.0·10�2 0.685 0.202 0 87 -2 57 44.8 43.4 11.4
aug-cc-pVTZ 4.0·10�2 -5.4·10�2 0.732 0.229 0 82 -2 60 41.9 44.7 12.9

M06-2X ma-Def2TZVP 3.7·10�2 -4.6·10�2 0.687 0.203 0 86 -2 58 44.7 43.5 11.4
aug-cc-pVTZ 3.8·10�2 -5.2·10�2 0.704 0.212 0 85 -2 59 43.7 43.9 12.0

MN15 ma-Def2TZVP 3.6·10�2 -4.3·10�2 0.491 0.104 0 100 0 51 58.1 35.8 6.0
aug-cc-pVTZ 3.7·10�2 -5.1·10�2 0.550 0.129 0 99 0 50 53.8 38.5 7.5

HF ma-Def2TZVP 4.2·10�2 -5.9·10�2 0.971 0.404 0 60 -2 75 28.6 48.3 21.9
aug-cc-pVTZ 4.2·10�2 -6.2·10�2 0.984 0.412 0 59 -2 76 28.0 48.3 22.3

MP2 ma-Def2TZVP 3.3·10�2 -3.7·10�2 0.691 0.215 44.0 42.9 13.1



11.3. RESULTS AND DISCUSSION 183

11.3.5 e@C60F60

Figure 11.6: Geometries of e@C60F60 optimized at the CAM-B3LYP/ma-Def2TZVP+DF level of theory.
The NNA position is indicated with a red ball.

The last molecular electride studied in this work, e@C60F60, has different character
compared to the previous systems. The total charge of this system is -1 (doublet electronic
ground-state 2Ag) and the excess anionic electron is captured and stabilized in the middle
of the fullerene cage (see Figure 11.6). This is the largest molecule included in this work,
and its size prevents the use of large basis sets. For that reason, to properly capture this
effect, one has to augment the basis set with a few DF functions placed in the middle
of the cage (see Section 11.2). The results are compiled in Table 11.9. Description of
the NNA basin is much more sensitive to the level of theory (and the amount of electron
delocalization) for this system than the others. Treating MP2 as the reference, B3LYP un-
derestimates the number of average electrons in the NNA basin and only a small fraction
of those is explicitly localized there. In contrast, HF significantly overestimates NNNA
and lNNA. The results obtained with CAM-B3LYP agree well with the MP2 values, and
predict NNNA of about 0.3, with about 30% of localization. Nevertheless, the EOS anal-
ysis shows a zero oxidation state for the NNA basin with large RI values. This is further
supported with the rather large values of the P0 probabilities of finding exactly zero elec-
trons in the NNA basin, which for MP2 and CAM-B3LYP span in the range 64 - 70%.
However, a probability of finding exactly one electron is non-negligible (P1 = 30 - 34%),
which suggests that this system may be considered as a low-electron-number molecular
electride.
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Table 11.9: Results of the QTAIM partitioning, EOS, and EDF analyses for e@C60F60. For a full description, see Table 11.1.

Method Basis r(rNNACP) —2
r(rNNACP) NNNA lNNA EOS[1] RI P0 P1 P2

CAM-B3LYP

6-31G+DF 3.99·10�3 -3.77·10�3 0.314 0.091 0 89 69.7 30.3 0.1
6-31G(d)+DF 3.94·10�3 -3.57·10�3 0.318 0.093 0 88 69.4 30.6 0.0
6-31+G+DF 2.85·10�3 -9.90·10�4 0.343 0.108 0 84 67.1 32.9 0.0

ma-Def2TZVP+DF 2.64·10�3 -6.52·10�4 0.354 0.114 0 83 66.0 33.8 0.2

B3LYP

6-31G+DF 3.26·10�3 -3.07·10�3 0.241 0.054 0 100 76.7 23.3 0.0
6-31G(d)+DF 3.24·10�3 -2.92·10�3 0.247 0.057 0 100 76.1 23.8 0.0
6-31+G+DF 2.35·10�3 -8.38·10�4 0.253 0.059 0 100 75.6 24.4 0.0

ma-Def2TZVP+DF 2.18·10�3 -5.76·10�4 0.268 0.065 0 99 74.4 25.6 0.0

HF

6-31G+DF 6.73·10�3 -7.52·10�3 0.506 0.236 0 52 51.2 48.6 0.2
6-31G(d)+DF 6.55·10�3 -7.12·10�3 0.504 0.234 0 53 51.6 48.4 0.1
6-31+G+DF 4.70·10�3 -2.54·10�3 0.569 0.296 -1 59 45.2 54.4 0.5

ma-Def2TZVP+DF 4.35·10�3 -1.70·10�3 0.594 0.319 -1 59 43.2 56.3 0.5
cc-pVDZ+DF 6.24·10�3 -6.58·10�3 0.483 0.213 0 57 53.8 46.2 0.1

MP2
6-31G+DF 4.05·10�3 -3.40·10�3 0.337 0.111 68.6 31.4 0.0

6-31G(d)+DF 3.57·10�3 -2.61·10�3 0.314 0.098 64.5 35.2 0.2
6-31+G+DF 2.51·10�3 -7.78·10�5 0.357 0.123 66.4 33.4 0.2
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11.4 Conclusions
A correct description of a molecular electride hinges on the electronic structure method
employed for the analysis. Electron (de)localization has a key importance in the descrip-
tion of the electrons in the NNA basins. In general, the number and the localization of
electrons in the NNA basins increase with the amount of the HF exchange included in the
method. B3LYP usually gives the lowest average electron numbers in the NNA basins,
the largest zero-electron probabilities, and the lowest oxidation states. This result is in
line with the large delocalization errors documented in conjugated and aromatic systems
[454–457]. M06-2X, a global hybrid functional with 54% of the exact exchange, and
CAM-B3LYP, a range-separated hybrid functional, do not suffer from so large delocal-
ization errors and often provide similar NNA electron numbers to MP2. CAM-B3LYP
seems to provide the closest agreement with the reference MP2 numbers. On the other
hand, HF, which in general overestimates the electron localization, provides the largest
electron numbers, localization indices, and most negative oxidation states in the NNA
basins. More strikingly, it seems that there exist DFAs which are completely inadequate
to study the topology of the molecular electrides. This is the case of MN15, which failed
to provide results in almost all studied systems, despite this functional yielding high-
quality results in benchmarks on the molecular properties. The basis set employed should
include sufficiently flexible functions in the atoms that are close to the NNA. Otherwise,
those centers may not be detectable.

Even with a properly suited electronic structure method, the question of how many
electrons are held in a given molecular electride cannot be straight forwardly answered.
By means of EOS analysis, for most of the electrides, one could not attribute the anionic
character to the NNA basin. Moreover, the obtained oxidation state (and the reliability
of this assignment) may depend on the choice of the fragmentation. With the use of
EDFs and corresponding probabilities, one can support or deny the assignment made
by EOS. On the other hand, if one solely took as a reference criterion the probability
given by the EDF of finding at least one electron in the NNA basin, one could not make
a clear-cut decision. Taking the analysis of all the results into account, in general one
can quantitatively indicate that one-electron electrides usually correspond to 1 - P0 >
0.5, NNNA  0.5 and lNNA  0.2, and the examples of those are TCNQLi2, Mg2EP, and
Mg2@C60. On the contrary, Li@calix[4]pyrrole, Na@calix[4]pyrrole, and e@C60F60
cannot be classified as systems having anionic electrons because the number electrons in
the NNA basins is too low. Lastly, the molecular electrides containing the Na2 motifs,
namely TCNQNa2, TCNENa3, and TCNENa4(II), seem to be the borderline cases having
between zero and one electron in the NNA basin.
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Chapter 12

Final Conclusions

In this Thesis, several significant aspects to achieve efficient computations of NLOPs and
vibrational properties were addressed. They are also of relevance for the development
of quantum methods that are accurate for all purposes, because the proper description of
the response properties, such as NLOPs, requires a very rigorous treatment of electron
correlation. The present work focused both on the wavefunction-based methods, as well
as the DFT methods.

In Chapter 7, we have described a novel decomposition of nonresonant electronic re-
sponses, the Partition of Optical Properties Into Orbital Contributions. It expresses the
response to electric fields in terms of the NOs of the unperturbed molecular systems.
PNOC is a convenient tool for studying the effects of the static and dynamic corre-
lation on NLOPs and assessing the performance of QC methods more deeply. For
example, using PNOC one can track the changes in the electric response due to the al-
teration of the chemical structure, such as the formation of radical structures. Moreover,
with the aid of PNOC we showed that conclusions drawn solely on the total values of
NLOPs may hide a compensation of errors in the description of the response. The latter is
especially noticeable for para-benzyne, an open-shell diradical system characterized by a
strong multireference character for which static correlation drives its molecular response.
We unveiled that MP2 provides a good description of the nature of the response for closed-
shell systems but it does not characterize well the response of diradical systems, even if
one adopts the unrestricted formalism. On the contrary, although the CASSCF method
always provides systematically underestimated values of NLOPs in both types of systems,
it correctly describes the orbital partition of the response. The smaller values of NLOPs
for CASSCF are due to an underestimation of dynamic correlation.

In Chapter 8, we assessed the performance of popular DFAs in the simulations of the
nuclear relaxation response of weakly-bonded complexes. As we showed, due to the high
anharmonic character of the intermolecular motion, the description of the vibrational re-
sponse of these systems is demanding for some DFAs. Among the tested functionals,
CAM-B3LYP yielded the smallest average errors in the properties, which were smaller
than 20%. On the contrary, for wB97X, M06, and M06-2X, we observed huge relative
errors in the NR contributions to the second hyperpolarizability, exceeding hundreds of
percent. Through a subsequent analysis, we unveiled that for these DFAs the largest errors
corresponded to the the anharmonic NR terms, which depend on high-order derivatives
of energy and electronic properties. We demonstrated that such high-order deriva-
tives are highly susceptible to spurious oscillations which introduce huge errors in
the overall properties. These errors are a consequence of regular instabilities due to in-
sufficient size of the grid used in the numerical integration of exchange-correlation com-
ponents of DFAs such as wB97X, M06, and M06-2X. Lastly, we proved that with a large
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enough integration grid, (750, 974), which is a few times larger than the SuperFineGrid
(the largest predefined grid provided by Gaussian16), wB97X can provide very accurate
values of the NR contributions to NLOPs, even more accurate than those of CAM-B3LYP.

In Chapter 9, we focused on the phenomenon of the grid-related spurious oscillations
in DFAs. We developed a unique tool to efficiently detect and quantify the errors
in the property derivatives coming from the spurious oscillations. With its aid, we
broadly inspected dozens of DFAs and assessed their overall grid stability by analyzing
the magnitude of errors in the derivatives with respect to the nuclear displacements of
the energy, dipole moment, and polarizability. First, we demonstrated that the (99, 590)
integration grid, which is an unpruned version of many predefined default grids in quan-
tum chemical packages, is too small to study high-order derivatives that appear in the
expressions of anharmonic vibrational properties. With this grid, one can already ob-
serve errors exceeding 100% for d2E/dx

2 and dazz/dx . For most DFAs, at least the
(250, 974) grid must be used to ensure some numerical stability. Second, we grouped the
DFAs according to the maximum order of derivatives with errors coming from the spuri-
ous oscillations smaller than 10%. Only a handful of DFAs, namely BH&H, LC-BLYP,
PBE, CAM-B3LYP, could safely reproduce high-order derivatives, such as d4E/dx

4 or
d3

µz/dx

3. Interestingly, dozens of DFAs do not correctly reproduce derivatives higher
than d2E/dx

2, dµz/dx , and dazz/dx due to the grid-related spurious oscillations. In the
most demanding systems, such as Ar2 and He2, some DFAs could not even yield numeri-
cally stable first-order derivatives. Last, in this work, we proved that the spurious oscil-
lations may affect not only the intermolecular motion of the noncovalently-bonded
complexes, but many kinds of vibrations of both organic and inorganic chemical
systems.

In Chapter 10, we tested different approaches to decrease the computational cost of
the algorithm to detect the spurious oscillations by reducing the cost of the electronic
structure computations of the property profiles. In particular, one can utilize a small basis
set for the analysis, or if one is solely interested in the errors arising from the exchange-
correlation functional, use trial densities. The latter approach allows to quantitatively
measure the errors coming from the grid-related spurious oscillations almost at no
cost. Moreover, in this Chapter, we analyzed the direct and indirect errors caused by the
spurious oscillations. The direct errors not only affect the electron correlation and ex-
change terms of the electronic energy but also the MOs evaluated in the SCF procedure.
Erroneous MOs then induce an indirect error to all the other terms of the electronic energy
and other molecular properties. Lastly, we accurately decomposed spurious oscillations
into exchange and correlation components. This allowed us to identify the origin of the
grid instability and spurious oscillations in particular types of the exchange and corre-
lation functionals. The exchange functionals based on B88, PBE, and B97 were found
to be the most grid robust. Among the correlation functionals, the LYP correlation was
the most stable one. Most notably, we unveiled that in the B97-based functionals (such as
wB97X), which are greatly affected by spurious oscillations, only the B97 correlation part
is responsible for huge errors. In the case of other grid-dependent standalone function-
als, such as M06 or M06-2X, both exchange and correlation components suffered from
considerable grid errors.

In Chapter 11, we evaluated the performance of several quantum chemical methods to
describe the topological features of the electronic structure of molecular electrides. For
nine molecular electrides, we aimed to establish the most likely number of electrons local-
ized in the non-nuclear attractor center. For each NNA basin, this was done by computing
its average electronic population, effective oxidation state (EOS), and corresponding val-
ues of electron distribution functions (EDFs). We observed that the final outcome may
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vary depending on the electronic structure method. For example, the electron localization
in the NNA basin increases with the amount of HF exchange included in the DFA, which
results in larger negative oxidation states. In contrast, upon introduction of dynamic cor-
relation, one observes the opposite effect. For example, MP2 yields lower probabilities of
finding electrons in the NNA basins and smaller negative oxidation states than in HF. For
most examples, the EOS approach did not attribute a negative oxidation state to the
NNA basin, which does not agree with the formal classification of these molecules as
electrides. The negative EOS of the NNA basins were found only for TCNQLi2, Mg2EP,
and Mg2C60, whereas for the rest of molecules EOS is zero. However, a deeper analysis
using EDFs revealed that the probabilities of finding at least one electron in the NNA basin
are large enough to consider most of the studied molecules at least as low-electron num-
ber electrides. Beside TCNQLi2, Mg2EP, and Mg2C60, which clearly contained at least
one localized electron in the NNA basin, in TCNQNa2, TCNENa3, and TCNENa4(II) the
MP2 probabilities of having at least one electron is larger than 30%. Therefore, it is jus-
tified to use the concept of high- and low-electron number electrides, rather than a binary
classification based on the oxidation state.

This Thesis proves that both wavefunction-based methods and DFAs may yield very
large errors in the calculation of nonlinear optical and vibrational properties. We be-
lieve that the presented findings on the source of errors and instabilities in the electronic
structure methods, in particular, DFAs, will have an impact on the development of more
efficient and well-rounded methods.
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A1 Supplementary Figures: Chapter 9
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Figure A1.1: Maximum order of derivatives that can be safely obtained (i.e., RRMSE 10%) with the (99,
590) grid. The maximum order of the derivatives computed is fourth for the energy, third for the dipole
moment, and second for the polarizability. Groups A, B, and C, correspond to hydrogen-, halogen-, and
dispersion-bonded complexes, respectively. Data for dm

azz/dx

m is not available for wB97X-V, wB97M-V,
and B97M-V, for which static polarizabilities are not implemented in QChem 5.1. The rungs maintain the
order obtained from the (250, 974) grid.
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Figure A1.2: Maximum order of derivatives that can be safely obtained (i.e., RRMSE 10%) with the (750,
974) grid. The maximum order of the derivatives computed is fourth for the energy, third for the dipole
moment, and second for the polarizability. Groups A, B, and C, correspond to hydrogen-, halogen-, and
dispersion-bonded complexes, respectively. Data for dm

azz/dx

m is not available for wB97X-V, wB97M-V,
and B97M-V, for which static polarizabilities are not implemented in QChem 5.1. The rungs maintain the
order obtained from the (250, 974) grid.
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A2 Supplementary Figures: Chapter 10
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Figure A2.3: Study of the basis set dependence of the grid-related errors in the dmE/dc1,z
m derivatives (left

panel, m= 1 - 4, stored column-wise), the dm
µz/dx

m derivatives (middle panel, m = 0 - 3, stored column-
wise), and the dm

azz/dx

m derivatives (right panel, m = 0 - 2, stored column-wise) of HCN · HF using
wB97X, M06-2X, and B3LYP combined with the (250, 974) integration grid. Colors reflect the values of
the errors in the property measured using RMSE (note the logarithmic scale). Raw data compiled in Tables
A3.1 to A3.6.
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Figure A2.4: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with SVWN5/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure A2.5: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with B3LYP/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure A2.6: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with BH&H/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure A2.7: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with MN15/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure A2.8: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with wB97X/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure A2.9: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with wB97M-V/6-31+G* and the
trial densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure A2.10: Spurious oscillations in d3E/dc1,z
3 and d4E/dc1,z

4 of the HCN · HF system, defined as DP = PDFA(99,590)�PDFA(1500,974), obtained with M06-2X/6-31+G* and the trial
densities (orange curves) and the SCF density (green curves, shown on each plot).
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Figure A2.11: Grid-dependent spurious oscillations in the third derivatives of energy components of Ar2:
total electronic (E), kinetic (T ), nuclei attraction (Ven), Coulomb repulsion (J), exact HF-like exchange
Ex,HF, exchange (Ex), and correlation (Ec), as well as their sums. Obtained with B3LYP/6-31+G* as the
difference between (99, 590) and (1500, 974) integration grids.
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Figure A2.12: Grid-dependent spurious oscillations in the third derivatives of energy components of Ar2:
total electronic (E), kinetic (T ), nuclei attraction (Ven), Coulomb repulsion (J), exact HF-like exchange
Ex,HF, exchange (Ex), and correlation (Ec), as well as their sums. Obtained with wB97M-V/6-31+G* as the
difference between (99, 590) and (1500, 974) integration grids.
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Figure A2.13: Grid-dependent spurious oscillations in the third derivatives of energy components of Ar2:
total electronic (E), kinetic (T ), nuclei attraction (Ven), Coulomb repulsion (J), exact HF-like exchange
Ex,HF, exchange (Ex), and correlation (Ec), as well as their sums. Obtained with M06-2X/6-31+G* as the
difference between (99, 590) and (1500, 974) integration grids.
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Figure A2.14: Grid-dependent spurious oscillations in the third derivatives of energy components of Ar2:
total electronic (E), kinetic (T ), nuclei attraction (Ven), Coulomb repulsion (J), exact HF-like exchange
Ex,HF, exchange (Ex), and correlation (Ec), as well as their sums. Obtained with MN15/6-31+G* as the
difference between (99, 590) and (1500, 974) integration grids.
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Figure A2.15: Spurious oscillations in the third derivatives of exchange (Ex), correlation (Ec) energy com-
ponents of Ar2, as well as their sum, obtained using B3LYP/6-31+G* and the (99, 590) and (1500, 974)
integration grids. Three different types of the input densities are employed: SCF — density obtained in
SCF using corresponding grids, SCF(1500, 974) — density obtained in SCF using the reference (1500,
974) grid, FMO — trial density constructed using FMOs obtained for one geometry (R=7.2 Bohr) and the
(250, 974) integration grid.
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Figure A2.16: Spurious oscillations in the third derivatives of exchange (Ex), correlation (Ec) energy com-
ponents of Ar2, as well as their sum, obtained using wB97M-V/6-31+G* and the (99, 590) and (1500, 974)
integration grids. Three different types of the input densities are employed: SCF — density obtained in
SCF using corresponding grids, SCF(1500, 974) — density obtained in SCF using the reference (1500,
974) grid, FMO — trial density constructed using FMOs obtained for one geometry (R=7.2 Bohr) and the
(250, 974) integration grid.
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Figure A2.17: Spurious oscillations in the third derivatives of exchange (Ex), correlation (Ec) energy com-
ponents of Ar2, as well as their sum, obtained using M06-2X/6-31+G* and the (99, 590) and (1500, 974)
integration grids. Three different types of the input densities are employed: SCF — density obtained in
SCF using corresponding grids, SCF(1500, 974) — density obtained in SCF using the reference (1500,
974) grid, FMO — trial density constructed using FMOs obtained for one geometry (R=7.2 Bohr) and the
(250, 974) integration grid.
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Figure A2.18: Spurious oscillations in the third derivatives of exchange (Ex), correlation (Ec) energy com-
ponents of Ar2, as well as their sum, obtained using MN15/6-31+G* and the (99, 590) and (1500, 974)
integration grids. Three different types of the input densities are employed: SCF — density obtained in
SCF using corresponding grids, SCF(1500, 974) — density obtained in SCF using the reference (1500,
974) grid, FMO — trial density constructed using FMOs obtained for one geometry (R=7.2 Bohr) and the
(250, 974) integration grid.
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A3 Supplementary Tables: Chapter 10



234Table A3.1: Grid errors for various property derivatives obtained with different basis sets and wB97X combined with the (99, 590) integration grid for the HCN · HF system. For each
column, the values in cells have to be multiplied with the exponent given in top.

dmE/dc1,z
m dm

µz/dc1,z
m dm

azz/dc1,z
m

1 2 3 4 0 1 2 3 0 1 2
Basis set [⇥10�6] [⇥10�5] [⇥10�4] [⇥10�3] [⇥10�5] [⇥10�4] [⇥10�3] [⇥10�2] [⇥10�3] [⇥10�2] [⇥10�1]
STO-3G 5.7 5.9 8.8 15.8 1.5 1.6 2.4 4.6 0.3 0.6 1.3
3-21G 4.5 4.0 4.5 5.2 2.9 3.1 3.2 3.6 2.1 2.3 2.9

3-21+G 4.3 4.1 4.6 5.6 2.7 3.0 3.2 3.7 2.0 2.3 3.1
3-21++G 4.4 4.1 4.7 5.6 2.7 3.0 3.2 3.7 2.0 2.3 3.1

6-31G 4.4 4.6 5.9 9.5 1.7 2.1 3.1 5.4 1.3 2.2 3.9
6-31G* 4.0 4.3 4.3 6.3 2.2 2.6 2.8 4.6 1.1 1.3 2.4
6-31G** 4.6 4.8 4.7 6.5 2.8 3.4 3.3 4.6 2.3 2.3 3.4
6-31+G 4.4 4.7 6.3 10.5 1.7 2.1 3.4 6.0 1.3 2.3 4.4

6-31++G 4.4 4.7 6.3 10.5 1.7 2.1 3.3 5.9 1.3 2.3 4.5
6-31+G* 4.0 4.1 4.2 6.3 2.2 2.4 2.8 4.9 1.0 1.3 2.6

6-31++G** 4.4 4.4 4.8 5.4 3.0 3.0 3.5 4.2 2.1 2.4 2.7
6-311G 4.2 3.9 4.9 7.9 2.2 2.3 2.9 4.8 1.8 2.6 4.7
6-311G* 3.7 3.8 4.1 6.7 2.3 2.6 2.7 4.4 1.7 2.1 3.9
6-311G** 3.9 4.1 4.0 6.0 2.5 2.8 3.0 4.5 1.9 1.9 2.9
6-311+G 3.9 4.1 4.7 8.5 2.1 2.4 2.7 5.2 1.5 2.1 4.5

6-311++G 3.9 4.1 4.7 8.5 2.1 2.4 2.7 5.2 1.5 2.1 4.5
6-311+G* 3.5 3.8 3.5 5.6 2.3 2.6 2.9 5.1 1.3 1.5 2.9

6-311++G** 3.9 4.0 4.2 5.2 2.4 2.7 3.2 4.4 1.8 2.0 2.6
Def2SVP 4.3 4.5 4.7 6.8 2.4 2.8 3.3 5.1 1.7 1.9 2.8

Def2TZVP 4.0 4.2 4.3 5.3 2.6 3.0 3.3 4.2 2.2 2.3 2.7
ma-Def2SVP 4.2 4.1 5.0 6.2 2.3 2.4 3.2 4.3 1.6 2.0 3.0

ma-Def2TZVP 4.0 4.1 4.3 5.1 2.7 3.0 3.3 4.1 2.2 2.4 2.8
cc-pVTZ 4.4 4.6 4.9 7.9 2.6 2.9 3.0 4.6 1.9 2.1 3.9
cc-pVDZ 4.2 4.4 5.2 6.0 3.0 3.3 3.9 4.5 2.6 3.1 3.5

aug-cc-pVDZ 3.8 3.8 4.2 6.1 2.2 2.2 2.8 4.1 1.7 2.0 3.6
aug-cc-pVTZ 4.0 4.1 5.2 5.6 2.9 3.0 3.8 3.9 2.3 3.0 3.1
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Table A3.2: Grid errors for various property derivatives obtained with different basis sets and M06-2X combined with the (99, 590) integration grid for the HCN · HF system. For each
column, the values in cells have to be multiplied with the exponent given in top.

dmE/dc1,z
m dm

µz/dc1,z
m dm

azz/dc1,z
m

1 2 3 4 0 1 2 3 0 1 2
Basis set [⇥10�6] [⇥10�5] [⇥10�4] [⇥10�3] [⇥10�5] [⇥10�4] [⇥10�3] [⇥10�2] [⇥10�3] [⇥10�2] [⇥10�1]
STO-3G 4.7 4.0 4.3 4.3 1.1 1.2 1.5 1.6 0.5 0.5 0.6
3-21G 1.9 2.0 2.8 4.4 1.7 1.5 1.4 1.4 1.4 1.1 1.2

3-21+G 2.2 1.9 2.6 4.1 1.7 1.5 1.5 1.5 1.5 1.3 1.3
3-21++G 2.1 1.9 2.6 4.1 1.7 1.5 1.5 1.5 1.5 1.3 1.3

6-31G 2.4 1.6 2.2 2.3 3.0 2.2 2.5 2.4 1.3 1.4 1.4
6-31G* 3.3 2.8 3.1 3.6 2.2 1.7 1.9 2.0 1.5 1.5 1.6
6-31G** 2.8 2.2 2.1 2.2 2.1 1.7 1.7 1.6 1.2 1.3 1.4
6-31+G 2.7 1.8 2.5 2.6 3.1 2.3 2.7 2.6 1.4 1.6 1.5

6-31++G 2.7 1.8 2.5 2.6 3.1 2.3 2.7 2.6 1.4 1.6 1.5
6-31+G* 3.9 3.6 3.7 4.3 2.2 1.7 1.8 2.0 1.7 1.6 1.8

6-31++G** 2.0 1.6 1.3 1.6 1.7 1.4 1.2 1.4 1.5 1.4 1.6
6-311G 1.4 1.3 1.8 1.8 2.8 2.4 2.6 2.5 1.8 1.7 1.7
6-311G* 2.3 2.1 2.3 2.4 2.4 2.1 2.2 2.2 1.9 1.7 1.8
6-311G** 2.2 2.0 1.9 2.0 1.8 1.8 1.7 1.8 1.5 1.5 1.7
6-311+G 2.3 2.2 2.5 2.6 2.5 2.3 2.5 2.5 1.9 1.8 1.9

6-311++G 2.3 2.2 2.5 2.6 2.5 2.3 2.5 2.5 1.9 1.8 1.9
6-311+G* 3.2 3.0 3.1 3.5 1.9 1.9 1.9 2.0 2.0 1.8 2.0

6-311++G** 1.7 1.7 1.5 1.7 1.4 1.6 1.4 1.6 1.7 1.5 1.8
Def2SVP 3.3 2.6 2.4 2.3 2.4 2.0 1.8 1.9 1.5 1.5 1.7

Def2TZVP 1.6 1.4 1.1 1.4 1.6 1.3 1.1 1.3 1.4 1.3 1.5
ma-Def2SVP 2.8 2.2 1.9 2.1 1.9 1.7 1.5 1.8 1.6 1.5 1.8

ma-Def2TZVP 1.5 1.3 0.9 1.4 1.5 1.3 1.0 1.3 1.4 1.3 1.5
cc-pVTZ 3.6 2.8 2.8 3.0 2.8 2.2 2.2 2.1 1.4 1.5 1.6
cc-pVDZ 1.2 1.0 0.7 1.2 0.9 1.1 0.9 1.2 1.2 1.2 1.4

aug-cc-pVDZ 1.7 1.4 1.3 1.8 2.1 1.6 1.4 1.6 1.9 1.8 1.9
aug-cc-pVTZ 0.9 0.8 0.7 1.3 0.7 0.9 0.8 1.0 1.0 1.1 1.1



236Table A3.3: Grid errors for various property derivatives obtained with different basis sets and B3LYP combined with the (99, 590) integration grid for the HCN · HF system. For each
column, the values in cells have to be multiplied with the exponent given in top.

dmE/dc1,z
m dm

µz/dc1,z
m dm

azz/dc1,z
m

1 2 3 4 0 1 2 3 0 1 2
Basis set [⇥10�7] [⇥10�7] [⇥10�6] [⇥10�5] [⇥10�7] [⇥10�6] [⇥10�5] [⇥10�4] [⇥10�6] [⇥10�5] [⇥10�4]
STO-3G 1.4 10.5 7.2 7.4 1.5 1.1 3.2 0.8 5.9 3.8 3.4
3-21G 1.6 9.4 8.5 6.0 3.2 1.6 1.0 1.0 6.5 5.6 2.7

3-21+G 1.6 9.4 8.5 6.1 3.0 1.6 1.0 1.0 8.1 6.1 3.2
3-21++G 1.6 9.4 8.5 6.1 3.0 1.6 1.0 1.0 7.5 6.1 3.3

6-31G 1.3 6.2 6.0 5.6 3.0 2.6 1.7 1.5 7.5 6.2 6.3
6-31G* 1.3 7.2 6.6 5.5 2.2 1.6 1.0 1.0 8.8 8.5 6.6
6-31G** 1.2 8.1 6.1 5.2 1.6 1.1 0.9 0.6 6.6 4.4 2.5
6-31+G 1.4 6.3 6.3 5.7 3.3 2.6 1.8 1.6 9.3 7.6 7.0

6-31++G 1.4 6.3 6.3 5.6 3.3 2.6 1.8 1.6 9.3 7.8 7.1
6-31+G* 1.4 7.6 6.5 5.5 2.2 1.4 0.9 1.0 10.9 10.3 8.1

6-31++G** 1.2 8.3 6.2 5.5 1.5 1.2 0.9 0.7 9.4 5.0 4.5
6-311G 0.8 5.7 3.3 3.4 3.7 2.8 1.8 1.7 8.6 9.7 6.5
6-311G* 3.5 5.8 2.9 3.0 3.4 2.4 1.5 1.5 10.8 10.1 7.2
6-311G** 0.8 6.6 3.5 3.5 2.3 1.7 1.2 1.0 10.0 5.1 4.0
6-311+G 0.8 5.9 3.2 3.2 3.5 2.6 1.7 1.6 11.2 11.0 8.8

6-311++G 0.8 5.9 3.2 3.2 3.5 2.6 1.7 1.6 11.2 11.0 8.8
6-311+G* 3.4 6.2 2.9 2.9 2.9 1.9 1.2 1.2 12.8 12.4 8.9

6-311++G** 0.8 6.9 3.8 3.7 1.9 1.6 1.0 0.9 10.6 6.7 6.3
Def2SVP 1.0 9.7 5.0 4.6 2.5 1.8 1.4 1.1 10.2 5.6 4.8

Def2TZVP 2.1 3.7 3.0 2.3 1.3 1.2 0.9 0.7 8.6 4.5 4.2
ma-Def2SVP 1.0 9.0 5.4 5.2 2.0 1.7 1.1 0.9 12.1 7.7 6.8

ma-Def2TZVP 2.1 3.8 3.0 2.4 1.2 1.2 0.8 0.6 8.8 4.9 4.7
cc-pVTZ 1.5 8.0 6.0 4.1 2.4 1.8 1.3 1.0 9.1 5.2 2.8
cc-pVDZ 1.2 8.2 5.8 5.2 1.2 1.0 0.8 0.5 9.6 3.9 3.6

aug-cc-pVDZ 1.4 7.9 5.7 4.5 2.4 1.8 1.0 0.8 15.7 10.7 9.2
aug-cc-pVTZ 3.1 9.1 6.0 5.3 0.6 0.7 0.7 0.5 43.2 37.1 84.8
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Table A3.4: Grid errors for various property derivatives obtained with different basis sets and wB97X combined with the (250, 974) integration grid for the HCN · HF system. For each
column, the values in cells have to be multiplied with the exponent given in top.

dmE/dc1,z
m dm

µz/dc1,z
m dm

azz/dc1,z
m

1 2 3 4 0 1 2 3 0 1 2
Basis set [⇥10�7] [⇥10�6] [⇥10�5] [⇥10�3] [⇥10�6] [⇥10�5] [⇥10�4] [⇥10�3] [⇥10�4] [⇥10�3] [⇥10�2]
STO-3G 3.9 6.8 15.3 4.6 1.3 2.2 5.2 14.7 0.8 1.5 4.5
3-21G 3.9 4.6 7.8 1.2 1.8 2.6 3.9 6.7 2.0 3.5 5.5

3-21+G 2.8 4.3 7.2 1.2 1.8 2.7 3.9 7.3 2.1 3.5 5.9
3-21++G 2.8 4.3 7.1 1.2 1.8 2.7 3.9 7.3 2.1 3.5 5.9

6-31G 3.2 5.3 12.0 3.0 2.2 3.9 7.6 19.1 2.2 5.0 12.9
6-31G* 3.0 4.6 8.6 1.6 1.7 2.7 4.6 10.3 1.8 3.7 7.6
6-31G** 2.3 3.7 5.6 1.1 1.5 2.2 3.4 5.7 1.8 2.7 5.6
6-31+G 3.2 5.6 13.3 3.5 2.2 4.1 8.4 22.6 2.4 5.7 15.2

6-31++G 3.2 5.6 13.2 3.5 2.1 4.1 8.3 22.6 2.4 5.6 15.1
6-31+G* 2.7 4.0 8.0 1.8 1.8 3.0 5.4 12.7 1.6 3.4 8.2

6-31++G** 2.1 3.2 4.9 0.8 10.7 2.5 3.6 6.6 1.3 2.1 4.1
6-311G 3.3 5.4 10.7 2.4 2.2 4.0 6.9 18.0 2.8 5.8 13.9
6-311G* 4.7 5.1 9.7 1.7 1.9 3.2 5.8 13.5 2.6 5.5 10.3
6-311G** 2.3 3.9 6.2 1.2 1.4 2.2 4.0 9.1 1.7 2.9 6.3
6-311+G 3.3 5.5 11.3 2.4 1.8 3.5 7.1 18.7 2.8 6.1 13.3

6-311++G 3.3 5.5 11.3 2.4 1.9 3.5 7.1 18.8 2.8 6.1 13.3
6-311+G* 4.2 4.5 8.9 1.8 1.9 3.3 5.9 13.2 2.1 4.6 10.2

6-311++G** 2.1 3.2 5.3 1.0 1.4 2.4 4.2 8.7 1.3 2.6 5.7
Def2SVP 2.4 4.0 6.6 1.4 1.5 2.5 4.8 11.2 1.6 3.0 6.6

Def2TZVP 1.9 2.8 4.3 0.7 1.2 1.9 3.0 5.6 1.3 2.2 3.5
ma-Def2SVP 2.2 3.3 6.5 1.4 1.4 2.4 4.3 9.5 1.3 3.0 7.3

ma-Def2TZVP 1.8 2.7 4.1 0.6 1.3 1.9 3.0 5.6 1.3 2.1 3.3
cc-pVTZ 2.7 4.6 8.0 1.8 1.7 2.5 4.4 9.4 2.2 4.1 9.8
cc-pVDZ 1.5 2.1 3.0 0.4 1.1 1.6 2.3 3.7 1.2 1.7 2.5

aug-cc-pVDZ 2.4 4.0 7.8 1.7 1.4 2.8 4.7 11.6 1.8 3.9 9.2
aug-cc-pVTZ 3.5 2.0 2.7 0.4 1.0 1.5 2.2 3.4 1.3 1.6 2.3
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each column, the values in cells have to be multiplied with the exponent given in top.

dmE/dc1,z
m dm

µz/dc1,z
m dm

azz/dc1,z
m

1 2 3 4 0 1 2 3 0 1 2
Basis set [⇥10�8] [⇥10�6] [⇥10�5] [⇥10�4] [⇥10�7] [⇥10�6] [⇥10�4] [⇥10�3] [⇥10�5] [⇥10�4] [⇥10�3]
STO-3G 7.3 1.0 1.6 3.0 2.6 3.1 0.4 0.5 1.4 1.7 2.1
3-21G 27.3 5.6 13.0 26.5 3.6 6.3 1.3 2.4 2.3 3.9 4.9

3-21+G 24.9 5.1 11.8 23.9 3.6 6.3 1.3 2.4 2.9 4.6 5.8
3-21++G 24.9 5.1 11.8 23.9 3.6 6.3 1.3 2.4 2.9 4.6 5.9

6-31G 9.5 1.7 3.0 6.4 5.2 7.2 1.0 1.5 5.5 6.7 13.0
6-31G* 6.8 1.5 2.8 6.6 3.8 5.6 0.8 1.3 3.4 5.1 6.6
6-31G** 9.1 1.8 3.4 7.2 3.0 4.0 0.6 0.9 3.3 5.3 6.8
6-31+G 9.4 1.7 2.9 6.1 5.8 7.8 1.1 1.5 5.8 7.0 11.0

6-31++G 9.3 1.7 2.9 6.1 6.0 7.8 1.1 1.5 5.8 7.1 11.1
6-31+G* 6.7 1.5 2.7 6.4 4.3 5.8 0.9 1.3 3.7 5.8 7.0

6-31++G** 8.5 1.7 3.2 7.0 3.3 4.7 0.7 1.1 3.8 5.1 7.4
6-311G 6.9 1.2 1.9 3.8 5.0 8.2 1.1 1.8 5.9 16.4 15.9
6-311G* 5.5 1.1 1.8 4.0 4.6 7.0 1.0 1.6 4.9 10.7 18.8
6-311G** 8.2 1.3 2.6 4.8 13.3 5.7 0.9 1.2 4.4 6.4 9.3
6-311+G 6.5 1.1 1.8 3.6 6.4 8.3 1.1 1.7 6.1 15.8 17.5

6-311++G 6.5 1.1 1.8 3.6 6.4 8.3 1.1 1.7 6.1 16.0 17.6
6-311+G* 5.5 1.0 1.7 3.9 6.2 6.5 1.0 1.5 4.5 9.7 24.5

6-311++G** 7.2 1.2 2.3 4.5 4.0 5.8 0.9 1.3 4.4 5.8 11.1
Def2SVP 16.9 1.1 1.8 2.8 4.5 6.0 0.9 1.2 4.3 6.5 9.3

Def2TZVP 8.1 1.6 3.2 6.8 2.6 3.9 0.6 0.9 3.1 4.1 6.0
ma-Def2SVP 18.7 1.1 1.6 2.7 4.3 6.3 1.0 1.5 4.7 6.2 12.1

ma-Def2TZVP 7.8 1.6 3.2 6.8 2.6 4.0 0.6 0.9 3.1 4.0 6.0
cc-pVTZ 14.2 2.7 5.3 11.0 4.4 6.1 0.9 1.4 4.7 7.4 14.0
cc-pVDZ 6.1 1.3 2.4 5.3 2.2 2.8 0.4 0.6 2.6 3.4 5.1

aug-cc-pVDZ 10.7 2.3 4.4 9.8 5.2 8.6 1.3 2.1 5.5 7.7 30.8
aug-cc-pVTZ 5.7 1.2 2.3 5.2 1.8 2.7 0.4 0.7 10.2 5.8 4.1
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Table A3.6: Grid errors for various property derivatives obtained with different basis sets and B3LYP combined with the (250, 974) integration grid for the HCN · HF system. For each
column, the values in cells have to be multiplied with the exponent given in top.

dmE/dc1,z
m dm

µz/dc1,z
m dm

azz/dc1,z
m

1 2 3 4 0 1 2 3 0 1 2
Basis set [⇥10�10] [⇥10�9] [⇥10�8] [⇥10�7] [⇥10�10] [⇥10�8] [⇥10�7] [⇥10�6] [⇥10�7] [⇥10�6] [⇥10�5]
STO-3G 2.1 6.9 7.0 7.9 8.7 1.0 275 .3 2.2 0.4 0.7 5.4
3-21G 6.0 11.9 23.2 22.0 9.1 1.1 2.4 2.8 0.7 1.1 1.7

3-21+G 5.2 15.9 21.8 21.1 10.5 1.2 2.1 2.9 0.7 1.2 1.7
3-21++G 5.3 15.7 21.7 21.1 8.5 1.2 2.1 2.9 0.7 1.2 1.7

6-31G 2.5 6.9 18.8 17.9 14.9 2.6 18. 5 5.9 1.3 1.8 2.9
6-31G* 2.7 6.8 104.0 16.2 9.6 1.4 17. 7 2.8 1.0 1.4 2.3
6-31G** 1.3 2.5 1.3 4.8 8.5 1.2 1.9 2.7 0.8 1.2 1.7
6-31+G 2.5 8.2 19.0 18.1 15.8 32.4 6.6 6.2 1.8 2.0 3.3

6-31++G 2.5 8.2 19.0 18.1 15.8 32.0 6.7 6.8 1.8 2.0 3.3
6-31+G* 4.4 9.3 13.4 20.9 22.5 1.5 2.2 3.0 1.0 1.5 2.2

6-31++G** 2.0 7.4 19.5 18.6 7.4 1.1 1.5 2.3 0.8 1.1 1.7
6-311G 5.7 1.6 3.4 10.6 14.5 28.9 14. 3 5.4 1.4 72.3 8.7
6-311G* 1.4 2.4 2.2 6.6 12.1 1.9 2.8 4.6 1.3 2.2 3.5
6-311G** 0.9 66.8 1.1 5.3 8.4 1.4 1.9 3.1 1.2 1.4 2.7
6-311+G 1.0 1.6 4.0 8.2 14.2 1.8 6.7 4.5 1.5 2.6 3.9

6-311++G 1.0 1.6 4.1 8.2 14.6 1.8 6.6 4.5 1.5 2.5 3.9
6-311+G* 1.3 2.3 2.6 6.7 10.9 1.7 2.6 4.0 1.2 19.3 4.9

6-311++G** 0.9 51.4 1.5 5.9 8.5 1.5 1.8 3.5 1.1 1.3 5.1
Def2SVP 12.7 237.6 28.6 29.5 9.7 1.6 15. 1 3.3 1.0 1.5 2.7

Def2TZVP 0.9 1.9 3.4 9.6 6.1 1.2 4.9 2.1 1.0 0.9 1.8
ma-Def2SVP 12.0 8.5 27.4 28.7 10.4 1.6 2.4 4.1 0.9 1.3 2.2

ma-Def2TZVP 0.9 2.1 3.2 9.2 6.0 1.0 1.3 1.9 1.0 0.9 1.6
cc-pVTZ 3.2 3.3 5.6 8.2 11.2 1.8 3.7 3.7 1.1 1.7 2.9
cc-pVDZ 1.1 2.0 3.1 14.9 4.2 23.6 7.6 1.8 0.5 0.8 1.3

aug-cc-pVDZ 4.4 6.7 10.2 18.3 29.1 1.8 3.0 4.8 6.9 2.7 3.1
aug-cc-pVTZ 0.7 0.6 1.8 16.9 185.4 7.5 7.9 14.6 173.0 176.7 314.5
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Table A3.7: Part 1) Ratios between the RMSE values of Ex and Ec for some DFAs combined with the (99, 590) grid. The numbers correspond to the averages of ratios for the d3E/dx

3

and d4E/dx

4 derivatives, computed separately for each chemical system. The second and third columns show the names of the (meta-)GGAs exchange and correlation functionals
included in a given DFA (information not shown for the standalone functionals, for which the exchange and correlation parts are not meant to be used separately).

DFA EDFA
x EDFA

c HCN · HF HCN · HCl OC · HF N2 · HF HCN · BrF Ar2 He2
SVWN5 S VWN5 8.1 7.0 8.4 9.6 19.3 11.7 7.3
SPW92 S PW92 8.3 5.7 7.9 9.3 19.4 11.8 7.4
BH&H S LYP 1.4 2.0 0.9 2.2 7.8 7.1 2.2

BLYP B88 LYP 14.0 27.5 6.9 19.2 11.8 20.9 72.1
B1LYP B88 LYP 11.1 21.8 6.1 8.2 8.1 16.1 53.8
B3LYP B88 LYP 14.7 21.3 8.0 8.6 9.5 15.1 54.7

BH&HLYP B88 LYP 7.7 16.4 5.0 6.5 5.8 11.0 35.9
LC-BLYP B88 LYP 6.6 8.3 3.2 7.2 10.4 10.8 2.8

CAM-B3LYP B88 LYP 12.1 18.8 6.7 7.0 9.1 12.0 27.5

PBE PBE PBE 2.2 3.3 1.6 3.6 8.9 1.1 0.9
PBE0 PBE PBE 1.6 2.0 1.3 1.7 9.1 0.8 0.7

PBE50 PBE PBE 1.1 1.2 0.8 0.8 8.7 0.5 0.4
LC-wPBE PBE PBE 2.1 1.3 1.7 1.1 14.3 0.6 0.1

TPSS TPSS TPSS 2.7 9.1 2.2 5.5 19.1 0.8 1.3
RevTPSS RevTPSS RevTPSS 3.8 9.5 3.8 5.9 16.7 1.0 1.1

TPSSh TPSS TPSS 2.7 8.0 2.2 4.4 16.9 0.8 1.1

B97 1.4·10�2 2.1·10�3 2.1·10�2 4.6·10�3 2.3·10�1 4.7·10�2 2.2·10�1

B97-D 3.3·10�2 4.8·10�3 4.7·10�2 3.2·10�2 3.8·10�1 1.8·10�1 3.9·10�1

wB97 1.5·10�2 3.2·10�3 1.2·10�2 4.7·10�3 9.9·10�2 3.3·10�2 3.3·10�2

wB97X 1.4·10�2 2.4·10�3 1.1·10�2 4.5·10�3 5.0·10�2 3.5·10�2 8.7·10�2

wB97X-D 6.7·10�3 1.2·10�3 5.8·10�3 1.9·10�3 2.8·10�2 2.4·10�2 1.4·10�1

wB97X-D3 1.0·10�2 1.8·10�3 8.7·10�3 3.1·10�3 4.2·10�2 3.1·10�2 1.1·10�1

wB97M-V 2.3·10�1 3.0·10�2 1.0·10�1 6.2·10�2 7.0·10�1 2.2·10�1 1.8·10�2

wB97X-V 2.3·10�1 2.9·10�2 4.2·10�1 5.2·10�2 5.9 2.8·10�1 7.8·10�2

B97M-V 2.2·10�1 1.6·10�1 3.6·10�1 4.0·10�1 2.7 2.0 6.8·10�1
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Table A3.8: Part 2) Ratios between the RMSE values of Ex and Ec for some DFAs combined with the (99, 590) grid. The numbers correspond to the averages of ratios for the d3E/dx

3

and d4E/dx

4 derivatives, computed separately for each chemical system. The second and third columns show the names of the (meta-)GGAs exchange and correlation functionals
included in a given DFA (information not shown for the standalone functionals, for which the exchange and correlation parts are not meant to be used separately).

DFA EDFA
x EDFA

c HCN · HF HCN · HCl OC · HF N2 · HF HCN · BrF Ar2 He2
B1PW91 B88 PW91 1.5 1.2 0.7 0.4 6.9 0.9 0.6

PW91 PW91 PW91 4.1 5.7 3.1 6.4 13.8 1.9 1.0
mPW91 mPW91 mPW91 4.5 6.4 3.0 4.9 16.2 1.9 0.9

VSXC 0.4 0.1 0.3 4.2·10�2 0.8 0.1 0.6
SCAN 2.6 4.2 3.0 3.3 2.5 2.9 5.4

SCAN0 2.0 3.4 2.2 2.5 3.5 2.2 4.1

M06 0.5 0.1 0.7 0.6 0.6 0.1 0.0
M06-L 0.3 0.1 0.6 0.3 1.5 0.3 0.1

M06-HF 1.1 0.2 1.5 0.4 0.5 0.5 0.0
M06-2X 0.6 0.2 1.2 0.5 0.5 0.5 0.2

M11 3.5 2.2 4.0 2.7 2.4 1.2 0.0
M11-L 3.6 3.5 2.8 2.2 1.6 1.1 1.0

SOGGA11 9.4·10�2 1.2·10�1 1.5·10�1 4.3·10�2 3.9·10�1 7.0·10�1 2.0
SOGGA11-X 1.1·10�1 1.1·10�1 7.4·10�2 5.2·10�2 1.8 1.3·10�1 4.3·10�1

N12 1.4·10�2 3.1·10�3 1.6·10�2 6.6·10�3 1.4·10�1 9.8·10�2 4.6·10�1

N12-SX 5.8·10�2 1.9·10�2 5.8·10�2 7.0·10�2 1.2 1.0·10�1 5.2·10�1

MN12-L 1.9 1.4 2.9 1.0 6.2 0.6 0.6
MN12-SX 1.5 0.9 1.5 0.7 5.0 1.7 4.8

MN15 0.6 0.7 0.5 0.7 4.9 0.5 0.3
MN15-L 0.9 1.1 0.6 0.3 5.5 0.2 0.2
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Table A3.9: Considered families of DFAs, which are used for summary presented in Figure .

Family DFAs
BHH BHH
LSDA SVWN5, SPW92
BLYP BLYP, B1LYP, B3LYP, BH&HLYP, LC-BLYP, CAM-B3LYP
PBE PBE, PBE0, PBE50, LC-wPBE
TPSS TPSS, RevTPSS, TPSSh
PW91 PW91, mPW91
M11 M11, M11-L

MN12-L MN12-L
MN12-SX MN12-SX

B97 B97, B97-D, wB97, wB97X, wB97X-D, wB97X-D3
B97-V wB97X-V, wB97M-V, B97M-V
SCAN SCAN, SCAN0
M06 M06, M06-L, M06-2X, M06-HF

VSXC VSXC
MN15 MN15, MN15-L

SOGGA11 SOGGA11, SOGGA11-X
N12 N12, N12-SX
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A4 Supplementary Examples: Spurious Oscillations in
Intramolecular Normal Modes

A4.1 Butadiene (Q2 and Q3 modes)

Figure A4.19: Graphical representation of the Q2 (Bu, left) and Q3 (Ag, right) normal modes of butadiene.
Obtained at the M06-2X/aug-cc-pVDZ level of theory.

One can expect similar problems related to the spurious oscillations as in the allyl anion.
For this molecular example, we actually studied two different modes, Q2 (belonging to
the Bu irreducible representation) and Q3 (belonging to the Ag irreducible representation),
which are depicted in Figure A4.19. Both of them have a similar pattern of motion of the
H-H pairs in the Q2 mode of the allyl anion, and they are also very well represented by
the harmonic approximation (see Table A4.10).

Again, spurious oscillations are noticeable mostly for the (99, 590) grid. Starting
from the derivatives with respect to the Q2 mode, the oscillations can be observed both
for d4E/dQ4

2 and d3
µy/dQ3

2 (see Figure A4.20). However, the actual values of RRMSE
are quite low for d4E/dQ4

2 (below 10%), but already substantial for d3
µy/dQ3

2 — 18.8%
for wB97X and 45.1% for M06-2X. In the case of the derivatives with respect to the Q3
mode, errors in d4E/dQ4

3 are much larger than in d4E/dQ4
2, namely 14.4% for wB97X

and 48.3% for M06-2X. For the Q3 mode, dipole derivatives were not analyzed since all
their components are zero by the symmetry constraint (Q3 belongs to the Ag irreducible
representation).
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Table A4.10: Vibrational properties of the Q2 (top panel) and Q3 (bottom panel) normal modes of butadiene
obtained with some selected methods: whar and wanh — harmonic and anharmonic vibrational frequencies,
IRhar and IRanh — harmonic and anharmonic IR intensities, RAhar and RAanh — harmonic and anharmonic
Raman intensities. DFA computations utilized the (250, 974) integration grid.

Q2 (Bu) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 319 323 4.028 4.041 0.000 0.000
wB97X 300 2.979
M06-2X 299 2.878

Q3 (Ag) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 548 547 0.000 0.000 0.368 0.379
wB97X 520 0.000
M06-2X 517 0.000

Table A4.11: Values of RRMSE (in percentages) for some property derivatives with respect to the Q2 and
Q3 normal modes of allyl anion, obtained for some DFAs and integration grids.

Method Grid d3E/dQ3
2 d4E/dQ4

2 d3
µy/dQ3

2 d3E/dQ3
3 d4E/dQ4

3

wB97X
(99, 590) 1.4 3.8 18.8 2.4 14.4

(250, 974) 0.1 0.3 2.1 0.0 0.7
(750, 974) 0.1 0.3 1.2 0.0 0.5

M06-6X
(99, 590) 6.5 16.0 45.1 6.5 48.3

(250, 974) 0.1 0.4 13.5 0.1 8.2
(750, 974) 0.1 0.4 10.9 0.1 8.1
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Figure A4.20: Spurious oscillations in d4E/dQ4
2 (left column) and d3

µy/dQ3
2 (right column) for the dis-

placements along the Q2 normal coordinate of butadiene. Obtained with wB97X (top row) and M06-2X
(bottom row).

Figure A4.21: Spurious oscillations in d4E/dQ4
3 for the displacements along the Q3 normal coordinate of

butadiene. Obtained with wB97X (top row) and M06-2X (bottom row).
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A4.2 Cyclobutadiene (Q4 mode)

Figure A4.22: Graphical representation of the Q4 (B2u) normal mode of cyclobutadiene. Obtained at the
M06-2X/aug-cc-pVDZ level of theory.

We also investigated the cyclic version of the butadiene, namely cyclobutadiene. It is
also more a rigid molecule and the normal mode of our interest, Q4, is characterized with
twice larger vibrational frequencies as the Q2 and Q3 modes of butadiene. The Q4 mode
is depicted in Figure A4.22 and the basic quantities related to the IR and Raman spectrum
are compiled in Table A4.12.

Despite Q4 being quite a rigid motion, it is also susceptible to give spurious oscil-
lations in the computations of the high-order derivatives (see Figure A4.23). For M06-
2X(99, 590), one observes oscillations across the whole curve of d4E/dQ4

4. However, the
corresponding RRMSE value of 6.3% suggests a low and acceptable error. This is due to
the fact that it is measured within the selected displacement ranges {⇠0}, the oscillations
themselves are not that big, but dramatically enhance for larger displacements from the
optimized geometry. In contrast, in the curve of d3

µy/dQ3
4, the oscillations are much more

prominent even for the optimized geometry, with RRMSE exceeding 20%. In the case of
wB97X, one notices the oscillations for all grids tested. In particular, for d4E/dQ4

4 ob-
tained with the (99, 590), (250, 974), and (750, 974) grids the RRMSE are 18.1%, 11.8%,
and 11.8%, respectively. For d3

µy/dQ3
4, the corresponding errors are approximately twice

as large. Interestingly, the grid-errors for the (250, 974) and (750, 974) grids are almost
identical, despite the latter grid being three times larger. One can expect that for this stud-
ied motion along the Q4 normal mode of cyclobutadiene, the size of the angular Lebedev
grid is also important. Unfortunately, the 974-point Lebedev grid is already the largest
Lebedev grid available in Gaussian, and one cannot further test this hypothesis. However,
thanks to our algorithm for the detection and quantification of spurious oscillations, this
problem could be identified and quantified, without the need of calculations employing a
larger angular grid. Effect of the importance of the angular grid is further discussed for
the H2O2 and H2S2 examples in the following sections.
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Table A4.12: Vibrational properties of the Q4 normal mode of cyclobutadiene obtained with some selected
methods: whar and wanh — harmonic and anharmonic vibrational frequencies, IRhar and IRanh — harmonic
and anharmonic IR intensities, RAhar and RAanh — harmonic and anharmonic Raman intensities. DFA
computations utilized the (250, 974) integration grid.

Q4 (B2u) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 804 790 15.557 15.281 0.000 0.000
wB97X 764 12.255
M06-2X 749 10.299

Table A4.13: Values of RRMSE (in percentages) for the selected property derivatives with respect to the
Q4 normal mode of cyclobutadiene, obtained for some DFAs and integration grids.

Method Grid d3E/dQ3
4 d4E/dQ4

4 d2
µy/dQ2

4 d3
µy/dQ3

4

wB97X
(99, 590) 26.9 18.1 46.1 41.2

(250, 974) 6.2 11.8 19.4 20.3
(750, 974) 6.1 11.8 19.4 20.3

M06-6X
(99, 590) 3.6 6.3 21.8 20.6

(250, 974) 1.5 3.9 1.5 1.5
(750, 974) 1.5 3.6 1.5 1.6

Figure A4.23: Spurious oscillations in d4E/dQ4
4 (left column) and d3

µy/dQ3
4 (right column) for the dis-

placements along the Q4 normal coordinate of cyclobutadiene. Obtained with wB97X (top row) and M06-
2X (bottom row).
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A4.3 Benzene (Q4 mode)

Figure A4.24: Graphical representation of the Q4 (E2g) normal mode of benzene. Obtained at the M06-
2X/aug-cc-pVDZ level of theory.

We investigated the Q4 mode, one of the low-frequency degenerated E2g modes (see de-
piction in Figure A4.24), which resembles the motion found in the Q4 mode of cyclobuta-
diene. This Q4 is also quite rigid and well described within the harmonic approximation
(see Table A4.14).

The spurious oscillations are especially observable for d4E/dQ4
4 obtained with the

wB97X (see Figure A4.25). For the smallest grid tested, namely (99, 590), RRMSE
exceeds 70%, whereas for (250, 974) is above 14%. Moreover, one can observe that the
oscillations have an amplitude few times larger outside the studied {⇠0} displacement
range, and, therefore, for such geometrically distorted system one would observe even
larger errors. In this test, the M06-2X functional showed a bit larger grid-stability than
wB97X.

Table A4.14: Vibrational properties of the Q4 normal mode of benzene obtained with some methods: whar
and wanh — harmonic and anharmonic vibrational frequencies, IRhar and IRanh — harmonic and anharmonic
IR intensities, RAhar and RAanh — harmonic and anharmonic Raman intensities. DFA computations utilized
the (250, 974) integration grid.

Q4 (E2g) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 659 655 0.000 0.000 0.083 0.075
wB97X 620 0.000
M06-2X 613 0.000
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Table A4.15: Values of RRMSE (in percentages) for some property derivatives with respect to the Q4
normal mode of benzene, obtained for some DFAs and integration grids.

Method Grid d3E/dQ3
4 d4E/dQ4

4

wB97X
(99, 590) 43.1 70.8

(250, 974) 5.2 14.4
(750, 974) 0.0 6.4

M06-6X
(99, 590) 16.1 28.1

(250, 974) 2.1 2.9
(750, 974) 2.2 2.4

Figure A4.25: Spurious oscillations in d4E/dQ4
4 for the displacements along the Q4 normal coordinate of

benzene. Obtained with wB97X (top row) and M06-2X (bottom row).
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A4.4 Naphthalene (Q3 mode)

Figure A4.26: Graphical representation of the Q3 (B1u) normal mode of naphthalene. Obtained at M06-
2X/aug-cc-pVDZ level of theory.

Naphthalene is another well-known example of polyaromatic hydrocarbon. For this mo-
lecule, we studied the Q3 normal mode (see Figure A4.26), which shares more similarity
with the studied mode of allyl anion and butadiene, rather than the ones of cyclobutadiene
and benzene. Namely, it has the characteristic motion of the hydrogen atoms connected
the C1 and C8 atoms and characterizes with a smaller vibrational frequencies (of the
similar magnitude to the ones of allyl anion and butadiene). For this molecule, we studied
few more DFAs, namely B3LYP, BH&H, CAM-B3LYP, wB97X, M06-2X, and N12. The
first three DFAs proven to be quite grid robust in the extensive benchmark from Section
9.5, whereas the latter three turned out to be highly susceptible to the grid-related spurious
oscillations.

Indeed, in this test, B3LYP, BH&H, CAM-B3LYP turned out to be also very grid sta-
ble even in the computations of d4E/dQ4

3 (see Figure A4.27 and Table A4.17). In contrast,
wB97X, M06-2X, and N12 suffer from huge grid-oscillations (see Figure A4.27) and the
resulting values of d4E/dQ4

3 are greatly affected by the errors. All three functionals suffer
for large errors already for d3E/dQ3

3. Moreover, this is the first example in this Section
for which the RRMSE is larger than 100% (for d4E/dQ4

3 computed with N12(99, 590)).
Very similar grid instability is found for wB97X combined with any of the tested grids.
Surprisingly, M06-2X seems to be the least affected from these three DFAs because for
larger grids the RRMSE values are drastically reduced.
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Table A4.16: Vibrational properties of the Q3 normal mode of naphthalene obtained with some methods:
whar and wanh — harmonic and anharmonic vibrational frequencies, IRhar and IRanh — harmonic and anhar-
monic IR intensities, RAhar and RAanh — harmonic and anharmonic Raman intensities. DFA computations
utilized the (250, 974) integration grid.

Q3 (B1u) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 391 373 1.979 2.086 0.000 0.000
B3LYP 372 1.559
BH&H 380 1.584

CAM-B3LYP 376 1.601
wB97X 371 1.532
M06-2X 370 1.424

N12 368 1.435

Table A4.17: Values of RRMSE (in percentages) for some property derivatives with respect to the Q3
normal mode of naphthalene, obtained for some DFAs and integration grids.

Method Grid d3E/dQ3
3 d4E/dQ4

3

B3LYP
(99, 590) 0.7 1.3

(250, 974) 0.0 0.1
(750, 974) 0.0 0.1

BH&H
(99, 590) 6.1 2.2

(250, 974) 0.1 0.2
(750, 974) 0.1 0.2

CAM-B3LYP
(99, 590) 1.1 1.0

(250, 974) 0.1 0.2
(750, 974) 0.1 0.2

wB97X
(99, 590) 65.1 97.9

(250, 974) 15.5 42.4
(750, 974) 8.5 35.0

M06-6X
(99, 590) 72.9 32.9

(250, 974) 0.5 0.2
(750, 974) 0.1 0.1

N12
(99, 590) 54.7 102.0

(250, 974) 26.6 93.2
(750, 974) 21.5 74.3
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Figure A4.27: Spurious oscillations in d4E/dQ4
3 for the displacements along the Q3 normal coordinate of

naphthalene. Left column shows the results for B3LYP, BH&H, and CAM-B3LYP, and right column for
wB97X, M06-2X, and N12.
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A4.5 H2O2 (Q1 mode)

Figure A4.28: Graphical representation of the Q1 (A) normal mode of H2O2. Obtained at M06-2X/aug-cc-
pVDZ level of theory.

The results for H2O2 are compiled in Tables A4.19 and A4.20 and the oscillations are
depicted in Figures A4.29 and A4.30, In H2O2 one can observe spurious oscillations in
the curves of the highest derivative, namely d4E/dQ4

1, but the final RRMSE values are
not that large. The values of RRMSE are below 15% even for the (99, 590) grid, except
for M06-2X and MN15-L, for which they exceed 51% and 19%, respectively. In the case
of the latter functionals, relative errors of same magnitude are also found for d3E/dQ3

1.
One can also notice that the errors depend almost solely on the size of the angular grid,
which was expected due to the character of displacements. For almost all properties and
DFAs, the RRMSE values for the (250, 974) and (750, 974) are almost equal, despite the
latter grid being three times more dense in the radial part than the former.

Table A4.18: Vibrational properties of the Q1 normal mode of H2O2 obtained with some methods: whar and
wanh — harmonic and anharmonic vibrational frequencies, IRhar and IRanh — harmonic and anharmonic IR
intensities, RAhar and RAanh — harmonic and anharmonic Raman intensities. DFA computations utilized
the (250, 974) integration grid.

Q1 (A) mode
Method whar

⇥ 1
cm
⇤

wanh
⇥ 1

cm
⇤

IRhar
⇥ km

mol
⇤

IRanh
⇥ km

mol
⇤

RAhar
⇥

Å6⇤ RAanh
⇥

Å6⇤

HF 412 344 191.151 193.166 0.053 0.063
B3LYP 374 165.073 0.055

CAM-B3LYP 383 172.425 0.051
BH&H 416 180.792 0.047

LC-BLYP 394 186.539 0.047
PBE 377 148.887 0.049

PBE0 398 161.896 0.050
TPSSh 379 157.529 0.056
wB97X 395 166.621 0.043

wB97XD 398 164.932 0.042
M06-2X 392 171.213 0.062

N12 372 172.413 0.047
MN15 380 173.555 0.062

MN15-L 392 151.094 0.058
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Table A4.19: Values of RRMSE (in percentages) for some property derivatives with respect to the Q1
normal mode of H2O2, obtained for some DFAs and integration grids.

Method Grid d2E/dQ2
1 d3E/dQ3

1 d4E/dQ4
1

B3LYP

(99, 590) 0.1 0.5 0.4
(250, 974) 0.1 1.0 1.1
(750, 974) 0.1 1.0 1.1

(750, 3074) 0.0 0.0 0.0
(750, 5294) 0.0 0.0 0.0

CAM-B3LYP

(99, 590) 0.1 0.5 0.3
(250, 974) 0.1 0.9 0.9
(750, 974) 0.1 0.9 0.9

(750, 3074) 0.0 0.0 0.0
(750, 5294) 0.0 0.0 0.0

BH&H

(99, 590) 0.1 0.8 0.9
(250, 974) 0.0 0.1 0.0
(750, 974) 0.0 0.1 0.1

(750, 3074) 0.0 0.0 0.0
(750, 5294) 0.0 0.0 0.0

LC-BLYP

(99, 590) 0.1 0.2 0.4
(250, 974) 0.1 0.7 0.6
(750, 974) 0.1 0.7 0.6

(750, 3074) 0.0 0.0 0.0
(750, 5294) 0.0 0.0 0.0

PBE

(99, 590) 0.2 3.1 3.2
(250, 974) 0.2 2.2 2.8
(750, 974) 0.2 2.2 2.8

(750, 3074) 0.0 0.1 0.1
(750, 5294) 0.0 0.0 0.1

PBE0

(99, 590) 0.3 2.6 2.5
(250, 974) 0.2 1.7 2.2
(750, 974) 0.2 1.7 2.2

(750, 3074) 0.0 0.1 0.2
(750, 5294) 0.0 0.0 0.1

TPSSh

(99, 590) 0.2 4.4 6.0
(250, 974) 0.2 1.5 1.6
(750, 974) 0.2 1.5 1.6

(750, 3074) 0.0 0.3 0.8
(750, 5294) 0.0 0.0 0.1
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Table A4.20: Values of RRMSE (in percentages) for some property derivatives with respect to the Q1
normal mode of H2O2, obtained for some DFAs and integration grids.

Method Grid d2E/dQ2
1 d3E/dQ3

1 d4E/dQ4
1

wB97X

(99, 590) 1.3 9.4 10.1
(250, 974) 0.2 2.7 3.5
(750, 974) 0.2 2.7 3.5

(750, 3074) 0.0 0.6 1.6
(750, 5294) 0.0 0.0 0.1

wB97XD

(99, 590) 1.7 12.2 13.9
(250, 974) 0.3 3.5 4.8
(750, 974) 0.3 3.5 4.8

(750, 3074) 0.1 0.8 2.1
(750, 5294) 0.0 0.0 0.2

M06-2X

(99, 590) 5.6 65.4 51.0
(250, 974) 3.5 13.9 34.4
(750, 974) 3.5 13.8 34.1

(750, 3074) 0.2 2.9 6.7
(750, 5294) 0.0 0.1 0.6

N12

(99, 590) 0.8 6.0 13.6
(250, 974) 0.4 3.4 5.3
(750, 974) 0.4 3.4 5.3

(750, 3074) 0.1 1.7 4.1
(750, 5294) 0.0 0.1 0.3

MN15

(99, 590) 0.4 3.1 6.8
(250, 974) 0.1 0.9 1.5
(750, 974) 0.1 0.9 1.5

(750, 3074) 0.0 0.6 1.1
(750, 5294) 0.0 0.0 0.0

MN15-L

(99, 590) 1.7 16.1 16.3
(250, 974) 1.4 14.6 19.3
(750, 974) 1.4 14.6 19.3

(750, 3074) 0.0 0.5 0.8
(750, 5294) 0.0 0.0 0.2
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Figure A4.29: Spurious oscillations in d4E/dQ4
1 for the displacements along the Q1 normal coordinate of

H2O2. Left column shows the results for B3LYP, BH&H, PBE, and TPSSh, and right column for CAM-
B3LYP, LC-BLYP, and PBE0.
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Figure A4.30: Spurious oscillations in d4E/dQ4
1 for the displacements along the Q1 normal coordinate of

H2O2. Left column shows the results for wB97X, M06-2X, MN15, and right column for wB97XD, N12,
and MN15-L.
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