
NeuroImage 272 (2023) 120038 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Comparing end-tidal CO 2 

, respiration volume per time (RVT), and average 

gray matter signal for mapping cerebrovascular reactivity amplitude and 

delay with breath-hold task BOLD fMRI 

Kristina M. Zvolanek 

a , b , ∗ , Stefano Moia 

c , d , e , Joshua N. Dean 

b , Rachael C. Stickland 

a , 
César Caballero-Gaudes c , Molly G. Bright a , b 

a Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States 
b Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States 
c Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain 
d Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland 
e Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland 

a r t i c l e i n f o 

Keywords: 
Cerebrovascular reactivity 

Breath-hold 

BOLD fMRI 

Respiration volume per time 

a b s t r a c t 

Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive stimulus, is an imag- 

ing biomarker with demonstrated utility in a range of diseases and in typical development and aging processes. A 

robust and widely implemented method to map CVR involves using a breath-hold task during a BOLD fMRI scan. 

Recording end-tidal CO 2 (P ET CO 2 ) changes during the breath-hold task is recommended to be used as a refer- 

ence signal for modeling CVR amplitude in standard units (%BOLD/mmHg) and CVR delay in seconds. However, 

obtaining reliable P ET CO 2 recordings requires equipment and task compliance that may not be achievable in all 

settings. To address this challenge, we investigated two alternative reference signals to map CVR amplitude and 

delay in a lagged general linear model (lagged-GLM) framework: respiration volume per time (RVT) and average 

gray matter BOLD response (GM-BOLD). In 8 healthy adults with multiple scan sessions, we compare spatial 

agreement of CVR maps from RVT and GM-BOLD to those generated with P ET CO 2 . We define a threshold to 

determine whether a P ET CO 2 recording has “sufficient ” quality for CVR mapping and perform these comparisons 

in 16 datasets with sufficient P ET CO 2 and 6 datasets with insufficient P ET CO 2 . When P ET CO 2 quality is sufficient, 

both RVT and GM-BOLD produce CVR amplitude maps that are nearly identical to those from P ET CO 2 (after 

accounting for differences in scale), with the caveat they are not in standard units to facilitate between-group 

comparisons. CVR delays are comparable to P ET CO 2 with an RVT regressor but may be underestimated with the 

average GM-BOLD regressor. Importantly, when P ET CO 2 quality is insufficient, RVT and GM-BOLD CVR recover 

reasonable CVR amplitude and delay maps, provided the participant attempted the breath-hold task. Therefore, 

our framework offers a solution for achieving high quality CVR maps in both retrospective and prospective stud- 

ies where sufficient P ET CO 2 recordings are not available and especially in populations where obtaining reliable 

measurements is a known challenge (e.g., children). Our results have the potential to improve the accessibility 

of CVR mapping and to increase the prevalence of this promising metric of vascular health. 
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. Introduction 

The regulation of cerebral blood flow (CBF) is critical to maintain

roper brain function. One mechanism that allows for tight regulation of

BF is the dilation and constriction of arterioles to increase or decrease

lood flow, respectively. This mechanism can be characterized by a met-
Abbreviation: CVR, cerebrovascular reactivity; BOLD, blood oxygenation level d

espiration volume per time; GM, gray matter; GM-BOLD, average gray matter BOLD

esponse function; RRF, respiration response function. 
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oyamoya disease ( Mikulis et al., 2005 ), sickle cell anemia ( Václav ů

t al., 2019 ), and brain tumors ( Fierstra et al., 2018 ), among others.

n addition, changes in CVR throughout developmental ( Leung et al.,

016b ) and aging ( McKetton et al., 2018 ) processes have been reported.

CVR measurements require two components: 1) a vasoactive stim-

lus to elicit a change in blood flow, and 2) a measure of the CBF re-

ponse. There are a range of different vasoactive stimuli and neuroimag-

ng methods to record the CBF response, each with unique advantages

nd limitations. Several excellent review articles explore the rationale

nd methodological considerations for CVR mapping ( Fierstra et al.,

013 ; Liu et al., 2019 ; Sleight et al., 2021 ; Williams et al., 2021 ), and we

irect the reader to these sources for more details. We will focus on an

stablished approach for CVR measurements, which involves a breath-

old task during a blood oxygenation level dependent (BOLD) MRI scan

 Urback et al., 2017 ). The breath-hold task modulates endogenous levels

f carbon dioxide (CO 2 ), which serves as a vasodilator, causing a sys-

emic increase in blood flow. The resulting blood flow response through-

ut the brain is detected by the BOLD MRI contrast, a surrogate measure

f CBF ( Pinto et al., 2021 ). 

Although breath-holds are widely used in CVR mapping

 Urback et al., 2017 ), including in populations with known task-

ompliance challenges ( Dlamini et al., 2018 ; Handwerker et al., 2007 ;

homason et al., 2005 ), there are nuances to obtaining accurate CVR

easurements with this experimental design. Guidance for exemplar

VR measurements involves characterizing CO 2 changes throughout

he task. Commonly, end-tidal CO 2 , the partial pressure of CO 2 at

he end of an exhale, is measured as a surrogate for arterial CO 2 

 McSwain et al., 2010 ; Peebles et al., 2007 ). This allows CVR to be

eported in normalized, standard units as the blood flow response per

nit change of CO 2 (%BOLD/mmHg). However, end-tidal CO 2 mea-

urements require external physiological monitoring equipment (e.g.,

as analyzer), which may not be available in all clinical or research

maging centers. Additionally, there are challenges in achieving reliable

O 2 recordings. Therefore, obtaining end-tidal CO 2 measurements,

hich is critical for standard CVR measurements, may not be achieved

n all subjects or settings. 

The primary complication with end-tidal CO 2 data quality in breath-

old tasks is obtaining measurements both before and after the breath-

old, which is critical for modeling CVR ( Bright and Murphy, 2013 ;

urphy et al., 2011 ). This can be achieved by designing the breath-

old task with expirations both before and after the breath-hold period

 Pinto et al., 2021 ). Unreliable estimates of these expiration end-tidal

O 2 values may occur if the participant simply does not execute them

s instructed, for example, by performing a brief inspiration instead. In

ddition, end-tidal CO 2 measurements are typically acquired via a nasal

annula, which requires a participant to breathe through their nose for

he duration of the experiment. Lapses in nose-breathing or variations in

he pressure of exhaled air may also lead to inaccurate end-tidal values.

ven in healthy adults, there are challenges in achieving successful end-

idal CO 2 recordings. In a recent study of 10 healthy adults ( Moia et al.,
able 1 

omparison of proposed reference signals for modeling CVR amplitude and delay. 

P ET CO 2 

CVR delay measurement Quantitative 

(seconds) 

CVR amplitude measurement Standard 

(%BOLD/mmHg) 

Additional equipment required for acquisition Nasal cannula and gas monitoring system 

Head motion confounds in reference signal N/A 

Sensitivity of data acquisition to participant 

compliance 

Participant must breathe through their nos

and start and end breath-hold on exhalatio

 ET CO 2 = partial pressure of end-tidal CO 2 , RVT = respiration volume per time, GM-

2 
021 ), 3 subjects were excluded due to poor CO 2 data quality. There

re added difficulties with cooperation in patient cohorts, particularly

n those with cognitive impairments who may struggle to execute com-

ands ( Pujol et al., 1998 ; Schouwenaars et al., 2021 ). Obtaining high-

uality data in younger participants also tends to be more challenging,

ith inconsistent performance of breathing tasks reported among chil-

ren and adolescents ( Stickland et al., 2021 ). 

In this work, we aimed to find alternative strategies for mapping

VR that could be used in cases where end-tidal CO 2 measurements are

navailable or unreliable. Specifically, we wanted to develop a method

hat considers not only the amplitude, but also the timing of the blood

ow response ( Bright et al., 2009 ; Chang et al., 2008 ; Duffin et al.,

015 ; Moia et al., 2020a ). Variations in the response time may occur

ue to regional variations in the timing of arterial blood arrival and lo-

al regulation of vessel diameter ( Donahue et al., 2016 ). Accounting for

his “CVR delay ” is not only important to achieve accurate CVR ampli-

udes but also serves as a separate metric of vascular health that is sen-

itive to cerebrovascular pathology ( Donahue et al., 2016 ; Leung et al.,

016a ; Sam et al., 2016 ; Stickland et al., 2021 ; Thomas et al., 2014 ;

hrippleton et al., 2018 ). We approached this problem in breath-hold

ask data using a lagged-general linear model (lagged-GLM approach)

 Moia et al., 2021 , 2020a ; Stickland et al., 2021 ). We then compared

esults using end-tidal CO 2 , or two alternative regressors (reference sig-

als), in the lagged-GLM ( Table 1 ). These alternatives were selected

ased on the hypothesis they would be less susceptible to events that

ritically disrupt data quality compared to end-tidal CO 2 . 

First, we investigated another measure of respiratory physiology, res-

iration volume per time (RVT) ( Birn et al., 2008 , 2006 ). RVT represents

hanges in both the rate and depth of breathing and is obtained by con-

inuously measuring chest position via a pressure-sensitive belt worn

round the chest or abdomen. RVT is an attractive alternative to end-

idal CO 2 because it also captures whether the participant attempts the

reath-hold task. Even if the end-tidal CO 2 measurements do not re-

ect a change during the apnea period, there will be a decrease in RVT

ue to the pause in breathing. RVT and end-tidal CO 2 are highly cor-

elated, have similar overlap in the variance they explain in the BOLD

ignal, and consistent latencies at which they affect the BOLD signal

 Chang and Glover, 2009 ). Additionally, a respiration belt is commonly

ound in most scanner set-ups, making it potentially more accessible

han end-tidal CO 2 measurements. 

Second, we investigated a data-driven regressor using the aver-

ge gray matter BOLD timeseries (GM-BOLD). The main advantage of

he GM-BOLD signal is that no external monitoring equipment is re-

uired. Changes in the BOLD timeseries should be evident provided the

articipant attempted the breath-hold and achieved periods of hyper-

apnia ( Bright and Murphy, 2013 ; Stickland et al., 2021 ). While the

lobal BOLD signal or “refined ” GM-BOLD regressors have been used

n other CVR methods, including techniques that capture both ampli-

ude and delay ( Geranmayeh et al., 2015 ; Liu et al., 2017 ; Tong et al.,

011 ; Tong and Frederick, 2014 ; van Niftrik et al., 2016 ), our proposed
RVT GM-BOLD 

Quantitative 

(seconds) 

Quantitative 

(seconds) 

Not standard, arbitrary 

(%BOLD/a.u.) 

Not standard, unitless 

(%BOLD/%BOLD) 

Respiratory belt (typically comes with scanner) N/A 

N/A Present 

e 

n 

Potential bias if participant’s breathing pattern 

changes (e.g., stomach vs. chest or shallow vs. deep 

breathing), belt must be positioned correctly 

N/A 

BOLD = average blood oxygenation level dependent signal in gray matter. 



K.M. Zvolanek, S. Moia, J.N. Dean et al. NeuroImage 272 (2023) 120038 

a  

f  

a  

t

 

b  

p  

g  

C  

m  

i  

2  

b  

w  

e  

p  

a  

m  

e

m  

b  

t

2

2

 

m  

T  

t  

A  

o  

a  

w  

e  

s

 

0  

t  

(  

o  

s  

f  

i  

g  

g

2

2
 

q  

o  

T  

m  

i  

s  

T  

M  

l  

v  

w  

2  

t  

c  

m  

p  

(  

m  

t  

T  

F  

a  

G  

T  

N  

(

2
 

v  

M  

d  

e  

f  

m  

p  

t  

c  

a  

s

2
 

W  

i  

e  

v  

r  

e

 

o  

T  

s  

(  

t  

C

2

 

a  

(  

p  

i  

e  

/  

s  

o  

a  

v  

f  

y  

m  

c

2
 

t  

p  
pproach simultaneously models other regressors (e.g., motion con-

ounds) when searching for the optimum delay of the reference signal

nd outputs amplitude maps normalized to the input regressor ampli-

ude ( Moia et al., 2020a ). 

The aim of this work was to test if RVT or GM-BOLD timeseries can

e used in a lagged-GLM framework to achieve estimates of CVR am-

litude and delay that are spatially similar to those generated with the

old standard of end-tidal CO 2, with the caveat that these alternative

VR amplitude measurements will no longer be in the standard, nor-

alized units (%BOLD/mmHg) that are recommended for CVR compar-

sons across people and sessions ( Kastrup et al., 2001 ; Murphy et al.,

011 ; Pinto et al., 2021 ; Sleight et al., 2021 ). We assess the agreement

etween CVR amplitude and delay maps in breath-hold fMRI datasets

ith high-quality or “sufficient ” end-tidal CO 2 data, and in those where

nd-tidal CO 2 measurements were sub-optimal or “insufficient ”. We hy-

othesized that in a lagged-GLM framework, using RVT and GM-BOLD

s reference signals would produce CVR amplitude and delay measure-

ents that are highly correlated with those produced by high-quality

nd-tidal CO 2 measurements. In cases with unreliable end-tidal CO 2 

easurements, we hypothesized that RVT or GM-BOLD timeseries could

e used to recover reasonable CVR amplitude and delay maps, provided

hat the participant attempted the breath-hold task. 

. Methods 

.1. Participants 

A subset of the imaging and physiological data used in this

anuscript have been published previously ( Moia et al., 2021 , 2020b ).

he full dataset includes ten healthy subjects (5F, 24–40y at the start of

he experiment) with no history of psychiatric or neurological disorders.

ll subjects completed ten MRI sessions, which were scheduled exactly

ne week apart at the same time of day. MRI scanning took place using

 3T Siemens PrismaFit scanner with a 64-channel head coil. The study

as approved by the Basque Center on Cognition, Brain and Language

thics committee. Informed consent was obtained before each MRI ses-

ion. 

Eight of the ten subjects were included in this analysis (sub-002, sub-

03, sub-004, sub-006, sub-007, sub-008, sub-009, sub-010), based on

hose with sufficient data quality in the same two consecutive sessions

ses-02 and ses-03). Two additional sessions were included from three

f the subjects (sub-006, sub-009, sub-010) to capture two consecutive

essions (ses-07 and ses-08 for sub-006 and sub-010; ses-08 and ses-09

or sub-009) with insufficient end-tidal CO 2 timeseries (i.e., low power

n the dominant frequency range of the breath-hold task, described in

reater detail in Section 2.4.1 ). These eight subjects have similar demo-

raphics to the complete ten (4F, 27–40y). 

.2. Data collection 

.2.1. Magnetic resonance imaging 
Subjects underwent a variety of task-based and resting-state ac-

uisitions during each MRI session, but the current study focuses

n the multi-echo fMRI acquisition during a breath-hold (BH) task.

he multi-echo fMRI protocol was a T2 ∗ -weighted, simultaneous

ultislice (multiband, or MB), gradient-echo echo planar imag-

ng sequence provided by the Center for Magnetic Resonance Re-

earch (CMRR, Minnesota) with the following parameters: 340 vol,

R = 1.5 s, TEs = 10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°,

B acceleration factor = 4, GRAPPA = 2, 52 slices with inter-

eaved acquisition, partial Fourier = 6/8, FoV = 211 × 211 mm 

2 ,

oxel size = 2.4 × 2.4 × 3 mm 

3 , phase encoding = AP, band-

idth = 2470 Hz/px, LeakBlock kernel reconstruction ( Cauley et al.,

014 ) and SENSE coil combination ( Sotiropoulos et al., 2013 ). Prior

o the fMRI acquisition, single-band reference (SBRef) images were

ollected for each echo time to facilitate functional realignment and
3 
asking, and a pair of spin-echo echo planar images with opposite

hase-encoding (AP or PA) directions and identical volume layout

TR = 2920 ms, TE = 28.6 ms, flip angle = 70°) were acquired to esti-

ate field distortions. For anatomical co-registration and tissue segmen-

ation, a T1-weighted MP2RAGE (TR = 5 s, TE = 2.98 ms, TI1 = 700 ms,

I2 = 2.5 s, flip angle 1 = 4°, flip angle 2 = 5°, GRAPPA = 3, 176 slices,

oV read = 256 mm, voxel size = 1 × 1 × 1 mm 

3 , TA = 662 s) and

 T2-weighted Turbo Spin Echo image (TR = 3.39 s, TE = 389 ms,

RAPPA = 2, 176 slices, FoV read = 256 mm, voxel size = 1 × 1 × 1 mm 

3 ,

A = 300 s) were acquired. All DICOM files were transformed into

IFTI files with dcm2nii and formated into Brain Imaging Data Structure

 Gorgolewski et al., 2016 ) with heudiconv ( Halchenko et al., 2019 ). 

.2.2. Physiological data 
During scanning, expired CO 2 and O 2 pressures were recorded

ia a nasal cannula (Intersurgical) and gas analyzer (ADInstruments

L206). Chest position was measured with a respiratory effort trans-

ucer (BIOPAC) placed around the upper abdomen, on the area of high-

st expansion during breathing. These measurements were then trans-

erred to a physiological monitoring system (BIOPAC MP150) that si-

ultaneously recorded scan triggers. Physiological signals were sam-

led at 10 kHz, starting before and continuing after the fMRI scan

o allow for shifting of regressors. Before processing, the files were

onverted to BIDS with phys2bids ( The phys2bids developers, 2019 )

nd the physiological signals were decimated to 40 Hz to reduce file

izes. 

.2.3. Breath-hold task 
The BH task paradigm included eight repetitions of a 58 s BH trial.

ithin each trial, there were four paced breathing cycles (1 cycle = 3 s

nhale and 3 s exhale), a 20 s BH, 3 s exhalation, and 11 s of free recov-

ry breathing ( Bright and Murphy, 2013 ). Participants were cued with

isual instructions projected through a mirror on the head coil. A 15 s

esting period was appended to the start and end of the paradigm to

nable shifting of physiological regressors in subsequent analysis. 

Prior to the scan, subjects were instructed about the importance

f exhaling through their nose both before and after the BH period.

hese exhalations are critical because they provide end-tidal CO 2 mea-

urements to estimate arterial changes in CO 2 achieved by each BH

 Bright and Murphy, 2013 ). If the exhale is not performed properly or

he measurement is unreliable, it is not possible to obtain a standard

VR estimate in units of %BOLD/mmHg. 

.3. Data analysis 

The MRI images and physiological data used in this study are

vailable on OpenNeuro at doi:10.18112/openneuro.ds003192.v1.0.1

Moia, Uruñuela, Ferrer, & Caballero-Gaudes, 2020). All code for pre-

rocessing of the MRI data has been prepared to be run in a Singular-

ty container, which is publicly available at https://git.bcbl.eu/smoia/

uskalibur_container . The pre-processing pipeline is available at https:

/github.com/smoia/EuskalIBUR _ preproc . Publicly available Python

cripts, peakdet (Markello & DuPre, 2020) and phys2cvr (Moia, Vig-

tsky, & Zvolanek, 2022), were used for processing of CO 2 recordings

nd computation of CVR parameter maps. The open-source Rapidtide
2.2.7 toolbox (B. deB Frederick, Salo, & Drucker, 2022) was used

or exploratory analysis (see Discussion Section 4.3 ). Additional anal-

sis code and details about how they were implemented for this

anuscript are shared in the public GitHub repository: https://github.

om/BrightLab-ANVIL/Zvolanek _ 2022 . 

.3.1. MRI pre-processing 
Key MRI pre-processing steps are discussed here, and more de-

ailed information can be found in Moia et al. (2021) . MRI pre-

rocessing was performed with a series of custom scripts combining FSL

https://git.bcbl.eu/smoia/euskalibur_container
https://github.com/smoia/EuskalIBUR_preproc
https://github.com/BrightLab-ANVIL/Zvolanek_2022
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Fig. 1. Key steps of the CVR modeling methods compared in this manuscript. 

Reference timeseries are generated via external recordings or the BOLD MRI 

data. P ET CO 2 and RVT timeseries are convolved with canonical response func- 

tions. For all methods, modeling is repeated for shifted variations of each ref- 

erence time signal. On a voxelwise basis, the shift that optimizes the full model 

R 2 is selected. Maps of amplitude and delay are then generated using these 

parameters. P ET CO 2 = partial pressure of end-tidal CO 2 , RVT = respiration vol- 

ume per time, BOLD = blood oxygenation level dependent, GM = gray matter, 

HRF = hemodynamic response function, RRF = respiration response function. 
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 Jenkinson et al., 2012 ), AFNI ( Cox, 1996 ), and ANTs ( Tustison et al.,

014 ) commands. The T2-weighted image was skull-stripped and co-

egistered to the MP2RAGE. The MP2RAGE was segmented into gray

atter (GM), white matter (WM), and cerebrospinal fluid (CSF) tissues.

hen, the MP2RAGE was normalized to a resampled version (2.5 mm

esolution) of the MNI152 6th generation template (FSL version, 1 mm

esolution) ( Grabner et al., 2006 ). The T2-weighted image was co-

egistered to the skull-stripped SBRef image of the first echo. Volume

ealignment of the functional data was performed using the SBRef of the

rst echo as the reference and applying the spatial transformation to all

ubsequent echoes ( Jenkinson et al., 2002 ; Jenkinson and Smith, 2001 ).

n optimal combination of the different echoes was created with tedana

 DuPre et al., 2021 , 2019 ), which weights each echo timeseries accord-

ng to the voxelwise T2 ∗ value ( Posse et al., 1999 ). Finally, the pair of

pin-echo images with reverse phase-encoding directions was used to

erform field distortion correction with Topup ( Andersson et al., 2003 ).

he optimally-combined, distortion-corrected data were used as the in-

ut for CVR modeling. 

.3.2. Reference signals 
Three different reference signals were generated for each dataset, as

epicted in Fig. 1 : end-tidal CO 2 (P ET CO 2 ), respiration volume per time

RVT), and the average gray matter BOLD signal (GM-BOLD). 

End-tidal peaks were identified with a peak detection algorithm and

anually reviewed. Linear interpolation was performed between the

nd-tidal peaks to create P ET CO 2 timeseries. Finally, P ET CO 2 timeseries

ere convolved with the two-gamma variate canonical hemodynamic

esponse function ( Friston et al., 1998 ). 

Respiration recordings were processed using a custom MATLAB

cript. Maxima and minima in the belt trace were identified with a peak
4 
etection algorithm and manually inspected. The computation of respi-

ation volume per time (RVT) requires alternating maxima and minima

 Birn et al., 2006 ), but in an end-exhalation BH task, there are two con-

ecutive minima due to exhales before and after the hold. To address

his, only minima preceding the BH period were included. Linear en-

elopes of these maxima and minima were used to compute RVT as pre-

iously defined ( Birn et al., 2006 ). Briefly, the difference in maxima and

inima is computed at each timepoint and divided by the time between

uccessive maxima. The RVT timeseries were then convolved with the

espiration response function (RRF) ( Birn et al., 2008 ). Importantly, all

onvolved RVT timeseries were z-normalized (i.e., zero mean and unit

tandard deviation). The normalization procedure was implemented to

ccount for the high variability in RVT amplitudes (see Supplementary

igure S1 and Table S2). All subsequent “RVT ” results refer to the con-

olved, normalized reference signal. 

The average BOLD timeseries in GM was generated from the

ptimally-combined, distortion-corrected functional data with phys2cvr

 Moia et al., 2022b ). An eroded version of the co-registered GM mask

obtained by zeroing non-zero edge voxels within a 2.5 mm sigma Gaus-

ian kernel with fslmaths) was used as the ROI for the average time-

ourse extraction. The reference signal was then expressed in signal per-

entage change. 

.3.3. CVR amplitude and delay estimation 
Voxelwise hemodynamic CVR amplitude and delay were computed

sing phys2cvr ( Moia et al., 2022b ) to implement a lagged-GLM frame-

ork that has been described previously ( Moia et al., 2021 , 2020a ;

tickland et al., 2021 ). Each reference signal was considered indepen-

ently from the others, but the same procedures outlined below were

sed for each CVR model. 

First, all traces were shifted to maximize the cross-correlation with

he up-sampled GM-BOLD timeseries (40 Hz to match the physiological

ignals). This “bulk ” shift primarily accounts for measurement delay in

he physiological recordings. Then, 61 shifted variants of each regressor

including the bulk shifted regressor) were created for each reference

ignal, in 0.3 s increments ( Moia et al., 2020a ). These shifts ranged ± 9 s

rom the bulk shift. Separate GLMs were created for each shifted variant.

n each case, fMRI data were modelled by a design matrix consisting of

he shifted reference signal and the following nuisance regressors: Leg-

ndre polynomials up to the fourth-order, 6 realignment parameters,

nd their 6 temporal derivatives. Each lagged-GLM was fitted via or-

hogonal least squares ( Moia et al., 2020a ). The lagged-GLM with the

aximum full model R 

2 was identified for each voxel; its correspond-

ng shift (in seconds) determined the CVR delay, and its associated beta

oefficient was extracted and rescaled to be expressed in percentage

OLD signal change (%BOLD). Therefore, the lagged-GLM generated

wo maps for each reference signal, as depicted in Fig. 1 : CVR ampli-

ude (in units of %BOLD normalized to the amplitude of the input re-

ressor) and CVR delay (in seconds). Delay maps were centered on the

edian delay across GM voxels. Both CVR amplitude and delay maps

ere thresholded to remove voxels at or adjacent to boundary condi-

ions (delay = − 9, − 8.7, + 8.7, +9 s) because they were considered not

ptimized by the lagged-GLM ( Moia et al., 2020a ). CVR amplitude and

elay maps were normalized via nearest neighbor interpolation to the

NI152 6th generation template (FSL version, 1 mm resolution) resam-

led to 2.5 mm resolution. 

.4. Data summaries and comparisons 

.4.1. Determining sufficient reference signal quality 
The quality of reference signals for each dataset was assessed by

omputing the relative power in the dominant frequency range of the

H task (0.014 to 0.020 Hz). This range is centered around 0.017 Hz,

hich corresponds to the 58 s BH cycle. MATLAB’s bandpower function

as used to compute the total power between 0.014 to 0.020 Hz, as

ell as the total power in the signal, between 0 Hz and the Nyquist
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Fig. 2. A) Reference signals for each dataset (thin lines) and the group average (thick lines). Gray bars indicate each 20 second breath-hold (BH) cycle. Reference 

signals from the three compared methods are depicted: partial pressure of end-tidal CO 2 convolved with the hemodynamic response function (P ET CO 2 ), respiration 

volume per time convolved with the respiration response function and normalized to unit variance (RVT), and average BOLD signal percentage change in gray matter 

(GM-BOLD). Sufficient P ET CO 2 datasets (top) indicate those where the P ET CO 2 timeseries has relative power > 50% in the BH frequency range, while insufficient 

P ET CO 2 datasets (bottom) indicate those where the P ET CO 2 timeseries has relative power < 50%. B) Power spectra for each dataset (thin lines) and the group average 

(thick lines), corresponding to the reference signals plotted in panel A. Dashed rectangles indicate the BH frequency range (0.014 to 0.020 Hz). Note that there is no 

peak in this range for the datasets with insufficient P ET CO 2 timeseries, while a peak is visible for all other reference signals. 
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requency (i.e., 20 Hz). Relative power was then calculated using the

ollowing equation: 

𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 ( % ) = 

𝑃 𝑜𝑤𝑒𝑟 𝑖𝑛 𝐵 𝐻 𝑓𝑟𝑒𝑞 𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑛𝑔 𝑒 

𝑇 𝑜𝑡𝑎𝑙 𝑃 𝑜𝑤𝑒𝑟 
𝑥 100 

Reference signals with greater than 50% power in the BH range were

eemed “sufficient ”, as more than half of the signal power is in the fre-

uency range of interest. In the time domain, this relative power thresh-

ld corresponds to reference signals with clear signal changes during
5 
ach BH cycle ( Fig. 2 ). Reference signals with less than 50% power were

ategorized as “insufficient ”. 

.4.2. Reference signal cross-correlations 
Relationships between the reference signals for each dataset were

ssessed by computing the cross-correlation between each pair. The

bulk shifted ” P ET CO 2 and RVT signals were used for these compar-

sons, which had already been shifted to maximize the cross-correlation

ith the GM-BOLD signal during CVR modeling (see Section 2.3.3 ). The
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Table 2 

Classification of reference signals as “sufficient ” or “insufficient ” based on 

relative power in the breath-hold frequency range. “Sufficient ” P ET CO 2 clas- 

sification is based on relative power > 50%. 

Relative Power (%) in BH Frequency 

Range (0.014 – 0.020 Hz) 

Subject Session Classification of 

P ET CO 2 Quality 

P ET CO 2 RVT GM-BOLD 

sub-002 ses-02 Sufficient 72.5 87.4 74.9 

ses-03 Sufficient 56.5 90.2 69.2 

sub-003 ses-02 Sufficient 69.5 88.7 87.2 

ses-03 Sufficient 61.1 92.5 87.4 

sub-004 ses-02 Sufficient 69.1 85.9 85.2 

ses-03 Sufficient 73.9 54.1 84.7 

sub-006 ses-02 Sufficient 81.5 87.0 83.3 

ses-03 Sufficient 62.3 87.3 81.5 

ses-07 Insufficient 14.5 79.5 80.8 

ses-08 Insufficient 31.2 73.0 80.0 

sub-007 ses-02 Sufficient 69.6 95.1 82.1 

ses-03 Sufficient 73.7 94.8 85.7 

sub-008 ses-02 Sufficient 61.5 87.2 79.5 

ses-03 Sufficient 68.2 82.3 68.4 

sub-009 ses-02 Sufficient 67.4 95.0 85.8 

ses-03 Sufficient 74.5 94.6 86.7 

ses-08 Insufficient 4.33 94.0 85.4 

ses-09 Insufficient 18.2 91.1 77.3 

sub-010 ses-02 Sufficient 66.4 88.5 56.1 

ses-03 Sufficient 59.5 84.6 65.1 

ses-07 Insufficient 23.7 88.8 70.5 

ses-08 Insufficient 34.7 93.6 74.5 
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dditional cross-correlation was performed to understand the relation-

hips between signals going into the lagged-GLM and to check for any

emaining offsets that may explain differences in resulting CVR maps.

he GM-BOLD signal was up-sampled to 40 Hz to match the temporal

esolution of the physiological signals. Using MATLAB’s xcorr function,

ross-correlations between each pair of reference signals were computed

t 0.025 s increments (i.e., 40 Hz) within a range of ± 9 s. Pearson cor-

elations (r) were transformed to Fisher’s Z values to facilitate group

veraging and comparisons. 

.4.3. CVR amplitude and delay values 
The 98th percentile of brain voxels in each CVR amplitude map (after

hresholding of voxels at the boundary) was computed using the fslstats
unction in FSL. For each reference signal, the kernel density estimation

f the distribution of CVR amplitude and CVR delay values was com-

uted with MATLAB’s ksdensity function. Distributions were computed

n gray matter using the eroded tissue mask (see Section 2.3.2 ). 

.4.4. Spatial correlations between CVR parameter maps 
CVR amplitude and delay maps for each reference signal were

arcellated using FSL’s Harvard-Oxford cortical atlas in MNI space

 https://identifiers.org/neurovault.collection:262 , HarvardOxford-cort-

axprob-thr25–1 mm), resampled to 2.5 mm resolution. This atlas con-

ists of 48 cortical parcels and was further split into left and right hemi-

pheres to generate a total of 96 cortical parcels. Then, the median CVR

arameter (i.e., amplitude or delay) within each parcel was computed.

he 96 median values from any two corresponding CVR parameter maps

e.g., two CVR amplitude maps) were then input to determine “spatial ”

orrelations (i.e., at the level of the parcels). 

Two different types of spatial correlations were performed: 

1. Inter-reference: Between CVR parameter maps from different ref-

erence signals, within the same subject and session (e.g., between

P ET CO 2 CVR amplitude and RVT CVR amplitude for sub-002 ses-02),

2. Inter-quality: Between CVR parameter maps from datasets with suf-

ficient P ET CO 2 quality and insufficient P ET CO 2 quality, for a given

reference signal and subject (e.g., between a sufficient P ET CO 2 CVR

amplitude map and an insufficient P ET CO 2 CVR amplitude map for

sub-006). 

For all spatial correlations, the Pearson correlation coefficients were

omputed and transformed to Fisher’s Z. A linear model was fitted, and

he beta-coefficients describing the slope were extracted. The intercept

f the linear model was allowed to vary for both CVR amplitude and

elay to account for potential offsets between the two inputs. 

. Results 

In the following sections, we first describe the reference signals from

ll datasets in our study and distinguish those with sufficient vs. insuffi-

ient quality. Then, we show inter-reference comparisons for datasets in

hich all three reference signals have sufficient quality. Next, we show

nter-quality results (from two sessions) that incorporate one session

ith insufficient P ET CO 2 quality. Finally, we present the inter-reference

omparisons from only sessions with insufficient P ET CO 2 quality. All

omparisons are repeated for both CVR amplitude and CVR delay. 

.1. Reference signals 

Table 2 summarizes relative power at the BH task frequency for

 ET CO 2 , RVT, and GM-BOLD in all datasets included in our study. We

hose a subset of the available data, such that 16 datasets included in our

tudy have sufficient P ET CO 2 quality, and 6 datasets have insufficient

 ET CO 2 quality, with relative power below the 50% threshold and reach-

ng as low as 4.33% (sub-009 ses-08). Across all datasets considered, in-

ufficient P ET CO 2 traces have 21.1 ± 11.2% relative power (mean ± stdev

cross subjects), while sufficient P CO traces have 68.0 ± 6.57%
ET 2 

6 
elative power. Note that all RVT and GM-BOLD signals have greater

han 50% relative power, with most far exceeding the threshold. Rela-

ive power in RVT and GM-BOLD signals is also generally higher than

n P ET CO 2 , with relative power at 86.6 ± 9.4% in RVT signals and

8.7 ± 8.4% in GM-BOLD signals. 

The P ET CO 2 , RVT, and GM-BOLD signals for all datasets, in addition

o group averages, are shown in Fig. 2 . For sufficient P ET CO 2 traces as

ell as all RVT and GM-BOLD traces, there are clear peaks associated

ith each BH cycle (indicated by the gray bars). These signal changes

re expected due to periods of apnea, which increase P ET CO 2 and elicit

 cerebrovascular response that is detectable by BOLD fMRI. In contrast,

he insufficient P ET CO 2 traces lack consistent peaks for each BH cycle,

nd the magnitude of P ET CO 2 changes is smaller. These signal character-

stics likely indicate a failure to perform an exhalation before and after

he BH, or exhalation through the mouth rather than the nose, which

ould not be captured by the nasal cannula. In these datasets, insuffi-

ient P ET CO 2 traces are not due to a failure to complete the BH task,

ecause these subjects also have clear cyclic changes in their RVT sig-

als, indicating long durations of a stable chest position (i.e., periods of

pnea). 

Fig. 2B illustrates the power spectra corresponding to the reference

ignals in Fig. 2A . The BH frequency range is indicated by a dashed rect-

ngle, where most of the signal power is expected. There are clear peaks

ithin this window for sufficient P ET CO 2 signals, as well as for all RVT

nd GM-BOLD signals. However, a peak within the BH frequency range

s not evident for insufficient P ET CO 2 signals, which is consistent with

he lack of periodic signal changes for each BH cycle in the time do-

ain. These power spectra also support the low relative power reported

or insufficient P ET CO 2 datasets in Table 2 . 

All reference signals are highly correlated in datasets with suffi-

ient P ET CO 2 , while correlations with insufficient P ET CO 2 timeseries

re much lower. Relationships between each pair of reference signals

ere characterized by cross-correlations. These results are summarized

n Supplementary Table S1. Datasets with sufficient P ET CO 2 have large,

ositive cross-correlation amplitudes for the three reference signal com-

arisons (reported as mean ± stdev Fisher’s Z values across subjects):

 CO & RVT: 0.97 ± 0.23, P CO & GM-BOLD: 1.19 ± 0.22, GM-BOLD
ET 2 ET 2 

https://identifiers.org/neurovault.collection:262
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 RVT: 1.08 ± 0.20. As expected, cross-correlations of P ET CO 2 with RVT

nd GM-BOLD are lower in datasets with insufficient P ET CO 2, while

he correlation between RVT and GM-BOLD is preserved (P ET CO 2 &

VT: 0.38 ± 0.13, P ET CO 2 & GM-BOLD: 0.42 ± 0.15, GM-BOLD & RVT:

.20 ± 0.22). 

.2. Sufficient P ET CO 2 datasets: CVR amplitude comparisons 

.2.1. Inter-reference comparisons 
CVR amplitude maps are spatially similar for all reference signals, af-

er accounting for differences in scale, in datasets with sufficient P ET CO 2 

uality ( Fig. 3 ). For each CVR map, the 98th percentile of CVR ampli-
ig. 3. Delay-optimized CVR amplitude maps for all 16 datasets with sufficient P ET C

ubject, maps from session 02 are shown on the left and maps from session 03 are sho

s shown in each column. Each CVR map is plotted on a separate color scale. The 98t

see Table S2 for the magnitudes) and used as the positive and negative limits of the 

ote the different units of CVR amplitude for each reference signal. 

7 
ude across all brain voxels was computed (Supplementary Table S3),

nd this magnitude was used as the positive and negative limits of the

olor scale. With this scaling method, the CVR amplitude maps look

early identical, though there are small differences particularly in voxel

lusters throughout WM and CSF regions. The same relative spatial pat-

erns are observed in all maps: higher amplitudes in cortical GM, lower

mplitudes in WM, and negative amplitudes in CSF-filled regions. How-

ver, it is important to draw attention to the fact that the absolute mag-

itude and units of these CVR amplitudes are different between meth-

ds. For example, the 98th percentile CVR amplitudes are 0.78 ± 0.22

BOLD/mmHg for P ET CO 2 CVR, 2.02 ± 0.40 %BOLD/a.u. for RVT CVR,

nd 2.31 ± 0.21 %BOLD/%BOLD for GM-BOLD CVR. 
O 2 quality transformed to the MNI152 6th generation template space. For each 

wn on the right. A single axial slice of the CVR map from each reference signal 

h percentile CVR amplitude value across all voxels was computed for each map 

color scale. Voxels with delays at the boundary conditions have been removed. 
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Fig. 4. Distributions of CVR amplitude across gray matter (GM) voxels in all sufficient P ET CO 2 datasets. For each subject, distributions from session 02 are plotted 

in orange and session 03 are plotted in teal. Each row shows the distribution of CVR amplitude for a different reference signal, with P ET CO 2 CVR on top, RVT CVR 

in the middle, and GM-BOLD CVR on the bottom. Note that skewness of the P ET CO 2 CVR distributions is different from those of the RVT CVR and GM-BOLD CVR 

because of the range of the plots (from − 2 to + 2) which matches closer to the 98th percentiles of the latter. 
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As expected from the qualitative similarity of the CVR amplitude

aps, the distributions of CVR amplitude are similar across GM voxels

or each method, though they span a different range of values ( Fig. 4 ).

or all reference signals, the distributions of CVR amplitude are consis-

ent both within and between subjects. Note that it may not be appropri-

te to interpret the range of the CVR amplitude distributions, because

nly P ET CO 2 CVR amplitude is in meaningful units. Normalization of the

VT signal is critical to achieving these similarities in CVR amplitude,

s the amplitude of the RVT measurement itself is arbitrary, with high

ariability even between two sessions of the same subject (see Supple-

entary Figure S1 and Table S2). Supplementary Figure S2 shows the

istribution of CVR amplitudes without normalizing RVT and illustrates

he impact on the resulting unscaled amplitude maps. 

CVR amplitudes from each reference signal are highly correlated in

atasets with sufficient P ET CO 2 quality. Fig. 5A shows the spatial corre-

ations between CVR amplitude values generated by each reference sig-

al (inter-reference correlations) and a visual comparison of these spa-

ial correlations from session-to-session for each subject. The correlation

oefficients, Fisher’s Z transformed correlations, and slopes for the lines-

f-best fit are also summarized in Supplementary Table S4. All group av-

rage inter-reference spatial correlations are significantly different from

ero (P ET CO 2 & RVT: Z = 2.15, p < 0.001; P ET CO 2 & GM-BOLD: Z = 2.26,

 < 0.001; GM-BOLD & RVT: Z = 2.25, p < 0.001). There is no significant

ifference between the strength of the CVR amplitude spatial correla-

ions for each pairwise comparison between reference signals, based

n a t -test adjusted for non-independent correlations ( Howell, 2010 )

P ET CO 2 & RVT vs. P ET CO 2 & GM-BOLD: T(13) = 0.48, p = 0.64; P ET CO 2 

 GM-BOLD vs. GM-BOLD & RVT: T(13) = 0.01, p = 0.99; P ET CO 2 & RVT

s. GM-BOLD & RVT: T(13) = 0.47, p = 0.65). 

There is variability in the slope of the relationship between CVR

mplitudes, with the best reliability between P ET CO 2 and RVT. In gen-

ral, RVT and GM-BOLD CVR amplitudes are 2–3 times larger than for
8 
 ET CO 2 (average slopes of 2.42 ± 0.65 for P ET CO 2 & RVT, 2.91 ± 0.73 for

 ET CO 2 & GM-BOLD). However, the magnitudes may not be meaningful

ue to the arbitrary units in RVT and GM-BOLD CVR. The reliability of

hese slopes was assessed with an intraclass correlation (using a two-

ay random effects model of absolute agreement), with the following

esults: ICC(2,1) = 0.62 for P ET CO 2 & RVT, ICC(2,1) = 0.44 for P ET CO 2 

nd GM-BOLD, and ICC(2,1) = 0.41 for GM-BOLD and RVT. Thus, there

s good reliability for P ET CO 2 & RVT CVR amplitudes, and fair reliabil-

ty for the other inter-reference relationships. However, these estimates

ay be limited by the small number of repeated measurements and sub-

ects. 

.3. Sufficient P ET CO 2 datasets: CVR delay comparisons 

.3.1. Inter-reference comparisons 
The CVR delay maps generated by P ET CO 2 and RVT reference signals

how similar spatial variation, while GM-BOLD delay maps have smaller

elay magnitudes and reduced contrast, among datasets with sufficient

 ET CO 2 quality ( Fig. 6 ). Since CVR delay is expressed in quantitative

nits of seconds for all reference signals, CVR delay maps are centered

round the GM median to fairly compare between reference signals. In

eneral, P ET CO 2 and RVT delay maps characterize more extreme rela-

ive delays than GM-BOLD delay maps (indicated by more yellow and

iolet voxels throughout P ET CO 2 and RVT maps). 

The distributions of CVR delay for each reference signal ( Fig. 7 ) sup-

ort the observation that P ET CO 2 and RVT CVR delay maps show simi-

ar spatial variation while there is reduced contrast in GM-BOLD delay

aps. The shape of P ET CO 2 and RVT delay distributions are generally

imilar: both are slightly right skewed and centered just below 0 s. On

he other hand, GM-BOLD delay distributions are narrower and zero-

entered, with a high proportion of voxels exhibiting delay values near

 s. In addition, the GM-BOLD delay distributions are less smooth, with
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Fig. 5. Inter-reference spatial correlations between P ET CO 2 , RVT, and GM-BOLD CVR amplitude maps, for each subject and session (summarized in Supplementary 

Table S4). Each of the three pairwise comparisons are plotted in a different column. All correlations were computed using the median CVR amplitude in 96 cortical 

parcels, identified from the Harvard-Oxford cortical atlas and separated by hemisphere. Each dot in a sub-plot represents the median CVR amplitude in one cortical 

parcel. Lines-of-best-fit are shown between each pair of CVR amplitude maps. Pearson correlation coefficients (r) are listed in the top left corner and slopes for the 

lines-of-best-fit ( 𝛽) are displayed in the bottom right corner. 

9 
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Fig. 6. CVR delay maps for all datasets with sufficient P ET CO 2 quality, transformed to the MNI152 6th generation template space. For each subject, maps from 

session 02 are shown on the left and maps from session 03 are shown on the right. A single axial slice of the CVR delay map from each reference signal is shown in 

each column. CVR delay maps have been normalized to the median delay in gray matter (GM). Voxels at boundary conditions (absolute delay = ± 8.7 s, 9 s) have 

also been removed. Negative values indicate regions with earlier hemodynamic responses relative to the median delay in GM, while positive values indicate those 

with later responses. 
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everal small peaks apparent for some datasets (e.g., sub-003 ses-02, in-

icated by the orange trace). Finally, P ET CO 2 and RVT distributions are

ore variable between subjects, while GM-BOLD distributions have a

elatively consistent shape. 

The slopes of inter-reference relationships ( Fig. 8A ) further illustrate

he narrower range of delays observed with the GM-BOLD reference

ignal ( Figs 6 and 7 ). P ET CO 2 and RVT delay values are nearly pro-

ortional, with an average slope of 0.97 ± 0.29. Excluding the outlier of

ub-002 ses-02, the average slope becomes 1.01 ± − 0.23. However, as

emonstrated in the maps, GM-BOLD delay values tend to underesti-

ate delay relative to P ET CO 2 and RVT. See middle and right columns

f Fig. 8A , respectively, and note the switch in axes; this manifests
10 
s slopes < 1 for GM-BOLD with P ET CO 2 and slopes > 1 for GM-BOLD

ith RVT. 

When comparing maps of CVR delay across the three reference

ignals ( Fig. 8A ), we see significant spatial correlations for all com-

arisons, although they are weaker on average compared to the spa-

ial correlations of CVR amplitude ( Fig. 5A ). The corresponding spa-

ial correlation coefficients, Fisher’s Z transformed correlations, and

lopes for the lines-of-best fit are summarized in Supplementary Ta-

le S6. All group average inter-reference spatial correlations are signif-

cantly different from zero (P ET CO 2 & RVT: Z = 1.24, p < 0.001; P ET CO 2 

 GM-BOLD: Z = 1.35, p < 0.001; GM-BOLD & RVT: Z = 1.12, p < 0.001).

here were no significant differences in the average spatial correlations
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Fig. 7. Distributions of CVR delay for each reference signal in all datasets with sufficient P ET CO 2 quality. CVR delay values have been normalized to the median 

delay in gray matter. For each subject, distributions from session 02 are plotted in orange and session 03 are plotted in teal. Each row shows the distribution of CVR 

delay for a different reference signal, with P ET CO 2 delay on top, RVT delay in the middle, and GM-BOLD delay on the bottom. 
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etween each pair of reference signals, based on a t -test adjusted for non-

ndependent correlations ( Howell, 2010 ) (P ET CO 2 & RVT vs. P ET CO 2 &

M-BOLD: T(13) = 0.38, p = 0.72; P ET CO 2 & GM-BOLD vs. GM-BOLD

 RVT: T(13) = 0.92, p = 0.38; P ET CO 2 & RVT vs. GM-BOLD & RVT:

(13) = 0.54, p = 0.60). 

The slope of the relationship between CVR delay values from a given

air of reference signals is generally more consistent compared to CVR

mplitudes, consistent with the common quantitative units (seconds) of

VR delay achieved with all three methods. This is demonstrated by

he inter-subject consistency of slopes for each best-fit line in Fig. 8A .

n addition, the inter-session reliability of the slopes was assessed with

n intraclass correlation (using a two-way random effects model of ab-

olute agreement). There is good reliability between P ET CO 2 and GM-

OLD delays (ICC(2,1) = 0.73) and between GM-BOLD and RVT delays

ICC(2,1) = 0.63). However, there is poor reliability between P ET CO 2 and

VT delays (ICC(2,1) = 0.35). As with CVR amplitude, these ICC esti-

ates may be limited by the small number of repeated measurements

nd subjects. 

To further characterize the bias of CVR delays estimated by RVT and

M-BOLD relative to P ET CO 2 delays, a Bland-Altman analysis was per-

ormed in each dataset with sufficient P ET CO 2 quality. On average, the

ifferences in CVR delay are on the order of the shift increment used in

ur lagged-GLM approach (RVT = 0.07 ± 0.42 s; GM-BOLD = 0.28 ± 0.55 s).

dditionally, 95% of all CVR delay differences fall within ± 1.5 s for

VT ( − 1.38 to 1.45 s) and GM-BOLD ( − 1.40 to 0.83 s). More details

n the Bland-Altman analysis and subject-level results can be found in

upplemental Material Section 3.1 , Figure S3, and Table S8. 

.4. Insufficient P ET CO 2 datasets 

.4.1. Inter-quality comparisons 
As described in Section 3.1 , a total of 6 datasets were identified as

aving insufficient P CO quality, based on the relative power con-
ET 2 

11 
ent at the BH task frequency. Fig. 9 shows the reference signals, power

pectra, and resulting CVR maps from datasets with sufficient and insuf-

cient P ET CO 2 quality within the same example subject (inter-quality

omparison). Not surprisingly, the CVR amplitude and delay maps gen-

rated by an insufficient P ET CO 2 timeseries do not show physiologi-

ally plausible spatial variations ( Fig. 9B ). Despite the insufficient task-

elated information within the P ET CO 2 timeseries, the RVT and GM-

OLD timeseries still demonstrate modulations consistent with the 8

ycles of the BH task and clear peaks in their power spectra. Therefore,

onsistent with our hypothesis, the resulting RVT and GM-BOLD CVR

arameter maps are comparable to those from the dataset with suffi-

ient P ET CO 2 quality. 

The inter-quality spatial correlations between CVR parameter maps

rom insufficient and sufficient quality datasets support the qualitative

bservations in Fig. 9 , in that the maps generated by RVT and GM-BOLD

imeseries recover spatial information that is lost by those from the in-

ufficient P ET CO 2 trace. For each reference signal’s CVR map from an

nsufficient P ET CO 2 session, a spatial correlation was performed with

he respective parameter map from the first sufficient P ET CO 2 session

ses-02) in the same subject. Table 3 summarizes the Fisher’s Z trans-

ormed spatial correlation coefficients and the slope of the best-fit line

etween these data. When the reference signal is “insufficient P ET CO 2 ”,

he average spatial correlations with a map computed using sufficient

 ET CO 2 data acquired in a different scan session are not significant for

ither CVR amplitude ( Z = 1.11 ± 0.53) or CVR delay ( Z = 0.25 ± 0.53),

sing Z crit = 1.13 for N = 6 at alpha = 0.05. In contrast, the inter-quality

patial correlations for RVT and GM-BOLD CVR amplitude and delay

aps are significant between sufficient and insufficient datasets. This is

xpected, since the categorization of “sufficient ” datasets was based on

 ET CO 2 quality, with RVT and GM-BOLD signals surpassing the relative

ower criterion in all datasets. 

However, it is important to note the differences in P ET CO 2 CVR

aps are not as dramatic for all datasets with insufficient P CO 
ET 2 
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Fig. 8. Inter-reference spatial correlations between P ET CO 2 , RVT, and GM-BOLD CVR delay maps, for each subject and session (summarized in Supplementary Table 

S6). Each of the three pairwise comparisons are plotted in a different column. The unity line ( y = x ) is plotted in gray for reference. All correlations were computed 

using the median CVR delay in 96 cortical parcels, identified from the Harvard-Oxford cortical atlas and separated by hemisphere. Each dot in a sub-plot represents 

the median CVR delay in one cortical parcel. Lines-of-best-fit are shown between each pair of CVR delay maps. Pearson correlation coefficients (r) are listed in the 

top left corner and slopes for the lines-of-best-fit ( 𝛽) are displayed in the bottom right corner. 

12 
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Fig. 9. Example reference signals, power spectra, and CVR maps for two datasets in the same subject (sub-009) with A) sufficient P ET CO 2 quality (ses-02) and B) 

insufficient P ET CO 2 quality (ses-08). The insufficient P ET CO 2 timeseries can be distinguished by the absence of a peak in the power spectrum at the breath-hold 

task frequency (0.014 to 0.020 Hz, indicated by dashed lines). CVR amplitude and delay maps are comparable between the two datasets, for all reference signals 

except insufficient P ET CO 2 . Note that the RVT timeseries and power spectra are plotted on different scales for visualization purposes. CVR maps are scaled to 98th 

percentile values, which can be found in Table S2. Also note that only the P ET CO 2 CVR amplitude map is in quantitative units (%BOLD/mmHg), compared to RVT 

CVR (%BOLD/a.u.) and GM-BOLD CVR (%BOLD/%BOLD). 
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uality. These maps are presented in Supplementary Figure S4. Specif-

cally, amplitude maps from some insufficient P ET CO 2 traces have rea-

onable quality, while the delay maps remain noisy. For example, the

VR amplitude maps obtained with insufficient P ET CO 2 are similar to

hose obtained with RVT and GM-BOLD for sub-006 ses-07, sub-009 ses-

9, and sub-010 ses-08. These datasets also have higher inter-quality

patial correlations, as indicated by the Fisher’s Z values in Table 3 . The

elative power in the insufficient P ET CO 2 signals for these three datasets

 Table 2 ) far exceeds the relative power of 4.33% in the example case

ighlighted in Fig. 9 , indicating that there may have been some suffi-
13 
ient BH trials to generate reasonably good CVR amplitude maps. While

ome insufficient P ET CO 2 CVR amplitude maps are similar, the CVR de-

ay maps still have noticeable regional differences (e.g., more negative

elays and reduced tissue contrast), though less extreme than shown in

ig. 9 . 

.4.2. Inter-reference comparisons 
Similarly, the inter-reference spatial correlations within each in-

ufficient P ET CO 2 dataset demonstrate the corrupted CVR amplitude

nd CVR delay maps generated by the P CO traces (Supplementary
ET 2 
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Table 3 

Inter-quality spatial correlations between each reference signal’s CVR map from an insufficient P ET CO 2 quality dataset and the corre- 

sponding CVR map from a sufficient P ET CO 2 dataset. 

Inter-quality spatial correlations 

Subject Insufficient 

Session 

Sufficient 

Session 

CVR amplitude CVR delay 

P ET CO 2 RVT GM-BOLD P ET CO 2 RVT GM-BOLD 

𝛽 Z 𝛽 Z 𝛽 Z 𝛽 Z 𝛽 Z 𝛽 Z 

sub- 

006 

ses-07 ses-02 1.30 1.73 1.18 1.83 1.00 1.88 0.43 0.54 0.67 0.94 0.60 0.90 

ses-08 ses-02 0.98 1.22 1.04 1.55 1.01 1.70 0.44 0.46 0.62 1.07 0.77 1.23 

sub- 

009 

ses-08 ses-02 0.06 0.26 1.02 1.64 1.01 1.76 − 0.82 0.56 0.79 1.29 1.09 1.42 

ses-09 ses-02 0.55 1.42 0.85 1.70 0.98 1.75 0.51 0.78 0.79 1.02 0.54 0.95 

sub- 

010 

ses-07 ses-02 0.98 0.74 1.05 1.44 0.93 1.66 0.29 0.71 0.75 1.49 0.79 1.20 

ses-08 ses-02 1.15 1.30 1.12 1.38 1.19 1.67 0.63 1.17 0.68 1.25 0.81 1.59 

Average 0.84 1.11 1.04 1.59 ∗ 1.02 1.74 ∗ 0.25 0.70 0.72 1.18 ∗ 0.77 1.21 ∗ 

StDev 0.46 0.53 0.11 0.17 0.09 0.08 0.53 0.26 0.07 0.21 0.19 0.26 

𝛽 = coefficient of slope for best-fit line to correlation. Z = Fisher’s Z transformation of correlation coefficient. 
∗ Indicates Fisher’s Z is significantly different from 0 at alpha = 0.05 (critical Z = 1.13 for N = 6). 
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able S10). Correlations of P ET CO 2 CVR amplitude with RVT and

M-BOLD CVR amplitude are expectedly lower ( Z = 1.44 ± 0.73 and

 = 1.41 ± 0.69, respectively) compared to those between GM-BOLD and

VT ( Z = 2.56 ± 0.13), which still have sufficient power at the task fre-

uency. This difference is especially apparent in sub-009 ses-08 and sub-

10 ses-07. The same pattern of low spatial correlations with results de-

ived from P ET CO 2 is evident in the CVR delay values ( Z = 0.75 ± 0.38 for

orrelation of delays with insufficient P ET CO 2 and RVT; Z = 0.66 ± 0.37

ith insufficient P ET CO 2 and GM-BOLD; Z = 1.34 ± 0.22 with RVT and

M-BOLD). 

. Discussion 

In this study, we tested whether RVT or GM-BOLD can be used in a

agged-GLM framework to achieve estimates of CVR amplitude and de-

ay that are spatially correlated with estimates from P ET CO 2 . We tested

his in breath-hold data in healthy adults, including datasets where

 ET CO 2 , RVT, and GM-BOLD reference signals had sufficient power

 > 50%) at the task frequency, and datasets where only the P ET CO 2 

imeseries had insufficient power. We found that in datasets with suf-

cient quality, all reference signals are highly correlated. Correspond-

ngly, CVR amplitude maps are spatially similar for all reference signals,

fter accounting for differences in scale. However, both RVT and GM-

OLD CVR amplitudes are not in standard CVR units of %BOLD/mmHg.

egarding CVR delay, the maps generated by P ET CO 2 and RVT show

imilar spatial variation, while GM-BOLD delay maps have a smaller

ange and reduced contrast. Finally, when P ET CO 2 is insufficient, RVT

nd GM-BOLD can be used to recover spatially similar CVR amplitude

nd delay maps, provided that the participant attempted the breath-hold

ask. We explore each of these findings in further detail in the following

ections. 

.1. Reference signals are highly correlated in breath-hold data with 

ufficient P ET CO 2 quality 

The high cross-correlation amplitudes observed between P ET CO 2 ,

VT, and GM-BOLD signals are expected and consistent with previous

eports in the literature. Each of these signals captures the physiologi-

al processes occurring during a breath-hold, marked by a cessation of

reathing, increased arterial CO 2 concentration, increased CBF, and an

ncreased BOLD signal that eventually returns to baseline ( Bright et al.,

009 ; Kastrup et al., 1999 ; Thomason et al., 2005 ). P ET CO 2 and RVT

ave separately been shown to correlate with the resting-state BOLD

imeseries ( Birn et al., 2008 , 2006 ; Wise et al., 2004 ). Additionally,

 CO and RVT (convolved with the respiration response function) are
ET 2 

14 
ighly correlated and account for similar spatial and temporal variations

n the resting-state BOLD signal ( Chang and Glover, 2009 ). 

In breath-hold data, these cross-correlations are magnified due to

he alternating periods of task and rest, which lead to large coupled

mplitude fluctuations in P ET CO 2 , RVT, and GM-BOLD that are approx-

mately sinusoidal at the task frequency ( Pinto et al., 2021 ). These quasi-

inusoidal variations are critical to our approach for determining suf-

cient P ET CO 2 based on relative power at the task frequency . While

his strategy can be easily implemented to quality check P ET CO 2 record-

ngs, it requires periodic breathing modulation and thus cannot easily

e translated to evaluate the quality of natural P ET CO 2 fluctuations in

esting-state data. 

The reference signals we considered are not exhaustive. The near-

inusoidal fluctuations in the BOLD response during a quasi-periodic

reath-hold task can be modeled using a Fourier series, with a sine-

osine pair at the task frequency and additional harmonics, to estimate

oth CVR amplitude and delay ( Lipp et al., 2015 ; Murphy et al., 2011 ;

into et al., 2016 ; van Niftrik et al., 2016 ). Additionally, many studies

se different variations of a global BOLD signal to model CVR, rather

han a respiratory-derived signal, due to the known influence of arte-

ial CO 2 fluctuations on the BOLD signal ( Geranmayeh et al., 2015 ;

iu et al., 2017 ; Tong et al., 2011 ; Tong and Frederick, 2014 ; van Niftrik

t al., 2016 ). As we have demonstrated with GM-BOLD, there are clear

reath-hold effects in the average BOLD response, leading to CVR mea-

urements that are comparable to those derived from P ET CO 2 . 

.2. CVR amplitude maps are comparable between reference signals, but 
VT and GM-BOLD amplitudes are not in standard CVR units 

Based on the high cross-correlations between input reference sig-

als, it is not surprising that the resulting CVR amplitude maps are also

ighly correlated. In fact, CVR maps from each reference signal look

early identical when scaled to the 98th percentile CVR amplitude. Re-

ardless of the method used to model CVR, this visualization scaling

pproach may facilitate qualitative comparisons of CVR maps, longitu-

inally, between cohorts, and between protocols. Our CVR visualization

pproach also indicates the method used to model CVR may not be crit-

cal for qualitative comparisons, which is consistent with the current

thos regarding the “multiverse ” of analysis pipelines in the functional

euroimaging community ( Botvinik-Nezer et al., 2020 ; Dafflon et al.,

022 ; Steegen et al., 2016 ; Taylor et al., 2022 ). 

Despite the qualitative similarities between CVR maps, there are

mportant differences in the absolute magnitudes of CVR amplitude.

oth RVT and GM-BOLD CVR are not in standard CVR units, which is

n important caveat, particularly for comparing CVR between cohorts

r with literature values. In these cases, it is still best to use P CO 
ET 2 
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s a reference signal, because the resulting CVR amplitude in units of

BOLD/mmHg is physiologically meaningful. There is also between-

ubject variability in the slope of the relationship between CVR ampli-

udes, likely driven in part by the arbitrary units of RVT and GM-BOLD

VR. Overall, RVT CVR had the most reliable relationship with P ET CO 2 

VR amplitude, suggesting that this might be a better alternative than

M-BOLD to capture differences in CVR amplitude. 

However, our results indicate that RVT and GM-BOLD would still

e useful in many cases, such as making relative comparisons between

rain regions within a subject and identifying focal pathology. In ad-

ition, the CVR maps for RVT and GM-BOLD were consistent between

can sessions ( Appendix A ). With these steady measurements, it could

e possible to compare longitudinally within a subject, provided that a

reath-hold task is used to induce modulations and there is sufficient

ower at the task frequency. 

We observed that normalizing the RVT timeseries before inputting it

o the lagged-GLM is critical to achieve reasonable CVR amplitude val-

es. RVT is reported in arbitrary units (a.u.) because the magnitude of

VT varies across experimental setups and is sensitive to the tightness

f the respiration belt and its placement on the body (i.e., chest vs. ab-

omen). Thus, there is high variability in the scale of RVT fluctuations

cross datasets (Supplementary Fig. S1 and Table S2). The resulting CVR

mplitude maps are impacted by this variability because they are scaled

o the amplitude of the reference signal. If RVT is not normalized, there

re large differences in the range of amplitude values, which could be

isleading if CVR maps are plotted on a fixed scale (Supplementary Fig.

2). 

.3. CVR delay maps are comparable for P ET CO 2 and RVT, but 

M-BOLD may underestimate delay variability 

In datasets with sufficient P ET CO 2 quality, RVT and GM-BOLD both

roduce delay maps that are highly correlated with those from P ET CO 2 .

owever, there are differences in the consistency between delay maps

or some subjects, particularly between P ET CO 2 and RVT ( Figs. 6 and 7 ).

hese differences may be attributed to lower relative power in the input

eference signals, particularly if the P ET CO 2 trace is closer to the 50%

hreshold. The response functions we used to model P ET CO 2 and RVT

ight not be optimal for the breath-hold response, potentially introduc-

ng differences in CVR delay with regional patterns (see Section 4.8 ).
ore subtle physiological contributions may also play a role, since intra-

horacic pressure, heart rate, neural activity patterns, and other factors

hat influence the BOLD signal may be time-locked to the breath-hold

ask with different spatial signatures. 

Delay magnitudes also tend to be smaller when GM-BOLD is the

eference signal. This is evident in the narrower distributions of GM-

OLD delay values ( Fig. 7 ) and in the biased slopes from inter-reference

patial correlations with P ET CO 2 and RVT delays ( Fig. 8A ). Thus, GM-

OLD may underestimate the true delay value, particularly for voxels

ith larger absolute P ET CO 2 delays. This may be influenced by our

ecision to normalize delay maps to the GM median to compare be-

ween reference signals and participants. Many GM voxels will be well-

haracterized by the average BOLD timeseries and have similar delay

alues that are reduced to zero after this spatial normalization step. Ad-

itionally, the GM-BOLD signal (after the T2-weighted combination of

he echoes) might be more affected by motion-related effects than other

eference signals ( Moia et al., 2021 ). For example, peaks or slow drifts

n the GM-BOLD timeseries due to head motion could bias the optimum

elay estimated for a given voxel. More likely, the GM-BOLD signal is

blurring ” the breath-hold response due to the wide variation in rela-

ive timing across the brain ( Tong et al., 2019 ). This has been addressed

reviously with the concept of making a “refined ” or “dynamic ” global

ignal regressor that accounts for voxel-specific variations in delay to

ecover a source signal ( Erdo ğan et al., 2016 ; Frederick et al., 2012 ;

ong and Frederick, 2014 ). Our approach using the average response

cross GM voxels is well-established but more simplistic and may have
15 
estricted the sensitivity to a wider range of delays. An average signal

rom the cerebellum ( Donahue et al., 2016 ; Liu et al., 2021 ), sagittal

inus ( Pillai and Mikulis, 2015 ; van Niftrik et al., 2016 ), or other small

OIs ( Erdo ğan et al., 2016 ) could also be used to mitigate this issue.

owever, the cerebellum is sensitive to noise ( Diedrichsen et al., 2010 ;

an der Zwaag et al., 2015 ) and these ROIs are arbitrary for CVR anal-

sis. 

To address limitations attributed to the GM-BOLD regressor, we per-

ormed a post hoc exploratory analysis to compare CVR delays using a

refined ” GM-BOLD approach. The refined GM-BOLD regressor used in

his analysis was generated by Rapidtide v2.2.7, a data-driven algorithm

hat uses the refined GM-BOLD timeseries as a regressor, for which it

teratively considers a voxel-by-voxel fit across a range of temporal off-

ets using a cross-correlation method ( Frederick et al., 2012 , 2016 ). We

onsidered a temporal range of ± 9 s with 0.3 s increments to match

he lagged-GLM (specific command options are detailed in Table S11,

nd we refer the reader to the Rapidtide documentation ( Frederick et al.,

022a ) to explore more in-depth details about the settings). This algo-

ithm further differs from the lagged-GLM processing method by also

emporally smoothing the average GM-BOLD response with a band-pass

lter (0.009–0.15 Hz) and “despeckling ” using a spatial median filter to

orrect erroneous time delays due to autocorrelation in the probe regres-

or ( Frederick, 2017 ). Additionally, motion parameters and Legendre

olynomials are regressed from the data before the cross-correlation fit,

n contrast to being included in the lagged-GLM. Fig. 10 shows a compar-

son between the original GM-BOLD approach and a refined GM-BOLD

pproach for a representative subject (sub-008). Results for all subjects

ith sufficient P ET CO 2 data quality can be found in Supplementary (Fig-

res S6-S10, Table S12). The refined GM-BOLD regressor is similar to

he GM-BOLD time series yet smoother, with high frequencies removed

 Fig. 10A ). 

CVR delay maps generated using the refined GM-BOLD approach de-

ict greater visual contrast between gray matter and white matter in

omparison to the CVR delay maps generated with the average GM-

OLD approach ( Fig. 10B ). Furthermore, the distribution of delays gen-

rated from a CVR delay map using the refined GM-BOLD approach

how a skewness towards larger positive delays ( Fig. 10C ). The delay

alues from both methods are highly correlated and the slopes of the

patial correlations are greater than 1, indicating that the refined GM-

OLD approach depicts more extreme delays across most of the cortex

n comparison to the GM-BOLD approach ( Fig. 10D ). Thus, using a re-

ned GM-BOLD timeseries as a regressor may partially compensate for

he smaller distribution in delays attributed to the lagged-GLM with a

tandard GM-BOLD timeseries. 

.4. When P ET CO 2 quality is insufficient, maps of CVR amplitude and 

elay can be achieved with RVT or GM-BOLD as reference signals 

We have demonstrated that in breath-hold fMRI data, if a participant

ttempts the task but P ET CO 2 quality is poor, RVT or GM-BOLD can be

sed to create CVR amplitude and delay maps. Based on comparisons

ith sufficient P ET CO 2 quality data, RVT seems the best alternative to

enerate CVR amplitude and delay maps that are highly correlated and

ave consistent relationships with those obtained with P ET CO 2 measure-

ents. In addition, RVT still generates CVR measurements that are nor-

alized to a respiratory-derived measure. If opting for a global signal

ike GM-BOLD, it would be best to use a refined GM-BOLD regressor to

ccount for potential under-estimation of CVR delay. 

We also proposed a method to define a “sufficient ” P ET CO 2 trace for

VR mapping, using a relative power threshold > 50% at the breath-

old task frequency. However, this threshold is slightly arbitrary and

ay need to be adjusted for specific cases, with a holistic evaluation

f reference signals and their resulting CVR amplitude and delay maps.

n fact, some of the datasets with insufficient P ET CO 2 still showed rea-

onably good CVR amplitude maps (Fig. S4). However, the correspond-

ng CVR delay maps are less similar to those generated by sufficient
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Fig. 10. A) Reference signal for sub-008 from GM-BOLD (blue) and Refined GM-BOLD (yellow) in ses-02 (top) and ses-03 (bottom). B) CVR delay maps for sub-008, 

transformed to MNI space. An axial slice from two compared methods is shown in each column: GM-BOLD (left) and Refined GM-BOLD (right). CVR delay maps using 

the GM-BOLD approach have been normalized to the GM median delay with voxels at boundary conditions removed (absolute delay =± 8.7 s, 9 s). Refined GM-BOLD 

delay maps are re-centered to 0 s and exclude voxels where the similarity function failed ( Frederick et al., 2022a ). C) CVR delay distributions for sub-008 across 

GM-BOLD (solid line) and Refined-GM (dashed line) from ses-02 (orange) and ses-03 (teal). D) Inter-reference spatial correlation between GM-BOLD and Refined 

GM-BOLD delay maps for sub-008 in ses-02 (orange) and ses-03 (teal) with respective best-fit-lines and an identity line (black) for comparison. Each point represents 

the median delay value in one of the 96 cortical parcels from the Harvard-Oxford cortical atlas. Correlation coefficient (R) for each session is listed on the top left, 

and the slopes for the lines-of-best-fit ( 𝛽) for each session are listed on the bottom right. 
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uality timeseries and should give cause for caution when interpreting

he CVR amplitude maps, due to potential mis-fitting of the reference

ignal. For example, there are several regions of negative CVR ampli-

udes in the map for sub-010 ses-07 (indicated by blue voxels in the

orresponding map of Fig. S4), which resemble the vascular “steal ” phe-

omenon and could be mis-characterized as pathology ( Conklin et al.,

010 ; Poublanc et al., 2013 ; Sam et al., 2016 ). Therefore, insufficient

 ET CO 2 CVR maps should be interpreted carefully, particularly in clini-

al cases. 

Although these are promising results to recover CVR maps retro-

pectively or in low resource settings, we still recommend trying to

btain sufficient P ET CO 2 estimates from a breathing modulation for

he highest quality CVR maps. There are suggestions throughout the

iterature on how to implement robust breath-hold tasks ( Bright and

urphy, 2013 ; Murphy et al., 2011 ; Pinto et al., 2021 ; Scouten and

chwarzbauer, 2008 ; Urback et al., 2017 ). In brief, it is strongly rec-

mmended to incorporate a training session before the scan to en-

ure that participants understand and comply with task instructions

 Kannurpatti et al., 2010 ; Magon et al., 2009 ; Zacà et al., 2014 ). Moni-

oring respiratory signals throughout the task is also encouraged to en-
16 
ure quality of the recording and assess task performance ( Bulte and

artolowska, 2017 ). In addition, cueing strategies (e.g., text, sym-

olic, or auditory) should be carefully considered to make instruc-

ions intuitive for the target population. Lastly, other breathing tasks

ight be more feasible than a breath-hold, such as intermittent breath

odulation ( Liu et al., 2020 ) or paced deep breathing ( Bright et al.,

009 ; Sousa et al., 2014 ; Stickland et al., 2021 ). With these alterna-

ive methods, a similar approach to determine relative power at the

ask frequency could still be implemented, though the limitations of ex-

ending our findings to other breathing modulations are discussed in

ection 4.7 . 

.5. Potential impacts and examples of utility 

The use of alternative reference signals to generate CVR amplitude

nd delay maps has a range of potential impacts. The framework pro-

osed here using RVT or GM-BOLD reference signals makes prospec-

ive CVR mapping accessible to any imaging centers that lack the

quipment and personnel necessary to monitor and post-process res-

iratory gas recordings. A respiration belt should be integrated with



K.M. Zvolanek, S. Moia, J.N. Dean et al. NeuroImage 272 (2023) 120038 

m  

m  

t  

p  

p  

s  

w

 

t  

i  

c  

w  

p  

f  

(  

i  

2  

i  

(

 

p  

h  

m  

t  

2  

M  

c  

h  

d  

2

4

 

t  

a  

f  

i  

a  

l

 

c  

i  

b  

d  

l  

p  

t  

2  

t  

p  

t  

d  

(  

a

 

s  

s  

c  

r  

a  

fi  

2  

w  

b  

m

 

G  

w  

d  

i  

2  

u  

(  

b  

g  

a  

v  

H  

T  

a  

G

(  

t  

H  

s  

f  

h

 

i  

a  

p  

s  

p  

t  

d  

a  

l  

2  

b  

o  

f  

c  

t  

q  

a  

w  

d  

(

 

b  

m  

C  

V  

s  

P  

c  

o  

m  

b  

c  

s

4
m

 

d  

C  

c  

i  

s  
ost scanning set-ups, and the GM-BOLD signal requires no additional

onitoring. All lagged-GLM regression analyses, with the exception of

he RVT computation, are based on open-source software (peakdet,

hys2cvr, and rapidtide) to facilitate the modeling steps for future ap-

lications. In addition, these findings present the opportunity to retro-

pectively generate CVR maps in breath-hold data where P ET CO 2 data

as not collected or had insufficient quality. 

Potentially most impactful, a method to acquire robust CVR ampli-

ude and delay maps even in datasets with insufficient P ET CO 2 qual-

ty has important implications for populations where it may be diffi-

ult to obtain reliable end-tidal measurements. This includes children,

here previous work has demonstrated reasonable task compliance but

oor P ET CO 2 quality, either due to mouth breathing or failure to per-

orm end-exhales. It also includes aging cohorts and clinical populations

both pediatric and adults), who may similarly have difficulty follow-

ng the steps needed for sufficient quality P ET CO 2 ( Handwerker et al.,

007 ; Thomason et al., 2005 ). However, further systematic compar-

sons are necessary for translation of these methods in other cohorts

see Section 4.7 ). 
Overall, improved accessibility to CVR mapping can increase the

revalence of this informative metric of vascular health. Several reviews

ave described the utility of CVR mapping for understanding disease

echanisms and as a biomarker to triage patients for therapeutic in-

erventions and track the efficacy of these interventions ( Blair et al.,

015 ; Gupta et al., 2012 ; Juttukonda and Donahue, 2019 ; Pillai and

ikulis, 2015 ; Sleight et al., 2021 ; Smeeing et al., 2016 ). Aside from

linical populations, CVR mapping is also recommended in healthy co-

orts to isolate differences in the BOLD response that may be due to

ifferences in vascular rather than neural processes ( Handwerker et al.,

007 ; Thomason et al., 2007 ; Tsvetanov et al., 2015 ). 

.6. Limitations of generalizability 

The comparisons laid out in this study are valid only for breath-hold

ask fMRI data in healthy individuals. Further optimization and testing

re needed to determine if these alternative reference signals can be used

or CVR mapping with other populations and experimental designs. It

s unclear if this framework can be generalized to clinical populations,

nd particularly those with cerebrovascular pathology. We highlight key

imitations to the generalizability of our proposed framework below. 

First, there are several limitations of RVT as a reference signal. Be-

ause RVT is not a quantitative measure, it does not account for variabil-

ty in the voluntary control of ventilation, including neuronal control,

reath-hold depths, ventilatory rate, and breathing patterns (e.g., ab-

ominal vs. thoracic). Therefore, RVT-based measurements may have

imited sensitivity to inter-session CVR differences and may be inappro-

riate for clinical populations with altered respiratory control, such as

hose with autonomic nervous system dysfunction ( Weese-Mayer et al.,

006 ). Furthermore, RVT and the RRF have not been systematically op-

imized for modeling breath-holds and may need to be revised for this

urpose (see Section 4.7 ) . Power et al. (2020) have also demonstrated

hat RVT is less sensitive to some respiratory events in resting-state fMRI

ata compared to other respiratory metrics derived from belt recordings

envelope of the waveform, respiration variation). These metrics may

lso be more sensitive in breath-hold data. 

In addition, there are limitations to using GM-BOLD as a reference

ignal in any cohort where BOLD response patterns might be atypical,

uch as in cerebrovascular disease or healthy aging. For example, in

ertain pathologies, the average gray matter signal may be biased by

egions with atypical perfusion dynamics. This could be addressed by

veraging across normal-appearing tissue, or by using global signal re-

nement procedures as described in Section 4.3 ( Frederick et al., 2012 ,

016 ) , which correct for wide delay ranges. However, in conditions

here most gray matter regions are affected, these procedures may not

e sufficient to correct the GM-BOLD signal and using it as a reference

ay lead to inaccurate estimates of CVR amplitude and delay. 
17 
Additionally, careful consideration should be given to the lagged-

LM approach and interpretation of CVR delay values in participants

ith cerebrovascular pathology. Using the lagged-GLM approach, hemo-

ynamic delays in the range of ± 9 s are consistently reported for healthy

ndividuals ( Bright et al., 2009 ; Donahue et al., 2016 ; Moia et al., 2021 ,

020a ; Sousa et al., 2014 ; Stickland et al., 2021 ), while in a case of

nilateral moyamoya, delays exceeded 10 s in the affected hemisphere

 Stickland et al., 2021 ). The delay range used in the lagged-GLM should

e modified to reflect those that are physiologically plausible for a

iven condition. Hemodynamic delays on the order of 10 to 20 s have

lso been reported in other pathologies, including steno-occlusive, small

essel disease, and dementia ( Atwi et al., 2019 ; Duffin et al., 2015 ;

artkamp et al., 2012 ; Holmes et al., 2020 ; McKetton et al., 2019 ;

hrippleton et al., 2018 ). In these conditions, the expected delays are

n order of magnitude larger than the bias introduced by using RVT or

M-BOLD as reference signals, relative to the gold standard of P ET CO 2 

RVT = 0.07 ± 0.42 s; GM-BOLD = 0.28 ± 0.55 s, Table S8). See Supplemen-

ary Section 3.1 for more details on this Bland-Altman error analysis.

owever, in some pathologies, differences in CVR delay may be more

ubtle and on the same scale of these inter-reference errors. Thus, the

ramework proposed here is likely to be more appropriate in cases where

emodynamic delays are more extreme. 

It is also important to acknowledge that our dataset is exceptional

n terms of participant compliance and signal quality. All participants

ttempted the breath-hold task with repeated periods of apnea. The res-

iration belt recordings successfully captured these changes in chest po-

ition, which are necessary to generate an RVT signal that has sufficient

ower at the task frequency. Similarly, the periods of apnea are required

o induce a rise in arterial CO 2 levels and the successive increase in CBF

etected by the GM-BOLD signal. Achieving this level of task compli-

nce could be difficult in some cohorts, although there is a breadth of

iterature demonstrating successful use of breath-hold tasks ( Pinto et al.,

021 ; Urback et al., 2017 ). The GM-BOLD signal used in our study also

enefits from the boost in SNR achieved from the optimal combination

f 5 echoes ( Cohen and Wang, 2019 ; Moia et al., 2021 ). If a multi-echo

MRI approach is not feasible, spatial smoothing or cortical parcellation

ould be used as alternatives to boost SNR at the cost of spatial defini-

ion. CVR maps from any reference signal will also be influenced by the

uality of the input fMRI data, from acquisition to the pre-processing

nd denoising steps applied ( Caballero-Gaudes and Reynolds, 2017 ). As

ith all fMRI acquisitions, we recommend mitigating motion confounds

uring the scan and modeling these noise sources in the lagged-GLM

 Moia et al., 2021 ). 

Lastly, the alternative reference signals considered here may not

e highly correlated with P ET CO 2 in paced deep breathing tasks and

ay have insufficient variability in resting state to produce reasonable

VR maps. Using a paced hyperventilation task to induce hypocapnia,

ogt et al. (2011) found that RVT convolved with the respiration re-

ponse function was less strongly correlated to BOLD signal changes than

 ET CO 2 convolved with an empirically derived response function. They

onjectured that the uncoupling of the signals was due to the higher rate

f CO 2 reduction during hyperventilation relative to the slower rate of

etabolic CO 2 production, which is captured by the P ET CO 2 regressor

ut not in the canonical respiration response ( Vogt et al., 2011 ). This

ould potentially be addressed with optimization of the respiration re-

ponse function for hypocapnia. 

.7. Alternative approaches to address compliance challenges in CVR 

apping 

While we ideally recommend using a breathing task and respiratory-

erived signal for CVR mapping, alternative methods without end-tidal

O 2 recordings or in resting-state have been proposed to address the

hallenges associated with breathing tasks. These methods are reviewed

n detail by Pinto et al., 2021 , but we discuss key comparisons. As de-

cribed in Section 4.4 , the Rapidtide algorithm can generate a probe
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egressor from the global BOLD signal or another reference time-

eries and use temporal cross-correlation with each voxel timeseries

o determine maximum correlations and corresponding time delays

 Frederick et al., 2016 ) ( Tong and Frederick, 2014 ). The correlation met-

ics are surrogates for CVR, although the outputs are not in the standard

VR units (%BOLD/mmHg) that allow for comparison across subjects,

articularly if the global signal is used as the probe. With a P ET CO 2 

robe, the Rapidtide outputs could potentially be modified to obtain CVR

mplitude in normalized units. 

From resting-state data, the global BOLD signal can be bandpass

ltered to approximate arterial CO 2 fluctuations and used as a re-

ressor to estimate CVR ( Liu et al., 2017 ). In addition, resting-state

etrics such as the amplitude of low frequency fluctuations (ALFF)

r fractional ALFF (fALFF) have demonstrated high correlations with

VR derived from CO 2 challenges ( Di et al., 2013 ; Golestani et al.,

016 ; Kazan et al., 2016 ). However, this relationship is controversial

 Moia et al., 2022a ). For instance, in the same dataset used in this study,

oia et al. (2022a) shows that resting-state metrics (RSFA, ALFF, fALFF)

ave highly variable inter-subject relationships with breath-hold CVR

easures. 

Additionally, the lagged-GLM has been previously performed with

 ET CO 2 from resting-state data, but the delay optimization procedure

as less successful, leading to noisy estimates of CVR amplitude and

elay ( Stickland et al., 2021 ). This was hypothesized to be due to the

maller fluctuations in the resting-state signal relative to a breathing task

nd the confounds of low-frequency oscillations from neural activity and

ther physiological processes that may disrupt the optimization proce-

ure ( Caballero-Gaudes and Reynolds, 2017 ; Liu, 2016 ; Murphy et al.,

013 ). The increased BOLD sensitivity and data quality associated with

he multi-echo acquisition in our study also helps to improve the CVR

stimates ( Moia et al., 2021 ). Similar results would be expected for al-

ernative resting-state reference signals. 

Although these alternative methods provide some insight into cere-

rovascular physiology, each is missing a key characteristic of robust

VR measurements. Namely, none of these methods simultaneously use

 breathing modulation to challenge the vascular system, normalize

he BOLD changes to a reference signal that accounts for variability in

reathing task performance, and correct for regional delays in CVR re-

ponse time ( Stickland et al., 2021 ). 

.8. Future work 

CVR map quality and accuracy could be further improved by refining

he response functions used to model the effects of P ET CO 2 and respi-

ation fluctuations on the BOLD signal. We assumed canonical response

unctions for the HRF ( Friston et al., 1998 ) and RRF ( Birn et al., 2008 )

sed to model P ET CO 2 and RVT, respectively. However, the BOLD re-

ponse to P ET CO 2 fluctuations may exhibit a slightly different tempo-

al pattern than the canonical HRF ( Golestani et al., 2015 ; Vogt et al.,

011 ). While we have accounted for regional variations in the timing

f these responses, we have not incorporated flexible response shapes.

patial heterogeneity in the amplitude and timing of BOLD responses

o respiratory variation is apparent in resting-state data, with notable

ifferences between primary sensory regions and frontoparietal regions

 Chen et al., 2020 ; Pinto et al., 2017 ). The inclusion of basis sets in the

agged-GLM as described by Chen et al., 2020 may better account for

his variability. 

In addition, response functions have been shown to vary be-

ween subjects and even between sessions from the same subject

 Kassinopoulos and Mitsis, 2019 ). Kassinopoulos and Mitsis (2019) pro-

osed a framework to estimate subject-specific response functions by us-

ng a combination of optimization techniques to estimate parameters of

he double gamma functions, which could also be implemented to gen-

rate more accurate reference signals. Similarly, they could be estimated

rom the subject-specific global or GM-BOLD signals ( Falahpour et al.,

013 ), but importantly the estimated response functions should be
18 
ested in other datasets to avoid circularity. Regardless of the approach,

ifferences in response functions are especially important to consider

n cohorts that may have atypical hemodynamics, as in older adults and

erebrovascular pathology ( D’Esposito et al., 2003 ). Future work should

e-evaluate consistency between CVR maps with region-specific and/or

ubject-specific response functions. 

We encourage collaboration among stakeholders in the CVR com-

unity and suggest integration among the existing approaches that

im to address the feasibility of physiological modeling and CVR map-

ing. For example, a refined GM-BOLD regressor could be extracted

rom existing algorithms such as Rapidtide ( Frederick et al., 2022b ) or

eeVR ( Bhogal, 2022 ) and incorporated into the lagged-GLM. Alterna-

ively, standard implementations of CVR modeling algorithms, includ-

ng Rapidtide, seeVR, and quantiphyse ( Craig et al., 2022 ), could be

odified to input RVT as a reference signal if not already supported.

achine learning may also be a promising tool to address challenges

ith reference signal quality. For example, Agrawal et al., 2022 suc-

essfully used the respiratory waveform in resting-state data to pre-

ict CO 2 and derive P ET CO 2 using a fully convolutional neural net-

ork ( Agrawal et al., 2022 ). However, their method does not main-

ain P ET CO 2 in quantitative units of mmHg either, which would be pre-

erred for modeling CVR amplitude. A separate study proposed two deep

earning architectures (again a convolutional neural network and a fully

onnected single-unit network) to reconstruct respiratory variation sig-

als from the fMRI data itself ( Salas et al., 2021 ). Future work could

dapt these models to predict a “sufficient ” P ET CO 2 trace from insuffi-

ient P ET CO 2 data, from a respiration trace, or from the fMRI data in the

ontext of a breath-hold task. This would be especially promising if the

lgorithm is able to scale the resulting P ET CO 2 signal in standard units

i.e., %BOLD/mmHg). 

. Conclusion 

End-tidal CO 2 (P ET CO 2 ) is commonly used as a reference signal to

acilitate modeling of cerebrovascular reactivity (CVR) in BOLD fMRI

ata, but the P ET CO 2 recordings may be unavailable or unreliable in

any settings. We demonstrate that respiration volume per time (RVT)

r the average gray matter BOLD response during a breath-hold task can

e used in a lagged general linear model framework to obtain estimates

f CVR amplitude and delay. Furthermore, CVR maps from these refer-

nce signals have good spatial agreement with those from the gold stan-

ard reference of P ET CO 2. In datasets with sub-optimal or “insufficient ”

 ET CO 2 recordings, RVT and GM-BOLD can also be used to recover rea-

onable CVR amplitude and delay maps, provided that the participant

chieved periods of apnea during the breath-hold task. This framework

ffers a solution to obtain non-quantitative CVR amplitude and quanti-

ative delay maps when reliable P ET CO 2 recordings are unavailable due

o limitations in resources or participant compliance. 

ata and code availability statement 

(Included verbatim in Methods Section 2.3 ) The MRI images and

hysiological data used in this study are available on OpenNeuro

t doi:10.18112/openneuro.ds003192.v1.0.1 (Moia, Uruñuela, Ferrer,

 Caballero-Gaudes, 2020). All code for pre-processing of the MRI

ata has been prepared to be run in a Singularity container, which

s publicly available at https://git.bcbl.eu/smoia/euskalibur_container .

he pre-processing pipeline is available at https://github.com/

moia/EuskalIBUR _ preproc . Publicly available Python scripts, peakdet

Markello & DuPre, 2020) and phys2cvr (Moia, Vigotsky, & Zvolanek,

022), were used for processing of CO 2 recordings and computation

f CVR parameter maps. The open-source Rapidtide v2.2.7 toolbox (B.

eB Frederick, Salo, & Drucker, 2022) was used for exploratory anal-

sis (see Discussion Section 4.3 ). Additional analysis code and de-

ails about how they were implemented for this manuscript are shared

https://openneuro.org/datasets/ds003192/versions/1.0.1
https://git.bcbl.eu/smoia/euskalibur_container
https://github.com/smoia/EuskalIBUR_preproc
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ig. A.1. Inter-session spatial correlations between CVR amplitude maps from the sa

entary Table S5). The unity line ( y = x ) is plotted in gray for reference. All correl

dentified from the Harvard-Oxford cortical atlas and separated by hemisphere. Eac

el. Lines-of-best-fit are shown between each pair of CVR amplitude maps. Pearson

ines-of-best-fit ( 𝛽) are displayed in the bottom right corner. 

19 
upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi:10.1016/j.neuroimage.2023.120038 . 

ppendix A: Consistency of CVR amplitude and delay maps 

etween sessions 

The consistency of CVR parameter maps was evaluated by perform-

ng “inter-session ” spatial correlations. These correlations were per-

ormed between CVR parameter maps from two consecutive sessions,

or a given subject and reference signal (e.g., between P ET CO 2 CVR am-

litude maps from ses-02 and ses-03 for sub-002). The same methods

escribed in Section 2.4.4 for “inter-reference ” and “inter-quality ” spa-

ial correlations were applied here. In brief, CVR maps were parcellated

nto 96 cortical parcels. The median values from each parcel were input

nto spatial correlations. Pearson correlation coefficients were computed

nd transformed to Fisher’s Z. A linear model was also fitted to deter-

ine the slope of the relationship. 

CVR amplitude inter-session comparisons: For all reference signals, the

esulting CVR amplitude maps are highly similar between sessions, pro-

ided there was sufficient P ET CO 2 data in each subject. Inter-session

patial correlations were similar for each reference signal with no signif-

cant differences in average Fisher’s Z across subjects (P ET CO 2 : Z = 1.62,

VT: Z = 1.50, GM-BOLD: Z = 1.75). The inter-session spatial correla-

ions are depicted in Fig. A.1 and summarized in Supplementary Table

5. There is nearly a 1:1 relationship in the CVR amplitude maps be-

ween consecutive sessions for each reference signal (average slopes:

 ET CO 2 = 1.00 ± 0.23, RVT = 0.91 ± 0.26, GM-BOLD = 0.95 ± 0.07). Exclud-

ng the outlier of sub-006, the average slope for RVT increases to

.97 ± 0.21. 

CVR delay inter-session comparisons: CVR delay maps for each refer-

nce signal are also highly spatially correlated between two consecu-

ive sessions, provided the P ET CO 2 quality was sufficient. These inter-

ession spatial correlations for CVR delay are summarized in Fig. A.2

nd Supplementary Table S7. There were no significant differences in

verage Fisher’s Z across subjects (P ET CO 2 : Z = 1.11, RVT: Z = 1.14,

M-BOLD: Z = 1.21). The average slope between delays from consecu-

ive sessions is also similar for each reference signal (average slope for

 ET CO 2 : 0.83 ± 0.22, RVT: 0.81 ± 0.21, GM-BOLD: 0.87 ± 0.11). 

Refined GM-BOLD inter-session comparisons: The between-scan con-

istency of Refined GM-BOLD delay maps (described in Discussion
ection 4.3 ) was also evaluated for comparison to GM-BOLD. While the
me reference signal between two consecutive sessions (summarized in Supple- 

ations were computed using the median CVR amplitude in 96 cortical parcels, 

h dot in a sub-plot represents the median CVR amplitude in one cortical par- 

 correlation coefficients (r) are listed in the top left corner and slopes for the 

https://github.com/BrightLab-ANVIL/Zvolanek_2022
http://dx.doi.org/10.13039/100000002
https://doi.org/10.1016/j.neuroimage.2023.120038
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Fig. A.2. Inter-session spatial correlations between CVR delay maps from the same reference signal between two consecutive sessions (summarized in Supplementary 

Table S7). The unity line ( y = x ) is plotted in gray for reference. All correlations were computed using the median CVR delay in 96 cortical parcels, identified from 

the Harvard-Oxford cortical atlas and separated by hemisphere. Each dot in a sub-plot represents the median CVR delay in one cortical parcel. Lines-of-best-fit are 

shown between each pair of CVR delay maps. Pearson correlation coefficients (r) are listed in the top left corner and slopes for the lines-of-best-fit ( 𝛽) are displayed 

in the bottom right corner. 
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elay maps generated from the Refined GM-BOLD signal are highly simi-

ar across sessions ( Z = 0.99 ± 0.32), the inter-session spatial correlations

re lower relative to GM-BOLD ( Z = 1.21 ± 0.19). However, these corre-

ations were not statistically different in average Fisher’s Z, and sub-003

ay be an outlier reducing the average Refined GM-BOLD correlation

 Z = 1.07 ± 0.23 without sub-003). The Refined GM-BOLD inter-session

patial correlations are visualized in Supplementary Fig. S10, and Sup-

lementary Table S13 summarizes these correlations. 
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