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Crossing the superfluid-supersolid transition of an elongated dipolar condensate
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We provide a theoretical characterization of the dynamical crossing of the superfluid-supersolid phase
transition for a dipolar condensate confined in an elongated trap, as observed in the recent experiment by
Biagioni et al. [G. Biagioni, N. Antolini, A. Alaña, M. Modugno, A. Fioretti, C. Gabbanini, L. Tanzi, and
G. Modugno, Phys. Rev. X 12, 021019 (2022)]. By means of the extended Gross-Pitaevskii theory, which
includes the Lee-Huang-Yang quantum fluctuation correction, we first analyze the ground-state configurations
of the system as a function of the interparticle scattering length, for both trap configurations employed in the
experiment. Then, we discuss the effects of the ramp velocity, by which the scattering length is tuned across the
transition, on the collective excitations of the system in both the superfluid and supersolid phases. We find that,
when the transverse confinement is sufficiently strong and the transition has a smooth (continuous) character, the
system essentially displays a (quasi) one-dimensional behavior, its excitation dynamics being dominated by the
axial breathing modes. Instead, for shallower transverse trapping, when the transition becomes discontinuous,
the collective excitations of the supersolid display a coupling with the transverse modes, signaling the onset of a
dimensional crossover.

DOI: 10.1103/PhysRevA.106.043313

I. INTRODUCTION

Supersolids (SSs) are an exotic phase of matter combining
superfluid (SF) properties (phase coherence and frictionless
flow [1,2]) with the translational symmetry breaking that
characterizes crystalline structures [3–6]. First predicted in
the 1950s [7,8], supersolids have gained the interest of the
scientific community as a consequence of their recent experi-
mental realizations in dipolar condensates [9–17] and in other
ultracold atomic systems [18–20]. In particular, Ref. [21]
has recently reported the experimental investigation of the
superfluid-supersolid quantum phase transition in an elon-
gated dipolar condensate, driven by tuning the interparticle
interactions (by means of Feshbach resonances). Remarkably,
it has been shown that the character of the transition can be
changed from continuous to discontinuous simply by tuning
the transverse confinement (or the atom number), therefore
providing a dimensional crossover between second-order tran-
sitions in one dimension [22,23] and first-order transitions in
two dimensions [9,10,12,24–26].

In the present paper we provide a complementary the-
oretical characterization of the equilibrium and dynamical
properties of the dipolar condensate in the two trap configura-
tions, VC and VD, employed in the experiment of Ref. [21].
This analysis is carried out within the standard framework
of the extended Gross-Pitaevskii (GP) theory [27], including
both contact and dipolar interactions [28], as well as the

Lee-Huang-Yang (LHY) quantum correction [29]. We first
consider the equilibrium properties of this system and we
show that the trap characterized by a tighter transverse con-
finement (VC) presents a smooth, i.e., continuous, transition
between the superfluid and supersolid phases, whereas for
shallower trapping potentials (VD) a discontinuous character
clearly shows up. Then, we thoroughly discuss how the veloc-
ity of the ramp employed to experimentally tune the s-wave
scattering length across the transition affects the dynamical
response of the system, commenting also on the role of the
formation time of the supersolid. Remarkably, we find that—
when the system enters the supersolid phase—the collective
modes in the two traps present distinctive behaviors: in the
trap VC , where the system can be considered effectively quasi-
one dimensional (1D), the excitation dynamics is dominated
by the axial breathing modes; instead, in the trap VD, the
axial excitations of the supersolid display a clear coupling to
the collective transverse modes. This provides a signature of
the onset of a dimensional crossover, in agreement with the
discussion in Ref. [21].

The paper is organized as follows. In Sec. II we intro-
duce the system parameters and the general framework of
the extended Gross-Pitaevskii theory for dipolar condensates.
Then, in Sec. III we analyze the equilibrium properties of
the condensate in the two trap configurations, VC and VD,
and we characterize the corresponding superfluid-supersolid
transition as a function of the s-wave scattering length.
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Section IV is instead devoted to the dynamical crossing of the
transition. We first address, in Sec. IV A, the effect of the ramp
velocity and then, in Sec. IV B, we discuss how the formation
time of the supersolid affects the crossing of the transition.
Finally, in Sec. IV C we examine the collective oscillations
of the system that arise due to the excess of energy acquired
during the ramp across the transition, in both the supersolid
and superfluid phases. Concluding remarks are presented in
Sec. V.

II. SYSTEM

We consider the typical experimental configuration of
Ref. [21]. A dipolar condensate composed by N = 3 × 104

magnetic atoms of 162Dy—with tunable s-wave scattering
length as and dipolar length add = 130a0 (a0 being the
Bohr radius)—is trapped by a harmonic potential with fre-
quencies ω = 2π × (νx, νy, νz ). As in the experiment, we
consider two different trap configurations, namely, ωC =
2π × (15, 101, 94) Hz and ωD = 2π × (20, 67, 102) Hz,
where the labels C and D refer to the continuous and discon-
tinuous character of the transition (see Sec. III), respectively,
in line with the notations employed in Ref. [21]. Accord-
ingly, we indicate the corresponding harmonic potentials as VC

and VD.
This system can be described in terms of a generalized GP

theory including dipolar interactions [28] and the Lee-Huang-
Yang correction accounting for quantum fluctuations (within
the local-density approximation) [29]. The energy functional
can be written as E = EGP + Edd + ELHY with

EGP =
∫ [

h̄2

2m
|∇ψ (r)|2 + VC/D(r)n(r) + g

2
n2(r)

]
dr,

Edd = Cdd

2

∫∫
n(r)Vdd (r − r′)n(r′)drdr′,

ELHY = gLHY

∫
n5/2(r)dr, (1)

where EGP = Ek + Eho + Eint is the standard GP energy
functional including the kinetic, potential, and contact in-
teraction terms, V (r) = (m/2)

∑
α=x,y,z ω2

αr2
α is the harmonic

trapping potential, n(r) = |ψ (r)|2 represents the condensate
density (normalized to the total number of atoms N), g =
4π h̄2as/m is the contact interaction strength, Vdd (r) = (1 −
3 cos2 θ )/(4πr3) is the (bare) dipole-dipole potential, Cdd ≡
μ0μ

2 is its strength, μ is the modulus of the dipole mo-
ment μ, r is the distance between the dipoles, and θ is the
angle between the vector r and the dipole axis, cos θ = μ ·
r/(μr). As in Ref. [21] we consider the magnetic dipoles
to be aligned along the z direction by a magnetic field B.
Finally, the LHY correction is obtained from the expres-
sion for homogeneous three-dimensional dipolar condensates
under the local-density approximation [29,30]. The LHY co-
efficient is gLHY = 256

√
π h̄2a5/2

s /(15m)(1 + 3ε2
dd/2), with

εdd = μ0μ
2N/(3g).

III. GROUND STATE

We compute the ground state of the system by minimizing
numerically the energy functional E [ψ] by means of a conju-

gate algorithm (see, e.g., Refs. [31,32]). In the numerical code
the double integral appearing in Eq. (1) is mapped into Fourier
space where it can be conveniently computed by means of
fast Fourier-transform (FFT) algorithms, after regularization
[28,33]. The behavior of the ground-state energy for the two
potentials is shown in Fig. 1 as a function of the s-wave scat-
tering length as, in the range as ∈ [90, 96]a0, along with some
representative images of the density distributions in the SS
and SF phases [34]. Notice that in the supersolid phase both
traps VC and VD exhibit two almost degenerate configurations,
characterized by either a maximum or a minimum at the center
of the trap [35]. These two states are those that—for symmetry
reasons—survive in the presence of the trap among the infinite
equivalent configurations that would be possible in a (infinite)
uniform system [36].

Let us start by considering the case of the potential VC

(characterized by the tighter confinement along the y direc-
tion), shown in the left panel of Fig. 1. For this trap, the
transition takes place at ac

s � 94.4a0 and it exhibits a contin-
uous behavior: the superfluid and the supersolid states morph
continuously one into the other, as do their energies [see the
inset of Fig. 1 (left)]. The critical point can be identified,
for instance, by the slope change in the first derivative of
the energy with respect to the s-wave scattering length (see
Fig. 2). The continuity of ∂E/∂as at the critical point confirms
the continuous character of the transition in this case (within
the numerical precision).

In the case of the potential VD, which is characterized by
a weaker transverse confinement, the transition takes place
at lower value of the scattering length, namely, ac

s � 92.4a0.
Remarkably, in this case the two SS states manifest a different
behavior in the vicinity of the transition [see the inset of
Fig. 1 (right panel)]. In particular, the configuration with a
maximum at the trap center is the one with lower energy at
the boundary with the SF phase, so that ac

s is actually defined
by the crossing of the energy of such a state with that of the
SF state. The transition clearly exhibits a discontinuous jump
in the first derivative of the energy with respect to the s-wave
scattering length (see Fig. 2). As discussed in Ref. [21], this
discontinuous behavior of the SF-SS transition is reminiscent
of that expected for trapped supersolids with two-dimensional
(2D) lattice structures [37–40], and it is due to the fact that
even in the case of a single row supersolid the background
density may exhibit a triangular structure. Even if not visible
in the snapshots in Fig. 1, this structure is enhanced when the
system is out of equilibrium. Indeed, a clear 2D modulation of
the background density can be observed during the dynamics
of the supersolid discussed in the following section.

IV. DYNAMICAL STUDY OF THE TRANSITION

We now turn to the dynamical study of the phase transi-
tion, following a protocol similar to the one employed in the
experiment of Ref. [21]: The system is initially prepared in a
stationary superfluid or supersolid state, at a certain scattering
length ai

s, and then the value of as is tuned along a linear
ramp with constant velocity das/dt ≡ va towards a final value
a f

s , in the other phase. The ramp scheme and the simulation
timing are shown in Fig. 3. For conceptual clarity, here we
consider ai

s and a f
s to be in specular position with respect to
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FIG. 1. Normalized energy, (E [as] − E [ac
s ])/h (where E [ac

s ]/h corresponds to 432.2 Hz for VC and 476.7 Hz for VD), for the supersolid
and superfluid density configurations, as a function of the contact scattering length as, for potentials VC (left) and VD (right). Typical density
distributions (see text; in each plot the color scale is weighted by the density distribution) are indicated by the arrows (the colors of which
match the color of the corresponding energy lines). The vertical dashed line represents the boundary between the supersolid and superfluid
phases (on its left and right, respectively), at the critical scattering length ac

s . The insets show the energy behavior in the vicinity of ac
s .

the critical point ac
s , namely, ai/ f

s = ac
s ± δas. In the following,

we shall consider δas = 1.5a0 and three ramps with differ-
ent velocities: (i) a “quench”, va = ∞; (ii) va = 0.5 a0/ms,
which corresponds to the nominal velocity employed in the
experiment [21] (and of the same order of that of Ref. [10]);
and (iii) va = 0.05 a0/ms, a lower velocity that allows for a
quasiadiabatic crossing of the supersolid-superfluid transition
in the trap VC (see Sec. IV A), as discussed in Ref. [21].
This latter choice permits us to reproduce a scenario similar
to that of the above-mentioned experiment, without having
to introduce dissipation effects in the theoretical modeling
(which are instead present in the experiment [21]) [41].

Therefore, in the following we shall restrict the discussion
to the dissipationless scenario, obtained by solving the GP
equation [2]

ih̄∂tψ = δE [ψ,ψ∗]/δψ∗, (2)

where the energy functional E [ψ,ψ∗] is the one in Eq. (1)
[42]. Regarding the two supersolid configurations discussed
in the previous section, we notice that during the dynamics
across the SF-SS transition the system is likely to select spon-
taneously the configuration with a maximum at the center of
the trap, so that we have used such a configuration also for the
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FIG. 2. Derivative of the total energy of the ground state for the
two trap configurations, VC and VD. The latter exhibits a discontinuity
(vertical dashed line) at the transition point (red dots).

initial state of the ramp in the opposite direction, for the sake
of simplicity.

A. Effect of the ramp

Let us now discuss how the system gets modified while
varying the scattering length. In particular, we shall first con-
sider how the different ramp velocities affect the energy of
the system, and which is the final density distribution of the
condensate at the end of each ramp (the dynamics following
the end of the ramp will be discussed in Sec. IV C). This is
shown in Figs. 4 and 5, for the traps VC and VD, respectively.
In the top panel we show the behavior of the energy of the
system as a function of the scattering length as(t ) along the
three ramps across the SF-SS transition (blue lines) and in the
opposite direction, from SS to SF (red lines). In the case of
the quench, the line is simply a guide to the eye that connects
the initial and final value of the scattering length. The insets
represent the initial configurations in the SF and SS phases.
The density distributions obtained at the end of each ramp,
namely, at t = tR, are shown in panels (a)–(c) in Figs. 4 and 5

FIG. 3. Scheme of the ramp employed in the numerical sim-
ulations: the system is prepared in the ground state either in the
superfluid or in the supersolid phase, at ai

s = ac
s ± δas, and then

the scattering length is varied along a linear ramp—during a time
tR ≡ 2δas/va—towards a final value in other phase, a f

s = ac
s ∓ δas.

Then, the system is kept at the final value a f
s for a variable time T .

The time spent in the SS or SF phase after crossing the critical value
of the scattering length is indicated as τ (see Sec. IV B).
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FIG. 4. Behavior of the system along the linear ramp across the
SF-SS transition, for the trap VC . Top: Behavior of the normalized
energy of the system (E [as] − Egs[ac

s ])/h, as a function of the scat-
tering length as(t ) during the ramp, for different ramp velocities (see
legends) and directions (red, SS to SF; blue, SF to SS). The black
dots represent the ground-state energy. (a–c) Density distribution at
the end of the downward ramp from SF to SS, for (a) a quench (tR = 0
ms), (b) va = 0.5 a0/ms (tR = 6 ms), and (c) va = 0.05 a0/ms (tR =
60 ms). (d–f) The corresponding distributions after the upward ramp
from SS to SF. Notice that the density distributions shown for the
case of a quench in panels (a) and (d) correspond, by definition, to the
initial density distribution at the beginning of the ramp (also shown
as insets in the main panel). In each plot the color scale is weighted
by the density distribution.

for the SF-SS transition and in panels (d)–(f) in Figs. 4 and 5
for the SS-SF transition.

It is interesting to notice that, when crossing the transition
in the downward direction, from SF to SS, both the energy
variation and the final density distribution are weakly affected
by the ramp velocity. In the case of a quench, this has to be so
because the system is “projected” instantaneously in the other
quantum phase without changing its density distribution, so
that in this case the final configurations exactly coincide with
the initial ones. The case at va = 0.5 a0/ms turns out to be
almost equivalent to a quench (in contrast to what happens
during the SS–SF transition; see below). Only in the case of
the slowest ramp at va = 0.05 a0/ms in the trap VD can a slight
modulation superimposed to the initial state be appreciated.
The origin of this behavior has to do with the formation time
of the supersolid (see, e.g., Ref. [10]), that will be discussed
in Sec. IV B.

In the opposite direction, when crossing the SS to SF
transition, the behavior is quite different: The energy grows
linearly if the scattering length is quenched, while it follows
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FIG. 5. Behavior of the system along the linear ramp across the
SF-SS transition, for the trap VD. The conventions and the quantities
being plotted are the same as in Fig. 4.

the ground-state energy almost adiabatically if the scattering
length is slowly varied (at va = 0.05 a0/ms). In addition, it
is evident both from the energy behavior and from the final
configuration in Fig. 4(f) that for the trap VC such a ramp is
sufficiently slow to bring the SS state close to the SF ground
state, with a small excitation energy embedded in a density
deformation that is reminiscent of the initial state. Remark-
ably, such a deformation is significantly larger in trap VD

[compare Figs. 4(f) and 5(f)]. Moreover, the residual energy
on the superfluid side is larger in trap VD than in trap VC for
each of the three ramps (see also the discussion in Ref. [21]).
These observations are consistent with the continuous or dis-
continuous character of the transition in the two cases.

In order to get further insight on the behavior of the total
energy along the ramp it is convenient to rewrite the energy
functional (1) in the following form, which makes apparent
for which terms the dependence on as is explicit:

E [ψ ; as] = Ek[ψ] + Eho[n] + asE int[n] + Edd [n]

+ a5/2
s

[
1 + 3

2

(add

as

)2
]
ELHY[n], (3)

with E int[n] and ELHY[n] functionals that depend on the den-
sity only. Thus, the dependence on the scattering length is
explicit for the mean-field interaction energy and the LHY
correction, whereas all the other terms depend on as only
indirectly, through the condensate density (and in the case of
the kinetic term also through the phase of the wave function).

The behavior of the system during the ramp across the
transition is therefore characterized by two timescales: The
one associated to the variations of the scattering length,
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FIG. 6. Dynamical behavior of the system in the SS phase, for
the trap VC . The time τ = 0 corresponds to the crossing of the SF-SS
transition. Top: Density distribution at selected times (see labels) for
a quench (left) and for va = 0.05 a0/ms (right). All densities are
saturated at the same level. The case at va = 0.5 a0/ms, not shown,
is very similar to the quench. The panels in the top row correspond
to the time at which the supersolid structure starts to emerge clearly,
τ ≈ 30–40 ms. Bottom: Evolution of the (dimensionless) axial width
wSS(τ ) [see Eq. (4)], for the three ramp velocities considered here.
The empty/solid red dots corresponds to the density distributions
shown in the top panels. The (magenta) dot-dashed line represents
a sinusoidal fit with two frequencies, ν+ � 24.0 (Hz) and ν− � 13.9
(Hz), accounting for the doubling of the axial breathing mode of a
supersolid (see text). The inset shows the behavior of the transverse
width wSS(τ ) along the direction y (for va = 0.05 a0/ms).

controlled by the ramp duration tR = 2δas/va, and the
timescale required for variations in the condensate density
to appear. Remarkably, the latter strongly depends on the
phase of the system. In the SS phase, the emergence of the
crystalline order of a supersolid is characterized by a minimal
formation time τSS ≈ 30 ms, as we shall see in the following
section (see also Ref. [10]). As a consequence, in the present
setup the system cannot undergo significant density modifi-
cations during the SF-SS ramp (not even in the case of the
slowest ramp), such that in this case the energy variations are
dictated only by the explicit dependence on as. In particular,
by considering that ELHY� E int, in this case the energy vari-
ation can be written as δE � δasE int[n] [see Eq. (3)], which
corresponds to linear behavior shown in Figs. 4 and 5.

When going from SS to SF the scenario is quite differ-
ent. In fact, when the scattering length is increased during
the upward ramp, the system can gradually relax the initial
supersolid profile into a smoother one, suppressing the crys-
talline order. In the SF phase the relevant timescale is the
one characterizing the collective excitations of the condensate,

-3
0
3 τ = 26 ms

quench

32 ms

va = 0.05 a0/s

y
(μ

m
)

-3
0
3 47 ms 54 ms

x (μm)

-3
0
3

-10 0 10

67 ms

x (μm)

-10 0 10

73 ms

−0.1

0

0.1

−20 0 20 40 60 80

−0.2
0

0.2

0 40 80

w
S

S
τ (ms)

quench
va = 0.5 a0/ms

va = 0.05 a0/ms
VD

FIG. 7. Dynamical behavior of the system once it has entered the
SS phase, for the trap VD. The quantities plotted are the same as in
Fig. 6. Notice the appearance of a two-dimensional structure during
the evolution (second and third row of panels), associated to the onset
of a transverse oscillation mode shown in the inset (see text). It is also
worth noticing that in this trap the supersolid starts to form slightly
earlier than in Fig. 6, at τ ≈ 25–30 ms (see the top panels).

which is of the order of τ0/4, with τ0 being the oscillation
period of the main excitation mode. In the present case, the
dynamics is dominated by the axial breathing mode [12], and
the associated timescale is of the order of few milliseconds
(see Sec. IV B) [43]. This explains the different behavior
displayed by the three ramps. Notice that for the case of the
quench the same argument of the SF to SS transition holds,
δE � δasE int[n]. More interesting is the behavior that charac-
terizes the ramp at va = 0.05a0/ms: though the top panels in
Figs. 4 and 5 may suggest that during the upward ramp the
system evolves almost adiabatically in both traps VD and VC ,
the fact that the density distributions at the end of the ramp
look quite different [see Figs. 4(f) and 5(f)] provides instead a
signature that the two systems behave differently at the SS-SF
transition, with only the one in the trap VC displaying a (quasi)
adiabatic behavior.

B. Formation time of the supersolid

We now turn to the discussion of the formation time re-
quired for the supersolid to emerge after the system has been
driven through the SF-SS transition. For convenience, here we
introduce the time coordinate τ ≡ t − tR/2, that denotes the
time elapsed from the crossing of the SF-SS transition (see
Fig. 3).

In the case of the trap VC , we find that the supersolid
structure starts to develop at τC

SS ≈ 30 − 40 ms (see the top
row of Fig. 6). Instead, the trap VD is characterized by shorter
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black dot-dashed line superimposed to the line at va = 0.05a0/ms from the end of the ramp at τ � 30 ms represents a sinusoidal fit of the form
A sin(2πνt + θ ) + B. The fit returns νD � 29.3 (Hz) and νC � 22.7 (Hz), corresponding to the axial breathing mode (see text).

formation times, τD
SS ≈ 25–30 ms (see Fig. 7). By accident,

this formation time is of the order of tR/2 for the ramp at va =
0.05a0/ms, and this explains why in this case the supersolid
pattern already emerges at the end of the ramp [see Fig. 5(c)].
Notice that the formation times observed experimentally in
Ref. [21] are shorter than those we find from the present
numerical analysis, likely due to finite temperature effects and
three-body losses (see also Refs. [10,44]).

Remarkably, the figures above also show that τSS not only
depends on the trap configuration, but also on the ramp veloc-
ity. Indeed, as discussed in Ref. [10], longer formation times
are associated with a lower-energy difference between the
initial superfluid configuration (at τ = 0) and the target equi-
librium supersolid state. In the case of a quench this energy
difference is fixed by the final value a f

s of the scattering length,
namely, �E ≡ ESF[a f

s ] − ESS[a f
s ], as the system is projected

instantaneously from ai
s to a f

s . Instead, in the case of a linear
ramp the system spends some time in passing from ac

s to a f
s so

that, before reaching the final value of the scattering length, it
has to cross a region where the energy gap between the SF and
SS branches is smaller (see Fig. 4). This qualitatively explains
the slight delay observed. Regarding the difference between
the traps VC and VD, by comparing Figs. 4 and 5 it is evident
that the latter is characterized by a larger gap, which therefore
corresponds to a shorter formation time according to the above
argument.

C. Collective oscillations

Once the system has entered the new phase, either SS or
SF, the excitation energy acquired during the ramp eventually
drives the system into collective oscillations. In the present
case, since the phase transition mainly affects the density
distribution along the axial direction of the trap, the major
contribution comes from the so-called axial breathing mode
[12]. The latter can be conveniently characterized by consid-
ering the width along the x direction, which corresponds to the
axial direction of the supersolid. In order to do so, we define
a normalized relative width as

wα (t ) ≡ [
σx(t ) − σ eq

xα

]/
σ eq

xα , (4)

where σ 2
x (t ) ≡ 〈x2〉 = (1/N )

∫
x2n(r, t )dr, α indicates the SF

and SS states, and σ
eq
xα indicates the corresponding equilibrium

widths at ac
s ± δas, respectively. In the following, we shall

consider especially the behavior of the width as a function of
the time τ elapsed from the crossing of the SF-SS transition,
namely, wα (τ ). This quantity is shown in the bottom panels
of Figs. 6 and 7 for the SS case, and in Fig. 8 for the SF case.
Overall, the behavior of wα (τ ) provides an additional charac-
terization of the (non)adiabaticity of the various ramps and of
the character of the transition for the two trap configurations.

Let us first consider the SS case, in Figs. 6 and 7. First of
all, we notice that the ramp at va = 0.5 a0/ms, corresponding
to the nominal value employed in the experimental protocol of
Ref. [21], is almost indistinguishable from a quench. Instead,
the slowest ramp at va = 0.05 a0/ms presents a distinctive
feature in the fact that the value of the width decreases grad-
ually along the ramp, −30 < τ < 30 ms, indicating that the
system is able to smoothly adjust its shape to the changing
value of the scattering length, from ai

s to a f
s .

As discussed in Ref. [12], the excitation dynamics of an
elongated supersolid is characterized by a doubling of the ax-
ial breathing mode of a dipolar condensate (in the SF regime;
see below). The two modes that appear in the SS phase are as-
sociated to the deformation of the supersolid lattice structure,
namely, its amplitude and spacing. The former is dominated
by the higher-frequency mode, and the latter is dominated
by the lower-frequency one. In the case of the trap VC we
observe indeed a beating of two frequencies (see Fig. 6) that
we fit with a sinusoidal function of the form A+ sin(2πν+t +
θ+) + A− sin(2πν−t + θ−) + B (see the magenta dot-dashed
lines in the figure). The fit of the curve at va = 0.05 a0/ms
returns (ν+/νx )C � 1.6 and (ν−/νx )C � 0.93, which is con-
sistent with the picture provided in Ref. [12] (here εC

dd = 1.39)
[45]. A similar result is obtained from the fit of the other two
lines. In the transverse directions we do not see instead any
significant oscillation, as one can observe from the behavior
of transverse width along the y direction shown in the inset. In
the figure we also show a few snapshots of the density distri-
bution, at selected times: when the supersolid structure starts
to emerge clearly (top row, discussed previously), at wSS(τ ) =
0 (middle row), and when wSS(τ ) first reaches a minimum of
the oscillation (bottom row). These snapshots well represent
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the qualitative behavior along the whole dynamics considered
here [also when wSS(τ ) gets to an oscillation maximum],
which can be indeed fully characterized by the deformation
of the supersolid structure discussed previously, affecting the
amplitude and the spacing along the axial direction.

Instead, the case of the trap VD presents a distinctive behav-
ior associated with the emergence of a characteristic pattern
in the background density distribution. This is visible in the
top panels of Fig. 7 (middle and bottom rows). Remarkably,
this pattern is reminiscent of the triangular lattice structure
expected for 2D supersolids [37–40] (see also the discussion
in Ref. [21]). We find that the corresponding transverse excita-
tion mode (shown in the inset) is characterized by a relatively
high frequency, ν⊥ � 60 Hz, which couples with the axial
breathing modes. This accounts for the “fast” oscillations that
are visible in the continuous line at va = 0.05 a0/ms in Fig. 7.
As a matter of fact, a clean sinusoidal fit (with two or even
three frequencies) is not possible in this case.

Finally, let us consider the excitation produced by the
ramps in the opposite direction, when the system is driven
into the SF phase. In this case we find that the condensate os-
cillations are dominated by a single excitation mode, namely,
the axial breathing mode of a dipolar condensate discussed
previously (see Fig. 8). This holds for both trap configura-
tions, VC and VD. The corresponding frequency is expected
to be slightly below the mean-field solution for the breathing
mode frequency of a superfluid without dipolar interactions,
ω = √

5/2ωx [46] (see again Ref. [12]). In particular, we
find (ν/νx )C � 1.51 (εC

dd = 1.35) and (ν/νx )D � 1.47 (εD
dd =

1.37).

V. CONCLUSIONS

We have presented a theoretical discussion—within the
framework of the extended Gross-Pitaevskii theory including
Lee-Huang-Yang quantum corrections—of the superfluid-
supersolid transition of an elongated dipolar condensate as
reported in the recent experiment by Biagioni et al. [21]. We
have considered both trapping potentials employed in the ex-
periment, providing a characterization of the equilibrium and

dynamical properties of the system as a function of the inter-
particle scattering length, which is the parameter that is varied
experimentally for driving the transition. Although both traps
display a one row supersolid (for as < ac

s ), already at the level
of the ground state the two traps present a distinctive behavior.
For a sufficiently strong transverse confinement (the trap VC)
the SF-SS transition has a smooth continuous character, as it
is expected for (quasi) 1D systems, with the superfluid and the
supersolid states morphing continuously one into the other, as
well as their energies. Instead, in the case of the potential VD,
which is characterized by a weaker transverse confinement,
the transition clearly exhibits a discontinuous jump in the first
derivative of the energy with respect to the s-wave scattering
length, as it is expected for trapped supersolids with 2D lattice
structures [37–40]. These properties reflect in the collective
oscillations of the system, when the scattering length is dy-
namically ramped across the transition, from one phase to the
other. In particular, we find that when the system is driven
quasiadiabatically into the superfluid phase the system per-
forms clean axial breathing oscillations, in both traps. In the
opposite direction, the situation is quite different: in the trap
VC the excitation dynamics is still dominated by the doubling
of the axial breathing modes, whereas when the transition
becomes discontinuous, in the trap VD, the collective excita-
tions of the supersolid display a coupling with the transverse
modes, signaling the onset of a dimensional crossover. These
findings provide further insights on the experimental results
reported in Ref. [21].
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