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AXI Lite redundant on-chip bus interconnect for high
reliability systems

Jesús Lázaro Armando Astarloa Aitzol Zuloaga José Ángel Araujo Jaime Jiménez

Nowadays, system-on-chips have become critical since they support more and more safe applications due
to their flexibility. However, they are susceptible to single-event upsets because the memory cell size has
significantly shrunk. This article presents a triple redundant on-chip interconnect bus that provides low-speed
peripherals with high reliability. In addition to correcting single errors and detecting duplicated ones, the
proposed circuit offers zero latency and is transparent for both the embedded processor and the peripherals.
These characteristics make it suitable for hard real-time applications. At the same time, the impact on area and
power consumption is minimal. 1
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1 Introduction
Nowadays, SRAM FPGAs are widely used in many applications, such as autonomous vehicles, signal processing, industry
4.0, and embedded applications [1], thanks to their growth in capabilities.

Due to the nature of SRAM-based FPGAs, they are susceptible to SEU induced by high-energy particles [2, 3], which
limits their usage in safety and mission-critical applications. In SRAM-based FPGAs, the programmability is controlled by
the SRAM cell-based configuration memory. With every advance in reducing voltage and dimensions of the SRAM cell, its
capacitance is decreased. This decrement increases the vulnerability of the cell to particles of lower energy. When an event
occurs, the actual behavior of the circuit may get altered until the FPGA is programmed again [4].

The most common SEU hardening techniques include TMR [5], Partial TMR [6], and Dynamic Partial Reconfiguration [7].
The TMR implementation uses three identical logic blocks performing the same task in parallel and compares the outputs
by a majority voter. In safety-critical applications, TMR techniques are essential.

TMR may be applied with different granularities. The finest granularity of TMR is achieved when voting is applied for
all registers in the design [8]. A more coarse granularity can be achieved if triplication and voting are applied through
the device based on larger modules and their respective outputs [5]. The robustness increases when voting is performed
over smaller modules, but so does the implementation cost in terms of FPGA utilization. Furthermore, a fine granularity
reduces the highest achievable system speed because voters are added to the critical path [9].

In this article, the reliability of FPGA systems is increased by introducing coarse-grained TMR in AXI4-Lite on-chip
peripherals. Additionally, IP core — AXILiteRedundant — has a minimal area, power impact, and maximum speed. At
the same time, the IP core reduces the processor’s overhead by presenting a single peripheral structure rather than the
triple system produced by the TMR. This characteristic allows more straightforward software to process the incoming data,
allowing hard real-time operations.

The scope of this research project includes implementing the AXILiteRedundant architecture in a ready-to-use HDL-
described IP. It will be packaged in the format specified by the Silicon vendors [10], allowing the engineers to integrate this
block into the SoC design seamlessly. The implementation includes the basic software driver to configure and manage the
IP.

Redundancy can be exploited through an on-chip building block in SoC designs for critical systems, where the failure
rate shall be maintained into shallow values. This IP enhances the reliability of the user IP that wraps. An example of a
typical user IP that can be rugged using this wrap is an IP that implements the standard communication protocol for
satellite platforms, SpaceWire [11]. This wrap and the redundant implementation for a given IP shall be combined with
other mechanisms, such as lock-step CPU operation or SRAM memory scrubbing, to build a complete and robust SoC
solution. The primary sector that benefits from these innovations is Space [12]. However, the demand for robust SoC
platforms is increasing in other sectors, such as Transportation, Defense, and Medical.

The rest of the paper is divided into the following sections: Section 2 presents work done previously in the field. Section 3
describes the proposed solution. Section 4 describes the obtained results. Section 5 compares it with some similar ones.
Section 6 concludes the paper.
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Figure 1: Simplified diagram of the IP core. Slave to Master is triplicated. Master to Slave is majority-voted. Error
backchannel (err) is also depicted. It will inform the processor of any issues.

2 Previous Work
Redundancy in SoC can take multiple approaches and exists at different levels. The most common ones are: (a) System
architecture, (b) Microprocessor, (c) Communications, (d) IO, and (e) FPGA.

System architecture level redundancy is a common approach in SoC [2, 13, 14]. Key areas where it is used include
flight control, industry, and satellite design. The main approaches are component redundancy with TMR and redundant
intra-chip communication buses.

Microprocessor level redundancy [15, 16, 17] uses multiple processors inside the same SoC. The most common approach
is lockstep. In other words, several processors run the same program with the same input data. Newer approaches include
using heterogeneous SoCs —systems with more than one type of processor— to mitigate potential hidden errors in the
processor’s design.

Communications level redundancy [18, 19] uses multiple communication channels to connect to external elements.
IO level redundancy [20, 21, 22] is related to the electrical level redundancy of the signals. Common approaches are

routing the same signal to multiple inputs or joining the signals from multiple outputs with some circuitry to avoid short
circuits.

FPGA-level redundancy engulfs a variety of issues. FPGAs are incredibly flexible, which allows internal redundancy [23, 24].
They also enable some previous redundancy schemes [15].

At the same time, FPGAs suffer from specific issues such as SEUs due to numerous SRAM cells. In order to mitigate
this issue, several approaches, such as scrubbing, have been proposed [25, 26, 27].

This paper presents a new approach to enhancing reliability in SoC. It is based on including redundancy of internal buses
for low-speed peripherals. The literature has several examples in this area of research.

Bertozzi et al. [23] proposed a redundant bus coding to increase redundancy in power-constrained systems. They tested
known algorithms such as Hamming and CRC. One interesting point is their focus on power, which leads to the conclusion
that retransmission is, in many cases, more efficient. However, this approach is not valid for time-critical systems. In
addition, it is not transparent to the processor, requiring extensive recoding.

Benevenuti et al. [24] deal with the redundancy of AXI Stream interfaces. Their solution includes using redundant bus
inputs to every IP Core. Each IP Core can efficiently decide the correct one by knowing the kind of information it is
receiving. The main problem of this approach is that it requires recoding of the IP Core to have triple internal redundancy.

3 Solution description
Since redundancy is an overall requirement, it must be addressed at the IP and system levels. Therefore, our solution is
divided into two main elements: (a) AXILiteRedundant IP Core, and (b) Redundant system.

3.1 AXILiteRedundant
This IP Core is in charge of triplicating elements from the Slave IF to the Master IFs. It also decides the values of the
signals that go from the multiple Masters IF to the Slave IF. To do so, it will vote for the correct value. Figure 1 shows the
diagram of the IP Core. The Slave IF is the one connected (directly or indirectly) to the processor. The Master IF is the
one connected to the external world. Since we are dealing with redundancy, there are three Master IF.

The core manages five channels per interface, as the AXI specification proposes. The following modifications to the AXI
standard have been applied to implement the redundancy mechanism.

project IDI-20201264 and IDI-20220543, and through the Fondo Europeo de Desarrollo Regional 2014-2020 (FEDER funds).
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• Read Address: This bus is triplicated to all the Master IF. Return ready signals are majority voted.

• Read Data: Ready signal is triplicated to all Masters. Data and valid are majority voted.

• Write Address: This bus is triplicated to all the Master IF. Return ready signals are majority voted.

• Write Data: This bus is triplicated to all Masters. Return ready signals are majority voted.

• Write Response: Ready signal is triplicated to all Masters. The response is majority voted.

The voting scheme uses a three-way majority voting [28]. This circuit outputs the most abundant value. In case of all
three values are different, the circuit also outputs an error signal. The process of triplicating and voting is combinational.
This ensures 0 latency in clock cycles. Since the process is highly optimized, it is also very efficient and adds a minor
frequency penalty, as shown in the result section. Figure 2 shows the Karnaugh table of the circuit.
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Figure 2: Tree-way majority voting Karnaugh table.

The IP core is also in charge of feeding some information to the processor. It will state if all the Masters are providing
the same values. If not, and can be corrected (two Masters provide the same information), it will do so and inform of the
error. If it cannot be corrected (errors in multiple bits of a bus but in different Masters), it will inform of the error, and the
output value is irrelevant. This process is done independently for every channel in the interface.

3.2 System
The system is composed of several IP cores. In our example, apart from the minimal system required to implement a bare
SoC device, we have added a firewall IP core. The main elements of the system are (see Fig. 3):

• Zynq: It is the processor present in the system [29]. In our example is in charge of accessing the peripherals. The
processor has a single peripheral from the software point of view, even if they are triplicated.

• AXILiteRedundant: It is in charge of triplicating the incoming AXI transactions so that the processor sees a single
peripheral.

• Firewall: A bridge between two portions of an AXI memory-mapped network protects one portion from issues caused
by the opposite portion, such as protocol violations or timeout hangs [30]. In our case, it has been added as extra
protection for a case where one of the cores has been compromised and is not working correctly. There are other ways
of implementing this extra security, for example, using a Firewall per peripheral core.

• Interconnect: It is the block responsible for connecting several AXI networks. Even if only a single Slave is connected to
the Zynq processor, this block is required because of the different natures of AXI on both sides. In this case, AXILite
downstream and AXI 3 upstream [31].

• GPIO: They are the peripheral blocks [32]. In order to have redundancy, each IO is connected so that there is a physical
majority vote [33].
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Figure 3: Overall system. The PS is connected to the redundant system through an AXI Interconnect and the proposed
core.

4 Results
In order to verify the system, we used a simulation environment. This simplified system allows for verifying the correctness
of the IP Core and can generate errors to test the resilience of the whole architecture. The simulation system is depicted in
Fig. 4.
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Figure 4: Simulation system. A traffic generator replaces the processor system. A couple of AXI verification cores are
added to check for erroneous transactions. The AXI infrastructure is simplified compared to Fig. 3 to more easily
check the correct functioning of the system.

The key elements, apart from those described in the previous section, are:

• AXI Traffic Generator: Generates traffic over the AXI4. It generates a wide variety of AXI transactions based on the
core programming and selected mode of operation. [34]

• AXI Verification IP: Checks that all transactions comply with the AXI standard. It is useful when creating new IP to
guarantee that it will not cause any issues on the communication channel [35]

The result of the simulation is depicted in Fig. 5. The IO has been simulated in reading and writing, including high
impedance. The process that can be seen is:

• W0: Configuration of the IO as output — write ‘0’.

• W1: Write all ‘1’ to the outputs.

• W0: Configuration of the IO as input — write ‘1’.

• R0: Read the input.

The read input process is done four times with different results:

1. All inputs have the same value, so there is no error.

2. GPIO 3 has a different value, so there is a recoverable error.

3. GPIO 1 has a different value, so there is a recoverable error.

4. All GPIO have different values, so there is an unrecoverable error.
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Figure 5: Simulation result. Initially, W0 and W1 configure the GPIO as output and write the value ‘1’. Next, the GPIO is
configured as an input by writing into W0, and four consecutive reads (R0) are performed. In the first one, all
three cores respond with the same value. Thus, there is no error. In the second read, the third GPIO is erroneous.
In the third read, the first GPIO is wrong, while in the last one, all three values are different, leading to an
unrecoverable error (Error = ‘1’).

In addition to increasing reliability, the IP design has focused on minimizing FPGA resources and energy consumption.
Moreover, simultaneously, without introducing a significative penalty on timing results. Table 1 shows the area and energy
results. As can be seen, the area required to implement AXILiteRedundant is 0.42% of the LUTs present in the xc7z020 of the
Zedboard. From the energy results, it is clear that energy consumption is low compared to the rest of the IPs in the system.
For example, the IP core requires a fourth of the energy of the GPIO core.

Table 1: Resource utilization of different cores in the system. The proposed core requires less than 0.42% of xc7z020 present
in the Zedboard. The power results are those provided by Vivado post-implementation.

Name Slice
LUTs

Slice
Registers

LUTs
% of total

Power
mW

axi_firewall_0 626 810 1.18 4.35
ps7_0_axi_periph 543 692 1.02 6.66
AXILiteRedundant 223 81 0.42 0.48
axi_gpio_2 131 382 0.25 1.65
axi_gpio_1 131 382 0.25 1.66
axi_gpio_0 131 382 0.25 1.74
axi_gpio_result 96 318 0.18 2.90
processing_system7_0 24 0 0.05 1530.38
rst_ps7_0_100M 19 40 0.04 0.23

From the timing point of view, as stated before, the IP is designed to introduce 0 clock latency. This simplifies the design
and allows it to be used in real-time systems. From the frequency point of view, the overall system can work at speeds over
166MHz. This shows that the overall performance is not affected by the IP core.
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5 Comparison
Due to the specific nature of the IP, it is not easy to compare it with other IPs. Other approaches are specific to other
interface definitions and, thus, difficult to compare with the proposed IP.

Benevenuti et al. [24] propose a redundant system for a single processing core using AXI Stream. The main difference is
that the system has a single peripheral with a triplicated input interface and a single output interface. The input voter
is included inside the IP core, thus requiring redesigning the IP. The input data comes from three different DMAs that
transfer the information from the processor to the peripheral. The output is transferred to the DMAs that copy the data to
the three different memory sections where the processor can get it. The processor must be aware of the redundancy to vote
the results. The paper does not provide any area, power, or timing information.

Bertozzi et al. [23] propose a resilient IF not by redundancy but by including parity bits in the bus. This system is
transparent for the processor and the peripheral. This approach does not use redundant peripherals and can only cope
with errors in the bus and internal to the FPGA. The paper provides comprehensive power information depending on the
redundancy algorithm (hamming, CRC,. . . ). The proposed algorithms require very little power but may have high latency.
The latency is (0.88–4.56) ns and is different for encoding and decoding. Area usage is (2.7× 103–11.0× 103) gates. The
energy consumption is (1.2–617) µW.

Table 2 shows the comparison between the proposed system and the other ones. The proposed system is the most efficient
in terms of area and has the lowest latency. In terms of energy, it is better than the most power-hungry version provided by
Bertozzi et al., although it requires more energy than the most basic ones presented in the article. Furthermore, it is the
sole one that can handle both IF and peripheral errors. It also possesses critical characteristics, such as using unmodified
IP cores and software.

Table 2: Comparison of the proposed paper with others present in the literature. The table shows the redundant elements,
whether the CPU and the IP must be aware of the redundancy to function, and the impact on the area, energy,
and timing.

Paper Red. CPU
indep.

IP
indep.

Area
(gates)

Energy
(mW)

Timing
(ns)

[24] IF # # — — —
[23] IF ! ! 20,826 0.62 4.85

This Paper IF + IP ! ! 4376 0.48 2.50

6 Conclusions
This paper presents a TMR voter for the AXI4-Lite Standard. As FPGA systems are more and more usual in safe
applications, at the same time that susceptible to SEUs, they must be hardened using redundancy. Our core protects the
interconnection as well as the peripheral IPs. In addition to correcting single errors and detecting duplicated ones, the
resulting IP requires very few FPGA resources for the implementation. The increment in power consumption is negligible,
and it does not impact the latency due to the combinational nature of the IP core. This proposal is transparent both
for the peripheral IPs and the CPU, allowing the usage of standard peripheral IPs and eliminating any overhead to the
processing software. Further work in this area includes extending the IP range to other standard interfaces, such as AXI
Stream. A redundant AXI Stream IP would be useful for systems that require high bandwidth and low latency for data
processing and for multichip systems.
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