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ABSTRACT  

 Stress is a physiological response to any kind of demand or threat that challenges 

the homeostasis of the organism. Although stress increases alertness and performance, 

excessive stress often negatively affects cognitive processes such as learning. The present 

work aims to help elucidating the molecular mechanism underlying the effects of acute and 

chronic stress on associative learning in rats. Immunohistochemical analysis centred on 

synaptic plasticity and synapse inhibition were carried out. Indeed, parvalbumin (PV) and 

calretinin (CR) interneurons were labelled to quantify PV+ and CR+ cells and protein 

expression. The expression of N-methyl-D-aspartate receptor (NMDAR), relevant in long-

term potentiation, was also assessed within those cells. Confocal image analysis was 

accomplished combining Fiji-ImageJ and Pythons software, a method developed in our lab. 

This work shows stress-induced alterations in PV and CR expression, but not in NMDAR1. 

These results add to the increasingly growing field of GABAergic signalling dysfunction in 

stress-related illnesses that hopefully will provide clinical applications in the future.   

  

INTRODUCTION 

Stress is an innate response to an overload of stimuli or an overwhelming situation 
that impairs the homeostasis of the organism. Although this physiological phenomenon is 
fundamental to survival, it is also strongly related to several brain disorders including 
depression, anxiety and post-traumatic stress disorder (Hariri and Holmes, 2015; Godoy et 
al., 2018). Higher animals, in particular, have evolved elaborate physiological and 
neurobiological systems to notice, react, and adapt to all kind of stressors. As any external 
stimulus, stressors are perceived by sensory input. When that information reaches to the 
brain nuclei, a stress-response is triggered adapted to the nature of the stimulus. Since a 
great diversity of stressors exist, the organism has developed a wide variety of 
neurobiological responses.  

Classically, the systems activated in stress are divided into two, depending on the 
time they take for an actionable output, although a combination of both is what commonly 
occurs, interplaying cooperatively and even synergistically (Akirav and Richter-Levin, 
2002). For example, acute stressors require fast and immediate responses, which is mainly 
achieved, at least in a first phase, by the so-called sympathetic-adreno-medullar (SAM) axis. 
Preganglionic sympathetic neurons project to the adrenal medulla in the adrenal gland, 
causing catecholamines (adrenaline and noradrenaline) to be released to the circulation. 
Not only adrenaline and noradrenaline but also other monoamines, including dopamine and 
serotonin, contribute to the stress response. Because monoamines generally act through G 
protein-coupled receptors, which rapidly activate downstream effectors, the rapid rise in 
their level is quickly translated into altered functioning of neurons that express these 
receptors (Jöels and Baram, 2009). 

Following the fast changes evoked by the SAM axis, the second major system comes 
into play: the hypothalamic-pituitary-adrenal (HPA) axis. The effects of HPA are considered 
slower but resulting in amplified long-lasting responses typical of chronic stress (Joëls and 
Baram, 2009; Godoy et al., 2018). This pathway is, in part, activated trough the action of the 
catecholamines released in consequence of acute stress, activating paraventricular nucleus 
of the hypothalamus (Calogero et al., 1988). A cascade of hormonal communication between 
the structures of the axis takes places next. In short, the paraventricular nucleus secrets 
corticotropin-releasing hormone (CRH) which acts on the pituitary gland, and the later then 
secrets the adrenocorticotropic hormone (ACTH) that travels to the adrenal cortex of the 
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adrenal gland, mediating the release of glucocorticoids. Glucocorticoids interact with 
mineralocorticoid and glucocorticoid intracellular receptors which are transcription 
factors, leading to changes in gene expression (Sharpley, 2009). 

Centring on actions taken on the brain, monoamines and glucocorticoids exert their 
effects in a site-specific way. To that end, the site of release coupled with receptor 
localization provides a fine-resolution spatial specificity regarding the actions of both stress 
mediators. Consequently, there are brain regions involved in different aspects of the stress 
response. For instance, the basolateral amygdala, which is affected by noradrenaline, 
dopamine, CRH and corticosteroids, is responsible for promoting the state of alertness and 
vigilance. Also the basolateral amygdala, together with the prefrontal cortex and 
hippocampus, processes emotional and contextual aspects of stress (Jöels and Baram, 
2009). 

As can be seen, many brain regions are affected by stress, thus, any other process 
regulated by those areas will possibly be affected. Indeed, in a project led by our 
collaborators to study the influence of stress in learning, rats subjected to acute stress 
performed worse than not-stressed control group. The associative learning of animals was 
assessed trough the operant conditioning chamber test (the Skinner box), on which stressed 
rats showed a delayed achievement, because of their impaired learning skills. 
Concomitantly measured electrophysiological recordings in different brain areas 
demonstrated changes in power spectra of local field potentials (LFPs), which may be 
indicative of the stress state of the animals (unpublished data).  

To understand how learning is affected under stress at a deeper level, molecular 
events involved in these processes should be explored. Long-term synaptic plasticity refers 
to a long-lasting experience-dependent change in the efficacy of synaptic transmission that 
involve strengthening or weakening the synapse, processes named long-term potentiation 
(LTP) and depression (LTP), respectively. One of the pathways for LTP is dependent on the 
N-methyl-D-aspartate receptor (NMDAR) in glutamatergic synapses. NMDAR together with 
alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptor (AMPAR) act to trigger 
action potentials. Both receptors are ionotropic and require binding of glutamate 
neurotransmitter to be activated. The main difference between the two is that at negative 
membrane potentials close to resting values, magnesium ions enter the pore of NMDAR, 
blocking the passage for all other ions. Therefore, when glutamate is released to the synaptic 
cleft and binds its receptors, AMPAR will be opened allowing a strong influx of sodium ions 
to enter the cell. This sets the conditions for NMDAR activation, because upon 
depolarization the magnesium is expelled from the pore, allowing cations to pass and 
contributing to the membrane depolarization. The bigger the amount of activated AMPAR 
and NMDAR in the postsynaptic membrane, the higher is the depolarization and, in turn, 
there is a greater chance for an action potential to be fired. In conclusion, this mode of LTP 
makes synapses more excitable (Lüscher and Malenka, 2012). 

 Currently, an increasingly adopted perspective to study the biochemistry of stress 
in the brain is to focus on the GABAergic system, crediting the role of interneurons on 
shaping the structure and physiology of the brain (Albretch et al, 2021). Alterations in 
GABAergic signalling are considered to be very relevant in inhibition/excitation balance. 
Among the interneuron subtypes, those expressing calcium binding proteins such as 
calretinin (CR) and parvalbumin (PV) are ones of the most studied. The role of these 
molecules is to buffer intracellular calcium concentrations in neurons and thereby modulate 
calcium transients in activated neurons (Schwaller, 2012). Alteration in these markers, in 
particular parvalbumin, can lead to brain network dysfunction (Nobili et al., 2018). 
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HYPOTHESIS AND OBJECTIVES 

In line with the commented above, the present work aims to provide some clarity to 
GABAergic signalling in the scope of acute and chronic stress, as well as its impact on 
learning-related molecular mechanisms. More specifically, PV and CR interneuron subtypes 
sensitive to stress will be mapped trough immunohistochemistry. For the study of acute 
stress, the rats used in our collaborator’s experiments will be used, on which stress was 
induced by electric footshocks. As impairment in associative learning of these animals may 
be reflected in altered NMDAR expression, this receptor will also be labelled with 
immunohistochemistry. For the chronic stress, organotypic hippocampal slices treated with 
dexamethasone, a strong synthetic glucocorticoid, will be the subject of study. The 
hippocampal slices will also be stained for all three PV, CR and NMDAR markers. 

Along with the stated objectives, and additional and equally important pursuit is to 
develop an objective method to analyze the obtained data. For that, a computer-assisted 
image analysis will be elaborated, which will provide automation, traceability and 
reproducibility. Apart from working efficiently and saving time, a desirable advantage of 
software is that helps gaining deeper insights into the data that could have missed 
otherwise, exploiting to the fullest the worthy information within it.   

 In accordance of what so far have been laid out, we expect to find significant 
alterations in stress condition in plasticity- and stress-related markers (PV, CR, NMDAR), 
both in acute stress rat model and chronically stressed organotypic hippocampal slices. 

 

MATERIALS AND METHODS 

Animals and experimental background 

Brains of male Wistar rats (3 months old, 250-300 g) fixed by perfusion with 4 % 
paraformaldehyde were assigned to this project. In total, 10 brains of stressed rats and 9 
brains of not-stressed control rats were used. The animals had previously undergone the 
Skinner box test, an operant conditioning test, led by our collaborators to evaluate the 
learning performance when stressed. The Skinner box was equipped with levers and 
feeders. Feeders delivered a small pellet after each lever press. Conditioning took place 
during 10 successive sessions (1 session/day), in which animals were allowed to press the 
lever to receive pellets from the feeder using a fixed-ration (1:1) schedule. Stressed rats 
presented a slower learning curve comparing to controls, nevertheless, both groups 
achieved same performance-level by the las conditioning sessions.  

Electrophysiological activity was registered meanwhile with electrodes placed in 
different areas of the brain. Precisely, in cortical and subcortical structures traditionally 
considered crucial for learning (the prelimbic cortex, PrL, and nucleus accumbens, NaC), 
and stressful situations (the basolateral amygdala, BLA) and rewarding (NaC). They found 
changes in power spectra of LFPs in all areas, which may be indicative of the stress state of 
the animals. Acute stress was induced by an electric footshock (see Berardi et al., 2014) 7 
days right before the training in the Skinner box and a second electric footshock 24 h before 
being sacrificed, while the control group did not receive neither of the electric footshocks. 
These two electric footshocks consolidate the acute stress model addressed on this work. 
Animals were sacrificed soon after the last electric footshock. 

Brain tissue preparation and immunohistochemistry 

The brains were cut into 50 μm-thick serial coronal sections using a Leica VT1200 S 
vibratome. Brains were previously embedded in 4 % agar blocks to preserve tissue 
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consistency while cutting. The vibration amplitude of the blade was 1.35 mm with a 1.5 
mm/s speed of forward advance. Sections were collected in series and stored in PBS (pH 
7.4) with 0.2% sodium azide at 4 ºC until staining. Immunohistochemistry was carried out 
to label PV and CR interneuron markers and NMDAR1 (a subunit of NMDAR) involved in 
LTP. Free-floating sections were first washed in PBS. Non-specific binding was prevented 
by incubating the sections for 1 h 30 mins in PBS containing 5 % goat normal serum (GNS) 
and 3 % bovine serum albumin (BSA) and 0.5 % Triton X-100. Subsequently, the sections 
were incubated overnight at 4 ºC with various primary antibodies. Precisely, the following 
primary antibodies were used: rabbit anti-PV (1:1000 dilution; Invitrogen, PA1-933), 
guinea pig anti-CR (1:500 dilution; Synaptic Systems, 214 104) and mouse anti-NMDAR1 
(1:500 dilution; Merk Millipore, MAB363). After six 10 min-washes with PBS, the sections 
were incubated with corresponding fluorophore-conjugated secondary antibodies: goat 
anti-rabbit 488 (Abcam, ab150077), goat anti-guinea pig 555 (Abcam, ab150186) and 
donkey anti-mouse 647 (Abcam, ab150107); always in 1:1000 dilution, and with DAPI in 
1:1000, for 2 h in dark. Afterwards, the sections were washed three times in PBS, each for 
10 mins, in dark. Finally, the sections were mounted on glass slides with mounting media to 
preserve fluorescence (CSH, 2006) and stored at 4 ºC in dark.  

Organotypic hippocampal slice culture preparation  

 In order to address stress induced molecular changes in a more 
controllable/standardizable conditions, an experiment on hippocampal slice cultures was 
performed. Preparation of organotypic hippocampal slice cultures followed procedures 
described by Stoppini et al. (1991) with modifications as detailed below. Hippocampi from 
7-day old Sprague-Dawley rat pups were aseptically removed and placed into dissecting 
medium (Hanks’ balanced salt solution (HBSS) medium without calcium and magnesium; 
GibcoTM, 14170112). Using a McIllwain tissue chopper (Mickle Laboratory Engineering Co. 
Ltd.), each hippocampus was coronally sectioned at 350 µm and placed into fresh culture 
medium. Culture medium is composed of 45 % Minimum Essential Media (MEM; GibcoTM, 
numero de catálogo), 25 % Earle’s Balances Salt Solution (EBSS; GibcoTM, 24010043), 25 % 
Horse Serum, 2% B27 supplement, 32.5 % glucose, 1 % penicillin/streptomycin, 2 µM FdU, 
and 2 µM uridine. Three slices were transferred onto individual Millicell-CM 0.4 µm biopore 
membrane inserts (Merk Millipore, PICM0RG50) and then placed in 35 mm six-well culture 
plates containing 1 ml of pre-incubated culture medium. Excess medium on top of slices was 
aspirated to ensure cultures remained exposed to the atmosphere of 5% CO2/95% air in a 
CO2 incubator (Heracell™ 150i CO2 Incubator, Thermo Scientific™, 51026406). Cultures 
were kept at 37 °C in an incubator at 95 % humidity and were allowed to become attached 
to membrane inserts for 8 days prior to the start of experiments. 

Dexamethasone administration and immunohistochemistry 

 At 8 days in vitro, the medium of cultures (n=6/group) was replenished with culture 
medium containing either vehicle (methanol) for control group or dexamethasone (Dex; 
100 µM) for two different stress groups. Soon after, cultures were placed again in the CO2 
incubator. 6 h later, a group of cultures (hereafter named 6h-Dex) with Dex was transferred 
to plates containing PBS and washed with PBS 3 times to remove Dex. This exposure time 
was selected as a trace for early changes in gene expression induced by Dex. Then, the 
cultures were fixed in 4 % paraformaldehyde for 30 mins (adding 1 ml PFA above and 1 ml 
PFA below each insert) and subsequently washed with PBS (3 washes). The slices were kept 
in PBS 0.2 % sodium azide at 4 ºC. The remaining cultures where fixed following the same 
procedure 24 h after Dex was applied (what makes this group to be referred as 24h-Dex). 
This exposure time represents a more prolonged chronic stress condition.  

 Note that unlike in the case of acute stress animal model, these organotypic slices 
are to be defined as a chronic stress model, keeping in mind the large duration of Dex (6 and 
24 h) in the culture medium. 
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 Once all slices were fixed, immunohistochemistry with the same primary and 
secondary antibody sets used for animals was performed, primarily following the protocol 
defined by Gogolla et al. (2006). Briefly, permeabilization and blocking of the tissue was 
performed with 5 % BSA and 0.5 & Triton X-100 in PBS solution, overnight at 4 ºC. The 
membranes were then carefully cut off from the inserts with the help of forceps and scalpel 
and placed in a humidity incubation box on top of plastic covers (slices facing up). The 
primary antibodies (against CR, PV and NDMAR1) were prepared in the blocking solution, 
each at 1:250 concentration. 80 µl of the primary antibodies solution were put onto each 
membrane, and incubated overnight at 4 ºC in the closed humidity incubation box. Then, 
the slices were transferred on the covers to 6-well plates (one membrane per well), letting 
the cover sink in the well beneath the membrane. Slices where washed three times with 
PBS, for 10 mins each. Next, as PBS was removed membranes were let to stick to the top of 
the covers that where at the bottom of the well. The membranes were transferred again on 
the covers to the humidity incubation box. For the incubation of the secondary antibodies, 
80 µl (1:1000 dilution each with DAPI in 1:1000) was added onto de slices. The humidity 
incubation box was kept closed at room temperature at dark for 4 h. Washes of the 
secondary antibodies were realized in the same way as for the primaries. Whole membranes 
with the stained slices facing up were mounted on glass slides with mounting media to 
preserve fluorescence (CSH, 2006) and stored at 4 ºC in dark.  

Image acquisition  

Images were acquired using a 20x objective lens on a Leica Stellaris 5 confocal 
microscope using the Las X Navigator module to acquire a TileScan image of the regions of 
interest (ROIs). Z-stacks were obtained to visualize section in depth. For every ROI a pile of 
12 slices made the z-stack, spaced by a distance of 1.9 µm. For image analysis 5 consecutive 
slices were chosen manually which yielded on a 7.6-µm-thick brain section.  

 The confocal settings were kept constant all along the imaging process to preserve 
the comparability among images. Parameters concerning the captured signal, e. g., the gain 
and the intensity, were set to obtain a signal halfway to maximum intensity value, to avoid 
saturation and ensure full conservation of the signal. A 405 nm diode and a white laser were 
used for excitation of the fluorophores, adjusting the excitation wavelengths to each 
fluorophore. A hybrid detector was assigned to each channel, with the proper wavelength 
windows to avoid fluorescence crosstalk (Table 1). 

Table 1. Settings for image acquisition in the confocal microscope. 

 
HyD: hybrid detector; BLA; basolateral amygdala; CA1: cornus ammonis 1; PrL: prelimbic cortex; NaC: 
nucleus accumbens. BLA, CA1 and PrL brain area images were acquired with the same confocal 
settings. To image NaC settings were reset to avoid saturation since the signal intensity relative to 
other areas was considerably higher.  

Computer-assisted image analysis 

Digital images are data. This allows image analysis to be operated by computers, 
offering unbiased processing of the information and perfect reproducibility. For this reason, 
we focused on developing a workflow with computer programs to extract the information 
of interest, avoiding the experimenter’s subjectivity to the greatest degree possible. Several 
software was used to accomplish the analysis. For the first step, Fiji-ImageJ (1.53c; 
Schindelin et al. 2012; Schneider et al., 2012), a broadly used software in biological science, 
was the main tool for the extraction of specific information including cell count and signal 

Gain Intensity Gain Intensity Gain Intensity

HyD S1 (658 nm - 766 nm) 653 nm 5 16 % 5 16 % 4 13 %

HyD S2 (560 nm - 627 nm) 553 nm 6 4 % 4 2 % 2 0.4 %

HyD S3 (495 nm - 557 nm) 490 nm 4 4.5 % 4 4.5 % 3 6.3 %

HyD S3 (420 nm - 506 nm) 405 nm 2 2.5 % 2 2.5 % 2 2 %

PrL, CA1, BLA of rats NaC of rats CA1 of hipp. slices
Laser lineDetector (wavelength window)
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intensity. Likewise, Python (3.9.7; Van Rossum and Drake, 1995) scripts helped organizing 
and restructuring the output obtained from Fiji-ImageJ. Finally, R software (4.2.0, 2022-04-
22 ucrt; R Core Team 2022) was used for statistical analysis (detailed in the next section). 

The process was designed to get information about cell density and changes in signal 
intensity of the somas. Precisely, the analysis can be understood in two parts: i) the 
quantification of the number and signal intensity of PV+ and CR+ cells, and ii) the 
colocalization with NMDAR1 signal within those cells. Three aspects or variables were 
obtained from each of the parts, as described below. To accomplish that, Fiji-ImageJ macros 
were built, which permitted automation of the process over all images (find the macros in 
Supplementary information).  

For the first part, on which CR and PV channels were analyzed, a key main function 
of the macros consists on creating selections outlining signal-positive cells. A well-known 
tool to do that in ImageJ is the “Analyze particles” command, which creates a set of ROIs 
surrounding objects with a pixel value over a threshold. “Analyze particles” works by 
scanning the image until it finds the edge of the object with the defined threshold. The 
drawback with that method is that in a sample where cells display different intensities of 
fluorescence, it is challenging to find a threshold where all and exclusively the cells are 
outlined: there may be cells or areas of cells with pixel values below the threshold led 
outside the selection (Fig. 1a) and/or areas inside the selection not belonging to the 
structure of the cell (Fig. 1b).  

 

   “Analyze particles”                                                                                         Proposed method 

    

Figure 1. “Analyze particles” vs. proposed method. It is an image of BLA of an stressed 
rat, labelled for calretinin. On image a a relatively high threshold was applied for “Analyze 
particles” method, and indicated by an arrow are the cells the method failed to be selected 
(or are partially selected) due to their low intensity values that were led under the 
threshold. On image b a relatively low threshold was set for “Analyze particles” method, on 
which arrows indicates structures that are not somas the method selected because they 
display an intensity over the threshold. Asterisks (*) always indicate selections that contain 
structures other than somas. Note that the proposed method (image c) selects just the 
somas and all the somas, efficiently outlining the edge of the structure. 

Outlining the whole cell body accurately is a prerequisite to assess its overall 
fluorescence intensity. Hence, an alternative to “Analyze particles” was developed. For this 
purpose, we took advantage of “Find Maxima” and “Wand Tool” commands. After some 
basic preliminary image processing (background subtraction, application of filters…) “Find 
Maxima” was run for identifying pixels displaying maximum of luminance (the so-called 
maxima), with a determined prominence threshold. Afterwards, the macro runs the “Wand 
Tool” through every maximum, which selects a contiguous area under the condition that all 
pixel values in that area must be in the range initial value – tolerance to initial value + 
tolerance. In our images, signal intensity inside somas is quite homogeneous, with a gradual 

* * 
* 

* 

* 

a b c 

high threshold low threshold 

200µm 
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decline towards the edges. Thus, for different maxima a given tolerance threshold leads to 
different selections for every cell. Yet, it was found that a fixed ratio between the value of 
the tolerance and the maximum would outline the cell soma regardless of the value of the 
maximum, making it possible to run a maximum-dependent tolerance value for each 
maximum (Fig. 1c; Table 2). In a nutshell, the aim is to run “Find Maxima” command with an 
optimal prominence threshold to select a single maximum in each cell, and next run the 
“Wand Tool” over the maxima with the tolerance value that fits the stablished 
tolerance/maximum ratio for the cell soma selection in each case. 

Table 2. Parameters for creating (with Fiji-ImageJ) and filtering (in Python) cell selections. 

 
Hippo.: hippocampal; CR: calretinin; PV: parvalbumin. 

After obtaining the cell soma outlines, parameters such as area, shape descriptors 
and the integrated density were measured in every cell selection. Cell selections were 
filtered by circularity and area to exclude unspecific selections using Python (see Table 2). 
Equally, Python facilitated the calculations of the three variables obtained out from the 
ImageJ-Fiji data: 

Cell density. We calculated the neuronal densities using the following formula as 
reported earlier (Gabbot et al., 1997): the number of counted cells was divided by 
the volume of the brain area and expressed as cell-number/mm3 volume. 

Mean CTCF. CTCF stands for “corrected total cell fluorescence” and is defined by the 
formula CTCF = integrated density - (cell area × background mean pixel value) [A.U.]  
(El-Sharkawey, 2016). The average CTCF was calculated for each cell selection, thus, 
this variable is a measure of the mean CTCF value of an analyzed tissue area. The 
mean CTCF gives a sense of the average marker expression (or fluorescence 
intensity) the cells of an analyzed image display.  

Standard deviation (SD) of the mean CTCF. This variable is a measure of the standard 
deviation of the mean CTCF of an analyzed tissue area. It is meant to provide 
information on the variability of CTCF values within the area; i.e., the range of the 
marker expression level of the cells. Most of the cells may have same CTCF value 
(low SD), or there may be huge differences on the CTCF values (high SD). 

For the second part regarding the colocalization analysis in Fiji-ImageJ, NMDAR1 
signal was studied in both CR and PV channels independently. For that matter, the outlines 
of CR or PV were displayed (case-by-case) onto NMDAR1 channel and measured NMDAR1 
signal in those selections (Fig. 2). Again, three variables were extracted from these data 
using Python: 

Percentage of NMDAR1 expressing CR+ or PV+ cells. CTCF values of NMDAR1 within 
CR+ or PV+ cell selections were calculated. A threshold of 5000 units for CTCF of 
NMDAR1 was set to consider the cell as NMDAR1+. 

CTCF mean of NMDAR1 in CR+ or PV+ cells. The mean of NMDAR1 CTCF of all the CR+ 
or PV+ cell selections of an analyzed tissue area. 

Cell soma selecting parameters
rats 

CR channel

rats 

PV channel

hippo. slices 

CR channel

hippo. slices

PV channel

Prominenece threshold 5000 6000

(exc: CA1 10000)

5000 5000

Tolerance/Maximum  ratio 0.65 0.65

(exc: CA1 0.55)

0.55 0.25

Area filter (µm2) >60, <1000 >75, <1000 >50, <1000 >20, <200

Circularity filter 0.55 0.65 0.60 0.60
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CTCF SD of NMDAR1 in CR+ or PV+ cells. The standard deviation of the NMDAR1 CTCF 
mean of the CR+ or PV+ cells of an analyzed tissue area. This variable is meant to 
provide information on the variability of NMDAR1 CTCF values within the tissue 
area as previously explained in the first part of the analysis. 

 

 

                            

 

 

 

 

 

 

 

  

 

 

Fig. 2. A general visual representation of the image analysis workflow. In the first part 
of the analysis soma selections are created for the quantification study of CR+ or PV+ cells 
(in the figure calretinin is displayed). In the second part the outlines obtained in the first 
part are superposed in NMDAR1 channel images. These images are of the prelimbic cortex 
of a stressed rat. CR: calretinin; PV: parvalbumin. 

Oftentimes, while analyzing images the experimenter chooses a ROI which 
comprises a specific area of interest instead of analyzing the whole original image that may 
contain other parts not belonging to the area of interest. At the beginning of this workflow 
the macros permit, if needed, interacting with the experimenter to select a ROI of the 
specific brain area, whose position is adjustable to the image in each case by the 
experimenter’s criteria (Fig. 3). 

 

2nd part  

Colocalization study 

of CR+/PV+ cells 

with NMDAR1 

1st part  

 
 

Quantification study 

of CR+/PV+ cells 
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Fig. 3. Snapshot of the user interaction of a running the macro. The rectangle in red 
show the window that sets the interaction with the user, so the user can choose the region 
of interest moving the position of the rectangle in yellow. 

The workflow was executed in all images of the brain areas of interest (PrL, NaC, 
BLA and CA1) of the rats plus CA1 of the organotypic hippocampal slices. All details of image 
processing are determined in the codes (Fiji-ImageJ and Python) themselves (see 
Supplementary information). 

Statistical analysis 

 To test whether statistically significant differences exist between stressed and not-
stressed groups of rats Student’s unpaired t-test was applied. In the case of hippocampal 
organotypic slices, one-way analysis of variance (ANOVA) was the chosen test, followed by 
Tukey’s honestly significant difference (HSD). Results are presented with p-values, 
estimates and 95 % confidence intervals (CIs). Statistical significance is considered for p-
values below 0.05, although up to 0.1 biological importance was credited. These statistical 
tests assume groups being compared present homogeneous data, both being normally 
distributed and having equal variances. For small samples as the ones on hands, statistical 
tests to check these features are not reliable, herein, descriptive statistics have been used: 
normality was assessed by normal QQ plots, while equality of variances and homogeneity 
were examined displaying boxplots and violinplots. Statistical analysis was carried out in R 
(2021.9.1.372), using the following packages: “extrafont“ (Chang, 2022), ,”ggsci” (Xiao, 
2018), “ggplot2” (Wickham et al., 2016), “ggprism” (Dawson, 2021), “ggpubr” (Kassambra, 
2020), “gridExtra” (Auguie, 2017),“readxl” (Wickham et al., 2019), “see” (Lüdecke et al., 
2021), “tidyverse” (Wickham et al., 2019), “xlsx” (Dragulescu and Arendt, 2020). 

 

RESULTS 

Stress decreases parvalbumin expression in CA1 of rats  

In the acutely stressed rat model in respect to parvalbumin expression, there is an 
estimated 906345 units decrease of the mean CTCF, that is, 27 % of decrease (p-value = 
0.028, 95 % CI = 109338–1703352; Fig. 4). No changes in CR+ cell density was 
contemplated. The variability of CTCF values (as given by the SD of the mean of CTCF) did 
not change neither, concluding that in both groups (stressed and not-stressed) the 
expression levels extended to the same range.   

Stress decreases calretinin expression in BLA of rats 

Expression of the markers can change in different aspects: in cell number, intensity 
(mean CTCF), and distribution of the expression level among cells (SD CTCF). From the 
analysis of the CR marker in BLA of the rats, a decrease of the CR expression was found in 
stressed rats. The unpaired t-test estimated that the mean CTCF decreased 230322 units, 
which is a decrease of the 21 % (p-value = 0.045, 95 % CI = 5245–455397; Fig. 4). 
Nonetheless, no changes in CR+ cell density was contemplated. The variability of CTCF 
values (as given by the SD of the mean of CTCF) did not change neither, concluding that in 
both groups (stressed and not-stressed) the expression levels extended to the same range.  

Stress alters parvalbumin expression in CA1 in hippocampal slices 

 As in CA1 of rats, a decrease in mean CTCF can also be seen in hippocampal 

organotypic slices treated 24 h with Dex comparing with control group, being the estimated 

difference 52873, 35 % decrease (p-value = 0.097, 95 % CI = -8689–114435; Fig. Sb). In 

spite the decrease in mean CTCF, the number of PV+ cells increases by 14378314 cells/mm3 

estimation, what is a 62 % of increment (p-value = 0.026, 95 % CI = 1698688–27057940 
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[cells/mm3]; Fig. Sc). The SD of the mean CTCF (the variability of the PV signal) is reduced 

52 % in 24h-Dex compared to control, to an estimated value of 86424 (p-value = 0.053, 95 

% CI = 1325–189308; Fig. 5). 

 

                  Not_stressed                                   Stressed 

            

       

 
Fig. 4. Changes in parvalbumin and calretinin expression in the rat model of acute 

stress. a Confocal fluorescence images of stressed and not stressed rats of the brain areas 

(BLA and CA1) where alterations in parvalbumin (PV) and calretinin (CR) expression were 

found. b We found a decrease in the mean corrected total cell fluorescence (CTCF) in CA1 of 

stressed rats; and that they also display minor mean CTCF value in basolateral amygdala 

(BLA; Student’s unpaired t-test, nNot-stressed=9, nStressed=10). Data is shown with mean and 

standard deviation bars. *p> 0.5. 

Stress increases calretinin expression in the CA1 of hippocampal slices 

In hippocampal slices, there is a tendency of CR expression to increase from the 6h-
Dex group to the 24h-Dex. Differences in the mean CTCF with an estimation of 1300637 
units was found, understood as the 50 % of increment (adj. p-value = 0.014, 95 % CI = 
274024–2327250; Fig. 5). No changes in CR+ cell density was contemplated. The variability 
of CTCF values (as given by the SD of the mean of CTCF) did not change neither, concluding 
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that in both groups (stressed and not-stressed) the expression levels extended to the same 
range.   

 

                                 Control                                          6h-Dex                                          24h-Dex 

                 

        

 
Fig. 5. Changes in parvalbumin and calretinin expression in organotypic rat 

hippocampal slice model of chronic stress. a Confocal fluorescence images of rat 

hippocampal slices (CA1 region) treated with vehicle (control), or with dexamethasone 
(Dex) for 6 h (6h-Dex) and 24 h (24h-Dex) labelled for parvalbumin (PV) and calretinin (CR). 

b We found an increase in the mean corrected total cell fluorescence (CTCF) in 24h-Dex 
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compared to 6h-Dex, and a gradual decrease of the mean CTCF of PV, although an increase 

in the PV+ cells density and a decrease in standard deviation (SD) of CTCF of PV (one way 

ANOVA, n=6 slices/group). Data is shown with mean and standard deviation bars. *p> 0.5.  

 
Stressed did not alter NMDAR1 expression in the rat model nor in hippocampal slices 

 We did not find any difference in stress conditions while analysing the NMDAR1 
expression of the CR+ or PV+ cells (case-by-case), not in animals nor in the organotypic 
hippocampal slices (data not shown). 

Table 3. A summary of the statistics: results of Student’s unpaired t-tests for animal 
experiments and Tukey’s HSD tests for hippocampal slices. 

 
ED: estimated difference; CI: confidence interval; SD: standard deviation; CR: calretinin; PV: 
parvalbumin; CTCF: corrected total cell fluorescence; Dex: dexamethasone, BLA: basolateral 
amygdala; CA1: cornus ammonis 1. 

 

Animals

Variables Not-stressed 

(n = 9)

Stressed 

(n = 10)

ED 

(95 % CI)

p -value

BLA, mean CR CTCF

(SD)

1080580 

(222144)

850258 

(228266)

230322

(5245; 455397)

0,045

CA1, mean PV CTCF

(SD)

3160036

(950839)

2253691 

(606665)

906345

(109338; 1703352)

0,028

Hippocampal slices

Variables Group 1

(n = 6)

Group 2

(n = 6) ED 

(95 % CI)

adj. p -value

CA1, mean CR CTCF

(SD)

6h-Dex

865718 

(655179)

24h-Dex

2166355  

(535811)

-1300637

(-2327250; -274024)

0,014

CA1, PV cell density

(SD)

control

232573 

(47478)

24h-Dex

14610887  

(13253810)

-14378314

(-27057940; -1698688)

0,026

CA1, mean PV CTCF

(SD)

control

149575 

(29249)

6h-Dex

154926 

(154926)

24h-Dex

96702  

(46787)

52873

(-114434; 8688)

0,097

58223

(-3338; 119785)

0,065

CA1, SD PV CTCF

(SD)

control

180416 

(71876)

24h-Dex

86424  

(66425)

93992

(1325; 189308)

0,053
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DISCUSSION 

Experiments performed with the animal model and the organotypic hippocampal 
slices altogether offer a general overview of the internal mechanisms of stress, from acute 
to chronic forms. Stress-related disorders involve complex cellular and molecular changes, 
and GABAergic signalling is currently being addressed as an important system in the field. 
In the present work we attempt to immunohistochemically map the CR and PV changes 
caused by stress and to address the stress-associated learning impairment by labelling 
NMADR1, involved in LTP. 

Regarding the results from the animals of the acute stress model, from all the 
analyzed brain areas, molecular changes were only found in BLA and CA1 of the 
hippocampus. In these areas GABAergic cells give rise to about 20 % of the total neuronal 
population (Hájos. 2021). Many of them are calcium binding proteins such as parvalbumin 
(PV) and calretinin (CR), that buffer intracellular calcium concentrations in neurons and 
thereby modulate calcium transients in activated neurons (Schwaller, 2012; Albrecht et al., 
2021). 

In the case of the BLA, an estimated increase of the 21 % in the mean CTCF of CR was 
found in stressed rats. Predominant cells expressing CR in the BLA are small non-pyramidal 
interneurons with a bipolar or bitufted dendritic arborization pattern, which form synapses 
with the most proximal part of excitatory and inhibitory neurons (McDonald, 1994). As 
earlier reported, CR immunoreactivity in BLA is not only located in local circuit neurons, but 
also in neurons that connect the amygdaloid complex with other brain areas (Sorvari et al., 
1996). In fact, an interesting efference is the anterior BLA that innervates the deep-layer 
calbindin1-negative neurons in ventral CA1. Pi and co-workers (2020) showed that 
stimulating that exact BLA-CA1 connection in mice induces anxiety-like behaviour resulting 
in fewer approaches. Perhaps, this discovery could be an explanation to the impaired 
learning ability (slower learning) of the stressed rats from the present work. It could be the 
case that the decrease in mean CTCF of PV in CA1 could be an extended effect of the decrease 
in mean CTCF of CR in BLA triggered by the BLA-CA1 projection, resulting in the failure of 
animals to accomplish the tasks as Pi and co-workers described. Of course, such a 
hypothesis would need further research. 

 To continue with the results of animal experiments, as already mentioned, the CA1 
of the stressed rats experienced a decline in the mean CTCF of PV, by a magnitude of 27 %. 
PV within the hippocampus is predominantly found in so-called basket cells. Referring to 
their morphological appearance, basket cells extensively contact excitatory cells at the soma 
or the proximal part of the dendrites to provide perisomatic inhibition. Basket cells are 
connected by inhibitory synapses and by gap junctions that allow for a fast coupling of their 
activity (Traub et al., 2001). With their fast-spiking pattern, they control rhythmical activity 
of pyramidal cells (Bartos et al., 2007). The decrease in intracellular expression of PV may 
be detrimental, negatively interfering with the pyramidal cell functions. Some stated that 
low PV via a reduction in the intracellular calcium-buffering capacity may increase the 
vulnerability to excitotoxicity (Vanselow and Keller, 2000). For example, in an animal model 
of motor neuron disease, neurons expressing high levels of PV were particularly resistant 
to excitotoxicity (Elliott and Snider, 1995) and mice overexpressing PV were more resistant 
to cell death (Dekkers et al., 2004). Whether similar processes occur in the hippocampus 
remains to be elucidated in future studies (Filipović et al., 2013). 

Regarding the organotypic hippocampal slices (our chronic stress model) higher 
levels of mean CTCF of CR were detected in the CA1 of 24h-Dex group, precisely, a 50 % of 
increment. In the hippocampus, the CR+ interneurons innervate calbindin-containing 
interneurons as well as vasoactive intestinal peptide (VIP)-containing basket cells. This 
way, CR+ interneurons may participate generating synchronous, rhythmic hippocampal 
activity by controlling other interneurons that establish axodendritic and axosomatic 
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synapses with principal cells (Gulyas et al., 1996). Reduce concentration of calcium-
buffering proteins may likely reflect a functional impairment (Czeh et al., 2018). 

 PV expression changes in several aspects in the CA1 of chronically stressed 
hippocampal slices. There is a decrease of the mean CTCF of PV by a 27 % as seen in CA1 of 
acutely stressed rats. Despite the lower average PV intracellular expression, we found a 
higher PV+ cell density in Dex-24h (62 % higher). And SD of the mean CTCF was reduced 
down to a 35 %, what indicates a lower variability in intracellular expression among cells, 
i.e., most of the cells display a lower and more similar value than those of the control group. 
Again, reduced cytoplasmic protein expression may compromise the vulnerability to 
excitotoxicity (Vanselow and Keller, 2000), but, in this case, increased PV+ cell density may 
indicate a compensatory molecular response.  

Chronic stress is more well-documented in the literature than acute stress, specially 
respecting to the hippocampal structures. There is unanimity while highlighting stress-
related GABAergic dysfunction. Nevertheless, regarding alterations in interneuron markers 
the results are heterogeneous, and the mechanism underlying those changes and the 
downstream consequences are not fully understood. For example, contrary to what we have 
observed, others have reported a decrease in the density of CA1 PV+ cells in Dex-treated rat 
hippocampal slices (Hu et al., 2010), chronic mild stress (CMS) rat model (Czeh et al., 2015), 
chronically stressed rats (Filipovic et al., 2013), socially isolated rats (Filipovic et al., 2017) 
and in a mouse model of adolescent chronic social stress (Wang et al., 2019); while others 
did not find any change at all studying psychosocial stress (Czeh et al., 2005). 

To what molecular learning mechanisms concern, we did not find NMDAR1 changes 
linked to stress, not in the animal model that showed learning impairment in the Skinner 
box test, and neither in the organotypic hippocampal slices. The reason why NMDAR1 
remains the same in the case of hippocampal slices is not surprising, as no learning-like 
changes were externally induced to the cultures. Hence, there was no stimuli to elicit 
alteration in the NMDAR expression. Similarly, NMDAR1 showed no difference in the acute 
stress group of rats. This seems logic if we remember that by the end of the Skinner box test, 
both groups of rats (stressed and control) performed equally. Most probably, changes were 
to be found at the beginning of the test, where stressed rats showed lower performance.  

It is known since long ago that high levels prolonged exposure of corticosterone (a 
glucocorticoid) due to stress suppresses LTP (Kerr et al., 1994; Alfarez et al., 2003). In 
addition, LTD can be facilitated in animals exposed to chronic stress (Yang et al., 2006; Ma 
et al., 2007). Exposure to such corticosterone concentrations activates both MRs and GRs. 
Most of the documented negative impacts have been observed hours after corticosterone 
application (Krugers et al., 2005; Wiegert et al., 2005), suggesting the requirement of GR-
induced genomic mechanisms (Tsai and O’Malley, 1994). The detrimental impacts of 
corticosteron on memory functions could be partly attributed to GR-mediated LTP 
suppression. LTP is suppressed by GR agonists (Pavlides et al., 1995) and stress-induced 
inhibition of LTP is blocked by GR antagonists (Avital et al., 2006). Anyhow, contrary to what 
our collaborators observed in the stressed rats, other studies suggest that acute stress may 
improve cognitive processes under certain conditions (Yuen et al., 2011) and associative 
learning in a glucocorticoid-dependent manner (Beylin and Shors, 2003). 

In summary, the susceptibility of PV and CR neurons to stress may represent a key 
mechanism contributing to functional and structural deterioration in specific brain regions, 
such as the CA1 of the hippocampus or the BLA. Such nuclei are certainly prone to be 
associated with psychiatric illness, especially true for stress-related disorders such as PTSD 
and depression. Further research on PV and CR alterations may open a door to a novel and 
important strategy to promote resilience against stress-related disorders in the future. In 
this respect, our data provide information to the increasingly growing field of the 
interneuron interplay in stress. 
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SUPPLEMENTARY INFORMATION 

Fiji-ImageJ macros  

 We wrote six Fiji-ImageJ macros and two Python scripts for the computer-assisted 

image analysis. The workflow starts with the Macro 1, which creates projections out from 

original z-stack image piles. The projections are a sum of 5 consecutive images of the pile, 

which for each case are at different indexes. Macro 2 is for the manual selection of the ROIs 

of the brain area to be analyzed. Macro 3 provides cell soma selections and data for the 

calculation of quantification variables of PV and CR channels; it is the input for Python Script 

2. Macro 4 measures the area of the analyzed brain ROI, discarding the space that cracks 

some damaged tissues have (this is necessary for the calculation of cell density). Macro 5 

creates ROIs in NMDAR1 channels matching those in CR and PV (using Macro 2 output). 

Macro 6 calculates the information needed for colocalization analysis, and is the input for 

Python Script 2. 

Macro 1. Creates sum projections of specified z-stacks from original TIFF images of 12 slices. 

setBatchMode(true); 
 
//Type the brain area and channel to process  
//(and allow the corresponding zstart bellow to be read): 
brain = "CA1" 
channel = "ch00" 
 
// All (38) images 
input = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_"+channel+"/" 
output = "C:/Users/Usuario/…brain+"_ordered/"+brain+"_"+channel+"_results/"  
 
// PrL: 
//zstart_ar = newArray(4,5,3,3,5,6,3,6,7,8,4,4,7,4,1,2,4,6,3,5,5,5,4,2,7,8,1,8,4,1,4,3,6,7,5,5,7,7);  
 
// CA1: 
zstart_ar = newArray(5,3,4,3,8,8,8,7,3,3,4,4,3,4,3,4,4,4,2,8,6,4,8,6,6,4,5,4,3,4,7,4,4,3,7,7); 
 
// BLA: 
//zstart_ar = newArray(4,3,5,5,3,8,5,5,4,4,3,3,5,5,5,7,3,5,8,8,8,2,3,7,4,5,6,5,5,3,3,3,3,6,3,5); 
 
// NaC: 
//zstart_ar = newArray(8,1,4,3,5,6,4,4,3,3,3,3,6,3,3,3,8,8,1,3,8,8,8,8,8,8,3,4,4,5,4,5,6,7,2,4,6,8); 
 
// Hipo: 
//zstart_ar = newArray(5,5,4,5,3,3,5,4,3,5,5,3,3,4,3,2,7,4); 
 
 
list = getFileList(input); 
for (i = 0; i < list.length; i++){ 
        open(input + list[i]); 
        fname = File.getNameWithoutExtension(input + list[i]);   

https://doi.org/10.21105/joss.01686
https://doi.org/10.1016/j.neuroscience.2005.05.039
https://cran.r-project.org/package=ggsci
https://doi.org/10.1002/hipo.20181
https://doi.org/10.3389/fnsyn.2013.00008
https://doi.org/10.1038/mp.2010.50
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        ar = split(fname, "_" ); 
        ar1 = Array.deleteIndex(ar, 6); 
  ar2 = Array.deleteIndex(ar1, 5); 
  iname = String.join(ar2, "_"); 
  
  zstart = zstart_ar[i]; 
  zstop= zstart+4; 
   
  selectWindow(list[i]); 
  run("Z Project...", "start="+zstart+" stop="+zstop+" projection=[Sum Slices]"); 
  print(zstart + " - " + zstop + " / " + list[i]); 
  selectWindow(list[i]); 
  close(); 
  selectWindow(getTitle()); 
  setOption("ScaleConversions", true); 
  run("16-bit"); 
   
  saveAs("Tiff", output + iname + "_rawzproject.tif"); 
  close(); 
} 
 
selectWindow("Log"); 
saveAs("Text", output + ar[3] + "_z-stack.txt"); 
close("Log"); 
 
setBatchMode(false); 

 

Macro 2. Asks the user to select a ROI (rectangle) and stores the output in a separate folder. 

setBatchMode(true); 
 
brain = "CA1" 
 
input = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_ch02_results/" 
output = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_rect_ROIs/" 
 
allfiles = getFileList(input); 
list = Array.filter(allfiles, "_rawzproject.tif"); 
 
for (i = 0; i < list.length; i++){ 
  open(input + list[i]); 
  fname = File.getNameWithoutExtension(input + list[i]);   
        ar = split(fname, "_" ); 
        ar1 = Array.deleteIndex(ar, 6); 
        ar2 = Array.deleteIndex(ar1, 5); 
  iname = String.join(ar1, "_"); 
  iname2 = String.join(ar2, "_"); 
   
  //run("Brightness/Contrast..."); 
  run("Enhance Contrast", "saturated=0.35"); 
   
        setBatchMode(false); 
  makeRectangle(1050, 588, 522, 1932); 
  roiManager("Add"); 
  //setTool("rectangle");  'igual hau ez da ezta behar 
  waitForUser("Waiting for user to choose the proper ROI. Press OK to continue...."); 
  setBatchMode(true); 
   
  roiManager("Add"); 
  roiManager("Select", 1); 
  roiManager("Rename", iname2 + "_rect"); 
  roiManager("Save", output + iname2 + "_rect.roi"); 
  run("Select All"); 
  roiManager("Deselect"); 
  roiManager("Delete"); 
      close(getTitle()); 
} 
 
run("Close"); 
setBatchMode(false); 

 

Macro 3. Creates cell soma selections and data for quantification analysis. 

setBatchMode(true); 
 
Type the brain area and channel to process  
brain = "CA1" 
channel = "ch01" 
prominence = 10000 
cte = 0.55 
 
// All images 
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dir = "C:/Users/Usuario/…/brain+"_ordered/"+brain+"_"+channel+"_results/"  
dir_rect = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_rect_ROIs/"  
 
print("brain: " +brain) 
print("channel: "+channel) 
print("prominence: "+prominence) 
print("cte: "+cte) 
 
saveAs("Text",  dir + "metadata.txt"); 
close("Log"); 
 
allfiles = getFileList(dir); 
list = Array.filter(allfiles, channel+"_rawzproject.tif"); 
 
for (i = 0; i < list.length; i++){ 
        open(dir + list[i]); 
        fname = File.getNameWithoutExtension(dir + list[i]);   
        ar = split(fname, "_" ); 
        ar1 = Array.deleteIndex(ar, 6); 
        ar2 = Array.deleteIndex(ar1, 5); 
  iname = String.join(ar1, "_"); 
  iname2 = String.join(ar2, "_"); 
  
  selectWindow(list[i]); 
  //selectWindow(getTitle()); 
  setOption("ScaleConversions", true); 
  run("16-bit"); 
   
  open(dir_rect+iname2+"_rect.roi"); 
  run("Duplicate...", "title=rawzproject"); 
  selectWindow(list[i]); 
  close(list[i]); 
  selectWindow("rawzproject"); 
  run("Duplicate...", "title=processed"); 
  selectWindow("rawzproject"); 
  selectWindow("processed"); 
  run("Subtract Background...", "rolling=30"); 
  run("Gaussian Blur...", "sigma=2"); 
   
  run("Find Maxima...", "prominence="+prominence+" exclude output=[List]"); 
  for (j = 0; j < nResults(); j++) { 
      x = getResult("X",j); 
   y = getResult("Y",j); 
   newcol = getPixel(x,y); 
      setResult("PixelValue", j, newcol); 
   pv = getResult("PixelValue",j); 
   tolerance = pv*cte; 
   doWand(x, y, tolerance,"8-connected"); 
   roiManager("add"); 
   run("Select None"); 
  } 
  updateResults(); 
  saveAs("Results", dir + iname + "_Results.csv"); 
  close("Results"); 
  //run("Close"); 
  //saveAs("Tiff", dir + iname + "_processed.tif"); 
  close(); 
   
  last = roiManager("Count"); 
  if (last != 0) { 
   roiManager("Combine"); 
   roiManager("Add"); 
   roiManager("Select", last); 
 
   run("Create Mask"); 
 
   run("Select All"); 
   roiManager("Deselect"); 
   roiManager("Delete"); 
 
   selectWindow("Mask"); 
   run("Select None"); 
   run("Watershed"); 
   run("Analyze Particles...", "exclude add"); 
   close(); 
   
   selectWindow("rawzproject"); 
   run("Set Measurements...", "area mean standard min shape integrated redirect=None 
decimal=3"); 
   
   nROIs = roiManager("Count"); 
   for (k = 0; k < nROIs; k++) { 
    roiManager("Select", k); 
    roiManager("Rename", k+1); 
    run("Measure"); 
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    setResult("ROI_name", k, Roi.getName); 
   } 
  
   run("Select All"); 
   if (last > 1) { 
    roiManager("Combine"); 
   } 
   run("Make Inverse"); 
   run("Measure");  // measuring background 
   lastrow = Table.size()-1; 
   setResult("ROI_name", lastrow, "bg"); 
   saveAs("Results", dir + iname + "_Data.csv"); // last row is background data 
   close("Results"); 
  } 
     
  selectWindow("rawzproject"); 
  if (roiManager("count") > 0) { 
   run("Select None"); 
   roiManager("Show None"); 
   roiManager("Deselect"); 
   roiManager("Save", dir + iname + "_ROIs.zip"); 
   roiManager("Delete");  
   close("Manager"); 
  } 
  saveAs("Tiff", dir + iname + "_rect_rawzproject.tif"); 
  close();  
} 
 
setBatchMode(false); 

 

Macro 4. Creates the total CA1 area without cracks ROIs and measures the area (it uses ch01 images, 

but the resulted ROI can be used over any channel). 

setBatchMode(true); 
 
//Type the brain area and channel to process  
brain = "CA1" 
 
// All images 
input = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_ch01_results/" 
input_rect = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_rect_ROIs/" 
output = "C:/Users/Usuario/…/"+brain+"_noCracks/"  
 
allfiles = getFileList(input); 
list = Array.filter(allfiles, "rect_rawzproject.tif"); 
rectfiles = getFileList(input_rect); 
 
for (i = 0; i < list.length; i++){ 
        open(input + list[i]); 
        fname = File.getNameWithoutExtension(input + list[i]);   
        ar = split(fname, "_" ); 
        ar1 = Array.deleteIndex(ar, 6); 
        ar2 = Array.deleteIndex(ar1, 5); 
        iname = String.join(ar2, "_"); 
     
  open(input_rect+rectfiles[i]); 
  run("Crop"); 
   
  selectWindow(list[i]); 
  run("Gaussian Blur...", "sigma=0.5"); 
  setAutoThreshold("Default dark"); 
  //run("Threshold..."); 
  setThreshold(0.0000, 0.0000); 
  setOption("BlackBackground", false); 
  run("Convert to Mask"); 
  run("Dilate"); 
  run("Fill Holes"); 
  run("Analyze Particles...", "size=1000.00-Infinity add"); 
   
  run("Set Measurements...", "area mean standard min shape integrated redirect=None 
decimal=3"); 
     
  nROIs = roiManager("Count"); 
  if (nROIs != 0) { 
   run("Select All"); 
   roiManager("Combine"); 
   run("Make Inverse"); 
   roiManager("add"); 
  } else { 
   run("Select All"); 
   roiManager("add");  
  } 
  roiManager("Select", roiManager("Count")-1); 
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  roiManager("Rename", "Area_"+iname); 
  run("Measure");  // measuring ROI_Area 
  roiManager("Select", roiManager("Count")-1); 
  //roiManager("Select", newArray(roiManager("Count")-2)); 
  //roiManager("Delete"); 
  roiManager("Save", output + iname + "_noCracksROI.roi"); 
  run("Select All"); 
  roiManager("Deselect"); 
  roiManager("Delete"); 
       
  setResult("name", i, iname); 
   
  selectWindow(list[i]); 
  close(); 
  run("Close"); 
} 
 
saveAs("Results", output + brain + "_noCracksArea.csv") 
close("Results"); 
 
setBatchMode(false); 

 

Macro 5. Creates rect_rawzprojects of ch00 for the colocalization study. 

setBatchMode(true); 
 
brain = "CA1" 
 
dir = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_ch00_results/" 
dir_rect = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_rect_ROIs/" 
 
allfiles = getFileList(dir); 
list = Array.filter(allfiles, "ch00_rawzproject.tif"); 
 
for (i = 0; i < list.length; i++){ 
        open(dir + list[i]); 
        fname = File.getNameWithoutExtension(dir + list[i]);   
        ar = split(fname, "_" ); 
        ar1 = Array.deleteIndex(ar, 6); 
        ar2 = Array.deleteIndex(ar1, 5); 
        iname2 = String.join(ar2, "_"); 
       
  open(dir_rect+iname2+"_rect.roi"); 
  run("Crop"); 
  //selectWindow(list[i]); 
  saveAs("Tiff", dir + iname2 + "_ch00_rect_rawzproject.tif"); 
  close(); 
} 
 
setBatchMode(false); 

 

Macro 6. Returns filtered ROIs set and colocalization information corresponding to the ch00. 

setBatchMode(true); 
 
//Type the brain area and channel to process  
brain = "CA1" 
channel = "ch01" 
zproject = "rect_rawzproject" // specify if it is "rect_rawzproject" or "rawzproject". 
 
// All images 
dir00 = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_ch00_results/"  
dir0X = "C:/Users/Usuario/…/"+brain+"_ordered/"+brain+"_"+channel+"_results/"  
 
function findRoiWithName(roiName) {  
 nR = roiManager("Count");  
  
 for (i=0; i<nR; i++) {  
  roiManager("Select", i);  
  rName = Roi.getName();  
  if (matches(rName, roiName)) {  
   return i;  
  }  
 }  
 return 1;  
}  
 
 
run("Set Measurements...", "area mean standard min integrated redirect=None decimal=3"); 
 
filesdir00 = getFileList(dir00); 
list = Array.filter(filesdir00, "ch00_"+zproject+".tif"); 
filesdir0X = getFileList(dir0X); 
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ROIsfiles = Array.filter(filesdir0X, channel+"_ROIs.zip"); 
 
for (j = 0; j < ROIsfiles.length; j++){ 
    fname = File.getNameWithoutExtension(dir00 + ROIsfiles[j]);   
    ar = split(fname, "_" ); 
    ar1 = Array.deleteIndex(ar, 6); 
    ar2 = Array.deleteIndex(ar1, 5); 
    //ar3 = Array.deleteIndex(ar2, 5); 
 iname = String.join(ar1, "_"); 
 iname2 = String.join(ar2, "_"); 
 for (i = 0; i < list.length; i++) { 
  if (list[i].startsWith(iname2)) { 
   open(dir00 + list[i]); 
         open(dir0X+"coloc_"+brain+"_"+channel+".csv"); 
   Table.rename("coloc_"+brain+"_"+channel+".csv", "Results"); 
   headings = split(String.getResultsHeadings); 
   
   roiManager("Open", dir0X+iname2+"_"+channel+"_ROIs.zip"); 
     
   ROIseq = newArray; 
   head = headings[i]; 
     
   for (k = 0; k < nResults(); k++) { 
       v = getResult(head, k); 
       ROIseq = Array.concat(ROIseq, v); 
   } 
   
   ROIseq2 = newArray; 
   for (n = 0; n < lengthOf(ROIseq); n++) { 
    if (isNaN(ROIseq[n])) { 
     continue; 
    } else { 
     ROIseq2 = Array.concat(ROIseq2, ROIseq[n]); 
    }   
   } 
    
   for (m = 0; m < lengthOf(ROIseq2); m++) { 
    roiManager("Select", findRoiWithName(ROIseq2[m]+1)); 
    roiManager("Delete"); 
   } 
    
   if (roiManager("count") > 0) { 
    roiManager("Save", dir0X+iname2+"_"+channel+"_filteredROIs.zip"); 
       
    close("Results"); 
   
    nROIs = roiManager("Count"); 
    for (l = 0; l < nROIs; l++) { 
     roiManager("Select", l); 
     run("Measure"); 
     setResult("ROI_name", l, Roi.getName); 
    } 
    
    run("Select All"); 
    roiManager("Deselect"); 
    roiManager("Delete"); 
   } else { 
    close("Results"); 
   } 
    
   selectWindow(list[i]); 
   run("Duplicate...", "title=mask.tif"); 
   selectWindow("mask.tif"); 
  
   setAutoThreshold("Triangle dark"); 
   //run("Threshold..."); 
   setOption("BlackBackground", false); 
   run("Convert to Mask"); 
   run("Analyze Particles...", "size=20-Infinity add"); 
   close("mask.tif"); 
   
   last = roiManager("count"); 
   if (last != 0) { 
    if (last > 1) { 
     run("Select All"); 
     roiManager("Combine"); 
    } 
    run("Make Inverse"); 
    run("Measure");  // measuring background 
   } else { 
    run("Select None"); 
    run("Measure");    
   } 
   selectWindow("Results"); 
   lastrow = Table.size()-1; 
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   setResult("ROI_name", lastrow, "bg"); 
   saveAs("Results", dir0X + iname + "_ColocData.csv"); // last row is background 
data 
   close("Results"); 
   
   if (roiManager("count") != 0) { 
    run("Select All"); 
    roiManager("Deselect"); 
    roiManager("Delete"); 
   } 
   close("Manager"); 
    
   selectWindow(list[i]); 
   close(); 
  } 
 } 
} 
 
setBatchMode(false); 

 

Python scripts 

 Script 1 works on Fiji-ImageJ Macro 3 data output and provides information of the 

variables of the quantification study for the subsequent statistical analysis. Script 2 analyzes 

Macro 6 data output and returns variables of the colocalization study for the subsequent 

statistical analysis. 

Script 1. Creates output of quantification variables and provides filtering information for Macro 4. 

# %% Libraires 
 
import os 
import pandas as pd #for dataframe handling 
pd.set_option('display.max_rows', None) 
pd.set_option('display.max_columns', None) 
pd.set_option('display.width', None) 
pd.set_option('display.max_colwidth', None) 
import numpy as np #for statistics 
from xlwt import Workbook 
 
 
# %% Defining functions 
 
def CTCF(i, df_filt, df1, df2):  # i = index of row of a dataframe, df = a dataframe 
    '''calculates the CTCF for each cell-ROI''' 
    IDvalue = df_filt.at[i,'IntDen'] 
    Avalue = df_filt.at[i,'Area'] 
    bg1 = df1.loc[df1.index[-1], "Mean"] 
    bg2 = df2.loc[df2.index[-1], "Mean"] 
    BGvalue = (bg1+bg2)/2 # from the last row (background) 
    CTCF = (IDvalue - (Avalue * BGvalue)) 
    return CTCF 
 
def mean_sd(lst): 
    '''just mean and sd of the CTCF set of cell-ROIs of an image (*Data.csv)''' 
    Mean = np.mean(lst) 
    SD = np.std(lst) 
    return (Mean, SD) 
 
 
# %% Loading data 
 
# Type the brain area and channel to analyze: 
brain = 'CA1' 
channel = 'ch02' 
 
stemdir = 'C:/Users/Usuario/…/'  
src = stemdir + brain + '_ordered/' + brain + '_' + channel + '_results/' 
 
filelist = [] 
files = os.listdir(src) 
for i in files: 
   if i.endswith('_Data.csv'): 
       filelist.append(i) 
 
src2 = stemdir + 'totalAreaWithNoCracks/' + brain + '_noCracks/' 
df_tA = pd.read_csv(src2 + brain + '_noCracksArea.csv') 
 
dst = 'C:/Users/Usuario/Desktop/' 
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# New data: cellN and CTCF (mean_sd) 
 
hem_list = [] 
 
for i in filelist: 
    fullpath = src + '/' + i # el '/' está de sobra, verdad????? 
    hem = pd.read_csv(fullpath) 
    hem.rename(columns={'Circ.':'Circ', 
                       ' ':'ROI_index'},  
              inplace=True) 
    arg1 = hem 
    hem_list.append(arg1) 
     
df_list = [] 
cellN = [] 
df_filt_list = [] 
dfC_list = [] 
 
for i in range(0, len(filelist), 2): 
    hem1 = hem_list[i][:-1] 
    hem2 = hem_list[i+1][:-1] 
    dfC1 = hem_list[i] 
    dfC2 = hem_list[i+1] 
    arg = (dfC1, dfC2) 
    dfC_list.append(arg) 
     
    frames = [hem1, hem2] 
    df = pd.concat(frames) 
    df = df.reset_index() 
    df_list.append(df) 
 
    #df_filt = df[(df['Area'] > 60) & (df['Area'] < 1000) & (df['Circ'] > 0.55)] # the best for ch01 
    #df_filt = df[(df['Area'] > 75) & (df['Area'] < 1000) & (df['Circ'] > 0.65)] # the best for ch02 
    df_filt = df[(df['Area'] > 75) & (df['Area'] < 1000) & (df['Circ'] > 0.55)] # the best for CA1_ch02 
     
    df_filt = df_filt.reset_index() 
    df_filt_list.append(df_filt) 
     
    cN = len(df_filt) 
    cellN.append(cN) 
     
CTCF_list_list = [] 
     
for i in range(len(cellN)):  
    CTCF_list = [CTCF(j, df_filt_list[i], dfC_list[i][0], dfC_list[i][1]) for j in 
range(len(df_filt_list[i]))] 
    CTCF_list_list.append(CTCF_list) 
    CTCF_stat = [mean_sd(k) for k in CTCF_list_list] 
 
 
# Preparing the data 
 
nm_list = [] 
for i in range(0, len(filelist), 2): 
    sel_nm = [filelist[i].split('_')[index] for index in [0,1,2,3]] 
    nm_list.append(sel_nm) 
image_name = ['_'.join(nm) for nm in nm_list] 
    
tA_hem_list = df_tA.loc[:, ['name','Area']].values.tolist() 
tArea = [tA_hem_list[i][1]+tA_hem_list[i+1][1] for i in range(0, len(tA_hem_list), 2)] 
 
CTCF_mean, CTCF_sd = map(list, zip(*CTCF_stat)) 
 
cellD = [cellN[i]/((tArea[i]*7.6)*10**(-9)) for i in range(len(cellN))] 
 
image_name.insert(0, 'image_name') 
cellD.insert(0, channel)  
CTCF_mean.insert(0, 'CTCF_mean_'+channel) 
CTCF_sd.insert(0, 'CTCF_sd_'+channel) 
 
 
#  Create the workbook for cell quantification + CTCF 
 
workbook = Workbook()  
wsheet = workbook.add_sheet('Sheet') 
 
for row_num, data in enumerate(image_name): 
        wsheet.write(row_num, 0, data) 
 
for row_num, data in enumerate(cellD): 
       wsheet.write(row_num, 1, data) 
        
for row_num, data in enumerate(CTCF_mean): 
       wsheet.write(row_num, 2, data) 
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for row_num, data in enumerate(CTCF_sd): 
       wsheet.write(row_num, 3, data) 
    
       
workbook.save(dst+'qt_stress/byanimal_'+brain+'_'+channel+'.xls') #  

 

Script 2. Creates output of colocalization variables. 

# %% Libraires 
 
import os 
import pandas as pd #for dataframe handling 
pd.set_option('display.max_rows', None) 
pd.set_option('display.max_columns', None) 
pd.set_option('display.width', None) 
pd.set_option('display.max_colwidth', None) 
import numpy as np #for statistics 
from xlwt import Workbook 
 
 
# %% Defining functions 
 
def CTCF(i, df_filt, df1, df2):  # i = index of row of a dataframe, df = a dataframe 
    '''calculates the CTCF for each cell-ROI''' 
    IDvalue = df_filt.at[i,'IntDen'] 
    Avalue = df_filt.at[i,'Area'] 
    bg1 = df1.loc[df1.index[-1], "Mean"] 
    bg2 = df2.loc[df2.index[-1], "Mean"] 
    BGvalue = (bg1+bg2)/2 # from the last row (background) 
    CTCF = (IDvalue - (Avalue * BGvalue)) 
    return CTCF 
 
def mean_sd(lst): 
    '''just mean and sd of the CTCF set of cell-ROIs of an image (*Data.csv)''' 
    Mean = np.mean(lst) 
    SD = np.std(lst) 
    return (Mean, SD) 
 
def percentage(i, lst_pos, lst_total): 
    positive = len(lst_pos[i][1]) 
    total = len(lst_total[i][1]) 
    if not total == 0:  
        per = (positive/total) * 100 
    else: 
        per = float("NaN")  
    return per 
 
 
# %% Loading data 
 
# Type the brain area and channel to analyze: 
brain = 'BLA' 
channel = 'ch02' 
 
stemdir = 'C:/Users/Usuario/…/'  
src = stemdir + brain + '_ordered/' + brain + '_' + channel + '_results/' 
 
filelistch00 = [] 
filelistch0X = [] 
files = os.listdir(src) 
for i in files: 
   if i.endswith('_Data.csv'): 
       filelistch0X.append(i) 
   if i.endswith('_ColocData.csv'): 
       filelistch00.append(i) 
 
src2 = stemdir + 'totalAreaWithNoCracks/' + brain + '_noCracks/' 
df_tA = pd.read_csv(src2 + brain + '_noCracksArea.csv') 
 
dst = 'C:/Users/Usuario/Desktop/' 
 
nm_list = [] 
for i in range(0, len(filelistch00), 2): 
    sel_nm = [filelistch00[i].split('_')[index] for index in [0,1,2,3]] 
    nm_list.append(sel_nm) 
image_name = ['_'.join(nm) for nm in nm_list] 
 
 
#  New data: CTCF of ch00 (CTCF_list_list0) and CTCF_stat0 (mean and sd of ch00, del total de células) 
 
hemX_list = [] 
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for i in filelistch0X: 
    fullpath = src + '/' + i # el '/' está de sobra, verdad????? 
    hemX = pd.read_csv(fullpath) 
    hemX.rename(columns={'Circ.':'Circ', 
                         ' ':'ROI_index'},  
              inplace=True) 
    arg1 = hemX 
    hemX_list.append(arg1) 
 
dfX_list = [] 
cellN = [] 
dfX_filt_list = [] 
dfCX_list = [] 
 
for i in range(0, len(filelistch0X), 2): 
    hem1 = hemX_list[i][:-1] 
    hem2 = hemX_list[i+1][:-1] 
    dfC1 = hemX_list[i] 
    dfC2 = hemX_list[i+1] 
    arg = (dfC1, dfC2) 
    dfCX_list.append(arg) 
     
    frames = [hem1, hem2] 
    df = pd.concat(frames) 
    df = df.reset_index() 
    dfX_list.append(df) 
 
    #dfX_filt = df[(df['Area'] > 60) & (df['Area'] < 1000) & (df['Circ'] > 0.55)] # the best for ch01 
    dfX_filt = df[(df['Area'] > 75) & (df['Area'] < 1000) & (df['Circ'] > 0.65)] # the best for ch02 
     
    dfX_filt = dfX_filt.reset_index() 
    dfX_filt_list.append(dfX_filt) 
     
    cN = len(dfX_filt) 
    cellN.append(cN) 
     
CTCF_list_listX = [] 
CTCF_list_listX_withROI = [] 
     
for i in range(len(cellN)):  
    CTCF_listX = [CTCF(j, dfX_filt_list[i], dfCX_list[i][0], dfCX_list[i][1]) for j in 
range(len(dfX_filt_list[i]))] 
    CTCF_list_listX.append(CTCF_listX) 
    CTCF_statX = [mean_sd(k) for k in CTCF_list_listX] 
    CTCF_listX_ROI = [*zip(dfX_filt.ROI_name.values.tolist(), CTCF_listX)] #el ROI_name de ch00 es igual que 
el ROI_index de filtered ch0X 
    arg2 = (image_name[i], CTCF_listX_ROI) 
    CTCF_list_listX_withROI.append(arg2) 
  
 
# New data: CTCF of ch00 (CTCF_list_list0) and CTCF_stat0 (mean and sd of ch00, del total de células) 
 
hem0_list = [] 
 
for i in filelistch00: 
    fullpath = src + '/' + i # el '/' está de sobra, verdad????? 
    hem0 = pd.read_csv(fullpath) 
    hem0.rename(columns={' ':'ROI_index'},  
              inplace=True) 
    arg1 = hem0 
    hem0_list.append(arg1) 
 
df0_list = [] 
cellN = [] 
df0_filt_list = [] 
dfC0_list = [] 
 
for i in range(0, len(filelistch00), 2): 
    hem1 = hem0_list[i][:-1] 
    hem2 = hem0_list[i+1][:-1] 
    dfC1 = hem0_list[i] 
    dfC2 = hem0_list[i+1] 
    arg = (dfC1, dfC2) 
    dfC0_list.append(arg) 
     
    frames = [hem1, hem2] 
    df = pd.concat(frames) 
    df = df.reset_index() 
    df0_filt_list.append(df) # it is "already filtered", meanung that we just analyzed those rois after 
filtering in ch0X. 
 
    cN = len(df) 
    cellN.append(cN) 
 
CTCF_list_list0 = [] 
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CTCF_list_list0_withROI = [] 
     
for i in range(len(cellN)):  
    CTCF_list0 = [CTCF(j, df0_filt_list[i], dfC0_list[i][0], dfC0_list[i][1]) for j in 
range(len(df0_filt_list[i]))] 
    CTCF_list_list0.append(CTCF_list0) 
    CTCF_stat0 = [mean_sd(k) for k in CTCF_list_list0] 
    CTCF_list0_ROI = [*zip(df0_filt_list[i].ROI_name.values.tolist(), CTCF_list0)] #el ROI_name de ch00 es 
igual que el ROI_index de filtered ch0X 
    arg2 = (image_name[i], CTCF_list0_ROI) 
    CTCF_list_list0_withROI.append(arg2) 
  
 
# New data: percentages (ch00-positive cells over total ch0X-postive cells) 
 
# First, create a list with ch00 filtered lists: 
CTCF_lists_filtered = [] 
for i, name in enumerate(CTCF_list_list0_withROI): 
    new_list = [] 
    for index, item in enumerate(CTCF_list_list0_withROI[i][1]): 
        if item[1] > 50000: # decidir qué filtro! 
            new_list.append(item) 
    arg = (name[0], new_list) 
    CTCF_lists_filtered.append(arg) 
 
# Calculate percentages: 
percentages = [percentage(i, CTCF_lists_filtered, CTCF_list_list0_withROI) for i in 
range(len(CTCF_list_list0_withROI))] 
 
# PC 
PC_list = [] 
 
for i in range(len(CTCF_list_list0)): 
    var_ch00 = np.array(CTCF_list_list0[i]) 
    var_ch0X = np.array(CTCF_list_listX[i]) 
    my_rho = np.corrcoef(var_ch00, var_ch0X) 
    PC_list.append(my_rho[0][1]) 
     
 
# Preparing the data 
 
CTCF_mean0, CTCF_sd0 = map(list, zip(*CTCF_stat0)) 
 
image_name.insert(0, 'image_name') 
percentages.insert(0, 'pct_'+channel)  
CTCF_mean0.insert(0, 'CTCF_mean_ch00_'+channel) 
CTCF_sd0.insert(0, 'CTCF_sd_ch00_'+channel) 
PC_list.insert(0, 'PC_'+channel) 
 
 
# Create the workbook for cell quantification + CTCF 
 
workbook = Workbook()  
wsheet = workbook.add_sheet('Sheet') 
 
for row_num, data in enumerate(image_name): 
        wsheet.write(row_num, 0, data) 
 
for row_num, data in enumerate(percentages): 
        wsheet.write(row_num, 1, data) 
 
for row_num, data in enumerate(CTCF_mean0): 
       wsheet.write(row_num, 2, data) 
        
for row_num, data in enumerate(CTCF_sd0): 
       wsheet.write(row_num, 3, data) 
        
for row_num, data in enumerate(PC_list): 
       wsheet.write(row_num, 4, data) 
 
workbook.save(dst+'info_coloc/byanimal_info_coloc_'+brain+'_'+channel+'.xls') 

 


